WO2011136365A1 - 不定形耐火物用結合剤、不定形耐火物、及び不定形耐火物の施工方法 - Google Patents

不定形耐火物用結合剤、不定形耐火物、及び不定形耐火物の施工方法 Download PDF

Info

Publication number
WO2011136365A1
WO2011136365A1 PCT/JP2011/060452 JP2011060452W WO2011136365A1 WO 2011136365 A1 WO2011136365 A1 WO 2011136365A1 JP 2011060452 W JP2011060452 W JP 2011060452W WO 2011136365 A1 WO2011136365 A1 WO 2011136365A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid solution
binder
mass
refractory
sral
Prior art date
Application number
PCT/JP2011/060452
Other languages
English (en)
French (fr)
Inventor
齋藤 吉俊
厚徳 小山
Original Assignee
新日本製鐵株式会社
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社, 電気化学工業株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020127030643A priority Critical patent/KR101444575B1/ko
Priority to EP11775146.1A priority patent/EP2565174B1/en
Priority to BR112012027625A priority patent/BR112012027625B1/pt
Priority to US13/643,591 priority patent/US8835338B2/en
Priority to ES11775146.1T priority patent/ES2567185T3/es
Priority to JP2012512921A priority patent/JP5683576B2/ja
Priority to CN201180021388.8A priority patent/CN102958867B/zh
Publication of WO2011136365A1 publication Critical patent/WO2011136365A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00431Refractory materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present invention relates to a binder for an irregular refractory used for lining or repairing a kiln, an irregular refractory, and a method for constructing an irregular refractory.
  • the binder of refractory lining of kiln furnaces for various high-temperature processes including steel process includes sodium phosphate, sodium silicate, furan resin, phenol resin, pitch, aluminum lactate, sodium aluminate, silica sol, alumina sol, polyvinyl
  • Many inorganic and organic compounds such as alcohol, methyl cellulose, carboxymethyl cellulose, ethyl silicate, alumina cement, hydraulic alumina and the like are used.
  • alumina cement main constituent compounds: CaO ⁇ Al 2 O 3 , CaO ⁇ 2Al 2 O 3 , 12CaO ⁇ 7Al 2 O 3
  • degassing / secondary refining equipment such as blast furnace iron, molten steel pan, RH
  • Patent Literature 1 and Patent Literature 2 disclose a raw material mixture for producing a refractory alumina cement mainly composed of barium or strontium and alumina. Specifically, a raw material mixture for producing cement is obtained by appropriately heat-treating a mixture of carbonate and chloride.
  • Non-Patent Document 1 discloses a trial product obtained by adding a commercially available high-purity reagent to a CaO—SrO—Al 2 O 3 cement and mixing and firing it. It is shown.
  • Patent Document 3 discloses a binder for an amorphous refractory using a raw material mixture for cement production having a CaO—SrO—Al 2 O 3 composition, which is compared with a binder having a CaO—Al 2 O 3 composition. Thus, it has been shown that slag resistance at high temperatures is improved.
  • binders such as alumina cement that are generally used tend to form low-melting material with molten iron and iron oxide in slag, and part of the binder As a result, wear and infiltration of the refractory progressed and there was a problem that the original durability of the refractory aggregate component could not be fully exhibited.
  • Patent Document 1 a raw material mixture for producing a refractory alumina cement mainly composed of barium or strontium and alumina is provided, and the strength of the clinker binder using this is investigated, but the compressive strength is It does not fully develop on the 3rd and 7th days after production, and the maximum strength finally appears after 28 days.
  • Patent Document 1 does not disclose any characteristics at high temperatures exceeding 1000 ° C., and furthermore, the corrosion resistance against high-temperature molten iron and slag is unknown, and the amorphous is excellent in corrosion resistance at high temperatures. No means for applying to refractories is shown.
  • Patent Document 2 a heat-insulating castable composition using strontium aluminate as a binder is provided, and a heat-insulating material having strength at high temperatures is obtained, but heat-insulating lining on the back of the kiln Since it is a use, it is unknown about the corrosion resistance against high-temperature molten iron and slag, which is an essential characteristic for kiln furnace lining.
  • strontium aluminate is used as a binder, strontium ions are likely to elute during kneading, so that aggregation is likely to occur, and it is not easy to construct an adiabatic castable using strontium aluminate as a binder. It became clear that there was a case.
  • Non-Patent Document 1 a CaO—SrO—Al 2 O 3 based cement was prototyped, and it was shown that the strength of the cured product was maximized at an Sr substitution amount of 0.3 to 0.4 mol. Properties at high temperatures exceeding 1000 ° C. are not disclosed at all, and no means for applying to amorphous refractories having excellent corrosion resistance at high temperatures is disclosed.
  • the binder for refractory for indefinite shape that is actually industrialized is mainly CaO ⁇ Al 2 O 3 , ⁇ -Al 2 O 3 , CaO ⁇ 2Al 2 O 3 , 12CaO ⁇ 7Al 2
  • alumina cement containing O 3 and various additives is used.
  • Non-Patent Document 2 shows that the crystal structure of the CaAl 2 O 4 —SrAl 2 O 4 solid solution varies depending on the solid solution amount of Ca and Sr. It is described in the introduction that CaAl 2 O 4 is a major component of high alumina cement used in refractory castables in the steel industry. However, there is no description or suggestion regarding the performance of the amorphous refractory such as strength and corrosion resistance when the CaAl 2 O 4 —SrAl 2 O 4 solid solution is used as a binder for the amorphous refractory.
  • examples of alumina cements currently used for binders for irregular refractories include, for example, trade names “High Alumina Cement ES”, “High Alumina Cement VS-2”, “High Alumina Cement” manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Super 90 “ High Alumina Cement Super G ”,“ High Alumina Cement Super 2 ”,“ High Alumina Cement Super ”, etc.
  • CaO.Al 2 O 3 is mainly used, and ⁇ -Al 2 O 3 , CaO.2Al 2 O 3 , 12CaO.7Al 2 O 3 , and a small amount of additives according to characteristics are blended.
  • Patent Document 3 discloses Ca x Sr 1-x Al 2 O 4 as a binder having better corrosion resistance against slag and molten iron than conventional alumina cement.
  • it in order to use it widely as a binder for amorphous refractories in kilns having various thicknesses and shapes, further improvement in curing strength has been demanded.
  • the present invention uses an amorphous refractory binder, which is superior in corrosion resistance to slag and molten iron, and has an early onset of curing strength and excellent stability, compared to conventional binders such as alumina cement.
  • An object is to provide an amorphous refractory and a method for constructing the irregular refractory.
  • the present inventor pays attention to replacing Ca in the binder for amorphous refractory with a metal element from the viewpoint of improving the fire resistance of the amorphous refractory, and CaO.
  • the composition is made to have a high melting point, and corrosion resistance to slag and molten iron is improved. It has been newly found that it is excellent and can be improved in workability and stability at high temperatures (see Patent Document 3). Further, it has also been found that the strength can be increased by shortening the time until the strength of the amorphous refractory is manifested by solid solution of SrO (see Patent Document 3).
  • solid solution refers to a state in which two or more kinds of elements (which may be metal or non-metal) are dissolved together to form a uniform solid phase as a whole.
  • the solid solution refers to a uniform solid crystalline phase formed by two or more elements.
  • the gist of the present invention is as follows. (1) When ⁇ -SrAl 2 O 4 or ⁇ -SrAl 2 O 4 contains a solid solution in which a Ca component is dissolved, and the crystallite diameter of the solid solution is that the ⁇ -SrAl 2 O 4 is in solid solution Is a binder for amorphous refractory, which is not less than 40 nm and not more than 75 nm, and is not less than 35 nm and not more than 70 nm when the ⁇ -SrAl 2 O 4 is dissolved.
  • the solid solution for dissolving the Ca component in the ⁇ -SrAl 2 O 4 or the ⁇ -SrAl 2 O 4 is contained in an amount of 10% by mass to 60% by mass, and Al 2 O 3 is contained in an amount of 40% by mass to 90% by mass. %, The binder for irregular refractories according to the above (1).
  • the solid solution in which the Sr component is dissolved in CaAl 2 O 4 is contained as a mixture, and the crystallite diameter of the solid solution is 25 nm or more and 60 nm or less. Agent.
  • a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 , a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 , and a solid solution in which the Sr component is dissolved in CaAl 2 O 4 The binder for amorphous refractories according to (7) above, wherein 10 to 60% by mass in total and Al 2 O 3 is blended in an amount of 40 to 90% by mass.
  • the binder for an amorphous refractory contains one or more selected from the group of SiO 2 , TiO 2 , Fe 2 O 3 , MgO and BaO, and the content thereof is within 12% by mass.
  • the binder for an amorphous refractory according to the above (1) (10) The binder for an amorphous refractory according to the above (1), wherein at least one of a dispersant and a curing retarder is blended in the binder for an amorphous refractory.
  • An amorphous refractory comprising the refractory aggregate containing the binder for an irregular refractory according to any one of (1) to (10) above.
  • the dispersant is selected from the group consisting of a polycarboxylic acid-based dispersant, a phosphoric acid-based dispersant, an oxycarboxylic acid, a melamine-based dispersant, a naphthalene-based dispersant, and a lignin sulfonic acid-based dispersant.
  • the curing accelerator is at least one of alkali metal salts and aluminates
  • the curing retarder is at least one of boric acids and silicofluorides. Unshaped refractory.
  • the binder for an irregular refractory according to any one of the above (1) to (10) is mixed with a refractory aggregate containing ultrafine alumina having a particle size of 1 ⁇ m or less and kneaded.
  • the binder for irregular refractory according to the present invention has good strength development in a short time compared to the conventional one, can reduce the time required for de-framework, improve the construction efficiency, It has excellent corrosion resistance against slag and molten iron, and can exert the effect of extending the life of the amorphous refractory lining the kiln used at high temperatures.
  • the binder contains a solid solution that dissolves the Ca component in SrAl 2 O 4 .
  • the crystallite diameter of the solid solution is 40 nm or more and 75 nm or less, and when SrAl 2 O 4 is ⁇ -SrAl 2 O 4 , The crystallite diameter is 35 nm or more and 70 nm or less.
  • the binder containing a solid solution having a crystallite diameter in the above predetermined range has a melting point higher than that of conventional alumina cement (mainly CaO ⁇ Al 2 O 3 ), and when it becomes a hardened body by reacting with water, Excellent stability.
  • conventional alumina cement mainly CaO ⁇ Al 2 O 3
  • an appropriate working time can be secured, and the curing speed is improved as compared with the conventional one, and the corrosion resistance.
  • the strength since the strength is further improved, it can be used as a binder for a wide range of applications.
  • the content of the solid solution is preferably 10% by mass or more in the binder. Further, the upper limit of the content may be 100% by mass.
  • the composition of the balance in the binder is typically Al 2 O 3, but other examples include SiO 2 , TiO 2 , Fe 2 O 3 , MgO, BaO and the like. As a route for these to enter the binder of the present invention, Al 2 O 3 may be intentionally added in order to impart high fire resistance.
  • Other components may be included in the raw materials used in advance, or may be contaminated from manufacturing processes such as a binder raw material and a pulverizing apparatus, a transport apparatus, and a baking apparatus.
  • the solid solution in embodiment shown below can also be contained in a binder as a mixture.
  • the second embodiment of the present invention is a binder containing a solid solution having a crystallite diameter of 40 nm or more and 75 nm or less of the solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 described in the first embodiment.
  • the content ratio of the solid solution in which SrO is dissolved in CaO.Al 2 O 3 contained in the binder is not limited. However, in order to easily exert the effect, the content of the solid solution mixture is preferably 10% by mass or more in the binder. Further, the upper limit of the content may be 100% by mass.
  • the composition of the balance is typically Al 2 O 3 , but in addition, there are SiO 2 , TiO 2 , Fe 2 O 3 , MgO, BaO, and the like. Can be exemplified. As a route for these to enter the binder of the present invention, Al 2 O 3 may be intentionally added in order to impart high fire resistance, as in the first embodiment.
  • Other components may be included in the raw materials used in advance, or may be contaminated from manufacturing processes such as a binder raw material and a pulverizing apparatus, a transport apparatus, and a baking apparatus.
  • the solid solution in which SrO is dissolved in CaO ⁇ Al 2 O 3 has hydraulic properties, has a higher melting point than CaO ⁇ Al 2 O 3 in the conventional alumina cement, and reacts with water to form a cured product. When it becomes, since it is excellent in stability at high temperature, a higher effect than a conventional binder can be obtained. Further, a solid solution obtained by dissolving SrO in CaO.Al 2 O 3 is more preferable because an appropriate working time and curing rate can be obtained in the range of the crystallite diameter of 25 nm to 60 nm.
  • a solid solution having a crystallite diameter in a predetermined range in which a Ca component is dissolved in ⁇ -SrAl 2 O 4 described in the first embodiment in a binder and Unlike the first embodiment, the solid solution having a crystallite diameter in a predetermined range in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 is not only one but also contains both. Furthermore, a solid solution that dissolves the Sr component in CaO ⁇ Al 2 O 3 described in the second embodiment may be included.
  • the existence forms of these solid solutions in the binder do not exist as a single solid solution by mutual solid solution, but exist as independent solid solutions, and the binder exists in the form of a mixture. Moreover, also in 3rd embodiment, a higher effect than the conventional binder is acquired like 1st embodiment and 2nd embodiment.
  • the ratio of these two or three solid solutions as a mixture in the binder is not particularly defined. However, in order to easily exhibit the effect, the total content of the mixture of these solid solutions is preferably 10% by mass or more in the binder. Further, the upper limit of the content may be 100% by mass.
  • the composition of the balance as the binder is typically Al 2 O 3, but other examples include SiO 2 , TiO 2 , Fe 2 O 3 , MgO, BaO and the like. As a route for these to enter the binder of the present invention, Al 2 O 3 may be intentionally added to impart high fire resistance, as in the first and second embodiments.
  • Other components may be included in the raw materials used in advance, or may be contaminated from manufacturing processes such as a binder raw material and a pulverizing apparatus, a transport apparatus, and a baking apparatus.
  • the contents of the above-mentioned SiO 2 , TiO 2 , Fe 2 O 3 , MgO, BaO, etc., which are impurities in the binder in the first to third embodiments, are selected in the selection of industrially used raw materials and the manufacturing process. By performing management and optimization, the effect of the present invention can be reduced to an extent that is not affected.
  • the amount is a total amount including the chemical component amount in terms of oxide of each substance, and is preferably within 12% by mass, more preferably within 5% by mass with respect to the binder of the present invention. When the content is larger than 12% by mass, performance deterioration such as deterioration in strength and corrosion resistance of the amorphous refractory using the binder may occur.
  • the post-curing strength of the amorphous refractory may increase. This is presumed to be due to the fact that minerals containing these components generate an amorphous form that facilitates ion elution when reacted with water.
  • the increase in strength is large at 5% by mass or less and appears up to 12% by mass.
  • the strength may decrease because the mineral containing these components produces a crystalline phase with poor solubility in water.
  • the corrosion resistance at high temperature may be lowered because of a decrease in melting point as an impurity.
  • the elution of ions is extremely fast, and after reaching the saturation solubility, the hydrated product is precipitated from the supersaturated solution to form a crosslinked structure between the particles, contributing to bonding, and increasing the strength. Appears and hardens.
  • the binder is usually used as a powder, it is preferable that the above-mentioned solid solution in the present invention is also present in the binder in a powder state.
  • the crystallite diameter can be calculated by the Scherrer method by obtaining the half width from the diffraction peak obtained by powder X-ray diffraction measurement.
  • the solid solution of the present invention is characterized in that the diffraction line changes depending on the mixing ratio of Ca and Sr.
  • various solid solutions prepared by combining various raw materials and synthesized by a firing method such as the surface and inside of the fired body when using a batch furnace so that an average evaluation sample can be obtained.
  • time intervals for example, 1 minute intervals
  • a powder X-ray diffractometer JDX-3500 manufactured by JEOL Ltd.
  • the crystallite diameter may be calculated using powder X-ray diffraction pattern analysis software JADE6.
  • the half width derived from the X-ray diffractometer used for the analysis of the crystallite diameter may be obtained by measuring a silicon powder sample under the same conditions and obtaining the half width curve thereof.
  • the firing temperature is set.
  • it can be made differently by changing the mixing ratio of the starting materials to a predetermined molar ratio.
  • the starting material may be any material as long as it contains CaO, SrO, and Al 2 O 3 as the main component. However, since CaO and SrO may be hydrated in the atmosphere, CaCO 3 , SrCO 3 , Al 2 It is preferable to use O 3 . Details of the types of raw materials will be described later.
  • the mixing ratio in terms of CaO: SrO: Al 2 O 3 is prepared by weighing and blending so as to be a predetermined X in terms of molar ratio when expressed as Ca x Sr 1-x Al 2 O 4 .
  • the lattice constants of the a-axis, b-axis, and c-axis increase. This is because of the ionic radii of Ca and Sr. Referring to the polling ion radius, the ion radius of Ca is 0.099 nm, whereas Sr is 0.113 nm, and Sr is larger. It is considered that the lattice expansion was caused by the replacement of Sr having a large ionic radius and the lattice spacing was widened.
  • XRD powder X-ray diffraction method
  • a RAD-B system with a curved crystal monochromator manufactured by Rigaku Corporation can be used.
