WO2011134345A1 - 一种用于过氧化氢生产的氢化系统 - Google Patents

一种用于过氧化氢生产的氢化系统 Download PDF

Info

Publication number
WO2011134345A1
WO2011134345A1 PCT/CN2011/072636 CN2011072636W WO2011134345A1 WO 2011134345 A1 WO2011134345 A1 WO 2011134345A1 CN 2011072636 W CN2011072636 W CN 2011072636W WO 2011134345 A1 WO2011134345 A1 WO 2011134345A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation
liquid
outlet
tower
inlet
Prior art date
Application number
PCT/CN2011/072636
Other languages
English (en)
French (fr)
Inventor
陈纪兴
Original Assignee
扬州惠通化工技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州惠通化工技术有限公司 filed Critical 扬州惠通化工技术有限公司
Publication of WO2011134345A1 publication Critical patent/WO2011134345A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process

Definitions

  • the present invention relates to a hydrogen peroxide production plant, and more particularly to a production process for the hydrogenation process in the production of hydrogen peroxide by the hydrazine process.
  • a mixed solvent composed of two solvents a solvent mainly used as a hydrazine
  • a solvent mainly used as a hydrazine is generally used in the petroleum industry.
  • C9 ⁇ C11 high-boiling mixed aromatic hydrocarbons, or methylnaphthalene may be used; the other is mainly used as a solvent for hydroquinone, and alcohols and esters such as trioctyl phosphate (TOP) and diisobutylmethanol (DIBC) are often used. Wait.
  • TOP trioctyl phosphate
  • DIBC diisobutylmethanol
  • the choice of bismuth is also very important.
  • the selected hydrazine and hydroquinone should have higher solubility in the selected solvent, and be chemically stable as much as possible in addition to the required chemical reaction during repeated hydrogenation and oxidation. It is also cheap and easy to get.
  • 2-Alkyl hydrazine as a working carrier, the most used of which is 2-ethyl hydrazine (EAQ) .
  • EAQ 2-ethyl hydrazine
  • the catalysts used in the hydrazine process are mainly nickel catalysts and palladium catalysts.
  • the nickel catalyst is mainly Raney nickel, which has good activity, but it is easy to self-ignite when exposed to air, easily poisoned by oxygen and hydrogen peroxide, and difficult to regenerate after failure, which greatly limits the use of nickel catalyst, nickel catalyst. It is gradually replaced by a noble metal hydrogenation catalyst such as platinum or palladium, and palladium is especially used. In order to improve the utilization of metals, palladium is usually supported on a large specific surface area carrier. A highly dispersed catalyst is prepared, but the specific surface area is too large and is liable to cause degradation.
  • the hydrogenation system mainly comprises a hydrogen filter, a working fluid preheater, a hydrogenation tower, a hydrogenated liquid gas-liquid separator, a hydrogenation liquid filter, a hydrogenation liquid regeneration bed, a hydrogenation liquid storage tank;
  • the inlet of the hydrogen filter is connected to a hydrogen gas source
  • the outlet of the hydrogen filter is connected to the hydrogen inlet of the hydrogenation tower
  • the inlet of the working liquid preheater is connected to the working liquid source
  • the outlet of the working liquid preheater is connected
  • the working fluid inlet of the hydrogenation tower, the hydrogenation liquid outlet at the bottom of the hydrogenation tower is divided into two paths, one is connected to the hydrogenated liquid gas-liquid separator, and the other is connected to the working fluid preheater inlet through the hydrogenation liquid circulation pump, and the outlet of the hydrogenated liquid gas-liquid separator
  • One way is connected to the inlet of the hydrogenation filter, the other is connected to the regenerative steam con
  • the working fluid is pumped into the working fluid preheater by the working fluid, and after entering a working temperature, it enters the hydrogenation column; the raw material hydrogen is removed by the hydrogen filter to remove the mechanical impurities that may be entrained, and then enters the top of the hydrogenation column together with the working liquid; Filled with palladium catalyst; when the working fluid and hydrogen are simultaneously sprayed through the bed top distributor, 2-ethylhydrazine and hydrogen are hydrogenated under the action of palladium catalyst to form the corresponding 2-ethylhydroquinone and a small amount of tetrahydro 2- Ethyl hydrazine, the working fluid at this time is called a hydrogenation solution.
  • the hydrogenation liquid and the impurity gas in the hydrogen not participating in the reaction enter the hydrogenation liquid-gas separator from the bottom of the hydrogenation column, and the separated hydrogenation tail gas (mainly entraining part of the solvent aromatic hydrocarbon) is condensed by the regenerated vapor condenser to condense most of the aromatic hydrocarbons.
  • the aromatic hydrocarbon is returned to the working liquid preparation kettle, and is recovered and reused after being cleaned, and the separated non-condensable gas can be emptied from the flow meter at the top of the condensate metering tank;
  • the hydrogenated liquid gas-liquid separator is A part of the separated hydrogenation liquid is pumped back to the hydrogenation column through the circulating hydrogenation liquid, and another part of the hydrogenation liquid is pressurized into the hydrogenation liquid filter by means of hydrogen pressure, and the catalyst and the carrier powder washed out from the hydrogenation column are filtered to remove a small amount of powder, and the hydrogenated by filtration.
  • the liquid is divided into two parts: part of the total 10% Entering the hydrogenation liquid regeneration bed, a small amount of degraded material generated during the hydrogenation process is regenerated and then enters the hydrogenation liquid storage tank, and another part directly enters the hydrogenation liquid storage tank, and then the hydrogenation liquid is sent to the oxidation system for oxidation by means of a hydrogenation liquid pump.
  • the catalyst needs to be regenerated.
  • the tower sections that need to be regenerated are first switched out, and the working fluid is placed in the hydrogenation liquid-liquid separator, using low-pressure steam.
  • the shortcomings of the prior art are: (1) The temperature in the hydrogenation column is difficult to control, and the hydrogenation temperature increases with the aging of the catalyst, thereby accelerating the aging of the catalyst; when the working temperature of the catalyst is high, the service life of the catalyst is short; at the same time, the occurrence of the reaction is more; (2) ⁇ Degradation of polymers and metal salts have a tendency to co-aggregate in the catalyst layer, resulting in a short regeneration cycle; (3) ⁇ easy to deep hydrogenation; (4) The stability of the composition of the system working fluid is poor. In addition, the hydrogenation liquid-liquid separator is separated from the hydrogenation column, resulting in complicated piping and increased cost.
  • a hydrogenation system for hydrogen peroxide production including a hydrogen filter, a working fluid preheater, a hydrogenation column, a hydrogenated liquid gas liquid separator, a hydrogenation liquid filter, and a hydrogenation liquid regeneration.
  • a bed a hydrogenated liquid storage tank; an inlet of the hydrogen filter is connected to a hydrogen gas source, an outlet of the hydrogen filter is connected to a hydrogen inlet of the hydrogenation tower, an inlet of the working fluid preheater is connected to a working fluid source, and a working fluid preheater is connected The outlet is connected to the working fluid inlet of the hydrogenation tower, and the bottom of the hydrogenation tower is connected to the hydrogenation liquid-gas separator.
  • the hydrogenation liquid circulation pump is connected to the inlet of the working fluid preheater, and the outlet of the hydrogenation liquid-gas separator is connected to the hydrogenation liquid filter.
  • the other is connected to the regenerative steam condenser.
  • the condensate outlet of the regenerative steam condenser is connected to the condensate metering tank.
  • the outlet of the condensate metering tank is connected to the working fluid preparation tank.
  • the outlet of the hydrogenated liquid filter is divided into two channels, one connected to the hydrogenation.
  • the liquid storage tank is connected to the hydrogenation liquid regeneration tank, and the outlet of the hydrogenation liquid regeneration bed is connected to the hydrogenation liquid storage tank, and the outlet of the hydrogenation liquid storage tank is drained.
  • the hydrogenation tower is divided into an upper tower and a lower tower, the outlet of the upper tower is connected to the top inlet of the lower tower, and a hydrogenation liquid cooler is connected between the upper tower and the lower tower, and an inlet connection of the hydrogenation liquid cooler is provided.
  • the outlet of the hydrogenation liquid cooler is connected to the inlet at the top of the lower column.
  • the working fluid enters the working fluid preheater, and then enters the hydrogenation tower after controlling a certain temperature; the raw material hydrogen passes through the hydrogen filter to remove the mechanical impurities that may be entrained, and then enters the top of the upper tower together with the working fluid; in the upper tower, 2-
  • the ethyl hydrazine and hydrogen are hydrogenated under the action of palladium catalyst to form the corresponding 2-ethylhydroquinone and a small amount of tetrahydro 2- Ethyl hydrazine, a portion of the hydrogenation liquid at the bottom of the upper column, can enter the lower column, and another portion can enter the hydrogenation liquid condenser, after condensation, enter the lower column, continue the hydrogenation reaction in the lower column, and adjust into the condenser.
  • the amount of the hydrogenation liquid can change the temperature of the hydrogenation liquid entering the lower column to ensure that the palladium catalyst works for a long period of time in a high activity state.
  • the hydrogenation liquid and the impurity gas in the hydrogen which is not involved in the reaction enter the hydrogenation liquid-gas separator from the bottom of the hydrogenation column, and the hydrogenation tail gas which entrains part of the solvent aromatic hydrocarbon is separated, and the majority of the aromatic hydrocarbons are condensed by the regenerative vapor condenser to enter the condensate metering tank.
  • the aromatic hydrocarbon is returned to the working liquid preparation kettle, and is recovered and reused after being cleaned, and the separated non-condensable gas can be emptied from the flow meter at the top of the condensate metering tank; the separated liquid in the hydrogenated liquid gas-liquid separator A part of the hydrogenation liquid is pumped back to the hydrogenation column through the circulating hydrogenation liquid, and another part of the hydrogenation liquid is pressurized into the hydrogenation liquid filter by means of hydrogen pressure, and the catalyst and the carrier powder washed out from the hydrogenation column are filtered to remove a small amount of powder, and the filtered hydrogenated liquid is divided into two.
  • Part part of the total 10% Entering the hydrogenation liquid regeneration bed, a small amount of degraded material generated during the hydrogenation process is regenerated and then enters the hydrogenation liquid storage tank, and another part directly enters the hydrogenation liquid storage tank, and then the hydrogenation liquid is sent to the oxidation system for oxidation by means of a hydrogenation liquid pump.
  • the present invention separates the upper column and the lower column of the hydrogenation column, and performs temperature adjustment by condensation of the hydrogenation liquid condenser, and the beneficial effects are as follows: (1) Firstly, the hydrogenation temperature is prevented from increasing with the aging of the catalyst, thereby ensuring that the catalyst does not age too quickly; (2) ) to achieve maximum use of the low temperature active zone of the catalyst, thereby effectively extending the service life of the precious metal catalyst; (3) the hydrazine hydrogenation reaction is carried out at a lower temperature, which is more advantageous for overcoming the occurrence of the reaction; (4) The hydrogenation fixed bed temperature can avoid the operation in the highest state of the whole system, thereby effectively preventing the common aggregation tendency of the deuterated polymer and the metal salt in the catalyst layer, and effectively prolonging the regeneration cycle; ) Achieve a smart combination of the upper and lower towers, select a more reasonable catalyst bed reaction temperature in the different active phases of the catalyst & different hydrogenation stages The combination of liquid spray amount effectively prevents deep hydrogen
  • the hydrogenated liquid-gas separator is disposed at the bottom of the lower tower and is integrated with the inner chamber of the lower tower. It can reduce part of the pipeline setting, increase the gas-liquid separation interface, and further ensure the gas-liquid separation effect.
  • the lower tower and the bottom of the hydrogenation liquid storage tank are provided with a pipeline connection working fluid preparation kettle.
  • the working fluid can be recycled in the working fluid configuration tank.
  • Figure 1 is a schematic view of the structure of the present invention.
  • the hydrogenation system mainly includes a hydrogen filter X1102.
  • the inlet of X1102 is connected to the hydrogen gas source.
  • the outlet of the hydrogen filter X1102 is connected to the hydrogen inlet of the hydrogenation tower.
  • the inlet of the working fluid preheater E1101 is connected to the working fluid source.
  • the working fluid preheater E1101 The outlet is connected to the working fluid inlet of the hydrogenation column, the hydrogenation liquid outlet at the bottom of the hydrogenation column is connected with the hydrogenated liquid gas-liquid separator, and the bottom of the hydrogenation column is connected to the working fluid preheater through the hydrogenation liquid circulation pump P1.
  • the outlet of the hydrogenated liquid-gas separator is connected to the inlet of the hydrogenation liquid filter X1103A/B, and the other is connected to the regenerative steam condenser E1103, the regenerative steam condenser E1103
  • the condensate outlet is connected to the condensate metering tank V1102, and the outlet of the condensate metering tank V1102 is connected to the working fluid preparation tank; the hydride liquid filter X1103A/B
  • the outlet is divided into two ways, one is connected to the hydride storage tank V1104, the other is connected to the hydride regeneration bed V1103, and the outlet of the hydrogenation regeneration bed V1103 is connected to the hydride storage tank V1104
  • the outlet of the hydrogenated liquid storage tank V1104 is connected to the oxidation system via the drain pumps P2 and P3, and the discharge pumps P2 and P3 are arranged in parallel, and can be operated separately and the other is reserved; the hydrogenation tower is divided into upper towers.
  • the outlet of the upper tower T1101 is connected to the top inlet of the lower tower T1102, and a hydrogenation liquid cooler is also arranged between the upper tower T1101 and the lower tower T1102.
  • the inlet of the hydrogenation liquid cooler E1102 is connected to the outlet at the bottom of the upper tower T1101, and the outlet of the hydrogenation liquid cooler E1102 is connected to the inlet of the top of the lower tower T1102; the lower tower
  • the bottom of the T1102 and the hydride storage tank V1104 is provided with a pipe connection working fluid preparation kettle.
  • the inlet and outlet can be equipped with corresponding valves. Some valves can be liquid level control valves, pressure control valves, temperature control valves, etc. to control the corresponding flow, pressure and temperature.
  • the working fluid enters the working fluid preheater E1101, and then enters the hydrogenation tower after controlling a certain temperature; the raw material hydrogen passes through the hydrogen filter X1102 After removing the mechanical impurities that may be entrained, enter the top of the upper tower T1101 together with the working fluid; in the upper tower T1101, 2-ethylhydrazine and hydrogen are hydrogenated under the action of palladium catalyst to form the corresponding 2- Ethylhydroquinone and a small amount of tetrahydro-2-ethylhydrazine, the hydrogenation liquid at the bottom of the upper tower T1101, part of which can enter the lower tower T1102, and the other part can enter the hydrogenation liquid condenser, after condensation, and then enter the lower tower T1102, by adjusting the amount of hydrogenation liquid entering the condenser, can be changed into the lower tower T1102
  • the temperature of the hydride liquid is to ensure that the palladium catalyst works for a long period of time in a highly active state.
  • the hydrogenation liquid and the impurity gas in the hydrogen which is not involved in the reaction enter the hydrogenation liquid-gas separator from the bottom of the hydrogenation column, and the hydrogenation tail gas which entrains part of the solvent aromatic hydrocarbon is separated, and the majority of the aromatic hydrocarbons are condensed by the regenerative vapor condenser to enter the condensate metering tank.
  • this part of aromatics is returned to the working liquid preparation kettle, which is recovered and reused after washing, and the separated non-condensable gas can be taken from the condensate metering tank V1102.
  • the top flow meter is metered and vented; a part of the hydrogenation liquid separated in the hydrogenated liquid gas-liquid separator is pumped back to the hydrogenation column by the circulating hydrogenation liquid, and the other part of the hydrogenation liquid is pressed into the hydrogenation liquid filter by the hydrogen pressure X1103A/B Filtering out the catalyst and the carrier from the hydrogenation column and filtering a small amount of powder.
  • the filtered hydrogenated liquid is divided into two parts: a part of which accounts for about 10% of the total amount. Enter the hydrogenation regeneration bed V1103 The small amount of degradation products generated during the hydrogenation process are regenerated and then enter the hydrogenation liquid storage tank V1104, and the other part directly enters the hydrogenation liquid storage tank V1104. Then, the hydrogenation liquid is sent to the oxidation system for oxidation by means of a hydrogenation pump.
  • the hydrogenation system has stable hydrogenation efficiency, and the upper and lower towers run & regeneration cycle is 6 ⁇ 12 In the month, the structure is simple, and the life of the palladium catalyst is long. Under reasonable use conditions, the catalyst life is ⁇ 5 years, which plays an important role in ensuring normal production stability and reducing material consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

一种用于过氧化氢生产的氢化系统 技术领域
本发明涉及一种过氧化氢的生产设备,特别涉及蒽醌法生产过氧化氢生产中的氢化过程的生产设备。
背景技术
目前,过氧化氢的主要生产工艺方法是蒽醌法,经各国公司的大量研究改进,该方法成为当前世界生产过氧化氢占绝对优势的方法,几乎完全取代了电解法。该方法是以蒽醌衍生物 ( 主要是 2 -烷基蒽醌 ) 作为催化剂载体,在催化剂存在下,用氢将溶于适当有机溶剂中的 2 -烷基蒽醌 (AQ) 氢化,生成相应的 2 -烷基氢蒽醌 (HAQ) 。溶剂中的 HAQ 与催化剂分离后 , 可以用空气或者富氧气体对其进行氧化,生成 H2O2 ,同时 HAQ 又复原为 AQ 。在蒽醌法生产过氧化氢过程中,主要消耗的是氢气,蒽醌只是起载体作用,可以循环使用。反应时的工作液主要分为溶剂和工作载体两个部分。一般使用两种溶剂组成的混合溶剂,一种主要作为蒽醌的溶剂,目前一般使用石油工业的 C9 ~ C11 高沸点混合芳烃,间或选用甲基萘;另一种主要作为氢蒽醌的溶剂,多选用醇类和酯类,如磷酸三辛酯 ( TOP) 、二异丁基甲醇 (DIBC) 等。蒽醌的选择也很重要,所选蒽醌以及氢蒽醌应在所选溶剂中具有较高的溶解度,且在反复氢化、氧化过程中除发生所需要的化学反应以外尽量保持化学稳定,同时还要廉价易得。目前在工业上均采用 2 -烷基蒽醌作工作载体,其中使用最多的是 2 -乙基蒽醌 ( EAQ) 。也可以采用混合蒽醌作为工作载体,但是混合蒽醌最好具有最低共熔点。蒽醌法使用的催化剂主要有镍催化剂和钯催化剂两种。镍催化剂主要是雷尼镍,具有较好的活性,但是它遇到空气易自燃,易被氧和过氧化氢毒化,且失效后难以再生,这样就极大限制了镍催化剂的使用,镍催化剂逐渐被铂、钯等贵金属加氢催化剂所取代,其中钯尤为常用。为了提高金属利用率,通常将钯负载在大比表面积载体上, 制备出高分散度的催化剂,但比表面积过大又容易造成降解。
现有技术中,以蒽醌法生产过氧化氢时,其氢化系统主要包括氢气过滤器、工作液预热器、氢化塔、氢化液气液分离器、氢化液过滤器、氢化液再生床、氢化液贮槽;所述氢气过滤器的进口连接氢气气源,氢气过滤器的出口连接氢化塔的氢气进口,工作液预热器的进口与工作液源相连,工作液预热器的出口连接氢化塔的工作液进口,氢化塔底部的氢化液出口分为两路,一路连接氢化液气液分离器,一路经氢化液循环泵连接工作液预热器进口,氢化液气液分离器的出口一路连接连接氢化液过滤器的进口,另一路连接再生蒸汽冷凝器,再生蒸汽冷凝器的冷凝液出口连接冷凝液计量槽,冷凝液计量槽的出口连接工作液配制釜;氢化液过滤器的出口分成两路,一路连接氢化液贮槽,另一路连接氢化液再生床,氢化液再生床的出口连接氢化液贮槽,氢化液贮槽的出口经排液泵连接氧化系统。
其工作时,工作液经工作液泵送入工作液预热器,控制一定温度后进入氢化塔;原料氢气经氢气过滤器除去可能夹带的机械杂质后同工作液一起进入氢化塔顶部;氢化塔由钯触媒填充;在工作液和氢气同时经床顶分布器喷淋而下时,其中的 2- 乙基蒽醌和氢气在钯触媒作用下进行氢化反应,生成相应的 2- 乙基氢蒽醌和少量的四氢 2- 乙基蒽醌,此时的工作液即称为氢化液。氢化液与未参加反应的氢气中的杂质气体从氢化塔底进入氢化液气液分离器,分离出的氢化尾气(主要夹带部分溶剂芳烃)经再生蒸气冷凝器使其中大部分芳烃冷凝后进入冷凝液计量槽内,这部分芳烃返回入工作液配制釜,经清洗后回收再利用,而分离出的不凝性气体可从冷凝液计量槽顶部流量计计量后放空;氢化液气液分离器内分离出的氢化液一部分经循环氢化液泵送回氢化塔,另一部分氢化液借助氢气压力压入氢化液过滤器,滤去从氢化塔内冲刷出来的触媒及载体少量粉末,经过滤后的氢化液分两部分:一部分约占总量的 10% 进入氢化液再生床,使氢化过程中生成的少量降解物得到再生后进入氢化液贮槽,另一部分直接进入氢化液贮槽,再借助氢化液泵将氢化液送入氧化系统进行氧化。当氢化效率在其它调节措施达不到生产控制要求时,触媒就需要再生,再生时,首先将需要再生的塔节切换出来,将其中的工作液放入氢化液气液分离器,用低压蒸汽除去可能夹带的铁锈和其他杂质后进入再生的塔节内,将结聚于触媒上的有机高聚物 & 无机盐类有害物质吹洗掉,蒸汽吹洗结束后,再用氮气将触媒床层内的水分吹干后,再以氢气活化即可重新投入使用。现有技术的不足之处在于:( 1 )氢化塔内的温度难以控制,氢化温度随着触媒老化而提高,从而加速触媒老化;触媒工作温度较高时,催化剂的使用寿命较短;同时,付反应的发生较多;( 2 )蒽醌降解聚合物和金属盐类在触媒层有共同结聚倾向,导致再生周期短;( 3 )蒽醌容易深度氢化;( 4 )系统工作液的组分稳定性差。此外,氢化液气液分离器与氢化塔分离设置,导致管路复杂,成本上升。
发明内容
本发明的目的是提供一种用于过氧化氢生产的氢化系统,使其可克服现有技术的缺陷,使得氢化塔内的温度可控性好,触媒的再生周期延长,反应效率高。
本发明的目的是这样实现的:一种用于过氧化氢生产的氢化系统,包括氢气过滤器、工作液预热器、氢化塔、氢化液气液分离器、氢化液过滤器、氢化液再生床、氢化液贮槽;所述氢气过滤器的进口连接氢气气源,氢气过滤器的出口连接氢化塔的氢气进口,工作液预热器的进口与工作液源相连,工作液预热器的出口连接氢化塔的工作液进口,氢化塔底部连接氢化液气液分离器,同时,经氢化液循环泵连接工作液预热器进口,氢化液气液分离器的出口一路连接连接氢化液过滤器的进口,另一路连接再生蒸汽冷凝器,再生蒸汽冷凝器的冷凝液出口连接冷凝液计量槽,冷凝液计量槽的出口连接工作液配制釜;氢化液过滤器的出口分成两路,一路连接氢化液贮槽,另一路连接氢化液再生床,氢化液再生床的出口连接氢化液贮槽,氢化液贮槽的出口经排液泵连接氧化系统;所述氢化塔分为上塔和下塔,上塔的出口与下塔的顶部进口相连,上塔和下塔之间还设有氢化液冷却器,氢化液冷却器的进口连接上塔底部的出口,氢化液冷却器的出口连接下塔顶部的进口。
该装置工作时,工作液进入工作液预热器,控制一定温度后再进入氢化塔;原料氢气经氢气过滤器除去可能夹带的机械杂质后同工作液一起进入上塔顶部;在上塔中, 2- 乙基蒽醌和氢气在钯触媒作用下进行氢化反应,生成相应的 2- 乙基氢蒽醌和少量的四氢 2- 乙基蒽醌,上塔底部的氢化液,一部分可进入下塔,另一部分可进入氢化液冷凝器,经冷凝后再进入下塔,在下塔内继续进行氢化反应,通过调整进入冷凝器内的氢化液的量,可以改变进入下塔的氢化液的温度,以保证钯触媒长期工作在活性较高的状态下。氢化液与未参加反应的氢气中的杂质气体从氢化塔底进入氢化液气液分离器,分离出夹带部分溶剂芳烃的氢化尾气经再生蒸气冷凝器使其中大部分芳烃冷凝后进入冷凝液计量槽内,这部分芳烃返回入工作液配制釜,经清洗后回收再利用,而分离出的不凝性气体可从冷凝液计量槽顶部流量计计量后放空;氢化液气液分离器内分离出的氢化液一部分经循环氢化液泵送回氢化塔,另一部分氢化液借助氢气压力压入氢化液过滤器,滤去从氢化塔内冲刷出来的触媒及载体少量粉末,经过滤后的氢化液分两部分:一部分约占总量的 10% 进入氢化液再生床,使氢化过程中生成的少量降解物得到再生后进入氢化液贮槽,另一部分直接进入氢化液贮槽,再借助氢化液泵将氢化液送入氧化系统进行氧化。与现有技术相比,本发明使氢化塔的上塔和下塔相隔离,通过氢化液冷凝器冷凝来进行温度调节,其有益效果在于: ( 1 )首先避免了氢化温度随着触媒老化而提高,从而保证触媒不至于过快老化;( 2 )实现最大限度地利用触媒的低温活性区,从而有效的延长贵金属催化剂的使用寿命;( 3 )蒽醌加氢反应在较低温度下进行,更有利于克服付反应的发生;( 4 )氢化固定床层温度得以避开处于全系统最高的状态运行,从而有效地利防止蒽醌降解聚合物和金属盐类在触媒层的共同结聚倾向,有效延长了再生周期;( 5 )实现上下二塔的巧妙组合,在触媒不同的使用活性阶段 & 不同的氢化阶段选择更合理的触媒床层反应温度 & 液体喷淋量相结合,从而有效地防止蒽醌的深度氢化;( 6 )可保证系统工作液的组分稳定。该系统专用于过氧化氢的生产中。
为使得本发明结构紧凑,所述氢化液气液分离器设置在下塔的底部,并与下塔内腔连为一体。可减少部分管路设置,增大气液分离界面,进一步保证气液分离效果。
为便于将氢化塔内和氢化液贮槽内的液体放空,所述下塔和氢化液贮槽底部设有管路连接工作液配制釜。工作液在工作液配置釜中可循环再利用。
附图说明
图 1 为本发明结构示意图。
具体实施方式
如图所示,为一种用于过氧化氢生产的氢化系统的工作原理图,该氢化系统 主要包括有 氢气过滤器 X1102 、工作液预热器 E1101 、氢化塔、氢化液气液分离器、氢化液过滤器 X1103A/B 、氢化液再生床 V1103 、氢化液贮槽 V1104 ;所述氢气过滤器 X1102 的进口连接氢气气源,氢气过滤器 X1102 的出口连接氢化塔的氢气进口,工作液预热器 E1101 的进口与工作液源相连,工作液预热器 E1101 的出口连接氢化塔的工作液进口,氢化塔底部的氢化液出口与氢化液气液分离器连为一体,氢化塔底部经氢化液循环泵 P1 连接工作液预热器 E1101 进口,氢化液气液分离器的出口一路连接连接氢化液过滤器 X1103A/B 的进口,另一路连接再生蒸汽冷凝器 E1103 ,再生蒸汽冷凝器 E1103 的冷凝液出口连接冷凝液计量槽 V1102 ,冷凝液计量槽 V1102 的出口连接工作液配制釜;氢化液过滤器 X1103A/B 的出口分成两路,一路连接氢化液贮槽 V1104 ,另一路连接氢化液再生床 V1103 ,氢化液再生床 V1103 的出口连接氢化液贮槽 V1104 ,氢化液贮槽 V1104 的出口经排液泵 P2 、 P3 连接氧化系统,排液泵 P2 、 P3 并联设置,可单独工作,另一台备用;所述氢化塔分为上塔 T1101 和下塔 T1102 ,上塔 T1101 的出口与下塔 T1102 的顶部进口相连,上塔 T1101 和下塔 T1102 之间还设有氢化液冷却器 E1102 ,氢化液冷却器 E1102 的进口连接上塔 T1101 底部的出口,氢化液冷却器 E1102 的出口连接下塔 T1102 顶部的进口;所述下塔 T1102 和氢化液贮槽 V1104 底部设有管路连接工作液配制釜。上述氢气过滤器 X1102 、工作液预热器 E1101 、氢化塔、氢化液气液分离器、氢化液过滤器 X1103A/B 、氢化液再生床 V1103 、氢化液贮槽 V1104 的进口和出口均可以设置相应的阀,部分阀可以是液位控制阀、压力控制阀、温控阀等,以控制相应的流量、压力和温度。
工作时,工作液进入工作液预热器 E1101 ,控制一定温度后再进入氢化塔;原料氢气经氢气过滤器 X1102 除去可能夹带的机械杂质后同工作液一起进入上塔 T1101 顶部;在上塔 T1101 中, 2- 乙基蒽醌和氢气在钯触媒作用下进行氢化反应,生成相应的 2- 乙基氢蒽醌和少量的四氢 2- 乙基蒽醌,上塔 T1101 底部的氢化液,一部分可进入下塔 T1102 ,另一部分可进入氢化液冷凝器,经冷凝后再进入下塔 T1102 ,通过调整进入冷凝器内的氢化液的量,可以改变进入下塔 T1102 的氢化液的温度,以保证钯触媒长期工作在活性较高的状态下。氢化液与未参加反应的氢气中的杂质气体从氢化塔底进入氢化液气液分离器,分离出夹带部分溶剂芳烃的氢化尾气经再生蒸气冷凝器使其中大部分芳烃冷凝后进入冷凝液计量槽 V1102 内,这部分芳烃返回入工作液配制釜,经清洗后回收再利用,而分离出的不凝性气体可从冷凝液计量槽 V1102 顶部流量计计量后放空;氢化液气液分离器内分离出的氢化液一部分经循环氢化液泵送回氢化塔,另一部分氢化液借助氢气压力压入氢化液过滤器 X1103A/B ,滤去从氢化塔内冲刷出来的触媒及载体少量粉末,经过滤后的氢化液分两部分:一部分约占总量的 10% 进入氢化液再生床 V1103 ,使氢化过程中生成的少量降解物得到再生后进入氢化液贮槽 V1104 ,另一部分直接进入氢化液贮槽 V1104 ,再借助氢化液泵将氢化液送入氧化系统进行氧化。
该氢化系统的氢化效率稳定,上塔和下塔运行 & 再生周期在 6~12 个月,其结构简单,钯触媒寿命长,在合理使用条件下,触媒寿命≥ 5 年,对确保正常生产稳定和降低物耗,发挥了十分重要。

Claims (3)

  1. 一种用于过氧化氢生产的氢化系统,包括氢气过滤器、工作液预热器、氢化塔、氢化液气液分离器、氢化液过滤器、氢化液再生床、氢化液贮槽;所述氢气过滤器的进口连接氢气气源,氢气过滤器的出口连接氢化塔的氢气进口,工作液预热器的进口与工作液源相连,工作液预热器的出口连接氢化塔的工作液进口,氢化塔底部连接氢化液气液分离器,同时,经氢化液循环泵连接工作液预热器进口,氢化液气液分离器的出口一路连接连接氢化液过滤器的进口,另一路连接再生蒸汽冷凝器,再生蒸汽冷凝器的冷凝液出口连接冷凝液计量槽,冷凝液计量槽的出口连接工作液配制釜;氢化液过滤器的出口分成两路,一路连接氢化液贮槽,另一路连接氢化液再生床,氢化液再生床的出口连接氢化液贮槽,氢化液贮槽的出口经排液泵连接氧化系统;其特征在于:所述氢化塔分为上塔和下塔,上塔的出口与下塔的顶部进口相连,上塔和下塔之间还设有氢化液冷却器,氢化液冷却器的进口连接上塔底部的出口,氢化液冷却器的出口连接下塔顶部的进口。
  2. 根据权利要求 1 所述的用于过氧化氢生产的氢化系统,其特征在于:所述氢化液气液分离器设置在下塔的底部,并与下塔内腔连为一体。
  3. 据权利要求 1 或 2 所述的用于过氧化氢生产的氢化系统,其特征在于:所述下塔和氢化液贮槽底部设有管路连接工作液配制釜。
PCT/CN2011/072636 2010-04-29 2011-04-12 一种用于过氧化氢生产的氢化系统 WO2011134345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010160053.1 2010-04-29
CN2010101600531A CN101837957B (zh) 2010-04-29 2010-04-29 一种用于过氧化氢生产的氢化系统

Publications (1)

Publication Number Publication Date
WO2011134345A1 true WO2011134345A1 (zh) 2011-11-03

Family

ID=42741671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072636 WO2011134345A1 (zh) 2010-04-29 2011-04-12 一种用于过氧化氢生产的氢化系统

Country Status (2)

Country Link
CN (1) CN101837957B (zh)
WO (1) WO2011134345A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032304A (zh) * 2017-06-15 2017-08-11 扬州惠通化工科技股份有限公司 流化床生产过氧化氢的氢化反应装置及氢化反应方法
CN107032303A (zh) * 2017-06-15 2017-08-11 扬州惠通化工科技股份有限公司 过氧化氢的流化床生产系统及生产方法
CN107098317A (zh) * 2017-06-15 2017-08-29 扬州惠通化工科技股份有限公司 蒽醌法生产过氧化氢的系统及方法
CN108675265A (zh) * 2018-07-05 2018-10-19 浙江工程设计有限公司 一种蒽醌法生产过氧化氢工艺的后处理装置
CN109809367A (zh) * 2019-04-03 2019-05-28 江山市双氧水有限公司 一种用于双氧水生产系统中双氢化塔工艺装置
CN110040690A (zh) * 2019-01-31 2019-07-23 滨化集团股份有限公司 一种过氧化氢生产中氢化流化床催化剂分离采出工艺及其装置
CN111115584A (zh) * 2020-01-02 2020-05-08 黎明化工研究设计院有限责任公司 一种蒽醌法制备过氧化氢的氧化塔
CN111410176A (zh) * 2020-05-14 2020-07-14 福建永荣科技有限公司 一种生产过氧化氢的氢化塔管式反应器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837957B (zh) * 2010-04-29 2011-09-28 扬州惠通化工技术有限公司 一种用于过氧化氢生产的氢化系统
CN102009960A (zh) * 2010-11-18 2011-04-13 清华大学 一种蒽醌法生产过氧化氢的加氢方法
CN103449379B (zh) * 2012-06-04 2015-09-09 扬州荣祥化工技术开发设计有限公司 蒽醌法双氧水生产用触媒保护器
CN104370276A (zh) * 2013-08-13 2015-02-25 中国石油化工股份有限公司 一种过氧化氢的制备方法
CN104418308B (zh) * 2013-08-22 2016-06-22 中国石油化工股份有限公司 一种蒽醌法生产双氧水的氢化工艺
CN103964394B (zh) * 2014-05-07 2015-11-04 无锡安竣化学工程科技有限公司 用于过氧化氢生产的氢化系统
CN105540551B (zh) * 2014-11-03 2017-07-28 中国石油化工股份有限公司 一种双氧水生产中的高效氢化工艺
CN105621365B (zh) * 2014-11-03 2017-09-29 中国石油化工股份有限公司 一种双氧水生产中的氢化工艺
CN107032305B (zh) * 2017-06-15 2023-07-14 扬州惠通科技股份有限公司 一种过氧化氢的生产系统及生产方法
CN107032306B (zh) * 2017-06-15 2023-07-14 扬州惠通科技股份有限公司 流化床生产过氧化氢的系统及方法
CN111573628B (zh) * 2020-04-01 2022-05-13 安徽泉盛化工有限公司 一种蒽醌法双氧水生产触媒再生循环过滤系统
CN113769698A (zh) * 2021-10-29 2021-12-10 阜阳安固锅炉压力容器制造有限公司 一种氢化塔

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335256A (zh) * 2000-07-22 2002-02-13 中国石化股份公司巴陵分公司 一种控制固定床温的方法
EP0958238B1 (en) * 1996-12-23 2002-04-03 Kvaerner Process Systems A.S. Method for the production of hydrogen peroxide by hydrating a quinone solution and arrangement for performing the methods
CN1817838A (zh) * 2006-02-17 2006-08-16 黎明化工研究院 一种蒽醌法生产过氧化氢流化床氢化工艺
CN101837957A (zh) * 2010-04-29 2010-09-22 扬州惠通化工技术有限公司 一种用于过氧化氢生产的氢化系统
CN201686492U (zh) * 2010-04-29 2010-12-29 扬州惠通化工技术有限公司 过氧化氢生产的氢化系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769514A (en) * 1952-07-12 1957-03-06 Olin Mathieson Improvements in or relating to the production of hydrogen peroxide
FI924124A (fi) * 1991-09-19 1993-03-20 Ube Industries Foerfarande foer rening av vaeteperoxidvattenloesning
JP2001348210A (ja) * 2000-06-02 2001-12-18 Ube Ind Ltd 過酸化水素水溶液の製造方法
CN1721320A (zh) * 2002-09-03 2006-01-18 中国石油化工股份有限公司巴陵分公司 一种制备过氧化氢的氧化工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0958238B1 (en) * 1996-12-23 2002-04-03 Kvaerner Process Systems A.S. Method for the production of hydrogen peroxide by hydrating a quinone solution and arrangement for performing the methods
CN1335256A (zh) * 2000-07-22 2002-02-13 中国石化股份公司巴陵分公司 一种控制固定床温的方法
CN1817838A (zh) * 2006-02-17 2006-08-16 黎明化工研究院 一种蒽醌法生产过氧化氢流化床氢化工艺
CN101837957A (zh) * 2010-04-29 2010-09-22 扬州惠通化工技术有限公司 一种用于过氧化氢生产的氢化系统
CN201686492U (zh) * 2010-04-29 2010-12-29 扬州惠通化工技术有限公司 过氧化氢生产的氢化系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032304B (zh) * 2017-06-15 2023-06-27 扬州惠通科技股份有限公司 流化床生产过氧化氢的氢化反应装置及氢化反应方法
CN107032303A (zh) * 2017-06-15 2017-08-11 扬州惠通化工科技股份有限公司 过氧化氢的流化床生产系统及生产方法
CN107098317A (zh) * 2017-06-15 2017-08-29 扬州惠通化工科技股份有限公司 蒽醌法生产过氧化氢的系统及方法
CN107032304A (zh) * 2017-06-15 2017-08-11 扬州惠通化工科技股份有限公司 流化床生产过氧化氢的氢化反应装置及氢化反应方法
CN107032303B (zh) * 2017-06-15 2023-06-27 扬州惠通科技股份有限公司 过氧化氢的流化床生产系统及生产方法
CN107098317B (zh) * 2017-06-15 2023-06-27 扬州惠通科技股份有限公司 蒽醌法生产过氧化氢的系统及方法
CN108675265A (zh) * 2018-07-05 2018-10-19 浙江工程设计有限公司 一种蒽醌法生产过氧化氢工艺的后处理装置
CN108675265B (zh) * 2018-07-05 2023-09-15 浙江工程设计有限公司 一种蒽醌法生产过氧化氢工艺的后处理装置
CN110040690A (zh) * 2019-01-31 2019-07-23 滨化集团股份有限公司 一种过氧化氢生产中氢化流化床催化剂分离采出工艺及其装置
CN109809367A (zh) * 2019-04-03 2019-05-28 江山市双氧水有限公司 一种用于双氧水生产系统中双氢化塔工艺装置
CN111115584A (zh) * 2020-01-02 2020-05-08 黎明化工研究设计院有限责任公司 一种蒽醌法制备过氧化氢的氧化塔
CN111115584B (zh) * 2020-01-02 2024-04-05 黎明化工研究设计院有限责任公司 一种蒽醌法制备过氧化氢的氧化塔
CN111410176A (zh) * 2020-05-14 2020-07-14 福建永荣科技有限公司 一种生产过氧化氢的氢化塔管式反应器

Also Published As

Publication number Publication date
CN101837957A (zh) 2010-09-22
CN101837957B (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2011134345A1 (zh) 一种用于过氧化氢生产的氢化系统
CN103663385B (zh) 一种生产过氧化氢的方法和装置
WO2011134344A1 (zh) 一种用于过氧化氢生产的氧化系统
CN201686492U (zh) 过氧化氢生产的氢化系统
CN111470941B (zh) 一种高品质环己醇生产装置及工艺
CN106588536A (zh) 一种环己酮的制备方法与系统
CN107986953B (zh) 一种甲醇低压羰基合成醋酸的生产装置及生产工艺
CN210656269U (zh) 一种可再生的离子交换树脂塔
CN103964394A (zh) 用于过氧化氢生产的氢化系统
CN104370276A (zh) 一种过氧化氢的制备方法
CN103449381A (zh) 一种用于蒽醌化合物悬浮氢化的工艺
CN107285997A (zh) 一种改善乙二醇紫外透过率的方法
CN112919425A (zh) 一种双氧水生产中循环过滤的方法
CN113652548A (zh) 一种反铁液树脂吸附工艺
CN111732083A (zh) 一种流化床双氧水工艺
CN110396046A (zh) 一种稳定高效的催化加氢制备芳胺的方法
CN213790292U (zh) 一种双氧水工作液过滤防堵塞系统
CN214232871U (zh) 油相聚结器和分离系统
CN113877232B (zh) 含苯胺气体的处理方法及其系统
CN210559890U (zh) 蒽醌法生产双氧水工艺中萃余液的再生系统
CN104926866A (zh) 草甘膦的制备方法、制备装置及制备过程
CN113149810A (zh) 一种环己烯水合制备环己醇的反应精馏系统及方法
CN215161008U (zh) 氢气提纯装置
CN210385373U (zh) 一种用于氨氧化反应气体中苯二甲腈分离的生产装置
CN220779108U (zh) 有机溶剂分子筛脱水设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774336

Country of ref document: EP

Kind code of ref document: A1