WO2011141986A1 - プラズマ成膜装置及び成膜方法 - Google Patents

プラズマ成膜装置及び成膜方法 Download PDF

Info

Publication number
WO2011141986A1
WO2011141986A1 PCT/JP2010/057888 JP2010057888W WO2011141986A1 WO 2011141986 A1 WO2011141986 A1 WO 2011141986A1 JP 2010057888 W JP2010057888 W JP 2010057888W WO 2011141986 A1 WO2011141986 A1 WO 2011141986A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
cleaning
film formation
plasma
film forming
Prior art date
Application number
PCT/JP2010/057888
Other languages
English (en)
French (fr)
Inventor
裕子 加藤
正志 菊池
厚治 亀崎
智彦 岡山
英介 堀
慶子 阿部
圭介 下田
美穂 清水
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to PCT/JP2010/057888 priority Critical patent/WO2011141986A1/ja
Publication of WO2011141986A1 publication Critical patent/WO2011141986A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases

Definitions

  • the present invention relates to a film forming apparatus and a film forming method for generating a plasma in a vacuum chamber to form a film on an object to be formed.
  • the present invention relates to a film forming apparatus and a film forming method for forming a protective film by forming silicon nitride or silicon oxynitride on a film formation target having a relatively low heat-resistant temperature such as an organic EL element, a resin substrate, or a glass substrate.
  • a technique in which a lower electrode, an organic light emitting layer, and an upper electrode are formed on a substrate, and a protective film such as silicon nitride or silicon oxynitride is formed on the substrate (see, for example, Patent Document 1).
  • a protective film such as silicon nitride or silicon oxynitride may be formed in order to suppress generation of gas from a resin substrate, a glass substrate, or the like.
  • silicon nitride (SiN) or silicon oxynitride (SiON) a Si supply gas such as SiH 4 and a reaction gas such as N 2 , NH 3, or O 2 are supplied into the vacuum chamber, and plasma is generated in the vacuum chamber.
  • the film is formed by the method, so-called plasma CVD method.
  • a silicon nitride or silicon oxynitride film is also formed in the vacuum chamber other than the film formation target.
  • a relatively thick film is often formed depending on the requirements for its protective performance. For this reason, the unnecessary film
  • Patent Document 2 An example of such cleaning in the film formation chamber is described in Patent Document 2.
  • NF 3 gas is converted into plasma by an applicator and introduced into a vacuum vessel. By making NF 3 gas into plasma, the reactivity becomes very high and the cleaning speed is improved.
  • the object of the protective film as described above is an organic EL element or a resin substrate
  • the heat resistant temperature is relatively low.
  • the organic light emitting layer formed on the organic EL element is damaged at 100 ° C. or higher.
  • the resin substrate is damaged at 100 to 200 ° C.
  • silicon nitride (SiN) or silicon oxynitride (SiON) is formed on such a film formation target, it is necessary that the film formation target does not exceed the heat resistant temperature.
  • the film forming chamber tends to become dirty and the film quality may deteriorate. For this reason, it is not preferable to cool the film formation chamber too much.
  • NF 3 gas may be introduced to generate plasma in the vacuum chamber.
  • the high-frequency voltage is introduced into the high-frequency electrode (cathode electrode) installed in the vacuum chamber for a long time or at a high density
  • the temperature of the high-frequency electrode rises and the temperature in the vacuum chamber rises.
  • the temperature of the vacuum chamber gradually rises and the temperature of the susceptor (substrate holding member) also rises. For this reason, the heat-resistant temperature of the board
  • cleaning after a plurality of film formations is more efficient than cleaning for each film formation, and the cleaning time is shortened as a whole.
  • the cleaning is performed after the thick film is formed, one cleaning time becomes long.
  • the time for introducing the high frequency into the high frequency electrode (cathode electrode) becomes longer, the temperature rise in the vacuum chamber becomes remarkable.
  • Patent Document 2 there is a method of introducing a cleaning gas that has been converted into plasma outside the vacuum chamber.
  • the cleaning gas activated in this way does not spread in the vacuum chamber, and a specific portion is selectively cleaned.
  • the activity (reactivity) is high near the entrance of the cleaning gas, but the activity (reactivity) decreases at a distant place, so that there is a problem that the entire vacuum chamber cannot be cleaned uniformly.
  • the present invention has been made to solve the problems of the prior art, and the object of the present invention is to suppress the temperature increase in the vacuum chamber even when the film formation and cleaning by plasma CVD are repeated.
  • an object of the present invention is to provide a film forming apparatus and a film forming method capable of efficiently and uniformly cleaning.
  • a plasma film forming apparatus includes a vacuum chamber capable of reducing the pressure inside, a susceptor installed in the vacuum chamber on which a film formation target is placed, a cathode electrode installed above the susceptor, A high frequency power source for applying a high frequency voltage to the cathode electrode; and a film forming gas supply means for supplying a film forming source gas into the vacuum chamber.
  • a high-frequency voltage is applied to the cathode electrode, a film-forming material gas is supplied into the vacuum chamber, and plasma is generated between the cathode electrode and the susceptor to form a film on the film-forming target.
  • the plasma film forming apparatus further includes a susceptor constant temperature medium circulating means for circulating a constant temperature medium in the susceptor and a cleaning gas supply means for supplying a cleaning gas into the vacuum chamber.
  • the cleaning gas supply means has cleaning gas activation means for generating ions or radicals of the cleaning gas before the cleaning gas is supplied into the vacuum chamber.
  • the high frequency power source can apply a high frequency voltage to the cathode electrode while the cleaning gas supply means supplies the cleaning gas containing ions or radicals into the vacuum chamber.
  • the plasma film-forming apparatus of this application may have a cathode electrode temperature control means for controlling the temperature of the cathode electrode.
  • the cathode electrode temperature control means may circulate a constant temperature medium adjacent to the cathode electrode.
  • the plasma film-forming apparatus of this application may have a chamber side wall temperature control means for controlling the temperature of the side wall of the vacuum chamber.
  • the chamber side wall temperature control means may circulate a constant temperature medium in the vicinity of the chamber side wall or in the chamber side wall.
  • the constant temperature medium circulating in the susceptor by the susceptor constant temperature medium circulating means is preferably room temperature or higher than 40 ° C. and lower than the heat resistance temperature of the film formation target.
  • a plasma generating means can be used as the cleaning gas activating means.
  • the high-frequency voltage supplied from the high-frequency power source is preferably 13.56 MHz or 27.12 MHz.
  • a film forming method includes a film forming process for forming a film on a film formation target while generating plasma in the vacuum tank, and a cleaning in the vacuum tank for each film forming process.
  • the high frequency voltage is preferably 13.56 MHz or 27.12 MHz.
  • a constant temperature medium higher than room temperature or 40 ° C. and lower than the heat resistant temperature of the film forming object circulates in the susceptor on which the film forming object is placed during the film forming process and the cleaning process. It is preferred that In the film forming method of the present application, it is preferable that a constant temperature medium higher than room temperature or 40 ° C. and lower than the heat resistant temperature of the film formation target is circulated in the vicinity of the cathode electrode during the film forming process and the cleaning process.
  • the object to be formed can be an organic EL element, and silicon nitride or silicon oxynitride can be used as a film to be formed.
  • the film formation target can be a resin substrate or a glass substrate, and silicon nitride or silicon oxynitride can be used as a film to be formed.
  • the present application can provide a film forming apparatus and a film forming method that can suppress the temperature rise in the vacuum chamber and have good cleaning efficiency even if the film formation and cleaning by plasma CVD are repeated. .
  • the top view which shows the structural example of the protective film formation apparatus which forms a protective film in an organic EL element Schematic cross-sectional view showing the configuration of a film forming chamber in the protective film forming apparatus Flow chart showing film formation process and cleaning process Graph showing voltage density and substrate temperature for each frequency of high-frequency voltage
  • FIG. 1 is a plan view showing a configuration example of a protective film forming apparatus for forming a protective film on an organic EL element.
  • the protective film forming apparatus 100 of this embodiment includes a film forming chamber 101, a carry-in chamber 102, a transfer chamber 103, a reversing chamber 104, and a carry-out chamber 105.
  • the inside of the protective film forming apparatus 100 in operation is maintained in a vacuum other than the carry-out chamber 105 when carrying out the film formation target.
  • a plurality of film forming chambers 101 are provided in the vicinity of the transfer chamber 103 in which a protective film is formed. In the present embodiment shown in FIG. 1, five film forming chambers 101 1 to 101 5 are provided. Details of the film formation chamber 101 will be described later.
  • the carry-in chamber 102 is a chamber for carrying in the organic EL element which is the object 50 for forming the protective film.
  • the first electrode, the organic light emitting layer, and the second electrode are deposited by deposition in the organic EL element, the deposition object 50 is carried into the carry-in chamber 102 with the deposition surface facing downward.
  • the transfer chamber 103 includes a transfer robot (not shown) that transfers the film formation target 50 between the chambers.
  • a film forming chamber 101 Around the transfer chamber 103, a film forming chamber 101, a carry-in chamber 102, a reversing chamber 104, and a carry-out chamber 105 are installed. Valves are installed between the transfer chamber 103 and each chamber as necessary.
  • the reversing chamber 104 has a reversing mechanism 104a that vertically flips the film formation target transferred with the film formation surface facing downward, and turns the film formation surface upward. This is because a protective film is formed on the film formation object 50 by deposition in the film formation chamber 101.
  • the film formation target object 50 on which the protective film is formed in the film formation chamber 101 is carried out from the carry-out chamber 105.
  • the film formation target 50 is unloaded from the vacuum atmosphere to the atmosphere while maintaining the vacuum in the transfer chamber 103.
  • the film formation target 50 carried into the carry-in chamber 102 is transferred to the reversing chamber 104 by the transfer robot in the transfer chamber 103, and is turned upside down in the reversing chamber 104. It is transferred to any one of 101 1 to 101 5 .
  • the film formation target object 50 formed in the film formation chambers 101 1 to 101 5 is transferred to the unloading chamber 105 by the transfer robot in the transfer chamber 103 and is unloaded from the unloading chamber 105.
  • FIG. 2 shows a cross section of the film forming chamber 101.
  • the film forming chamber 101 includes a chamber wall 11, a cathode insulating part 12, a plate member 13, a constant temperature medium circulating means 15, an RF power source 17, a film forming raw material gas supplying means 18, a cover 19, a cathode electrode 20, a substrate electrode part 30, and a cleaning. Gas supply means 40.
  • a film formation target 50 is disposed on the substrate electrode unit 30 inside the film formation chamber 101, and a protective film is formed on the surface of the film formation target 50.
  • the chamber wall 11 constitutes a part (side wall and bottom) of the vacuum chamber, is formed of a conductive member, and is at ground potential.
  • An exhaust port 14 is formed at the bottom of the chamber wall 11 and is evacuated by exhaust means (not shown).
  • chamber side wall temperature control means 16 in which a constant temperature medium circulates may be installed along the outer surface of the chamber wall 11 or inside the chamber wall 11.
  • the cathode insulating part 12 is made of an insulating member and is disposed between the chamber wall 11 and the cathode electrode 20.
  • the cathode insulating part 12 may constitute a part of the vacuum chamber.
  • the constant temperature medium circulation means 15 supplies the constant temperature medium to the inside of the susceptor 31 constituting the substrate electrode unit 30.
  • the constant temperature medium circulation means 15 can be configured to supply a constant temperature medium to the chamber side wall temperature control means 16 or the cathode electrode temperature control means 25 described later.
  • the RF power source 17 applies a high frequency voltage to the cathode electrode 20.
  • the frequency of the high-frequency voltage is preferably 27.12 MHz or more. The reason for this is that, as shown in FIG. 4, the substrate temperature rises more when the high power voltage of 27.12 MHz or 40.68 MHz is used than when 13.56 MHz is used even at the same power density. This is because it can be suppressed.
  • the film forming material gas supply means 18 supplies the film forming material gas to the film forming region 60 inside the film forming chamber 101 through the cathode electrode 20.
  • a mixed gas containing SiH 4 and ammonia gas and / or nitrogen is supplied.
  • a mixed gas containing SiH 4 and ammonia gas and / or nitrogen and nitrogen oxide is supplied.
  • the film to be formed is silicon oxide, a mixed gas containing SiH 4 and nitrogen oxide is supplied.
  • the mixed gas may contain Ar.
  • the cover 19 covers the top and the periphery of the cathode electrode 20 so that a person or the like contacts the cathode electrode 20 and does not get an electric shock.
  • the cathode electrode 20 is composed of a box made of a conductive material.
  • the cathode electrode 20 has a cathode upper electrode 21 on the upper surface and a shower plate 22 on the lower surface, and a space 23 is formed between the cathode upper electrode 21 and the shower plate 22, that is, inside the cathode electrode 20.
  • a high frequency voltage is applied to the cathode upper electrode 21 from the RF power source 17.
  • the cathode upper electrode 21 is provided with a film forming material gas supply pipe 26 for connecting the film forming material gas supply means 18 and the space 23.
  • a plurality of holes 24 are formed in the shower plate 22 to connect the space 23 and the film formation region 60 inside the film formation chamber 101.
  • the raw material gas supplied from the film forming raw material gas supply means 18 is supplied to the space 23 through the film forming raw material gas supply pipe 26, dispersed from the space 23 through the holes 24 of the shower plate 22, and the surface of the film forming object 50.
  • the film is introduced into the film formation region 60 in the film formation chamber 101 so that the film is uniformly formed.
  • the substrate electrode unit 30 includes a susceptor 31, a susceptor constant temperature medium circulation path 32, and a substrate electrode insulating member 33.
  • the substrate electrode unit 30 is set to the ground potential.
  • a high frequency voltage applied from the RF power source 17 discharges between the shower plate 22 and the substrate electrode unit 30 to generate plasma.
  • the source gas reacts, and a protective film is formed on the film formation target 50 arranged on the susceptor 31 so as to be in contact with the film formation region 60.
  • a susceptor constant temperature medium circulation path 32 is formed inside the susceptor 31, and the constant temperature medium supplied from the constant temperature medium circulation means 15 circulates.
  • the temperature of the constant temperature medium is preferably room temperature or 40 ° C. or higher and lower than the heat resistance temperature of the film formation target 50. A temperature higher than the heat resistance temperature of the film formation target 50 is not preferable because the temperature of the film formation target 50 is too high.
  • a constant temperature medium having a temperature lower by 10 to 40 ° C. than the heat resistance temperature of the film formation target 50 is circulated.
  • the heat resistance temperature of the organic EL element is less than 100 ° C.
  • the heat resistance temperature of the resin substrate is less than 200 ° C.
  • it is preferable that the organic EL element is managed at 90 ° C. or lower during film formation, and the resin substrate is managed at 190 ° C. or lower. For this reason, the constant temperature medium is controlled to be lower than the controlled temperature.
  • the substrate electrode insulating member 33 provided around the susceptor 31 is for preventing an abnormal discharge from occurring between the susceptor 31 and the chamber wall 11. Further, the plate member 13 described above is arranged between the susceptor 31 and the bottom of the chamber wall 11 and is configured to electrically connect the chamber wall 11 and the susceptor 31. This is to shorten the high-frequency circuit formed by the RF power source 17, the cathode electrode 20, the plasma, the substrate electrode unit 30, the chamber wall 11, and the ground to prevent abnormal discharge.
  • the substrate electrode unit 30 may include a substrate electrode lifting mechanism 34 that adjusts the distance between the susceptor 31 and the shower plate 22.
  • the cleaning gas supply unit 40 includes a cleaning gas activation unit 41, a cleaning gas storage unit 42, and cleaning gas supply pipes 43 and 44.
  • the cleaning gas activating means 41 is supplied with cleaning gas of NF 3 and Ar gas from the cleaning gas storage unit 42 via the cleaning gas supply pipe 44.
  • the cleaning gas activating means 41 has plasma generating means such as ICP (inductively coupled plasma) and has a function of generating plasma inside. By the generation of this plasma, active species containing NF 3 ions or radicals are formed.
  • the cleaning gas supply pipe 43 connects the cleaning gas activating means 41 and the film forming region 60 in the film forming chamber 101, and introduces active species of the cleaning gas into the film forming region 60.
  • a film forming process in the film forming chamber 101 will be described.
  • a silicon nitride film is formed on an organic EL element.
  • an organic EL element is installed on the susceptor 31 as a film formation target 50, and a source gas (SiH 4 , ammonia, nitrogen) is introduced into the film formation region 60, and a high frequency is supplied from the RF power source 17.
  • a voltage is supplied to generate plasma in the film formation region 60.
  • the source gas reacts by the plasma, and a silicon nitride protective film is formed on the film formation target 50.
  • the RF power source 17 applies a high frequency voltage of 27.12 MHz. At this time, for example, 60 ° C.
  • the hot water is circulated in the susceptor constant temperature medium circulation path 32 as a constant temperature medium.
  • the substrate temperature is controlled to 60 ° C. or more at the start of film formation and to 85 ° C. or less during film formation.
  • the temperature of the cathode electrode 20 rises due to the application of a high frequency voltage. Therefore, by circulating a constant temperature medium to the cathode electrode temperature control means 25, the temperature rise is suppressed and controlled to 85 ° C. or lower. be able to.
  • the constant temperature medium is circulated through the chamber side wall temperature control means 16, thereby suppressing the temperature rise and controlling it to 85 ° C. or lower. be able to.
  • the introduction of the source gas and the application of the high frequency voltage are stopped, and the film formation target object 50 is carried out from the film formation chamber 101.
  • the cleaning process (C1) is performed.
  • the number of times of film formation and the frequency of cleaning are determined based on the thickness of the film to be formed and the thickness of the film in which peeling occurs from the inner wall. If there is no problem such as film peeling from the film forming chamber 101, it is preferable to perform the cleaning process after the film forming process is performed on the plurality of film forming objects 50. This is because, at the end of the cleaning process, there is a process such as a pre-depot for forming a film for preventing peeling in the film forming chamber 101. However, if cleaning is performed after a plurality of film formations, the process such as the pre-depot is reduced. This is because the operation rate of the film formation chamber can be improved as a whole.
  • cleaning gas (NF 3 ) and Ar gas are introduced into the cleaning gas activating means 41, and plasma is generated within the cleaning gas activating means 41 by the plasma generating means.
  • a cleaning gas activated by plasma is introduced into the deposition chamber 101.
  • a high frequency voltage of 27.12 MHz is applied from the RF power source 17 to the cathode electrode 20.
  • the plasma of the cleaning gas spreads into the film forming chamber 101 and the activity of the cleaning gas becomes uniform. It becomes possible to do.
  • hot water of 60 ° C. was circulated through the susceptor constant temperature medium circulation path 32, the cathode electrode temperature control means 25, and the chamber side wall temperature control means 16 during cleaning. As a result, the temperature of the susceptor 31 did not rise above 85 ° C. even after 10 minutes of cleaning.
  • the activated cleaning gas since the activated cleaning gas is introduced, the voltage density of the high frequency voltage applied to the cathode electrode 20 can be lowered and the cleaning time is shortened. The temperature rise of 101 can be suppressed. Further, by applying a high frequency voltage to the cathode electrode 20 even during the introduction of the cleaning gas, the cleaning gas plasma spreads in the film forming chamber 101 and the activity of the cleaning gas becomes uniform. The inside of 101 can be cleaned uniformly.
  • the cleaning gas when a non-activated cleaning gas is introduced and a high frequency voltage is applied to the cathode electrode 20, the cleaning gas has a low activity, so that the cleaning time becomes longer and the voltage density of the high frequency voltage needs to be increased. It was. For this reason, the temperature of the cathode electrode 20, the susceptor 31 and the chamber wall 11 rose, and the inside of the film forming chamber 101 became 90 ° C. or higher. For this reason, cooling time is required, and it was not possible to immediately shift to the next film forming step.
  • the cleaning time becomes longer than a single film forming time, and the problem of temperature rise becomes large. This is because the temperature of the cathode electrode 20 and the like rises when a high-frequency voltage is applied continuously for a long time. In such a case, it is particularly preferable to suppress an increase in temperature during cleaning and to immediately shift to the next film forming process in order to increase the operation efficiency of the film forming chamber 101.
  • the temperature in the film formation chamber 101 rises during the plasma generation period, and the temperature drops to near the constant temperature medium temperature during the plasma disappearance period. For this reason, the temperature rises during film formation or cleaning, and the temperature needs to be lowered to a certain temperature before the next film formation. This is because if the temperature does not decrease to a certain temperature, the temperature gradually increases and exceeds the heat resistance temperature of the film formation target object 50 as the operation is repeated. For this reason, even during cleaning, it is important to control the temperature so that the temperature becomes constant before the next film formation.
  • a constant temperature medium having a temperature lower than that of the susceptor constant temperature medium circulation path 32 may be circulated only in the cathode electrode temperature control means 25.
  • a high frequency voltage having a frequency of 27.12 MHz is used, but the present invention is not limited to this, and a frequency of 13.56 MHz or a frequency of 27.12 MHz or higher may be used.

Abstract

 成膜工程とクリーニング工程の繰り返しの間に、真空槽の温度上昇を抑え、かつ槽内を効率良く均一にクリーニング可能なプラズマ成膜装置および成膜方法を提供する。本願の成膜方法は、真空槽内にプラズマを発生させながら成膜対象物に膜を形成する成膜工程と、一回又は複数回の成膜工程毎に、真空槽内にクリーニングガスを導入してクリーニングを行うクリーニング工程を有する。クリーニング工程において、クリーニングガスは、真空槽に導入される前に活性化されて真空槽に導入される際にイオンまたはラジカルを含み、かつ、真空槽内のカソード電極に高周波電圧が印加される。

Description

プラズマ成膜装置及び成膜方法
 本発明は真空槽内でプラズマを発生させ、成膜対象物に膜を形成する成膜装置および成膜方法に関する。特に、有機EL素子もしくは樹脂基板やガラス基板など比較的耐熱温度が低い成膜対象物に、窒化シリコンもしくは酸窒化シリコンを成膜して保護膜を形成する成膜装置および成膜方法に関する。
 従来、基板上に下部電極、有機発光層、上部電極を形成し、この基板上に窒化シリコンもしくは酸窒化シリコンなどの保護膜を形成する技術が知られている(例えば特許文献1参照)。また、樹脂基板やガラス基板などからのガスの発生を抑えるために、窒化シリコンもしくは酸窒化シリコンなどの保護膜を形成する場合がある。
 窒化シリコン(SiN)もしくは酸窒化シリコン(SiON)は、真空槽内にSiH4などのSi供給ガスとN2、NH3やO2などの反応ガスが供給され、真空槽内でプラズマを発生させる方法、いわゆるプラズマCVD法により成膜される。この時、成膜対象物以外の真空槽内にも窒化シリコンもしくは酸窒化シリコンの膜が形成される。
 保護膜の形成は、その保護性能の要求により、比較的厚い膜が形成される場合が多い。このため真空槽内部に形成される不要な膜は、比較的、少ない成膜回数で一定の膜厚以上になる。一定の膜厚以上になると、真空槽内部から膜が剥離して汚れ(パーティクル)の原因になる場合がある。
 このため、一または複数回、成膜を行う毎に成膜室内のクリーニングが行われる。このような成膜室内のクリーニングの例が特許文献2に記載されている。特許文献2では、NF3ガスをアプリケータでプラズマ化して、真空容器内に導入している。NF3ガスをプラズマ化することにより反応性が非常に高くなりクリーニング速度が向上する。
特開2008-189964号公報 特開2005-200680号公報
 ところで、上述したような保護膜の対象物が、有機EL素子や樹脂基板の場合、耐熱温度が比較的低いという問題がある。例えば、有機EL素子に形成された有機物の発光層は100℃以上で損傷する。また、樹脂基板も100~200℃で損傷する。このため、このような成膜対象物に窒化シリコン(SiN)もしくは酸窒化シリコン(SiON)を形成する場合、成膜対象物がその耐熱温度以上にならないようにする必要がある。
 しかし、成膜室の温度が低すぎると、成膜室内が汚れやすく、また、膜質が悪化する場合がある。このため、成膜室を冷却し過ぎることは好ましくない。
 クリーニング時に、NF3ガスを導入して真空槽内でプラズマを発生させる場合がある。この場合、真空槽内に設置された高周波電極(カソード電極)に、長時間もしくは高密度で高周波電圧を導入するため、高周波電極の温度が上がり真空槽内の温度が上昇する。さらに、成膜とクリーニングを繰り返すと真空槽の温度が徐々に上昇し、サセプタ(基板保持部材)の温度も上昇する。このため、成膜時にサセプタに保持される基板の耐熱温度を超えてしまう場合がある。これを防ぐために、クリーニング後に、真空槽の冷却期間を設けると、成膜装置の稼働率が低下する。
 また、複数の成膜後にクリーニングする方が、成膜毎にクリーニングするより効率が良くなり、全体としてクリーニング時間が短縮される。しかし、厚い膜が形成された後にクリーニングするため一回のクリーニング時間は長くなる。この場合、高周波電極(カソード電極)に高周波を導入する時間が長くなるため、真空槽の温度上昇が顕著になる。
 これに対し、特許文献2のように、真空槽の外でプラズマ化したクリーニングガスを導入する方法がある。しかし、このように活性化されたクリーニングガスは、真空槽内に広がらず、特定の部分が選択的にクリーニングされてしまう。さらに、クリーニングガスの入り口付近では活性(反応性)が高いが、遠い場所では活性(反応性)が低下するので、真空槽内全体を均一にクリーニングできないという課題がある。
 本発明は、このような従来の技術の課題を解決するためになされたもので、その目的とするところは、プラズマCVDによる成膜とクリーニングとを繰り返しても、真空槽内の温度上昇を抑制し、かつ、効率良く均一にクリーニング可能な成膜装置および成膜方法を提供することにある。
 本願は、上記の課題を解決するために以下の構成および方法を用いる。
 本願の一形態のプラズマ成膜装置は、内部を減圧可能な真空槽と、真空槽内に設置され、成膜対象物が置載されるサセプタと、サセプタの上方に設置されるカソード電極と、カソード電極に高周波電圧を印加する高周波電源と、真空槽内に成膜原料ガスを供給する成膜ガス供給手段と、を有する。
 このプラズマ成膜装置は、カソード電極に高周波電圧が印加され、真空槽内に成膜原料ガスが供給されて、カソード電極とサセプタの間にプラズマを発生させて成膜対象物に成膜する。さらに、このプラズマ成膜装置は、サセプタ内に恒温媒体を循環させるサセプタ恒温媒体循環手段と、クリーニングガスを真空槽内に供給するクリーニングガス供給手段とを有する。クリーニングガス供給手段は、クリーニングガスが真空槽内に供給される前に、クリーニングガスのイオンもしくはラジカルを発生させるクリーニングガス活性化手段を有する。
 さらに、このプラズマ成膜装置は、真空槽内に、クリーニングガス供給手段がイオンもしくはラジカルを含むクリーニングガスを供給しながら、高周波電源がカソード電極に高周波電圧を印加することができる。
 本願のプラズマ成膜装置は、カソード電極の温度を制御するカソード電極温度制御手段を有してもよい。
 本願のプラズマ成膜装置において、カソード電極温度制御手段は、カソード電極に隣接して恒温媒体を循環させてもよい。
 本願のプラズマ成膜装置は、真空槽の側壁の温度を制御するチャンバ側壁温度制御手段を有してもよい。
 本願のプラズマ成膜装置において、チャンバ側壁温度制御手段は、チャンバ側壁に近接して、もしくはチャンバ側壁内に恒温媒体を循環させてもよい。
 本願のプラズマ成膜装置において、サセプタ恒温媒体循環手段によりサセプタ内を循環する恒温媒体は、室温もしくは40℃より高く、成膜対象物の耐熱温度より低いことが好ましい。
 本願のプラズマ成膜装置において、クリーニングガス活性化手段は、プラズマ発生手段を用いることができる。
 本願のプラズマ成膜装置において、高周波電源が供給する高周波電圧は、13.56MHzもしくは27.12MHzであることが好ましい。
 本願の一形態の成膜方法は、真空槽内にプラズマを発生させながら成膜対象物に膜を形成する成膜工程と、一回又は複数回の成膜工程毎に、真空槽内にクリーニングガスを導入してクリーニングを行うクリーニング工程を有する。クリーニング工程において、クリーニングガスは、真空槽に導入される前に活性化されて真空槽に導入される際にイオンまたはラジカルを含み、かつ、真空槽内のカソード電極に高周波電圧が印加される。
 本願の成膜方法において、高周波電圧は、13.56MHzもしくは27.12MHzであることが好ましい。
 本願の成膜方法において、成膜工程およびクリーニング工程の間、成膜対象物が置載されるサセプタ内には、室温もしくは40℃より高く、成膜対象物の耐熱温度より低い恒温媒体が循環されることが好ましい。
 本願の成膜方法において、成膜工程およびクリーニング工程の間、カソード電極に近接して、室温もしくは40℃より高く、成膜対象物の耐熱温度より低い恒温媒体が循環されることが好ましい。
 本願の成膜方法において、成膜工程およびクリーニング工程の間、真空槽内もしくは真空槽に近接して、室温もしくは40℃より高く、成膜対象物の耐熱温度より低い恒温媒体が循環されることが好ましい。
 本願の成膜方法において、成膜対象物を有機EL素子とし、成膜される膜として窒化シリコンもしくは酸窒化シリコンを用いることができる。
 本願の成膜方法において、成膜対象物は樹脂基板もしくはガラス基板とし、成膜される膜として窒化シリコンもしくは酸窒化シリコンを用いることができる。
 上記の手段により、本願は、プラズマCVDによる成膜とクリーニングとを繰り返しても、真空槽内の温度上昇を抑制し、かつ、クリーニング効率が良い成膜装置および成膜方法を提供することができる。
有機EL素子に保護膜を形成する保護膜形成装置の構成例を示す平面図 同保護膜形成装置における成膜室の構成を示す概略の断面図 成膜工程及びクリーニング工程を示すフロー図 高周波電圧の周波数毎の電圧密度と基板温度を示すグラフ
100 保護膜形成装置
101 成膜室
102 搬入室
103 搬送室
104 反転室
105 搬出室
11 チャンバ壁
12 カソード絶縁部
13 プレート部材
14 排気口
15 恒温媒体循環手段
16 チャンバ側壁温度制御手段
17 RF電源
18 成膜原料ガス供給手段
19 カバー
20 カソード電極
21 カソード上部電極
22 シャワープレート
23 空間
24 孔
25 カソード電極温度制御手段
26 成膜原料ガス供給管
30 基板電極部
31 サセプタ
32 サセプタ恒温媒体循環路
33 基板電極絶縁部材
34 基板電極昇降機構
40 クリーニングガス供給手段
41 クリーニングガス活性化手段
42 クリーニングガス貯蔵部
43 クリーニングガス供給管
50 成膜対象物(基板)
60 成膜領域
 以下、本発明の最良の形態について、図面に基づき説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 図1は、有機EL素子に保護膜を形成する保護膜形成装置の構成例を示す平面図である。
 図1に示すように、本実施の形態の保護膜形成装置100は、成膜室101、搬入室102、搬送室103、反転室104、搬出室105を有する。成膜対象物を搬出する時の搬出室105以外、運転中の保護膜形成装置100の内部は真空に維持される。
 成膜室101は、その内部で保護膜の成膜が行われるもので、搬送室103の周辺に複数設置される。図1に示す本実施の形態では成膜室1011~1015が5室設置されている。成膜室101の詳細は後述される。
 搬入室102は、保護膜の成膜対象物50である有機EL素子を搬入するための室である。通常、有機EL素子は第一電極、有機発光層、第二電極が蒸着によりデポアップで成膜されるため、搬入室102へは、成膜面が下向きの状態で成膜対象物50が搬入される。
 搬送室103は、その内部に、各室間で成膜対象物50を移送する搬送ロボット(図示せず)を有する。搬送室103の周囲には、成膜室101、搬入室102、反転室104、搬出室105が設置される。搬送室103と各室の間には必要に応じてバルブが設置される。
 反転室104は、成膜面が下向きの状態で移送された成膜対象物を、上下反転し、成膜面を上向きにする反転機構104aを有する。これは、成膜室101内で成膜対象物50が、デポダウンにより保護膜が形成されるためである。
 搬出室105から成膜室101で保護膜を成膜された成膜対象物50が搬出される。搬出室105内部が大気と真空に圧力調整されることにより、搬送室103は真空を維持したまま、真空雰囲気から大気中に成膜対象物50が搬出される。
 搬入室102に搬入された成膜対象物50は、搬送室103の搬送ロボットにより反転室104に移送され、反転室104で上下反転されて、搬送室103の搬送ロボットにより、複数の成膜室1011~1015のいずれかに移送される。成膜室1011~1015で成膜された成膜対象物50は、搬送室103の搬送ロボットにより搬出室105に移送され、搬出室105から搬出される。
 次に、図2を参照して、成膜室101の構成を説明する。図2は、成膜室101の断面を示す。
 成膜室101は、チャンバ壁11、カソード絶縁部12、プレート部材13、恒温媒体循環手段15、RF電源17、成膜原料ガス供給手段18、カバー19、カソード電極20、基板電極部30、クリーニングガス供給手段40、を有する。
 成膜室101内部の基板電極部30上に成膜対象物50が配置されて、成膜対象物50表面に保護膜が形成される。
 チャンバ壁11は、真空槽の一部(側壁及び底部)を構成するもので、導電性の部材により形成され、接地電位にされている。チャンバ壁11の底部には、排気口14が形成され図示しない排気手段により真空排気される。
 チャンバ壁11の側壁には、恒温媒体が循環するチャンバ側壁温度制御手段16が、チャンバ壁11の外面に沿って、もしくはチャンバ壁11内部に設置される場合がある。
 カソード絶縁部12は絶縁性の部材からなり、チャンバ壁11とカソード電極20の間に配置される。カソード絶縁部12が真空槽の一部を構成しても良い。
 恒温媒体循環手段15は、基板電極部30を構成するサセプタ31内部に恒温媒体を供給する。恒温媒体循環手段15は、チャンバ側壁温度制御手段16や後述するカソード電極温度制御手段25に恒温媒体を供給するように構成することもできる。
 RF電源17は、カソード電極20に高周波電圧を印加する。本発明の場合、高周波電圧の周波数は、27.12MHz以上であることが好ましい。この理由は、図4に示されるように、13.56MHzを使用する場合より、27.12MHzや40.68MHzの高周波電圧を使用した場合の方が、同じ電力密度でも基板温度の温度上昇をより抑えることができるからである。
 成膜原料ガス供給手段18は、成膜原料ガスを、カソード電極20を介して成膜室101内部の成膜領域60へ供給する。成膜する膜が窒化シリコンの場合、SiH4とアンモニアガス及び/または窒素を含む混合ガスが供給される。成膜する膜が酸窒化シリコンの場合、SiH4とアンモニアガス及び/または窒素と窒素酸化物を含む混合ガスが供給される。成膜する膜が酸化シリコンの場合、SiH4と窒素酸化物を含む混合ガスが供給される。なお、上記の原料ガスの他に混合ガスがArを含む場合がある。
 カバー19は、カソード電極20に人等が接触して感電しないように、カソード電極20の上方及び周囲を覆っている。
 カソード電極20は、導電性物質で形成された函体から構成される。ここで、カソード電極20は上面にカソード上部電極21を、下面にシャワープレート22を有し、カソード上部電極21とシャワープレート22の間、即ちカソード電極20内部には空間23が形成されている。カソード上部電極21には、RF電源17より高周波電圧が印加される。また、カソード上部電極21には成膜原料ガス供給手段18と空間23を接続する成膜原料ガス供給管26が設けられている。シャワープレート22には空間23と成膜室101内部の成膜領域60を接続する複数の孔24が形成される。
 なお、カソード上部電極21に近接するように、恒温媒体が循環するカソード電極温度制御手段25を設けても良い。
 成膜原料ガス供給手段18から供給された原料ガスは、成膜原料ガス供給管26を通って空間23に供給され、空間23からシャワープレート22の孔24により分散され、成膜対象物50表面に均一に成膜されるように成膜室101内の成膜領域60に導入される。
 基板電極部30は、サセプタ31、サセプタ恒温媒体循環路32、基板電極絶縁部材33を有する。基板電極部30は接地電位とされる。
 そして、RF電源17から印加された高周波電圧により、シャワープレート22と基板電極部30の間で放電し、プラズマが発生する。このプラズマにより、原料ガスが反応し、サセプタ31の上に成膜領域60と接するように配置された成膜対象物50上に保護膜が形成される。
 サセプタ31の内部にはサセプタ恒温媒体循環路32が形成され、上記恒温媒体循環手段15から供給された恒温媒体が循環する。恒温媒体の温度は、室温もしくは40℃以上でかつ成膜対象物50の耐熱温度未満とすることが好ましい。
 成膜対象物50の耐熱温度以上では、成膜対象物50の温度が上がりすぎるため好ましくない。通常は成膜対象物50の耐熱温度から10~40℃低い温度の恒温媒体が循環される。例えば、有機EL素子の耐熱温度は100℃未満であり、樹脂基板の耐熱温度は200℃未満である。このため、有機EL素子は成膜中に90℃以下に管理され、樹脂基板は190℃以下に管理されることが好ましい。このため恒温媒体はこの管理される温度より低く制御される。
 サセプタ31の周りに設けられた基板電極絶縁部材33は、サセプタ31とチャンバ壁11の間に異常放電が発生するのを防止するためのものである。さらに、上述したプレート部材13は、サセプタ31とチャンバ壁11の底部の間に配置され、チャンバ壁11とサセプタ31とを電気的に接続するように構成されている。これは、RF電源17、カソード電極20、プラズマ、基板電極部30、チャンバ壁11、接地で形成される高周波の回路を短くして、異常な放電を防止するためである。
 基板電極部30は、サセプタ31とシャワープレート22の距離を調整する基板電極昇降機構34を有しても良い。
 クリーニングガス供給手段40は、クリーニングガス活性化手段41、クリーニングガス貯蔵部42、クリーニングガス供給管43、44を有する。
 クリーニングガス活性化手段41には、クリーニングガス貯蔵部42からクリーニングガス供給管44を介してNF3のクリーニングガスと、Arガスが供給される。クリーニングガス活性化手段41は、ICP(誘導結合プラズマ)などのプラズマ発生手段を有し、内部でプラズマを発生させる機能を有する。このプラズマの発生によりNF3のイオンまたはラジカルを含む活性種が形成される。
 クリーニングガス供給管43はクリーニングガス活性化手段41と成膜室101内の成膜領域60を接続し、クリーニングガスの活性種を成膜領域60に導入する。
 次に、成膜室101における成膜工程を説明する。ここでは、例として有機EL素子に窒化シリコン膜を形成する場合を示す。
 図2に示すように、サセプタ31の上に成膜対象物50として有機EL素子を設置し、成膜領域60に原料ガス(SiH4、アンモニア、窒素)を導入しながら、RF電源17から高周波電圧を供給し成膜領域60にプラズマを発生させる。プラズマにより原料ガスが反応して成膜対象物50上に窒化シリコン保護膜が形成される。RF電源17は27.12MHzの高周波電圧を印加する。このとき、例えばサセプタ恒温媒体循環路32には恒温媒体として60℃の温水を循環させる。これにより、5分の成膜時間中に、基板温度は成膜の開始時は60℃以上、成膜中は85℃以下に制御される。
 また、成膜時間を長くした場合、高周波電圧の印加によりカソード電極20の温度が上昇するのでカソード電極温度制御手段25に恒温媒体を循環することで、温度上昇を抑え、85℃以下に制御することができる。
 さらに、プラズマやカソード電極20からの伝熱により、チャンバ壁11全体の温度が上昇する場合はチャンバ側壁温度制御手段16に恒温媒体を循環することで、温度上昇を抑え、85℃以下に制御することができる。
 成膜が終了すると、原料ガスの導入と高周波電圧の印加を停止し、成膜された成膜対象物50を成膜室101から搬出する。
 本例では、図3に示すように、一もしくは複数の基板に成膜工程が行われた後(S1~Sn)、クリーニング工程(C1)を行う。ここで、成膜回数とクリーニングの頻度は、成膜する膜の厚さと内壁から剥離が発生する膜の厚さ等から決められる。成膜室101内からの膜剥離等の問題がなければ、複数の成膜対象物50に成膜工程が行われた後にクリーニング工程を行うことが好ましい。これは、クリーニング工程の最後には、成膜室101内に剥離防止用の膜を形成するプレデポなどの工程があるが、複数回の成膜後にまとめてクリーニングすればこのプレデポなどの工程を削減できるため、全体として成膜室の稼働率を向上できるからである。
 次に、成膜室101のクリーニング方法を説明する。
 成膜対象物50が搬出された状態で、クリーニングガス活性化手段41にクリーニングガス(NF3)とArガスが導入され、クリーニングガス活性化手段41内でプラズマ発生手段によってプラズマを発生させる。プラズマにより活性化されたクリーニングガスを成膜室101内に導入する。このとき、RF電源17からカソード電極20に高周波電圧27.12MHzを印加する。このような活性化されたクリーニングガスを導入することで、カソード電極20に印加される高周波電圧の電圧密度を低くすることができるため、成膜室101内の温度上昇を抑えることができる。さらに、クリーニングガスの導入中にもカソード電極20に高周波電圧を印加することで、クリーニングガスのプラズマが成膜室101内に広がり、かつ、クリーニングガスの活性も一様になるので、均一にクリーニングすることが可能なる。また、クリーニング中にサセプタ恒温媒体循環路32、カソード電極温度制御手段25、チャンバ側壁温度制御手段16に、60℃の温水を循環させた。これにより、10分間のクリーニングでも、サセプタ31の温度が85℃以上に上昇することがなかった。
 本実施の形態では、活性化されたクリーニングガスが導入されることで、カソード電極20に印加される高周波電圧の電圧密度を低くすることができるとともに、クリーニング時間が短縮されるので、成膜室101の温度上昇を抑えられる。さらに、クリーニングガスの導入中にもカソード電極20に高周波電圧を印加することで、クリーニングガスのプラズマが成膜室101内に広がり、かつ、クリーニングガスの活性も一様になるので、成膜室101内を均一にクリーニングすることが可能なる。
 これに対し、活性化されたクリーニングガスを導入し、カソード電極20に高周波電圧を印加しなかった場合、クリーニングガスの導入口付近およびクリーニングガスの流れ順序によりクリーニング結果が不均一になった。
 また、活性化されていないクリーニングガスを導入して、カソード電極20に高周波電圧を印加した場合、クリーニングガスの活性が低いため、クリーニング時間が長くなるとともに、高周波電圧の電圧密度を上げる必要が生じた。このため、カソード電極20、サセプタ31およびチャンバ壁11の温度が上昇し、成膜室101内が90℃以上になった。このため、冷却時間が必要で、直ちに次の成膜工程に移行することができなかった。
 特に、複数の基板に成膜工程が行われた後にクリーニング工程が行われる場合、クリーニング時間が一回の成膜時間より長くなり、温度上昇の問題が大きくなる。長時間かつ連続的に高周波電圧が印加されることによりカソード電極20等の温度が上昇するためである。このような場合、クリーニング時に温度の上昇を抑え、直ちに次の成膜工程に移行することができることは、成膜室101の稼動効率を上げるために特に好ましい。
 基本的には、プラズマ発生期間に成膜室101内の温度が上昇し、プラズマ消失期間に温度が恒温媒体温度近くまで下がる。このため、成膜中やクリーニング中に温度が上昇し、次の成膜までに一定温度まで温度が下がる必要がある。一定温度まで温度が下がらないと、運転を繰り返すうちに徐々に温度が上昇して成膜対象物50の耐熱温度を超えてしまうからである。このため、クリーニング時においても、次の成膜までに一定温度になるように温度を管理することは重要である。クリーニング時にカソード電極20の温度が必要以上に高くなる場合は、カソード電極温度制御手段25のみにサセプタ恒温媒体循環路32より低い温度の恒温媒体を循環させても良い。
 なお、循環媒体の温度変更には時間がかかるため、サセプタ恒温媒体循環路32に流される恒温媒体の温度は、成膜時とクリーニング時で変化させない方が良い。これは成膜開始温度をできるだけ一定に保つためである。
 なお、上記では高周波電圧として周波数27.12MHzのものを使用したが、これに限定されず、周波数13.56MHzもしくは27.12MHz以上の周波数でもよい。

Claims (15)

  1.  内部を減圧可能な真空槽と、
     前記真空槽内に設置され、成膜対象物が置載されるサセプタと、
     前記サセプタの上方に設置されるカソード電極と、
     前記カソード電極に高周波電圧を印加する高周波電源と、
     前記真空槽内に成膜原料ガスを供給する成膜ガス供給手段と、を有し、
     前記カソード電極に高周波電圧が印加され、前記真空槽内に前記成膜原料ガスが供給され、前記カソード電極と前記サセプタの間にプラズマを発生させて前記成膜対象物に成膜するプラズマ成膜装置であって、
     前記サセプタ内に恒温媒体を循環させるサセプタ恒温媒体循環手段と、
     前記真空槽内に、クリーニングガスを供給するクリーニングガス供給手段を有し、
     前記クリーニングガス供給手段は、前記クリーニングガスが前記真空槽内に供給される前に、前記クリーニングガスのイオンもしくはラジカルを発生させるクリーニングガス活性化手段と、を有し、
     前記真空槽内に、前記クリーニングガス供給手段がイオンもしくはラジカルを含む前記クリーニングガスを供給しながら、前記高周波電源が前記カソード電極に高周波電圧を印加する、
     プラズマ成膜装置。
  2.  前記カソード電極の温度を制御するカソード電極温度制御手段を有する、
     請求項1に記載のプラズマ成膜装置。
  3.  前記カソード電極温度制御手段は、前記カソード電極に近接して恒温媒体を循環させる、
     請求項2に記載のプラズマ成膜装置。
  4.  前記真空槽の側壁の温度を制御するチャンバ側壁温度制御手段を有する、
     請求項1乃至3のいずれかに記載のプラズマ成膜装置。
  5.  前記チャンバ側壁温度制御手段は、前記チャンバ側壁に近接して、もしくは前記チャンバ側壁内に恒温媒体を循環させる、
     請求項4に記載のプラズマ成膜装置。
  6.  前記サセプタ恒温媒体循環手段により前記サセプタ内を循環する恒温媒体は、室温もしくは40℃より高く、前記成膜対象物の耐熱温度より低い、
     請求項1乃至5のいずれかに記載のプラズマ成膜装置。
  7.  前記クリーニングガス活性化手段は、プラズマ発生手段である、
     請求項1乃至6のいずれかに記載のプラズマ成膜装置。
  8.  前記高周波電源が供給する高周波電圧は、13.56MHzもしくは27.12MHzである、
     請求項1乃至7のいずれかに記載のプラズマ成膜装置。
  9.  真空槽内にプラズマを発生させながら成膜対象物上に膜を形成する成膜工程と、
     一回又は複数回の前記成膜工程毎に、前記真空槽内にクリーニングガスを導入してクリーニングを行うクリーニング工程を有し、
     前記クリーニング工程において、前記クリーニングガスは、前記真空槽に導入される前に活性化されて前記真空槽に導入される際にイオンまたはラジカルを含み、かつ、前記真空槽内のカソード電極に高周波電圧が印加される、
     成膜方法。
  10.  前記高周波電圧は、13.56MHzもしくは27.12MHzである、
     請求項9に記載の成膜方法。
  11.  前記成膜工程および前記クリーニング工程の間、前記成膜対象物が置載されるサセプタ内には、室温もしくは40℃より高く、前記成膜対象物の耐熱温度より低い恒温媒体が循環される、
     請求項9または10のいずれかに記載の成膜方法。
  12.  前記成膜工程および前記クリーニング工程の間、前記カソード電極に近接して、室温もしくは40℃より高く、前記成膜対象物の耐熱温度より低い恒温媒体が循環される、
     請求項9乃至11のいずれかに記載の成膜方法。
  13.  前記成膜工程および前記クリーニング工程の間、前記真空槽内もしくは前記真空槽に近接して、室温もしくは40℃より高く、前記成膜対象物の耐熱温度より低い恒温媒体が循環される、
     請求項9乃至12のいずれかに記載の成膜方法。
  14.  成膜対象物は有機EL素子であり、成膜される膜は窒化シリコンもしくは酸窒化シリコンである、
     請求項9乃至13のいずれかに記載の成膜方法。
  15.  成膜対象物は樹脂基板もしくはガラス基板であり、成膜される膜は窒化シリコンもしくは酸窒化シリコンである、
     請求項9乃至13のいずれかに記載の成膜方法。 
PCT/JP2010/057888 2010-05-10 2010-05-10 プラズマ成膜装置及び成膜方法 WO2011141986A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057888 WO2011141986A1 (ja) 2010-05-10 2010-05-10 プラズマ成膜装置及び成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057888 WO2011141986A1 (ja) 2010-05-10 2010-05-10 プラズマ成膜装置及び成膜方法

Publications (1)

Publication Number Publication Date
WO2011141986A1 true WO2011141986A1 (ja) 2011-11-17

Family

ID=44914055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057888 WO2011141986A1 (ja) 2010-05-10 2010-05-10 プラズマ成膜装置及び成膜方法

Country Status (1)

Country Link
WO (1) WO2011141986A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117728A1 (ja) * 2019-12-09 2021-06-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969504A (ja) * 1994-07-21 1997-03-11 Applied Komatsu Technol Kk 遠隔の励起源を用いる堆積チャンバーのクリーニング技術
JP2002057106A (ja) * 2000-08-08 2002-02-22 Tokyo Electron Ltd 処理装置のクリーニング方法及び処理装置
JP2003124125A (ja) * 2001-10-12 2003-04-25 Applied Materials Inc 半導体製造装置
JP2005026409A (ja) * 2003-07-01 2005-01-27 Taiyo Nippon Sanso Corp プロセスチャンバー内のクリーニング方法及び基板処理装置
JP2005101309A (ja) * 2003-09-25 2005-04-14 Seiko Epson Corp クリーニング方法及びクリーニング装置
JP2006319042A (ja) * 2005-05-11 2006-11-24 Tokyo Electron Ltd プラズマクリーニング方法、成膜方法
JP2008283217A (ja) * 2008-08-11 2008-11-20 Tokyo Electron Ltd 処理装置およびそのクリーニング方法
JP2009038102A (ja) * 2007-07-31 2009-02-19 Renesas Technology Corp 半導体集積回路装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969504A (ja) * 1994-07-21 1997-03-11 Applied Komatsu Technol Kk 遠隔の励起源を用いる堆積チャンバーのクリーニング技術
JP2002057106A (ja) * 2000-08-08 2002-02-22 Tokyo Electron Ltd 処理装置のクリーニング方法及び処理装置
JP2003124125A (ja) * 2001-10-12 2003-04-25 Applied Materials Inc 半導体製造装置
JP2005026409A (ja) * 2003-07-01 2005-01-27 Taiyo Nippon Sanso Corp プロセスチャンバー内のクリーニング方法及び基板処理装置
JP2005101309A (ja) * 2003-09-25 2005-04-14 Seiko Epson Corp クリーニング方法及びクリーニング装置
JP2006319042A (ja) * 2005-05-11 2006-11-24 Tokyo Electron Ltd プラズマクリーニング方法、成膜方法
JP2009038102A (ja) * 2007-07-31 2009-02-19 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2008283217A (ja) * 2008-08-11 2008-11-20 Tokyo Electron Ltd 処理装置およびそのクリーニング方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117728A1 (ja) * 2019-12-09 2021-06-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム

Similar Documents

Publication Publication Date Title
US7381291B2 (en) Dual-chamber plasma processing apparatus
KR100960162B1 (ko) 성막 처리 방법
TWI731130B (zh) 成膜裝置及其所用之氣體吐出構件
KR101204211B1 (ko) 성막 방법 및 성막 장치
JP7320874B2 (ja) 基板処理装置及び基板処理方法
US20090317565A1 (en) Plasma cvd equipment
TWI457459B (zh) Membrane film forming method and memory medium of metal film
US20160032451A1 (en) Remote plasma clean source feed between backing plate and diffuser
KR100605884B1 (ko) 표면 처리 방법 및 장치
JP5378193B2 (ja) プラズマ成膜装置及び成膜方法
US11495442B2 (en) Batch type substrate processing apparatus
JP2019516242A (ja) ウエハガス放出のためのプラズマエンハンストアニールチャンバ
WO2011141986A1 (ja) プラズマ成膜装置及び成膜方法
JP7149786B2 (ja) 載置ユニット及び処理装置
JP2014192484A (ja) 半導体装置の製造方法及び基板処理装置
US10553409B2 (en) Method of cleaning plasma processing apparatus
JP4850762B2 (ja) 成膜方法
US20080087220A1 (en) Plasma Processing Apparatus and Multi-Chamber System
KR20070046349A (ko) 막 형성 방법 및 반응 부산물의 제거 방법
TWI828704B (zh) 電漿處理方法與用於電漿處理腔室的腔室部件及其製造方法
CN113948362A (zh) 等离子体处理装置及等离子体处理方法
KR20210008549A (ko) 버퍼 유닛, 그리고 이를 가지는 기판 처리 장치 및 방법
KR101703499B1 (ko) 포토 레지스트 박리 장치 및 박리 방법
KR20070034811A (ko) 기판 처리 장치 및 방법
KR100697665B1 (ko) 상부 전극부 및 이를 이용한 플라즈마 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP