WO2017221851A1 - 直流電力の切替制御装置および発電システム - Google Patents

直流電力の切替制御装置および発電システム Download PDF

Info

Publication number
WO2017221851A1
WO2017221851A1 PCT/JP2017/022427 JP2017022427W WO2017221851A1 WO 2017221851 A1 WO2017221851 A1 WO 2017221851A1 JP 2017022427 W JP2017022427 W JP 2017022427W WO 2017221851 A1 WO2017221851 A1 WO 2017221851A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
value
unit
transmission line
Prior art date
Application number
PCT/JP2017/022427
Other languages
English (en)
French (fr)
Inventor
茂 福元
順一 中溝
栄稔 宮原
秀一 石原田
Original Assignee
株式会社福元技研
トランスパシフィックPowers株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社福元技研, トランスパシフィックPowers株式会社 filed Critical 株式会社福元技研
Priority to JP2018524059A priority Critical patent/JP7018649B2/ja
Publication of WO2017221851A1 publication Critical patent/WO2017221851A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/26Casings; Parts thereof or accessories therefor
    • H02B1/40Wall-mounted casings; Parts thereof or accessories therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/001Hot plugging or unplugging of load or power modules to or from power distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention provides a DC power switching control device that switches and controls transmission of DC power for each of a plurality of power generation units when sending DC power generated by a solar panel or other power generation device to a power conditioner.
  • the present invention relates to a power generation system including the switching control device.
  • DC power generated by a power generation device such as a solar panel
  • a power conditioner sent to a home or office via a transmission line, and used for various loads such as electric lights and equipment.
  • Some power is sold to power companies through commercial grids.
  • the capacity of power conditioners is determined individually (for example, 4.5 kW and 5.5 kW for home use, and 100 kW and 250 kW for commercial use, etc.).
  • the capacity of the power conditioner is determined according to the amount, and when adding a solar panel, the power conditioner is added or replaced with a large capacity type.
  • Patent Documents 1 to 2 Conventionally, there has been proposed a control method for increasing power generation efficiency in solar power generation (see Patent Documents 1 to 2).
  • the power conditioner generally determines the capacity according to the maximum power generation amount of the solar panel as described above. However, there are only a few days in which the maximum power generation amount can be obtained throughout the year. Including the percentage of cloudy or rainy days in the daytime, the efficiency of power conditioners used throughout the year remained low, and sufficient power output was not obtained for the capacity of power conditioners. .
  • the present invention has been made in view of the above circumstances, and is capable of switching and controlling the transmission of DC power for each of a plurality of power generation units when sending DC power generated by a solar panel or other power generator to a power conditioner.
  • An object of the present invention is to provide a switching control device and a power generation system.
  • a DC power switching control device includes: In a power generation system including a power generation apparatus including a plurality of power generation units and a plurality of transmission lines that transmit DC power generated for each power generation unit, In transmitting DC power generated by each power generation unit to the power conditioner, In the middle of each transmission line, a current sensor that detects a current value of DC power generated for each power generation unit, a voltage sensor that detects a voltage value of DC power generated for each power generation unit, and a control from the control unit Each switch unit for switching the power transmission line between connection mode and open mode for each power generation unit by a signal is provided, An operation value is set based on a specified capacity of the power conditioner, and a total value of DC power for each power generation unit calculated from the current value detected by the current sensor and the voltage value detected by the voltage sensor is When the total value of DC power exceeds the operating value, the control unit connects one or more changeover switch units so that the total value of DC power transmitted to the power conditioner is lower than the operating value.
  • a first feature is to switch
  • a DC power switching control device includes: After the one or more changeover switch units are switched from the connection mode to the open mode, when the total value of DC power again exceeds the operating value, the control unit selects one or more changeover switches among the remaining changeover switch units.
  • the second feature is that the part is switched from the connection mode to the release mode.
  • a DC power switching control device includes:
  • a third feature is that the changeover switch unit is sequentially switched from the connection mode to the open mode according to a preset order each time the total value of the DC power exceeds the operation value.
  • a DC power switching control device includes: The operation value is set as an upper operation value, a lower operation value is set separately from the upper operation value, and when the total value of the DC power is lower than the lower operation value, the control unit is switched to the open mode.
  • the fourth feature is that the mode is sequentially switched to the connection mode.
  • a DC power switching control device includes: Instead of providing a current sensor and voltage sensor for each power generation unit in the middle of each transmission line, they merge downstream of the selector switch provided for each transmission line in the middle of each transmission line, and in the middle of the transmission line toward the power conditioner
  • the fifth feature is that a pair of current sensor and voltage sensor is provided.
  • the power generation system includes: A power generation system including a power generation device including a plurality of power generation units and a plurality of transmission lines for transmitting DC power generated for each power generation unit, wherein the switching control device is any one of the first to fifth features It is characterized by providing.
  • a DC power switching control device includes: In a power generation system including a power generation device including a plurality of power generation units, a plurality of power transmission lines that transmit DC power generated for each power generation unit, and a power storage device that branches and stores DC power transmitted from each power transmission line , In transmitting DC power generated for each power generation unit to the power conditioner and / or branching to the power storage device and transmitting power, In the middle of each transmission line, a current sensor that detects a current value of DC power generated for each power generation unit, a voltage sensor that detects a voltage value of DC power generated for each power generation unit, and a control from the control unit Each switch unit for switching the power transmission line between connection mode and open mode for each power generation unit by a signal is provided, A current sensor that detects the current value of DC power that is branched and transmitted for each power generation unit in the middle of the transmission line that branches from each power transmission line toward the power storage device, and a DC that is branched and transmitted for each power generation unit A voltage sensor that detect
  • a DC power switching control device includes: After switching one or more changeover switch parts on the power conditioner side from the connection mode to the open mode, and after switching one or more changeover switch parts on the power storage device side from the open mode to the connection mode, When the total value of DC power again exceeds the operating value, the control unit switches one or more changeover switch units from the connection mode to the open mode among the remaining changeover switch units on the power conditioner side, and A seventh feature is that one or a plurality of changeover switch portions among the remaining changeover switch portions are switched from the open mode to the connection mode.
  • a DC power switching control device includes: Each time the total value of DC power exceeds the operating value, the switch on the power conditioner side is sequentially switched from the connection mode to the open mode in accordance with a preset order, and the switch on the power storage device side is sequentially switched from the open mode to the connection mode. Switching is an eighth feature.
  • a DC power switching control device includes: The operating value is set as an upper operating value, a lower operating value is set separately from the upper operating value, and when the total value of DC power falls below the lower operating value, the control unit switches to the open mode on the power conditioner side.
  • a ninth feature is that the changeover switch unit sequentially switched to the connection mode and the changeover switch unit switched to the connection mode on the power storage device side are sequentially switched to the open mode.
  • a DC power switching control device includes: Instead of providing a current sensor and voltage sensor for each power generation unit in the middle of each transmission line, they merge downstream of the selector switch provided for each transmission line in the middle of each transmission line, and in the middle of the transmission line toward the power conditioner
  • the tenth feature is that a pair of current sensor and voltage sensor is provided.
  • the power generation system includes: A power generation system including a power generation device including a plurality of power generation units, a plurality of power transmission lines that transmit DC power generated for each power generation unit, and a power storage device that branches and stores the DC power transmitted from each power transmission line A switching control device according to any one of the sixth to tenth features is provided.
  • high-level DC power close to the specified capacity can be stably transmitted to the power conditioner without exceeding the specified capacity of the power conditioner. It is possible to increase the output power of the power supply and increase the power supply to the load of the home or office and the commercial system.
  • the DC power generated by the power generator is finely controlled for each power generation unit so that the power can be branched and transmitted to the power conditioner and the power storage device. There is an effect that it can be used.
  • the output amount of power from the power generation system can be controlled regardless of the number and scale of solar panels and other power generation devices installed, so the power generation amount applied for by the country or power company is exceeded. Without the above, stable power generated below the upper limit can be transmitted to the power conditioner.
  • the 1st Embodiment of this invention is shown, The block diagram of the electric power generation system containing the switching control apparatus of direct-current power, The block diagram of the direct-current power switching part in the switching control apparatus shown in FIG. Explanatory drawing showing the operation panel, The figure for demonstrating the effect
  • reference numeral S1 denotes a power generation system.
  • the power generation system S1 includes a plurality of power generation devices (solar cell arrays) 100A to 100C and a DC power switching control device 200, and transmits DC power generated by each of the power generation devices 100A to 100C to the power conditioner 300. It is like that.
  • the power generation device 100A is an existing solar cell array, and the power generation devices 100B and 100C indicate additional solar cell arrays.
  • Each of the power generation devices 100A to 100C includes a plurality of power generation units (strings) formed by connecting a plurality of solar cell panels (modules) in series.
  • the existing power generation device 100A has two rows of power generation units 110A1 and 110A2
  • the additional power generation device 100B has two rows of power generation units 110B1 and 110B2
  • the additional power generation device 100C has two rows of power generation units 110C1 and 110C2. I have.
  • the power generation system S1 is set such that the total generated power of the power generation apparatuses 100A to 100C, that is, the total value of the maximum generated power of the power generation units 110A1 to 110C2 exceeds the specified capacity of the power conditioner 300.
  • the power transmission lines 121 extend from the power generation units 110A1 and 110A2 in two rows to the switching control apparatus 200 via the connection box 130 or directly.
  • the additional power generation device 100B power transmission lines 121 extend from the power generation units 110B1 and 110B2 in two rows to the switching control device 200, respectively.
  • the additional power generation device 100C power transmission lines 121 extend from the power generation units 110C1 and 110C2 in two rows to the switching control device 200, respectively.
  • each power transmission line 121 of each power generation unit 110A1 to 110C2 merges into one power transmission line 122 from the switching control device 200 via the connection box 130 or not, and extends to the power conditioner 300.
  • the DC power switching control device 200 switches and controls transmission of DC power generated by the power generation units 110A1 to 110C2 of the power generation devices 100A to 100C based on the upper and lower operation values.
  • a DC power switching unit 210, a control unit 220, and an operation panel 230 are provided.
  • the switching control device 200 is equipped with a communication unit 250 that can communicate with a communication terminal 240 via a server (not shown) connected to the Internet or a communication line 131, and the communication unit 250 receives a control signal from the control unit 220.
  • the power generation status (current value, voltage value) and the switching status are uploaded from the server 250 to the server via the Internet, and the information terminal 240 is equipped with the same function as the operation panel 230, so that it can be remotely operated from the communication terminal 240. Alternatively, the power generation status and the switching status can be received by the communication terminal 240.
  • the DC power switching unit 210 corresponds to each of the power generation units 110A1 to 110C2, and measures the current value of the DC power sent through each power transmission line 121 in the middle of each power transmission line 121.
  • a voltage sensor 212 for measuring the voltage value of DC power
  • the changeover switch sections 213A1 to 213C2 connect each power transmission line 121 to either the connected mode or the open mode (non-connected mode) for each of the power generation units 110A1 to 110C2 by a control signal based on the upper and lower operation values from the control section 220. It is supposed to switch to.
  • a changeover switch element power MOS-FET, IGBT, etc.
  • IGBT IGBT
  • the control unit 220 adds the DC power (W) calculated from the current value (A) detected by the current sensor 211 and the voltage value (V) detected by the voltage sensor 212 for each of the power generation units 110A1 to 110C2.
  • the changeover switch sections 213A1 to 213C2 are sequentially switched from the connection mode to the open mode according to a preset order, and the DC power
  • the changeover switch part switched to the open mode is sequentially switched back to the connection mode.
  • the upper and lower operation values are set based on the prescribed capacity of the power conditioner 300.
  • FIG. 3 shows the operation panel 230 of the control unit 220.
  • the operation panel 230 is provided with a measurement display unit 231 and an operation condition setting unit 232.
  • the measurement display unit 231 includes a current value (A) and a voltage value of DC power for each of the power generation units 110A1 and 110A2 of the power generation device 100A, for each of the power generation units 110B1 and 110B2 of the power generation device 110B, and for each of the power generation units 110C1 and 110C2 of the power generation device 100C.
  • the total value of (V), DC power (W), and DC power can be displayed, and although not shown, the switching status of the selector switches 213A1 to 213C2 can be displayed.
  • the operation condition setting unit 252 includes upper and lower operation values for operating the changeover switch units 213A1 to 213C2, an operation time of the changeover switch units 213A1 to 213C2 (does not return to the original mode until the set time elapses), a changeover switch unit
  • the operation order (switching order) of 213A1 to 213C2 can be set respectively.
  • it can also set as an operation
  • the measurement display unit 231 and the operating condition setting unit 232 of the operation panel 230 can be displayed on the display screen of the information terminal 240.
  • the power generation units 110A1 to 110C2 Each time, the current value (A), voltage value (V), DC power (W), and total value of DC power of the DC power are displayed on the information terminal 240, and the switching order and switching status of the power generation units 110A1 to 110C2 are displayed. Can be monitored remotely.
  • the upper and lower operation values of the changeover switch portions 213A1 to 213C2 the operation time, and the operation order (switching order) of the changeover switch portions can be set.
  • the power conditioner 300 converts DC power input from the power transmission line 122 into AC power.
  • the AC power converted by the power conditioner 300 is transmitted to the home or business via the power transmission line 123 and the distribution board 400.
  • Power is transmitted to a load (electric light, air conditioner, equipment, etc.) 500 in the station. Further, when there is surplus power, power can be transmitted from the distribution board 400 to the power company via the power transmission line 124.
  • Signals can be transmitted and received between the power conditioner 300 and the control unit 220 through the communication line 132.
  • the control unit 220 takes in the output schedule data of the power company stored in the server via the communication unit 250, and power An output command (output suppression, output increase) signal can be transmitted to the conditioner 300.
  • a sensor (current, voltage) 214 is provided in the middle of the power transmission line 123 from the power conditioner 300 to the distribution board 400, and the AC power value output from the power conditioner 300 is detected by the sensor 214 and passes through the communication line 133. Then, it is transmitted to the control unit 220, and the output value of the AC power can be displayed on the operation panel 230 or the information terminal 240. By displaying the AC power value output from the power conditioner 300 on the information terminal 240, the power conditioner 300 can be remotely monitored. Further, a branching portion 125 is provided in the middle of the power transmission line 122 from the switching control device 200 to the power conditioner 300, and a part or all of the direct current power directed to the power conditioner 300 is branched to the direct current load 550 for transmission. You may do it.
  • DC power is transmitted to the switching control device 200 via each power transmission line 121.
  • the current value and voltage value of DC power are measured by the current sensor 211 and voltage sensor 212 for each power generation unit, and the control unit 220 calculates DC power from the measured current value and voltage value. Further, the DC power is summed for each power generation unit.
  • the measured current value and voltage value, the calculated DC power and the total value thereof are displayed on the measurement display unit 231 of the operation panel 230 shown in FIG. It can also be displayed on the information terminal 240 for remote monitoring.
  • the control unit 220 sends an operation signal to the first changeover switch unit 213A1,
  • the first changeover switch unit 213A1 switches from the connection mode to the release mode.
  • the DC power from the first power generation unit 110A1 is not transmitted to the power conditioner 300, the total value of the DC power is reduced below the upper operating value.
  • the control unit 220 sends an operation signal to the second changeover switch unit 213A2,
  • the second changeover switch unit 213A2 switches from the connection mode to the release mode.
  • the control unit 220 causes the third changeover switch unit 213B1.
  • the third changeover switch 213B1 is switched from the connection mode to the release mode.
  • DC power transmitted to 300 can be maintained at a high value below a specified capacity, and output power from the power conditioner 300 can be maintained at a high value without being affected by changes or fluctuations in the amount of sunlight irradiated. Can do.
  • the control unit 220 sends an operation signal to the second changeover switch unit 213A2, and the second changeover switch unit. 213A2 switches from the open mode to the connected mode.
  • the DC power from the first power generation unit 110A1 and the second power generation unit 110A2 is transmitted again to the power conditioner 300, so that the total value of the DC power again rises above the lower operating value.
  • the control unit 220 sends an operating signal to the third changeover switch unit 213B1, and the third switching is performed.
  • the switch unit 213B1 switches from the open mode to the connection mode.
  • the DC power from the power generation unit is transmitted again to the power conditioner 300 from the first to the third, and the total value of the DC power again rises above the lower operating value.
  • the first to plural switching switches are operated in order to switch from the open mode to the connected mode, thereby enabling the power conditioner.
  • the DC power transmitted to 300 can be maintained at a value close to the specified capacity above the lower operating value, and the output power of the power conditioner 300 is high during the day without being affected by changes or fluctuations in the amount of sunlight. Value can be maintained.
  • symbol S2 indicates a power generation system that also serves as a power storage system
  • symbol 600 indicates a power storage device.
  • symbol is attached
  • the power generation system S2 includes a plurality of power generation devices (solar cell arrays) 100A to 100C, a switching control device 200 ′, and a power storage device 600, and direct current power generated by each of the power generation devices 100A to 100C is converted into a power conditioner 300.
  • a part or all of the DC power generated by each of the power generation devices 100A to 100C is branched to the power storage device 600 to be transmitted and stored.
  • the power generation device 100A is an existing solar cell array, and the power generation devices 100B and 100C indicate additional solar cell arrays.
  • Each of the power generation devices 100A to 100C includes a plurality of power generation units (strings) formed by connecting a plurality of solar battery panels in series.
  • the power generation system S2 is set so that the total generated power of the power generation apparatuses 100A to 100C, that is, the total value of the maximum generated power of each power generation unit exceeds the specified capacity of the power conditioner 300.
  • the power transmission lines 121 extend from the power generation units 110A1 and 110A2 of the power generation device 100A to the DC power switching unit 210 ′ of the switching control device 200 ′ via the connection box 130 or directly. ing.
  • a power transmission line 121 extends from each power generation unit 110B1 and 110B2 of the power generation device 100B to the DC power switching unit 210 'of the switching control device 200'. From each of the power generation units 110C1 and 110C2 of the power generation apparatus 100C, a power transmission line 121 extends to the DC power switching unit 210 'of the switching control apparatus 200'.
  • the power transmission lines 121 of the power generation units 110A1 to 110C2 extend from the DC power switching unit 210 'of the switching control device 200' to the connection box 130, merge into one power transmission line 122, and extend to the power conditioner 300.
  • the power transmission lines 121 of the power generation units 110A1 to 110C2 branch from the respective branch portions 125 (see FIG. 6) toward the power storage device 600, and the branched power transmission lines 126 merge into one power transmission line 127, The power storage device 600 extends.
  • a power transmission line 128 extends from the power storage device 600 toward the power conditioner 300 and joins the one power transmission line 122 described above.
  • the switching control device 200 ′ switches and controls the transmission of the DC power generated by the power generation units 110A1 to 110C2 of the power generation devices 100A to 100C based on the upper and lower operation values. As shown in FIG. Inside the section 210 ′, the current value of the DC power sent through each power transmission line 129 in the middle of the power transmission line 129 branched from the branching section 125 toward the power conditioner 300 corresponding to each power generation unit 110A1 to C2.
  • a current sensor 211 for measuring, a voltage sensor 212 for measuring the voltage value of DC power, and a changeover switch unit 213A1, 213A2, 213B1, 213B2, 213C1, 213C2 are provided.
  • Switch portions 213A3, 213A4, 213B3, 213B4, 213C3, and 213C4 are provided.
  • the changeover switch sections 213A3 to 213C4 connect the power transmission lines 126 for the power generation units 110A1 to 110C2 in accordance with the control signals based on the upper and lower operating values from the control section 220 in cooperation with the power conditioner 300 side and the power storage device 600 side. And switching to either open mode (disconnected mode). That is, when the changeover switch unit (for example, the changeover switch unit 213A1) on the power conditioner 300 side is switched from the connection mode to the open mode for each of the power generation units 110A1 to 110C3 by the control signal based on the upper and lower operation values from the control unit 220.
  • the changeover switch unit for example, the changeover switch unit 213A1
  • the changeover switch unit on the power storage device 600 side switches from the open mode to the connection mode, and the changeover switch unit on the power storage device 600 side (for example, the changeover switch unit 213A3) changes from the connection mode to the open mode.
  • the changeover switch unit on the power conditioner 300 side (the changeover switch unit 213A1 in the case of the above example) is switched from the open mode to the connection mode.
  • each DC power is transmitted to the power conditioner 300, and when the total value of each DC power exceeds the upper operating value, the amount exceeding the upper operating value.
  • DC power can be transmitted to the power storage device 600 and stored.
  • the controller 220 adds the DC power (W) calculated from the current value (A) detected by the current sensor 211 and the voltage value (V) detected by the voltage sensor 212 for each power generation unit 110A1 to B2.
  • the changeover switches 213A1 to 213C2 on the power conditioner 300 side are sequentially switched from the connected mode to the open mode according to a preset order.
  • the changeover switches 213A3 to 213C4 on the power storage device 600 side are sequentially switched from the open mode to the connection mode, and when the total value of DC power falls below the lower operating unit, the changeover switch switched to the open mode on the power conditioner 300 side From the open mode to the connection mode and from the storage device 600 side to the connection mode Ri in place of the switching unit from a connected mode open mode, so that the back sequentially switched.
  • the upper and lower operation values are set based on the prescribed capacity of the power conditioner 300.
  • the operation panel 230 shown in FIG. 5 has basically the same configuration as the operation panel 230 shown in FIG.
  • a communication line 134 extends from the power storage device 600 to the control unit 220, and the power storage status of the power storage device 600 and the power supply status from the power storage device 600 are displayed on the measurement display unit, or the power storage device 600 receives power from the operation panel 230 or the information terminal 240.
  • a power supply command can be transmitted to the device 600.
  • the function of the information terminal 240 can also be performed similarly to the said embodiment.
  • DC power is transmitted from the power generation units 110A1 to 110C2 of the power generation devices 100A to 100C to the switching control device 200 ′ via the power transmission lines 121. Is done.
  • the switching control device 200 ′ the current value and voltage value of the DC power are measured by the current sensor 211 and the voltage sensor 212 for each of the power generation units 110A1 to 110C2, and the control unit 220 determines the DC power from the measured current value and voltage value.
  • the power is calculated, and the DC power is totaled for each of the power generation units 110A1 to 110C2.
  • the measured current value and voltage value, the calculated DC power and the total value thereof are displayed on the measurement display unit of the operation panel 230 shown in FIG.
  • the control part 220 will be the 1st changeover switch part 213A1 by the side of the power conditioner 300, and the electrical storage apparatus 600 side.
  • An operation signal is sent to the first changeover switch portion 213A3, the first changeover switch portion 213A1 on the power conditioner 300 side is changed from the connection mode to the release mode, and the first changeover switch portion 213A3 on the power storage device 600 side is changed from the release mode. Switch to connected mode.
  • the DC power from the first power generation unit 110A1 is not transmitted to the power conditioner 300 but is transmitted to the power storage device 600.
  • the total value of the DC power input to the power conditioner 300 is reduced below the upper operating value, and a part of the DC power is stored in the power storage device 600.
  • the control unit 220 is connected to the second changeover switch unit 213A2 on the power conditioner 300 side and the power storage device 600 side.
  • An operation signal is sent to the second changeover switch portion 213A4, the second changeover switch portion 213A2 on the power conditioner 300 side is changed from the connection mode to the release mode, and the second changeover switch portion 213A4 on the power storage device 600 side is changed from the release mode. Switch to connected mode.
  • the DC power from the second power generation unit 110A2 is not transmitted to the power conditioner 300 but is transmitted to the power storage device 600.
  • the total value of the DC power input to the power conditioner 300 is reduced below the upper operating value, and a part of the DC power is stored in the power storage device 600.
  • the control unit 220 causes the third changeover switch unit 213B1 on the power conditioner 300 side. Then, an operation signal is sent to the third changeover switch portion 213B3 on the power storage device 600 side, and the third changeover switch portion 213B1 on the power conditioner 300 side is changed from the connection mode to the release mode, and the third changeover on the power storage device 600 side is performed.
  • the switch unit 213B3 is switched from the open mode to the connection mode.
  • the DC power from the third power generation unit 110B1 is not transmitted to the power conditioner 300 but is transmitted to the power storage device 600.
  • the total value of the DC power input to the power conditioner 300 is reduced to the upper operating value or less, and part of the generated power is stored in the power storage device 600.
  • the first to the plurality of changeover switch units on the power conditioner 300 side and the power storage device 600 side are sequentially operated,
  • the direct-current power transmitted to the power conditioner 300 can be maintained at a value close to the specified capacity.
  • the output power of the power conditioner 300 can be maintained at a high value during the day without being affected by changes or fluctuations in the amount of irradiation.
  • surplus produced power can be stored in the power storage device 600, and can be supplied to the load 500 through the power conditioner 300 as needed at night or the like, and further sold to an electric power company.
  • the control unit 220 sends an operation signal to the first changeover switch unit 213A1 on the power conditioner 300 side and the first changeover switch unit 213A3 on the power storage device 600 side.
  • the first changeover switch portion 213A1 on the power conditioner 300 side is switched from the open mode to the connection mode, and the first changeover switch portion 213A3 on the power storage device 600 side is switched from the connection mode to the open mode.
  • the DC power from the first power generation unit 110A1 is transmitted again to the power conditioner 300, so that the total value of the DC power rises above the lower operating value.
  • the control unit 220 controls the second changeover switch unit 213A2 on the power conditioner 300 side and the power storage device 600 side.
  • An operation signal is sent to the second changeover switch part 213A4, the second changeover switch part 213A2 on the power conditioner 300 side is changed from the open mode to the connection mode, and the second changeover switch part 213A4 on the power storage device 600 side is changed from the connection mode. Switch to open mode respectively.
  • the DC power from the second power generation unit 110A2 is transmitted again to the power conditioner 300, so that the total value of the DC power rises above the lower operating value.
  • the control unit 220 includes the third changeover switch unit 213B1 on the power conditioner 300 side and the power storage device 600.
  • An operation signal is sent to the third changeover switch portion 213B3 on the side, and the third changeover switch portion 213B1 on the power conditioner 300 side is changed from the open mode to the connection mode, and the third changeover switch portion 213B3 on the power storage device 600 side is connected. Switch from mode to release mode.
  • the DC power from the third power generation unit 110B1 is transmitted again to the power conditioner 300, so that the total value of the DC power rises above the lower operating value.
  • the first to plural changeover switches on the power conditioner 300 side and the power storage device 600 side are operated in order, and the power
  • the direct-current power transmitted to the power conditioner 300 can be maintained at a value close to the specified capacity.
  • the output power of the power conditioner 300 can be maintained at a high value during the day without being affected by changes or fluctuations in the irradiation amount.
  • power can be supplied from the power storage device 600 to the power conditioner 300.
  • FIG. 7 shows a third embodiment of the present invention.
  • a current sensor 211 and a voltage sensor 212 for each power transmission line 121 provided in the embodiment.
  • a set of current sensor 211 ′ and voltage sensor 212 ′ are provided in the middle of the transmission line 122 that merges downstream of the changeover switch sections 213 A 1 to 213 C 2 and heads for the power conditioner 300.
  • the current value and the voltage value detected from the current sensor 211 ′ and the voltage sensor 212 ′ are transmitted to the control unit 220, and the DC power calculated by the control unit 220 based on the current value and the voltage value is transmitted by the control unit 220 in the same manner as in the above embodiment.
  • the changeover switches 213A1 to 213C2 are sequentially switched from the connection mode to the open mode according to a preset order, When the total value of the electric power is lower than the lower operating part, the changeover switch part switched to the open mode is switched back to the connection mode sequentially.
  • the changeover switches 213A3 to 213C4 on the power storage device 600 side are sequentially switched from the open mode to the connection mode and the total value of DC power falls below the lower operating unit,
  • the changeover switch unit switched to the open mode on the 300 side is switched from the open mode to the connection mode, and the changeover switch unit switched to the connection mode on the power storage device 600 side is sequentially switched back from the connection mode to the open mode.
  • the current sensor 211 ′ and the voltage sensor 212 ′ illustrated in FIG. 7 may be provided in the middle of the power transmission line 122 in combination with the current sensor 211 and the voltage sensor 212 for each power transmission line 121 illustrated in FIGS. .
  • the present invention is not limited to this. All of the existing power generators may be used, or all of the new power generators may be used. Moreover, the number of power generation devices may be one. Further, the power generation units in the power generation apparatus are not limited to two rows, and may be a large number of examples. Further, the power transmission lines 121 to 129 are not limited to a single line but may be a plurality of lines.
  • the switching control device of the present invention increases the amount of generated power (Wh) by increasing the number of power generation facilities, but limits the power generation power (W) of the power generation facilities so as not to exceed the set upper limit.
  • the power generator to which the switching control device of the present invention is applied is not limited to a solar power generator.
  • Other renewable energy can be applied to other power generation devices such as wind power, hydraulic power, and biotechnology, and can also be applied to a combination of a solar power generation device and a renewable energy such as a wind power generation device.
  • it can be applied not only to renewable energy but also to conventional power generators such as thermal power and coal.
  • the DC power switching control device can be widely used as a device for switching control of transmission of DC power generated for each power generation unit of the power generation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Distribution Board (AREA)

Abstract

太陽光パネル等の発電装置で発電された直流電力をパワーコンディショナーに送るにあたり、複数の発電ユニット毎に直流電力の送電を切替え制御できるようにした切替制御装置と発電システムを提供する。 【課題】 【解決手段】発電装置に含まれる発電ユニット毎に直流電力を送電する送電線を備える発電システムにおいて、各送電線121の途中に、発電ユニット毎に、電流値と電圧値を検出する電流センサ211と電圧センサ212、制御部220からの制御信号により発電ユニット毎に接続モードと開放モードと蓄電モードを切り替える切替スイッチ部を設ける。パワーコンディショナー300の規定容量に基づく作動値を設定し、検出された電流値と電圧値から算出される発電ユニット毎の直流電力の合計値を作動値と比較し、直流電力の合計値が作動値を上回るとき、制御部220が切替スイッチ部を制御する。

Description

直流電力の切替制御装置および発電システム
 本発明は、太陽光パネルやその他の発電装置で発電された直流電力をパワーコンディショナーに送るにあたり、複数の発電ユニット毎に直流電力の送電を切替え制御するようにした直流電力の切替制御装置と、同切替制御装置を含む発電システムに関するものである。
 発電装置、例えば太陽光パネルで発電された直流電力はパワーコンディショナーで交流電力に変換され、送電線を経由して家庭や事業所に送られ、電灯や機器等の各種負荷に利用されている。また一部の電力は商用系統を通じて電力会社に売電される等している。パワーコンディショナーは個々に容量が決まっており(家庭用タイプでは例えば4.5kw、5.5kwなど、業務用タイプでは例えば100kw、250kwなど)、このため、通常は太陽光パネルの発電量(最大発電量)にあわせてパワーコンディショナーの容量を決定し、太陽光パネルを増設する場合はパワーコンディショナーを増設するか大容量タイプに交換する等している。
 従来より、太陽光発電において、発電効率を高めるような制御方法が提案されている(特許文献1~特許文献2参照)。
特開2014-158401号公報 特開2010-245320号公報
 しかしながら、パワーコンディショナーは上述のように一般に太陽光パネルの最大発電量に合わせて容量を決定しているところ、1年間を通して最大発電量が得られる日数は僅かしかなく、年間における曇天日や雨天日の多さ、あるいは日中における曇天や雨天の割合を含めると、年間を通したパワーコンディショナーの利用効率は低いままであり、パワーコンディショナーの容量に対して十分な電力の出力が得られていなかった。
 本発明は、上記実情に鑑みてなされたもので、太陽光パネルその他の発電装置で発電された直流電力をパワーコンディショナーに送るにあたり、複数の発電ユニット毎に直流電力の送電を切替え制御できる直流電力の切替制御装置と発電システムを提供することを目的とする。
 本発明に係る直流電力の切替制御装置は、
 複数の発電ユニットを備える発電装置と、発電ユニット毎に発電される直流電力を送電する複数の送電線を備える発電システムにおいて、
 発電ユニット毎に発電される直流電力をパワーコンディショナーに送電するにあたり、
 各送電線の途中に、発電ユニット毎に発電される直流電力の電流値を検出する電流センサと、発電ユニット毎に発電される直流電力の電圧値を検出する電圧センサと、制御部からの制御信号により発電ユニット毎に送電線を接続モードと開放モードのいずれかに切り替える切替スイッチ部をそれぞれ設け、
 前記パワーコンディショナーの規定容量に基づいて作動値を設定し、前記電流センサによって検出された電流値と前記電圧センサによって検出された電圧値から算出される発電ユニット毎の直流電力の合計値を前記作動値と比較し、直流電力の合計値が作動値を上回るとき、前記制御部が、パワーコンディショナーに送電する直流電力の合計値が前記作動値を下回るように、一または複数の切替スイッチ部を接続モードから開放モードに切り替えることを第1の特徴とする。
 本発明に係る直流電力の切替制御装置は、
 一または複数の切替スイッチ部を接続モードから開放モードに切り替えた後、直流電力の合計値が再び作動値を上回るとき、前記制御部が、残りの切替スイッチ部のうち、一または複数の切替スイッチ部を接続モードから開放モードに切り替えることを第2の特徴とする。
 本発明に係る直流電力の切替制御装置は、
 直流電力の合計値が作動値を上回る毎に、予め設定された順序に従って切替スイッチ部を接続モードから開放モードに順次切り替えることを第3の特徴とする。
 本発明に係る直流電力の切替制御装置は、
 前記作動値は上作動値として設定され、当該上作動値とは別に下作動値を設定し、直流電力の合計値が下作動値を下回るとき、制御部が、開放モードに切り替わった切替スイッチ部を順次接続モードに切り替えることを第4の特徴とする。
 本発明に係る直流電力の切替制御装置は、
 各送電線の途中に発電ユニット毎に電流センサと電圧センサを設けずに、各送電線の途中に送電線毎に設けた切替スイッチ部の下流で合流し、パワーコンディショナーに向かう送電線の途中に、一組の電流センサと電圧センサを設けることを第5の特徴とする。
 本発明に係る発電システムは、
 複数の発電ユニットを備える発電装置と、発電ユニット毎に発電される直流電力を送電する複数の送電線を備える発電システムであって、前記第1から第5の特徴のいずれか一の切替制御装置を備えることを特徴とする。
 本発明に係る直流電力の切替制御装置は、
 複数の発電ユニットを備える発電装置と、発電ユニット毎に発電される直流電力を送電する複数の送電線と、各送電線から送電される直流電力を分岐して蓄電する蓄電装置を備える発電システムにおいて、
 発電ユニット毎に発電される直流電力をパワーコンディショナーに送電しおよび/または蓄電装置に分岐して送電するにあたり、
 各送電線の途中に、発電ユニット毎に発電される直流電力の電流値を検出する電流センサと、発電ユニット毎に発電される直流電力の電圧値を検出する電圧センサと、制御部からの制御信号により発電ユニット毎に送電線を接続モードと開放モードのいずれかに切り替える切替スイッチ部をそれぞれ設け、
 各送電線から分岐して蓄電装置に向かう送電線の途中に、発電ユニット毎に分岐して送電される直流電力の電流値を検出する電流センサと、発電ユニット毎に分岐して送電される直流電力の電圧値を検出する電圧センサと、制御部からの制御信号により発電ユニット毎に分岐後の送電線を接続モードと開放モードのいずれかに切り替え可能な切替スイッチ部をそれぞれ設け、
 前記パワーコンディショナーの規定容量に基づいて作動値を設定し、前記電流センサによって検出された電流値と前記電圧センサによって検出された電圧値から算出される発電ユニット毎の直流電力の合計値を前記作動値と比較し、直流電力の合計値が作動値を上回るとき、前記制御部が、パワーコンディショナーに送電する直流電力の合計値が前記作動値を下回るように、パワーコンディショナー側の一または複数の切替スイッチ部を接続モードから開放モードに切り替え、蓄電装置側の一または複数の切替スイッチ部を開放モードから接続モードに切り替えることを第6の特徴とする。
 本発明に係る直流電力の切替制御装置は、
 パワーコンディショナー側の一または複数の切替スイッチ部を接続モードから開放モードに切り替えると共に、蓄電装置側の一または複数の切替スイッチ部を開放モードから接続モードに切り替えた後、
 直流電力の合計値が再び作動値を上回るとき、前記制御部が、パワーコンディショナー側の残りの切替スイッチ部のうち、一または複数の切替スイッチ部を接続モードから開放モードに切り替えると共に、蓄電装置側の残りの切替スイッチ部のうち、一または複数の切替スイッチ部を開放モードから接続モードに切り替えることを第7の特徴とする。
 本発明に係る直流電力の切替制御装置は、
 直流電力の合計値が作動値を上回る毎に、予め設定された順序に従って、パワーコンディショナー側の切替スイッチを接続モードから開放モードに順次切り替えると共に蓄電装置側の切替スイッチを開放モードから接続モードに順次切り替えることを第8の特徴とする。
 本発明に係る直流電力の切替制御装置は、
 前記作動値は上作動値として設定され、当該上作動値とは別に下作動値を設定し、直流電力の合計値が下作動値を下回るとき、制御部が、パワーコンディショナー側の開放モードに切り替わった切替スイッチ部を接続モードに順次切り替えると共に蓄電装置側の接続モードに切り替わった切替スイッチ部を開放モードに順次切り替えることを第9の特徴とする。
 本発明に係る直流電力の切替制御装置は、
 各送電線の途中に発電ユニット毎に電流センサと電圧センサを設けずに、各送電線の途中に送電線毎に設けた切替スイッチ部の下流で合流し、パワーコンディショナーに向かう送電線の途中に、一組の電流センサと電圧センサを設けることを第10の特徴とする。
 本発明に係る発電システムは、
 複数の発電ユニットを備える発電装置と、発電ユニット毎に発電される直流電力を送電する複数の送電線と、各送電線から送電される直流電力を分岐して蓄電する蓄電装置を備える発電システムであって、前記第6から第10の特徴のいずれか一の切替制御装置を備えることを特徴とする。
 以上説明したように、本発明によると、パワーコンディショナーの規定容量を超えることなく、同規定容量に近い高いレベルの直流電力を安定してパワーコンディショナーに送電することができるようになり、もってパワーコンディショナーの出力電力を高めて、家庭や事業所の負荷や商用系統に対する電力供給を高めることができるという効果を奏する。
 また、本発明によると、発電装置で発電した直流電力を発電ユニット毎に細かく切替制御して、パワーコンディショナーと蓄電装置に分岐して送電できるようにしたから発電装置で発電した直流電力を無駄なく利用することができるという効果を奏する。
 さらに、本発明によると、太陽光パネルやその他の発電装置の設置数や規模に関わらず、発電システムからの電力の出力量をコントロールできるので、国や電力会社に申請した発電量の上限を超えることなく、上限以下の安定した発電電力をパワーコンディショナーに対し送電できるという効果を奏する。
本発明の第1実施形態を示すもので、直流電力の切替制御装置を含む発電システムの構成図、 図1に示す切替制御装置における直流電力切替部の構成図、 操作パネルを示す説明図、 切替制御装置の作用を説明するための図、 本発明の第2実施形態を示すもので、直流電力の切替制御装置を含む蓄電システム兼用の発電システムの構成図、 図5に示す切替制御装置における直流電力切替部の構成図、 本発明の第3実施形態を示すもので、直流電力の切替制御装置の構成図である。
 以下、本発明を実施するための最良の形態について図面を参照しながら説明する。
 図1ないし図4は本発明の第1実施形態を示すもので、図1中、符号S1は発電システムを示している。
 発電システムS1は、複数の発電装置(太陽電池アレイ)100A~100Cと、直流電力の切替制御装置200を備えており、各発電装置100A~100Cで発電される直流電力をパワーコンディショナー300に送電するようになっている。
 発電装置100Aは既設の太陽電池アレイで、発電装置100B、100Cは増設の太陽電池アレイを示している。各発電装置100A~100Cは複数の太陽電池パネル(モジュール)を直列に接続してなる発電ユニット(ストリング)を複数備えている。図示例の場合、既設の発電装置100Aは2列の発電ユニット110A1、110A2、増設の発電装置100Bは2列の発電ユニット110B1、110B2、増設の発電装置100Cは2列の発電ユニット110C1、110C2を備えている。そして、本発電システムS1は、発電装置100A~100Cの合計発電電力、すなわち各発電ユニット110A1~110C2の最大発電電力の合計値がパワーコンディショナー300の規定容量を上回るように設定されている。
 既設の発電装置100Aは2列の発電ユニット110A1、110A2からそれぞれ送電線121が接続箱130を経由してまたは直接、切替制御装置200に延びている。増設の発電装置100Bは2列の発電ユニット110B1、110B2からそれぞれ送電線121が切替制御装置200に延びている。増設の発電装置100Cは2列の発電ユニット110C1、110C2からそれぞれ送電線121が切替制御装置200に延びている。また、各発電ユニット110A1~110C2の各送電線121は切替制御装置200から接続箱130を経由または経由せずに1本の送電線122に合流し、パワーコンディショナー300に延びている。
 直流電力の切替制御装置200(以下、切替制御装置200という)は、発電装置100A~100Cの発電ユニット110A1~110C2毎に発電された直流電力の送電を上下の作動値に基づき切替制御するもので、直流電力切替部210と制御部220と操作パネル230を備えている。また、切替制御装置200は、インターネットに接続された図示しないサーバーや通信回線131を介して通信端末240と通信可能な通信部250を搭載しており、制御部220からの制御信号により、通信部250からインターネットを経由してサーバーに発電状況(電流値、電圧値)や切替状況をアップロードし、また、情報端末240に操作パネル230と同一の機能を搭載することで、通信端末240から遠隔操作し、あるいは前記発電状況や切替状況を通信端末240に受信可能である。
 直流電力切替部210は、図2に示すように、各発電ユニット110A1~110C2に対応して、各送電線121の途中に、各送電線121を送られる直流電力の電流値を測定する電流センサ211と、直流電力の電圧値を測定する電圧センサ212と、切替スイッチ部213A1、213A2、213B1、213B2、213C1、213C2が設けられている。切替スイッチ部213A1~213C2は、制御部220からの上下の作動値に基づく制御信号により、各発電ユニット110A1~110C2毎に、各送電線121を、接続モードと開放モード(非接続モード)のいずれかに切り替えるようになっている。切替スイッチ部213A1~213C2には切替スイッチ素子(パワーMOS-FET、IGBTなど)を適用できる。
 制御部220は、各発電ユニット110A1~110C2毎に、電流センサ211によって検出された電流値(A)および電圧センサ212によって検出された電圧値(V)から算出される直流電力(W)の合計値と上下の作動値を比較し、直流電力の合計値が上作動値を上回るときは、予め設定された順序に従い、各切替スイッチ部213A1~213C2を接続モードから開放モードに順次切り替え、直流電力の合計値が下作動部を下回るときは、開放モードに切り替わった切替スイッチ部を接続モードに順次切り替えて戻すようになっている。上下の作動値は、パワーコンディショナー300の規定容量に基づいて設定するようになっている。
 図3は制御部220の操作パネル230を示している。操作パネル230は計測表示部231と作動条件設定部232が設けられている。計測表示部231は発電装置100Aの発電ユニット110A1、110A2毎、発電装置110Bの発電ユニット110B1、110B2毎、発電装置100Cの発電ユニット110C1、110C2毎に、直流電力の電流値(A)と電圧値(V)と直流電力(W)、直流電力の合計値を表示し、また、図示しないが切替スイッチ部213A1~213C2の切替状況を表示させることもできる。作動条件設定部252は、切替スイッチ部213A1~213C2を作動させる上下の作動値と、切替スイッチ部213A1~213C2の作動時間(設定時間が経過するまでは元のモードに復帰しない)、切替スイッチ部213A1~213C2の作動順序(切替順序)をそれぞれ設定することができる。
 例えば、作動条件として、パワーコンディショナー300の規定容量(例えば5.5kw)に基づき、規定容量よりも1%~5%低い値(=直流電力の合計値)を上作動値に、規定容量よりも5%~10%低い値(=直流電力の合計値)を下作動値にそれぞれ設定し、作動時間は例えば1秒から10秒の間で設定することができる。また、作動順序として、日射量の測定データに基づき、一日の日射量の多い順番から作動させるように設定することもできる。各発電ユニットの設置場所(南向き、東向き、西向き)や樹木の生育状況によって、各発電ユニット毎に日射量が異なる場合があることから、作動順序を設定することは重要である。
 操作パネル230の計測表示部231と作動条件設定部232は、情報端末240の表示画面に表示させることができ、情報端末240から、制御部220に対し遠隔操作することにより、発電ユニット110A1~110C2毎に、直流電力の電流値(A)と電圧値(V)と直流電力(W)、直流電力の合計値を情報端末240に表示させ、また、発電ユニット110A1~110C2の切替順序、切替状況などを遠隔監視することができる。そして、発電ユニット110A1~110C2毎に、切替スイッチ部213A1~213C2の上下の作動値と、作動時間、切替スイッチ部の作動順序(切替順序)をそれぞれ設定することができる。
 パワーコンディショナー300は、送電線122から入力される直流電力を交流電力に変換するもので、パワーコンディショナー300で変換された交流電力は、送電線123と分電盤400を経由して家庭内や事業所内の負荷(電灯、空調機、機器等)500に送電される。また、余剰電力がある場合等、分電盤400から送電線124を経由して電力会社に送電することができる。パワーコンディショナー300と制御部220との間は通信回線132により信号を送受信可能とされ、制御部220が、サーバーに格納された電力会社の出力スケジュールデータを、通信部250を経由して取り込み、パワーコンディショナー300に対し、出力指令(出力抑制、出力増加)信号を送信することができる。
 パワーコンディショナー300から分電盤400に向かう送電線123の途中にはセンサ(電流、電圧)214が設けられ、パワーコンディショナー300から出力される交流電力値をセンサ214で検出し、通信回線133を経由して制御部220に送信し、交流電力の出力値を操作パネル230や情報端末240に表示させることができる。情報端末240にパワーコンディショナー300から出力される交流電力値を表示させることにより、パワーコンディショナー300を遠隔監視することができる。また、切替制御装置200からパワーコンディショナー300に向かう送電線122の途中に分岐部125を設けて、パワーコンディショナー300に向かう直流電力の一部または全部を直流電力用の負荷550に分岐して送電するようにしてもよい。
 次に、以上のように構成された発電システムS1において、切替制御装置200の作用について、図2ないし図4などを参照しつつ説明する。
 日の出と共に太陽光の照射量が次第に増大し、一定の閾値を超えると、発電装置100Aの発電ユニット110A1、110A2、発電装置100Bの発電ユニット110B1、110B2、発電装置100Cの発電ユニット110C1、110C2から、直流電力が各送電線121を経由して切替制御装置200に送電される。切替制御装置200内部では各発電ユニット毎に、直流電力の電流値と電圧値が電流センサ211と電圧センサ212により計測され、計測された電流値と電圧値から制御部220が直流電力を算出し、さらに発電ユニット毎に、直流電力を合計する。計測された電流値と電圧値、算出された直流電力とその合計値は、図3に示す操作パネル230の計測表示部231上に表示される。また、情報端末240に表示させて遠隔監視することもできる。
 そして、時間と共に太陽光の照射量が増大して図4に示すように直流電力の合計値が上作動値を上回ると、制御部220が1番目の切替スイッチ部213A1に対し作動信号を送り、1番目の切替スイッチ部213A1が接続モードから開放モードに切り替わる。これにより、1番目の発電ユニット110A1からの直流電力がパワーコンディショナー300に送電されないので、直流電力の合計値が上作動値以下に低下する。
 時間と共に太陽光の照射量がさらに増大して図4に示すように直流電力の合計値が上作動値を再び上回ると、制御部220が2番目の切替スイッチ部213A2に対し作動信号を送り、2番目の切替スイッチ部213A2が接続モードから開放モードに切り替わる。これにより、1番目の発電ユニット110A1と2番目の発電ユニット110A2からの直流電力がパワーコンディショナー300に送電されないので、直流電力の合計値が再び上作動値以下に低下する。
 さらに、時間と共に太陽光の照射量がさらに増大して(例えばピーク時に)図4に示すように直流電力の合計値が上作動値を再び上回ると、制御部220が3番目の切替スイッチ部213B1に対し作動信号を送り、3番目の切替スイッチ部213B1が接続モードから開放モードに切り替わる。これにより、1番目から3番目にかけて発電ユニットからの直流電力がパワーコンディショナー300に送電されないので、直流電力の合計値が再び上作動値以下に低下する。
 このように太陽光の照射量の増大とともに直流電力の合計値が上作動値を上回る毎に1番目から複数番目の切替スイッチ部を順に作動させて接続モードから開放モードに切り替えることで、パワーコンディショナー300に送電する直流電力を規定容量以下の高い値に維持することができ、太陽光の照射量の変化や変動に影響されることなく、パワーコンディショナー300からの出力電力を高い値に維持することができる。
 太陽光の照射量がピークを超えて次第に減少すると直流電力の合計値が減少し、下作動値を下回るようになる。図4に示すように直流電力の合計値が下作動値を下回ると、制御部220が1番目の切替スイッチ部213A1に対し作動信号を送り、1番目の切替スイッチ部213A1が開放モードから接続モードに切り替わる。これにより、1番目の発電ユニット110Aからの発電電力がパワーコンディショナー300に再び送電されるので、図4に示すように直流電力の合計値が下作動値以上に上昇する。
 時間と共に太陽光の照射量がさらに減少して直流電力の合計値が下作動値を再び下回ると、制御部220が2番目の切替スイッチ部213A2に対し作動信号を送り、2番目の切替スイッチ部213A2が開放モードから接続モードに切り替わる。これにより、1番目の発電ユニット110A1と2番目の発電ユニット110A2からの直流電力がパワーコンディショナー300に再び送電されるので、直流電力の合計値が再び下作動値以上に上昇する。
 さらに、時間と共に太陽光の照射量がさらに減少して直流電力の合計値が下作動値を再び下回ると、制御部220が3番目の切替スイッチ部213B1に対し作動信号を送り、3番目の切替スイッチ部213B1が開放モードから接続モードに切り替わる。これにより、1番目から3番目にかけて発電ユニットからの直流電力がパワーコンディショナー300に再び送電され、直流電力の合計値が再び下作動値以上に上昇する。
 このように太陽光の照射量の減少とともに直流電力の合計値が下作動値を下回る毎に1番目から複数番目の切替スイッチ部を順に作動させて開放モードから接続モードに切り替えることで、パワーコンディショナー300に送電する直流電力を下作動値以上の規定容量に近い値に維持することができ、太陽光の照射量の変化や変動に影響されることなく、パワーコンディショナー300の出力電力を日中高い値に維持することができる。
 図5および図6は本発明の第2実施形態を示すもので、図5中、符号S2は蓄電システムを兼用した発電システム、符号600は蓄電装置を示している。なお、図1に示す構成と同一の構成には同一符号を付してその説明は省略する。
 発電システムS2は、複数の発電装置(太陽電池アレイ)100A~100Cと、切替制御装置200’と、蓄電装置600を備えており、各発電装置100A~100Cで発電される直流電力をパワーコンディショナー300に送電し、また、各発電装置100A~100Cで発電される直流電力の一部または全部を蓄電装置600に分岐して送電し、蓄電するようになっている。
 前述したように、発電装置100Aは既設の太陽電池アレイで、発電装置100B、100Cは増設の太陽電池アレイを示している。各発電装置100A~100Cは複数の太陽電池パネルを直列に接続してなる発電ユニット(ストリング)を複数備えている。本発電システムS2は、発電装置100A~100Cの合計発電電力、すなわち各発電ユニットの最大発電電力の合計値がパワーコンディショナー300の規定容量を上回るように設定されている。
 図5に示すように、発電装置100Aの各発電ユニット110A1、110A2からは、接続箱130を経由してまたは直接、それぞれ送電線121が、切替制御装置200’の直流電力切替部210’に延びている。発電装置100Bの各発電ユニット110B1、110B2からは、それぞれ送電線121が、切替制御装置200’の直流電力切替部210’に延びている。発電装置100Cの各発電ユニット110C1、110C2からは、それぞれ送電線121が、切替制御装置200’の直流電力切替部210’に延びている。各発電ユニット110A1~110C2の送電線121は、切替制御装置200’の直流電力切替部210’から接続箱130に延びて1本の送電線122に合流し、パワーコンディショナー300に延びている。また、各発電ユニット110A1~110C2の送電線121は、それぞれの分岐部125(図6参照)から蓄電装置600向けに分岐し、分岐した各送電線126は1本の送電線127に合流し、蓄電装置600に延びている。蓄電装置600からは送電線128がパワーコンディショナー300に向けて延び、前述の1本の送電線122に合流している。
 切替制御装置200’は、発電装置100A~100Cの発電ユニット110A1~110C2毎に発電された直流電力の送電を上下の作動値に基づき切替制御するもので、図6に示すように、直流電力切替部210’の内部で、各発電ユニット110A1~C2に対応して、分岐部125から分岐されてパワーコンディショナー300に向かう送電線129の途中に、各送電線129を送られる直流電力の電流値を測定する電流センサ211と、直流電力の電圧値を測定する電圧センサ212と、切替スイッチ部213A1、213A2、213B1、213B2、213C1、213C2が設けられている。同様に、分岐部125から分岐されて蓄電装置600に向かう送電線126の途中に各直流電力の電流値を測定する電流センサ211と、各直流電力の電圧値を測定する電圧センサ212と、切替スイッチ部213A3、213A4、213B3、213B4、213C3、213C4が設けられている。
 切替スイッチ部213A3~213C4は、パワーコンディショナー300側と蓄電装置600側が協働して、制御部220からの上下の作動値に基づく制御信号により、発電ユニット110A1~110C2毎の送電線126を接続モードと開放モード(非接続モード)のいずれかに切り替えるようになっている。すなわち、制御部220からの上下の作動値に基づく制御信号により、各発電ユニット110A1~110C3毎に、パワーコンディショナー300側の切替スイッチ部(例えば切替スイッチ部213A1)が接続モードから開放モードに切り替わるとき、蓄電装置600側の切替スイッチ部(前記例の場合で切替スイッチ部213A3)が開放モードから接続モードに切り替わり、蓄電装置600側の切替スイッチ部(例えば切替スイッチ部213A3)が接続モードから開放モードに切り替わるとき、パワーコンディショナー300側の切替スイッチ部(前記例の場合で切替スイッチ部213A1)が開放モードから接続モードに切り替わるようになっている。
 これにより、各直流電力の合計値が上作動値以下であるとき、各直流電力をパワーコンディショナー300に送電し、各直流電力の合計値が上作動値を上回るとき、上作動値を上回る分の直流電力を蓄電装置600に送電し、蓄電することができるようになる。
 制御部220は、各発電ユニット110A1~B2毎に、電流センサ211によって検出された電流値(A)および電圧センサ212によって検出された電圧値(V)から算出される直流電力(W)の合計値と上下の作動値を比較し、直流電力の合計値が上作動値を上回るときは、予め設定された順序に従い、パワーコンディショナー300側の切替スイッチ部213A1~213C2を接続モードから開放モードに順次切り替えると共に、蓄電装置600側の切替スイッチ部213A3~213C4を開放モードから接続モードに順次切り替え、直流電力の合計値が下作動部を下回るときは、パワーコンディショナー300側の開放モードに切り替わった切替スイッチ部を開放モードから接続モードに、蓄電装置600側の接続モードに切り替わった切替スイッチ部を接続モードから開放モードに、順次切り替えて戻すようになっている。上下の作動値は、パワーコンディショナー300の規定容量に基づいて設定するようになっている。
 図5に示す操作パネル230は、特に図示しないが、図3に示す操作パネル230と基本的に同様の構成である。蓄電装置600からは通信回線134が制御部220に延びており、蓄電装置600の蓄電状況や蓄電装置600からの給電状況を計測表示部に表示し、あるいは操作パネル230や情報端末240から、蓄電装置600に対し給電指令を送信することができる。また、条件設定部において、例えば、パワーコンディショナー300の規定容量(例えば5.5kw)に基づき、規定容量よりも1%~5%低い値(=直流電力の合計値)を上作動値に、規定容量よりも5%~10%低い値(=直流電力の合計値)を下作動値にそれぞれ設定し、作動時間は例えば1秒から10秒の間で設定することができる。また、情報端末240の機能も前記実施形態と同様に行える。
 次に、以上のように構成された発電システムS2において、切替制御装置200’の作用について、図を参照しつつ説明する。
 日の出と共に太陽光の照射量が次第に増大し、一定の閾値を超えると、発電装置100A~100Cの各発電ユニット110A1~110C2から直流電力が各送電線121を経由して切替制御装置200’に送電される。切替制御装置200’内部では、発電ユニット110A1~110C2毎に、直流電力の電流値と電圧値が電流センサ211と電圧センサ212により計測され、計測された電流値と電圧値から制御部220が直流電力を算出し、さらに発電ユニット110A1~110C2毎に、直流電力を合計する。計測された電流値と電圧値、算出された直流電力とその合計値は、図5に示す操作パネル230の計測表示部上に表示される。
 そして、時間と共に太陽光の照射量が増大して直流電力の合計値が上作動値を上回ると、制御部220が、パワーコンディショナー300側の1番目の切替スイッチ部213A1と、蓄電装置600側の1番目の切替スイッチ部213A3に対し作動信号を送り、パワーコンディショナー300側の1番目の切替スイッチ部213A1を接続モードから開放モードに、蓄電装置600側の1番目の切替スイッチ部213A3を開放モードから接続モードにそれぞれ切り替える。これにより1番目の発電ユニット110A1からの直流電力はパワーコンディショナー300に送電されず、蓄電装置600へ送電される。これによってパワーコンディショナー300に入力する直流電力の合計値が上作動値以下に低下すると共に、直流電力の一部が蓄電装置600に蓄電される。
 時間と共に太陽光の照射量がさらに増大して直流電力の合計値が上作動値を再び上回ると、制御部220が、パワーコンディショナー300側の2番目の切替スイッチ部213A2と、蓄電装置600側の2番目の切替スイッチ部213A4に対し作動信号を送り、パワーコンディショナー300側の2番目の切替スイッチ部213A2を接続モードから開放モードに、蓄電装置600側の2番目の切替スイッチ部213A4を開放モードから接続モードにそれぞれ切り替える。これにより2番目の発電ユニット110A2からの直流電力はパワーコンディショナー300に送電されず、蓄電装置600へ送電される。これによってパワーコンディショナー300に入力する直流電力の合計値が上作動値以下に低下すると共に、直流電力の一部が蓄電装置600に蓄電される。
 さらに、時間と共に太陽光の照射量がさらに増大して(例えばピーク時に)直流電力の合計値が上作動値を再び上回ると、制御部220が、パワーコンディショナー300側の3番目の切替スイッチ部213B1と、蓄電装置600側の3番目の切替スイッチ部213B3に対し作動信号を送り、パワーコンディショナー300側の3番目の切替スイッチ部213B1を接続モードから開放モードに、蓄電装置600側の3番目の切替スイッチ部213B3を開放モードから接続モードにそれぞれ切り替える。これにより3番目の発電ユニット110B1からの直流電力はパワーコンディショナー300に送電されず、蓄電装置600へ送電される。これによってパワーコンディショナー300へ入力する直流電力の合計値が上作動値以下に低下すると共に、発電電力の一部が蓄電装置600に蓄電される。
 このように太陽光の照射量の増大とともに直流電力の合計値が上作動値を上回る毎に、パワーコンディショナー300側と蓄電装置600側の1番目から複数番目の切替スイッチ部を順に作動させて、パワーコンディショナー300側を接続モードから開放モードに、蓄電装置600側を開放モードから接続モードに切り替えることで、パワーコンディショナー300に送電する直流電力を規定容量に近い値に維持することができ、太陽光の照射量の変化や変動に影響されることなく、パワーコンディショナー300の出力電力を日中高い値に維持することができる。あわせて、余剰の生産電力を蓄電装置600に蓄電し、夜間等に必要に応じてパワーコンディショナー300を通して負荷500に給電し、さらに電力会社に売電することができる。
 太陽光の照射量がピークを超えて次第に減少すると直流電力の合計値が減少し、下作動値を下回るようになる。直流電力の合計値が下作動値を下回ると、制御部220が、パワーコンディショナー300側の1番目の切替スイッチ部213A1と、蓄電装置600側の1番目の切替スイッチ部213A3に対し作動信号を送り、パワーコンディショナー300側の1番目の切替スイッチ部213A1を開放モードから接続モードに、蓄電装置600側の1番目の切替スイッチ部213A3を接続モードから開放モードにそれぞれ切り替える。これにより、1番目の発電ユニット110A1からの直流電力がパワーコンディショナー300に再び送電されるので、直流電力の合計値が下作動値以上に上昇する。
 時間と共に太陽光の照射量がさらに減少して直流電力の合計値が下作動値を再び下回ると、制御部220が、パワーコンディショナー300側の2番目の切替スイッチ部213A2と、蓄電装置600側の2番目の切替スイッチ部213A4に対し作動信号を送り、パワーコンディショナー300側の2番目の切替スイッチ部213A2を開放モードから接続モードに、蓄電装置600側の2番目の切替スイッチ部213A4を接続モードから開放モードにそれぞれ切り替える。これにより、2番目の発電ユニット110A2からの直流電力がパワーコンディショナー300に再び送電されるので、直流電力の合計値が下作動値以上に上昇する。
 さらに、時間と共に太陽光の照射量がさらに減少して直流電力の合計値が下作動値を再び下回ると、制御部220が、パワーコンディショナー300側の3番目の切替スイッチ部213B1と、蓄電装置600側の3番目の切替スイッチ部213B3に対し作動信号を送り、パワーコンディショナー300側の3番目の切替スイッチ部213B1を開放モードから接続モードに、蓄電装置600側の3番目の切替スイッチ部213B3を接続モードから開放モードにそれぞれ切り替える。これにより、3番目の発電ユニット110B1からの直流電力がパワーコンディショナー300に再び送電されるので、直流電力の合計値が下作動値以上に上昇する。
 このように太陽光の照射量の減少とともに直流電力の合計値が下作動値を下回る毎にパワーコンディショナー300側と蓄電装置600側の1番目から複数番目の切替スイッチ部を順に作動させて、パワーコンディショナー300側を開放モードから接続モードに、蓄電装置600側を接続モードから開放モードに切り替えることで、パワーコンディショナー300に送電する直流電力を規定容量に近い値に維持することができ、太陽光の照射量の変化や変動に影響されることなく、パワーコンディショナー300の出力電力を日中高い値に維持することができる。また、発電電力が不足する場合は蓄電装置600からパワーコンディショナー300に対し給電を行うことができる。
 図7は、本発明の第3実施形態を示すもので、直流電力切替部210において、前記実施形態で設けられていた送電線121毎の電流センサ211と電圧センサ212(図2、図6参照)は省かれ、切替スイッチ部213A1~213C2の下流で合流し、パワーコンディショナー300に向かう送電線122の途中に、1組の電流センサ211’と電圧センサ212’が設けられている。電流センサ211’と電圧センサ212’から検出される電流値と電圧値は制御部220に送信され、前記実施形態と同様に、制御部220により、電流値と電圧値により算出された直流電力の合計値が上下の作動値と比較され、直流電力の合計値が上作動値を上回るときは、予め設定された順序に従い、各切替スイッチ部213A1~213C2を接続モードから開放モードに順次切り替え、直流電力の合計値が下作動部を下回るときは、開放モードに切り替わった切替スイッチ部を接続モードに順次切り替えて戻すようになっている。
 また、図5に示す蓄電装置600がある場合、蓄電装置600側の切替スイッチ部213A3~213C4を開放モードから接続モードに順次切り替え、直流電力の合計値が下作動部を下回るときは、パワーコンディショナー300側の開放モードに切り替わった切替スイッチ部を開放モードから接続モードに、蓄電装置600側の接続モードに切り替わった切替スイッチ部を接続モードから開放モードに、順次切り替えて戻すようになっている。
 図7に示す電流センサ211’と電圧センサ212’は、図2、図6に示す送電線121毎の電流センサ211と電圧センサ212と組み合わせて、送電線122の途中に設けるようにしてもよい。
 以上の3つの実施形態では、既設の発電装置100Aに増設の2つの発電装置100B、100Cを組み合わせた例を説明したが、これに限らない。全て既設の発電装置でもよいし、全て新設の発電装置でもよい。また、発電装置は1台であってもよい。さらに発電装置内の発電ユニットは2列に限らず多数例であってもよい。また、送電線121~129は単線に限らず、複数線でもよい。
 本発明の切替制御装置は、発電設備の増設によって発電電力量(Wh)を増やすが、発電設備の発電電力(W)が設定上限を超えないように制限する装置であると言える。
 本発明の切替制御装置が適用される発電装置は太陽光発電装置に限らない。他の再生エネルギーとして風力、水力、バイオなどの他の発電装置にも適用可能であり、太陽光発電装置と再生エネルギー例えば風力発電装置との組み合わせにも適用可能である。さらに、再生エネルギーだけでなく火力、石炭などの従来の発電装置にも適用可能である。
 本発明に係る直流電力の切替制御装置は、発電装置の発電ユニット毎に発電された直流電力の送電を切替制御する装置として幅広く利用可能である。
 100A、100B、100C 発電装置(太陽電池アレイ)
 110A1、110A2、110B1、110B2、110C1、110C2 発電ユニット
 121、122、123、124、126、127、128、129 送電線
 125 分岐部
 130 接続箱
 131、132、133、134 通信回線
 200、200’ 切替制御装置
 210、210’ 直流電力切替部
 211、211’ 電流センサ
 212、212’ 電圧センサ
 213A1、213A2、213B1、213B2、213C1、213C2 切替スイッチ部
 220 制御部
 230 操作パネル
 231 計測表示部
 232 条件設定部
 240 情報端末
 250 通信部
 300 パワーコンディショナー
 400 分電盤
 500、550 負荷
 600 蓄電装置
 S1、S2 発電システム
 

Claims (12)

  1.  複数の発電ユニットを備える発電装置と、発電ユニット毎に発電される直流電力を送電する複数の送電線を備える発電システムにおいて、
     発電ユニット毎に発電される直流電力をパワーコンディショナーに送電するにあたり、
     各送電線の途中に、発電ユニット毎に発電される直流電力の電流値を検出する電流センサと、発電ユニット毎に発電される直流電力の電圧値を検出する電圧センサと、制御部からの制御信号により発電ユニット毎に送電線を接続モードと開放モードのいずれかに切り替える切替スイッチ部をそれぞれ設け、
     前記パワーコンディショナーの規定容量に基づいて作動値を設定し、前記電流センサによって検出された電流値と前記電圧センサによって検出された電圧値から算出される発電ユニット毎の直流電力の合計値を前記作動値と比較し、直流電力の合計値が作動値を上回るとき、前記制御部が、パワーコンディショナーに送電する直流電力の合計値が前記作動値を下回るように、一または複数の切替スイッチ部を接続モードから開放モードに切り替えることを特徴とする直流電力の切替制御装置
  2.  一または複数の切替スイッチ部を接続モードから開放モードに切り替えた後、直流電力の合計値が再び作動値を上回るとき、前記制御部が、残りの切替スイッチ部のうち、一または複数の切替スイッチ部を接続モードから開放モードに切り替えることを特徴とする請求項1記載の直流電力の切替制御装置。
  3.  直流電力の合計値が作動値を上回る毎に、予め設定された順序に従って切替スイッチ部を接続モードから開放モードに順次切り替えることを特徴とする請求項1または請求項2記載の直流電力の切替制御装置。
  4.  前記作動値は上作動値として設定され、当該上作動値とは別に下作動値を設定し、直流電力の合計値が下作動値を下回るとき、制御部が、開放モードに切り替わった切替スイッチ部を順次接続モードに切り替えることを特徴とする請求項1ないし請求項3のいずれか一項に記載の直流電力の切替制御装置。
  5.  各送電線の途中に発電ユニット毎に電流センサと電圧センサを設けずに、各送電線の途中に送電線毎に設けた切替スイッチ部の下流で合流し、パワーコンディショナーに向かう送電線の途中に、一組の電流センサと電圧センサを設けることを特徴とする請求項1ないし請求項4のいずれか一項に記載の直流電力の切替制御装置。
  6.  複数の発電ユニットを備える発電装置と、発電ユニット毎に発電される直流電力を送電する複数の送電線を備える発電システムにおいて、
     請求項1ないし請求項5のいずれか一項に記載の直流電力の切替制御装置を備えることを特徴とする発電システム。 
  7.  複数の発電ユニットを備える発電装置と、発電ユニット毎に発電される直流電力を送電する複数の送電線と、各送電線から送電される直流電力を分岐して蓄電する蓄電装置を備える発電システムにおいて、
     発電ユニット毎に発電される直流電力をパワーコンディショナーに送電しおよび/または蓄電装置に分岐して送電するにあたり、
     各送電線の途中に、発電ユニット毎に発電される直流電力の電流値を検出する電流センサと、発電ユニット毎に発電される直流電力の電圧値を検出する電圧センサと、制御部からの制御信号により発電ユニット毎に送電線を接続モードと開放モードのいずれかに切り替える切替スイッチ部をそれぞれ設け、
     各送電線から分岐して蓄電装置に向かう送電線の途中に、発電ユニット毎に分岐して送電される直流電力の電流値を検出する電流センサと、発電ユニット毎に分岐して送電される直流電力の電圧値を検出する電圧センサと、制御部からの制御信号により発電ユニット毎に分岐後の送電線を接続モードと開放モードのいずれかに切り替え可能な切替スイッチ部をそれぞれ設け、
     前記パワーコンディショナーの規定容量に基づいて作動値を設定し、前記電流センサによって検出された電流値と前記電圧センサによって検出された電圧値から算出される発電ユニット毎の直流電力の合計値を前記作動値と比較し、直流電力の合計値が作動値を上回るとき、前記制御部が、パワーコンディショナーに送電する直流電力の合計値が前記作動値を下回るように、パワーコンディショナー側の一または複数の切替スイッチ部を接続モードから開放モードに切り替え、蓄電装置側の一または複数の切替スイッチ部を開放モードから接続モードに切り替えることを特徴とする直流電力の切替制御装置。
  8.  パワーコンディショナー側の一または複数の切替スイッチ部を接続モードから開放モードに切り替えると共に、蓄電装置側の一または複数の切替スイッチ部を開放モードから接続モードに切り替えた後、
     直流電力の合計値が再び作動値を上回るとき、前記制御部が、パワーコンディショナー側の残りの切替スイッチ部のうち、一または複数の切替スイッチ部を接続モードから開放モードに切り替えると共に、蓄電装置側の残りの切替スイッチ部のうち、一または複数の切替スイッチ部を開放モードから接続モードに切り替えることを特徴とする請求項7記載の直流電力の切替制御装置。
  9.  直流電力の合計値が作動値を上回る毎に、予め設定された順序に従って、パワーコンディショナー側の切替スイッチを接続モードから開放モードに順次切り替えると共に蓄電装置側の切替スイッチを開放モードから接続モードに順次切り替えることを特徴とする請求項7または請求項8記載の直流電力の切替制御装置。
  10.  前記作動値は上作動値として設定され、当該上作動値とは別に下作動値を設定し、直流電力の合計値が下作動値を下回るとき、制御部が、パワーコンディショナー側の開放モードに切り替わった切替スイッチ部を接続モードに順次切り替えると共に蓄電装置側の接続モードに切り替わった切替スイッチ部を開放モードに順次切り替えることを特徴とする請求項7ないし請求項9のいずれか一項に記載の直流電力の切替制御装置。
  11.  各送電線の途中に発電ユニット毎に電流センサと電圧センサを設けずに、各送電線の途中に送電線毎に設けた切替スイッチ部の下流で合流し、パワーコンディショナーに向かう送電線の途中に、一組の電流センサと電圧センサを設けることを特徴とする請求項7ないし請求項10のいずれか一項に記載の直流電力の切替制御装置。
  12.  複数の発電ユニットを備える発電装置と、発電ユニット毎に発電される直流電力を送電する複数の送電線と、各送電線から送電される直流電力を分岐して蓄電する蓄電装置を備える発電システムにおいて、
     請求項7ないし請求項11のいずれか一項に記載の直流電力の切替制御装置を備えることを特徴とする発電システム。
PCT/JP2017/022427 2016-06-20 2017-06-18 直流電力の切替制御装置および発電システム WO2017221851A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018524059A JP7018649B2 (ja) 2016-06-20 2017-06-18 直流電力の切替制御装置および発電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016121825 2016-06-20
JP2016-121825 2016-06-20

Publications (1)

Publication Number Publication Date
WO2017221851A1 true WO2017221851A1 (ja) 2017-12-28

Family

ID=60783238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022427 WO2017221851A1 (ja) 2016-06-20 2017-06-18 直流電力の切替制御装置および発電システム

Country Status (2)

Country Link
JP (1) JP7018649B2 (ja)
WO (1) WO2017221851A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984146A (ja) * 1995-09-20 1997-03-28 Toshiba Corp ネットワークを使用した家電機器の電力管理システム
JPH1094170A (ja) * 1996-09-13 1998-04-10 Toshiba Corp 消費電力制御システム
JP2010245320A (ja) * 2009-04-07 2010-10-28 Tokyo Electric Power Co Inc:The 太陽光発電設備
WO2011142014A1 (ja) * 2010-05-12 2011-11-17 東芝三菱電機産業システム株式会社 電力変換器の接続装置
JP2014158401A (ja) * 2013-02-18 2014-08-28 Sekisui Chem Co Ltd パワーコンディショナー、太陽光発電システム、パワーコンディショナーの制御方法および太陽光発電システムの制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115921A (ja) * 1998-10-05 2000-04-21 Misawa Homes Co Ltd 分電盤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984146A (ja) * 1995-09-20 1997-03-28 Toshiba Corp ネットワークを使用した家電機器の電力管理システム
JPH1094170A (ja) * 1996-09-13 1998-04-10 Toshiba Corp 消費電力制御システム
JP2010245320A (ja) * 2009-04-07 2010-10-28 Tokyo Electric Power Co Inc:The 太陽光発電設備
WO2011142014A1 (ja) * 2010-05-12 2011-11-17 東芝三菱電機産業システム株式会社 電力変換器の接続装置
JP2014158401A (ja) * 2013-02-18 2014-08-28 Sekisui Chem Co Ltd パワーコンディショナー、太陽光発電システム、パワーコンディショナーの制御方法および太陽光発電システムの制御方法

Also Published As

Publication number Publication date
JPWO2017221851A1 (ja) 2019-05-16
JP7018649B2 (ja) 2022-02-14

Similar Documents

Publication Publication Date Title
US8653694B2 (en) Junction box
JP5973612B2 (ja) 電力管理システム及び電力管理方法
US20120055530A1 (en) Junction box and solar power system
JP4891851B2 (ja) 分散電源装置を連系した低圧配電系統における電圧上昇抑制方法および電圧上昇抑制装置
US8334617B2 (en) System and method for energy optimization in photovoltaic generators
EP2892123A1 (en) Power flow control system, management device, and program
KR101026353B1 (ko) 디씨 전력선 통신을 이용한 태양전지모듈 제어 및 모니터링시스템
KR102261258B1 (ko) 양방향 저장 및 재생 가능한 전력 변환기를 위한 방법 및 장치
US9660451B1 (en) Islanded operation of distributed power sources
JP6203016B2 (ja) 太陽光発電システム
KR20160001249A (ko) 태양광 발전과 에너지 저장 시스템을 이용한 홈 에너지 관리 시스템
CN104836236A (zh) 用于独立型微电网的配电板
US20210046840A1 (en) Method of operating a charging station for electric vehicles
CN116195158A (zh) 智能能源监测和选择控制系统
KR102308376B1 (ko) 전력 전송 경로 제어가 가능한 태양광 발전 시스템
WO2014010610A1 (ja) 電力管理装置及び電力管理方法
US10698433B2 (en) Power management apparatus, power management system, and method for power management
JP4711023B2 (ja) 電圧設定装置、太陽光発電システム、および電圧設定装置の制御方法
JP4561928B1 (ja) 電圧設定装置、太陽光発電システム、および電圧設定装置の制御方法
WO2017221851A1 (ja) 直流電力の切替制御装置および発電システム
JP4631995B1 (ja) 電圧設定装置、太陽光発電システム、および電圧設定装置の制御方法
JP2015061402A (ja) エネルギマネジメントシステム
CN114530853A (zh) 一种高安全性的电网协同控制系统及方法
JP6168918B2 (ja) パワーコンディショナ
KR101278113B1 (ko) 고효율 태양광 배전반 발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815319

Country of ref document: EP

Kind code of ref document: A1