CN112075034B - 高级无线通信系统的预编码 - Google Patents

高级无线通信系统的预编码 Download PDF

Info

Publication number
CN112075034B
CN112075034B CN201980030120.7A CN201980030120A CN112075034B CN 112075034 B CN112075034 B CN 112075034B CN 201980030120 A CN201980030120 A CN 201980030120A CN 112075034 B CN112075034 B CN 112075034B
Authority
CN
China
Prior art keywords
weight vector
beam weight
pmi
vertical
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980030120.7A
Other languages
English (en)
Other versions
CN112075034A (zh
Inventor
艾哈迈德·易卜拉欣
金殷庸
张建中
胡野青
南映瀚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN112075034A publication Critical patent/CN112075034A/zh
Application granted granted Critical
Publication of CN112075034B publication Critical patent/CN112075034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及用于支持比第四代(4G)通信系统(诸如长期演进(LTE))更高的数据速率的第五代(5G)或pre‑5G通信系统。根据各种实施例,在无线通信中能够进行波束成形的基站(BS)包括:收发器,其包括天线阵列,该收发器被配置为利用天线阵列的至少一部分,测量来自UE的SRS;以及处理器,其被配置为:基于SRS测量从包括一组波束权重向量的UL波束码本中选择至少一个UL波束向量;确定与所选择的至少一个UL波束权重向量中的每一个相对应的至少一个DL波束权重向量;通过将至少一个DL波束权重向量应用于天线阵列来发送波束成形的CSI‑RS;从UE接收包括PMI的CSI反馈,其中,PMI是基于波束成形的CSI‑RS确定的;以及基于PMI和至少一个DL波束权重向量为UE构建预编码信道矩阵。

