WO2011137729A1 - 预编码处理方法以及用户设备 - Google Patents

预编码处理方法以及用户设备 Download PDF

Info

Publication number
WO2011137729A1
WO2011137729A1 PCT/CN2011/073501 CN2011073501W WO2011137729A1 WO 2011137729 A1 WO2011137729 A1 WO 2011137729A1 CN 2011073501 W CN2011073501 W CN 2011073501W WO 2011137729 A1 WO2011137729 A1 WO 2011137729A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
vector
codebook vector
antenna
antennas
Prior art date
Application number
PCT/CN2011/073501
Other languages
English (en)
French (fr)
Inventor
周永行
吴强
高驰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011137729A1 publication Critical patent/WO2011137729A1/zh
Priority to US13/668,747 priority Critical patent/US8903004B2/en
Priority to US14/527,648 priority patent/US9077406B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • LTE-A Long Term Evolution-Advanced
  • ULA Uniform Linear Array
  • FIG. 2 is a schematic structural view of a dual-polarized antenna. As shown in FIG. 1 and FIG. 2, the polarization directions of the eight antennas in the ULA antenna are the same, and the spacing between the eight antennas is 0.5. ⁇ . In the dual-polarized antenna, the polarization directions of the antennas 1 to 4 and the antennas 5 to 8 are different.
  • the codebook structure of the ULA antenna is designed for the ULA antenna
  • the codebook structure of the dual-polarized antenna is designed for the dual-polarized antenna, and the codebook structures of the two antennas are not compatible, resulting in resource redundancy.
  • the embodiments of the present invention provide a precoding processing method and a user equipment, so that the codebook set can be compatible with two antenna configuration modes, and resource redundancy is reduced.
  • An embodiment of the present invention provides a precoding processing method, including: Selecting, from a codebook set of the Nt root antenna, a codebook vector for performing precoding processing on the data, the codebook set including a first codebook vector of a uniform hookline matrix and generating according to the first codebook vector a second codebook vector A , where ⁇ is the first half of the first codebook vector
  • An embodiment of the present invention provides a user equipment, including: a codebook selection module, configured to select, from a codebook set of N and an antenna, a codebook vector for performing precoding processing on data, where the codebook set includes a first codebook vector of the hook line matrix and a second codebook vector generated according to the first codebook vector, where ⁇ 4 is the first codebook direction
  • N a vector of (N / 2) X 1 composed of the first half of the element
  • B is a vector of (N / 2 ) xl composed of the latter half of the first codebook vector, N, being a positive number
  • a sending module configured to send, to the base station, an index number of the codebook vector selected by the codebook selection module, so that the base station applies a codebook vector corresponding to the index number to precode data that needs to be transmitted by the antenna deal with.
  • the user equipment may select a codebook vector from a codebook set compatible with the ULA configuration mode and the dual polarization configuration mode, and send an index number corresponding to the codebook vector to the base station, so that the base station can apply the
  • the codebook vector precodes the data to be transmitted.
  • the codebook set in this embodiment enables as many codebooks as possible to be applicable to both the ULA antenna and the dual-polarized antenna, and has good compatibility and avoids resource redundancy.
  • 1 is a schematic structural view of a ULA antenna
  • FIG. 2 is a schematic structural view of a dual-polarized antenna
  • FIG. 3 is a flow chart of an embodiment of a precoding processing method of the present invention.
  • FIG. 4 is a flow chart of another embodiment of a precoding processing method of the present invention.
  • Figure 5 is a schematic view showing another structure of a ULA antenna applied to the present invention.
  • FIG. 6 is another schematic structural view of a dual polarized antenna applied to the present invention.
  • FIG. 7 is a schematic structural diagram of an embodiment of a user equipment according to the present invention.
  • FIG. 8 is a schematic structural diagram of another embodiment of a user equipment according to the present invention.
  • FIG. 9 is a schematic structural diagram of still another embodiment of a user equipment according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 3 is a flowchart of an embodiment of a precoding processing method according to the present invention.
  • the method in this embodiment may include: Step 301: Select, from a codebook set of Nt antennas, to pre-predict data. Codebook processed codebook vector.
  • the codebook set includes a first codebook vector of the ULA and a second codebook vector generated according to the first codebook vector, where ⁇ is the first codebook vector
  • a vector of (N, / 2) xl composed of half elements, S is a vector of ( / 2) ⁇ 1 composed of the latter half of the first codebook vector.
  • the user equipment User Equipment, hereinafter referred to as UE
  • the codebook vector may be used by the base station to perform precoding processing on the data to be transmitted.
  • the UE may select a codebook vector from a codebook set of the root antenna according to an antenna configuration manner.
  • the codebook set includes a first codebook vector and a second codebook vector, where the first codebook vector is a code designed according to a ULA configuration manner.
  • the present vector, and the second codebook vector is a codebook vector generated from the first codebook vector.
  • the codebook set may include 16 codebook vectors, including 8 first codebook vectors, for each first codebook vector, correspondingly, there is a second codebook vector, for 8 For a codebook vector, there are 8 second codebook directions correspondingly.
  • the codebook design can be obtained by using the existing Discrete Fourier Transform (DFT) codebook structure.
  • DFT Discrete Fourier Transform
  • M is the dimension of DFT
  • m 0, 1...M-1
  • n 0, 1...M-1, eg 8 antenna
  • the codebook set of this embodiment may also be compatible with the dual polarization configuration mode.
  • antennas 1 to 4 are one polarization mode
  • antennas 5 to 8 are one polarization mode. Since the four antennas of one polarization mode are a uniform linear array, it can be assumed that the directivity information of each set of dual-polarized antennas is the same, but the two polarized antenna groups have a random phase relationship, therefore, this A codebook set of dual polarized antennas can be expressed as:
  • A is a 4 X 1 vector selected from the codebook structure of the 4-dimensional DFT. "Used to adjust the phase relationship of the two sets of polarized antennas. The inventors have learned through experimental verification that the codebook set constructed according to this embodiment can be exhausted
  • Step 302 Send an index number of the codebook vector to the base station, so that the base station applies a codebook vector corresponding to the index number to perform precoding processing on the data that the antenna needs to transmit.
  • the UE may send the index number corresponding to the codebook vector to the base station, so that the base station can apply the codebook vector to perform precoding processing on the data that the antenna needs to transmit. It should be noted that this embodiment does not limit the use of the codebook vector to transmit data. The specific manner of the precoding process can be selected by a person skilled in the art as needed.
  • the user equipment may select a codebook vector from a codebook set compatible with the ULA configuration mode and the dual polarization configuration mode, and send an index number corresponding to the codebook vector to the base station, so that the base station can apply the
  • the codebook vector precodes the data to be transmitted.
  • the codebook set in this embodiment enables as many codebooks as possible to be applicable to both the ULA antenna and the dual-polarized antenna, and has good compatibility and avoids resource redundancy.
  • FIG. 4 is a flowchart of another embodiment of a precoding processing method according to the present invention. As shown in FIG. 4, the method in this embodiment includes:
  • Step 401 Obtain the configuration mode of the antenna. If the configuration is dual-polarization, go to step 402. If the configuration is ULA, go to step 403.
  • Step 402 Select a codebook vector from the first codebook vector and the second codebook vector of the codebook set, and perform step 404.
  • Step 403 Select a codebook vector from the first codebook vector of the codebook set, and perform step 404.
  • the codebook set of this embodiment includes a codebook, where 8 X corresponding to the /2 codebooks of the f codebooks respectively
  • the codebook vector A of 1 is obtained by the codebook structure of the 8-dimensional discrete Fourier transform and the discrete Fourier
  • the number of groups of B-beat transformations is /(2M), and the codebook vector of another codebook in the codebook is
  • a vector consisting of the first four elements of the 8 X 1 codebook vector, S is a vector of the last four elements of the 8 x 1 codebook vector.
  • 16 codebook vectors of 16 8x1 codebook vectors can be obtained as part of 32 antennas of 8 antennas. In these 16 codebook vectors, for each codebook vector,
  • the first 4 elements are denoted as A, and the last 4 elements are denoted as B, then the 16 codebook vectors can be recorded as
  • the 8-antenna dual-polarization codebook has a correspondence relationship, and the correspondence table between the 32 codebooks generated in Table 1 and the 8-antenna bipolar codebook is as shown in Table 1.
  • the AjA structure shown in Table 1 is:
  • M 4, g-0, 1, 2, 3.
  • each element in the codebook vector is
  • each element of the codebook vector is: exp ⁇ + ⁇ l
  • the elements are:
  • Generated by this structure includes 32 codebooks In the codebook set of vectors, all codebook vectors can be used in a dual polarization configuration.
  • the codebook set is obtained based on the codebook structure of the 8-antenna DFT, and therefore, 16 codebook vectors can also be used for the ULA configuration. It can be seen that the codebook set in this embodiment can be compatible with both antenna types of ULA configuration and dual polarization configuration.
  • the UE may select a codebook vector from the first codebook set of 16 codebook vectors obtained by the 8-antenna DFT-based codebook structure, so that the UE obtains the codebook vector.
  • the base station can apply the codebook vector to perform precoding processing.
  • the antenna is known as a dual-polarized antenna
  • the UE can select a codebook vector from all 32 codebook vectors, that is, the first codebook set and the second codebook set. So that the base station can apply the codebook vector for precoding processing.
  • the UE may also perform blind selection from the codebook set of the embodiment to obtain the first codebook without knowing the configuration manner of the antenna.
  • the UE may select a codebook vector from a codebook set that is compatible with the ULA configuration mode and the dual-polarization configuration mode according to the configuration mode of the antenna. If the configuration mode of the antenna is the ULA configuration mode, the UE may obtain the codebook set. The codebook vector is selected in the first codebook set. If the antenna is configured in the dual-polarization configuration mode, the UE may select a codebook vector from the second codebook set in the codebook set, so that the codebook can be selected. The index number corresponding to the vector is sent to the base station, so that the base station applies the codebook vector corresponding to the index number to perform precoding processing on the data to be sent.
  • the codebook set in this embodiment enables as many codebook vectors as possible to be applicable to both the ULA antenna and the dual-polarized antenna, and has good compatibility and avoids resource redundancy.
  • FIG. 5 is another schematic structural diagram of a ULA antenna
  • FIG. 6 is another schematic structural diagram of a dual-polarized antenna.
  • the ULA antenna and the dual-polarized antenna are divided into two groups, and the antenna 1 is ⁇ 4 is a group, and antennas 5 ⁇ 8 are another group.
  • the antennas 1 to 4 or 4 of the antennas 5 to 8 have a small pitch, for example, a pitch of 0.5 ⁇ , and the antennas 1 to 4 and the antennas 5 to 8 have a large pitch, for example, a pitch of 10 ⁇ .
  • the transmission directions of the two sets of antennas, or the 4-dimensional DFT vectors used, are different.
  • the DFT vectors selected by antennas 1 to 4 are ⁇ , and the antennas 5 to 8 are selected as DFT vectors.
  • a constant is still needed between the two sets of antennas to indicate the directional relationship between the two sets of antennas.
  • the codebook set may include a codebook, and the codebook includes a first codebook vector, where
  • the present embodiment does not need to distinguish the antenna configuration mode.
  • the UE can select the codebook vector from the codebook set, whether it is the ULA configuration mode as shown in FIG. 5 or the dual-polarization configuration mode as shown in FIG. 6. Thereby, the base station can apply the codebook vector to perform precoding processing on the data to be transmitted. Therefore, the codebook set of this embodiment can be compatible with ULA antennas and dual-polarized antennas. Compatible performance is better, avoiding resource redundancy.
  • FIG. 7 is a schematic structural diagram of an embodiment of a user equipment according to the present invention.
  • the user equipment in this embodiment may include: a codebook selection module 11 and a sending module 12, where the codebook selection module 11 is used to Selecting, in a codebook set of the root antenna, a codebook vector for performing precoding processing on the data, the codebook set including a first codebook vector of a uniform hook line matrix and a second codebook generated according to the first codebook vector a codebook vector, where ⁇ 4 is the first half of the first codebook vector
  • the vector of X 1 , B is the vector of (N, / 2) X 1 composed of the latter half of the first codebook vector, N, which is a positive even number, such as a positive power of 2
  • the sending module 12 is configured to send, to the base station, an index number of the codebook vector selected by the codebook selection module 11 to be obtained, so that the base station applies the codebook vector corresponding to the index number to the data that needs to be transmitted by the antenna. Perform precoding processing.
  • the user equipment in this embodiment may be used to perform the method shown in the method embodiment shown in FIG. 3, and the implementation principle is similar, and details are not described herein again.
  • the user equipment may select a codebook vector from a codebook set compatible with the ULA configuration mode and the dual polarization configuration mode, and send the index number corresponding to the codebook vector to the base station, and The base station can apply the codebook vector to perform precoding processing on the data to be transmitted.
  • the codebook set in this embodiment enables as many codebooks as possible to be applicable to both the ULA antenna and the dual-polarized antenna, and has good compatibility and avoids resource redundancy.
  • FIG. 8 is a schematic structural diagram of another embodiment of a user equipment according to the present invention.
  • the user equipment of this embodiment further includes: a first storage module 13 according to the user equipment shown in FIG.
  • the 8 x 1 codebook vector corresponding to the codebook is obtained by using a codebook structure of an 8-dimensional discrete Fourier transform, and the number of sets of the discrete Fourier transform is /(2M), the ⁇ code
  • the codebook vector of the other /2 codebooks is ⁇ , which is the first 4 elements in the 8 x 1 codebook vector.
  • the codebook selection module 1 1 is specifically for the code stored from the first storage module A codebook vector for precoding the data is selected in the set.
  • the codebook selection module 1 1 may include: a determining unit 1 1 1 and a selecting unit 112, where the determining unit 1 1 1 is configured to determine that the configuration manner of the antenna is a silent polarization configuration manner or a uniform linear array.
  • the configuration unit 1 12 is configured to: if the determining unit 1 1 1 determines that the configuration mode of the antenna is a dual-polarization configuration manner, the first codebook vector and the second codebook vector from the codebook set Selecting the codebook vector; if the determining unit 1 1 1 determines that the antenna is configured in a uniform hook line array configuration manner, selecting the codebook from the first codebook vector of the codebook set vector.
  • the user equipment in this embodiment may be used to perform the method shown in the method embodiment shown in FIG. 4, and the implementation principle is similar, and details are not described herein again.
  • the user equipment may select a codebook vector from a codebook set that is compatible with the ULA configuration mode and the dual polarization configuration mode according to the configuration mode of the antenna. If the configuration mode of the antenna is the UL A configuration mode, the user equipment may The codebook vector is selected in the first codebook set in the codebook set. If the antenna is configured in the dual-polarization configuration mode, the user equipment may be the second in the codebook set. The codebook vector is selected in the codebook set, so that the index number corresponding to the codebook vector can be sent to the base station, so that the base station applies the codebook vector corresponding to the index number to perform precoding processing on the data to be sent.
  • the codebook set in this embodiment enables as many codebook vectors as possible to be applicable to both the ULA antenna and the dual-polarized antenna, and has good compatibility and avoids resource redundancy.
  • FIG. 9 is a schematic structural diagram of still another embodiment of a user equipment according to the present invention.
  • the user equipment of this embodiment further includes: a second storage module 14 according to the user equipment shown in FIG.
  • the codebook set includes ⁇ codebooks, where the codebook includes a first codebook vector and a second codebook vector, where ⁇ is a codebook structure acquired by using a 4-dimensional discrete Fourier transform One
  • the codebook selection module 11 is specifically used for And selecting, from the set of codebooks stored by the second storage module 14, a codebook vector for performing precoding processing on the data.
  • the user equipment in this embodiment may be applied to the antenna arrangement in the manner shown in FIG. 5 or FIG. 6.
  • the user equipment does not need to distinguish the antenna configuration manner, regardless of the ULA configuration manner as shown in FIG. 5.
  • the user equipment can select the codebook vector from the codebook set, so that the base station can apply the codebook vector to pre-code the data to be sent. Therefore, in this embodiment, the codebook set stored in the user equipment has better compatibility and avoids resource redundancy.
  • the codebook set includes: a first codebook vector and a second codebook vector, where the first codebook vector is a codebook orientation of a uniform hookline matrix
  • the codebook set is the codebook set that is applied in the method embodiment shown in FIG. 3. The function and function of the codebook set are described in detail in the method embodiment shown in FIG. 3, and details are not described herein again.
  • the codebook set includes a codebook, wherein, in the codebooks The codebooks of 8 ⁇ 1 corresponding to the ⁇ codebooks are obtained by using the codebook of the 8-dimensional discrete Fourier transform, and the number of groups of the discrete Fourier transform is /(2 ⁇ ).
  • the codebook vector of another /2 codebooks in the codebook is the direction of the first four elements in the codebook vector of the 8x1
  • the quantity, ⁇ is a vector consisting of the last four elements of the 8 X 1 codebook vector.
  • the codebook set is the codebook set applied in the method embodiment shown in FIG. 4, and its function and function have been described in detail in the method embodiment shown in FIG. 4, and details are not described herein again.
  • the codebook set includes ⁇ codebooks, where the K codebooks include a first codebook vector and a second codebook vector, where ⁇ is a code using a 4-dimensional discrete Fourier transform This structure is obtained with a group
  • the vector of 4 X 1 corresponding to the antenna, s is the vector of 4 X 1 corresponding to the other set of antennas obtained by the codebook structure of the 4D discrete Fourier transform.
  • the codebook set of this embodiment may be applied to the antenna arrangement mode as shown in FIG. 5 or FIG. 6.
  • the user equipment does not need to distinguish the antenna configuration mode, whether it is the ULA configuration as shown in FIG.
  • the user equipment can select a codebook vector from the codebook set, so that the base station can apply the codebook vector to perform pre-coding processing on the data to be sent. Therefore, in this embodiment, the codebook set stored in the user equipment has better compatibility and avoids resource redundancy.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed to perform the steps including the foregoing method embodiments; and the foregoing storage medium includes: a ROM, A variety of media that can store program code, such as RAM, disk, or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

预编码处理方法以及用户 i殳备 本申请要求于 2010 年 5 月 4 日提交中国专利局、 申请号为 201010168659.X、发明名称为 "预编码处理方法以及用户设备"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明实施例涉及通信领域, 尤其涉及一种预编码处理方法以及用户 设备。 背景技术 长期高级演进 ( Long Term Evolution- Advanced, 以下简称: LTE-A )是 LTE技术的后续演进。 在 LTE-A中, 基站可采用 8根天线发射数据。 这 8 根天线有两种配置方式,一种为均匀线阵(Uniform Linear Array,以下简称: ULA ) 天线, 另一种为双极化天线。 图 1为 ULA天线的结构示意图, 图 2 为双极化天线的结构示意图, 如图 1和图 2所示, ULA天线中 8根天线的 极化方向相同, 8根天线之间的间距为 0.5 λ。 而双极化天线中, 天线 1〜4 和天线 5~8的极化方向不同。
现有技术中, ULA天线的码本结构针对 ULA天线设计, 双极化天线 的码本结构针对双极化天线设计, 两种天线的码本结构无法兼容使用, 导 致资源冗余。 发明内容
本发明实施例提供一种预编码处理方法以及用户设备, 以实现码本集 合可以兼容两种天线配置方式, 降低资源冗余。
本发明实施例提供一种预编码处理方法, 包括: 从 Nt根天线的码本集合中选择用于对数据进行预编码处理的码本向 量, 所述码本集合包括均勾线阵的第一码本向量 和根据所述第一码本向 量生成的第二码本向量 A , 其中, ^为所述第一码本向量前一半元素组
- B
成的(N; / 2) X 1的向量, S为所述第一码本向量的后一半元素组成的(N, / 2) X 1 的向量, N,为正偶数;
向基站发送所述码本向量的索引号, 以使所述基站应用所述索引号对 应的码本向量对所述天线需要发射的数据进行预编码处理。
本发明实施例提供一种用户设备, 包括: 码本选择模块, 用于从 N,根天线的码本集合中选择用于对数据进行预 编码处理的码本向量, 所述码本集合包括均勾线阵的第一码本向量 和根 据所述第一码本向量生成的第二码本向量 , 其中^ 4为所述第一码本向
Figure imgf000004_0001
量前一半元素组成的(N / 2) X 1的向量, B为所述第一码本向量的后一半元素 组成的(N / 2) x l的向量, N,为正禺数;
发送模块, 用于向基站发送所述码本选择模块选择获取的码本向量的 索引号, 以使所述基站应用所述索引号对应的码本向量对所述天线需要发 射的数据进行预编码处理。
本发明实施例中, 用户设备可以从兼容 ULA配置方式和双极化配置方 式的码本集合中选择码本向量, 并将该码本向量对应的索引号发送给基站, 从而使得基站可以应用该码本向量对所需发送的数据进行预编码处理。 本 实施例中的码本集合使尽可能多的码本既可以适用于 ULA天线, 又可以适 用于双极化天线, 兼容性能较好, 避免资源的冗余。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为 ULA天线的结构示意图;
图 2为双极化天线的结构示意图;
图 3为本发明预编码处理方法一个实施例的流程图;
图 4为本发明预编码处理方法另一个实施例的流程图;
图 5为应用于本发明的 ULA天线的另一种结构示意图;
图 6为应用于本发明的双极化天线的另一种结构示意图;
图 7为本发明用户设备一个实施例的结构示意图;
图 8为本发明用户设备另一个实施例的结构示意图;
图 9为本发明用户设备再一个实施例的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 3为本发明预编码处理方法一个实施例的流程图, 如图 3所示, 本 实施例的方法可以包括: 步骤 301、从 Nt根天线的码本集合中选择用于对数据进行预编码处理的 码本向量。 在本实施例中, 所述码本集合包括 ULA的第一码本向量 和根据第 一码本向量生成的第二码本向量为 , 其中, ^为所述第一码本向量前
Figure imgf000006_0001
一半元素组成的(N, / 2) x l的向量, S为第一码本向量的后一半元素组成的 ( / 2) χ 1的向量。 具体来说, 用户设备(User Equipment, 以下简称: UE )可以从码本集 合中选择一个码本向量, 该码本向量可以用于基站对所需发射的数据进行 预编码处理。 具体来说, UE可以根据天线的配置方式, 从 根天线的码本 集合中选择码本向量。 在本实施例中, 码本集合包括第一码本向量 和第 二码本向量 其中, 第一码本向量 是按照 ULA配置方式设计的码
Figure imgf000006_0002
本向量, 而第二码本向量是根据第一码本向量生成的码本向量。 例如, 码 本集合可以包括 16个码本向量, 其中包括 8个第一码本向量 对于每 一个第一码本向量 来说,其对应地都存在一个第二码本向量 此, 对于 8个第一码本向量 来说, 其对应地存在 8个第二码本向
Figure imgf000006_0003
对于第一码本向量来 来说, 其码本设计可以采用现有的离散傅里叶 变换( Discrete Fourier Transform, 以下简称: DFT )的码本结构获取, 其计 算公式如下所示:
Figure imgf000006_0004
其中, M是 DFT的维数, m=0, 1...M-1 , n=0, 1...M-1 , 例如 8天线 对应的 DFT, M = 8, 4天线对应的 DFT, M=4。 G是 DFT的组数, g = 0, 1, ..., G-l。 是码本集合中的预编码向量, 为 e^)中的各元素。 举例 来说, 若 = 4, 也即基站引入了 4根发射天线, 则采用 4维 DFT结构即可 获取 4个 4 X 1的预编码向量,如要产生包括 16个码本的码本集合,则 G=4, 即可获取 16个码本。 由此可知, 对于釆用 ULA配置方式的天线来说, UE可以从码本集合 中选择任一码本向量, 因此, 本实施例中的码本集合可以兼容 ULA配置方 式。
进一步地, 本实施例的码本集合还可以兼容双极化配置方式。 具体地, 以图 2所示的双极化天线的结构举例来说, 该双极化天线共有 8根天线, 也即 N, =8。 其中, 天线 1~4是一个极化方式, 天线 5〜8是一个极化方式。 由于一种极化方式的 4根天线是一个均匀线阵, 所以可以假设每组双极化 天线的方向性信息是相同的, 但两个极化天线组之间具有随机相位关系, 因此, 这种双极化天线的码本集合可以表示为:
Figure imgf000007_0001
其中, A是从 4维 DFT的码本结构中选取的 4 X 1的向量。 "用于调整 两组极化天线的相位关系。 发明人通过实验验证获知, 按照本实施例构造的码本集合, 其可以尽
Figure imgf000007_0002
步骤 302、 向基站发送码本向量的索引号, 以使所述基站应用所述索引 号对应的码本向量对所述天线需要发射的数据进行预编码处理。
UE在选择获取码本向量后, 即可将该码本向量对应的索引号发送给基 站, 从而使得基站可以应用该码本向量对天线需要发射的数据进行预编码 处理。 需要说明的是, 本实施例并不限制采用码本向量对发射的数据进行 预编码处理的具体方式, 本领域技术人员根据需要可以自行选择。
本发明实施例中, 用户设备可以从兼容 ULA配置方式和双极化配置方 式的码本集合中选择码本向量, 并将该码本向量对应的索引号发送给基站, 从而使得基站可以应用该码本向量对所需发送的数据进行预编码处理。 本 实施例中的码本集合使尽可能多的码本既可以适用于 ULA天线, 又可以适 用于双极化天线, 兼容性能较好, 避免资源的冗余。
图 4为本发明预编码处理方法另一个实施例的流程图, 如图 4所示, 本实施例的方法包括:
步骤 401、 获取天线的配置方式, 若是双极化配置方式, 则执行步骤 402, 若是 ULA配置方式, 则执行步骤 403。
步骤 402、从所述码本集合的第一码本向量和第二码本向量中选择码本 向量, 并执行步骤 404。
步骤 403、从所述码本集合的第一码本向量中选择码本向量, 并执行步 骤 404。 步骤 404、 向基站发送所述码本向量的索引号, 以使所述基站应用所述 索引号对应的码本向量对所述天线需要发射的数据进行预编码处理。
具体来说, 本实施例在图 3 所示实施例的基础上, 进一步地对码本集 合进行了定义。 具体来说, N, = 8且 8根天线之间为小间距, 本实施例的码 本集合包括 个码本, 其中, 与所述 f个码本中 /2个码本分别对应的 8 X
1的码本向量 A 釆用 8维离散傅里叶变换的码本结构获取且所述离散傅里
B 叶变换的组数为 /(2M),所述 个码本中另 个码本的码本向量为
Figure imgf000008_0001
为所述 8 X 1的码本向量中前 4个元素组成的向量, S为所述 8 x 1的码本 向量中后 4个元素组成的向量。
具体来说, 针对强相关的天线, 小间距, 例如图 1和图 2所示的天线, 本实施例可以设计 5比特 8天线秩 1码本, 即 = 32个码本。 首先, 根据 公式 ( 1 ) 可以获取 16个 8x1的码本向量 这 16个码本向量作为 8天 线 32个码本中的一部分。 在这 16个码本向量中, 对于每个码本向量来说,
A
其前 4个元素记为 A,后 4个元素记为 B,则这 16个码本向量可以记为
B 则另外 16个码本向量的生成方式为 经过分析, 生成的 32个码本和
Figure imgf000009_0001
8天线的双极化码本具有对应关系, 表 1生成的 32个码本和 8天线的双极 化码本之间的对应关系表, 如表 1所示。
表 1
8天线 A B结构 (8 维 4天线 AA结构(4维 4天线 AjA 结构(4维 DFT), G = 2 , M= 8 DFT), G-4, M = 4 DFT), G-4, M = 4 g = 0 相当于 g=0 和 g=2
1 相当于 ^^^^ g=l 和 g = 3 对于前述公式( 2 )所示的双极化天线的码本结构 AAjAA来说,其包括:
Figure imgf000009_0002
表 1中所示 AA结构为:
Figure imgf000009_0003
表 1中所示 AjA结构为:
Figure imgf000009_0004
表 1中所示 AB结构为:
~ A - A―
B -B 表 1中, 8天线 A B结构 (G=2, M=8) 中 g=0生成的 16个码本向量与 4 天线 AA结构(G=4, M=4) 中 g=0和 g=2生成的 16个码本向量相同; 8天线的 AB结构 (G=2, M=8 ) 中 g=l生成的 16个码本向量与 4天线 AjA结构 (G=4, M=4) 中 g=l和 g=3生成的 16个码本向量相同。
具体来说, 表 1所示为 5比特的码本, 也即码本集合包括 25 =32个码本 向量。
AAjAA 结构中, M = 4, g-0, 1, 2, 3。
AB结构, M = 8,g = 0, 1。
一、比较 AA结构中 M = 4, G=4,且 g= 0,g=2与 AB结构中 M=8,G=2 且 g=0的码本向量。 当 AB结构的 M=8, g-0 时, 码本向量中每个元素为: exp^^
8 J 当 m=0, 2, 4, 6时, 令 m=2k, (k为 0, 1, 2, 3), AB结构的上半 部分 A (n=0, 1, 2, 3 ) 的每个元素为:
Figure imgf000010_0001
当 AA 结构 的 M=4, =0 时 , 码本向 量 中每个元素为
Figure imgf000010_0002
此时 AB结构的上半部分 A的 4个元素与 AA结构的 M=4, g=0的 4 个元素一样。
码本向量的下半部分 B (n=4, 5, 6, 7)可表示成:
Figure imgf000010_0003
所以, 此时码本向量的下半部分的 B =上半部分 A,
所以, 此时 AB结构与 AA结构的
Figure imgf000010_0004
当 m为奇数时, 即 m=2k+l
AB结构的上半部分 A (n=0, 1, 2, 3) 的每个元素为:
2πη 2 nk 2πη
- +■
8 4 8
当 4天线的 AA结构 M = 4,G=4, g=2时,
「 .2 ( 2 ] ( Ιπηηι 2πη
ex iy- m +— > = exp < / 1
4 4 i I 4 8
所以, 4天线的 AA结构 M = 4,G=4, g=2时的向量与 AB结构的码本向 量的上半部分 A—样。
码本向量的下半部分 B (n=4, 5, 6, 7 )可表示成:
ί .2π(η + 4) ,Λ ί .2nnk 2πη )
exp [2k + 1) > = ex ~ -—— h 2κπ +—^― + π>
Figure imgf000011_0001
此时, B=-A
所以, 此时 AB结构与 AA结构的对应关系:
Figure imgf000011_0004
二、 比较 AjA结构中 M = 4且 g=l和 g=3(G=4)与 AB结构中 M=8且 g=l的码本向量。 当 AB结构的 M=8, g- 1 时,码本向量每个元素为: exp^^^ + ^l 当 m=0, 2, 4, 6时, 令 m=2k, (k为 0, 1, 2, 3), AB结构的上半 部分 A (n=0, 1, 2, 3 ) 元素为:
Figure imgf000011_0002
AA结构的 G=4, M=4, =l, 码本向量每个元素为:
Figure imgf000011_0003
此时 AB结构的码本向量的上半部分 A的 4个元素与 AA结构的 M=4, g=0的 4个元素一样。
码本 B (n=4, 5, 6, 7)可表示成:
-
Figure imgf000012_0001
所以, 此时码本向量的下半部分的 B = jA,
所以, 此时 AB结构与 AjA结构的对应关系:
Figure imgf000012_0003
当 m为奇数时, 即 m=2k+l
AB结构的上半部分 A (n=0, 1, 2, 3) 的每个元素为:
.2πη [ -, , 1 ί丫 2n:nk 2πΤ>η
exp 2k + \ +— ■ + -
8 V 2 4 16
当 4天线的 AA结构 M = 4,G=4, g=3,时 ex y
Figure imgf000012_0002
所以, 此时 AB结构的码本向量的上半部分 A的 4个元素与 AjA结构 的 M=4, g=0的 4个元素一样。
码本向量的下半部分 B (n=4, 5, 6, 7)可表示成:
ί 2nnk 2π3η π
exp J ^ - ^ I 2^ + 1 + - |^ = exp y| ■ + π +—
16 2
. ί .( 2nnk 2π3η^
= -j exp < j 十
{ { 4 16 人
此时, AB结构的码本向量的下半部分 B=-jAc
所以, 此时 AB结构与 AA结构的对应关系:
Figure imgf000012_0004
因此, 本实施例中 AB结构的码本向量是从 AA结构的 g = 0^g = 2中取 了 16个,从 AjA结构的 g=l和 g=3中取了 16个。按此结构生成的包括 32个码本 向量的码本集合中, 全部码本向量均可用于双极化配置。 而且, 该码本集 合是基于 8天线 DFT的码本结构得到的, 因此, 其中 16个码本向量还可以用 于 ULA配置。 由此可知, 本实施例中的码本集合可以兼容 ULA配置和双极 化配置两种天线类型。
因此, 本实施例中, UE在获知天线为 ULA配置方式时, 可以从基于 8 天线 DFT的码本结构获取的 16个码本向量组成的第一码本集合中选择获取 码本向量, 以使基站可以应用该码本向量进行预编码处理, 在获知天线为 双极化天线时, UE可以从全部 32个码本向量中, 即第一码本集合和第二码 本集合中选择码本向量, 以使基站可以应用该码本向量进行预编码处理。
需要说明的是, 本实施例中, UE也可以不用获知天线的配置方式, 而 是从本实施例的码本集合中进行盲选以获取第一码本。
本实施例中, UE可以根据天线的配置方式从兼容 ULA配置方式和双极 化配置方式的码本集合中选择码本向量, 若天线的配置方式为 ULA配置方 式, 则 UE可以从码本集合中的第一码本集合中选择码本向量, 若天线的配 置方式为双极化配置方式, 则 UE可以从码本集合中第二码本集合中选择码 本向量, 从而可以将该码本向量对应的索引号发送给基站, 以使基站应用 该索引号对应的码本向量对所需发送的数据进行预编码处理。 本实施例中 的码本集合使尽可能多的码本向量既可以适用于 ULA天线, 又可以适用于 双极化天线, 兼容性能较好, 避免资源的冗余。
图 5为 ULA天线的另一种结构示意图, 图 6为双极化天线的另一种结构 示意图, 如图 5和图 6所示, ULA天线和双极化天线被分为两组, 天线 1〜4为 一组, 天线 5~8为另一组。 天线 1~4或者天线 5~8中的 4根天线之间为小间距, 例如间距为 0.5 λ, 天线 1~4和天线 5~8彼此之间为大间距,例如间距为 10 λ。 在这种天线排布结构下, 两组天线的发射方向,或者说使用的 4维 DFT向量 不同, 比如天线 1~4选择的 DFT向量为 Α, 天线 5~8选择的是 DFT向量为 Β, 而两组天线之间仍需要一个常数来表示两组天线之间的方向关系。 为此,本发明预编码处理方法另一个实施例中,码本集合可以包括 Κ个 码本, 个码本包括第一码本向量 , 其中, 为采
Figure imgf000014_0001
用 4维 DFT的码本结构获取的与一组天线对应的 4 X 1的向量, S为采用 4维 DFT的码本结构获取的与另一组天线对应的 4 X 1的向量。本实施例中的码本
A
可以表示为 a e (l, -l) o
aB 本实施例不需要区分天线配置方式, 不管是如图 5所示的 ULA配置方 式,还是如图 6所示的双极化配置方式, UE均可以从该码本集合中选择码本 向量, 从而可以使基站应用该码本向量对所需发送的数据进行预编码处理。 因此, 本实施例的码本集合可以兼容 ULA天线和双极化天线。 兼容性能较 好, 避免资源的冗余。
图 7为本发明用户设备一个实施例的结构示意图, 如图 7所示, 本实施 例的用户设备可以包括: 码本选择模块 11和发送模块 12, 其中码本选择模 块 11用于从 N,根天线的码本集合中选择用于对数据进行预编码处理的码本 向量, 所述码本集合包括均勾线阵的第一码本向量 和根据所述第一码本 向量生成的第二码本向量 , 其中^ 4为所述第一码本向量前一半元素组
Figure imgf000014_0002
成的 / 2) X 1的向量, B为所述第一码本向量的后一半元素组成的(N, / 2) X 1 的向量, N,为正偶数, 比如可以为 2的正幂次方; 发送模块 12用于向基站发 送所述码本选择模块 11选择获取的码本向量的索引号, 以使所述基站应用 所述索引号对应的码本向量对所述天线需要发射的数据进行预编码处理。
本实施例的用户设备可以用于执行图 3所示方法实施例所示的方法, 其 实现原理类似, 此处不再赘述。
本实施例中, 用户设备可以从兼容 ULA配置方式和双极化配置方式的 码本集合中选择码本向量, 并将该码本向量对应的索引号发送给基站, 从 而使得基站可以应用该码本向量对所需发送的数据进行预编码处理。 本实 施例中的码本集合使尽可能多的码本既可以适用于 ULA天线, 又可以适用 于双极化天线, 兼容性能较好, 避免资源的冗余。
图 8为本发明用户设备另一个实施例的结构示意图, 如图 8所示, 本 实施例的用户设备在图 7 所示用户设备的基础上进一步地, 还包括: 第一 存储模块 13, 该第一存储模块 13用于存储码本集合, 其中, N, = 8且 8根 天线之间为小间距, 所述码本集合包括 个码本, 其中, 与所述 个码本中 /2个码本分别对应的 8 x 1 的码本向量 是采用 8维离散傅里叶变换的 码本结构获取的, 且所述离散傅里叶变换的组数为 /(2M), 所述 ί个码本 中另 /2个码本的码本向量为 , ^为所述 8 x 1的码本向量中前 4个元
Figure imgf000015_0001
素组成的向量, S为所述 8 x 1的码本向量中后 4个元素组成的向量; 相应 地, 码本选择模块 1 1具体用于, 从所述第一存储模块存储的所述码本集合 中选择用于对数据进行预编码处理的码本向量。 在本实施例中, 码本选择 模块 1 1可以包括: 判断单元 1 1 1和选择单元 112 , 其中判断单元 1 1 1用于 判断所述天线的配置方式是默极化配置方式或均匀线阵配置方式; 选择单 元 1 12用于若所述判断单元 1 1 1判断所述天线的配置方式为双极化配置方 式, 则从所述码本集合的第一码本向量和第二码本向量中选择所述码本向 量; 若所述判断单元 1 1 1 判断所述天线的配置方式为均勾线阵配置方式, 则从所述码本集合的第一码本向量中选择所述码本向量。
本实施例的用户设备可以用于执行图 4所示方法实施例所示的方法, 其实现原理类似, 此处不再赘述。
本实施例中, 用户设备可以根据天线的配置方式从兼容 ULA配置方式 和双极化配置方式的码本集合中选择码本向量, 若天线的配置方式为 UL A 配置方式, 则用户设备可以从码本集合中的第一码本集合中选择码本向量, 若天线的配置方式为双极化配置方式, 则用户设备可以从码本集合中第二 码本集合中选择码本向量, 从而可以将该码本向量对应的索引号发送给基 站, 以使基站应用该索引号对应的码本向量对所需发送的数据进行预编码 处理。 本实施例中的码本集合使尽可能多的码本向量既可以适用于 ULA天 线, 又可以适用于双极化天线, 兼容性能较好, 避免资源的冗余。
图 9为本发明用户设备再一个实施例的结构示意图, 如图 9所示, 本 实施例的用户设备在图 7 所示用户设备的基础上进一步地, 还包括: 第二 存储模块 14, 该第二存储模块 14用于存储码本集合, 其中, N, = 8且 8根 天线分为两组, 每组中的 4根天线之间为 '·!、间距, 两组天线之间为大间距, 所述码本集合包括 κ个码本, 所述 个码本包括第一码本向量 和第二码 本向量 , 其中, ^为采用 4维离散傅里叶变换的码本结构获取的与一
Figure imgf000016_0001
组天线对应的 4 X 1的向量, S为采用 4维离散傅里叶变换的码本结构获取 的与另一组天线对应的 4 χ 1的向量; 相应地, 码本选择模块 11具体用于, 从第二存储模块 14存储的所述码本集合中选择用于对数据进行预编码处理 的码本向量。
本实施例的用户设备可以适用于其天线排布方式为图 5或图 6所示的结 构, 本实施例中, 用户设备不需要区分天线配置方式, 不管是如图 5所示的 ULA配置方式, 还是如图 6所示的双极化配置方式, 用户设备均可以从该码 本集合中选择码本向量, 从而可以使基站应用该码本向量对所需发送的数 据进行预编码处理。 因此, 本实施例中, 存储在用户设备中的码本集合兼 容性能较好, 避免资源的冗余。
相应的, 本发明码本集合的一个实施例中, 该码本集合包括: 第一码 本向量 和第二码本向量 , 所述第一码本向量为均勾线阵的码本向
Figure imgf000016_0002
量, 其中, ^为所述第一码本向量前一半元素组成的(N, / 2) x l的向量, B为 所述第一码本向量的后一半元素组成的(N, / 2) X 1的向量, N,为天线的个数 且为正偶数。 该码本集合即为应用在图 3所示方法实施例中的码本集合, 其 功能和作用已在图 3所示方法实施例中详细描述, 此处不再贅述。
进一步地, 为了适应图 1和图 2所示的天线排布方式, 即 = 8且 8根天 线之间为小间距,所述码本集合包括 个码本,其中,与所述 个码本中 κ 个码本分别对应的 8 X 1的码本向量 是采用 8维离散傅里叶变换的码本 '士 构获取的,且所述离散傅里叶变换的组数为 /(2Μ),所述 个码本中另 Κ/2 个码本的码本向量为 为所述 8 x 1的码本向量中前 4个元素组成的向
Figure imgf000017_0001
量, δ为所述 8 X 1的码本向量中后 4个元素组成的向量。 该码本集合即为应 用在图 4所示方法实施例中的码本集合, 其功能和作用已在图 4所示方法实 施例中详细描述, 此处不再赘述。
再进一步地, 为了适应图 5和图 6所示的天线排布方式, N( = 8且 8根天 线分为两组, 每组中的 4根天线之间为小间距, 两组天线之间为大间距, 所 述码本集合包括 κ个码本, 所述 K个码本包括第一码本向量 和第二码本 向量为 , 其中, ^为釆用 4维离散傅里叶变换的码本结构获取的与一组
Figure imgf000017_0002
天线对应的 4 X 1的向量, s为釆用 4维离散傅里叶变换的码本结构获取的与 另一组天线对应的 4 X 1的向量。
本实施例的码本集合可以适用于其天线排布方式为图 5或图 6所示的结 构, 本实施例中, 用户设备不需要区分天线配置方式, 不管是如图 5所示的 ULA配置方式, 还是如图 6所示的双极化配置方式, 用户设备均可以从该码 本集合中选择码本向量, 从而可以使基站应用该码本向量对所需发送的数 据进行预编码处理。 因此, 本实施例中, 存储在用户设备中的码本集合兼 容性能较好, 避免资源的冗余。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种预编码处理方法, 其特征在于, 包括: 从 Nt根天线的码本集合中选择用于对数据进行预编码处理的码本向 量, 所述码本集合包括均勾线阵的第一码本向量 和根据所述第一码本向 量生成的第二码本向量 , 其中, ^为所述第一码本向量前一半元素组 成的(N, / 2) X 1的向量, B为所述第一码本向量的后一半元素组成的、Nt / 2) X 1 的向量, N,为正偶数; 向基站发送所述码本向量的索引号, 以使所述基站应用所述索引号对 应的码本向量对所述天线需要发射的数据进行预编码处理。
2、 根据权利要求 1所述的预编码处理方法, 其特征在于, K 所 述码本集合包括 个码本, 其中, 与所述 f个码本中 个码本分别对应的
8 X 1的码本向量 是采用 8维离散傅里叶变换的码本结构获取的,且所述 离散傅里叶变换的组数为 KI 1W), 所述 个码本中另 个码本的码本向 A
量为 , 为所述 8 X 1的码本向量中前 4个元素组成的向量, S为所述
8 X 1的码本向量中后 4个元素组成的向量。
3、 根据权利要求 1或 2所述的预编码处理方法, 其特征在于, 所述从 N,根天线的码本集合中选择用于对数据进行预编码处理的码本向量, 包括: 若所述天线的配置方式为双极化配置方式, 则从所述码本集合的第一 码本向量和第二码本向量中选择所述码本向量; 和 /或
若所述天线的配置方式为均勾线阵配置方式, 则从所述码本集合的第 一码本向量中选择所述码本向量。
4、 根据权利要求 1所述的预编码处理方法, 其特征在于, N, =8且 8 根天线分为两组, 每组包括 4根天线, 所述码本集合包括 f个码本, 所述 个码本包括第一码本向量 和第二码本向量 , 其中, 为采用 4维离
Figure imgf000020_0001
散傅里叶变换的码本结构获取的与一组天线对应的 4 x 1的向量, s为采用 4维离散傅里叶变换的码本结构获取的与另一组天线对应的 4 x 1的向量。
5、 一种用户设备, 其特征在于, 包括:
码本选择模块, 用于从 N,根天线的码本集合中选择用于对数据进行预 编码处理的码本向量, 所述码本集合包括均勾线阵的第一码本向量 和根 据所述第一码本向量生成的第二码本向量 , 其中 ^为所述第一码本向
Figure imgf000020_0002
量前一半元素组成的(N, / 2) X 1的向量, S为所述第一码本向量的后一半元素 组成的(N,/2)xl的向量, N,为正偶数; 发送模块, 用于向基站发送所述码本选择模块选择获取的码本向量的 索引号, 以使所述基站应用所述索引号对应的码本向量对所述天线需要发 射的数据进行预编码处理。
6、 根据权利要求 5所述的用户设备, 其特征在于, 还包括:
第一存储模块, 用于存储码本集合, 其中, N, =8, 所述码本集合包括 个码本, 其中, 与所述 个码本中 个码本分别对应的 8 x 1的码本向 是采用 8维离散傅里叶变换的码本结构获取的, 且所述离散傅里叶变 换的组数为 KI Nf),所述 个码本中另 /2个码本的码本向量为
Figure imgf000020_0003
所述 8 x 1的码本向量中前 4个元素组成的向量, ?为所述 8 x 1的码本向量 中后 4个元素组成的向量; 所述码本选择模块具体用于, 从所述第一存储模块存储的所述码本集 合中选择用于对数据进行预编码处理的码本向量。
7、 根据权利要求 5或 6所述的用户设备, 其特征在于, 所述码本选择 模块包括:
判断单元, 用于判断所述天线的配置方式是双极化配置方式或均匀线 阵配置方式; 选择单元, 用于若所述判断单元判断所述天线的配置方式为双极化配 置方式, 则从所述码本集合的第一码本向量和第二码本向量中选择所述码 本向量; 和 /或, 若所述判断单元判断所述天线的配置方式为均勾线阵配置 方式, 则从所述码本集合的第一码本向量中选择所述码本向量。
8、 根据权利要求 5所述的用户设备, 其特征在于, 还包括: 第二存储模块,用于存储码本集合,其中, N, = 8且 8根天线分为两组, 每组包括 4根天线,所述码本集合包括 个码本,所述 个码本包括第一码 本向量 和第二码本向量 , 其中, 为采用 4维离散傅里叶变换的码
Figure imgf000021_0001
本结构获取的与一组天线对应的 4 χ 1的向量, S为采用 4维离散傅里叶变 换的码本结构获取的与另一组天线对应的 4 χ 1的向量;
所述码本选择模块具体用于, 从所述第二存储模块存储的所述码本集 合中选择用于对数据进行预编码处理的码本向量。
PCT/CN2011/073501 2010-05-04 2011-04-29 预编码处理方法以及用户设备 WO2011137729A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/668,747 US8903004B2 (en) 2010-05-04 2012-11-05 Precoding processing method and user equipment
US14/527,648 US9077406B2 (en) 2010-05-04 2014-10-29 Precoding processing method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010168659.XA CN102237973B (zh) 2010-05-04 2010-05-04 预编码处理方法以及用户设备
CN201010168659.X 2010-05-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/668,747 Continuation US8903004B2 (en) 2010-05-04 2012-11-05 Precoding processing method and user equipment

Publications (1)

Publication Number Publication Date
WO2011137729A1 true WO2011137729A1 (zh) 2011-11-10

Family

ID=44888237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073501 WO2011137729A1 (zh) 2010-05-04 2011-04-29 预编码处理方法以及用户设备

Country Status (3)

Country Link
US (2) US8903004B2 (zh)
CN (1) CN102237973B (zh)
WO (1) WO2011137729A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5918387B2 (ja) * 2012-11-06 2016-05-18 京セラ株式会社 移動通信システム、ユーザ端末及びプロセッサ
CN104079370B (zh) 2013-03-27 2018-05-04 华为技术有限公司 信道编译码方法及装置
WO2015130292A1 (en) * 2014-02-27 2015-09-03 Nokia Solutions And Networks Oy Method and apparatus for flexible product codebook signaling
CN105099604B (zh) * 2014-05-07 2018-11-20 中兴通讯股份有限公司 信道状态反馈信息反馈方法、终端、基站及通信系统
WO2018031082A1 (en) * 2016-08-11 2018-02-15 Intel Corporation Discrete fourier transform (dft) codebook and feedback schemes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286824A (zh) * 2008-01-24 2008-10-15 北京邮电大学 在多用户终端mimo系统中预编码方法和系统
CN101594208A (zh) * 2009-06-24 2009-12-02 中兴通讯股份有限公司 一种配置预编码矩阵的方法
US20090323863A1 (en) * 2006-05-26 2009-12-31 Moon-Il Lee Signal generation using phase-shift based pre-coding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073624A (ko) 2007-02-06 2008-08-11 삼성전자주식회사 다중 편파 다중 입출력 시스템을 위한 코드북 생성 방법 및그 장치
US8204151B2 (en) * 2008-08-06 2012-06-19 Samsung Electronics Co., Ltd. Methods and apparatus to generate multiple antennas transmit precoding codebook
KR101644433B1 (ko) * 2009-02-13 2016-08-01 엘지전자 주식회사 4 안테나 시스템에서 상향링크 프리코딩 수행 방법
US8325843B2 (en) * 2009-04-08 2012-12-04 Lg Electronics Inc. MIMO codebook generation
CN101631004B (zh) * 2009-08-10 2014-05-28 中兴通讯股份有限公司 一种预编码方法、系统及预编码码本的构造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090323863A1 (en) * 2006-05-26 2009-12-31 Moon-Il Lee Signal generation using phase-shift based pre-coding
CN101286824A (zh) * 2008-01-24 2008-10-15 北京邮电大学 在多用户终端mimo系统中预编码方法和系统
CN101594208A (zh) * 2009-06-24 2009-12-02 中兴通讯股份有限公司 一种配置预编码矩阵的方法

Also Published As

Publication number Publication date
US9077406B2 (en) 2015-07-07
US20130058425A1 (en) 2013-03-07
CN102237973B (zh) 2014-07-30
US8903004B2 (en) 2014-12-02
CN102237973A (zh) 2011-11-09
US20150049831A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
US10141992B2 (en) Codebook design and structure for advanced wireless communication systems
KR102310164B1 (ko) 첨단 무선 통신 시스템에서의 명시적 csi 보고 방법 및 장치
CN109302857B (zh) 高级无线通信系统中的基于线性组合pmi码本的csi报告
CN109983712B (zh) 在高级无线通信系统中实现多分辨率csi报告的方法和装置
KR102648529B1 (ko) 무선 통신 시스템에서 기준 신호 자원 지시자를 시그널링하기 위한 방법 및 장치
CN106797242B (zh) 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
WO2018127151A1 (zh) 一种预编码矩阵指示方法、装置和系统
WO2015131378A1 (zh) 报告信道状态信息的方法、用户设备和基站
CN112075034B (zh) 高级无线通信系统的预编码
WO2015018030A1 (zh) 确定预编码矩阵指示的方法、接收设备和发送设备
WO2011137740A1 (zh) 发送预编码矩阵索引及进行预编码的方法和装置
ES2886354T3 (es) Método y sistema para retroalimentación de información de estado de canal
KR20170075794A (ko) 개선된 무선 통신 시스템을 위한 코드북 디자인 및 구조
JP5479615B2 (ja) 閉ループマルチアンテナシステムの情報送受信方法および装置
WO2011082698A1 (zh) 多天线系统发送、接收信息的方法、装置及多天线系统
WO2011120440A1 (zh) 重传方法、装置及通信系统
WO2011137729A1 (zh) 预编码处理方法以及用户设备
WO2014179991A1 (zh) 确定预编码矩阵指示的方法、用户设备和基站
WO2011041965A1 (zh) 多天线系统中信道信息量化码本的构造方法及装置
WO2014059944A1 (zh) 传输编码指示信息和确定预编码矩阵的方法、系统及设备
WO2014154166A1 (zh) 多天线系统的数据传输方法和设备
CN116686224A (zh) 用于分布式mimo传输的高分辨率码本
US10439690B2 (en) Precoder codebook for advanced wireless communication systems
WO2014067461A1 (zh) 传输预编码指示信息和确定预编码矩阵的方法、系统及设备
WO2014134835A1 (zh) 确定码本的方法、信息反馈方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777150

Country of ref document: EP

Kind code of ref document: A1