  • an internal standard method using silicon, aluminum, magnesium, or the like as a primary standard sample.
  • solid solutions or a mixture of solid solutions may be further mixed to produce a target solid solution mixture.
  • the crystallite diameter of the solid solution is in the range of 40 nm to 75 nm in the case of a solid solution in which a Ca component is dissolved in ⁇ -SrAl 2 O 4.
  • a temperature range of 1400 ° C. to 1500 ° C. can be said to be a preferable temperature range because the firing time for obtaining a predetermined crystallite size can be shortened and an excessive increase in the crystallite size due to over-calcination is less likely to occur.
  • the firing time may be adjusted so that the target crystallite diameter can be obtained at each temperature.
  • the firing time is 1 to 24 hours at 1400 ° C. and 0.5 to 12 hours at 1500 ° C.
  • the crystallite diameter of the solid solution becomes too large and falls outside the specified crystallite diameter range. This is not preferable because the hardening strength in a short curing time is lowered.
  • a more preferable firing temperature and firing time are 1 to 5 hours at 1400 to 1500 ° C.
  • the said appropriate temperature and baking time change somewhat with specifications, such as a furnace volume and a heating capability, the production
  • any of the first to third embodiments of the present invention when the solid solution reacts with water to form a cured body, when it is required to further increase the strength and fire resistance of the cured body, Al It is preferable to use a binder containing 2 O 3 .
  • the content in a suitable binder is 10% by mass or more and 60% by mass or less of the solid solution, and the blended Al 2 O 3 is 40% by mass or more and 90% by mass or less.
  • Al 2 O 3 in the binder is 40 mass% or more is preferable because it is possible to sufficiently increase the strength or refractoriness of hardened bodies.
  • the content of the solid solution is relatively small, and it may be difficult to uniformly cure, so 90% by mass or less is preferable.
  • the blending ratio of the binder and the refractory aggregate in the amorphous refractory is not particularly specified, and it has been confirmed that even if it is an arbitrary blending ratio, the effect is obtained.
  • the mixing ratio of the binder and the refractory aggregate is the total amount of the binder and the refractory aggregate.
  • the amount is 100% by mass, it is recommended that the amount of the binder be 0.3% by mass to 20% by mass, and more preferably 0.5% by mass to 12% by mass.
  • the reason for this is that when the amount is less than 0.3% by mass, the bonding is insufficient and the strength after the binder is cured may be insufficient. Moreover, when it exceeds 20 mass%, the volume change etc. in the hydration of a binder or a dehydration process may affect the whole amorphous refractory, and a crack etc. may generate
  • produce when it exceeds 20 mass%, the volume change etc. in the hydration of a binder or a dehydration process may affect the whole amorphous refractory, and a crack etc. may generate
  • Refractory aggregates for amorphous refractories include fused alumina, fused bauxite, sintered alumina, calcined alumina, fused mullite, synthetic mullite, fused silica, fused zirconia, fused zirconia mullite, zircon, magnesia.
  • Clinker Fused Magnesia, Fused Magcro, Sintered Spinel, Fused Spinel, Silicon Nitride, Silicon Carbide, Scaly Graphite, Soil Graphite, Sillimanite, Kyanite, Andalusite, Rolite, Porphyry Shale, Dolomite Clinker, Silica Clay, chamotte, lime, chromium, fused quartz, calcium aluminate, calcium silicate, silica flour and the like can be used. One kind of these or a combination of two or more kinds may be used.
  • the amount of water or water-containing solvent during construction is not particularly specified. However, although it depends on the particle size distribution of the aggregate and the type and amount of the dispersant, it is generally preferable that the outer shell is about 2 to 10% by mass.
  • the amount is less than 2% by mass, it is difficult to cure. Further, if the amount is more than 10% by mass, the amount related to the formation of the hardened structure becomes relatively high, and the volume change during the hardening reaction tends to adversely affect the quality of the refractory.
  • the binder of the present invention when used as a binder for an amorphous refractory, a dispersant or a curing modifier is added in order to appropriately control the speed of the hydration / curing reaction according to the temperature and humidity. Is preferred.
  • Dispersants include carbonates such as sodium carbonate and sodium hydrogen carbonate, oxycarboxylic acids such as citric acid and sodium citrate, tartaric acid and sodium tartrate, polyacrylic acid and methacrylic acid and salts thereof, sodium tripolyphosphate and sodium hexametaphosphate.
  • carbonates such as sodium carbonate and sodium hydrogen carbonate
  • oxycarboxylic acids such as citric acid and sodium citrate, tartaric acid and sodium tartrate, polyacrylic acid and methacrylic acid and salts thereof, sodium tripolyphosphate and sodium hexametaphosphate.
  • Such condensed phosphates and / or alkali metal and alkaline earth metal salts thereof can be mainly used.
  • a curing retarder or a curing accelerator can be used as the curing modifier.
  • the curing retarder boric acid, borax, sodium gluconate, silicofluoride and the like can be used.
  • the curing accelerator lithium salt such as lithium carbonate, slaked lime, aluminate or the like can be used.
  • an explosion preventing agent such as organic fiber such as vinylon, metal aluminum powder, aluminum lactate or the like can be used.
  • ultrafine powder can be added to improve fluidity, fillability and sinterability.
  • inorganic fine powder having a particle size of about 0.01 to 100 ⁇ m, such as silica fume, colloidal silica, easily sintered alumina, amorphous silica, zircon, silicon carbide, silicon nitride, chromium oxide and titanium oxide.
  • a water reducing agent such as a polycarboxylic acid water reducing agent and a lignin water reducing agent, a high performance water reducing agent, and a high performance AE when kneaded with water.
  • Chemical admixtures such as water reducing agents can be used. The type and amount of these chemical admixtures can be appropriately selected depending on conditions such as the type and amount of the refractory aggregate to be blended and the construction temperature.
  • a solid solution in which the Sr component is dissolved in CaAl 2 O 4 which is a binder of the binder for the amorphous refractory of the present invention a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 , and ⁇ -SrAl 2 O 4
  • limestone mainly CaCO 3
  • quicklime mainly CaO
  • refined alumina ⁇ -Al 2 O 3 , Al (OH) 3
  • bauxite Al 2 O 3 raw material
  • strontian ore (SrCO 3 ) and celestite (SrSO 4 ) are preferably used.
  • these raw materials are preferably pulverized by a pulverizer to a 50% average diameter of about 0.5 to 15 ⁇ m.
  • coarser particles When coarser particles are included, many unreacted parts may remain, or a composition different from the solid solution of the composition of the present invention may be partially generated, and the original effect of the invention is hardly exhibited. This is because there are cases.
  • the composition different from the solid solution of the present invention includes Ca x Sr 1-x Al 4 O 7 when the alumina component in the raw material is rich, and (Ca x Sr 1-x ) 12 Al when the CaO and SrO components are rich.
  • individual solutions such as 14 O 33 and (Ca x Sr 1-x ) 3 Al 2 O 6 may be formed.
  • the raw materials are prepared so as to obtain the target individual solution of the present invention, and produced by pulverization and blending as described above, the amount of these produced is small and the influence on the binder properties is small. It becomes.
  • CaO in the raw material, Al 2 O 3 and the sum of SrO is preferably of high purity of more than 98 wt%.
  • Impurities such as SiO 2 , TiO 2 , MgO, Fe 2 O 3 and the like contained in bauxite, strontian ore and celestite may cause a decrease in physical properties at high temperatures, and are preferably as small as possible.
  • the particle size of the solid solution powder in the binder affects the hydration reaction and the curing rate
  • the particle size is preferably adjusted to about 1 to 20 ⁇ m by a pulverizer after firing for solid solution production.
  • This particle size is a result of measurement by a particle size analyzer such as a laser diffraction method, a laser scattering method, or a sedimentation balance method, and represents a 50% average diameter.
  • the raw materials can be mixed using a mixer such as an Eirich mixer, a rotary drum, a cone blender, a V-type blender, an omni mixer, a nauter mixer, or a pan-type mixer.
  • pulverizer industrial pulverizers such as a vibration mill, a tube mill, a ball mill, a roller mill, and a jet mill can be used.
  • the binder containing 10% by mass or more and 60% by mass or less of the solid solution described in the first to third embodiments and containing 40% by mass or more and 90% by mass or less of Al 2 O 3 is described above.
  • the ⁇ -alumina powder can be blended with various solid solutions obtained by the above method.
  • the ⁇ -alumina powder is high-purity alumina containing 90% by mass or more of Al 2 O 3.
  • alumina is produced by the Bayer method. In this method, bauxite is first washed at 250 ° C. with a hot solution of sodium hydroxide (NaOH). In this process, alumina is converted into aluminum hydroxide (Al (OH 3 )) and dissolved by a reaction as shown in the following chemical formula (1). Al 2 O 3 + 2OH ⁇ + 3H 2 O ⁇ 2 [Al (OH) 4 ] ⁇ (1)
  • the fluidity of the binder depends on the specific surface area of ⁇ -Al 2 O 3 blended in the binder, those having a BET specific surface area of about 0.1 to 20 m 2 / g are preferable.
  • ⁇ -Al 2 O 3 can be blended in advance in a finely divided state or mixed and ground with various solid solutions.
  • the 50% average diameter be reduced to about 0.3 to 10 ⁇ m.
  • the fine powder alumina which is said particle diameter can also be mix
  • the purity of ⁇ -Al 2 O 3 is preferably 95% by mass or more, more preferably 99% by mass or more.
  • This ⁇ -Al 2 O 3 is mixed and mixed with the hydraulic component uniformly by pre-mixing and mixing with the binder, and when this is mixed into the amorphous refractory, the hydraulic component is mixed more uniformly. It is possible to obtain a refractory structure excellent in strength development and corrosion resistance of the cured body.
  • ⁇ -Al 2 O 3 when ⁇ -Al 2 O 3 is mixed and pulverized with a binder, it is more uniformly mixed in the binder composition, and when used for an amorphous refractory, the cured body structure is likely to be uniform, and corrosion resistance and the like. This is preferable because the performance tends to improve.
  • the method for constructing the amorphous refractory according to the present invention as a refractory used for lining or repairing a kiln may be the same as a method for constructing a normal irregular refractory.
  • an aggregate containing an ultrafine alumina having a particle size of 0.8 nm or more and 1 ⁇ m or less and the binder of the present invention are mixed and kneaded and then applied, it is further bonded due to a synergistic effect with the binder of the present invention. This improves the efficiency of construction, improves the work efficiency by developing good strength development in a short time, and improves the corrosion resistance against slag and molten iron, and the effect of extending the furnace life is more strongly demonstrated. preferable.
  • the mixing ratio of the ultrafine alumina of 1 ⁇ m or less in the amorphous refractory is preferably 2 to 70% by mass (excluding moisture).
  • CaCO 3 manufactured by Ube Materials
  • SrCO 3 having a purity of 98% by mass
  • high-purity ⁇ -alumina having a purity of 99% by mass
  • Each raw material was weighed with a balance so as to have the chemical composition shown in the following tables, and mixed and ground in a mortar.
  • the mixed and pulverized raw material is granulated by adding 15% by mass of water as an outer shell, and then put into an alumina container, and the maximum temperature in an electric furnace (furnace volume 130 L) in an air atmosphere Then, the heat treatment was performed while changing the holding time, and then the temperature was lowered to room temperature, allowed to cool in the air, and then pulverized by a batch type ball mill to obtain various solid solutions and binders shown in Test Examples.
  • Bending strength after curing is based on JIS R2553 “Testing method for strength of castable refractories” after casting an irregular refractory sample into a 40 ⁇ 40 ⁇ 160mm mold and curing in a constant temperature room at 20 ° C. And measured. The curing time was 6 hours, 12 hours, and 24 hours from the start of mixing the amorphous refractories.
  • an amorphous refractory sample was cured in a constant temperature room at 20 ° C. to prepare a cured product of the refractory and used for a test piece for evaluating corrosion resistance against slag at high temperatures.
  • the assembled refractory 1 was installed in a rotary furnace, and while the refractory 1 was rotated, the temperature was raised by combustion of the burner 3 from the inside of the rotary furnace.
  • a combustion gas having a volume ratio of LPG1: oxygen 5 was used.
  • symbol 4 is slag and the code
  • symbol 5 is a filler.
  • the amount of wear of each test piece was determined by measuring the remaining size (the thickness of the non-oxidized layer in the case of the decarburized layer thickness) at intervals of 20 mm and calculating the difference from the initial thickness (48 mm).
  • the test temperature was 1600 ° C., 25 minutes was 1 charge, and 500 g was replaced with slag 4 for a total of 6 charges, 2 hours and 30 minutes.
  • the slag 4 was replaced by a method in which the horizontal drum was tilted and discharged.
  • the crystallite diameter of the solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 is 40 nm or more and 75 nm or less, or the crystallite diameter of the solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 is Examples relating to binders for amorphous refractories having a thickness of 35 nm to 70 nm In the inventive examples 1 to 8 and the reference examples 1 to 6, the components of the binder are all dissolved in ⁇ -SrAl 2 O 4 so that the Ca component is dissolved.
  • the binder consisting of a solid solution Comparative Examples 1 to 3 are amorphous refractories using Comparative Examples 1 to 3 that do not contain Sr, and Reference Examples 13 to 16 are those that do not contain a Ca component.
  • Tables 1 to 3 show the raw material composition of the binder of each test example, the crystallite diameter of the solid solution, the firing conditions, the flow value and curing bending strength measurement result of the amorphous refractory, and the rotary erosion test result.
  • Reference Examples 13, 14, and 16 using 10 and the binder component that does not contain the Ca component a large decrease in fluidity or solidification of the amorphous refractory occurs after 2 hours, resulting in a large-capacity kiln It was confirmed that it was difficult to apply to the above.
  • increasing the amount of boric acid powder added as a retarder can maintain fluidity after 2 hours, but it is necessary to significantly increase the amount of cure retarder added.
  • the crystallite diameter of the solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 is 40 nm or more and 75 nm or less, or the crystallite diameter of the solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 is
  • a binder of 35 nm or more and 70 nm or less good workability is maintained even after a long time has passed since water injection and mixing, and good strength development properties can be obtained at an early stage. It became clear that an amorphous refractory with excellent slag properties can be obtained.
  • Inventive Examples 17 to 21 have an X value of Ca x Sr 1-x Al 2 O 4 of 0.05.
  • Inventive Examples 22 to 26 are amorphous refractories manufactured using a binder in which ⁇ -SrAl 2 O 4 is dissolved in a solid solution in which a Ca component is dissolved and ⁇ -Al 2 O 3 is mixed at a predetermined ratio.
  • Comparative Examples 4 to 6 are binders for amorphous refractories manufactured using the agent.
  • the flow value of the amorphous refractory suitable for pouring was obtained even after 2 hours from the start of kneading, and it was applied to a furnace having a large capacity. It was confirmed that it could be applied. Further, the bending strength after curing for 6, 12 and 24 hours was larger than that of Comparative Examples 1 to 6, and it was revealed that the curing strength was excellent. In particular, it was confirmed that the bending strength after curing for 6 hours was larger than that of the comparative example and excellent in early strength development. Furthermore, the amount of wear in the rotary erosion test using slag was clearly smaller than that of the comparative example, and it was revealed that the slag resistance at high temperatures was excellent.
  • Example 3 As compared with the present invention Example 3 and 11 not containing Al 2 O 3, it is possible to further reduce the wear amount in the rotary corrosion test using slag, at an elevated temperature It became clear that the slag resistance was better.
  • a solid solution having a crystallite diameter of 40 to 75 nm in solid solution of Ca component in ⁇ -SrAl 2 O 4 , or a crystallite diameter of 35 nm in solid solution of Ca component in ⁇ -SrAl 2 O 4 is 35 nm.
  • Examples relating to binders for amorphous refractory having a solid solution crystallite size of 25 nm or more and 60 nm or less In Invention Examples 27 to 37 and Reference Examples 17 to 19, all the components of the binder are ⁇ -SrAl and a solid solution in 2 O 4 solid solution of Ca component, a raw material prepared as solid solution in which a solid solution of Sr components in CaAl 2 O 4 is obtained, calcination conditions such that the crystallite size is a value in the table
  • all of the components of the binder are ⁇ -SrAl 2 O.
  • the crystallite size is a solid solution prepared by adjusting the firing conditions such that the values in the table bond
  • the refractory material produced using the agent was subjected to flow value measurement, curing bending strength measurement, and rotary erosion test using slag.
  • a solid solution in which the Ca component was dissolved in ⁇ -SrAl 2 O 4 and a solid solution in which the Ca component was dissolved in ⁇ -SrAl 2 O 4 were produced under firing conditions that maintained a maximum temperature of 1500 ° C. for 2 hours.
  • Tables 6 to 8 show the raw material composition, firing conditions, crystallite diameter of the solid solution, flow value of the amorphous refractory, measurement results of the curing bending strength, and rotational erosion test results of each test example.
  • the Ca component was dissolved in ⁇ -SrAl 2 O 4 and the solid solution having a crystallite diameter of 40 nm or more and 75 nm or less, or the Ca component was dissolved in ⁇ -SrAl 2 O 4 and the crystallite diameter was Using a binder in which a solid solution having a crystallite diameter of 25 nm to 60 nm is mixed with CaAl 2 O 4 in a solid solution having a particle size of 35 nm to 70 nm, a long time has elapsed since water was poured and mixed. It has been clarified that good workability is maintained after this, good strength development is obtained at an early stage, and an amorphous refractory having superior slag resistance at a higher temperature than before can be obtained.
  • Table 9 shows the solid solution composition, crystallite size, blending ratio of solid solution and ⁇ -Al 2 O 3 , measurement results of the flow value and curing strength of the amorphous refractory, and rotational erosion test results of each test example.
  • Each solid solution was prepared by firing at a maximum temperature of 1500 ° C. for 2 hours.
  • the evaluation results are as shown in Table 9.
  • the flow value of the unshaped refractory suitable for pouring was obtained even after 2 hours from the start of kneading, and it could be applied to a kiln having a large capacity. It was confirmed that it was possible. Further, the bending strength after curing for 6, 12 and 24 hours was larger than that of Comparative Examples 1 to 6, and it was revealed that the curing strength was excellent. In particular, it was confirmed that the bending strength after curing for 6 hours was larger than that of the comparative example and excellent in early strength development. Furthermore, the amount of wear in the rotary erosion test using slag was clearly smaller than that of the comparative example, and it was revealed that the slag resistance at high temperatures was excellent.
  • a binder for an amorphous refractory comprising a solid solution of 70 nm or less and a solid solution having a crystallite diameter of 25 nm or more and 60 nm or less that dissolves the Sr component in CaAl 2 O 4 and is blended with Al 2 O 3.
  • Examples relating to binders for amorphous refractories containing both solid solutions as a mixture Inventive Examples 59 to 94 have Ca x Sr 1-x Al 2 O 4 having X values of 0.05 and 0.
  • the solid solution having a crystallite diameter of 40 nm to 75 nm and the Ca x Sr 1-x Al 2 O 4 having a crystallite diameter of ⁇ -SrAl 2 O 4 of 15 is 0.30 and 0.55.
  • the flow value of the irregular refractory material suitable for pouring was obtained even after 2 hours from the start of the kneading, and it was applied to a furnace having a large capacity. It was confirmed that it could be applied. Further, the bending strength after curing for 6, 12 and 24 hours was larger than that of Comparative Examples 1 to 3, and it was revealed that the curing strength was excellent. In particular, it was confirmed that the bending strength after curing for 6 hours was larger than that of the comparative example and excellent in early strength development. Furthermore, the amount of wear in the rotary erosion test using slag was clearly smaller than that of the comparative example, and it was revealed that the slag resistance at high temperatures was excellent.
  • the flow value and curing bending strength of the amorphous refractory manufactured in this way were measured, and the rotary erosion test using slag was performed.
  • the solid solution composition of each test example, the crystallite diameter of the solid solution, the blending ratio of the solid solution and the binder with ⁇ -Al 2 O 3 , the flow value of the amorphous refractory, the measurement results of the curing bending strength, and the rotary erosion test result are shown. 14 shows.
  • Each solid solution was prepared by firing at a maximum temperature of 1500 ° C. for 2 hours.
  • the flow value of the amorphous refractory suitable for pouring is obtained even after 2 hours from the start of kneading, and it can be applied to a furnace having a large capacity. It was confirmed that it was possible. Further, the bending strength after curing for 6, 12 and 24 hours was larger than that of Comparative Examples 1 to 6, and it was revealed that the curing strength was excellent. In particular, it was confirmed that the bending strength after curing for 6 hours was larger than that of the comparative example and excellent in early strength development. Furthermore, the amount of wear in the rotary erosion test using slag was clearly smaller than that of the comparative example, and it was revealed that the slag resistance at high temperatures was excellent.
  • Example 66 not containing Al 2 O 3 it is possible to further reduce the wear amount in the rotary corrosion test using slag, resistance at a high temperature It became clear that slag property was more excellent.
  • a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 , a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 , and a solid solution in which the Sr component is dissolved in CaAl 2 O 4 are blended.
  • Examples relating to binders for amorphous refractories Examples 100 to 104 of the present invention are examples of Ca x Sr 1-x Al 2 O 4 Al 2 O 4 with ⁇ -SrAl 2 O 4 having a X value of 0.05 and Ca.
  • a solid solution in which the components are dissolved a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 in which the X value of Ca x Sr 1-x Al 2 O 4 is 0.30, and Ca x Sr 1-x flow value of monolithic refractory which the value of X in the al 2 O 4 was produced using the binder blended with the solid solution to a solid solution of Sr components in CaAl 2 O 4 as a 0.95, measurement of curing flexural strength, And a rotary erosion test using slag.
  • Table 15 shows the solid solution composition, the crystallite size of the solid solution, the blending ratio of the solid solution, the flow value of the amorphous refractory and the curing bending strength, and the rotary erosion test result of each test example.
  • Each solid solution was prepared by firing at a maximum temperature of 1500 ° C. for 2 hours.
  • the flow value of the amorphous refractory suitable for pouring is obtained even after 2 hours from the start of kneading, and it can be applied to a furnace having a large capacity. It was confirmed that it was possible. Further, the bending strength after curing for 6, 12 and 24 hours was larger than that of Comparative Examples 1 to 6, and it was revealed that the curing strength was excellent. In particular, it was confirmed that the bending strength after curing for 6 hours was larger than that of the comparative example and excellent in early strength development. Furthermore, the amount of wear in the rotary erosion test using slag was clearly smaller than that of the comparative example, and it was revealed that the slag resistance at high temperatures was excellent.
  • a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 , a solid solution in which the Sr component is dissolved in CaAl 2 O 4 , and Al 2 O 3
  • binders for amorphous refractories in which ⁇ -SrAl 2 O 4 in which Ca X Sr 1-x Al 2 O 4 has an X value of 0.05
  • a solid solution in which the Ca component is dissolved a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 in which the X value of Ca x Sr 1-x Al 2 O 4 is 0.30, and Ca x Sr 1
  • Table 16 shows the solid solution composition, the crystallite size of the solid solution, the blending ratio of the solid solution and ⁇ -Al 2 O 3 , the flow value of the amorphous refractory and the curing bending strength, and the rotational erosion test result of each test example. .
  • Each solid solution was prepared by firing at a maximum temperature of 1500 ° C. for 2 hours.
  • the flow value of the amorphous refractory suitable for pouring is obtained even after 2 hours from the start of kneading, and it can be applied to a kiln having a large capacity. It was confirmed that it was possible. Further, the bending strength after curing for 6, 12 and 24 hours was larger than that of Comparative Examples 1 to 6, and it was revealed that the curing strength was excellent. In particular, it was confirmed that the bending strength after curing for 6 hours was larger than that of the comparative example and excellent in early strength development. Furthermore, the amount of wear in the rotary erosion test using slag was clearly smaller than that of the comparative example, and it was revealed that the slag resistance at high temperatures was excellent.
  • the binder of the present invention contains one or more selected from the group of SiO 2 , TiO 2 , Fe 2 O 3 , MgO, BaO, and the content thereof is 12% by mass or less.
  • Examples relating to refractory binders Examples 110 to 221 of the present invention are selected from SiO 2 , TiO 2 , Fe 2 O 3 , MgO and BaO in order to confirm the influence of inevitable impurities from the raw materials used and the production process. It is the characteristic evaluation result of the amorphous refractory using the binder which mix
  • Inventive Examples 110 to 137 and Comparative Examples 7 to 14 are binders composed of a solid solution in which a Ca component is dissolved in ⁇ -SrAl 2 O 4 or ⁇ -SrAl 2 O 4 as a component of the present invention.
  • 138 to 149 are binders in which Al 2 O 3 is blended in a solid solution in which the component of the binder is a solid solution of ⁇ -SrAl 2 O 4 or ⁇ -SrAl 2 O 4 with the Ca component, Examples 150 to 197 of the present invention.
  • the binder component is a solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 , the solid solution in which the Ca component is dissolved in ⁇ -SrAl 2 O 4 , and the Sr component in CaAl 2 O 4.
  • Binders composed of two or three kinds of mixtures selected from solid solutions in which the solid solution is dissolved are solid solutions in which the component of the binder is a solid solution of Ca component in ⁇ -SrAl 2 O 4 , ⁇ - Dissolve the Ca component in SrAl 2 O 4
  • a characteristic measurement result of the solid solution and CaAl 2 O 4 in monolithic refractory of the two or three mixtures selected from solid solution which forms a solid solution of Sr component Al 2 O 3 was used binder formed by blending.
  • Tables 17 to 43 show the chemical composition and chemical composition of each of the inventive examples and comparative examples, the flow value of the amorphous refractory, the measurement results of the bending strength after curing, and the rotary erosion test results.
  • Each solid solution was prepared by firing at a maximum temperature of 1500 ° C. for 2 hours.
  • the chemical component of the produced binder was measured by a fluorescent X-ray analysis method (scanning fluorescent X-ray analyzer “ZSX Primus II” manufactured by Rigaku Corporation).
  • the binders of the present invention include 1 of SiO 2 , TiO 2 , Fe 2 O 3 , MgO, and BaO other than SrO, CaO, and Al 2 O 3.
  • the bending strength after curing is decreased, and the amount of wear in the rotational erosion test using slag is increased.
  • one or two or more components of SiO 2 , TiO 2 , Fe 2 O 3 , MgO, BaO contained in the binder are 12% by mass or less, more preferably 5% by mass or less.
  • the binder of the present invention contains one or more selected from the group of SiO 2 , TiO 2 , Fe 2 O 3 , MgO, BaO, and the content is within 12% by mass.
  • the binder for amorphous refractory of the present invention uses a low-purity raw material containing SiO 2 , TiO 2 , Fe 2 O 3 , MgO, BaO as impurities, or each impurity from the manufacturing process. Even when such contamination occurs, by adjusting the content thereof within 12% by mass of the binder, it is possible to have characteristics superior to those of the conventional CaO—Al 2 O 3 binder.
  • Examples relating to amorphous refractories in which at least one of a dispersing agent and a curing retarder is blended in the binder of the present invention are Ca x Sr 1-x Al 2 O 4
  • Various solid solutions and ⁇ -Al 2 prepared by preparing raw materials so as to obtain solid solutions with X values of 0.05, 0.30, and 0.95, and firing at a maximum temperature of 1500 ° C. for 2 hours.
  • Comparative Examples 31 to 36 the raw materials were prepared so that the components were CaAl 2 O 4 , and the binder and ⁇ -Al 2 O 3 prepared by firing with a maximum temperature of 1500 ° C. held for 2 hours were mixed at a predetermined ratio. The same test was performed using the binder mixed in (1). The amount of water added was reduced to 6.2% by mass with respect to 100% by mass of the mixture of the binder and the refractory aggregate to produce an amorphous refractory.
  • Solid solution composition of each test example crystallite diameter of solid solution, solid solution, CaAl 2 O 4 , ⁇ -Al 2 O 3 , mixing ratio of dispersing agent and curing retarder, measurement result of flow value and curing bending strength, and rotational erosion
  • the test results are shown in Tables 44 to 47.
  • surface is shown by the ratio (mass ratio) with respect to a binder.
  • dispersant a commercially available powdered polycarboxylic acid-based dispersant was used, and as the curing retarder, boric acid (reagent grade 1) was pulverized to 200 mesh or less.
  • the raw materials were prepared so that solid solutions with Ca x Sr 1-x Al 2 O 4 having X values of 0.05, 0.30, and 0.95 were obtained, and the maximum temperature of 1500 ° C. was increased to 2
  • Various solid solutions prepared by firing for holding for a period of time, and a binder in which 40% by mass of those mixed and 60% by mass of ⁇ -Al 2 O 3 were blended were used.
  • the amount of the ultrafine powder alumina of 1 ⁇ m or less was increased or decreased, and the amount of fused alumina having a particle size of 75 ⁇ m to 5 mm was adjusted to produce an amorphous refractory so that the total mass of the alumina refractory aggregate was the same.
  • Solid solution composition of each test example, solid solution crystallite diameter, various solid solutions, blending ratio of ⁇ -Al 2 O 3 , amount of sintered alumina of 1 ⁇ m or less, amount of fused alumina of 75 ⁇ m to 5 mm, flow value of amorphous refractory Tables 48 to 52 show the measurement results of curing bending strength and the results of rotational erosion tests.
  • the evaluation results show that the inventive examples 258 to 293 can obtain a flow value suitable for pouring even after 2 hours from the start of kneading, and can be applied to a kiln having a large capacity.
  • the bending strength after 6, 12, and 24 hour curing was also obtained a favorable value, and it became clear that it was excellent in early strength development.
  • the amount of wear in the rotary erosion test using slag is small and the slag resistance at high temperature is excellent.
  • the binder for an irregular refractory according to the present invention contains a refractory aggregate containing ultrafine alumina having a particle size of 1 ⁇ m or less, and the content of ultrafine alumina having a particle size of 1 ⁇ m or less.
  • a refractory aggregate containing ultrafine alumina having a particle size of 1 ⁇ m or less and the content of ultrafine alumina having a particle size of 1 ⁇ m or less.
  • the content of the binder for the irregular refractory is 0.3 mass. % To 20% by mass, and more preferably 0.5% to 12% by mass.
  • Examples relating to amorphous refractories to which at least one of a dispersing agent, a curing retarder, and a curing accelerator is added are examples of X of Ca x Sr 1-x Al 2 O 4
  • a binder that does not contain Sr is used as a component of the binder, and at least one of a dispersing agent, a curing retarder, and a curing accelerator is blended in the same manner.
  • a refractory was made and tested.
  • the amount of water added was reduced to 6.2% by mass with respect to 100% by mass of the binder / refractory aggregate mixture. went.
  • the test was performed by adding 6.8% by mass of water as usual.
  • the powder dispersant, cure retarder, and cure accelerator were mixed with a binder and refractory aggregate in an omni mixer.
  • the liquid dispersant was adjusted such that the mass of the solid component contained was added, and the mass of the solvent part was subtracted from the amount of water to be added to a predetermined amount of water.
  • the liquid dispersant was used by mixing with kneaded water.
  • the dispersant A is a sodium polyacrylate reagent which is a polycarboxylic acid-based dispersant
  • the dispersant B is a trade name “Tight Rock” manufactured by Kao Corporation which is a polyether-based dispersant
  • Dispersant C is a phosphoric acid-based dispersant, sodium tripolyphosphate (first grade reagent)
  • dispersant D is trioxysodium citrate dihydrate (first grade reagent).
  • the product name “FT-3S” solid content 33 mass%) manufactured by Grace Chemical Co., which is a melamine-based dispersant, is used.
  • 150 solid content 40% by mass
  • sodium aluminate first grade reagent
  • aluminate first grade reagent
  • Tables 59 to 78 show the amounts, types and addition amounts of curing accelerators, measurement results of flow values and curing bending strength, and rotational erosion test results.
  • surface, a hardening retarder, and a hardening accelerator is shown in the ratio with respect to the total mass of a binder and a fireproof aggregate.
  • the bending strength after curing for 6, 12 and 24 hours was larger than those of Comparative Examples 31 to 39, 42 and 43, and it was revealed that the curing strength was excellent.
  • the bending strength after curing for 6 hours was larger than that of the comparative example and excellent in early strength development.
  • the amount of wear in the rotary erosion test using slag was clearly smaller than that of the comparative example, and it was revealed that the slag resistance at high temperatures was excellent.
  • Inventive Examples 365 to 370, 418 to 423, 453, 454, 471, 472, 489, 490, 507 and 508 using only a curing accelerator are indefinite refractories suitable for pouring even after 2 hours from the start of kneading.
  • the flow value of the product was obtained, and it was confirmed that it could be applied to a kiln having a large capacity.
  • the bending strength after curing for 6, 12 and 24 hours was larger than that of Comparative Examples 40 and 41, and it was revealed that the curing strength was excellent.
  • the bending strength after curing for 6 hours was larger than that of the comparative example and excellent in early strength development.
  • the amount of wear in the rotary erosion test using slag was clearly smaller than that of the comparative example, and it was revealed that the slag resistance at high temperatures was excellent.
  • the curing bending strength at 6 and 12 hours is increased as compared with the present invention example in which no curing accelerator is added, and it becomes clear that the addition of the curing accelerator is superior in early strength development. It was.
  • the amount of wear in the rotational erosion test using slag was almost the same as when no additive was included, and it was revealed that the slag resistance was excellent at high temperatures.
  • the curing bending strength at 6 and 12 hours is increased compared to the present invention example in which at least one of a dispersant and a curing retardant is added and no curing accelerator is added, and the early strength development is superior. Became clear. In addition, the amount of wear in the rotary erosion test using slag was almost the same, and it was revealed that the slag resistance was excellent at high temperatures.
  • the binder for an amorphous refractory according to the present invention can provide fluidity suitable for pouring even when time has elapsed since kneading, and can exhibit early strength development than the comparative example. Excellent and has good construction performance. Moreover, the slag resistance at 1600 ° C. is better than that of the comparative example, and it has been clarified that the durability at a portion in contact with molten iron or slag is improved.
  • a binder for an amorphous refractory which is superior in corrosion resistance to slag and molten iron, and has an early onset of hardening strength and stability, compared to conventional binders such as alumina cement,
  • the used amorphous refractory and the construction method of the amorphous refractory can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 この不定形耐火物用結合剤は、α-SrAl又はβ-SrAlにCa成分を固溶した固溶体を含有し、この固溶体の結晶子径が、前記α-SrAlが固溶している場合は40nm以上75nm以下であり、前記β-SrAlが固溶している場合は35nm以上70nm以下である。

Description

不定形耐火物用結合剤、不定形耐火物、及び不定形耐火物の施工方法
 本発明は、窯炉の内張りや補修用に用いられる不定形耐火物用結合剤、不定形耐火物、及び不定形耐火物の施工方法に関する。
 本願は、2010年04月28日に、日本に出願された特願2010-104559号に基づき優先権を主張し、その内容をここに援用する。
 鉄鋼プロセスをはじめとする各種高温プロセスの窯炉の内張り耐火物の結合剤には、りん酸ソーダ、けい酸ソーダ、フラン樹脂、フェノール樹脂、ピッチ、乳酸アルミニウム、アルミン酸ソーダ、シリカゾル、アルミナゾル、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、エチルシリケート、アルミナセメント、水硬性アルミナなど、数多くの無機及び有機化合物が用いられている。
 近年、耐火物分野では、施工性の改善や補修のし易さ等から不定形化が進み、従来、定形煉瓦が使用されていた溶鉄や高温のスラグに接する部位にまで、不定形耐火物が広く使用されるようになってきた。
 不定形耐火物の製造では、定形耐火物の製造に見られるような高圧のプレスは行われない。したがって、充填性、保形性や、強度発現のための原料や結合剤の特性の重要性が特に高い。なかでも、アルミナセメント(主要構成化合物:CaO・Al,CaO・2Al,12CaO・7Al)は、高炉樋、溶鋼鍋、RH等の脱ガス・二次精錬設備、タンディッシュ、加熱炉・熱処理炉等の耐火材の結合剤として幅広い用途で使用されている。
 さらに、CaO-Al以外の成分を含むアルミナ系の結合剤の使用も検討されている。
 例えば、特許文献1及び特許文献2には、バリウムもしくはストロンチウムとアルミナとを主体とする耐火性アルミナセメント製造用原料混合物が開示されている。具体的には、炭酸塩及び塩化物の混合物を適切に熱処理することで、セメント製造用の原料混合物を得るものである。
 非特許文献1では、CaO-SrO-Al系のセメントに、市販の高純度試薬を添加して混合・焼成して試作したものが開示されており、水を添加して硬化する性質が示されている。
 また、特許文献3では、CaO-SrO-Al組成のセメント製造用原料混合物を用いた不定形耐火物用結合剤が開示されており、CaO-Al組成の結合剤と比較して、高温での耐スラグ性が向上することが示されている。
日本国特開昭52-148524号公報 日本国特開昭58-26079号公報 日本国特開2008-290934号公報
伊藤,水野,河野,鈴木:窯業協会誌,89,10,572-577,1981 Prodjosantoso,A.K. and B.J.Kennedy, Journal of Solid State Chemistry, 2002, Vol.168, No.1, pp.229-236
 しかしながら、鋼品質の向上が求められる中、操業の温度等の条件は厳しくなる一方で、従来の結合剤では高温での耐食性等が不十分となりつつある。一般に使用されているアルミナセメントをはじめとする結合剤は、不定形耐火物を構成する耐火骨材成分に比べて、溶鉄やスラグ中の酸化鉄と低融物を形成しやすく、結合剤の部分から耐火物の損耗や浸潤が進んで、耐火骨材成分が有する本来の耐用性を十分に発揮できないという課題があった。
 ちなみに、特許文献1では、バリウムもしくはストロンチウムとアルミナを主体とする耐火性アルミナセメント製造用原料混合物が提供されており、これを利用したクリンカー結合剤の強度等が調べられているものの、圧縮強度は製造後3日及び7日では十分に発現せず、28日後でようやく最大の強度が発現している。
 しかし、通常の不定形耐火物では、1日後には乾燥・昇熱が行われ、使用環境に晒されることが多く、24時間以内に最大の強度が発現していなければならない。そのため、28日後にようやく最大強度が発現するような結合剤は不定形耐火物用としては適用できない。
 また、特許文献1には、1000℃を超えるような高温での特性は全く開示されておらず、さらに、高温の溶鉄やスラグに対する耐食性については不明であり、高温での耐食性に優れた不定形耐火物へ適用するための手段は何ら示されていない。
 また、特許文献2では、ストロンチウムアルミネートを結合剤とした断熱性キャスタブル調合物が提供されており、高温での強度を有する断熱材が得られているものの、窯炉の背面にライニングされる断熱用途であるため、窯炉のウェアライニングに必須の特性である高温の溶鉄やスラグに対する耐食性については不明である。また、ストロンチウムアルミネートを結合剤として用いた場合、混練中にストロンチウムイオンが溶出しやすいため、これにより凝集が起こり易く、ストロンチウムアルミネートを結合剤とした断熱性キャスタブルを施工することが容易ではない場合があることが明らかになった。
 また、非特許文献1では、CaO-SrO-Al系のセメントが試作され、0.3~0.4molのSr置換量において硬化体強度が極大となることが示されているが、1000℃を超えるような高温での特性は全く開示されておらず、やはり、高温での耐食性に優れた不定形耐火物へ適用するための手段は何ら示されていない。
 以上の制約により、実際に工業化されている不定形用耐火物用結合剤は、CaO・Alを主体として、α-Alや、CaO・2Al、12CaO・7Al、及び各種添加剤を含有したアルミナセメントが用いられているのが現状である。
 また、非特許文献2では、CaAl-SrAl固溶体の結晶構造がCaやSrの固溶量によって変わることが示されている。CaAlが鉄鋼業における耐火キャスタブルに使用される高アルミナセメントの主要成分であることがIntroductionに記載されている。しかしながら、CaAl-SrAl固溶体を不定形耐火物の結合剤に用いたときの、不定形耐火物の強度や耐食性等の性能にかかわる記載や示唆は全くない。
 ちなみに、現在、不定形耐火物用結合剤に使用されているアルミナセメントとしては、例えば、電気化学工業社製商品名「ハイアルミナセメントES」、「ハイアルミナセメントVS-2」、「ハイアルミナセメントスーパー90」、「ハイアルミナセメントスーパーG」、「ハイアルミナセメントスーパー2」、「ハイアルミナセメントスーパー」等や、ケルネオス社製商品名「セカール71」、「セカール80」等が挙げられるが、いずれもCaO・Alを主体として、α-AlやCaO・2Al、12CaO・7Al、及び特性に応じて少量の添加剤を配合したものである。
 従って、操業の温度等の条件は厳しくなることに対応して、高温での溶鉄やスラグに対する耐食性に、より優れた不定形耐火物用の結合剤の開発が強く望まれていた。
 これに対して、特許文献3では、従来のアルミナセメントよりもスラグや溶鉄に対する耐食性に優れる結合剤としてCaSr1-xAlが示されている。しかしながら、さまざまな厚み・形状等を有する窯炉の不定形耐火物の結合剤として広く用いるためには硬化強度の更なる向上が求められていた。
 本発明は、従来のアルミナセメント等の結合剤よりも、スラグや溶鉄に対する耐食性に優れ、かつ硬化強度の早期発現及びその安定性に優れた不定形耐火物用結合剤、その結合剤を用いた不定形耐火物、及び、その不定形耐火物の施工方法を提供することを目的とする。
 本発明者は、不定形耐火物の耐火度を向上するという観点で、不定形耐火物用結合剤中のCaを金属元素で置換することに着目し、従来のアルミナセメントの成分であるCaO・AlにSrOを固溶させることで(別の言い方をすれば、SrAlにCa成分を固溶する固溶体とすることで)、組成を高融点化し、スラグや溶鉄に対する耐食性に優れ、施工性及び高温での安定性も向上できることを新たに見出している(特許文献3参照)。また、SrOの固溶によって、不定形耐火物の強度発現までの時間を短縮することで、高強度化できることも見出している(特許文献3参照)。
 本発明者の更なる鋭意検討の結果、新たに上記固溶体の結晶子径に着目して調査および検討したところ、結晶子径が従来よりも小さい所定のサイズ以下となると、耐食性や強度発現性を更に向上できることを見出して本発明を為すに至った。
 なお、固溶とは、2種類以上の元素(金属でも非金属でもあり得る)が互いに溶け合い、全体が均一の固相となる状態を指す。また、固溶体とは、2種以上の元素によって形成される均一な固体の結晶質の相を指す。
 本発明の要旨は、以下の通りである。
(1)α-SrAl又はβ-SrAlにCa成分を固溶した固溶体を含有し、この固溶体の結晶子径が、前記α-SrAlが固溶している場合は40nm以上75nm以下であり、前記β-SrAlが固溶している場合は35nm以上70nm以下である、不定形耐火物用結合剤。
(2)前記α-SrAl又は前記β-SrAlにCa成分を固溶する固溶体を10質量%以上60質量%以下含有し、かつAlが40質量%以上90質量%以下配合されている、上記(1)に記載の不定形耐火物用結合剤。
(3)更に、CaAlにSr成分を固溶する固溶体が混合物として含有され、この固溶体の結晶子径が25nm以上60nm以下である、上記(1)に記載の不定形耐火物用結合剤。
(4)前記α-SrAl又は前記β-SrAlにCa成分を固溶する固溶体と前記CaAlにSr成分を固溶する固溶体とを10質量%以上60質量%以下含有し、かつAlが40質量%以上90質量%以下配合されている、上記(3)に記載の不定形耐火物用結合剤。
(5)前記α-SrAlにCa成分を固溶する固溶体と、前記β-SrAlにCa成分を固溶する固溶体との両方が混合物として含有されている、上記(1)に記載の不定形耐火物用結合剤。
(6)前記α-SrAlにCa成分を固溶する固溶体と前記β-SrAlにCa成分を固溶する固溶体との両方を合計で10質量%以上60質量%以下含有し、かつAlが40質量%以上90質量%以下配合されている、上記(5)に記載の不定形耐火物用結合剤。
(7)更に、前記CaAlにSr成分を固溶する固溶体が混合物として含有されている、上記(5)に記載の不定形耐火物用結合剤。
(8)前記α-SrAlにCa成分を固溶する固溶体と、前記β-SrAlにCa成分を固溶する固溶体と、前記CaAlにSr成分を固溶する固溶体とを合計で10質量%以上60質量%以下含有し、かつAlが40質量%以上90質量%以下配合されている、上記(7)に記載の不定形耐火物用結合剤。
(9)前記不定形耐火物用結合剤中に、SiO,TiO,Fe,MgO及びBaOの群から選ばれる1種又は2種以上を含み、その含有量が12質量%以内である、上記(1)に記載の不定形耐火物用結合剤。
(10)前記不定形耐火物用結合剤中に、分散剤及び硬化遅延剤の少なくとも一方が配合されている、上記(1)に記載の不定形耐火物用結合剤。
(11)上記(1)~(10)のいずれか1項に記載の不定形耐火物用結合剤を、耐火骨材に配合してなる、不定形耐火物。
(12)前記耐火骨材に、粒径0.8nm以上1μm以下の超微粉アルミナが含まれている、上記(11)に記載の不定形耐火物。
(13)前記不定形耐火物用結合剤及び前記耐火骨材の合計量を100質量%とした場合に、前記不定形耐火物用結合剤の含有量が、0.3質量%以上かつ20質量%以下である、上記(11)に記載の不定形耐火物。
(14)前記不定形耐火物用結合剤及び前記耐火骨材の合計量を100質量%とした場合に、前記不定形耐火物用結合剤の含有量が、0.5質量%以上かつ12質量%以下である、上記(13)に記載の不定形耐火物。
(15)更に、分散剤、硬化遅延剤及び硬化促進剤のうちの少なくとも一つが添加されている、上記(11)に記載の不定形耐火物。
(16)前記分散剤が、ポリカルボン酸系分散剤、リン酸系分散剤、オキシカルボン酸類、メラミン系分散剤、ナフタレン系分散剤、及びリグニンスルホン酸系分散剤からなる群より選ばれる1種又は2種以上であり、前記硬化促進剤が、アルカリ金属塩類及びアルミン酸塩の少なくとも一方であり、前記硬化遅延剤が、ホウ酸類及びケイフッ化物の少なくとも一方である、上記(15)に記載の不定形耐火物。
(17)上記(1)~(10)のいずれか1項に記載の不定形耐火物用結合剤を、粒径1μm以下の超微粉アルミナを含む耐火骨材に配合して混練した後、得られた不定形耐火物を施工する工程を含む、不定形耐火物の施工方法。
 本発明に係る不定形耐火物用結合剤は、従来のものと比較して短時間で良好な強度発現性を有しており、脱枠に要する時間を短縮でき、施工効率が向上する他、スラグや溶鉄に対する耐食性に優れ、高温で使用される窯炉の内張りの不定形耐火物に寿命延長の効果を発揮することができる。
評価試料の形状を示す斜視図である。 回転侵食炉の外観斜視図である。 回転侵食炉の断面を示す説明図である。
 以下に本発明における幾つかの実施の形態を説明する。
 本発明の第一の実施形態においては、結合剤として、その中にSrAlにCa成分を固溶する固溶体を含有する。その際、SrAlがα-SrAlの場合は、固溶体の結晶子径が40nm以上75nm以下であること、又、SrAlがβ-SrAlの場合は、固溶体の結晶子径が35nm以上70nm以下である。
 上記所定範囲の結晶子径の固溶体を含有する結合剤は、従来のアルミナセメント(CaO・Al主体)よりも融点が高く、水と反応して硬化体となった際に、高温での安定性に優れる。また、特に結晶子径が上記所定の範囲では、本結合剤を使用して不定形耐火物を製造する際に、適正な作業時間が確保でき、かつ硬化速度が従来と比べて向上し、耐食性および強度もより向上するため、幅広い用途の結合剤として使用可能である。
 但し、その効果を発揮し易くするには、この固溶体の含有量が結合剤中の10質量%以上であることが好ましい。また、その含有量の上限は100質量%でも良い。結合剤中の残部の組成としては、Alが代表的であるが、その他には、SiO,TiO,Fe,MgO,BaO等が存在することが例示できる。これらが本発明の結合剤中に入る経路としては、Alの場合は高耐火性を付与する為に意図的に添加する場合がある。その他の成分は使用原料中に予め含まれている場合や結合剤原料及び製造品の粉砕装置、輸送装置及び焼成装置等の製造工程からのコンタミネーションが考えられる。また、以下に示す実施形態における固溶体が結合剤中に混合物として含まれることもできる。
 本発明の第二の実施形態は、第一の実施形態に記載のα-SrAlにCa成分を固溶する固溶体の結晶子径が40nm以上75nm以下である固溶体を含有する結合剤中に、又はβ-SrAlにCa成分を固溶する固溶体の結晶子径が35nm以上70nm以下である固溶体を含有する結合剤中に、CaO・AlにSr成分としてSrOを固溶させた固溶体が混合されており、このCaO・AlにSrOを固溶させた固溶体の結晶子径が25nm以上60nm以下である不定形耐火物用結合剤である。
 結合剤におけるこれらの固溶体同士の存在形態は、互いに固溶し合って1つの固溶体として存在している訳ではなく、それぞれ独立した固溶体として存在し、結合剤は混合物としての形態で存在する。
 結合剤中に含まれるCaO・AlにSrOを固溶させた固溶体の含有割合は限定されない。但し、その効果を発揮し易くするには、この固溶体の混合物の含有量が結合剤中の10質量%以上であることが好ましい。また、その含有量の上限は100質量%でも良い。結合剤中としての残部がある場合は、残部の組成としては、Alが代表的であるが、その他には、SiO,TiO,Fe,MgO,BaO等が存在することが例示できる。これらが本発明の結合剤中に入る経路としては、第一の実施形態と同様に、Alは高耐火性を付与する為に意図的に添加する場合がある。その他の成分は使用原料中に予め含まれている場合や結合剤原料及び製造品の粉砕装置、輸送装置及び焼成装置等の製造工程からのコンタミネーションが考えられる。
 このCaO・AlにSrOを固溶させた固溶体は水硬性を有しており、従来のアルミナセメント中のCaO・Alよりも融点が高く、水と反応して硬化体となった際に、高温での安定性に優れるため、従来の結合剤よりも高い効果が得られるものである。また、CaO・AlにSrOを固溶させた固溶体は、結晶子径が25nm以上60nm以下の範囲で適正な作業時間と硬化速度が得られるため、更に好ましい。
 次に、本発明の第三の実施形態は、結合剤中に、第一の実施形態に記載のα-SrAlにCa成分を固溶する所定範囲の結晶子径を有する固溶体、及び、β-SrAlにCa成分を固溶する所定範囲の結晶子径を有する固溶体を、第一の実施形態とは異なり、片方だけでなく両方を含有している形態である。これに更に第二の実施形態に記載のCaO・AlにSr成分を固溶する固溶体を含んでも構わない。結合剤におけるこれらの固溶体同士の存在形態は、互いに固溶し合って1つの固溶体として存在している訳ではなく、それぞれが独立した固溶体として存在し、結合剤は混合物としての形態で存在する。また、第三の実施形態においても、第一の実施形態や第二の実施形態と同様に従来の結合剤よりも高い効果が得られるものである。
 これら2種又は3種の固溶体の結合剤中の混合物としての割合は特に規定しない。但し、その効果を発揮し易くするには、これらの固溶体の混合物の合計した含有量が結合剤中の10質量%以上であることが好ましい。また、その含有量の上限は100質量%でも良い。結合剤としての残部の組成としては、Alが代表的であるが、その他には、SiO,TiO,Fe,MgO,BaO等が存在することが例示できる。これらが本発明の結合剤中に入る経路としては、第一、第二の実施形態と同様に、Alは高耐火性を付与する為に意図的に添加する場合がある。その他の成分は使用原料中に予め含まれている場合や結合剤原料及び製造品の粉砕装置、輸送装置及び焼成装置等の製造工程からのコンタミネーションが考えられる。
 第一~第三の実施形態における結合剤中の不純物である上記SiO,TiO,Fe,MgO,BaO等の含有量は、工業的に使用される原料の選択及び製造工程の管理、適正化を行うことで本発明の効果に影響が無い程度に低減することができる。その量はそれぞれの物質の酸化物換算した化学成分量を含む合計量で、本発明の結合剤に対して12質量%以内であることが望ましく、5質量%以内であることがさらに望ましい。12質量%より大きいと、結合剤を使用した不定形耐火物の強度発現性及び耐食性が低下する等の性能低下が生じる場合がある。
 また、SiO,TiO,Fe,MgO,BaOの含有量が12質量%以下であると、不定形耐火物の養生後強度が上昇する場合がある。この原因は、これらの成分を含む鉱物が非晶質を生成し、水と反応した場合にイオンの溶出を容易にするためと推測される。強度上昇は5質量%以下で大きく、12質量%まで現れる。しかし12質量%を超える場合では、これらの成分を含む鉱物が水への溶解性が乏しい結晶相を生成するためか、逆に強度が低下する場合がある。また、不純物として融点の低下を引き起こすためか、高温での耐食性も低下する場合がある。
 さらに、本発明者はSrAlの固溶体中に、Ca成分を全く含まない場合も比較検討したが、本発明のようにCa成分を含む場合とは、結合剤の機能として、差異があることを見出した。そこで、これらの結合剤としての機能を把握するために、イオン溶出試験にて水との反応過程を比べた。その結果、固溶体の組成をCaSr1-xAlとした場合に、X=0でCa成分を含まない場合の固溶体の初期のイオン溶出量は、Ca成分を含む場合(例えばX=0.15)の場合の固溶体と比べて極めて多いことが判った。したがって、Ca成分を含まない場合は、イオンの溶出が極めて速く、飽和溶解度に達した後に過飽和溶液中より水和生成物が析出して粒子間に架橋構造を生成して結合に寄与、強度を発現し硬化に至ることになる。
 具体的には、Ca成分を含まないSrAl組成から混練水中へのSrイオンが溶出する速度と、本発明における上述した各種の固溶体からSr及びCaイオンが溶出する速度を比較するために、蒸留水400g中に試料200gを投入し、マグネチィックスターラーを用いて所定時間撹拌した後の溶液を抽出し、ICP(誘導結合プラズマ)発光分析装置を用いて分析して、溶液中の元素量を測定した。溶液中の元素は各種のイオンの状態で存在すると仮定して、同撹拌時間での含有量を比較した結果、Ca成分を含まないSrAlから混練水中へのSrイオンが溶出する速度は、本発明における各種の固溶体からSr及びCaイオンが溶出する速度よりも大きくなることが定量的に判った。
 そのため、X=0の場合、不定形耐火物用結合剤として用いた場合に多量のイオンの溶出により、材料の凝集が生じ易くなることによって硬化に至る時間が速くなり、不定形耐火物の施工量が多く、例えば、施工に1時間以上要するような場合には、混練中及び流し込み中に材料が硬化する等のトラブルに至る可能性がある。これを抑制するには、初期のイオン溶出を封鎖できる効果のある添加物、すなわち硬化遅延剤として、ホウ酸、ホウ砂、グルコン酸ソーダ、ケイフッ化物等を、Ca成分を含む場合(例えばX=0.15)に比べて多量に添加する必要がある。それでも硬化遅延剤のイオン溶出抑制機能が切れた時点で一気に硬化が進行する。
 したがって、施工に長時間要する場合、例えば施工量が多い窯炉設備では、本発明のように、Ca成分を含む場合の方が、より安定的に施工できることから好ましいことが判った。
 尚、結合剤は通常粉末で使用することから、本発明における上述の固溶体も粉末の状態で結合剤中に存在させるのが好ましい。
 また、いずれの固溶体も結晶子径の測定は、粉末X線回折測定により得られた回折ピークより半価幅を求め、Scherrer法により算出することができる。本発明の固溶体はCaとSrの調合割合により、回折線が変化する特徴がある。α-SrAlにCa成分を固溶する固溶体の場合は2θ=28.4°前後の(-2 1 1)面の回折ピークから、β-SrAlにCa成分を固溶する固溶体を含む場合には2θ=29.5°前後の(1 0 2)面の回折ピークから、CaAlにSr成分を固溶する固溶体の場合は2θ=30.0°前後の(1 2 3)面の回折ピークから半価幅を求めて、それぞれの結晶子径を算出する。
 具体的には、各種原料を調合し焼成法にて合成を行った各種固溶体を、その平均的な評価サンプルが得られるように、バッチ炉を用いた場合は焼成体の表面や内部等の各所から、ロータリーキルン等の連続炉を用いた場合は所定の時間間隔(例えば1分間隔)でサンプルを採取し(例えばn=10)集合及び縮分を行った後、粉砕機にて50%平均径で10μm以下に粉砕する。これを、粉末エックス線回折装置(日本電子社製JDX-3500)を用いて測定を行い、粉末X線回折パターン解析ソフトJADE6を用いて結晶子径を算出すればよい。
 エックス線回折装置は、例えば、エックス線源:CuKα、管電圧40kV、管電流300mA、ステップ角度0.02°、分光器:モノクロメーターの測定条件で2θ=15~40°の範囲を測定すればよい。また、結晶子径の解析に用いるエックス線回折装置由来の半価幅は、同装置同条件のもとでケイ素粉末試料を測定し、その半価幅曲線を求めてその値を使用すればよい。
 次に、本発明における結合剤の製造方法を説明する。
 α-SrAlにCa成分を固溶する固溶体、β-SrAlにCa成分を固溶する固溶体、CaAlにSr成分を固溶する固溶体の製造においては、焼成温度にもよるが、出発原料の配合比を所定のモル比になるように変えることで、作り分けることができる。
 出発原料は、CaO、SrO、Alを主成分とすればいずれの原料でも構わないが、CaOやSrOは大気中で水和する可能性があるため、CaCO,SrCO,Alを用いることが好ましい。原料の種類について詳しくは後述する。
 CaO:SrO:Al換算での混合割合は、CaSr1-xAlと表した場合にモル比で所定のXとなるように秤量、配合して作り分ける。
 混合物を例えば1450℃で焼成した後に得られる結晶相は、X=1.0ではCaAl、X=0.8~0.9程度ではCaAlにSr成分を固溶する固溶体、X=0.5~0.7程度ではCaAlにSr成分を固溶する固溶体とβ-SrAlにCa成分を固溶する固溶体の混合物、X=0.3~0.4程度ではβ-SrAlにCa成分を固溶する固溶体、X=0.1~0.2程度ではβ-SrAlにCa成分を固溶する固溶体とα-SrAlにCa成分を固溶する固溶体の混合物、X=0超~0.1程度ではα-SrAlにCa成分を固溶する固溶体である。
 この際、Srのモル比率の増加に伴ってa軸,b軸,c軸の格子定数が増加する。これはCaとSrのイオン半径が理由として挙げられる。ポーリングのイオン半径を参照するとCaのイオン半径が0.099nmであるのに対して、Srは0.113nmであり、Srの方が大きい。イオン半径の大きいSrが置換されたことにより格子が膨張して格子面間隔が広がったと考えられる。
 従って、これらの結晶相の同定は粉末X線回折法(XRD)を用いることで可能であり、所望の固溶体やその混合物を確認しながら、適宜作り分けることができる。装置は例えば理学電機株式会社製湾曲結晶モノクロメーター付きRAD-Bシステムを用いることができる。XRD測定条件は、対陰極Cu(CuKα),2θ=15°~70°,管電圧40kV,管電流20mA,スキャンステップ0.010deg,スキャンスピード4°/min,発散スリット1/2deg,受光スリット0.15nm,散乱スリット1/2degの条件で行ったが、この条件に限るものではない。結晶相の精密測定を行う際はシリコン、アルミニウム、マグネシウム等を一次標準試料として内部標準法を用いることが好ましい。
 また、これらの固溶体や固溶体の混合物を、更に混合して目的とする固溶体の混合物を製造してもよい。
 また、結晶子径を所定のサイズとするための方法としては、固溶体の結晶子径をα-SrAlにCa成分を固溶する固溶体の場合40nm以上75nm以下の範囲に、β-SrAlにCa成分を固溶する固溶体の結晶子サイズを35nm以上70nm以下の範囲に、CaAlにSr成分を固溶する固溶体を含む場合25nm以上60nm以下の範囲に、調整する場合は、例えば電気炉、反射炉、平炉、縦型炉またはシャトルキルン、或いはロータリーキルン等の焼成装置を用いて、1300℃~1600℃の温度で焼成すればよく、1400℃~1500℃での処理がより好ましい。
 焼成温度が1300℃より小さい場合、未反応の原料が残り易くなり、目的とする固溶体の生成量が低下する場合がある。また、1600℃より大きい場合、固溶体の結晶が成長し過ぎて結晶子径が過大となり、所定の範囲を外れて強度発現性が低下する場合がある。1400℃~1500℃の温度では、所定の結晶子径を得る為の焼成時間を短くすることが出来る他、過焼成による結晶子径の過剰な増加が生じ難くなることから好ましい温度域と言える。
 焼成を行う時間は、各々の温度で目標の結晶子径が得られるように調整すればよく、例えば、1400℃の場合1~24時間、1500℃の場合0.5~12時間程度である。1400℃で24時間を超える焼成を行った場合及び1500℃で12時間を超える焼成を行った場合は、固溶体の結晶子径が大きくなり過ぎて、規定の結晶子径の範囲を外れることから、短期養生時間での硬化強度が低下する為好ましくない。より好ましい焼成温度と焼成時間は、1400~1500℃において、1~5時間である。
 なお、上記適正な温度や焼成時間は、炉の容積や加熱能力等の仕様によって多少変わることから、焼成後試料の生成相をX線回折で確認し、目的の結晶子径範囲を有する固溶体の生成有無を確認して製造することが、確実に所望の固溶体を得るためには好ましい。
 本発明の第一~第三のいずれの実施形態においても、固溶体が水と反応して硬化体となった際に、硬化体の強度や耐火度をより高めることが要求される場合は、Alを配合させた結合剤とすることが好ましい。好適な結合剤中の含有量は、固溶体が10質量%以上60質量%以下、かつ配合されたAlが40質量%以上90質量%以下である。
 これは、固溶体含有量が10質量%未満では、不定形耐火物の耐火骨材の成分や粒度分布によっては、十分な硬化強度が発現されにくくなる場合があるためである。
 一方、固溶体含有量が60質量%超では、不定形耐火物の耐火骨材の成分や粒度分布によっては、硬化速度が速過ぎ、施工を行うのに十分な可使時間が確保されにくくなる場合があるためである。
 また、結合剤中のAlが40質量%以上では、硬化体の強度や耐火度を十分に高めることができるため好ましい。但し、90質量%超配合させた場合では、固溶体の含有量が相対的に少なくなるため、均一に硬化させにくくなる場合があることから90質量%以下が好ましい。
 次に、本発明の不定形耐火物用結合剤を使用した不定形耐火物について説明する。本発明において、不定形耐火物中の結合剤と耐火骨材の配合比率は、特に規定するものではなく、任意の配合比率であっても、その効果があることを確認している。
 但し、本発明の不定形耐火物用結合剤を使用して実際の不定形耐火物を製造する際には、結合剤と耐火骨材の配合比率は、結合剤と耐火骨材の合計量を100質量%とした場合に、結合剤量を0.3質量%以上20質量%以下と、さらに好ましくは0.5質量%以上12質量%以下とすることが推奨される。
 この理由は、0.3質量%未満では、結合が不十分で結合剤が硬化した後の強度が不十分な場合があるためである。また、20質量%を超えると、結合剤の水和や脱水過程での体積変化等が不定形耐火物全体に影響することがあり、亀裂等が発生する場合があるためである。
 不定形耐火物用の耐火骨材としては、電融アルミナ、電融ボーキサイト、焼結アルミナ、仮焼アルミナ、電融ムライト、合成ムライト、溶融シリカ、電融ジルコニア、電融ジルコニアムライト、ジルコン、マグネシアクリンカー、電融マグネシア、電融マグクロ、焼結スピネル、電融スピネル、窒化珪素、炭化珪素、鱗状黒鉛、土状黒鉛、シリマナイト、カイアナイト、アンダルサイト、ろう石、ばん土頁岩、ドロマイトクリンカー、けい石、粘土、シャモット、石灰、クロム、溶融石英、カルシウムアルミネート、カルシウムシリケート、シリカフラワー等が使用可能である。これらの一種でも二種以上の組み合わせでも構わない。
 本発明の結合剤を不定形耐火物の結合剤に用いる場合、施工する際の水または水含有溶媒の量は特に規定するものではない。但し、骨材の粒度分布や分散剤の種類・量にも依存するが、概ね耐火骨材に対して外掛けで2~10質量%程度が好適である。
 その理由は、2質量%よりも少ないと硬化させにくくなるためである。また、10質量%よりも多いと硬化組織形成に関わる量が相対的に高くなり、硬化反応中の体積変化等が耐火物の品質に悪影響を与え易くなるためである。
 また、本発明の結合剤を不定形耐火物の結合剤に用いる場合、気温や湿度に応じて、水和・硬化反応の速度を適性に制御するために、分散剤や硬化調整剤を加えることが好ましい。
 分散剤としては、炭酸ソーダ、炭酸水素ソーダ等の炭酸塩、クエン酸やクエン酸ソーダ、酒石酸、酒石酸ソーダ等のオキシカルボン酸類、ポリアクリル酸やメタクリル酸及びその塩類、トリポリリン酸ソーダやヘキサメタリン酸ソーダ等の縮合リン酸塩類及び/又はそのアルカリ金属、アルカリ土類金属塩類などが主に使用できる。
 硬化調整剤には、硬化遅延剤又は硬化促進剤を用いることができる。硬化遅延剤としては、ホウ酸、硼砂、グルコン酸ソーダ、ケイフッ化物などを用いることができる。一方、硬化促進剤としては、炭酸リチウムなどのリチウム塩や消石灰、アルミン酸塩などを用いることができる。
 また、ビニロンなどの有機繊維、金属アルミニウム粉、乳酸アルミニウム等の爆裂防止剤を添加し、材料の通気率を上げる方法も用いることができる。
 さらに、流動性の改善、充填性向上や焼結性向上のために、超微粉を添加することができる。例えば、シリカヒューム、コロイダルシリカ、易焼結アルミナ、非晶質シリカ、ジルコン、炭化珪素、窒化珪素、酸化クロム及び酸化チタンなどの0.01~100μm程度の粒径の無機微粉末である。
 マグネシア等の塩基性骨材を配合する場合、マグネシアの水和膨張に伴う亀裂が発生する可能性がある。これを抑制するために、ヒュームドシリカのような表面活性の高い添加物を加えることが好ましい。
 さらに、本発明の不定形耐火物を用いて緻密な硬化体を製造するため、水との混練時にポリカルボン酸系減水剤、リグニン系減水剤などの減水剤、高性能減水剤、高性能AE減水剤等の化学混和剤が使用できる。これら化学混和剤の種類や添加量は、配合する耐火骨材の種類や量、施工温度等の条件によって適宜選択することができる。
 本発明の不定形耐火物用結合剤の結合剤であるCaAlにSr成分を固溶する固溶体、β-SrAlにCa成分を固溶する固溶体、α-SrAlにCa成分を固溶する固溶体を製造する際の原料としては、石灰石(主にCaCO)、生石灰(主にCaO)、精製アルミナ(α-Al、Al(OH))やボーキサイト(Al原料)、ストロンチアン鉱(SrCO)や天青石(SrSO)を使用することが好ましい。焼成前に、これらの原料は粉砕機で50%平均径が0.5~15μm程度まで粉砕されていることが好ましい。これよりも粗大な粒子を含むと、未反応の部分が多く残ったり、本発明の組成の固溶体とは異なる組成物が部分的に生成する場合があり、発明の本来の効果が発揮されにくくなる場合があるためである。
 本発明の固溶体と異なる組成物としては、原料中のアルミナ成分が富む場合はCaSr1-xAlが、CaO及びSrO成分が富む場合は(CaSr1-x12Al1433や(CaSr1-xAl等の個溶体が生成する場合がある。しかし、目的とする本発明の個溶体が得られるように原料を調合し、上記のように粉砕及び配合されて製造されていれば、これらの生成量は少なく結合剤特性への影響は小さいものとなる。
 また、原料中のCaO、Al及びSrOの合計が98質量%以上の高純度のものが好ましい。ボーキサイト、ストロンチアン鉱や天青石に含まれているSiO、TiO、MgO、Fe等の不純物は高温での物性を低下させる懸念があり、極力少量であることが好ましい。
 結合剤中の固溶体粉末の粒度は水和反応や硬化速度に影響するため、固溶体製造のための焼成後、粉砕機にて1~20μm程度に整粒化されることが好ましい。この粒度は、レーザー回折法やレーザー散乱法、あるいは沈降天秤法などの粒度分析機器による測定結果であって、50%平均径を表す。原料の混合には、アイリッヒミキサー、ロータリードラム、コーンブレンダー、V型ブレンダー、オムニミキサー、ナウターミキサー、パン型ミキサー等の混合機で均一化することができる。
 粉砕機としては、振動ミル、チューブミル、ボールミル、ローラーミル、ジェットミル等の工業用粉砕機を用いることができる。
 また、第一~第三の実施形態に記載の固溶体を10質量%以上60質量%以下含有し、かつAlを40質量%以上90質量%以下配合させた結合剤は、上記に記載した方法により得られた各種固溶体にα-アルミナ粉末を配合して製造することができる。
 α-アルミナ粉末は、Alを90質量%以上含む高純度のアルミナであり、一般的にアルミナはバイヤー法によって製造される。この方法では、まずボーキサイトを水酸化ナトリウム(NaOH)の熱溶液を用いて250℃で洗浄する。この過程でアルミナは水酸化アルミニウム(Al(OH))に変換され、以下の化学式(1)に示すような反応によって溶解する。
  Al+2OH+3HO → 2[Al(OH)・・・(1)
 このとき、ボーキサイト中の他の成分は溶解せず、固体の不純物としてろ過により除去できる。次に溶液を冷却すると、溶けていた水酸化アルミニウムは白色の綿毛状固体として沈殿する。これを、ロータリーキルン等を用いて1050℃以上で焼成処理すると、下式(2)に示すような脱水が起こってアルミナが生成する。
  2Al(OH)→Al+3HO・・・(2)
 結合剤に配合するα-Alの比表面積によって、結合剤としての流動性が左右されるため、BET比表面積が0.1~20m/g程度のものが好適である。
 α-Alは予め微粉化した状態で、或いは、各種固溶体と混合粉砕して配合することができる。
 結合剤中に配合するα-Alを粉砕した後に配合する場合は、50%平均径が0.3~10μm程度となるように微細化することが好ましい。また、上記の粒子径である微粉アルミナを配合することもできる。尚、固溶体の成分とα-Alとを混合粉砕して配合する場合も、α-Alの50%平均径が同じ範囲になるように粉砕条件を調整することが望ましい。
 α-Alの50%平均径が上記の範囲の場合、結合剤や不定形耐火物に配合される骨材との焼結性が高まり、緻密で耐食性に優れる組織を得ることができる。
 また、Alの純度が高いほど耐火性に優れる為、α-Alの純度は95質量%以上、より好ましくは99質量%以上であることが好ましい。
 このα-Alは、結合剤に予め配合及び混合することで水硬性成分と均一に混ざり合い、これを不定形耐火物へ配合した際に、水硬性成分をより均一に配合させることができ、硬化体の強度発現性及び耐食性の優れた耐火物組織を得ることが可能となる。
 本発明では、α-Alを結合剤と混合粉砕した方が、結合剤組成中により均一に混合され、不定形耐火物に使用した際に硬化体組織が均一となり易く、耐食性等の性能が向上する傾向がある為好ましい。
 また、本発明の不定形耐火物を、窯炉の内張りや補修用に用いられる耐火物として施工する際の方法は、通常の不定形耐火物を施工する方法と同様で構わない。但し、特に粒径0.8nm以上1μm以下の超微粉アルミナを含む骨材と本発明の結合剤とを混合して混練した後、施工すると、本発明の結合剤との相乗効果により、更に結合性が向上して、短時間で良好な強度発現性を発現して施工効率が向上すると共に、スラグや溶鉄に対する耐食性がより向上して窯炉寿命を延長する効果がより強く発揮されることから好ましい。
 1μm以下の超微粉アルミナの不定形耐火物中の配合割合としては、2~70質量%(水分を除く)が好ましい。
 以下実施例により本発明をさらに詳しく説明するが、本発明は、これらの実施例のみによって限定されるものではない。
 以下の実施例では、原料として、純度99質量%のCaCO(宇部マテリアルズ製)と、純度98質量%のSrCO(堺化学工業製)と、純度99質量%の高純度α-アルミナ(日本軽金属製)とを使用した。
 下記の各表の化学組成になるように各原料を天秤で秤量し、乳鉢で混合粉砕した。混合粉砕した原料に対して、外掛けで15質量%の水を加えて造粒成形した後、アルミナ製容器に投入して、電気炉(炉容積130L)中にて大気雰囲気中で、最大温度とその保持時間を変えて加熱処理を行い、その後、常温まで降温し空気中で放冷後、バッチ式ボールミルにて粉砕し、試験例に示す各種固溶体及び結合剤を得た。
 さらに、α―Alを配合した実施例については、得られた固溶体及び結合剤に高純度α-アルミナ(日本軽金属製)を所定の成分になるように配合した。
 また、不純物の影響を把握する為、純度99質量%の酸化ケイ素、酸化チタニウム、酸化マグネシウム及び第二酸化鉄の各種試薬と、純度99%の炭酸バリウム試薬を1400℃の温度条件で加熱処理して得た酸化バリウムを使用し、下記の各表の内容にて配合を行い、上述の内容と同様に結合剤を作製した。
 この結合剤8質量%と、耐火骨材92質量%(篩い分けの粒度が1μm以下の焼結アルミナ50質量%、粒度が75μm~5mmの電融アルミナ43質量%、マグネシア6質量%、シリカフラワー0.8質量%、ビニロン繊維0.15質量%及びホウ酸粉末0.05質量%をオムニミキサーで1分間混合し、さらに、20℃の恒温室にてこれらの混合物100質量%に対して水6.8質量%を加えてモルタルミキサーで混合・混練を3分間行い、不定形耐火物試料を得た。
 作製した不定形耐火物試料の作業性を評価する為に、JIS R 2521「耐火物用アルミナセメントの物理試験方法」内に記載のフロー試験に準拠して、混練直後及び混合開始から2時間後における試料の15回落下運動を与えた後の広がり径を測定した。
 養生後曲げ強度は、不定形耐火物試料を40×40×160mmの型枠に鋳込み、20℃恒温室内にて所定時間養生した後、JIS R2553「キャスタブル耐火物の強さ試験方法」に準拠して測定を行った。尚、養生時間は、不定形耐火物の混合開始から6時間、12時間及び24時間とした。
 また、不定形耐火物試料を20℃の恒温室で養生し、耐火物の硬化体を作製し、高温でのスラグに対する耐食性の評価用試験片に供した。
 高温でのスラグに対する耐食性の評価は回転侵食法により実施した。回転炉には、耐火物を図1の形状に切り出して試験片(耐火物1)を作製し、図2のように耐火物1を8枚内張りして組み込んだ。そのサイズは、a=67mm,b=41mm,c=48mm,d=114mmとした。また、耐火物1を8枚内張した内側には、円筒状の保護板2(略150mmφ)を組み込んだ。
 この組み込まれた耐火物1を、図3に示す様に、回転炉に設置し、耐火物1を回転させながら、回転炉の内部からバーナー3の燃焼により昇温させた。燃焼ガスとして体積比でLPG1:酸素5のものを用いた。尚、符号4はスラグであり、符号5は充填材である。
 各試験片の損耗量は、20mmおきに5点の残寸(脱炭層厚みの場合は非酸化層厚み)を測定し初期厚み(48mm)との差を算出して、その平均を求めた。スラグ4の組成は、CaO=50.5質量%,SiO=16.8質量%,MgO=7質量%,Al=2質量%,MnO=3.5質量%,FeO=20.2質量%として、試験温度は1600℃、25分を1チャージとしてスラグ4を、500gを入れ替え、合計6チャージ、2時間30分の試験を実施した。スラグ4の入れ替えは、横型ドラムを傾転させ排出する方法で行った。
 [1]α-SrAlにCa成分を固溶する固溶体の結晶子径が40nm以上75nm以下であること又は、β-SrAlにCa成分を固溶する固溶体の結晶子径が35nm以上70nm以下である不定形耐火物用結合剤に関する実施例
 本発明例1~8及び参考例1~6は、結合剤の成分がすべてα-SrAlにCa成分を固溶するように原料調合をし、その結晶子径が表中の値となるように焼成条件を調整して作製した固溶体からなる結合剤を用いて製造した不定形耐火物を、本発明例9~16及び参考例7~12は、結合剤の成分がすべてβ-SrAlにCa成分を固溶するように原料調合をし、その結晶子径が表中の値となるように焼成条件を調整して作製した固溶体からなる結合剤を用いて製造した不定形耐火物を、比較例1~3は結合剤の成分にSrを含有しないものを、参考例13~16は結合剤の成分にCa成分を含まないものをそれぞれ用いた不定形耐火物の、フロー値、養生曲げ強度の測定、およびスラグを用いた回転侵食試験を行ったものである。各試験例の結合剤の原料配合、固溶体の結晶子径、焼成条件、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表1~3に示す。
 尚、参考例15は、結合剤の成分にCa成分を含まないものを用いた場合に、混練開始から2時間経過後も所定の流動性が得られるように、不定形耐火物へ配合するホウ酸粉末を、外掛けでキャスタブル質量に対して0.3質量%追加した場合の試験結果である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 評価結果は表1~3に示す通り、本発明例1~16では、混練開始から2時間経過後も流し込みに適したフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例1~3と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例よりも大きく、早期の強度発現性に優れていることが確認された。さらに、本発明例1~16では、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 α-SrAlにCa成分を固溶する固溶体、β-SrAlにCa成分を固溶する固溶体の結晶子径が、本発明の範囲よりも小さい参考例1、4、7、10及び結合剤の成分にCa成分を含まないものを用いた参考例13,14、16では、2時間経過時に流動性の大幅な低下もしくは不定形耐火物の固化が生じ、容量の大きな窯炉等への適用が困難なことが確認された。参考例15に示す通り、硬化遅延剤としてホウ酸粉末の添加量を増量することで2時間経過時の流動性の保持が可能となるが、硬化遅延剤の添加量を大幅に増加する必要がある為、製造コストの増加を招いてしまう問題がある。また、本発明の範囲よりも大きい結晶子径となる参考例2、3、5,6、8、9、11、12では、養生後の強度が本発明の範囲の結晶子径のものと比べて低下し、早期の脱枠が困難となったり、不定形耐火物の乾燥時に強度の不足から爆裂の発生する危険性が高まることが確認された。
 これらの試験結果から、α-SrAlにCa成分を固溶する固溶体の結晶子径が40nm以上75nm以下または、β-SrAlにCa成分を固溶する固溶体の結晶子径が35nm以上70nm以下である結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
 [2]α-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体、又はβ-SrAlにCa成分を固溶し、結晶子径が35nm以上70nm以下である固溶体にAlが配合されてなる不定形耐火物用結合剤に関する実施例
 本発明例17~21は、CaSr1-xAlのXの値が0.05となるα-SrAlにCa成分を固溶する固溶体とα-Alを所定の割合で混合した結合剤を用いて製造した不定形耐火物を、本発明例22~26は、CaSr1-xAlのXの値が0.30となるβ-SrAlにCa成分を固溶する固溶体とα-Alを所定の割合で混合した結合剤を用いて製造した不定形耐火物を、比較例4~6は結合剤の成分がCaAlになるよう原料を調合し作製した結合剤とα-Alを所定の割合で混合した結合剤を用いて製造した不定形耐火物について、フロー値、養生曲げ強度の測定、およびスラグを用いた回転侵食試験を行ったものである。各試験例の固溶体組成、固溶体の結晶子径、固溶体及びCaAlとα-Alの配合割合、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表4,5に示す。尚、何れの固溶体及び結合剤も1500℃の最大温度を2時間保持する焼成を施し作製を行った。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 評価結果は表4,5に示す通り、本発明例17~26では、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例1~6と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例と比較して大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 また、Alを配合させることにより、Alを含まない本発明例3及び11と比べても、スラグを用いた回転侵食試験における損耗量をさらに少なくすることができ、高温での耐スラグ性がより優れることが明らかになった。
 これらの試験結果から、α-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体、又はβ-SrAlにCa成分を固溶する結晶子径が35nm以上70nm以下である固溶体にAlが配合されてなる不定形耐火物用結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
 [3]α-SrAlにCa成分を固溶する固溶体、または、β-SrAlにCa成分を固溶する固溶体にCaAlにSr成分を固溶する固溶体が混合物として含有され、この固溶体の結晶子径が25nm以上60nm以下である不定形耐火物用結合剤に関する実施例
 本発明例27~37及び参考例17~19は、結合剤の成分の全てがα-SrAlにCa成分を固溶した固溶体と、CaAlにSr成分を固溶した固溶体が得られるように原料調合をし、その結晶子径が表中の値となるように焼成条件を調整して作製した固溶体からなる結合剤を用いて製造した不定形耐火物について、また、本発明例38~48及び参考例20~22は、結合剤の成分の全てがβ-SrAlにCa成分を固溶した固溶体とCaAlにSr成分を固溶した固溶体が得られるように原料調合をし、その結晶子径が表中の値となるように焼成条件を調整して作製した固溶体からなる結合剤を用いて製造した不定形耐火物の、フロー値、養生曲げ強度の測定、およびスラグを用いた回転侵食試験を行ったものである。尚、α-SrAlにCa成分を固溶した固溶体及びβ-SrAlにCa成分を固溶した固溶体は、最高温度1500℃を2時間保持する焼成条件で作製を行った。各試験例の原料配合、焼成条件、固溶体の結晶子径、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表6~8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 評価結果は表6~8に示す通り、本発明例27~48では、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例1~3と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例1~3よりも大きく、早期の強度発現性に優れていることが確認された。さらに、比較例1~3よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 CaAlにSr成分を固溶する固溶体の結晶子径が、本発明の範囲よりも小さい参考例17、19、20、22では、2時間経過時に流動性の大幅な低下が生じ、容量の大きな窯炉等への適用が困難なことが確認された。また、本発明の範囲よりも大きい結晶子径となる参考例18、21では、養生後の強度が本発明の範囲の結晶子径のものと比べて低下し、早期の脱枠が困難となったり、不定形耐火物の乾燥時に強度の不足から爆裂の発生する危険性が高まることが確認された。
 これらの試験結果から、α-SrAlにCa成分を固溶し、結晶子径が40nm以上75nm以下である固溶体、またはβ-SrAlにCa成分を固溶し、結晶子径が35nm以上70nm以下である固溶体に、CaAlにSr成分を固溶し結晶子径が25nm以上60nm以下の固溶体を配合した結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
 [4]α-SrAl又はβ-SrAlにCa成分を固溶する固溶体とCaAlにSr成分を固溶する固溶体を含有し、かつAlが配合されている不定形耐火物用結合剤に関する実施例
 本発明例49~53は、CaSr1-xAlのXの値が0.05となるα-SrAlにCa成分を固溶する固溶体と、CaSr1-xAlのXの値が0.95となるCaAlにSr成分を固溶する固溶体とα-Alを所定の割合で混合した結合剤を用いて製造した不定形耐火物を、本発明例54~58は、CaSr1-xAlのXの値が0.30となるβ-SrAlにCa成分を固溶する固溶体とCaSr1-xAlのXの値が0.95となるCaAlにSr成分を固溶する固溶体とα-Alを所定の割合で混合した結合剤を用いて製造した不定形耐火物について、フロー値、養生強度の測定、およびスラグを用いた回転侵食試験を行ったものである。各試験例の固溶体組成、結晶子径、固溶体とα-Alの配合割合、不定形耐火物のフロー値と養生強度の測定結果、および回転侵食試験結果を表9に示す。尚、何れの固溶体も1500℃の最大温度を2時間保持する焼成を施し作製を行った。
Figure JPOXMLDOC01-appb-T000009
 評価結果は表9に示す通り、本発明例49~58では、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例1~6と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例と比較して大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 また、Alを配合させることにより、Alを含まない本発明例34及び45と比べても、スラグを用いた回転侵食試験における損耗量をさらに少なくすることができ、高温での耐スラグ性がより優れることが明らかになった。
 これらの試験結果から、α-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体、またはβ-SrAlにCa成分を固溶する結晶子径が35nm以上70nm以下である固溶体と、CaAlにSr成分を固溶する結晶子径が25nm以上60nm以下である固溶体を含有し、Alが配合されてなる不定形耐火物用結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
 [5]α-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体とβ-SrAlにCa成分を固溶する結晶子径が35nm以上70nm以下である固溶体の両方が混合物として含有されている不定形耐火物用結合剤に関する実施例
 本発明例59~94は、CaSr1-xAlのXの値が0.05及び0.15となるα-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体とCaSr1-xAlのXの値が0.30及び0.55となるβ-SrAlにCa成分を固溶する結晶子径が35nm以上70nm以下である固溶体の両方を含有する結合剤を用いて製造した不定形耐火物のフロー値、養生曲げ強度の測定、およびスラグを用いた回転侵食試験を行ったものである。各試験例の固溶体組成、固溶体の結晶子径、焼成条件、固溶体の配合割合、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表10~13に示す。各固溶体は結晶子径の値が表中の値となるように焼成条件を調整して作製した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 評価結果は表10~13に示す通り、本発明例59~94では、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例1~3と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例と比較して大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 これらの試験結果から、α-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体とβ-SrAlにCa成分を固溶する結晶子径が35nm以上70nm以下である固溶体が混合されてなる不定形耐火物用結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
 [6]α-SrAlにCa成分を固溶する固溶体とβ-SrAlにCa成分を固溶する固溶体の混合物にAlが配合されてなる不定形耐火物用結合剤に関する実施例
 本発明例95~99は、CaSr1-xAlのxの値が0.05となるα-SrAlにCa成分を固溶する固溶体と、CaSr1-xAlのxの値が0.30となるβ-SrAlにCa成分を固溶する固溶体及びα-Alを所定の割合で混合した結合剤を用いて製造した不定形耐火物のフロー値、養生曲げ強度の測定、およびスラグを用いた回転侵食試験を行ったものである。各試験例の固溶体組成、固溶体の結晶子径、固溶体及び結合剤とα-Alの配合割合、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表14に示す。尚、何れの固溶体も1500℃の最大温度を2時間保持する焼成を施し作製を行った。
Figure JPOXMLDOC01-appb-T000014
 評価結果は表14に示す通り、本発明例95~99では、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例1~6と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例と比較して大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 また、Alを配合させることにより、Alを含まない本発明例66と比べても、スラグを用いた回転侵食試験における損耗量をさらに少なくすることができ、高温での耐スラグ性がより優れることが明らかになった。
 これらの試験結果から、α-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体とβ-SrAlにCa成分を固溶する結晶子径が35nm以上70nm以下である固溶体及びAlが配合されてなる不定形耐火物用結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
 [7]α-SrAlにCa成分を固溶する固溶体とβ-SrAlにCa成分を固溶する固溶体とCaAlにSr成分を固溶する固溶体が配合されてなる不定形耐火物用結合剤に関する実施例
 本発明例100~104は、CaSr1-xAlAlのXの値が0.05となるα-SrAlにCa成分を固溶する固溶体と、CaSr1-xAlのXの値が0.30となるβ-SrAlにCa成分を固溶する固溶体と、CaSr1-xAlのXの値が0.95となるCaAlにSr成分を固溶する固溶体を配合した結合剤を用いて製造した不定形耐火物のフロー値、養生曲げ強度の測定、およびスラグを用いた回転侵食試験を行ったものである。各試験例の固溶体組成、固溶体の結晶子径、固溶体の配合割合、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表15に示す。尚、何れの固溶体も1500℃の最大温度を2時間保持する焼成を施し作製を行った。
Figure JPOXMLDOC01-appb-T000015
 評価結果は表15に示す通り、本発明例100~104では、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例1~6と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例と比較して大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 これらの試験結果から、α-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体とβ-SrAlにCa成分を固溶する結晶子径が35nm以上70nm以下である固溶体とCaAlにSr成分を固溶する結晶子径が25nm以上60nm以下の固溶体が配合されてなる不定形耐火物用結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
 [8]α-SrAlにCa成分を固溶する固溶体とβ-SrAlにCa成分を固溶する固溶体とCaAlにSr成分を固溶する固溶体とAlとが配合されてなる不定形耐火物用結合剤に関する実施例
 本発明例105~109は、CaSr1-xAlのXの値が0.05となるα-SrAlにCa成分を固溶する固溶体と、CaSr1-xAlのXの値が0.30となるβ-SrAlにCa成分を固溶する固溶体と、CaSr1-xAlのXの値が0.95となるCaAlにSr成分を固溶する固溶体及びα-Alを配合した結合剤を用いて製造した不定形耐火物のフロー値、養生曲げ強度の測定、およびスラグを用いた回転侵食試験を行ったものである。各試験例の固溶体組成、固溶体の結晶子径、固溶体とα-Alの配合割合、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表16に示す。尚、何れの固溶体も1500℃の最大温度を2時間保持する焼成を施し作製を行った。
Figure JPOXMLDOC01-appb-T000016
 評価結果は表16に示す通り、本発明例105~109では、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例1~6と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例と比較して大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 また、Alを配合させていることにより、Alを含まない本発明例101と比べても、スラグを用いた回転侵食試験における損耗量をさらに少なくすることができ、高温での耐スラグ性がより優れることが明らかになった。
 これらの試験結果から、α-SrAlにCa成分を固溶する結晶子径が40nm以上75nm以下である固溶体とβ-SrAlにCa成分を固溶する結晶子径が35nm以上70nm以下である固溶体とCaAlにSr成分を固溶する結晶子径が25nm以上60nm以下の固溶体及びAlが配合されてなる不定形耐火物用結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
[9]本発明の結合剤中にSiO,TiO,Fe,MgO,BaOの群から選ばれる1種又は2種以上を含み、その含有量が12質量%以内である不定形耐火物結合剤に関する実施例
 本発明例110~221は、使用する原料及び製造工程からの不可避的不純物の影響を確認する為、SiO,TiO,Fe,MgO,BaOから選ばれる1種又は2種以上の各種コンタミネーション成分を調合して製造した固溶体を配合した結合剤を用いた不定形耐火物の特性評価結果である。また、比較例7~30は各種コンタミネーション成分量が本発明の範囲を外れる場合の特性評価結果である。
 尚、本発明例110~137及び比較例7~14は、結合剤の成分がα-SrAl又はβ-SrAlにCa成分を固溶する固溶体からなる結合剤、本発明例138~149は、結合剤の成分がα-SrAl又はβ-SrAlにCa成分を固溶する固溶体にAlが配合されてなる結合剤、本発明例150~197及び比較例15~30は、結合剤の成分がα-SrAlにCa成分を固溶する固溶体、β-SrAlにCa成分を固溶する固溶体及びCaAlにSr成分を固溶する固溶体から選ばれる2種又は3種の混合物からなる結合剤、本発明例198~221は、結合剤の成分がα-SrAlにCa成分を固溶する固溶体、β-SrAlにCa成分を固溶する固溶体及びCaAlにSr成分を固溶する固溶体から選ばれる2種又は3種の混合物にAlが配合されてなる結合剤を用いた不定形耐火物の特性測定結果である。
 各本発明例及び比較例の化学組成及び化学成分、不定形耐火物のフロー値と養生後曲げ強度の測定結果、及び回転侵食試験結果を表17~43に示す。尚、何れの固溶体も1500℃の最大温度を2時間保持する焼成を施し作製を行った。また、作製した結合剤の化学成分は蛍光エックス線分析法(リガク社製走査型蛍光X線分析装置「ZSX PrimusII」)により測定を行った。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
 評価結果は表17~43に示す通り、比較例7~30では、本発明の結合剤にSrO、CaO及びAl以外のSiO,TiO,Fe,MgO,BaOの1種または2種以上の成分を14.8~23.8質量%含有させることで、養生後曲げ強度の低下や、スラグを用いた回転侵食試験における損耗量の増加が生じている。本発明例110~221では、結合剤に含まれるSiO,TiO,Fe,MgO,BaOの1種または2種以上の成分を12質量%以下、より好ましくは5質量%以下とすることで、これらの成分を含まない場合よりも優れた強度発現性、及び従来のCaO-Al系結合剤よりも優れた高温での耐スラグ特性が得られることが明らかとなった。
 これらの試験結果から、本発明の結合剤中にSiO,TiO,Fe,MgO,BaOの群から選ばれる1種又は2種以上を含み、その含有量が12質量%以内である不定形耐火物用結合剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。この為、本発明の不定形耐火物用結合剤は、SiO,TiO,Fe,MgO,BaO成分を不純物として含んだ純度の低い原料を用いる場合、又は、製造工程から各不純物のコンタミネーションが生じた場合も、それらの含有量を結合剤の12質量%以内に調整することで、従来のCaO-Al系結合剤よりも優れた特性を有することができる。
 [10]本発明の結合剤中に分散剤及び硬化遅延剤の少なくとも一方が配合されてなる不定形耐火物に関する実施例
 本発明例222~257は、CaSr1-xAlのXの値が0.05、0.30及び0.95となる固溶体が得られるように原料調合をし、1500℃の最大温度を2時間保持する焼成を施し作製した各種固溶体とα-Alを所定の割合で混合した結合剤に、分散剤及び硬化遅延剤のいずれか1種及び2種を配合したものを用いて製造した不定形耐火物のフロー値、養生曲げ強度の測定、およびスラグを用いた回転侵食試験を行ったものである。また、比較例31~36は成分がCaAlになるよう原料を調合し、1500℃の最大温度を2時間保持する焼成を施し作製した結合剤とα-Alを所定の割合で混合した結合剤を用いて同様の試験を行ったものである。尚、加える水の量を結合剤と耐火骨材の混合物100質量%に対して6.2質量%と減じて不定形耐火物を作製した。各試験例の固溶体組成、固溶体の結晶子径、固溶体、CaAl、α-Al、分散剤と硬化遅延剤の配合割合、フロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表44~47に示す。尚、表中の分散剤及び硬化遅延剤の配合量は、結合剤に対する割合(質量比)で示す。
 分散剤としては、市販されている粉末ポリカルボン酸系分散剤を使用し、硬化遅延剤としては、ホウ酸(試薬1級)を200メッシュ以下に粉砕して使用した。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 評価結果は表44~47に示す通り、本発明例222~257では、不定形耐火物への添加水量を減じたにも関わらず、混練開始から2時間経過後も流し込みに適したフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例31~36と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例と比較して大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 また、添加水量を減じて不定形耐火物を作製した為、同配合の結合剤を用いて不定形耐火物を作成した場合と比較してスラグを用いた回転浸食試験での損耗量の低減が得られた。
 これらの試験結果から、本発明の不定形耐火物用結合剤に分散剤及び硬化遅延剤を用いることで、注水し混合してから長時間経過した後も良好な作業性を保ち、早期に良好な強度発現性が得られ、従来よりも高温での耐スラグ性に優れる不定形耐火物を得られることが明らかとなった。
 [11]本発明の不定形耐火物用結合剤と粒径1μm以下の超微粉アルミナを含む耐火骨材とを配合してなる不定形耐火物に関する実施例
 本発明例258~293及び参考例23~34は不定形耐火物中の1μm以下の超微粉アルミナ量を0~80質量%に変更した骨材と本発明の結合剤を用いて製造した不定形耐火物について、同様の試験を行ったものである。何れの試験もCaSr1-xAlのXの値が0.05、0.30及び0.95となる固溶体が得られるように原料調合をし、1500℃の最大温度を2時間保持する焼成を施し作製した各種固溶体及びそれらを混合したもの40質量%とα-Al60質量%が配合されている結合剤を用いた。1μm以下の超微粉アルミナ量が増減した分は粒度が75μm~5mmの電融アルミナ量を調整し、アルミナ耐火骨材の合計の質量が同じになるように不定形耐火物を作製した。尚、結合剤、マグネシア、シリカフラワー、ビニロン繊維の配合割合及び添加水量は変更させない。各試験例の固溶体組成、固溶体の結晶子径、各種固溶体、α-Alの配合割合、1μm以下の焼結アルミナ量、75μm~5mmの電融アルミナ量、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表48~52に示す。
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 評価結果は表48~52に示す通り、本発明例258~293では、混練開始から2時間経過後も流し込みに適したフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度も良好な値が得られ、早期強度発現性に優れることが明らかになった。さらに、スラグを用いた回転侵食試験における損耗量が少なく、高温での耐スラグ性に優れることが明らかになった。
 一方、粒径1μm以下の超微粉アルミナを含まない参考例23、25、27、29、31、33では、6時間養生後の曲げ強度が低い値であり、早期の脱枠が困難となったり、不定形耐火物の乾燥時に強度の不足から爆裂の発生する危険性が高まることが確認された。また、粒径1μm以下の超微粉アルミナが80質量%である参考例24、26、28、30、32、34では、2時間経過時のフロー値が低下しており、2時間経過時までに流動性の大幅な低下が生じ、容量の大きな窯炉等への適用が困難なことが確認された。
 これらの試験結果から、本発明の不定形耐火物用結合剤は粒径1μm以下の超微粉アルミナを含む耐火骨材を配合することが好ましく、また、粒径1μm以下の超微粉アルミナの含有量は2~70質量%であることが好ましいことが確認された。
 [12]本発明の不定形耐火物用結合剤の配合量を変化した不定形耐火物に関する実施例
 本発明例294~337及び参考例35~44は、結合剤と耐火骨材の合計を100質量%とした場合の結合剤の量を変化させて、本発明の結合剤を用いて製造した不定形耐火物について、同様の試験を行ったものである。何れの試験もCaSr1-xAlのXの値が0.05、0.30及び0.95となる固溶体が得られるように原料調合をし、1500℃の最大温度を2時間保持する焼成を施し作製した各種固溶体及びそれらを混合したもの40質量%とα-Al60質量%が配合されている結合剤を用いた。各試験例の固溶体組成、固溶体の結晶子径、固溶体及びα-Alの配合割合、結合剤の添加量、不定形耐火物のフロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表53~58に示す。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
 評価結果は表53~58に示す通り、本発明例294~337では、混練開始から2時間経過後も流し込みに適したフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度も良好な値が得られた。特に6時間養生後の曲げ強度は大きな値となっており、早期強度発現性に優れることが明らかになった。さらに、スラグを用いた回転侵食試験における損耗量が少なく、高温での耐スラグ性に優れることが明らかになった。
 一方、結合剤添加量を0.2質量%とした場合の参考例36,38,40,43では、6時間養生後の曲げ強度が低い値であり、早期の脱枠が困難となったり、不定形耐火物の乾燥時に強度の不足から爆裂の発生する危険性が高まることが確認された。結合剤添加量を25質量%とした場合の参考例35,37,39,41,42,44では、スラグを用いた回転侵食試験における損耗量が他の場合と比べて増加しており、高温での耐スラグ性が低下することが確認された。
 また、結合剤の添加量を0.5質量%以上12質量%以下とした本発明例において、養生強度とスラグを用いた回転侵食試験における損耗量のバランスに優れることが確認された。
 これらの試験結果から、本発明の不定形耐火物用結合剤及び前記耐火骨材の合計量を100質量%とした場合に、前記不定形耐火物用結合剤の含有量が、0.3質量%以上かつ20質量%以下であることが好ましく、0.5質量%以上かつ12質量%以下であることがより好ましいことが確認された。
 [13]分散剤、硬化遅延剤、硬化促進剤のうちの少なくとも一つが添加されている不定形耐火物に関する実施例
 本発明例338~515は、CaSr1-xAlのXの値が0.05、0.30及び0.95となる固溶体が得られるように原料調合をし、1500℃の最大温度を2時間保持する焼成を施し作製した各種固溶体及びそれらを混合したもの40質量%とα-Al60質量%が配合されている結合剤を用いて、各種分散剤、硬化遅延剤及び硬化促進剤のうちの少なくともいずれか1種を外割で所定量配合して不定形耐火物を作製し試験を行ったものである。また、比較例31~47は結合剤の成分にSrを含有しない結合剤を用いて、分散剤、硬化遅延剤及び硬化促進剤のうちの少なくともいずれか1種を同様に配合して、不定形耐火物を作製し試験を行ったものである。尚、分散剤、硬化遅延剤、分散剤及び硬化遅延剤を配合した場合は、加える水の量を結合剤と耐火骨材の混合物100質量%に対して6.2質量%と減じて試験を行った。また、硬化促進剤のみを配合した場合は、通常通り6.8質量%の水を加えて試験を行った。粉体の分散剤、硬化遅延剤及び硬化促進剤は、結合剤、耐火骨材と共にオムニミキサーで混合して使用した。液体の分散剤は、含まれる固形成分の質量を添加量とし、溶媒部の質量分を加える水量から減じて所定の水量になるよう調整を行った。また、液体分散剤は混練水と混合して使用した。
 なお、本実施例において、分散剤Aとしては、ポリカルボン酸系分散剤であるポリアクリル酸ナトリウム試薬を、分散剤Bとしては、ポリエーテル系分散剤である花王社製商品名「タイトロック」を、分散剤Cとしては、リン酸系分散剤であるトリポリリン酸ナトリウム(試薬一級)を、分散剤Dとしては、オキシカルボン酸類であるクエン酸三ナトリウム二水和物(試薬一級)を、分散剤Eとしては、メラミン系分散剤であるグレースケミカル社製商品名「FT-3S」(固形分33質量%)を、分散剤Fとしては、ナフタレン系分散剤である花王社製商品名「マイティ150」(固形分40質量%)を、分散剤Gとしては、リグニン系分散剤である日本製紙ケミカル社製商品名「バニレックスHW」を、硬化遅延剤aとしては、ホウ酸類であるホウ酸(試薬特級)を、硬化遅延剤bとしては、ケイフッ化物であるケイフッ化ナトリウム(試薬特級)を、硬化促進剤イとしては、アルカリ金属塩類であるクエン酸リチウム(試薬一級)を、硬化促進剤ロとしては、アルミン酸塩類であるアルミン酸ナトリウム(試薬一級)を使用した。
 各試験例の固溶体組成、固溶体の結晶子径、各種固溶体及び比較として用いたCaAl及びα-Alの配合割合、分散剤の種類と添加量、硬化遅延剤の種類と添加量、硬化促進剤の種類と添加量、フロー値と養生曲げ強度の測定結果、および回転侵食試験結果を表59~78に示す。尚、表中の分散剤、硬化遅延剤及び硬化促進剤の使用量は、結合剤と耐火骨材の合計質量に対する割合で示す。
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
 評価結果は表59~78に示す通り、分散剤及び/又は硬化遅延剤を用いた本発明例338~364、371~376、391~417、424~429、444~452、455、456、462~470、473、474、480~488、491、492、498~506、505及び506の場合、不定形耐火物への添加水量を減じたにも関わらず、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例31~39、42及び43と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例よりも大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 また、添加水量を減じたことで、同じ結合剤を使用し通常の添加水量で作成した本発明例と比べて、養生曲げ強度の増加及びスラグ回転侵食試験における損耗量の低下が得られた。
 硬化促進剤のみを用いた本発明例365~370、418~423、453、454、471、472、489、490、507及び508は、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例40及び41と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例よりも大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 また、硬化促進剤を添加しない本発明例よりも6、及び12時間での養生曲げ強度が増加しており、硬化促進剤を添加することで、より早期強度発現性に優れることが明らかとなった。また、スラグを用いた回転侵食試験における損耗量は、添加剤を含まない場合とほぼ同等となり、優れた高温での耐スラグ性を有することが明らかになった。
 硬化促進剤を用い、更に分散剤と硬化遅延剤の少なくともいずれか一方を用いた本発明例377~390、430~443、457~461、475~479、493~497及び511~515の場合、不定形耐火物への添加水量を減じたにも関わらず、混練開始から2時間経過後も流し込みに適した不定形耐火物のフロー値が得られ、容量の大きな窯炉等への適用が可能なことが確認された。また、6、12及び24時間養生後の曲げ強度は、比較例44~47と比べて大きな値となり、養生強度発現性に優れることが明らかになった。特に、6時間養生後曲げ強度は比較例よりも大きく、早期の強度発現性に優れていることが確認された。さらに、比較例よりもスラグを用いた回転侵食試験における損耗量が明らかに少なく、高温での耐スラグ性に優れることが明らかになった。
 分散剤と硬化遅延剤の少なくともいずれか一方を添加し、硬化促進剤を添加しない本発明例よりも6、及び12時間での養生曲げ強度が増加しており、より早期強度発現性に優れることが明らかとなった。また、スラグを用いた回転侵食試験における損耗量はほぼ同等であり、優れた高温での耐スラグ性を有することが明らかになった。
 このように、本発明の不定形耐火物用結合剤はいずれの実施例でも、混錬から時間が経過した場合にも流し込みに適する流動性が得られる他、比較例よりも早期強度発現性に優れてり、良好な施工性能を有する。また、1600℃での耐スラグ性は、比較例よりも良好であり、溶鉄やスラグに接触する部位での耐用性が向上することが明らかになった。
 本発明によれば、従来のアルミナセメント等の結合剤よりも、スラグや溶鉄に対する耐食性に優れ、かつ硬化強度の早期発現及びその安定性に優れた不定形耐火物用結合剤、その結合剤を用いた不定形耐火物、及び、その不定形耐火物の施工方法を提供することができる。
 1  耐火物(試験片)
 2  保護板
 3  バーナー
 4  スラグ
 5  充填材
 

Claims (17)

  1.  α-SrAl又はβ-SrAlにCa成分を固溶した固溶体を含有し、この固溶体の結晶子径が、前記α-SrAlが固溶している場合は40nm以上75nm以下であり、前記β-SrAlが固溶している場合は35nm以上70nm以下であることを特徴とする、不定形耐火物用結合剤。
  2.  前記α-SrAl又は前記β-SrAlにCa成分を固溶する固溶体を10質量%以上60質量%以下含有し、かつAlが40質量%以上90質量%以下配合されていることを特徴とする、請求項1に記載の不定形耐火物用結合剤。
  3.  更に、CaAlにSr成分を固溶する固溶体が混合物として含有され、この固溶体の結晶子径が25nm以上60nm以下であることを特徴とする、請求項1に記載の不定形耐火物用結合剤。
  4.  前記α-SrAl又は前記β-SrAlにCa成分を固溶する固溶体と前記CaAlにSr成分を固溶する固溶体とを10質量%以上60質量%以下含有し、かつAlが40質量%以上90質量%以下配合されていることを特徴とする、請求項3に記載の不定形耐火物用結合剤。
  5.  前記α-SrAlにCa成分を固溶する固溶体と、前記β-SrAlにCa成分を固溶する固溶体との両方が混合物として含有されていることを特徴とする、請求項1に記載の不定形耐火物用結合剤。
  6.  前記α-SrAlにCa成分を固溶する固溶体と前記β-SrAlにCa成分を固溶する固溶体との両方を合計で10質量%以上60質量%以下含有し、かつAlが40質量%以上90質量%以下配合されていることを特徴とする、請求項5に記載の不定形耐火物用結合剤。
  7.  更に、前記CaAlにSr成分を固溶する固溶体が混合物として含有されていることを特徴とする、請求項5に記載の不定形耐火物用結合剤。
  8.  前記α-SrAlにCa成分を固溶する固溶体と、前記β-SrAlにCa成分を固溶する固溶体と、前記CaAlにSr成分を固溶する固溶体とを合計で10質量%以上60質量%以下含有し、かつAlが40質量%以上90質量%以下配合されていることを特徴とする、請求項7に記載の不定形耐火物用結合剤。
  9.  前記不定形耐火物用結合剤中に、SiO,TiO,Fe,MgO,BaOの群から選ばれる1種又は2種以上を含み、その含有量が12質量%以内であることを特徴とする請求項1に記載の不定形耐火物用結合剤。
  10.  前記不定形耐火物用結合剤中に、分散剤及び硬化遅延剤の少なくとも一方が配合されていることを特徴とする、請求項1に記載の不定形耐火物用結合剤。
  11.  請求項1~10のいずれか1項に記載の不定形耐火物用結合剤を、耐火骨材に配合してなることを特徴とする、不定形耐火物。
  12.  前記耐火骨材には、粒径0.8nm以上1μm以下の超微粉アルミナが含まれていることを特徴とする、請求項11に記載の不定形耐火物。
  13.  前記不定形耐火物用結合剤及び前記耐火骨材の合計量を100質量%とした場合に、前記不定形耐火物用結合剤の含有量が、0.3質量%以上かつ20質量%以下であることを特徴とする、請求項11に記載の不定形耐火物。
  14.  前記不定形耐火物用結合剤及び前記耐火骨材の合計量を100質量%とした場合に、前記不定形耐火物用結合剤の含有量が、0.5質量%以上かつ12質量%以下であることを特徴とする、請求項13に記載の不定形耐火物。
  15.  更に、分散剤、硬化遅延剤及び硬化促進剤のうちの少なくとも一つが添加されていることを特徴とする、請求項11に記載の不定形耐火物。
  16.  前記分散剤が、ポリカルボン酸系分散剤、リン酸系分散剤、オキシカルボン酸類、メラミン系分散剤、ナフタレン系分散剤、及びリグニンスルホン酸系分散剤からなる群より選ばれる1種又は2種以上であり、
     前記硬化促進剤が、アルカリ金属塩類及びアルミン酸塩の少なくとも一方であり、
     前記硬化遅延剤が、ホウ酸類及びケイフッ化物の少なくとも一方であることを特徴とする、請求項15に記載の不定形耐火物。
  17.  請求項1~10のいずれか1項に記載の不定形耐火物用結合剤を、粒径1μm以下の超微粉アルミナを含む耐火骨材に配合して混練した後、得られた不定形耐火物を施工する工程を含むことを特徴とする、不定形耐火物の施工方法。
     
PCT/JP2011/060452 2010-04-28 2011-04-28 不定形耐火物用結合剤、不定形耐火物、及び不定形耐火物の施工方法 WO2011136365A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127030643A KR101444575B1 (ko) 2010-04-28 2011-04-28 부정형 내화물용 결합제, 부정형 내화물 및 부정형 내화물의 시공 방법
EP11775146.1A EP2565174B1 (en) 2010-04-28 2011-04-28 Binder for monolithic refractories, monolithic refractory, and construction method fof monolithic refractories
BR112012027625A BR112012027625B1 (pt) 2010-04-28 2011-04-28 ligante para refratários monolíticos, refratário monolítico, e método de construção de refratários monolíticos
US13/643,591 US8835338B2 (en) 2010-04-28 2011-04-28 Binder for monolithic refractories, monolithic refractory, and construction method of monolithic refractories
ES11775146.1T ES2567185T3 (es) 2010-04-28 2011-04-28 Aglomerante para materiales refractarios monolíticos, material refractario monolítico, y método de construcción de materiales refractarios monolíticos
JP2012512921A JP5683576B2 (ja) 2010-04-28 2011-04-28 不定形耐火物用結合剤、不定形耐火物、及び不定形耐火物の施工方法
CN201180021388.8A CN102958867B (zh) 2010-04-28 2011-04-28 不定形耐火物用粘结剂、不定形耐火物以及不定形耐火物的施工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010104559 2010-04-28
JP2010-104559 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011136365A1 true WO2011136365A1 (ja) 2011-11-03

Family

ID=44861657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060452 WO2011136365A1 (ja) 2010-04-28 2011-04-28 不定形耐火物用結合剤、不定形耐火物、及び不定形耐火物の施工方法

Country Status (8)

Country Link
US (1) US8835338B2 (ja)
EP (1) EP2565174B1 (ja)
JP (1) JP5683576B2 (ja)
KR (1) KR101444575B1 (ja)
CN (1) CN102958867B (ja)
BR (1) BR112012027625B1 (ja)
ES (1) ES2567185T3 (ja)
WO (1) WO2011136365A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057566A1 (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 不定形耐火物
JP2017066025A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 不定形耐火物
JP2022026926A (ja) * 2020-07-31 2022-02-10 Jfeスチール株式会社 不定形耐火物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6499464B2 (ja) * 2015-02-06 2019-04-10 新日鐵住金株式会社 断熱不定形耐火物
JP6725115B2 (ja) * 2017-12-25 2020-07-15 昭和電工株式会社 アルミナ焼結体、砥粒、及び砥石
CN111302776A (zh) * 2020-04-26 2020-06-19 河南兴亚能源有限公司 一种氧化物涂覆改性均化矾土浇注料及其制备方法
CN113443922A (zh) * 2021-07-05 2021-09-28 安徽奇明新材料有限公司 一种改善施工性能的耐火浇注料结合剂及其应用
CN113636851A (zh) * 2021-09-10 2021-11-12 长兴兴鹰新型耐火建材有限公司 一种刚玉莫来石凝胶复合耐磨浇注料,及其烘烤定形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148524A (en) 1976-05-03 1977-12-09 Tashk Ni I Puroekutonui I Suto Mixture of raw materials for manufacture of fireproof alumina cement
JPS56104783A (en) * 1980-01-24 1981-08-20 Asahi Glass Co Ltd Castable blend
JPS5826079A (ja) 1981-08-11 1983-02-16 旭硝子株式会社 耐熱性キヤスタブル調合物
JP2008290934A (ja) 2007-04-27 2008-12-04 Nippon Steel Corp 不定形耐火物用結合剤及び不定形耐火物
WO2009130811A1 (ja) * 2008-04-25 2009-10-29 新日本製鐵株式会社 不定形耐火物用結合剤及び不定形耐火物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915740A (en) * 1986-09-25 1990-04-10 Denki Kagaku Kogyo Kabushiki Kaisha Hydraulic material composition having high strength
MXPA03001031A (es) * 2000-08-04 2003-05-27 Morgan Crucible Company P L C Materiales fibrosos aglomerados.
DE10109267B9 (de) * 2001-02-26 2004-09-23 Refratechnik Holding Gmbh Versatz, insbesondere zur Herstellung eines Feuerfesten Formkörpes mit erhöter Alkalibeständigkeit und Verfahren zum Herstellen eines Versatzes
WO2004065327A2 (de) * 2003-01-23 2004-08-05 Esk Ceramics Gmbh & Co. Kg Ungeformte feuerfeste erzeugnisse, insbesondere feuerbetone, mit nichtoxidanteilen
JP5290125B2 (ja) * 2008-10-24 2013-09-18 新日鐵住金株式会社 不定形耐火物用結合剤及び不定形耐火物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148524A (en) 1976-05-03 1977-12-09 Tashk Ni I Puroekutonui I Suto Mixture of raw materials for manufacture of fireproof alumina cement
JPS56104783A (en) * 1980-01-24 1981-08-20 Asahi Glass Co Ltd Castable blend
JPS5826079A (ja) 1981-08-11 1983-02-16 旭硝子株式会社 耐熱性キヤスタブル調合物
JP2008290934A (ja) 2007-04-27 2008-12-04 Nippon Steel Corp 不定形耐火物用結合剤及び不定形耐火物
WO2009130811A1 (ja) * 2008-04-25 2009-10-29 新日本製鐵株式会社 不定形耐火物用結合剤及び不定形耐火物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ITO; MIZUNO; KAWANO; SUZUKI, JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 89, no. 10, 1981, pages 572 - 577
PRODJOSANTOSO, A.K. ET AL.: "Synthesis and Evolution of the Crystalline Phases in Ca1- xSrxA1204", JOURNAL OF SOLID STATE CHEMISTRY, vol. 168, 2002, pages 229 - 236, XP008143417 *
PRODJOSANTOSO, A.K.; B.J. KENNEDY, JOURNAL OF SOLID STATE CHEMISTRY, vol. 168, no. 1, 2002, pages 229 - 236
See also references of EP2565174A4
SUKETOSHI ITO ET AL.: "Sr Chikan CaA1204-gata Koyotai no Suiwa Kokatai Kyodo", JOURNAL OF THE CERAMIC ASSOCIATION, vol. 89, no. 10, 1981, JAPAN, pages 572 - 577, XP002661041 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057566A1 (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 不定形耐火物
JP2017066025A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 不定形耐火物
CN108025985A (zh) * 2015-09-29 2018-05-11 新日铁住金株式会社 不定形耐火物
US10414695B2 (en) 2015-09-29 2019-09-17 Nippon Steel Corporation Monolithic refractory
CN108025985B (zh) * 2015-09-29 2020-09-15 日本制铁株式会社 不定形耐火物
JP2022026926A (ja) * 2020-07-31 2022-02-10 Jfeスチール株式会社 不定形耐火物
JP7302543B2 (ja) 2020-07-31 2023-07-04 Jfeスチール株式会社 不定形耐火物

Also Published As

Publication number Publication date
JP5683576B2 (ja) 2015-03-11
CN102958867A (zh) 2013-03-06
EP2565174A4 (en) 2013-10-30
KR101444575B1 (ko) 2014-09-24
US8835338B2 (en) 2014-09-16
CN102958867B (zh) 2015-10-21
US20130090229A1 (en) 2013-04-11
EP2565174A1 (en) 2013-03-06
EP2565174B1 (en) 2016-01-20
JPWO2011136365A1 (ja) 2013-07-22
BR112012027625A2 (pt) 2016-08-09
KR20130004378A (ko) 2013-01-09
BR112012027625B1 (pt) 2019-12-10
ES2567185T3 (es) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5290125B2 (ja) 不定形耐火物用結合剤及び不定形耐火物
JP5384025B2 (ja) 不定形耐火物用結合剤及び不定形耐火物
JP5683576B2 (ja) 不定形耐火物用結合剤、不定形耐火物、及び不定形耐火物の施工方法
EP2272811B1 (en) Binder for monolithic refractory and monolithic refractory
JP2005154180A (ja) アルミナセメント組成物及び不定形耐火物
CA2999834C (en) Monolithic refractory
JP4459882B2 (ja) アルミナセメント組成物及びそれを用いた不定形耐火物
JP2005067930A (ja) アルミナセメント、アルミナセメント組成物及びそれを用いた不定形耐火物
JPH0840757A (ja) アルミナセメント組成物及びそれを用いた不定形耐火物
JPH09278500A (ja) アルミナセメント、アルミナセメント組成物、及びそれを用いた不定形耐火物
WO2017057566A1 (ja) 不定形耐火物
JPH08259301A (ja) アルミナセメント組成物及びそれを用いた不定形耐火物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021388.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012512921

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011775146

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127030643

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10236/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13643591

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012027625

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012027625

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121026