Description

高级无线通信系统的预编码
技术领域
本公开总体上涉及与二维发送天线阵列相关的码本设计和结构。这种二维阵列与通常称为“全维度”MIMO(FD-MIMO)的一种多输入多输出(MIMO)系统相关。
背景技术
为了满足自部署第四代(4G)通信系统以来对无线数据业务增加的需求,已努力开发改进的第五代(5G)或pre-5G通信系统。因此,5G或pre-5G通信系统也称为“超4G网络”或“后长期演进(LTE)系统”。
5G通信系统被认为在较高的频率(毫米波)频带(例如,28GHz至60GHz频带)中实现,以实现较高的数据速率。为了减少无线电波的传播损耗并增加传输距离,在5G通信系统中讨论了波束成形、大规模多输入多输出(MIMO)、全维度MIMO(FD-MIMO)、阵列天线、模拟波束成形和大规模天线技术。
此外,在5G通信系统中,正在基于高级小小区、云无线接入网络(RAN)、超密集网络、设备到设备(D2d)通信、无线回程、移动网络、协作通信、协作多点(CoMP)、接收端干扰消除等进行系统网络改进的开发。
在5G系统中,已经开发了混合频移键控(FSK)和正交调幅(FQAM)以及滑动窗口叠加编码(SWSC)作为高级编码调制(ACM),以及滤波器组多载波(FBMC)、非正交多址接入(NOMA)和稀疏代码多址接入(SCMA)作为高级接入技术。
无线通信一直是现代历史上最成功的创新之一。近来,无线通信服务的用户数量超过了50亿,并且还在继续快速增长。由于智能手机和其他移动数据设备(例如,平板电脑、“记事本”计算机、上网本、电子书阅读器和机器类型的设备)在消费者和企业中的日益普及,对无线数据业务的需求正在迅速增加。为了满足移动数据业务的高速增长并支持新的应用和部署,提高无线接口效率和覆盖范围至关重要。
发明内容
问题的解决方案
在第一实施例中,提供了一种在无线通信中能够进行波束成形的基站(BS)。该BS包括:收发器,其包括天线阵列,该收发器被配置为利用天线阵列的至少一部分,测量来自用户设备(UE)的探测参考信号(SRS);以及至少一个处理器,其被配置为基于SRS测量从包括一组波束权重向量的上行链路(UL)波束码本中选择至少一个UL波束向量,确定与所选择的至少一个UL波束权重向量中的每一个相对应的至少一个下行链路(DL)波束权重向量,通过将至少一个DL波束权重向量应用于天线阵列来发送波束成形的信道状态信息(CSI)-参考信号(RS),从UE接收包括预编码矩阵指示符(PMI)的CSI反馈,以及基于PMI和至少一个DL波束权重向量为UE构建预编码信道矩阵,其中,PMI是基于波束成形的CSI-RS确定的。
在第二方面,提供了一种用于在基站(BS)中进行波束成形的方法。该方法包括:利用天线阵列的至少一部分,测量来自用户设备(UE)的探测参考信号(SRS);基于SRS测量从包括一组波束权重向量的上行链路(UL)波束码本中选择至少一个UL波束向量;确定与所选择的至少一个UL波束权重向量中的每一个相对应的至少一个下行链路(DL)波束权重向量;通过将至少一个DL波束权重向量应用于天线阵列来发送波束成形的信道状态信息(CSI)-参考信号(RS);从UE接收包括预编码矩阵指示符(PMI)的CSI反馈;以及基于PMI和至少一个DL波束权重向量为UE构建预编码信道矩阵,其中,PMI是基于波束成形的CSI-RS确定的。
在第三方面,提供了一种非暂时性计算机可读介质,该非暂时性计算机可读介质包括用于在基站(BS)的无线通信中进行波束成形的程序代码。程序代码在由处理器执行时,使处理器进行以下操作:利用天线阵列的至少一部分,测量来自用户设备(UE)的探测参考信号(SRS);基于SRS测量从包括一组波束权重向量的上行链路(UL)波束码本中选择至少一个UL波束向量;确定与所选的至少一个UL波束权重向量中的每一个相对应的至少一个下行链路(DL)波束权重向量;通过将至少一个DL波束权重向量应用于天线阵列来发送波束成形的信道状态信息(CSI)-参考信号(RS);从UE接收包括预编码矩阵指示符(PMI)的CSI反馈;以及基于PMI和至少一个DL波束权重向量为UE构建预编码信道矩阵,其中,PMI是基于波束成形的CSI-RS确定的。
根据以下附图、说明书和权利要求书,其他技术特征对于本领域技术人员而言是显而易见的。
在进行下面的详细描述之前,阐明整个专利文件中使用的某些词语和短语的定义可能是有利的。术语“耦接”及其派生词是指两个或更多个元件之间的任何直接或间接通信,无论这些元件是否彼此物理接触。术语“发送”、“接收”和“通信”及其派生词涵盖直接和间接通信。术语“包括”和“包含”及其派生词指包括但不限于。术语“或”是包含性的,意味着和/或。短语“与...关联”及其派生词表示包括、包括在…内、与之互连、包含、包含在…内、与…连接,与…耦接、与…通信、与…合作、交错、并列、与…邻近、与…结合、具有、具有…的性质、与…具有关系等。术语“控制器”指控制至少一个操作的任何设备、系统或其一部分。这样的控制器可以用硬件或硬件和固件和/或软件的组合来实现。与任何特定控制器相关联的功能可以是本地或远程的集中式或分布式。短语“至少一个”在与项目列表一起使用时,意味着可以使用一个或更多个所列项目的不同组合,并且可能只需要列表中的一个项目。例如,“A、B和C中的至少一个”包括以下组合中的任何一个:A;B;C;A和B;A和C;B和C以及A和B和C。
此外,以下描述的各种功能可以由一个或更多个计算机程序实现或支持,每个计算机程序由计算机可读程序代码形成并体现在计算机可读介质中。术语“应用”和“程序”指一个或更多个计算机程序、软件组件、指令集、过程、功能、对象、类、实例、相关数据或适于以合适的计算机可读程序代码实现的其一部分。短语“计算机可读程序代码”包括任何类型的计算机代码,包括源代码、目标代码和可执行代码。短语“计算机可读介质”包括能够由计算机访问的任何类型的介质,例如,只读存储器(ROM)、随机存取存储器(RAM)、硬盘驱动器、光盘(CD)、数字视频光盘(DVD)或任何其他类型的存储器。“非暂时性”计算机可读介质不包括传输暂态电或其他信号的有线、无线、光学或其他通信链路。非暂时性计算机可读介质包括可永久存储数据的介质以及可存储数据并随后重写的介质,例如,可重写光盘或可擦除存储设备。
在整个专利文件中提供了某些字和短语的定义,本领域普通技术人员应该理解,在很多情况下(即使不是大多数情况下),这些定义也适用于这种定义的词语和短语的先前以及将来的使用。
附图说明
为了更完整地理解本公开及其优点,现在参考以下结合附图进行的描述,其中,相同的附图标记表示相同的部分:
图1示出了根据本公开的示例无线网络;
图2A和图2B示出了根据本公开的示例无线发送和接收路径;
图3A示出了根据本公开的示例用户设备;
图3B示出了根据本公开的示例一般NodeB(gNB);
图4示出了根据本公开的一些实施例的可以在无线通信系统内采用的示例性逻辑端口到天线端口的映射;
图5示出了根据本公开的一个实施例的示例性全维度(FD)多输入多输出(MIMO)或大规模MIMO天线阵列;以及
图6示出了根据本公开的一个实施例的用于混合CSI获取和MU-MIMO预编码的示例性流程图。
具体实施方式
下面讨论的图1至图6以及用于描述本专利文件中的本公开的原理的各种实施例仅是示例性的,并且不应以任何方式解释为限制本公开的范围。本领域技术人员将理解,可以在任何适当布置的无线通信系统中实现本公开的原理。
图1示出了根据本公开的示例无线网络100。图1所示的无线网络100的实施例仅用于说明。在不脱离本公开的范围的情况下,可以使用无线网络100的其他实施例。
无线网络100包括gNodeB(gNB)101、gNB 102和gNB103。gNB 101与gNB 102和gNB103通信。gNB 101还与至少一个互联网协议(IP)网络130通信,例如,互联网、专有IP网络或其他数据网络。
根据网络类型,可以使用其他众所周知的术语代替“gNodeB”或“gNB”,例如,“基站”或“接入点”。为方便起见,在本专利文件中使用术语“gNodeB”和“gNB”来指代提供对远程终端的无线接入的网络基础设施组件。另外,根据网络类型,可以使用其他公知的术语来代替“用户设备”或“UE”,例如,“移动站”、“用户站”、“远程终端”、“无线终端”或“用户设备”。为方便起见,在本专利文件中使用术语“用户设备”和“UE”来指代无线接入gNB的远程无线设备,无论UE是移动设备(例如,移动电话机或智能手机)还是通常被视为固定设备(例如,台式计算机或自动售货机)。
gNB 102为gNB 102的覆盖区域120内的第一多个用户设备(UE)提供对网络130的无线宽带接入。第一多个UE包括:UE 111,其可以位于小型企业(SB)中;UE 112,其可以位于企业(E)中;UE 113,其可以位于WiFi热点(HS)中;UE 114,其可以位于第一住宅(R)中;UE115,其可以位于第二住宅(R)中;以及UE 116,其可以是诸如蜂窝电话机、无线膝上型计算机、无线PDA等的移动设备(M)。gNB 103为gNB 103的覆盖区域125内的第二多个UE提供对网络130的无线宽带接入。第二多个UE包括UE 115和UE 116。在一些实施例中,一个或更多个gNB 101至gNB103可以利用5G、长期演进(LTE)、LTE-A、WiMAX或其他高级无线通信技术彼此通信并且与UE 111至UE 116通信。
虚线表示覆盖区域120和覆盖区域125的大致范围,仅出于说明和解释的目的而将其显示为大致圆形。应当清楚地理解,根据gNB的配置以及与自然和人为障碍物相关的无线环境的变化,与gNB相关的覆盖区域(例如,覆盖区域120和覆盖区域125)可以具有其他形状,包括不规则形状。
如下面更详细地描述的,BS 101、BS 102和BS 103中的一个或更多个包括如本公开的实施例中所描述的2D天线阵列。在一些实施例中,BS 101、BS 102和BS 103中的一个或更多个支持用于具有2D天线阵列的系统的码本设计和结构。
尽管图1示出了无线网络100的一个示例,但是可以对图1进行各种改变。例如,无线网络100可以包括处于任何合适的布置的任何数量的gNB和任何数量的UE。另外,gNB 101可以直接与任何数量的UE通信,并向那些UE提供对网络130的无线宽带接入。类似地,每个gNB 102至gNB103可以直接与网络130通信,并向UE提供对网络130的直接无线宽带接入。另外,gNB 101、gNB 102和/或gNB 103可以提供对其他或附加外部网络(例如,外部电话网络或其他类型的数据网络)的接入。
图2A和图2B示出了根据本公开的示例无线发送和接收路径。在下面的描述中,可以将发送路径200描述为在gNB(例如,gNB 102)中实现,而可以将接收路径250描述为在UE(例如,UE 116)中实现。然而,将理解,可以在gNB中实现接收路径250,并且可以在UE中实现发送路径200。在一些实施例中,如本公开的实施例中所描述的,接收路径250被配置为支持用于具有2D天线阵列的系统的码本设计和结构。
发送路径200包括信道编码和调制块205、串到并(S到P)块210、大小为N的快速傅里叶逆变换(IFFT)块215、并到串(P到S)块220、添加循环前缀块225和上变频器(UC)230。接收路径250包括下变频器(DC)255、去除循环前缀块260、串到并(S到P)块265、大小为N的快速傅里叶变换(FFT)块270、并到串(P到S)块275、以及信道解码和解调块280。
在发送路径200中,信道编码和调制块205接收一组信息比特、应用编码(例如,低密度奇偶校验(LDPC)编码)并调制输入比特(例如,使用正交相移键控(QPSK)或正交幅度调制(QAM)),以生成一系列频域调制符号。串到并块210将串行调制的符号转换(例如,解复用)为并行数据,以生成N个并行符号流,其中,N是在gNB 102和UE 116中使用的IFFT/FFT大小。大小为N的IFFT块215对N个并行符号流执行IFFT操作以生成时域输出信号。并到串块220转换(例如,多路复用)来自大小为N的IFFT块215的并行时域输出符号,以便生成串行时域信号。添加循环前缀块225将循环前缀插入到时域信号。上变频器230将添加循环前缀块225的输出调制(例如,上变频)为经由无线信道进行传输的RF频率。在变频为RF频率之前,也可以在基带处对信号进行滤波。
从gNB 102发送的RF信号在经过无线信道之后到达UE 116,并且在UE 116处执行与gNB 102处的操作的逆操作。下变频器255将接收到的信号下变频为基带频率,并且去除循环前缀块260去除循环前缀,以生成串行时域基带信号。串到并块265将时域基带信号转换为并行时域信号。大小为N的FFT块270执行FFT算法以生成N个并行频域信号。并到串块275将并行频域信号转换为调制的数据符号的序列。信道解码和解调块280对经调制的符号进行解调和解码以恢复原始输入数据流。
gNB 101至gNB 103中的每一个可以实现类似于在下行链路中向UE111至UE 116发送的发送路径200,并且可以实现类似于在上行链路中从UE 111至UE 116接收的接收路径250。类似地,每个UE 111至UE 116可以实现用于在上行链路中向gNB 101至gNB 103发送的发送路径200,并且可以实现用于在下行链路中从gNB 101至gNB 103接收的接收路径250。
图2A和图2B中的每个组件可以仅使用硬件或使用硬件和软件/固件的组合来实现。作为特定示例,图2A和图2B中的至少一些组件可以以软件实现,而其他组件可以通过可配置硬件或软件和可配置硬件的混合来实现。例如,FFT块270和IFFT块215可以被实现为可配置的软件算法,其中,大小N的值可以根据实现被修改。
此外,尽管被描述为使用FFT和IFFT,但这仅是示例性的,并且不应被解释为限制本公开的范围。可以使用其他类型的变换,例如,离散傅里叶变换(DFT)和离散傅里叶逆变换(IDFT)函数。将理解的是,对于DFT和IDFT函数,变量N的值可以是任何整数(例如,1、2、3、4等),而对于FFT和IFFT函数,变量N的值可以是以下任何整数:2的幂(例如,1、2、4、8、16等)。
尽管图2A和图2B示出了无线发送和接收路径的示例,但是可以对图2A和图2B进行各种改变。例如,图2A和图2B中的各种组件可以被组合、进一步细分或省略,并且可以根据特定需要添加其他组件。另外,图2A和图2B意在说明可以在无线网络中使用的发送和接收路径的类型的示例。可以使用任何其他合适的架构来支持无线网络中的无线通信。
图3A示出了根据本公开的示例UE 116。图3A所示的UE 116的实施例仅用于说明,并且图1的UE 111至UE 115可以具有相同或相似的配置。然而,UE具有各种各样的配置,并且图3A不将本公开的范围限制为UE的任何特定实现方式。
UE 116包括天线305、射频(RF)收发器310、发送(TX)处理电路315、麦克风320和接收(RX)处理电路325。UE 116还包括扬声器330、主处理器340、输入/输出(I/O)接口(IF)345、键盘350、显示器355和存储器360。存储器360包括基本操作系统(OS)程序361和一个或更多个应用362。
RF收发器310从天线305接收网络100的gNB发送的输入RF信号。RF收发器310将输入RF信号下变频以产生中频(IF)或基带信号。IF或基带信号被发送到RX处理电路325,RX处理电路325通过对基带或IF信号进行滤波、解码和/或数字化来产生经处理的基带信号。RX处理电路325将经处理的基带信号发送到扬声器330(例如,用于语音数据)或发送到主处理器340以进行进一步处理(例如,用于网页浏览数据)。
TX处理电路315从麦克风320接收模拟或数字语音数据,或者从主处理器340接收其他输出基带数据(例如,网络数据、电子邮件或交互式视频游戏数据)。TX处理电路315对输出的基带数据进行编码、复用和/或数字化,以生成经处理的基带或IF信号。RF收发器310从TX处理电路315接收输出的经处理的基带或IF信号,并将基带或IF信号上变频为经由天线305发送的RF信号。
主处理器340可以包括一个或更多个处理器或其他处理设备,并执行存储在存储器360中的基本OS程序361,以便控制UE 116的整体操作。例如,主处理器340可以根据公知原理控制通过RF收发器310、RX处理电路325和TX处理电路315来前向信道信号的接收和反向信道信号的发送。在一些实施例中,主处理器340包括至少一个微处理器或微控制器。
主处理器340还能够执行驻留在存储器360中的其他过程和程序,例如,如在本公开的实施例中描述的,用于针对具有2D天线阵列的系统的信道质量测量以及报告的操作。主处理器340可以根据执行过程的需要将数据移入或移出存储器360。在一些实施例中,主处理器340被配置为基于OS程序361或响应于从gNB或操作者接收到的信号来执行应用362。主处理器340还耦接到I/O接口345,I/O接口345向UE 116提供连接到诸如膝上型计算机和手持式计算机的其他设备的能力。I/O接口345是这些附件与主控制器340之间的通信路径。
主处理器340还耦接到键盘350和显示单元355。UE 116的操作者可以使用键盘350将数据输入到UE 116中。显示器355可以是液晶显示器或能够呈现文本和/或至少有限的图形(例如,来自网站)的其他显示器。
存储器360耦接到主处理器340。存储器360的一部分可以包括随机存取存储器(RAM),并且存储器360的另一部分可以包括闪存或其他只读存储器(ROM)。
尽管图3A示出了UE 116的一个示例,但是可以对图3A进行各种改变。例如,图3A中的各种组件可以被组合、进一步细分或省略,并且可以根据特定需要添加附加组件。作为特定示例,主处理器340可以被划分为多个处理器,诸如一个或更多个中央处理单元(CPU)和一个或更多个图形处理单元(GPU)。此外,尽管图3A示出了UE 116被配置为移动手机或智能手机,但是UE可以被配置作为其他类型的移动或固定设备进行操作。
图3B示出了根据本公开的示例gNB 102。图3B中所示的gNB 102的实施例仅用于说明,并且图1的其他gNB可以具有相同或相似的配置。然而,gNB具有多种配置,并且图3B不将本公开的范围限制为gNB的任何特定实现方式。注意,gNB 101和gNB 103可以包括与gNB102相同或相似的结构。
如图3B所示,gNB 102包括多个天线370a至370n、多个RF收发器372a至372n、发送(TX)处理电路374和接收(RX)处理电路376。在某些实施例中,多个天线370a至370n中的一个或更多个天线包括2D天线阵列。gNB 102还包括控制器/处理器378、存储器380、以及回程或网络接口382。
RF收发器372a至372n从天线370a至370n接收输入的RF信号,诸如由UE或其他gNB发送的信号。RF收发器372a至372n将输入的RF信号下变频以产生IF或基带信号。IF或基带信号被发送到RX处理电路376,RX处理电路376通过对基带或IF信号进行滤波、解码和/或数字化来生成经处理的基带信号。RX处理电路376将经处理的基带信号发送到控制器/处理器378以进行进一步处理。
TX处理电路374从控制器/处理器378接收模拟或数字数据(例如,语音数据、网络数据、电子邮件或交互式视频游戏数据)。TX处理电路374对输出的基带数据进行编码、复用和/或或数字化以生成经处理的基带或IF信号。RF收发器372a至372n从TX处理电路374接收输出的经处理的基带或IF信号,并将基带或IF信号上变频为经由天线370a至370n发送的RF信号。
控制器/处理器378可以包括控制gNB 102的整体操作的一个或更多个处理器或其他处理设备。例如,控制器/处理器378可以根据公知原理通过RF收发器372a至372n、RX处理电路376和TX处理电路374,控制前向信道信号的接收和反向信道信号的发送。控制器/处理器378也可以支持附加功能,例如,更高级的无线通信功能。例如,控制器/处理器378可以执行诸如由盲干扰感测(BIS)算法执行的BIS处理,并且对被干扰信号减去的接收信号进行解码。控制器/处理器378可以在gNB 102中支持各种各样的其他功能。在一些实施例中,控制器/处理器378包括至少一个微处理器或微控制器。
控制器/处理器378还能够执行驻留在存储器380中的程序和其他过程,例如,基本OS。如本公开的实施例中所描述的,控制器/处理器378还能够支持具有2D天线阵列的系统的信道质量测量和报告。在一些实施例中,控制器/处理器378支持诸如网络RTC之类的实体之间的通信。控制器/处理器378可以根据执行过程的需要将数据移入或移出存储器380。
控制器/处理器378还耦接到回程或网络接口382。回程或网络接口382允许gNB102通过回程连接或网络与其他设备或系统通信。接口382可以支持通过任何适当的有线或无线连接的通信。例如,当将gNB 102实施为蜂窝通信系统(例如,支持5G、LTE或LTE-A的蜂窝通信系统)的一部分时,接口382可以允许gNB 102通过有线或无线回程连接与其他gNB通信。当gNB 102被实施为接入点时,接口382可以允许gNB 102通过有线或无线局域网或者通过有线或无线连接与较大的网络(例如,因特网)通信。接口382包括支持通过有线或无线连接的通信的任何合适的结构,例如,以太网或RF收发器。
存储器380耦接到控制器/处理器378。存储器380的一部分可以包括RAM,并且存储器380的另一部分可以包括闪存或其他ROM。在某些实施例中,诸如BIS算法的多个指令被存储在存储器中。多个指令被配置为在减去由BIS算法确定的至少一个干扰信号之后,使控制器/处理器378执行BIS处理并对接收到的信号进行解码。
如以下更详细地描述,gNB 102的发送和接收路径(使用RF收发器372a至372n、TX处理电路374和/或RX处理电路376实现)支持与FDD小区和TDD小区的聚合的通信。
尽管图3B示出了gNB 102的一个示例,但是可以对图3B进行各种改变。例如,gNB102可以包括图3所示的任何数量的每个组件。作为特定示例,接入点可以包括多个接口382,并且控制器/处理器378可以支持路由功能以在不同的网络地址之间路由数据。作为另一特定示例,尽管被示出为包括TX处理电路374的单个实例和RX处理电路376的单个实例,但是gNB 102可以包括每个的多个实例(例如,每个RF收发器一个)。
图4示出了根据本公开的一些实施例的逻辑端口到天线端口的映射400。在该图中,每个逻辑端口上的Tx信号被馈送到天线虚拟化矩阵(例如,大小为Mx1),其输出信号被馈送到M个物理天线端口的集合中。在一些实施例中,M对应于基本竖直的轴上的天线元件的总数或数量。在一些实施例中,M对应于基本竖直的轴上的天线元件的总数或数量与S之比,其中,M和S被选择为正整数。
图5示出了根据本公开的一个实施例的示例性全维度(FD)多输入多输出(MIMO)或大规模MIMO天线阵列。
图5中所示的实施例仅用于说明。在不脱离本公开的范围的情况下,可以使用其他实施例。
如图所示,MIMO天线阵列包括X-pol天线元件对,该X-pol天线元件对包括M行和N列的X-pol元件对。每个X-pol元件对都包括极化成两个方向(例如,+45度和-45度)的两个天线。
在某些实施例中,gNB配备有包括极化的M行和N列且P=2的2D矩形天线阵列,其中,每个元件的索引为(m,n,p),并且m=0,…,M-1,n=0,...,N-1,p=0,...,P-1。在一个示例中(一维(1D)子阵列分区),将包括具有与2D矩形阵列相同极化的列的天线阵列划分为M组连续元件,并且在图5的TXRU阵列中具有相同极化的列中,M个组对应于M个收发器(TXRU)。在下述的实施例中,(M,N)有时被表示为(NH,NV)或(N1,N2)。
在一些实施例中,UE被配置有包括Q=MNP个CSI-RS端口的CSI-RS资源,其中,CSI-RS资源与子帧中的一对PRB中的MNP个资源单元(RE)相关联。
UE通过较高的层配置了CSI-RS配置,配置了Q个天线端口——天线端口A(1)至A(Q)。UE还与CSI-RS配置相关联地经由较高的层被配置有CSI报告配置。CSI报告配置包括指示CSI-RS分解信息(或分量PMI端口配置)的信息单元(IE)。信息单元可以包括至少两个整数,即,N1和N2,其分别指示用于第一维度的天线端口的第一数量和用于第二维度的天线端口的第二数量,其中,Q=N1·N2
当UE配置有(N1,N2)时,UE使用由两个分量码本N1-Tx码本(码本1)和N2-Tx码本(码本2)构成的复合预编码器来计算CQI。当W1和W2分别是码本1和码本2的预编码器时,复合预编码器(大小P×(秩))是
Figure BDA0002759150860000131
的(列)Kronecker积。如果配置了PMI报告,则UE将报告与选择的W1和W2的对相对应的至少两个分量PMI。
在本公开中,[xm]m=0,...,M-1是指长度为M的向量,并且等于[xm]m=0,...,M-1=[x0,x1,...,xM-1]。另外,wx表示元素幂(elementwise power)为x。例如,wx=[w1 w2]x=[w1 xw2 x]。
在一些实施例中,BS包括天线间隔为(dV,dH)的具有M个竖直TXRU和N个水平TXRU的均匀矩形阵列(URA)。TXRU的总数表示为NTXRU=MN。UL和DL的波长表示为:λUL和λDL;相应的中心频率为:fUL和fDL
图6示出了根据本公开的一个实施例的用于混合CSI获取和MU-MIMO预编码的示例性流程图。图6中所示的方法600的实施例仅用于说明。图6所示的组件中的一个或更多个可以在被配置为执行所指出的功能的专用处理电路中实现,或者可以通过执行指令以执行所指出的功能的一个或更多个处理器来实现一个或更多个组件。在不脱离本公开的范围的情况下,使用其他实施例。
用于混合CSI获取和MU-MIMO预编码的方法600从步骤610开始。在步骤610,基站(BS)利用天线阵列的至少一部分来配置和接收从UE发送的探测参考信号(SRS)。在一个实施例中,BS在接收到SRS时可以激活天线阵列的至少一部分以生成一个上行链路(UL)波束向量。
在步骤620,BS基于SRS测量,从包括一组波束权重向量的UL波束码本中选择至少一个上行链路(UL)波束向量,每个波束权重向量均可以产生UL波束。
在一个实施例中,UL波束权重向量可以是垂直UL波束权重向量或水平UL波束权重向量。可选地,UL波束权重向量包括垂直UL波束权重向量和水平UL波束权重向量。
在另一实施例中,UL波束权重向量可以被表示为
Figure BDA0002759150860000141
其中,
Figure BDA0002759150860000142
表示Kronecker积。在波束权重向量将波束转向到一对方位角和仰角(φ,θ)的情况下,UL波束权重可以表示为
Figure BDA0002759150860000143
在一种方法中,用于方位角和仰角维度的波束权重向量是过采样的DFT向量,过采样的DFT向量可以将波束转向到方位角
Figure BDA0002759150860000144
和仰角θ。
Figure BDA0002759150860000145
Figure BDA0002759150860000146
或可替代地
Figure BDA0002759150860000147
在另一种方法中,用于方位角和仰角维度的波束权重向量是使用OM和ON的过采样因子构成的过采样DFT向量。
Figure BDA0002759150860000148
Figure BDA0002759150860000149
在另一实施例中,利用由OM和ON的过采样因子构成的过采样DFT向量来构建波束码本,然后利用码本索引到角度的转换,将波束码本转换成能够将波束转向到方位角
Figure BDA00027591508600001412
和仰角θ的过采样DFT向量:
给定码本索引kH,可以通过求解
Figure BDA00027591508600001413
的以下方程式得出仰角
Figure BDA00027591508600001414
Figure BDA00027591508600001410
给定密码本索引kV,可以通过求解θ的以下公式来得出仰角θ:
Figure BDA00027591508600001411
在步骤630,BS在与UL波束相对应的UL波束权重向量上施加频率变换,以预测DL波束权重向量。信道互易性是指上行链路信道和具有相似特性的上行链路信道的属性,即,可以将上行链路信道响应视为与下行链路信道响应相同的信道的属性。基于信道互易性,可以使用上行链路信道响应来预测下行链路信道响应,或者可以使用下行链路信道响应来预测上行链路信道响应。然而,在fDL和fUL不同的情况下,需要补偿以使用上行链路信道响应来预测下行链路信道响应。根据各种实施例,基站利用具有补偿的上行链路信道响应来获得下行链路信道响应。
例如,如果在步骤620中选择了垂直UL波束向量,则BS对垂直UL波束权重向量应用频率变换以预测垂直DL波束权重向量。此外,如果在步骤620中选择了水平UL波束权重向量,则BS对水平UL波束权重向量应用频率变换以预测水平DL波束权重向量。另外,如果在步骤620中选择了垂直和水平UL波束权重向量,则BS将频率变换应用于垂直和水平UL波束权重向量以分别预测垂直和水平DL波束权重向量。
给定过采样的UL DFT向量
Figure BDA0002759150860000151
(可以将波束转向到方位角
Figure BDA0002759150860000152
和仰角θ),可以应用频率变换来找到对应的DL波束权重向量
Figure BDA0002759150860000153
用于DL载波中的CSI-RS的DL波束权重向量是通过将元素幂应用于DL和UL中心频率值之比(即,
Figure BDA0002759150860000154
)并归一化分量权重向量以使wDL的范数为1来确定的。
Figure BDA0002759150860000155
给定过采样的UL DFT向量
Figure BDA0002759150860000156
可以应用频率变换来找到对应的DL波束权重向量
Figure BDA0002759150860000157
与UL波束权重向量相对应的DL波束权重向量是通过将元素幂应用于DL和UL中心频率值之比(即,
Figure BDA0002759150860000161
)并归一化分量权重向量以使wDL的范数为1来确定的。
Figure BDA0002759150860000162
在步骤640,BS将波束成形的CSI-RS发送到UE,其中,通过将DL波束权重向量应用于天线阵列,在天线阵列上发送CSI-RS。
例如,如果在步骤630中预测了垂直DL波束权重向量,则BS通过将垂直DL波束权重向量应用于天线阵列来将波束成形的CSI-RS发送给UE。另外,如果在步骤630中预测了水平DL波束权重向量,则BS通过将水平DL波束权重向量应用于天线阵列来将波束成形的CSI-RS发送给UE。另外,如果在步骤630中预测了垂直和水平DL波束权重向量,则BS通过将垂直和水平DL波束权重向量应用于天线阵列来将波束成形的CSI-RS发送给UE。
在一些实施例中,将CSI-RS的波束成形权重应用于两个维度。例如,CSI-RS波束被构建成在方位角或仰角维度方面都小。
通过在2D天线阵列/面板的天线元件或TXRU上应用波束权重,构建沿维度的CSI-RS窄波束。波束权重可以应用在2D天线面板的所有TXRU或天线元件上。在这种情况下,可以将UL波束权重向量表示为:
Figure BDA0002759150860000163
Figure BDA0002759150860000164
DL波束权重向量可以表示为
Figure BDA0002759150860000165
其中,
Figure BDA0002759150860000166
表示Kronecker积。
在波束权重向量将波束转向成一对方位角和仰角(φ,θ)的情况下,UL和DL波束权重可以表示为
Figure BDA0002759150860000167
Figure BDA0002759150860000168
Figure BDA0002759150860000171
在一种方法中,用于方位角和仰角维度的波束权重向量是过采样的DFT向量,过采样的DFT向量可以将波束转向到方位角
Figure BDA0002759150860000172
和仰角θ。
Figure BDA0002759150860000173
Figure BDA0002759150860000174
或可替代地
Figure BDA0002759150860000175
在另一种方法中,用于方位角和仰角维度的波束权重向量是利用OM和ON的过采样因子构建的过采样DFT向量。
Figure BDA0002759150860000176
Figure BDA0002759150860000177
在一些实施例中,用于CSI-RS的波束成形权重被应用于单个维度。例如,CSI-RS波束被构建为在方位角或仰角维度上较窄,而在其他维度上较宽。
通过在包括2D天线阵列的每一列或每一行的天线元件或TXRU上应用波束权重,可以构建沿维度的CSI-RS窄波束。在一种方法中,
Figure BDA0002759150860000178
Figure BDA0002759150860000179
将波束转向到方位角φ;在另一种方法中,
Figure BDA00027591508600001710
将波束转向到仰角θ。可以与上述2D转向情况类似地进行对DL向量的频率变换。
DL波束权重向量用于DL载波中的CSI-RS。DL波束权重向量
Figure BDA00027591508600001711
Figure BDA00027591508600001712
在步骤650,UE从BS接收波束成形的CSI-RS。基于波束成形的CSI-RS,UE从例如码本中得出CSI反馈,并将CSI反馈提供给BS。CSI反馈包括预编码矩阵指示符(PMI)、信道质量指示符(CQI)和秩指示符(RI)。对于此操作,UE可能已配置有例如传输模式9。
例如,如果在步骤640中利用垂直DL波束权重向量产生了波束成形的CSI-RS,则PMI包括关于水平DL波束向量和同相值的指示。另外,如果在步骤640中利用水平DL波束向量产生了波束成形的CSI-RS,则PMI包括关于垂直DL波束向量和同相值的指示。另外,如果在步骤640中利用垂直和水平DL波束向量产生了波束成形的CSI-RS,则PMI包括关于同相值的指示。
在步骤660中,使用包括PMI、CQI和RI的反馈CSI以及在步骤630中预测的DL波束权重向量,BS可以识别垂直DL波束向量、水平DL波束向量和同相值。利用这两个波束向量和一个同相值,BS为UE重建预编码器矩阵。例如,预编码器矩阵可以如下计算:
Figure BDA0002759150860000181
其中,p是使总传输功率为1的归一化因子,wV是垂直DL波束向量,wH是水平DL波束向量,以及同相值。
在步骤670,BS使用针对UE重建的预编码信道矩阵来执行调度、预编码和链路自适应操作。
在三载波聚合(3CA)系统中,SRS仅在一个称为主小区(Pcell)的载波频率上可用,而其他两个载波频率仅具有可用的并称为辅助小区(Scell)的UE反馈。SRS可用于在Pcell处查找CSI。对于3CA系统,本公开为仅UE反馈可用的Scell处的构建CSI提供了以下三个选项。令
Figure BDA0002759150860000182
为BS的所有TXRU在所有可用子载波(SCs)在Pcell处接收到的SRS。可以使用以下三种方法之一来构建Scell处的CSI。
第一选项利用Hsrs的宽带(WB)版本,其用
Figure BDA0002759150860000183
表示为Scell的WB CSI。在此选项中,
Figure BDA0002759150860000184
Figure BDA0002759150860000185
的列的经验协方差的主要特征向量,其中,经验协方差矩阵由
Figure BDA0002759150860000186
表示。具体地,
Figure BDA0002759150860000187
Figure BDA0002759150860000188
其中,v1(.)表示对其进行操作的矩阵的最主要特征向量。
第二选项利用在第一选项中得出的
Figure BDA0002759150860000189
但是第二选项应用来自每个UE的子带PMI反馈以构建要在Scell中使用的子带CSI。我们用
Figure BDA00027591508600001810
Figure BDA0002759150860000191
来表示Scell中使用的子带CSI,其中,每个资源块组(RBG)可能会发生反馈报告。如果该UE的PMI反馈(仅包含同相信息)为P=[p1,p2,...,p#RBG]∈C2*RBGs,则
Figure BDA0002759150860000192
作为第三选项,如果将UE配置为传输模式9(TM9),则可以使用类似于混合预编码的方法。使用预编码的CSI-RS,第三选项能够从每个UE获取水平信道的方向和同相信息。可以使用BS的所有列,使用可用子载波上的垂直SRS信号的经验协方差的主要特征向量来获得垂直信道。经验协方差的计算方法是仅使用垂直信道(即,
Figure BDA0002759150860000193
Figure BDA0002759150860000194
)。特别地,
Figure BDA0002759150860000195
然后,将信道的垂直方向计算为
Figure BDA0002759150860000196
然后,可以完全按照混合预编码方法来构建CSI。
根据各种实施例,一种非暂时性计算机可读介质,该非暂时性计算机可读介质包括用于在基站(BS)的无线通信中进行波束成形的程序代码,其中,该程序代码在由处理器执行时,使处理器进行如下操作:利用天线阵列的至少一部分,测量来自用户设备(UE)的探测参考信号(SRS);基于SRS测量从包括一组波束权重向量的上行链路(UL)波束码本的SRS测量中选择至少一个UL波束向量;确定对应于所选的至少一个UL波束权重向量中的每一个的至少一个下行链路(DL)波束权重向量;通过将至少一个DL波束权重向量应用于天线阵列来发送波束成形的信道状态信息(CSI)-参考信号(RS);从UE接收包括预编码矩阵指示符(PMI)的CSI反馈以及基于PMI和至少一个DL波束权重向量为UE构建预编码信道矩阵,其中,PMI是基于波束成形的CSI-RS确定的。
在一些实施例中,CSI反馈是基于波束成形的CSI-RS得出的,并且是以传输模式9向BS提供的。
在一些实施例中,至少一个UL波束向量包括以下三者之一:垂直UL波束向量、水平UL波束向量、垂直UL波束向量和水平UL波束向量;至少一个DL波束向量包括以下三者之一:垂直DL波束向量、水平DL波束向量、垂直DL波束向量和水平DL波束向量。
在一些实施例中,如果确定的至少一个DL波束向量是垂直DL波束向量,则PMI包括关于水平DL波束向量和同相值的指示,以及如果确定的至少一个DL波束向量是水平DL波束向量,PMI包括关于垂直DL波束向量和同相值的指示。
在一些实施例中,如果确定的至少一个DL波束向量包括垂直DL波束向量和水平DL波束向量,则PMI包括关于同相值的指示。
在一些实施例中,非暂时性计算机可读介质还包括程序代码,该程序代码在由处理器执行时,使处理器进行以下操作:对所选的至少一个UL波束权重向量中的每一个进行频率变换,以确定将元素幂应用于DL和UL中心频率值之比的至少一个下行链路(DL)波束权重向量。
为协助专利局和本申请所发布的任何专利的任何读者解释所附的权利要求,申请人希望注意,他们不希望任何所附的权利要求或权利要求要素来援引35 U.S.C.§112(f),除非在特定权利要求中明确使用“用于……的装置”或“用于……的步骤”。使用其他任何术语,包括但不限于权利要求中的“机制”、“模块”、“设备”、“单元”、“组件”、“元件”、“构件”、“装置”、“机器”、“系统”、“处理器”或“控制器”被申请人理解为是指相关领域技术人员已知的结构,并且无意于引起不清楚。
尽管已经用示例性实施例描述了本公开,但是可以向本领域技术人员提出各种改变和修改。本公开旨在涵盖落入所附权利要求的范围内的这种改变和修改。

Claims (13)

1.一种在无线通信中能够进行波束成形的基站(BS),所述BS包括:
收发器,所述收发器包括天线阵列,所述收发器被配置为利用所述天线阵列的至少一部分测量来自用户设备(UE)的探测参考信号(SRS);
至少一个处理器;以及
存储器,所述存储器可操作地耦接到所述至少一个处理器,
其中,所述存储器存储有指令,当所述指令被执行时,使所述至少一个处理器:
基于SRS测量从包括一组波束权重向量的上行链路(UL)波束码本中选择至少一个UL波束权重向量;
确定与所选择的至少一个UL波束权重向量中的每一个相对应的下行链路(DL)波束权重向量;
通过将所述DL波束权重向量应用于所述天线阵列来发送波束成形的信道状态信息参考信号(CSI-RS);
从所述UE接收包括预编码矩阵指示符(PMI)的CSI反馈,其中,所述PMI是基于所述波束成形的CSI-RS确定的;以及
基于所述PMI和所述DL波束权重向量为所述UE构建预编码信道矩阵,
其中,如果所确定的DL波束权重向量为垂直DL波束权重向量和水平DL波束权重向量,则所述PMI包括关于同相值的指示。
2.根据权利要求1所述的BS,其中,所述CSI反馈是基于所述波束成形的CSI-RS得出的,并且是以传输模式9向所述BS提供的。
3.根据权利要求1所述的BS,其中:
所述至少一个UL波束权重向量包括以下三者之一:垂直UL波束权重向量、水平UL波束权重向量、垂直UL波束权重向量和水平UL波束权重向量,并且
所述DL波束权重向量包括以下三者之一:垂直DL波束权重向量、水平DL波束权重向量、垂直DL波束权重向量和水平DL波束权重向量。
4.根据权利要求1所述的BS,其中,如果所确定的DL波束权重向量是垂直DL波束权重向量,则所述PMI包括关于水平DL波束权重向量和同相值的指示。
5.根据权利要求1所述的BS,其中,如果所确定的DL波束权重向量是水平DL波束权重向量,则所述PMI包括关于垂直DL波束权重向量和同相值的指示。
6.根据权利要求1所述的BS,其中,所述至少一个处理器被进一步配置为:对所选择的至少一个UL波束权重向量中的每一个进行频率变换,以确定将元素幂应用于DL与UL中心频率值之比的所述DL波束权重向量。
7.一种由基站(BS)执行的用于波束成形的方法,所述方法包括:
利用天线阵列的至少一部分,测量来自用户设备(UE)的探测参考信号(SRS);
基于SRS测量从包括一组波束权重向量的上行链路(UL)波束码本中选择至少一个UL波束权重向量;
确定与所选择的至少一个UL波束权重向量中的每一个相对应的下行链路(DL)波束权重向量;
通过将所述DL波束权重向量应用于所述天线阵列来发送波束成形的信道状态信息参考信号(CSI-RS);
从所述UE接收包括预编码矩阵指示符(PMI)的CSI反馈,其中,所述PMI是基于所述波束成形的CSI-RS确定的;以及
基于所述PMI和所述DL波束权重向量为所述UE构建预编码信道矩阵,
其中,如果所确定的DL波束权重向量包括垂直DL波束权重向量和水平DL波束权重向量,则所述PMI包括关于同相值的指示。
8.根据权利要求7所述的方法,其中,所述CSI反馈是基于所述波束成形的CSI-RS得出的,并且是以传输模式9向所述BS提供的。
9.根据权利要求7所述的方法,其中,所述至少一个UL波束权重向量包括以下三者之一:垂直UL波束权重向量、水平UL波束权重向量、垂直UL波束权重向量和水平UL波束权重向量,并且
所述DL波束权重向量包括以下三者之一:垂直DL波束权重向量、水平DL波束权重向量、垂直DL波束权重向量和水平DL波束权重向量。
10.根据权利要求7所述的方法,其中,如果所确定的DL波束权重向量是垂直DL波束权重向量,则所述PMI包括关于水平DL波束权重向量和同相值的指示。
11.根据权利要求7所述的方法,其中,如果所确定的DL波束权重向量是水平DL波束权重向量,则所述PMI包括关于垂直DL波束权重向量和同相值的指示。
12.根据权利要求7所述的方法,其中,所述方法进一步包括:
对所选的至少一个UL波束权重向量中的每一个进行频率变换,以确定将元素幂应用于DL与UL中心频率值之比的所述至少一个DL波束权重向量。
13.一种存储有指令的存储器,当所述指令被处理器执行时,使电子设备进行以下操作:
利用天线阵列的至少一部分,测量来自用户设备(UE)的探测参考信号(SRS);
基于SRS测量从包括一组波束权重向量的上行链路(UL)波束码本中选择至少一个UL波束权重向量;
确定与所选择的至少一个UL波束权重向量中的每一个相对应的下行链路(DL)波束权重向量;
通过将所述DL波束权重向量应用于所述天线阵列来发送波束成形的信道状态信息参考信号(CSI-RS);
从所述UE接收包括预编码矩阵指示符(PMI)的CSI反馈,其中,所述PMI是基于所述波束成形的CSI-RS确定的;以及
基于所述PMI和所述DL波束权重向量为所述UE构建预编码信道矩阵,
其中,如果所确定的DL波束权重向量为垂直DL波束权重向量和水平DL波束权重向量,则所述PMI包括关于同相值的指示。
CN201980030120.7A 2018-05-04 2019-05-03 高级无线通信系统的预编码 Active CN112075034B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862667148P 2018-05-04 2018-05-04
US62/667,148 2018-05-04
US16/256,898 2019-01-24
US16/256,898 US10511363B2 (en) 2018-05-04 2019-01-24 Precoding for advanced wireless communication systems
PCT/KR2019/005358 WO2019212301A1 (en) 2018-05-04 2019-05-03 Precoding for advanced wireless communication systems

Publications (2)

Publication Number Publication Date
CN112075034A CN112075034A (zh) 2020-12-11
CN112075034B true CN112075034B (zh) 2022-10-14

Family

ID=68385342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980030120.7A Active CN112075034B (zh) 2018-05-04 2019-05-03 高级无线通信系统的预编码

Country Status (4)

Country Link
US (1) US10511363B2 (zh)
EP (1) EP3750253A4 (zh)
CN (1) CN112075034B (zh)
WO (1) WO2019212301A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233550B2 (en) 2019-03-21 2022-01-25 Samsung Electronics Co., Ltd. Multi-user precoders based on partial reciprocity
CN112953608A (zh) * 2019-12-11 2021-06-11 中兴通讯股份有限公司 一种信号的发送、处理方法及装置
CN115039349A (zh) * 2019-12-13 2022-09-09 瑞典爱立信有限公司 一种对多播传输进行波束成形的方法
US20230131045A1 (en) * 2020-02-14 2023-04-27 Qualcomm Incorporated Indication of information in channel state information (csi) reporting
US11283507B2 (en) * 2020-07-23 2022-03-22 Samsung Electronics Co., Ltd. Transmitter beamforming at base station with partial channel information and UE feedback
WO2022147709A1 (zh) * 2021-01-07 2022-07-14 华为技术有限公司 一种通信方法和装置
CN114884633B (zh) * 2021-02-05 2023-11-10 大唐移动通信设备有限公司 下行调度处理方法、网络设备和存储介质
CN117768936A (zh) * 2022-09-16 2024-03-26 华为技术有限公司 信道测量方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873221A (zh) * 2011-06-22 2016-08-17 三星电子株式会社 用于无线通信系统中的网络登录的装置和方法
CN106921422A (zh) * 2015-12-24 2017-07-04 上海贝尔股份有限公司 用于mmw信道中的混合波束成形的信道估计的方法和系统
CN107852279A (zh) * 2015-08-14 2018-03-27 华为技术有限公司 码本的配置方法和用户设备
CN107925463A (zh) * 2015-08-13 2018-04-17 三星电子株式会社 用于在通信系统中操作波束成形的参考信号的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411279B2 (ja) * 2008-10-01 2014-02-12 テレフオンアクチーボラゲット エル エム エリクソン(パブル) プリコーディングコードブックを生成するためのシステム及び方法
US9585083B2 (en) 2011-06-17 2017-02-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
RU2627739C1 (ru) * 2013-09-11 2017-08-11 Хуавей Текнолоджиз Ко., Лтд. Способ конфигурации опорного сигнала информации о состоянии канала и базовая станция
US10230441B2 (en) 2016-02-12 2019-03-12 Samsung Electronics Co., Ltd. Method and apparatus for channel status information feedback in mobile communication system
BR112019002672A2 (pt) * 2016-08-10 2019-05-14 Idac Holdings, Inc. método de transmissão de enlace ascendente implementado por uma unidade de transmissão/recepção sem fio, e, unidade de transmissão/recepção sem fio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873221A (zh) * 2011-06-22 2016-08-17 三星电子株式会社 用于无线通信系统中的网络登录的装置和方法
CN107925463A (zh) * 2015-08-13 2018-04-17 三星电子株式会社 用于在通信系统中操作波束成形的参考信号的方法和装置
CN107852279A (zh) * 2015-08-14 2018-03-27 华为技术有限公司 码本的配置方法和用户设备
CN106921422A (zh) * 2015-12-24 2017-07-04 上海贝尔股份有限公司 用于mmw信道中的混合波束成形的信道估计的方法和系统

Also Published As

Publication number Publication date
CN112075034A (zh) 2020-12-11
WO2019212301A1 (en) 2019-11-07
EP3750253A4 (en) 2021-03-03
EP3750253A1 (en) 2020-12-16
US10511363B2 (en) 2019-12-17
US20190341978A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
CN112075034B (zh) 高级无线通信系统的预编码
US10972161B2 (en) Method and apparatus for explicit CSI reporting in advanced wireless communication systems
KR102483881B1 (ko) 무선 통신 시스템에서 피드백 및 기준 신호를 송신하기 위한 장치 및 방법
EP3504807B1 (en) Method and apparatus for downlink and uplink channel state information acquisition
CN107925464B (zh) 用于mimo无线通信系统的先进波束成形和反馈方法
EP3348016B1 (en) Signaling methods and apparatus for advanced mimo communication systems
US10917523B2 (en) Codebook design and structure for advanced wireless communication systems
KR102404935B1 (ko) 개선된 무선 통신 시스템에서 csi 보고를 위한 코드북
CN106797242B (zh) 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
US20200014434A1 (en) Method and apparatus for enabling uplink mimo
US20170134082A1 (en) Method and apparatus for reduced feedback mimo
US20170244533A1 (en) Method and apparatus for channel state information (csi) reporting
CN109937549B (zh) 无线通信系统中用于csi报告的方法及装置
US20160043791A1 (en) Codebook design and structure for advanced wireless communication systems
KR20170075794A (ko) 개선된 무선 통신 시스템을 위한 코드북 디자인 및 구조
KR102574779B1 (ko) 차세대 무선 통신 시스템을 위한 프리코더 코드북
US20230283349A1 (en) Method and apparatus for ul transmission
US20240154655A1 (en) Method and apparatus for configuring an ul codebook
US11881918B2 (en) Method and apparatus for modular MIMO system and CSI feedback
US20230344491A1 (en) Method and apparatus for csi codebook parameters
US20240056156A1 (en) Method and apparatus for codebook subset restriction
US20230268971A1 (en) Method and apparatus for ul transmission
US20230283344A1 (en) Csi codebook for multi-trp
US20240187908A1 (en) Csi codebook parameters and csi reporting for coherent joint transmission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant