WO2011129000A1 - モータコアの製造方法 - Google Patents

モータコアの製造方法 Download PDF

Info

Publication number
WO2011129000A1
WO2011129000A1 PCT/JP2010/056739 JP2010056739W WO2011129000A1 WO 2011129000 A1 WO2011129000 A1 WO 2011129000A1 JP 2010056739 W JP2010056739 W JP 2010056739W WO 2011129000 A1 WO2011129000 A1 WO 2011129000A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electromagnetic steel
machining allowance
die
manufacturing
Prior art date
Application number
PCT/JP2010/056739
Other languages
English (en)
French (fr)
Inventor
聡 小嶋
功一 峯
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/056739 priority Critical patent/WO2011129000A1/ja
Publication of WO2011129000A1 publication Critical patent/WO2011129000A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a method for manufacturing a motor core in which electromagnetic steel sheets punched into a predetermined shape are laminated.
  • a motor core (rotor core or stator core) has been manufactured by punching a strip-shaped electromagnetic steel sheet with a press die to form a predetermined shape, and laminating them while caulking them.
  • a metal material is subjected to processing such as cutting, work hardening occurs at the cut site. Therefore, work hardening has occurred in the punched electrical steel sheet.
  • the work hardening portion of the motor core has a large influence on the magnetic path formation, the iron loss increases, the magnetic characteristics are impaired, and the motor Reduce performance.
  • the performance of the motor is more markedly deteriorated in the divided core. This is because, in the split core, the work hardening portion is increased in the core as compared with the normal motor core (integrated core).
  • the present invention has been made to solve the above-described problems, and it is possible to reduce the plastic strain generated in the electromagnetic steel sheet used for the motor core, reduce the iron loss, and improve the magnetic characteristics.
  • An object is to provide a manufacturing method.
  • One aspect of the present invention made to solve the above problems is a method of manufacturing a motor core in which a magnetic steel sheet is formed in a predetermined shape and the electromagnetic steel sheets having the predetermined shape are laminated.
  • the plastic strain region generated in the electromagnetic steel sheet in the removing step is determined so as to be within the region of the plastic strain generated in the magnetic steel plate in the shape forming step.
  • an electromagnetic steel sheet punched into a predetermined shape, that is, a rough-cut material is obtained in the shape forming step.
  • a predetermined machining allowance is removed by shearing from the rough blank material obtained in the shape forming process.
  • stacked in order to comprise a motor core is obtained.
  • a motor core is completed by laminating
  • the predetermined machining allowance for shear removal in the machining allowance removal process is determined so that the area of plastic strain generated in the electrical steel sheet in the machining allowance removal process is within the area of plastic strain generated in the electrical steel sheet in the shape forming process. Yes. For this reason, the area
  • at least a part of the plastic strain region generated in the magnetic steel sheet in the shape forming process is sheared away by a predetermined machining allowance in the machining allowance removing process. As a result, the plastic strain region generated in the laminated steel sheet can be reduced. That is, the amount of strain generated in the laminated steel sheet can be reduced.
  • the strain amount is one of indices indicating the magnitude of strain obtained by integrating the strain from the punched end surface (cut surface).
  • the motor performance can be improved by using the motor core manufactured by this manufacturing method.
  • the predetermined machining allowance may be removed by shaving or opposing die shearing.
  • the scrap side of the electromagnetic steel plate is held with a plate presser and a die, and the product side is punched by punching to obtain a roughing material, and the product side of the electromagnetic steel plate is pressed with a plate presser and a die.
  • the scrap side is punched by holding and a rough-cut material is obtained.
  • the machining allowance removal step the predetermined machining allowance is removed by shearing by shaving or opposing die shearing. And in opposing die shearing processing, the case where it implements using the board press with a projection and a plane die, and the case where it implements using the board press with a projection and a die with a projection are considered.
  • the scrap side of the electromagnetic steel sheet is held with a plate presser and a die in the shape forming process. Then, the product side is punched with a punch, and in the removal allowance removing step, the predetermined allowance is sheared and removed from the electromagnetic steel sheet punched with the punch by shaving, and the predetermined allowance is reduced to 40 mm of the thickness of the electromagnetic steel sheet. % Or less is desirable.
  • the predetermined machining allowance is within a range of 15 to 25% of the thickness of the electromagnetic steel sheet.
  • the scrap side of the electromagnetic steel sheet is held with a plate presser and a die in the shape forming step.
  • the product side is punched with a punch, and in the machining allowance removal step, the predetermined machining allowance is sheared and removed from the electrical steel sheet punched with the punch by opposing die shearing, and the predetermined machining allowance is 125 mm of the thickness of the electrical steel sheet. % Or less is desirable.
  • the rake angle of opposing die shear is preferably 4 to 8 °.
  • plastic strain occurs from the punched end surface (cut surface) to a location about 380% away from the plate thickness, but the location away from the punched end surface (cut surface) by about the plate thickness. There is a portion where no plastic strain occurs. If the machining allowance is about 30 to 40% of the thickness of the electromagnetic steel sheet, plastic strain is newly generated in the portion where the plastic strain is not generated by the pressing of the projection of the plate presser. For this reason, the amount of distortion of the electrical steel sheet temporarily increases.
  • the machining allowance is set to 50% or more of the thickness of the electromagnetic steel sheet, the amount of strain to be removed becomes larger than the amount of strain newly generated by the opposing die shearing process, so that the amount of strain finally decreases.
  • the machining allowance exceeds 125% of the thickness of the electromagnetic steel sheet, the amount of strain newly generated becomes larger than the amount of strain removed by the opposing die shearing process, so that the final strain amount tends to increase. Accordingly, by removing 125% or less of the thickness of the electromagnetic steel sheet from the magnetic steel sheet punched by punching by opposing die shearing, the amount of strain generated in the final shape electromagnetic steel sheet (laminated steel sheet) is effectively reduced. be able to.
  • the counter die shearing process performed in the removal allowance removing step is performed using the plate holder with projections and a flat die, and the predetermined die
  • the machining allowance is preferably within the range of 70 to 80% of the thickness of the electrical steel sheet.
  • the opposing die shearing process performed in the removal allowance step is performed using the plate holder with protrusions and the die with protrusions
  • the predetermined machining allowance is preferably within a range of 15 to 25% of the thickness of the electromagnetic steel sheet.
  • the predetermined machining allowance is within the above range, when the opposing die shearing process using the plate holder with projection and the die with projection is carried out in the machining allowance removal step, it occurs in the final shape of the electromagnetic steel sheet (laminated steel sheet). This is because the amount of distortion can be minimized.
  • the material held by the plate retainer and the die is used as a rough blanking material, and a predetermined allowance is sheared away from the rough blanking material by shaving, the product side of the electromagnetic steel plate is pressed against the product side in the shape forming step. And holding the die with a punch, punching out the scrap side by the punch, and in the removal allowance removal step, by shaving, the predetermined allowance is sheared and removed from the electromagnetic steel plate held by the plate presser and the die, and the predetermined allowance is removed. It is desirable that the thickness is 40% or less of the thickness of the electromagnetic steel sheet.
  • the machining allowance is larger than 40% of the thickness of the electromagnetic steel sheet, the machining allowance rigidity is high, the removal resistance of the machining allowance is increased, and the fracture shape approximates that of conventional punching. No further reduction (distortion reduction effect is almost lost). Therefore, the amount of strain generated in the final shaped electromagnetic steel sheet (laminated steel sheet) can be effectively reduced by shearing and removing 40% or less of the thickness of the electromagnetic steel sheet from the magnetic steel sheet punched out by punching. Can do.
  • the predetermined machining allowance is within a range of 15 to 25% of the thickness of the electromagnetic steel sheet.
  • the scrap side is a material that is held with a punching plate presser and a die, and a predetermined machining allowance is sheared and removed by opposing die shearing processing
  • the product side of the electromagnetic steel plate is The scrap side is punched by punching by holding with a plate presser and a die, and in the removal allowance removing step, the predetermined removal allowance is sheared and removed from the electromagnetic steel plate held by the plate retainer and the die by the opposing die shearing process
  • the predetermined machining allowance is preferably within a range of 15 to 65% of the thickness of the electromagnetic steel sheet.
  • the scrap side is punched (clearance of about 10%) and the material held by the plate retainer and the die is used as the roughing material
  • plastic strain occurs from the punched end surface (cut surface) to a location about 65% away from the plate thickness. Therefore, even if the machining allowance is made larger than 65% of the thickness of the electromagnetic steel sheet, the amount of strain cannot be further reduced.
  • the machining allowance is made smaller than 15% of the thickness of the electromagnetic steel sheet, the amount of strain newly generated by the opposing die shearing process becomes much larger than the amount of strain to be removed, and the amount of strain cannot be reduced. In some cases, the amount of strain generated in the electrical steel sheet may be increased by performing the machining allowance removal step.
  • the final shape of the electrical steel sheet (from the electromagnetic steel sheet punched out on the scrap side and held by the plate presser and the die by shearing with an opposing die shear in the range of 15 to 65% of the thickness of the electrical steel sheet)
  • the amount of strain generated in the laminated steel sheet can be effectively reduced.
  • the predetermined allowance may be set within a range of 15 to 50% of the thickness of the electromagnetic steel sheet.
  • the counter die shearing process performed in the removal allowance removing step is performed using the plate holder with projections and a flat die, and the predetermined die
  • the machining allowance is preferably within the range of 45 to 55% of the thickness of the electrical steel sheet.
  • the predetermined machining allowance may be set within a range of 45 to 50% of the thickness of the electromagnetic steel sheet.
  • the opposing die shearing process performed in the removal allowance step is performed using the plate holder with protrusions and the die with protrusions
  • the predetermined machining allowance is preferably within the range of 25 to 35% of the thickness of the electromagnetic steel sheet.
  • the predetermined machining allowance is within the above range, when the opposing die shearing process using the plate holder with projection and the die with projection is carried out in the machining allowance removal step, it occurs in the final shape of the electromagnetic steel sheet (laminated steel sheet). This is because the amount of distortion can be minimized.
  • the plastic strain generated in the electromagnetic steel sheet used for the motor core can be reduced, the iron loss can be reduced, and the magnetic characteristics can be improved.
  • FIG. 2 is a cross-sectional view taken along II-II shown in FIG. It is a top view which shows schematic structure of a rotor core.
  • FIG. 4 is a cross-sectional view taken along IV-IV shown in FIG. 3. It is a figure for demonstrating a shape formation process. It is a figure which shows typically the generation
  • FIG. 1 is a plan view showing a schematic configuration of a stator core.
  • 2 is a cross-sectional view taken along the line II-II shown in FIG.
  • FIG. 3 is a plan view showing a schematic configuration of the rotor core.
  • 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • the stator core 10 has an annular shape and is composed of eight divided core members 11. Specifically, the stator core 10 is formed by assembling with the shrink-fit ring 12 in a state where the divided core members 11 are arranged in an annular shape. That is, the divided core member 11 is arranged in a state where the shrink-fitting ring 12 is heated and expanded, and the shrink-fitting ring 12 is cooled and the shrink-fitting ring 12 is contracted. The member 11 is integrated and the stator core 10 is assembled.
  • the split core member 11 constituting the stator core 10 is formed by laminating a plurality of electromagnetic steel plates 11 a formed in a shape shown in FIG. 1 from a belt-shaped electromagnetic steel plate.
  • the split core member 11 includes a tooth portion 13 and a yoke portion 14 and has a substantially T shape in plan view.
  • a stator core is comprised by mounting
  • a rotor is arranged at the center of such a stator to constitute a motor.
  • the rotor core 20 has a hollow cylindrical shape in which a plurality of electromagnetic steel plates 20 a are laminated and caulked. Each electromagnetic steel plate 20a is formed from a strip-shaped electromagnetic steel plate into the shape shown in FIG.
  • the rotor core 20 is provided with a plurality of magnet holes 21 penetrating the rotor core 20 in the axial direction.
  • a sintered magnet such as a neodymium magnet is disposed in the magnet hole 21 and is molded and fixed with resin.
  • the rotor core 20 is assembled as a rotor by being fitted to the rotor shaft in a state where the magnet is fixed in the magnet hole 21.
  • the stator core 10 or the rotor core 20 is manufactured by forming a strip-shaped electromagnetic steel sheet into a predetermined shape and laminating and crimping the electromagnetic steel sheets 11a or 20a formed in the predetermined shape. And the lamination
  • the shape forming step is a step for punching and forming the electromagnetic steel sheet into a shape provided with a predetermined allowance from the belt-shaped electromagnetic steel sheet, that is, for obtaining a roughing material.
  • the scrap side of the electromagnetic steel sheet is held with a plate presser and a die and the product side is punched by punching to obtain a roughing material, and the product side of the electromagnetic steel sheet is held with a plate presser and a die. In some cases, the scrap side is punched to obtain a roughing blank.
  • the machining allowance removal step is a step for obtaining a final shape of the electromagnetic steel sheet 11a or 20a by shearing and removing a predetermined machining allowance from the rough-cut material obtained in the shape forming process.
  • a predetermined machining allowance is sheared and removed by shaving or opposing die shearing.
  • the opposing die shearing process may be performed using a plate holder with protrusions and a flat die, and may be performed using a plate holder with protrusions and a die with protrusions.
  • the amount of distortion generated in the punched electromagnetic steel sheet can be reduced by changing the clearance between the punch and the die or the punching speed when the electromagnetic steel sheet is punched into a final shape without providing a predetermined allowance.
  • the amount of strain is an index representing the magnitude of strain obtained by integrating the strain from the punched end surface (cut surface). For example, against conventional punching (punching speed: about 0.01 to 0.6 m / s, clearance: about 8 to 12% of the plate thickness), for example, when punching is performed at a punching speed of 100 m / s or more, the amount of strain is 40. %, And if the clearance is reduced to 1 to 2% of the plate thickness, the amount of strain can be reduced by about 20%.
  • the amount of distortion generated in the electromagnetic steel sheets 11a and 20a having the final shape is further reduced by performing the shape forming step and the machining allowance removing step.
  • Example 1 a case where the scrap side of the electromagnetic steel sheet is held by a plate presser and a die and the product side is punched by punching to obtain a roughing material will be described as “Example 1”.
  • Example 2 the case where the product side is held by a plate presser and a die and the scrap side is punched by punching to obtain a roughing blank will be described as “Example 2”.
  • Example 1 In Example 1, in the shape forming step, as shown in FIG. 5, the scrap side 30 a of the belt-shaped electromagnetic steel sheet 30 is held by the plate presser 32 and the die 33, and the product side 30 b is punched by the punch 31 and the roughing blank 11 b. Or 20b (refer FIG. 6) is obtained.
  • FIG. 6 is a diagram schematically showing a plastic strain generation region.
  • the rough-cut material 11b or 20b has a plastic strain region up to a position about 380% away from the cut surface. Occurs.
  • the plastic strain region St is removed as machining allowance (300% or less of the plate thickness T). Therefore, the plastic strain region generated in the finally obtained electrical steel sheet 11a or 20a is not increased by the plastic strain newly generated in the machining allowance removal step. On the other hand, at least a part of the plastic strain region St generated in the roughing material 11b or 20b is sheared away by a predetermined machining allowance. Therefore, the amount of strain generated in the electromagnetic steel sheet 11a or 20a can be reduced.
  • FIG. 7 is a diagram showing a relationship between machining allowance and strain amount in each processing method.
  • FIGS. 8 to 10 are diagrams for explaining the processing steps in each processing method.
  • FIG. 8 is a view showing a shaving process
  • FIG. 9 is a view showing a facing die shearing process using a plate holder with protrusions and a flat die
  • FIG. 10 is a plate holder with protrusions and a die with protrusions. It is a figure which shows the process of the opposing die shearing process using these.
  • FIG. 7 the result of the shaving process shown in FIG.
  • the result of the opposing die shearing process shown in FIG. 9 is represented by a black square ( ⁇ )
  • the opposing die shown in FIG. The result of the shearing process is represented by a white triangle ( ⁇ ).
  • the rake angle of opposing die shearing is a result obtained when the rake angle is 4 °.
  • the amount of strain shown in FIG. 7 indicates the ratio to the amount of strain generated by normal conventional punching when the product side is punched by punching.
  • the roughing material 11b or 20b is removed so that the machining allowance M of the roughing material 11b or 20b can be removed by the punch 41 as shown in FIG. It is held by the plate presser 42 and the die 43 (state (a)). Then, by lowering the punch 41, the machining allowance M is scraped off from the rough blank 11b or 20b with the punch 41 and the die 43 (state (b) ⁇ (c) ⁇ (d)).
  • the machining allowance M is made larger than 40% of the thickness T of the electromagnetic steel sheet 30, the machining allowance is high, the removal resistance of the machining allowance is increased, and the fracture shape approximates that of conventional punching, so that shaving can be performed.
  • the amount of distortion does not decrease further. Therefore, by removing only 40% or less of the plate thickness T from the rough blanking material 11b or 20b as the allowance M by shaving, the amount of strain generated in the final shape electromagnetic steel sheet 10a or 20a is only subjected to normal conventional punching. Compared to the above, it can be reduced by 40% or more. Further, as apparent from FIG.
  • the machining allowance M of the roughing material 11b or 20b is replaced by the plate holder 51 with projection and the flat die 52a or projection. It arrange
  • the flat die 52a or the protruding die 52b is raised until the gap between the protruding plate holder 51 and the flat die 52a or the protruding die 52b is about 30% of the plate thickness T of the roughing material 11b or 20b. (State (d)). Then, by lowering the punch 53 while maintaining the state (d), the machining allowance M is cut from the roughing material 11b or 20b with the punch 53 and the flat die 52a or the protruding die 52b (state (e). )).
  • the machining allowance M is about 30 to 40% of the plate thickness T of the electromagnetic steel sheet 30, the roughing blank 11b or 20b has a plate holder 51 with protrusions in a portion other than the plastic strain region St shown in FIG.
  • the plastic strain is newly generated by the pressing of the protrusions.
  • the amount of distortion generated in the electromagnetic steel sheet 11a or 20a temporarily increases.
  • the machining allowance M is 50% or more of the plate thickness T of the electromagnetic steel sheet 30, the amount of strain removed as the machining allowance M becomes larger than the strain quantity newly generated by the opposing die shearing process. The amount of distortion that occurs is reduced.
  • the amount of strain newly generated becomes larger than the amount of distortion removed as the machining allowance M by the opposing die shearing process.
  • the amount of distortion generated tends to increase.
  • the amount of strain generated in the final shape of the electromagnetic steel sheet 11a or 20a is reduced to a normal amount by performing the opposing die shearing process with a machining allowance M of 125% or less of the sheet thickness T of the rough blank 11b or 20b. Compared to the case where only punching is performed, it can be reduced by approximately 40% or more.
  • the machining allowance M is less than 15% of the plate thickness T of the rough blank 11b or 20b, the amount of distortion generated in the electromagnetic steel sheet 11a or 20a cannot be reduced by 40% or more. It is preferable to localize the machining allowance M within a range of 15% to 125% of the thickness T.
  • Example 1 compared with the electromagnetic steel sheet formed in the shape of the split core member 11 or the rotor core 20 by conventional conventional punching, the electrical steel sheet 11a in which the strain amount is reduced to about 40 to 60%. Or 20a can be obtained. Thereby, the improvement of a performance can be aimed at by comprising a motor using the stator core 10 or the rotor core 20 comprised by the electromagnetic steel plate 11a or 20a obtained by Example 1.
  • FIG. 1 compared with the electromagnetic steel sheet formed in the shape of the split core member 11 or the rotor core 20 by conventional conventional punching, the electrical steel sheet 11a in which the strain amount is reduced to about 40 to 60%. Or 20a can be obtained.
  • the improvement of a performance can be aimed at by comprising a motor using the stator core 10 or the rotor core 20 comprised by the electromagnetic steel plate 11a or 20a obtained by Example 1.
  • Example 2 In Example 2, as shown in FIG. 11, in the shape forming step, the product side 30b of the strip-shaped electromagnetic steel sheet 30 is held by the plate presser 32 and the die 33, and the scrap side 30a is punched by the punch 31 to remove the roughing material 11b. Or 20b (refer FIG. 12) is obtained.
  • the punching speed is the same as in conventional punching.
  • FIG. 12 is a diagram schematically showing a plastic strain generation region.
  • the rough blanking material 11b or 20b has a plastic strain region up to a position about 65% of the plate thickness T from the cut surface. Occurs.
  • the plastic strain region St is removed as machining allowance (50% or less of the plate thickness T). Therefore, the plastic strain region generated in the finally obtained electrical steel sheet 11a or 20a is not increased by the plastic strain newly generated in the machining allowance removal step. On the other hand, at least a part of the plastic strain region St generated in the roughing material 11b or 20b is sheared away by a predetermined machining allowance. Therefore, the amount of strain generated in the electromagnetic steel sheet 11a or 20a can be reduced.
  • FIG. 13 is a diagram showing the relationship between machining allowance and strain amount in each processing method.
  • the shaving process result shown in FIG. 8 is represented by a black diamond ( ⁇ )
  • the result of the opposing die shearing process shown in FIG. 9 is represented by a black square ( ⁇ ).
  • the result of the opposing die shearing process shown in FIG. 10 is represented by white triangles ( ⁇ ).
  • the rake angle of opposing die shearing is a result obtained when the rake angle is 4 °.
  • the amount of strain shown in FIG. 13 indicates a ratio to the amount of strain generated by normal conventional punching when the product side is punched by punching.
  • the machining allowance M is scraped off from the roughing material 11b or 20b with the punch 41 and the die 43 as shown in FIG.
  • the machining allowance M is made larger than 40% of the thickness T of the electromagnetic steel sheet 30, the machining allowance rigidity is high, the removal resistance of the machining allowance is increased, and the fracture form approximates that of conventional punching.
  • the amount of distortion does not decrease any further. Therefore, by removing only 40% or less of the plate thickness T from the rough blanking material 11b or 20b as the allowance M by shaving, the amount of strain generated in the final shape electromagnetic steel sheet 10a or 20a is only subjected to normal conventional punching. Compared to the above, it can be reduced by 40% or more.
  • the machining allowance M is less than 15% of the plate thickness T of the rough blank 11b or 20b, the amount of distortion generated in the electromagnetic steel sheet 11a or 20a cannot be reduced by 40% or more. It is preferable to determine the machining allowance M within a range of 15% to 40% of the thickness T. Further, in the shape forming step, when conventional punching is performed without filling the clearance CL, plastic strain is generated from the cut surface to a position about 65% away from the plate thickness T, so that the rough blanking material 11b or 20b The machining allowance M may be determined within a range of 15% to 65% of the plate thickness T.
  • the amount of distortion generated in the final shape electrical steel sheet 10a or 20a is reduced. Compared with the case of performing only ordinary punching, it can be reduced to about 60%.
  • the machining allowance is removed from the rough blanking material 11b or 20b with the punch 53 and the flat die 52a or the protruding die 52b. Cut M.
  • the amount of strain newly generated by the opposing die shearing process becomes much larger than the amount of strain to be removed, and the amount of strain can be reduced. Can not. In some cases, as shown in FIG. 13, the amount of strain generated in the electromagnetic steel sheet 11a or 20a is increased by performing the machining allowance removal step.
  • the amount of strain generated in the final shape of the electrical steel sheet 11a or 20a is reduced by performing opposing die shearing processing with the allowance M as 15 to 50% of the plate thickness T of the rough blank 11b or 20b. Compared with the case where only conventional punching is performed, it can be reduced by approximately 40% or more.
  • the shape forming step when the conventional punching is performed without filling the clearance CL, plastic strain is generated from the cut surface to a position about 65% away from the plate thickness T, so that the rough blanking material 11b or 20b
  • the machining allowance M may be determined within a range of 15% to 65% of the plate thickness T.
  • the machining allowance M when the opposing die shearing process for cutting the machining allowance M is performed using the plate holder 51 with projection and the flat die 52a as shown in FIG. 9, as shown in FIG. 9, as shown in FIG.
  • the amount of strain generated in the electromagnetic steel sheet 10a or 20a is reduced to about 75% compared to the case of performing only ordinary punching. be able to.
  • the machining allowance M when conventional punching is performed without filling the clearance CL, the machining allowance M may be determined within a range of 45% to 55% of the plate thickness T of the rough blanking material 11b or 20b.
  • the electrical steel sheet 11a in which the amount of strain is reduced to about 40 to 75% as compared with the electrical steel sheet formed in the shape of the split core member 11 or the rotor core 20 by conventional punching. Or 20a can be obtained.
  • a performance improvement can be further aimed at by comprising a motor using the stator core 10 or the rotor core 20 comprised by the electromagnetic steel plate 11a or 20a obtained by Example 2.
  • the region of the plastic strain generated in the steel plate 11a or 20a is determined so as to be within the region of the plastic strain generated in the roughing material 11b or 20b in the shape forming process.
  • the plastic strain generated in the machining allowance removal process does not increase the area of the plastic strain generated in the finally obtained electrical steel sheet 11a or 20a, while the rough forming material 11b or 20b occurred in the shape forming process. At least a part of the plastic strain region is sheared away by a predetermined machining allowance M in the machining removal process.
  • the above-described embodiment is merely an example, and does not limit the present invention in any way, and various improvements and modifications can be made without departing from the scope of the invention.
  • the allowance is provided in the entire peripheral area of the edge portion of the roughing material 11b, 20b, but the allowance is partially provided except for a portion that does not significantly affect the performance of the motor. Also good. That is, a margin may be selectively provided only in a portion where the performance of the motor can be improved.
  • this invention is a motor core (for example, household appliances, It can also be applied to the manufacture of robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 本発明は、電磁鋼板に生じる塑性歪を小さくして、鉄損を低減させ磁気特性を向上させるためになされたものであって、電磁鋼板を所定形状に形成し、その所定形状の電磁鋼板を積層したモータコアの製造方法において、電磁鋼板に所定の取代を残して電磁鋼板を所定形状に打ち抜き形成する形状形成工程と、前記形状形成工程で所定形状に形成された電磁鋼板から前記所定の取代をせん断除去する取代除去工程とを含み、前記所定の取代を、前記取代除去工程で電磁鋼板に生じる塑性歪の領域が、前記形状形成工程で電磁鋼板に生じた塑性歪の領域内に収まるように決定する。

Description

モータコアの製造方法
 本発明は、所定形状に打ち抜かれた電磁鋼板が積層されたモータコアの製造方法に関するものである。
 従来から、帯状の電磁鋼板をプレス型で打ち抜いて所定形状に形成し、それを複数枚かしめながら積層することによりモータコア(ロータコア又はステータコア)が製造されている。ここで、一般に、金属製材料に切断等の加工を施した場合、切断部位に加工硬化が生じることが知られている。そのため、打ち抜かれた電磁鋼板には加工硬化が生じている。そして、このような加工硬化が生じた電磁鋼板を用いてモータコアを製造した場合、モータコアにおいて加工硬化部位が磁路形成に大きな影響を与え、鉄損が大きくなり、磁気特性が損なわれてモータの性能を低下させる。
 特に、コスト低減を目的として、鋼板の歩留まり向上や、製造設備の小型化のために打ち抜き荷重を小さくするために、モータコアを分割構成した分割コアでは、モータの性能低下がより顕著となる。分割コアにおいては、通常のモータコア(一体コア)に比べてコア内において、加工硬化部位が増加するからである。
 そのため、モータの性能低下を防止すべく、電磁鋼板を所定形状に形成する際に種々の対策がなされている。そのうちの1つとして、例えば、打ち抜かれた電磁鋼板に生じた加工硬化部位を、シェービング加工などにより削ぎ落とすように除去(切除)することが行われている。このように加工硬化部位を除去することにより、鉄損を低減して磁気特性を損なわないようにしている(特許文献1)。
特開2007-252092号公報
 しかしながら、上記した従来技術では、シェービング加工などによって加工硬化部位を除去した際に歪みが発生する。そのため、新たに発生した歪みにより、打ち抜かれた電磁鋼板に生じる塑性歪が大きくなってしまうおそれがあった。そして、電磁鋼板の塑性歪が大きくなるにしたがって磁気特性が悪化するため、モータの性能が低下してしまう。このため、高性能なモータを製造するためには、モータコアに使用する電磁鋼板に生じる塑性歪をできるだけ小さくしなければならない。
 そこで、本発明は上記した問題点を解決するためになされたものであり、モータコアに使用する電磁鋼板に生じる塑性歪を小さくして、鉄損を低減させ磁気特性を向上させることができるモータコアの製造方法を提供することを目的とする。
 上記課題を解決するためになされた本発明の一態様は、電磁鋼板を所定形状に形成し、その所定形状の電磁鋼板を積層したモータコアの製造方法において、電磁鋼板に所定の取代を残して電磁鋼板を所定形状に打ち抜き形成する形状形成工程と、前記形状形成工程で所定形状に形成された電磁鋼板から前記所定の取代をせん断除去する取代除去工程とを含み、前記所定の取代を、前記取代除去工程で電磁鋼板に生じる塑性歪の領域が、前記形状形成工程で電磁鋼板に生じた塑性歪の領域内に収まるように決定することを特徴とする。
 このモータコアの製造方法では、形状形成工程にて、所定形状に打ち抜き形成された電磁鋼板、すなわち荒抜き素材が得られる。そして、取代除去工程にて、形状形成工程で得られた荒抜き素材から所定の取代がせん断除去される。これにより、モータコアを構成するために積層される積層鋼板が得られる。その後、取代除去工程で得られた積層鋼板を複数枚かしめながら積層することによりモータコアが出来上がる。
 ここで、取代除去工程でせん断除去する所定の取代は、取代除去工程で電磁鋼板に生じる塑性歪の領域が、形状形成工程で電磁鋼板に生じた塑性歪の領域内に収まるように決定されている。このため、取代除去工程で発生する塑性歪により、最終的に得られる電磁鋼板(積層鋼板)に生じる塑性歪の領域が大きくなることはない。一方、形状形成工程で電磁鋼板に生じた塑性歪の領域の少なくとも一部は、取代除去工程で所定の取代分だけせん断除去される。その結果、積層鋼板に生じている塑性歪の領域を小さくすることができる。つまり、積層鋼板に生じる歪量を小さくすることができる。なお、歪量は、打ち抜き端面(切断面)からの歪みを積分して得られる歪みの大きさを表す指標の1つである。
 このように、最終形状の電磁鋼板(積層鋼板)に生じる歪量を小さくすることができるので、積層鋼板における鉄損が低減し磁気特性が向上する。従って、この製造方法により製造したモータコアを用いることにより、モータの性能を向上させることができる。
 そして、上記したモータコアの製造方法において、前記取代除去工程では、シェービング加工又は対向ダイスせん断加工により、前記所定の取代をせん断除去すればよい。
 このようにすることにより、大きな設備変更をすることなく、形状形成工程を実施した後、連続して取代除去工程を実施することができる。従って、新たな工程追加によるコスト上昇と生産効率の低下の両方を最小限に抑えることができる。これにより、生産コストの上昇及び生産効率の低下を抑えながら、最終形状の電磁鋼板(積層鋼板)に生じる歪量を小さくすることができる。
 ここで、形状形成工程においては、電磁鋼板のうちスクラップ側を板押さえとダイスで保持して製品側をパンチにより打ち抜き荒抜き素材を得る場合と、電磁鋼板のうち製品側を板押さえとダイスで保持してスクラップ側をパンチにより打ち抜き荒抜き素材を得る場合とがある。また、取代除去工程では、シェービング加工又は対向ダイスせん断加工により所定の取代をせん断除去することになる。そして、対向ダイスせん断加工では、突起付き板押さえと平面ダイスとを用いて実施する場合と、突起付き板押さえと突起付きダイスとを用いて実施する場合とが考えられる。
 そこで、パンチにより打ち抜いたものを荒抜き素材とし、シェービング加工により荒抜き素材から所定の取代をせん断除去する場合には、前記形状形成工程では、電磁鋼板のうちスクラップ側を板押さえとダイスで保持して製品側をパンチにより打ち抜き、前記取代除去工程では、シェービング加工により、前記パンチで打ち抜かれた電磁鋼板から前記所定の取代をせん断除去し、前記所定の取代を、電磁鋼板の板厚の40%以下とすることが望ましい。
 パンチにより打ち抜いたものを荒抜き素材とした場合(クリアランス10%程度)、打ち抜き端面(切断面)から板厚の380%程度離れた箇所まで塑性歪が発生する。なお、クリアランスを詰めて打ち抜きを行った場合(クリアランス5%以下)には、打ち抜き端面(切断面)から板厚の300%程度離れた箇所まで塑性歪が発生する。ところが、取代を電磁鋼板の板厚の40%より大きくすると、取代の剛性が高く、取代の排除抵抗が大きくなり、慣用打ち抜きに近似する破断形態になるため、シェービング加工ができなくなるとともに、歪量がそれ以上小さくならなくなる(歪量の低減効果がほとんどなくなる)。従って、パンチで打ち抜かれた電磁鋼板から、シェービング加工で電磁鋼板の板厚の40%以下をせん断除去することにより、最終形状の電磁鋼板(積層鋼板)に生じる歪量を効果的に小さくすることができる。
 この場合には、前記所定の取代を、電磁鋼板の板厚の15~25%の範囲内とすることがより好ましい。
 所定の取代を上記範囲内にすることにより、取代除去工程にてシェービング加工を実施する場合に、最終形状の電磁鋼板(積層鋼板)に生じる歪量を最も小さくすることができるからである。
 また、パンチにより打ち抜いたものを荒抜き素材とし、対向ダイスせん断加工により所定の取代をせん断除去する場合には、前記形状形成工程では、電磁鋼板のうちスクラップ側を板押さえとダイスで保持して製品側をパンチにより打ち抜き、前記取代除去工程では、対向ダイスせん断加工により、前記パンチで打ち抜かれた電磁鋼板から前記所定の取代をせん断除去し、前記所定の取代を、電磁鋼板の板厚の125%以下とすることが望ましい。なお、対向ダイスせん断のすくい角は、4~8°が望ましい。
 パンチにより打ち抜いたものを荒抜き素材とした場合、打ち抜き端面(切断面)から板厚の380%程度離れた箇所まで塑性歪が発生するが、打ち抜き端面(切断面)から板厚程度離れた箇所に塑性歪が発生していない部分が存在する。そして、取代を電磁鋼板の板厚の30~40%程度にすると、上記した塑性歪が発生していない部分に、板押さえの突起の押し込みによって塑性歪が新たに生じてしまう。このため、一時的に電磁鋼板の歪量が増加する。ところが、取代を電磁鋼板の板厚の50%以上にすると、対向ダイスせん断加工によって新たに生じる歪量よりも除去される歪量が大きくなるため、最終的に歪量が減少する。そして、取代が電磁鋼板の板厚の125%を超えると、対向ダイスせん断加工によって除去される歪量よりも新たに生じる歪量が大きくなるため、最終的な歪量が増加傾向となる。従って、パンチで打ち抜かれた電磁鋼板から、対向ダイスせん断で電磁鋼板の板厚の125%以下をせん断除去することにより、最終形状の電磁鋼板(積層鋼板)に生じる歪量を効果的に小さくすることができる。
 そして、対向ダイスせん断加工で突起付き板押さえと平面ダイスとを用いる場合には、前記取代除去工程で行う対向ダイスせん断加工を、突起付き板押さえと平面ダイスとを用いて実施し、前記所定の取代を、電磁鋼板の板厚の70~80%の範囲内とすることが好ましい。
 所定の取代を上記範囲内にすることにより、取代除去工程にて突起付き板押さえと平面ダイスとを用いた対向ダイスせん断加工を実施する場合に、最終形状の電磁鋼板(積層鋼板)に生じる歪量を最も小さくすることができるからである。
 あるいは、対向ダイスせん断加工で突起付き板押さえと突起付きダイスとを用いる場合には、前記取代除去工程で行う対向ダイスせん断加工を、突起付き板押さえと突起付きダイスとを用いて実施し、前記所定の取代を、電磁鋼板の板厚の15~25%の範囲内とすることが好ましい。
 所定の取代を上記範囲内にすることにより、取代除去工程にて突起付き板押さえと突起付きダイスとを用いた対向ダイスせん断加工を実施する場合に、最終形状の電磁鋼板(積層鋼板)に生じる歪量を最も小さくすることができるからである。
 一方、板押さえとダイスで保持されたものを荒抜き素材とし、シェービング加工により荒抜き素材から所定の取代をせん断除去する場合には、前記形状形成工程では、電磁鋼板のうち製品側を板押さえとダイスで保持してスクラップ側をパンチにより打ち抜き、前記取代除去工程では、シェービング加工により、前記板押さえ及びダイスで保持されていた電磁鋼板から前記所定の取代をせん断除去し、前記所定の取代を、電磁鋼板の板厚の40%以下とすることが望ましい。
 取代を電磁鋼板の板厚の40%より大きくすると、取代の剛性が高く、取代の排除抵抗が大きくなり、慣用打ち抜きに近似する破断形態になるため、シェービング加工ができなくなるとともに、歪量がそれ以上小さくならなくなる(歪量の低減効果がほとんどなくなる)。従って、パンチで打ち抜かれた電磁鋼板から、シェービング加工で電磁鋼板の板厚の40%以下をせん断除去することにより、最終形状の電磁鋼板(積層鋼板)に生じる歪量を効果的に小さくすることができる。
 この場合には、前記所定の取代を、電磁鋼板の板厚の15~25%の範囲内とすることがより好ましい。
 所定の取代を上記範囲内にすることにより、取代除去工程にてシェービング加工を実施する場合に、最終形状の電磁鋼板(積層鋼板)に生じる歪量を最も小さくすることができるからである。
 また、スクラップ側を打ち抜き板押さえとダイスで保持されたものを荒抜き素材とし、対向ダイスせん断加工により所定の取代をせん断除去する場合には、前記形状形成工程では、電磁鋼板のうち製品側を板押さえとダイスで保持してスクラップ側をパンチにより打ち抜き、前記取代除去工程では、対向ダイスせん断加工により、前記板押さえ及びダイスで保持されていた電磁鋼板から前記所定の取代をせん断除去し、前記所定の取代を、電磁鋼板の板厚の15~65%の範囲内とすることが望ましい。
 スクラップ側を打ち抜き(クリアランス10%程度)板押さえとダイスで保持されたものを荒抜き素材とした場合、打ち抜き端面(切断面)から板厚の65%程度離れた箇所まで塑性歪が発生する。そのため、取代を電磁鋼板の板厚の65%より大きくしても歪量をさらに小さくすることはできない。一方、取代を電磁鋼板の板厚の15%より小さくすると、対向ダイスせん断加工によって新たに生じる歪量が、除去される歪量よりも非常に大きくなり、歪量を低減することができない。場合によっては、取代除去工程を実施することにより、電磁鋼板に生じる歪量が増加することもある。従って、スクラップ側を打ち抜いて板押さえとダイスで保持された電磁鋼板から、対向ダイスせん断で電磁鋼板の板厚の15~65%の範囲を取代としてせん断除去することにより、最終形状の電磁鋼板(積層鋼板)に生じる歪量を効果的に小さくすることができる。
 ここで、形状形成工程でクリアランスを詰めて(クリアランス5%以下)打ち抜きを行った場合、打ち抜き端面から板厚の50%程度離れた箇所まで塑性歪が発生する。このため、クリアランスを詰めて形状形成工程を実施する場合には、所定の取代を、電磁鋼板の板厚の15~50%の範囲内とすればよい。
 そして、対向ダイスせん断加工で突起付き板押さえと平面ダイスとを用いる場合には、前記取代除去工程で行う対向ダイスせん断加工を、突起付き板押さえと平面ダイスとを用いて実施し、前記所定の取代を、電磁鋼板の板厚の45~55%の範囲内とすることが好ましい。
 なお、クリアランスを詰めて形状形成工程を実施する場合には、所定の取代を、電磁鋼板の板厚の45~50%の範囲内とすればよい。
 所定の取代を上記範囲内にすることにより、取代除去工程にて突起付き板押さえと平面ダイスとを用いた対向ダイスせん断加工を実施する場合に、最終形状の電磁鋼板(積層鋼板)に生じる歪量を最も小さくすることができるからである。
 あるいは、対向ダイスせん断加工で突起付き板押さえと突起付きダイスとを用いる場合には、前記取代除去工程で行う対向ダイスせん断加工を、突起付き板押さえと突起付きダイスとを用いて実施し、前記所定の取代を、電磁鋼板の板厚25~35%の範囲内とすることが好ましい。
 所定の取代を上記範囲内にすることにより、取代除去工程にて突起付き板押さえと突起付きダイスとを用いた対向ダイスせん断加工を実施する場合に、最終形状の電磁鋼板(積層鋼板)に生じる歪量を最も小さくすることができるからである。
 本発明に係るモータコアの製造方法によれば、上記した通り、モータコアに使用する電磁鋼板に生じる塑性歪を小さくして、鉄損を低減させ磁気特性を向上させることができる。
ステータコアの概略構成を示す平面図である。 図1に示すII-IIにおける断面図である。 ロータコアの概略構成を示す平面図である。 図3に示すIV-IVにおける断面図である。 形状形成工程を説明するための図である。 塑性歪の発生領域を模式的に示す図である。 各加工法における取代と歪量の関係を示す図である。 シェービング加工の工程を示す図である。 突起付き板押さえと平面ダイスとを用いた対向ダイスせん断加工の工程を示す図である。 突起付き板押さえと突起付きダイスとを用いた対向ダイスせん断加工の工程を示す図である。 形状形成工程を説明するための図である。 塑性歪の発生領域を模式的に示す図である。 各加工法における取代と歪量の関係を示す図である。
 以下、本発明を具体化した実施形態について、添付図面を参照しつつ詳細に説明する。本実施形態では、ハイブリッド自動車や電気自動車に搭載されるモータコアの製造工程に本発明を適用した場合を例示する。そこでまず、本実施の形態に係る製造方法により製造されたステータコア及びロータコアについて、図1~図4を参照しながら簡単に説明する。図1は、ステータコアの概略構成を示す平面図である。図2は、図1に示すII-IIにおける断面図である。図3は、ロータコアの概略構成を示す平面図である。図4は、図3に示すIV-IVにおける断面図である。
 まず、ステータコアについて、図1及び図2を参照しながら簡単に説明する。図1に示すように、ステータコア10は、円環形状をなしており、8つの分割コア部材11から構成されている。具体的には、各分割コア部材11が円環状に配置された状態で焼きばめリング12により組み付られてステータコア10が形成されている。すなわち、焼きばめリング12を加熱して膨張させた状態で、分割コア部材11を配置し、焼きばめリング12を冷却して焼きばめリング12を収縮させることにより、8個の分割コア部材11が一体化されてステータコア10が組み上げられている。
 ステータコア10を構成する分割コア部材11は、図2に示すように、帯状の電磁鋼板から図1に示す形状に形成された電磁鋼板11aが、複数枚積層されてかしめられたものである。分割コア部材11は、ティース部13とヨーク部14とを備えており、平面視で略T字状をなしている。そして、ティース部13にコイルが装着されることによりステータコアが構成される。さらに、このようなステータの中央にロータが配置されてモータが構成される。
 次に、ロータコアについて、図3及び図4を参照しながら簡単に説明する。図3及び図4に示すように、ロータコア20は、複数の電磁鋼板20aが積層されるとともにかしめられて中空円筒形状をなすものである。各電磁鋼板20aは、帯状の電磁鋼板から図3に示す形状に形成されたものである。ロータコア20には、軸方向にロータコア20を貫通する複数の磁石孔21が設けられている。この磁石孔21には、例えばネオジ磁石などの焼結磁石が配置され、樹脂によりモールドされて固定される。そして、ロータコア20は、磁石孔21内に磁石が固定された状態でロータシャフトに嵌合されることにより、ロータとして組み上げられる。
 続いて、上記したステータコア10及びロータコア20の製造方法について説明する。ステータコア10あるいはロータコア20は、上記したように、帯状の電磁鋼板を所定形状に形成して、その所定形状に形成された電磁鋼板11aあるいは20aを積層してかしめることにより製造される。そして、電磁鋼板11a又は20aの積層及びかしめについては、従来と同様の方法により行われている。そのため、ここでは、帯状の電磁鋼板から所定形状の電磁鋼板11a又は20aを得る方法について詳細に説明する。
 本実施の形態では、電磁鋼板11a又は20aを得るために、形状形成工程と、取代除去工程とを実施している。形状形成工程では、帯状の電磁鋼板から所定の取代が設けられた形状に電磁鋼板を打ち抜き形成する、つまり荒抜き素材を得るための工程である。この形状形成工程では、電磁鋼板のうちスクラップ側を板押さえとダイスで保持して製品側をパンチにより打ち抜き荒抜き素材を得る場合と、電磁鋼板のうち製品側を板押さえとダイスで保持してスクラップ側をパンチにより打ち抜き荒抜き素材を得る場合とがある。また、取代除去工程は、形状形成工程で得られた荒抜き素材から所定の取代をせん断除去して最終形状の電磁鋼板11a又は20aを得るための工程である。この取代除去工程では、シェービング加工又は対向ダイスせん断加工により所定の取代をせん断除去する。そして、対向ダイスせん断加工では、突起付き板押さえと平面ダイスとを用いて実施する場合と、突起付き板押さえと突起付きダイスとを用いて実施する場合とがある。
 ここで、所定の取代を設けることなく、電磁鋼板を最終形状に打ち抜き形成する際に、パンチとダイスとのクリアランスあるいは打ち抜き速度を変えることにより、打ち抜かれた電磁鋼板に生じる歪量を低減することができる。歪量は、打ち抜き端面(切断面)からの歪みを積分して得られる歪みの大きさを表す指標である。例えば、慣用打ち抜き(打ち抜き速度:0.01~0.6m/s程度、クリアランス:板厚の8~12%程度)に対して、例えば、打ち抜き速度:100m/s以上で打ち抜くと歪量を40%程度低減することができ、クリアランスを板厚の1~2%に詰めると歪量を20%程度低減することができる。
 しかしながら、更なるモータの高性能化を図るために、モータコアを構成する電磁鋼板に生じる歪量をさらに低減することが強く望まれている。そこで、本実施の形態では、上記したように、形状形成工程及び取代除去工程を実施することにより、最終形状の電磁鋼板11a,20aに生じる歪量の一層の低減を図っている。
 そこで以下では、形状形成工程にて、電磁鋼板のうちスクラップ側を板押さえとダイスで保持して製品側をパンチにより打ち抜き荒抜き素材を得る場合を「実施例1」として説明し、電磁鋼板のうち製品側を板押さえとダイスで保持してスクラップ側をパンチにより打ち抜き荒抜き素材を得る場合を「実施例2」として説明する。
[実施例1]
 実施例1では、形状形成工程において、図5に示すように、帯状の電磁鋼板30のうちスクラップ側30aを板押さえ32とダイス33で保持して製品側30bをパンチ31により打ち抜き荒抜き素材11b又は20b(図6参照)を得る。図5は、形状形成工程を説明するための図である。このとき、パンチ31とダイス33(板押さえ32)とのクリアランスCLは、電磁鋼板30の板厚Tの2%(CL=0.02T)としている。なお、打ち抜き速度は、慣用打ち抜きの場合と同じである。
 このような条件下では、打ち抜き後、荒抜き素材11b又は20bには、図6に示すように、切断面から板厚Tの300%程度離れた箇所まで塑性歪領域(図中のハッチング部)Stが生じる。図6は、塑性歪の発生領域を模式的に示す図である。なお、形状形成工程において、上記のクリアランスCLを詰めずに慣用打ち抜きを行った場合には、荒抜き素材11b又は20bには、切断面から板厚Tの380%程度離れた箇所まで塑性歪領域が生じる。
 そして、取代除去工程において、塑性歪領域Stの少なくとも一部が取代(板厚Tの300%以下)として除去される。そのため、取代除去工程で新たに発生する塑性歪によって、最終的に得られる電磁鋼板11a又は20aに生じる塑性歪の領域が大きくなることはない。その一方で、荒抜き素材11b又は20bに生じた塑性歪の領域Stの少なくとも一部が所定の取代分だけせん断除去される。従って、電磁鋼板11a又は20aに生じる歪量を小さくすることができる。
 ここで、取代除去工程で実施する各せん断加工法について、取代を変化させた場合に歪量がどのようになるのかを調べたので、その結果を図7に示す。図7は、各加工法における取代と歪量の関係を示す図である。また、図8~図10に各加工法における加工工程を説明する図を示す。図8がシェービング加工の工程を示す図であり、図9が突起付き板押さえと平面ダイスとを用いた対向ダイスせん断加工の工程を示す図であり、図10が突起付き板押さえと突起付きダイスとを用いた対向ダイスせん断加工の工程を示す図である。なお、図7では、図8に示すシェービング加工の結果を黒塗り菱形(◆)で表し、図9に示す対向ダイスせん断加工の結果を黒塗り四角(■)で表し、図10に示す対向ダイスせん断加工の結果を白抜き三角(△)で表している。なお、対向ダイスせん断のすくい角は4°で実施した結果である。また、図7に示す歪量は、製品側をパンチにより打ち抜いたときの通常の慣用打ち抜きで発生する歪量に対する割合を示している。
 まず、シェービング加工によって所定の取代を除去する場合には、図8に示すように、荒抜き素材11b又は20bの取代Mをパンチ41によって除去することができるように、荒抜き素材11b又は20bを板押さえ42とダイス43で保持する(状態(a))。そして、パンチ41を下降させていくことにより、パンチ41とダイス43で、荒抜き素材11b又は20bから取代Mを削ぎ落とす(状態(b)→(c)→(d))。
 ここで、取代Mを電磁鋼板30の板厚Tの40%より大きくすると、取代の剛性が高く、取代の排除抵抗が大きくなり、慣用打ち抜きに近似する破断形態になるため、シェービング加工が実施できなくなるとともに、図7から明らかなように歪量がそれ以上は小さくならない。従って、シェービング加工で荒抜き素材11b又は20bから板厚Tの40%以下を取代Mとして除去することにより、最終形状の電磁鋼板10a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、40%以上低減することができる。また、図7から明らかなように、シェービング加工で荒抜き素材11b又は20bから板厚Tの15~25%を取代Mとして除去することにより、最終形状の電磁鋼板10a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、60%程度まで低減することができる。
 次に、対向ダイスせん断加工によって所定の取代を除去する場合には、図9又は図10に示すように、荒抜き素材11b又は20bの取代Mが、突起付き板押さえ51と平面ダイス52a又は突起付きダイス52bで保持されるように、エジェクタ54上に配置される(状態(a))。そして、荒抜き素材11b又は20bに対して板厚Tの10%程度まで突起付き板押さえ51の突起部を押し込む(状態(b))。続いて、状態(b)を維持したまま、平面ダイス52a又は突起付きダイス52bを上昇させる(状態(c))。その後、平面ダイス52a又は突起付きダイス52bを、突起付き板押さえ51と平面ダイス52a又は突起付きダイス52bとの間が荒抜き素材11b又は20bの板厚Tの30%程度になるまで、上昇させる(状態(d))。そして、状態(d)を維持したまま、パンチ53を下降させていくことにより、パンチ53と平面ダイス52a又は突起付きダイス52bで、荒抜き素材11b又は20bから取代Mを切断する(状態(e))。
 ここで、取代Mを電磁鋼板30の板厚Tの30~40%程度にすると、荒抜き素材11b又は20bには、図6に示した塑性歪領域St以外の部分に、突起付き板押さえ51の突起部の押し込みによって塑性歪が新たに生じてしまう。このため、図7に示すように、一時的に、電磁鋼板11a又は20aに生じる歪量が増加する。ところが、取代Mを電磁鋼板30の板厚Tの50%以上にすると、対向ダイスせん断加工によって新たに生じる歪量よりも取代Mとして除去される歪量が大きくなるため、電磁鋼板11a又は20aに生じる歪量が減少する。そして、取代Mを電磁鋼板30の板厚Tの125%超とすると、対向ダイスせん断加工によって取代Mとして除去される歪量よりも新たに生じる歪量が大きくなるため、電磁鋼板11a又は20aに生じる歪量が増加傾向となる。このようなことから、荒抜き素材11b又は20bの板厚Tの125%以下の取代Mで対向ダイスせん断加工を行うことにより、最終形状の電磁鋼板11a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、ほぼ40%以上低減することができる。なお、取代Mが荒抜き素材11b又は20bの板厚Tの15%より小さいと、電磁鋼板11a又は20aに生じる歪量を40%以上低減することができないため、荒抜き素材11b又は20bの板厚Tの15%~125%の範囲内で取代Mを定位することが好ましい。
 そして、取代Mを切断する対向ダイスせん断加工を、図9に示すように、突起付き板押さえ51と平面ダイス52aとを用いて実施する場合には、図7から明らかなように、荒抜き素材11b又は20bから板厚Tの70~80%を取代Mとして除去することにより、電磁鋼板10a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、60%程度まで低減することができる。
 また、取代Mを切断する対向ダイスせん断加工を、図10に示すように、突起付き板押さえ51と突起付きダイス52bとを用いて実施する場合には、図7から明らかなように、荒抜き素材11b又は20bから板厚Tの15~25%を取代Mとして除去することにより、電磁鋼板10a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、55~60%程度まで低減することができる。
 このように実施例1によれば、従来の慣用打ち抜きで分割コア部材11又はロータコア20の形状に形成された電磁鋼板と比較して、歪量を40~60%程度まで低減させた電磁鋼板11a又は20aを得ることができる。これにより、実施例1により得た電磁鋼板11a又は20aにより構成されたステータコア10又はロータコア20を利用して、モータを構成することにより性能の向上を図ることができる。
[実施例2]
 実施例2では、形状形成工程において、図11に示すように、帯状の電磁鋼板30のうち製品側30bを板押さえ32とダイス33で保持し、スクラップ側30aをパンチ31により打ち抜き荒抜き素材11b又は20b(図12参照)を得る。図11は、形状形成工程を説明するための図である。このとき、パンチ31とダイス33(板押さえ32)とのクリアランスCLは、実施例1と同様、電磁鋼板30の板厚Tの2%(CL=0.02T)としている。なお、打ち抜き速度は、慣用打ち抜きの場合と同じである。
 このような条件下では、打ち抜き後、荒抜き素材11b又は20bには、図12に示すように、切断面から板厚Tの50%程度離れた箇所まで塑性歪領域(図中のハッチング部)Stが生じる。図12は、塑性歪の発生領域を模式的に示す図である。なお、形状形成工程において、上記のクリアランスCLを詰めずに慣用打ち抜きを行った場合には、荒抜き素材11b又は20bには、切断面から板厚Tの65%程度離れた箇所まで塑性歪領域が生じる。
 そして、取代除去工程において、塑性歪領域Stの少なくとも一部が取代(板厚Tの50%以下)として除去される。そのため、取代除去工程で新たに発生する塑性歪によって、最終的に得られる電磁鋼板11a又は20aに生じる塑性歪の領域が大きくなることはない。その一方で、荒抜き素材11b又は20bに生じた塑性歪の領域Stの少なくとも一部が所定の取代分だけせん断除去される。従って、電磁鋼板11a又は20aに生じる歪量を小さくすることができる。
 ここで、取代除去工程で実施する各せん断加工法について、取代を変化させた場合に歪量がどのようになるのかを調べたので、その結果を図13に示す。図13は、各加工法における取代と歪量の関係を示す図である。なお、図13では、実施例1と同様に、図8に示すシェービング加工の結果を黒塗り菱形(◆)で表し、図9に示す対向ダイスせん断加工の結果を黒塗り四角(■)で表し、図10に示す対向ダイスせん断加工の結果を白抜き三角(△)で表している。なお、対向ダイスせん断のすくい角は4°で実施した結果である。また、図13に示す歪量は、製品側をパンチにより打ち抜いたときの通常の慣用打ち抜きで発生する歪量に対する割合を示している。
 まず、シェービング加工によって所定の取代を除去する場合には、図8に示したようにパンチ41とダイス43で、荒抜き素材11b又は20bから取代Mを削ぎ落とす。このとき、取代Mを電磁鋼板30の板厚Tの40%より大きくすると、取代の剛性が高く、取代の排除抵抗が大きくなり、慣用打ち抜きに近似する破断形態になるため、、シェービング加工が実施できなくなるとともに、図13から明らかなように、歪量がそれ以上は小さくならない。従って、シェービング加工で荒抜き素材11b又は20bから板厚Tの40%以下を取代Mとして除去することにより、最終形状の電磁鋼板10a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、40%以上低減することができる。
 なお、取代Mが荒抜き素材11b又は20bの板厚Tの15%より小さいと、電磁鋼板11a又は20aに生じる歪量を40%以上低減することができないため、荒抜き素材11b又は20bの板厚Tの15%~40%の範囲内で取代Mを決定することが好ましい。また、形状形成工程において、クリアランスCLを詰めずに慣用打ち抜きを行った場合には、切断面から板厚Tの65%程度離れた箇所まで塑性歪が発生するので、荒抜き素材11b又は20bの板厚Tの15%~65%の範囲内で取代Mを決定すればよい。
 さらに、図13から明らかなように、シェービング加工で荒抜き素材11b又は20bから板厚Tの15~25%を取代Mとして除去することにより、最終形状の電磁鋼板10a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、60%程度まで低減することができる。
 次に、対向ダイスせん断加工によって所定の取代を除去する場合には、図9又は図10に示したように、パンチ53と平面ダイス52a又は突起付きダイス52bで、荒抜き素材11b又は20bから取代Mを切断する。
 ここで、取代Mを電磁鋼板30の板厚Tの50%より大きくしても歪量の更なる低減効果を得ることはできない。一方、取代Mを電磁鋼板30の板厚Tの15%より小さくすると、対向ダイスせん断加工によって新たに生じる歪量が、除去される歪量よりも非常に大きくなり、歪量を低減することができない。場合によっては、図13に示すように、取代除去工程を実施することにより、電磁鋼板11a又は20aに生じる歪量が増加してしまう。このようなことから、荒抜き素材11b又は20bの板厚Tの15~50%を取代Mとして対向ダイスせん断加工を行うことにより、最終形状の電磁鋼板11a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、ほぼ40%以上低減することができる。なお、形状形成工程において、クリアランスCLを詰めずに慣用打ち抜きを行った場合には、切断面から板厚Tの65%程度離れた箇所まで塑性歪が発生するので、荒抜き素材11b又は20bの板厚Tの15%~65%の範囲内で取代Mを決定すればよい。
 そして、取代Mを切断する対向ダイスせん断加工を、図9に示したように、突起付き板押さえ51と平面ダイス52aとを用いて実施する場合には、図13から明らかなように、荒抜き素材11b又は20bから板厚Tの45~50%を取代Mとして除去することにより、電磁鋼板10a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、75%程度まで低減することができる。なお、形状形成工程において、クリアランスCLを詰めずに慣用打ち抜きを行った場合には、荒抜き素材11b又は20bの板厚Tの45%~55%の範囲内で取代Mを決定すればよい。
 また、取代Mを切断する対向ダイスせん断加工を、図10に示したように、突起付き板押さえ51と突起付きダイス52bとを用いて実施する場合には、図13から明らかなように、荒抜き素材11b又は20bから板厚Tの25~35%を取代Mとして除去することにより、電磁鋼板10a又は20aに生じる歪量を、通常の慣用打ち抜きのみを行う場合に比べ、65%程度まで低減することができる。
 このように実施例2によれば、従来の慣用打ち抜きで分割コア部材11又はロータコア20の形状に形成された電磁鋼板と比較して、歪量を40~75%程度まで低減させた電磁鋼板11a又は20aを得ることができる。これにより、実施例2により得た電磁鋼板11a又は20aにより構成されたステータコア10又はロータコア20を利用して、モータを構成することにより性能の向上を一層図ることができる。
 以上、詳細に説明したように本実施の形態に係るステータコア10又はロータコア20の製造方法によれば、所定の取代Mを残して電磁鋼板30から荒抜き素材11b又は20bを打ち抜き形成する形状形成工程と、形状形成工程で得られた荒抜き素材11b又は20bから所定の取代Mをシェービング加工又は対向ダイスせん断加工によりせん断除去する取代除去工程とを含み、所定の取代Mを、取代除去工程で電磁鋼板11a又は20aに生じる塑性歪の領域が、形状形成工程で荒抜き素材11b又は20bに生じた塑性歪の領域内に収まるように決定している。
 このため、取代除去工程で発生する塑性歪により、最終的に得られる電磁鋼板11a又は20aに生じる塑性歪の領域が大きくなることがない一方、形状形成工程で荒抜き素材11b又は20bに生じた塑性歪の領域の少なくとも一部が、取代除去工程で所定の取代M分だけせん断除去される。これにより、最終的に得られる電磁鋼板11a又は20aに生じる歪量を小さくすることができるので、電磁鋼板11a又は20aにおける鉄損が低減し磁気特性が向上する。従って、本実施の形態に係る製造方法により製造したモータコアを用いることにより、モータの性能を向上させることができる。
 なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。例えば、上記した実施の形態では、荒抜き素材11b,20bの縁部全周域に取代を設けているが、モータの性能にあまり影響がない部分を除いて部分的に取代を設けるようにしてもよい。すなわち、モータの性能を向上させられる部分にのみ選択的に取代を設けるようにしてもよい。
 また、上記した実施の形態では、ハイブリッド自動車や電気自動車に搭載されるモータコアの製造工程に本発明を適用した場合を例示したが、本発明はこれ以外に使用されるモータコア(例えば、家電製品やロボットなど)の製造にも適用することができる。
10  ステータコア
11    分割コア部材
11a 電磁鋼板
11b 荒抜き素材
20  ロータコア
20a 電磁鋼板
20b 荒抜き素材
30  電磁鋼板
31  パンチ
32    板押さえ
33    ダイス
41  パンチ
42    板押さえ
43    ダイス
51  突起付き板押さえ
52a  平面ダイス
52b 突起付きダイス
53    パンチ
54  エジェクタ
M   取代
St  塑性歪領域
T   板厚

Claims (12)

  1.  電磁鋼板を所定形状に形成し、その所定形状の電磁鋼板を積層したモータコアの製造方法において、
     電磁鋼板に所定の取代を残して電磁鋼板を所定形状に打ち抜き形成する形状形成工程と、
     前記形状形成工程で所定形状に形成された電磁鋼板から前記所定の取代をせん断除去する取代除去工程とを含み、
     前記所定の取代を、前記取代除去工程で電磁鋼板に生じる塑性歪の領域が、前記形状形成工程で電磁鋼板に生じた塑性歪の領域内に収まるように決定する
    ことを特徴とするモータコアの製造方法。
  2.  請求項1に記載するモータコアの製造方法において、
     前記取代除去工程では、シェービング加工又は対向ダイスせん断加工により、前記所定の取代をせん断除去する
    ことを特徴とするモータコアの製造方法。
  3.  請求項2に記載するモータコアの製造方法において、
     前記形状形成工程では、電磁鋼板のうちスクラップ側を板押さえとダイスで保持して製品側をパンチにより打ち抜き、
     前記取代除去工程では、シェービング加工により、前記パンチで打ち抜かれた電磁鋼板から前記所定の取代をせん断除去し、
     前記所定の取代を、電磁鋼板の板厚の40%以下とする
    ことを特徴とするモータコアの製造方法。
  4.  請求項3に記載するモータコアの製造方法において、
     前記所定の取代を、電磁鋼板の板厚の15~25%の範囲内とする
    ことを特徴とするモータコアの製造方法。
  5.  請求項2に記載するモータコアの製造方法において、
     前記形状形成工程では、電磁鋼板のうちスクラップ側を板押さえとダイスで保持して製品側をパンチにより打ち抜き、
     前記取代除去工程では、対向ダイスせん断加工により、前記パンチで打ち抜かれた電磁鋼板から前記所定の取代をせん断除去し、
     前記所定の取代を、電磁鋼板の板厚の125%以下とする
    ことを特徴とするモータコアの製造方法。
  6.  請求項5に記載するモータコアの製造方法において、
     前記取代除去工程で行う対向ダイスせん断加工を、突起付き板押さえと平面ダイスとを用いて実施し、
     前記所定の取代を、電磁鋼板の板厚の70~80%の範囲内とする
    ことを特徴とするモータコアの製造方法。
  7.  請求項5に記載するモータコアの製造方法において、
     前記取代除去工程で行う対向ダイスせん断加工を、突起付き板押さえと突起付きダイスとを用いて実施し、
     前記所定の取代を、電磁鋼板の板厚の15~25%の範囲内とする
    ことを特徴とするモータコアの製造方法。
  8.  請求項2に記載するモータコアの製造方法において、
     前記形状形成工程では、電磁鋼板のうち製品側を板押さえとダイスで保持してスクラップ側をパンチにより打ち抜き、
     前記取代除去工程では、シェービング加工により、前記板押さえ及びダイスで保持されていた電磁鋼板から前記所定の取代をせん断除去し、
     前記所定の取代を、電磁鋼板の板厚の40%以下とする
    ことを特徴とするモータコアの製造方法。
  9.  請求項8に記載するモータコアの製造方法において、
     前記所定の取代を、電磁鋼板の板厚の15~25%の範囲内とする
    ことを特徴とするモータコアの製造方法。
  10.  請求項2に記載するモータコアの製造方法において、
     前記形状形成工程では、電磁鋼板のうち製品側を板押さえとダイスで保持してスクラップ側をパンチにより打ち抜き、
     前記取代除去工程では、対向ダイスせん断加工により、前記板押さえ及びダイスで保持されていた電磁鋼板から前記所定の取代をせん断除去し、
     前記所定の取代を、電磁鋼板の板厚の15~65%の範囲内とする
    ことを特徴とするモータコアの製造方法。
  11.  請求項10に記載するモータコアの製造方法において、
     前記取代除去工程で行う対向ダイスせん断加工を、突起付き板押さえと平面ダイスとを用いて実施し、
     前記所定の取代を、電磁鋼板の板厚の45~55%の範囲内とする
    ことを特徴とするモータコアの製造方法。
  12.  請求項10に記載するモータコアの製造方法において、
     前記取代除去工程で行う対向ダイスせん断加工を、突起付き板押さえと突起付きダイスとを用いて実施し、
     前記所定の取代を、電磁鋼板の板厚の25~35%の範囲内とする
    ことを特徴とするモータコアの製造方法。
PCT/JP2010/056739 2010-04-15 2010-04-15 モータコアの製造方法 WO2011129000A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056739 WO2011129000A1 (ja) 2010-04-15 2010-04-15 モータコアの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056739 WO2011129000A1 (ja) 2010-04-15 2010-04-15 モータコアの製造方法

Publications (1)

Publication Number Publication Date
WO2011129000A1 true WO2011129000A1 (ja) 2011-10-20

Family

ID=44798392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056739 WO2011129000A1 (ja) 2010-04-15 2010-04-15 モータコアの製造方法

Country Status (1)

Country Link
WO (1) WO2011129000A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187641A (ja) * 2017-05-02 2018-11-29 吉川工業株式会社 プレス加工品の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550157A (ja) * 1991-08-21 1993-03-02 Toyota Motor Corp 対向ダイスせん断加工型
JPH06182461A (ja) * 1992-12-07 1994-07-05 Toyota Auto Body Co Ltd 対向ダイス剪断加工装置
JP2005014062A (ja) * 2003-06-27 2005-01-20 Pacific Ind Co Ltd 対向ダイスせん断加工装置及び対向ダイスせん断加工方法
JP2005278316A (ja) * 2004-03-25 2005-10-06 Mitsuba Corp 電機子ロータ及びそのコアの製造方法
JP2007252092A (ja) * 2006-03-16 2007-09-27 Mitsuba Corp 回転電機におけるアーマチュアコアにおけるのコア材およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550157A (ja) * 1991-08-21 1993-03-02 Toyota Motor Corp 対向ダイスせん断加工型
JPH06182461A (ja) * 1992-12-07 1994-07-05 Toyota Auto Body Co Ltd 対向ダイス剪断加工装置
JP2005014062A (ja) * 2003-06-27 2005-01-20 Pacific Ind Co Ltd 対向ダイスせん断加工装置及び対向ダイスせん断加工方法
JP2005278316A (ja) * 2004-03-25 2005-10-06 Mitsuba Corp 電機子ロータ及びそのコアの製造方法
JP2007252092A (ja) * 2006-03-16 2007-09-27 Mitsuba Corp 回転電機におけるアーマチュアコアにおけるのコア材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187641A (ja) * 2017-05-02 2018-11-29 吉川工業株式会社 プレス加工品の製造方法

Similar Documents

Publication Publication Date Title
JP6343556B2 (ja) 積層鉄心用積層体及びその製造方法並びに積層鉄心の製造方法
JP6400833B2 (ja) 積層鉄心の製造方法および積層鉄心の製造装置
JP5285020B2 (ja) 積層鉄心とその製造方法
WO2011125199A1 (ja) 回転電機の積層鉄心
CN111095750B (zh) 旋转电机用铁芯的制造方法
US20130293060A1 (en) Method of manufacturing laminated stator core and laminated stator core manufactured by the method
WO2016104686A1 (ja) 積層鉄心用の打抜き加工方法及び積層鉄心の製造方法
CN103703655A (zh) 层叠铁心的制造方法以及使用该方法制造的层叠铁心
US20140317908A1 (en) Method for manufacturing laminated iron core and shape of scrap produced thereby
CN109792193B (zh) 电磁钢板的冲裁加工方法和叠片铁心的制造方法
CN211456822U (zh) 电动机的定子芯和电动机
JP2017208986A (ja) 回転電機用積層鉄芯の製造方法
WO2011129000A1 (ja) モータコアの製造方法
JP5248972B2 (ja) 積層鉄心の製造方法及び金型装置
JP5297147B2 (ja) 磁石装着型回転子鉄心の製造方法
JP5536493B2 (ja) 積層鉄心の製造方法および製造装置
JP6988633B2 (ja) ステータコア及びモータ
JP6988631B2 (ja) ステータコア及びモータ
WO2018012599A1 (ja) ローターコア鋼板及びその製造方法並びにローター
WO2022137621A1 (ja) 分割コア、回転電機、分割コアの製造方法、および、回転電機の製造方法
CN111758208B (zh) 转子铁芯部件制造方法以及转子铁芯部件
JP2022066662A (ja) 鋼板打抜き金型および回転電機の製造方法
JP2020005414A (ja) 回転電機用コアの製造方法および回転電機用コア

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP