WO2011126064A1 - 成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 - Google Patents

成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2011126064A1
WO2011126064A1 PCT/JP2011/058749 JP2011058749W WO2011126064A1 WO 2011126064 A1 WO2011126064 A1 WO 2011126064A1 JP 2011058749 W JP2011058749 W JP 2011058749W WO 2011126064 A1 WO2011126064 A1 WO 2011126064A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
hardness
phase
ferrite
annealing
Prior art date
Application number
PCT/JP2011/058749
Other languages
English (en)
French (fr)
Inventor
健悟 竹田
楠見 和久
晴彦 江口
淳 廣渡
慎太郎 藤井
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BR112012024275A priority Critical patent/BR112012024275A2/pt
Priority to MX2012011280A priority patent/MX2012011280A/es
Priority to CN201180004821.7A priority patent/CN102639738B/zh
Priority to KR1020127012690A priority patent/KR101410435B1/ko
Priority to US13/635,805 priority patent/US9228244B2/en
Priority to JP2012509693A priority patent/JP5114760B2/ja
Publication of WO2011126064A1 publication Critical patent/WO2011126064A1/ja
Priority to US14/857,578 priority patent/US10113220B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet excellent in formability suitable mainly for automobile parts and a method for producing the same.
  • Automotive materials such as cross members and side members are being considered for weight reduction in order to respond to recent trends in lighter fuel consumption.
  • steel sheets are being increased in strength from the viewpoint that strength and collision safety are ensured even if the thickness is reduced.
  • the formability of the material deteriorates as the strength increases, it is necessary to manufacture a steel sheet that satisfies both formability and high strength in order to realize the weight reduction of the member.
  • Patent Document 1 discloses a technology that utilizes residual austenite and improves ductility by using transformation-induced plasticity, so-called residual austenitic steel.
  • residual austenite it is necessary to increase the cooling rate after annealing in the two-phase region to prevent ferrite transformation and pearlite transformation, and to add Si or Al to suppress precipitation of cementite.
  • a continuous annealing line having a high cooling rate is required. High Si addition often impairs the plateability, and high Al often impairs the castability.
  • Patent Documents 2 and 3 disclose so-called Dual Phase steel (hereinafter referred to as DP steel) having a low-temperature transformation phase composite structure containing ferrite and martensite and are widely used.
  • DP steel is not as good as retained austenitic steel
  • DP steel is used for body parts of relatively complex shapes in order to exhibit a sufficient balance of strength and ductility. And the strength of DP steel is increasing in response to the recent trend of weight reduction of vehicle bodies.
  • Patent Document 4 and Patent Document 5 disclose a technique for securing a tensile strength of 780 MPa or more by adding elements such as carbide forming elements such as Nb and Ti and utilizing recrystallization suppression and precipitation strengthening during annealing. ing.
  • stretched flange formability is generally low because it is a composite structure steel, but the difference in hardness between ferrite as a parent phase and the low-temperature transformation phase is controlled to stretch. Techniques for improving flange formability are shown. In these inventions, the hardness is measured by Vickers hardness.
  • Patent Document 8 discloses a technique for evaluating characteristics based on nanohardness measured using a technique called nanoindentation developed in recent years. In this technique, the ratio of the hardness of the ferrite and the low-temperature transformation phase is specified according to the ferrite fraction, and the bending characteristics are improved.
  • the precipitation behavior of microalloy carbides such as Ti and Nb affects the material. That is, the material may be affected by the steel plate manufacturing conditions, particularly the annealing conditions. The material variation in this case mainly appears in yield strength and stretch flangeability.
  • Nb an element often used as a microalloy is Nb.
  • Nb also delays ferrite grain growth and recrystallization by the solid dragging effect even in a solid solution state, and contributes to strength strengthening by non-recrystallized ferrite and refinement.
  • carbonized_material there exists an effect which raises strength by precipitation strengthening.
  • Nb has been used to improve strength.
  • B is added to this, the effect of Nb's solid dragging is improved and the effect of increasing the strength is increased.
  • Nb and also the addition of Nb and B have a high recrystallization delay effect and a grain growth suppressing effect, so that a high annealing temperature is required. Therefore, recrystallization is not completed within a general temperature range of 720 ° C. to 800 ° C. in continuous annealing, and the dependency of the material such as tensile strength on the annealing temperature is increased.
  • Patent Document 8 that limits the ratio of the nano-hardness of the ferrite phase and the low-temperature transformation phase to improve the bendability is only a ratio of the average hardness. Therefore, even if a low-temperature transformation phase has a high hardness, it may be included in the average value with the surroundings. When such a low-temperature transformation phase with high hardness exists, it becomes a variation factor of stretch flange formability, and further causes a variation of tensile properties, which causes a problem.
  • Patent Document 9 discloses a composite steel sheet having ferrite as a main phase and a low-temperature transformation phase of bainite and martensite as a second phase, and has a balance of TS-EL and TS- ⁇ (evaluation scale for stretch flangeability).
  • a good steel plate is disclosed. It is disclosed that Ti and Nb are positively added, the composition ratio of the second phase is controlled, and the hardness of the matrix structure is appropriately controlled. However, in this case, an annealing temperature higher than the Ac3 temperature is required, and thus the annealing temperature dependency is large.
  • DP steel As described above, it is an important requirement for DP steel that there is no material variation depending on manufacturing conditions. In particular, there is a demand for DP steel that does not vary in material even under annealing conditions with high productivity, for example, in the range of 720 ° C. to 800 ° C., which is a general temperature range in continuous annealing, or even at an annealing temperature of not more than Ac3 temperature. .
  • the inventors have conducted intensive studies. As a result, the effect of retarding recrystallization and grain growth is smaller than that of Nb, and the temperature range of 720 ° C. to 800 ° C. is a general temperature range in continuous annealing. It has been found that the material fluctuation can be suppressed by adding Ti so that recrystallization can be performed at a lower limit and limiting the amount of Nb or B added.
  • the gist of the present invention is as follows.
  • the microstructure is a ferrite phase fraction of 70 to 90%, the balance is a low temperature transformation phase containing martensite, the average particle size of the low temperature transformation phase is 0.1 to 1 ⁇ m, and the average nanohardness of the ferrite phase and the low temperature transformation phase
  • a high-strength hot-dip galvanized steel sheet characterized by a ratio of 1.5 to 3.0 and a low-temperature transformation phase nanohardness of 1 to 5 times the average nanohardness of the ferrite phase at 80% or more of the measurement point .
  • the slab having the steel component described in [1] is heated to 1000 to 1350 ° C., hot-rolled at a finish rolling temperature Ar3 or higher, scraped at 600 ° C. or lower, pickled, and rolled at a rolling rate of 30 to 30 ° C. Cold-rolling at 70%, and then performing a heat treatment in which the annealing temperature is 720 ° C. or higher and 850 ° C. or lower than the Ac3 temperature, the temperature range from at least 600 ° C.
  • a high-strength molten alloy characterized by performing hot dip galvanizing or alloying hot dip galvanizing after cooling at a temperature range of at least 600 ° C to 500 ° C at a cooling rate of 3 ° C / second or less Method of manufacturing a plated steel sheet.
  • the reason why the annealing temperature is set to 850 ° C. or the Ac3 temperature or less is that when heating is performed exceeding these temperatures, the strength of the steel sheet is drastically lowered, and the sheet passing property in the annealing process is deteriorated.
  • the material changes.
  • a temperature range (easy annealing temperature range) of 720 ° C. or higher, which is a general annealing temperature in a continuous annealing process, and lower than the lower temperature of 850 ° C. or Ac3 temperature
  • the material changes.
  • a high-strength hot-dip galvanized steel sheet of 780 MPa or more there is a remarkable effect.
  • FIG. 1 is a graph showing the relationship between the recrystallization rate and annealing temperature of Ti-added steel, Nb-added steel, and Nb / B-added steel.
  • FIG. 2 is a photomicrograph showing the structure of the steel sheet used to determine the area ratio of the low temperature transformation phase in the examples.
  • the steel sheet according to the present invention is characterized in that the addition of carbide-forming elements is limited to Ti, Nb, which has been widely used in the past, is not added, and the addition amount of B that greatly affects recrystallization is limited.
  • the method for producing a steel sheet according to the present invention optimizes the heating rate during annealing and the cooling rate after annealing, so that the ferrite phase rate, the particle size of the low temperature transformation phase, and the nano hardness of the ferrite phase and the low temperature transformation phase. It is characterized by controlling the fluctuation of the ratio of the average value of the slab and the hardness of the low temperature transformation phase.
  • Nb is an element effective for suppressing recrystallization and strengthening precipitation.
  • the precipitation behavior during hot rolling greatly depends on the cutting temperature.
  • the effect of delaying recrystallization is great, so the material of the annealed steel sheet is considered to depend greatly on the annealing temperature.
  • Ti has less recrystallization / grain growth delay effect due to its source dragging effect and precipitation strengthening effect due to carbide compared with Nb. For this reason, in the temperature range of 720 ° C. to 800 ° C., which is a temperature range that is easy to manufacture by general continuous annealing, the dependency of the material such as tensile strength on the annealing temperature becomes small.
  • a conceptual diagram is shown in FIG.
  • B delays ferrite transformation and pearlite transformation during cooling after annealing. Therefore, it is an effective element for obtaining a composite structure.
  • the transformation suppressing effect is large, the steel sheet after hot rolling is hard and cold rolling may be difficult.
  • the addition amount of B was limited.
  • the conceptual diagram of the recrystallization delay of Nb ⁇ B-added steel is also shown in FIG.
  • Ti precipitates mainly as an amount of TiN corresponding to the amount of N added during hot rolling heating. Since the remaining Ti precipitates as TiC at the time of cutting, the cutting temperature is limited to suppress fine precipitation. Ti that did not form precipitates during hot rolling, that is, solid solution Ti, is finely precipitated as TiC during heating in the annealing process, or is considered to exist as solid solution Ti to suppress recrystallization and grain growth. .
  • the particle size of the low temperature transformation phase, the ratio of the nanohardness of the low temperature transformation phase and the ferrite phase, and their fluctuation range were controlled.
  • the tensile strength is greatly affected by the strength of the low temperature transformation phase. That is, the tensile strength increases when the hardness of the low temperature transformation phase is high. Therefore, the change in the hardness of the low temperature transformation phase becomes a factor of the change in tensile strength.
  • the hardness of the low temperature transformation phase depends on the carbon concentration in the austenite during annealing. Further, when the amount of carbon varies, the transformation expansion coefficient varies and affects the amount of movable dislocation introduced into the adjacent ferrite. Therefore, by limiting the hardness ratio between the low-temperature transformation phase and the ferrite phase and the variation range thereof, the variation in yield strength can be suppressed.
  • the hardness ratio between the low temperature transformation phase and the ferrite phase also affects stretch flange formability.
  • voids are generated from the vicinity of the low temperature transformation phase and become the starting point of cracking.
  • the ratio of the hardness of the low temperature transformation phase and the ferrite phase is large, voids are likely to occur even if the strain is small. From the viewpoint of stretch flange formability, a smaller hardness ratio is desirable.
  • the hardness of the low temperature transformation phase depends on the carbon concentration in the austenite. If the distribution of carbon to austenite is excessively uneven, the variation in the hardness of the low-temperature transformation phase increases, and accordingly, the variation in yield strength and stretch flangeability increases. For this reason, although the fluctuation range of the hardness of the low temperature transformation phase is controlled, it is important in controlling the material fluctuation.
  • the low temperature transformation phase has a fine particle size and is dispersed in a large amount.
  • the reason is that voids are not generated locally at the time of forming the stretch flange, and it is advantageous that the introduction of movable dislocations in the ferrite becomes uniform due to fine dispersion.
  • the hardness ratio of the low temperature transformation phase, its fluctuation range, and particle size can be controlled by the heating rate and cooling rate in the annealing process. The idea is shown below.
  • the heating rate will be described.
  • dissolution of iron carbide, recovery of ferrite, and recrystallization occur near 600 ° C. or more, and transformation from ferrite to austenite occurs above the Ac1 transformation point near 700 ° C.
  • the dissolution of iron carbide is promoted by lowering the heating rate, and the carbon distribution is made uniform.
  • the recrystallization rate can be controlled by limiting the heating rate in the temperature range from 600 ° C. to the annealing temperature.
  • the fraction of ferrite and austenite is determined by the annealing temperature, and carbon is concentrated in the austenite. Further, the recrystallization of the ferrite is controlled by the limitation of the heating rate, the amount of Ti added, and the cutting temperature in the hot rolling, and the ratio of the hardness of the ferrite to the low temperature transformation phase is kept in an appropriate range.
  • the temperature range from the annealing temperature to 650 ° C. is cooled relatively quickly to increase the number of transformation nucleation sites and refine the low temperature transformation phase.
  • variation of the carbon content in the austenite distributed by a ferrite transformation can be made small by cooling a temperature range of 600 to 500 degreeC comparatively late.
  • C is an element that can increase the strength of the steel sheet. However, if it is less than 0.05%, the hardness of the low-temperature transformation phase containing martensite as the main phase becomes low, and it becomes difficult to ensure a tensile strength of 780 MPa or more. On the other hand, if it exceeds 0.1%, it becomes difficult to ensure spot weldability. Therefore, the range is limited to 0.05 to 0.1%. In order to ensure the effect, the lower limit value is preferably 0.06%, more preferably 0.07%, and preferably 0.075%. The upper limit is preferably 0.095%, and preferably 0.09%.
  • Si is a strengthening element and is effective in increasing the strength of the steel sheet. However, if it is less than 0.1%, the moldability is significantly lowered due to the deterioration of elongation, and if it exceeds 1%, the wettability of the plating is lowered. Therefore, the Si content is limited to the range of 0.1 to 1.0%. In order to ensure the effect, the lower limit is preferably 0.25%, more preferably 0.3%, and preferably 0.4%. The upper limit is preferably 0.8%, preferably 0.6%, and more preferably 0.5%. For a continuous hot dip galvanizing line having an all radiant tube furnace, 0.4 to 0.5% is most suitable.
  • Mn is a strengthening element and is effective in increasing the strength of the steel sheet. However, if it is less than 2.0%, it is difficult to obtain a tensile strength of 780 MPa or more. On the other hand, if the amount is too large, co-segregation with P and S is promoted, and the bendability and the stretchability of the elongated hole are significantly deteriorated.
  • the lower limit value is preferably 2.1%, more preferably 2.2%.
  • the upper limit is preferably 2.4%, and more preferably 2.3%.
  • Ti is an important element that contributes to an increase in the strength of the steel sheet by fine grain strengthening and dislocation strengthening by suppressing the growth of ferrite crystal grains. Hardens ferrite as the main phase, reduces the difference in hardness between the low temperature transformation phase mainly composed of martensite as the strengthening phase and the ferrite phase, and improves bendability and hole expansibility. Since these effects cannot be obtained at less than 0.01%, the lower limit is set to 0.01%. On the other hand, if the content exceeds 0.05%, precipitation of carbonitrides increases and formability deteriorates, so the upper limit was made 0.05%. In order to ensure the effect, the lower limit value is preferably 0.015%, more preferably 0.02%.
  • the upper limit is preferably 0.04%, and more preferably 0.03%.
  • the lower limit value is preferably 0.02%, and the upper limit value is preferably limited to 0.03%.
  • Cr is not only a strengthening element but also important for improving hardenability and is an austenite former, and is an essential element for securing the austenite fraction at a low temperature. If it is less than 0.1%, these effects cannot be obtained, so the lower limit is set to 0.1%. Conversely, if the content exceeds 1%, the strength increases excessively, so the upper limit was made 1%. Preferably, it is 0.2 to 0.8%, more preferably 0.3 to 0.7%.
  • Al may be added because it promotes ferrite formation and improves ductility. It can also be used as a deoxidizer. The effect is not exhibited at less than 0.02%, so the lower limit was made 0.02%. However, excessive addition forms Al-based coarse inclusions, which causes surface damage and deterioration of hole expansibility. From this, the upper limit of Al addition was set to 0.1%. Preferably, it is 0.04 to 0.09%, more preferably 0.05 to 0.08%.
  • P tends to segregate in the central part of the plate thickness of the steel sheet, causing the weld to become brittle. For this reason, it is better to have less, rather not. If it exceeds 0.03%, embrittlement of the weld becomes significant, so the appropriate range is limited to 0.03% or less.
  • the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.0001% by mass. That is, the content permitted as an inevitable impurity is 0.03% or less.
  • S adversely affects weldability and manufacturability during casting and hot rolling. For this reason, it is better to have less, rather not. For this reason, the upper limit value was set to 0.01% by mass or less. Although the lower limit of S is not particularly defined, it is preferable to set this value as the lower limit because it is economically disadvantageous to make it less than 0.0001%. That is, the content permitted as an unavoidable impurity is 0.01% or less.
  • N forms coarse nitrides and degrades bendability and hole expansibility. Therefore, it is necessary to suppress the addition amount, and it is preferable that N is not present. This is because when N exceeds 0.01%, this tendency becomes remarkable. Therefore, the range of N content is set to 0.01% or less. In addition, it is better to use less because it causes blowholes during welding. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, if the N content is less than 0.0005%, the manufacturing cost is significantly increased, and this is a substantial lower limit. That is, the content permitted as an unavoidable impurity is 0.01% or less.
  • Nb is an element that is effective in strengthening the ferrite phase by the effect of suppressing recrystallization, refinement of ferrite, and precipitation strengthening.
  • NbC precipitates during rolling during hot rolling and during heating in the stripping process and annealing process, affecting precipitation strengthening and suppression of recrystallization.
  • the strength is greatly affected, and therefore, it is easily affected by the manufacturing process, resulting in a material variation factor, and the addition is not desirable. Therefore, in the present invention, it is not actively added. Even if it exists, it is desirable to limit its content to 0.0010% or less. This restriction is because it is desirable to manage the content below the restriction in consideration of the case where the element is contained due to the use of scrap even when the additive is originally not added. That is, the content permitted as an unavoidable impurity is 0.0010% or less.
  • V, W, Mo, Zr These carbide-forming elements are characterized in that they are less likely to form precipitates than Ti and Nb. When these elements are added, the precipitation behavior of each element is different, and the dependence of carbide precipitation on the cutting temperature, the heating rate dependence in the annealing process, and the annealing temperature dependence change, which causes the material to vary. . Therefore, addition is not desirable. Therefore, in the present invention, V, W, Mo and Zr are not positively added. Even if it exists, it is desirable to limit the respective contents to 0.0010% or less. This restriction is because it is desirable to manage the content below the restriction in consideration of the case where the element is contained due to the use of scrap even when the additive is originally not added. That is, the allowable content of each element as an inevitable impurity is 0.0010% or less.
  • B is an element that increases the hardenability and is effective in suppressing recrystallization.
  • B increases the strength of the hot-rolled steel sheet and decreases the cold rollability.
  • it is necessary to raise the annealing temperature, and it is desirable that no additive be added. Therefore, in the present invention, it is not actively added. Even if it exists, it is desirable to limit its content to 0.0001% or less. This restriction is because it is desirable to manage the content below the restriction in consideration of the case where the element is contained due to the use of scrap even when the additive is originally not added. That is, the content permitted as an unavoidable impurity is 0.0001% or less.
  • Sn has the effect of improving plating adhesion and further promoting alloying when hot-dip galvanized. The effect is not exhibited at less than 0.0010%, so the lower limit was made 0.0010%. Moreover, since the hot workability of a slab will fall when it adds excessively, the upper limit was made into 0.1% or less. In order to obtain the effect with certainty, the lower limit value is preferably 0.002% and the upper limit value is preferably 0.03%. Furthermore, it is more preferable that the lower limit value is 0.005% and the upper limit value is 0.01%.
  • elements such as Ca and REM may be added to control sulfide morphology.
  • elements such as Ni and Cu may be contained as unavoidable impurities, but such inclusions may be contained as long as they do not affect the characteristics of the present invention.
  • the content of these elements is desirably 0.05% or less for each element.
  • the ferrite phase fraction is 70 to 90%, and the remainder is a low temperature transformation phase containing martensite. By using this ratio, a predetermined ductility of 780 MPa or more is ensured. If the ferrite phase fraction is less than 70%, ductility due to ferrite cannot be secured. If the ferrite phase fraction exceeds 90%, the tensile strength is less than 780 MPa because there are few low-temperature transformation phases.
  • the ferrite phase fraction is preferably 75 to 88%, more preferably 80 to 85%.
  • the reason why the low-temperature transformation phase contains martensite is that a mobile dislocation is introduced into the ferrite phase by the martensite transformation, the yield point is lowered, and a yield ratio of 0.7 or less can be secured.
  • the low temperature transformation phase is fine and dispersed in a large amount. This is because not only the stretch flange formability is improved, but also the introduction of movable dislocations into the ferrite phase becomes uniform.
  • the average particle size of the low temperature transformation phase is less than 0.1 ⁇ m, the amount of movable dislocations introduced into the ferrite is small, and the yield ratio exceeds 0.7. Therefore, the lower limit of the average particle size of the low temperature transformation phase is set to 0.1 ⁇ m. Further, when the average particle size of the low temperature transformation phase is excessive, the stretch flange formability deteriorates, so the upper limit was set to 1 ⁇ m.
  • the average particle size of the low temperature transformation phase is more preferably in the range of 0.4 to 0.8 ⁇ m. More preferably, the thickness is 0.5 to 0.7 ⁇ m.
  • the method for measuring the ferrite phase fraction and the particle size of the low temperature transformation phase can be measured based on the leveler method described in the section “Average particle size of low temperature transformation phase” in the examples described later.
  • Ratio of average nano-hardness of ferrite phase and low-temperature transformation phase (defined by average nano-hardness of low-temperature transformation phase / average nano-hardness of ferrite phase. Nano-hardness is about 1/4 of the plate thickness from the steel sheet surface. Measure at the depth position.) Is preferably 1.5 to 3.0. If the hardness ratio exceeds 3.0, stretch flange formability deteriorates. On the other hand, when the hardness ratio is less than 1.5, the concentration of carbon into the low temperature transformation phase becomes insufficient, and the introduction of movable dislocations into the ferrite due to the volume expansion of the martensitic transformation becomes insufficient. Therefore, the low yield ratio, which is a feature of DP steel, cannot be ensured.
  • the lower limit of the average nanohardness ratio is more preferably 1.7, and still more preferably 1.9. Further, the upper limit of the ratio of average nanohardness is more preferably 2.8, and further preferably 2.5.
  • Nano hardness is ultra-micro load hardness using a triangular pyramid indenter specified in JIS Z 2255, and the measurement load was 1 mN. Nano hardness may vary due to measurement weighting. In the case of the steel of the present invention, the measurement load is optimally 1 mN in relation to the particle size and indentation of the low temperature transformation phase, and is defined by the value measured with this load. The average nano hardness is obtained from the measurement results of at least 30 points, and preferably about 100 points.
  • Patent Document 6 and Patent Document 7 disclose the result of the hardness ratio by Vickers hardness.
  • the indenter is unloaded and then measured by the size of the indentation.
  • the nano hardness the hardness is obtained from the penetration depth of the indenter in a loaded state. Therefore, it is characterized by no deformation due to elastic recovery that occurs in the measurement of Vickers hardness. That is, the measurement method is clearly different between nano hardness and Vickers hardness. Therefore, it can be said that the effect of the ratio of the nano-hardness of the ferrite phase and the low-temperature transformation phase on stretch-flange formability was revealed for the first time in a microstructure steel with a fine structure.
  • stretch flange formability does not deteriorate if the nanohardness is at least 80% of the nanohardness measurement point of the low temperature transformation phase and the nanohardness is in the range of 1 to 5 times the average nanohardness of the ferrite phase.
  • the nanohardness was 80% or more of the nano hardness measurement point of the low temperature transformation phase, and the nano hardness was 5 times or less of the average nano hardness of the ferrite phase.
  • the nano hardness measurement point of the low temperature transformation phase is less than 1 times the average nano hardness of the ferrite phase, there is little volume expansion in the martensitic transformation in the vicinity of the low temperature transformation phase, and in the ferrite The movable dislocation introduced is reduced. Even in this case, the yield strength varies greatly. Therefore, at 80% or more of the measurement points of the nano hardness of the low-temperature transformation phase, the nano hardness is set to be 1 or more times the average nano hardness of the ferrite phase. In the case where the tensile strength is set to 780 MPa or more and the fluctuation of the yield strength is reduced, it is preferably 90% or more. Preferably it is 92% or more. Note that the nano hardness measurement of the low-temperature transformation phase is desirably performed at least at 10 points or more, preferably at 20 points or more.
  • the yield ratio is set to 0.7 or less is that when the above components and the microstructure are formed, the steel is DP steel, which is a condition that exhibits a low yield ratio that is characteristic of DP steel. is there.
  • a hot-dip galvanized steel sheet is manufactured under the condition [2] above, in which 10 slabs cast with the same component are annealed in an easy annealing temperature range, and the difference between the maximum and minimum yield strengths of the 10 steel sheets. Is defined as the variation in yield strength.
  • this value is preferably 60 MPa or less.
  • the tensile strength of 780 MPa or more can be obtained by using the chemical composition shown in [1] and the above microstructure.
  • the hot dip galvanizing may be ordinary hot dip galvanizing or alloyed hot dip galvanizing.
  • the hot-dip galvanized steel sheet shown in the above [1] may be manufactured by any manufacturing method as long as its chemical composition and microstructure are in the range shown in the above [1]. However, if the manufacturing method shown in the above [2] is used, it can be easily manufactured. The manufacturing method will now be described.
  • the slab heating temperature was 1000 to 1350 ° C. This is because if the temperature is lower than 1000 ° C., a specified finishing temperature cannot be secured due to an increase in rolling load and a decrease in temperature until finish rolling. Further, when the temperature exceeds 1350 ° C., a large amount of scale is generated, which causes scale flaws.
  • finishing rolling temperature is Ar3 or higher is that when the finishing temperature is lower than this, transformation occurs during rolling and the rolling load greatly fluctuates, causing misrolling. Moreover, it is because the particle diameter becomes coarse in the place where transformation has occurred, the microstructure after cold rolling annealing becomes non-uniform, and causes variation in material.
  • the reason why the scraping temperature is set to 600 ° C. or lower is that Ti, which is a carbide forming element, remains in a solid solution state and contributes to refinement of structure and strengthening of dislocation. Moreover, the material fluctuation of the hot rolled sheet strength in the coil longitudinal direction is also reduced, and there is an effect that the sheet thickness fluctuation during cold rolling is reduced. Furthermore, when the milling temperature exceeds 600 ° C., coarse carbides are generated and the carbides are difficult to dissolve in austenite during annealing, so that the ratio of nanohardness is lowered and the low yield ratio of the steel of the present invention cannot be realized.
  • the total rolling rate of cold rolling (hereinafter, the total rolling rate of cold rolling is simply referred to as the rolling rate) was 30 to 70%, and the reduction rate per pass was 30% or less.
  • the rolling rate is less than 30%, the structure after annealing becomes coarse, and it is impossible to secure the restriction on the particle size of the low-temperature transformation phase shown in the above [1], so the lower limit was made 30%.
  • the rolling rate exceeds 70%, the driving force for recrystallization increases and recrystallization promotes, so that it becomes difficult to secure unrecrystallized ferrite and the strength decreases. did.
  • the rolling reduction per pass exceeds 30%, a strong shear band can be sparse, and the strain near the shear band becomes large, so the strain distribution in the steel sheet becomes non-uniform.
  • the ferrite grain size in the highly strained region is small, so the uniformity of the structure inside the steel sheet is reduced.
  • ferrite with a small grain size has a high driving force for grain growth, its size is strongly influenced by the annealing temperature, and the fluctuation of the yield strength during production becomes large.
  • the rolling reduction per pass is 30% or less, it is possible to suppress the formation of a strong shear band and to make the accumulation of strain in the steel sheet uniform.
  • the rolling reduction per pass is preferably 25% or less, more preferably 20% or less, and most preferably 15% or less, the accumulation of strain can be made more uniform.
  • the annealing is preferably performed in a continuous hot dip galvanizing line.
  • the limitation of temperature control at that time will be described.
  • the temperature range from at least 600 ° C. to the annealing temperature described later may be an average heating rate of 0.5 to 6 ° C./second, preferably 0.5 to 4 ° C./second.
  • Use When the average heating rate is high, the time for dissolving the iron carbide is insufficient, and the distribution of carbon in the steel sheet becomes uneven.
  • the upper limit heating rate is 6 ° C./second, preferably 4 ° C./second. If the heating rate is less than 0.5 ° C / second, the effect of fine grain strengthening cannot be expected because the ferrite grain growth proceeds, the strength is insufficient, and the annealing line length is excessively necessary. Therefore, the lower limit is set to 0.5 ° C./second.
  • Annealing is maintained at a temperature range of 720 ° C. or higher and lower temperature of 850 ° C. or lower of Ac3 temperature, preferably 740 ° C. or higher and 800 ° C. or lower temperature of Ac3 temperature of 10 ° C. or higher. It was decided.
  • the annealing temperature is less than 720 ° C., the amount of austenite becomes insufficient, the tensile strength becomes less than 780 MPa, and the hardness of the low-temperature transformation phase containing martensite as the main phase becomes high, which does not satisfy the range [1]. Therefore, the lower limit was set to 720 ° C. Further, by setting the lower limit of the annealing temperature to 740 ° C., a sufficient austenite fraction is ensured, and the strength ductility balance and stretch flangeability are improved.
  • the upper limit of the maximum heating temperature is set to 850 ° C. or the lower temperature of Ac3 temperature.
  • the annealing temperature is higher than 850 ° C.
  • oxides generated on the surface of the steel sheet may be picked up by the hearth roll, and they may generate pit wrinkles that cause pressing on the steel sheet.
  • the upper limit of the annealing temperature is preferably 850 ° C. or the lower temperature of Ac3 temperature, more preferably 800 ° C. or the lower temperature of Ac3 temperature.
  • the heat treatment time in this temperature range requires a heat treatment of 10 seconds or more for the dissolution of iron carbide. When the time is shorter than this time, not only the hardness variation of the low temperature transformation phase increases, but also the particle size becomes excessively fine. On the other hand, if the heat treatment time exceeds 600 seconds, the cost increases, which is not economically preferable.
  • At least a temperature range from the annealing temperature to 650 ° C. is cooled at a cooling rate of 5 ° C./second or more, preferably 7 ° C./second or more, and a temperature range from at least 600 ° C. to 500 ° C. is cooled at a cooling rate of 3 ° C. / Second or less, preferably 2 ° C./second or less.
  • ferrite transformation at 650 ° C. or higher is suppressed by increasing the cooling rate in the temperature range from the annealing temperature to 650 ° C. It is assumed that the ferrite is supercooled, so that the number of nucleation sites for ferrite transformation increases, the ferrite becomes finer, and the grain size of austenite remaining at the grain boundary becomes finer.
  • the cooling rate is less than 5 ° C./second, ferrite transformation occurs at high temperature, and as a result, the restriction on the average particle size of the low temperature transformation phase shown in the above [1] is not satisfied, and stretch flangeability deteriorates. Therefore, the lower limit was set to 5 ° C./second.
  • the cooling rate is desirably 7 ° C./second or more.
  • the reason why the cooling rate in the temperature range from 600 ° C. to 500 ° C. is relatively low is to promote the ferrite transformation that occurs in this temperature range and to make the amount of carbon concentrated in austenite uniform.
  • the average cooling rate in this temperature range is more than 3 ° C./second, the ratio of the nano hardness of the low temperature transformation phase to the average nano hardness of the ferrite does not satisfy the range limited by the above [1].
  • the upper limit was 3 ° C./second. Desirably, when it is set to 2 ° C./second, the change in nano hardness of the low temperature transformation phase becomes small, and the change in yield strength becomes small.
  • an alloying treatment is performed by passing the alloying furnace through the galvanized layer after passing through the alloying furnace.
  • the temperature of the alloying furnace may be adjusted by the line speed, and the temperature at which the alloying is completed may be selected.
  • the temperature is usually in the range of 460 to 600 ° C. When the temperature is 460 ° C. or lower, alloying is slow and productivity is poor. On the other hand, if it exceeds 600 ° C., ferrite-pearlite transformation occurs and the characteristics deteriorate.
  • the rolling reduction of skin pass rolling is preferably in the range of 0.1 to 1.5%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit. If it exceeds 1.5%, the productivity is remarkably lowered, so this is the upper limit.
  • the skin pass may be performed inline or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps. Further, trimming or the like may be performed.
  • annealing furnace Any type of annealing furnace may be used, such as NOF-RF type or all-liant tube furnace type. Further, a dew point, an atmospheric component, or the like may be adjusted in order to control the plating property. Moreover, electroplating of Ni or the like may be performed for the purpose of improving plating properties before the continuous hot dip galvanizing line. Further, various post-treatments may be applied after the plating in order to impart characteristics such as corrosion resistance.
  • Example 1 As the slabs having the chemical components shown in Table 1, the symbols A to AQ are hot-rolled at the slab heating temperature and finish rolling temperature shown in Table 2, and after water cooling in a water cooling zone, The removal process was performed. The finish rolling temperature was Ar3 point or higher. The hot-rolled sheet was pickled and then cold-rolled to obtain a cold-rolled sheet. Table 2 shows the hot-rolled plate thickness, the cold-rolled rate, and the cold-rolled plate thickness.
  • the cold-rolled steel plate manufactured on the same conditions was annealed on the same conditions, and after passing through the galvanizing bath, it alloyed by passing to the alloying furnace.
  • the alloying treatment temperature was selected in the range of 460 ° C. to 600 ° C. according to the line speed. After the alloying treatment, after cooling to room temperature at a cooling rate of 10 ° C./second, skin pass rolling was performed at a rolling reduction of 0.3%.
  • the basis weight was about 50 g / m 2 on both sides.
  • the obtained hot-dip galvanized steel sheet was subjected to a tensile test, and YS (yield strength), TS (tensile strength), and El (elongation rate) were measured.
  • the yield strength was measured by the 0.2% offset method.
  • a JIS No. 5 test piece was sampled in a direction perpendicular to the rolling direction from a 1.4 mm thick plate, and the tensile properties were evaluated. From these measured values, the following characteristics were evaluated, and the results are shown in Table 2.
  • TS Tensile strength (stress) (TS)
  • the tensile strength is shown in Table 2 as ⁇ when it is 780 MPa or more and as x when it is less than 780 MPa.
  • yield ratio The yield ratio is shown in Table 2 as ⁇ when the yield ratio is 0.7 or less and x when the yield ratio exceeds 0.7. It may be 0.7 or more.
  • the strength ductility balance (TS ⁇ El [MPa ⁇ %]) was determined and used as an index of press formability, and is shown in Table 2. The legend is shown below. It may be 14,000 or more. A: 16000 or more, ⁇ 15000 or more, less than 16000, ⁇ : 14000 or more, less than 15000, X: Less than 14000.
  • measurement was performed by changing the annealing temperature using a plurality of coils. Measurement may be performed by changing the annealing temperature using a single coil.
  • a legend for yield strength variation is shown below. What is necessary is just 60 MPa or less.
  • A The difference between the maximum value and the minimum value of the yield strength when the annealing temperature range is 720 to 800 ° C. is 40 MPa or less
  • The difference between the maximum value and the minimum value of the yield strength when the annealing temperature range is 720 to 800 ° C. is more than 40 MPa and not more than 60 MPa.
  • X When the difference between the maximum value and the minimum value of the yield strength when the annealing temperature range is 720 to 800 ° C. exceeds 60 MPa. The results are shown in Table 2.
  • the strength hole expansion balance was evaluated by stretch flangeability.
  • the stretch flange formability was evaluated using a hole expansion value ⁇ by a hole expansion test shown in the Steel Federation Standard JFST1001-1996.
  • the strength-hole expansion value balance (TS ⁇ ⁇ [MPa ⁇ %]) was determined and used as an index of stretch flangeability, and the results are shown in Table 2.
  • the legend is shown below. It may be 20000 or more. A: 24,000 or more, ⁇ : 22,000 or more, less than 24000, ⁇ : 20000 or more, less than 22000, X: Less than 20000.
  • nano hardness was measured according to the ultra micro load hardness method specified in JIS Z 2255, and the measurement load was 1 mN. The average nano hardness was measured at 100 points. Both the ferrite hardness and the low-temperature transformation phase hardness are cut and the thickness cross section is polished, and then the electrolytic corrosion is performed to make the microstructure appear. The nano hardness was measured. The change in nano hardness of the low temperature transformation phase was determined by the ratio of the low temperature transformation phase in the range of 1 to 5 times the average hardness of the ferrite phase, and the results are shown in Table 2. The legend is shown below. 80% or more is sufficient. A: 100%, ⁇ : 90% or more and less than 100%, ⁇ : 80% or more and less than 90%, X: Less than 80%.
  • Plating properties and alloying reactions were evaluated as follows. A legend showing plating properties is shown below. ⁇ : No plating, ⁇ : Slightly unplated, X: There are many non-plating. A legend showing alloying reactivity is shown below. ⁇ : No alloying unevenness on the surface appearance, ⁇ : Some unevenness of alloying on the surface appearance, X: There are many alloying irregularities in the surface appearance. The results are shown in Table 2. If neither is x, there is no problem.
  • Example 2 An alloyed hot-dip galvanized steel sheet was produced under the production conditions shown in Table 2 in the same manner as in Example 1 with the symbols AR to BA as slabs having the chemical components shown in Table 1. The finishing temperature during hot rolling was Ar3 or higher. This experiment examined the effect of Sn addition on alloying of galvanizing.
  • Example 2 The results are shown in Table 2. From this, it was found that alloying was promoted by addition of Sn. However, in Experiment Nos. 48 and 53 in which the addition amount of Sn was more than the limit, wrinkles occurred on the hot-rolled sheet. Other evaluations performed in Example 1 were also performed and are shown in Table 2. From these, it can be seen that the steel sheets of the present invention are all excellent in formability, weldability, and plating properties, and the material variation is small.
  • Example 3 Using the symbols A, C, and H as slabs having the chemical components shown in Table 1, hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets were manufactured under the production conditions shown in Table 2 in the same manner as in Example 1. Evaluation similar to Example 1 was performed. The finishing temperature during hot rolling was Ar3 or higher. The effect of the manufacturing conditions of the steel sheet was examined by this experiment. The evaluation results are shown in Table 2. From this, it can be seen that the steel sheets of the present invention are all excellent in formability, weldability, and plating properties, and the material variation is small.
  • the present invention provides a steel sheet having a high tensile strength of 780 MPa or more and an excellent formability, which is suitable for car body parts applied to automobiles, stably and inexpensively, and contributes greatly to reducing the weight of automobiles.
  • the industrial effect is extremely high.

Abstract

製造時の材質変動が少なく成形性に優れた高強度溶融亜鉛めっき鋼板を提供する。 NbやBを添加する代わりにTi添加量を制御することにより、連続焼鈍工程で一般的な焼鈍温度である720℃以上で、かつ800℃もしくはAc3温度のどちらか低い方の温度以下の温度範囲(易焼鈍温度域)で焼鈍しても再結晶、粒成長遅延効果が得ることができる。 また、圧延および熱処理条件を制御することにより、フェライトと低温変態相の複合組織鋼において、フェライト相率、低温変態相の粒径、フェライト相と低温変態相のナノ硬さの平均値の比と低温変態相の硬さの変動を制御し、材質変動が小さく成形性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。

Description

成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
 本発明は、主に自動車部品用に適する成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法に関する。
 自動車のクロスメンバーやサイドメンバー等の部材は、近年の燃費軽量化の動向に対応すべく軽量化が検討されている。材料面では、薄肉化しても強度及び衝突安全性が確保されるという観点から、鋼板の高強度化が進められている。しかし、材料の成形性は、強度が上昇するのに伴って劣化するので、上記部材の軽量化を実現するには、成形性と高強度の両方を満足する鋼板を製造する必要がある。
 成形性と高強度を両立する鋼板としては特許文献1に残留オーステナイトを活用し、変態誘起塑性を用いて延性を向上させる技術、いわゆる残留オーステナイト鋼が開示されている。しかし残留オーステナイトを残存させるためには2相域焼鈍後の冷却速度を大きくして、フェライト変態やパーライト変態を防止し、SiやAlを添加してセメンタイトの析出を抑制する必要がある。冷却速度を大きくするには冷却速度が高い連続焼鈍ラインが必要となり、高Si添加はめっき性を損ない、高Alは鋳造性を損なう場合が多い。
 特許文献2、特許文献3には、フェライトとマルテンサイトを含有する低温変態相の複合組織を有するいわゆるDual Phase鋼(以下DP鋼)が開示され、広く用いられている。DP鋼は残留オーステナイト鋼には及ばないものの、充分な強度延性バランスを示すため、比較的複雑形状の車体部品に用いられている。そしてDP鋼の強度は、近年の車体軽量化の動向に対応して、増加している。
 例えば特許文献4や特許文献5には、炭化物形成元素であるNb、Tiなどの元素を添加して焼鈍中の再結晶抑制や析出強化を活用し、引張強度780MPa以上を確保する技術が開示されている。
 また、特許文献6、特許文献7には、複合組織鋼であるため伸びフランジ成形性は一般的に低位であるが、母相であるフェライトと低温変態相の硬さの差を制御して伸びフランジ成形性を改善する技術が示されている。これらの発明では、硬さはビッカース硬さにて測定されている。
 しかし、引張強度が780MPa以上のDP鋼板の場合、ミクロ組織の粒径が小さくビッカース硬さでは評価ができない。
 そこで、近年開発されたナノインデンテーションという技術を用いて測定したナノ硬さで特性を評価する技術が特許文献8に開示されている。この技術ではフェライトと低温変態相の硬さの比をフェライト分率に応じて規定しており、これより曲げ特性が改善されるとしている。
特開平6−145788号公報 特開平10−147838号公報 特開2002−363695号公報 特開2009−144225号公報 特開2002−363685号公報 特開2009−191360号公報 特開2009−167475号公報 特開2009−167467号公報 特開2010−65316号公報
 マイクロアロイ元素を活用したDP鋼を製造する場合、TiやNbなどのマイクロアロイ炭化物の析出挙動が材質に影響を及ぼす。すなわち、鋼板製造条件、特に焼鈍条件の影響を受け、材質が変動することがある。この場合の材質変動は主に降伏強度と伸びフランジ成形性に現れる。
 降伏強度が変動した場合には、プレス成形後のスプリングバック発生挙動が変化して、車体部品の寸法精度が低下するという課題がある。このため、部品不良が発生し、オフラインでの矯正が必要になる。
 伸びフランジ成形性が変動した場合には、プレス成形時にブランキングにより生じた剪断加工部で割れが発生するという課題がある。
 従来、マイクロアロイとして多く用いられている元素はNbである。Nbは固溶状態でもSolute dragging効果によりフェライトの粒成長や再結晶を遅延させて、未再結晶フェライトや細粒化により強度強化に寄与する。さらに炭化物として析出した場合には、析出強化により強度上昇効果がある。これらの理由により強度向上のためにNbは用いられてきた。
 また、これにB添加すると、NbのSolute dragging効果が向上し、強度上昇効果が大きくなる。
 しかし、Nb添加、さらにはNb及びBの添加では再結晶遅延効果や粒成長抑制効果が大きいため、高い焼鈍温度が必要となる。そのため連続焼鈍での一般的な温度範囲である720℃~800℃の範囲では再結晶は完了せず、引張強度などの材質の焼鈍温度依存性が大きくなってしまう。
 また、特許文献8に開示されたフェライト相と低温変態相のナノ硬さの比を制限して曲げ性を改善する技術は、平均硬さの比が規定されているだけである。そのため、低温変態相の中に硬さが高いものが存在していた場合でも、周囲との平均値に含まれてしまう場合がある。このような硬さが高い低温変態相が存在する場合には、伸びフランジ成形性の変動要因となり、さらには引張特性の変動の原因にもなり問題となる。
 特許文献9には、フェライトを主相とし、ベイナイトおよびマルテンサイトの低温変態相を第二相とする複合組織鋼板であって、TS−EL、TS−λ(伸びフランジ成形性の評価尺度)バランスのよい鋼板が開示されている。これは、Ti、Nbを積極的に添加し、第二相の構成比率を制御し、母相組織の硬さ制御を適切に行うことが開示されている。しかし、この場合Ac3温度以上の焼鈍温度が必要となるため、焼鈍温度依存性は大きい。
 以上のように、製造条件によって材質変動がないことはDP鋼にとって重要な要件となっている。特に、生産性の高い焼鈍条件、例えば連続焼鈍での一般的な温度範囲である720℃~800℃の範囲や高くてもAc3温度以下の焼鈍においても材質変動のないDP鋼が求められている。
 上記課題を解決するために発明者らは鋭意検討を行った結果、再結晶・粒成長遅延効果はNbに比べて小さく、連続焼鈍での一般的な温度範囲である720℃~800℃の範囲での再結晶が可能であるようにTiを添加し、NbやBの添加量を制限することにより材質変動を抑制できることを見出した。
 つまり、Ac3温度まで加熱することなく、720℃以上かつ850℃もしくはAc3温度のどちらか低い方の温度以下の温度範囲(以下、易焼鈍温度域という)で焼鈍しても、材質変動を抑制しつつ、所定の特性を得ることができることを知見した。
 また、さらに、焼鈍時の加熱速度と冷却パターンを最適化することにより、フェライト相率、低温変態相の粒径、フェライト相と低温変態相のナノ硬さの平均値の比と低温変態相の硬さの変動を制御できることも見出した。
 これらの知見により、材質変動が少ない高強度溶融亜鉛めっき鋼板が製造できることを見出し、本発明を成すに至った。本発明の要旨とするところは下記のとおりである。
[1] 鋼の成分として、質量%で、C:0.05~0.1%、Si:0.1~1.0%、Mn:2.0%~2.5%、Al:0.02~0.1%、Ti:0.01~0.05%、Cr:0.1~1.0%、Sn:0.0010~0.1%、残部Fe及び不可避的不純物を含有し、ミクロ組織としてフェライト相分率70~90%、残部がマルテンサイトを含む低温変態相であり、低温変態相の平均粒径が0.1~1μm、フェライト相と低温変態相の平均ナノ硬さの比が1.5~3.0、低温変態相のナノ硬さは測定点の80%以上でフェライト相の平均ナノ硬さの1~5倍に入ることを特徴とする高強度溶融亜鉛めっき鋼板。
[2] [1]に記載の鋼成分を有するスラブを1000~1350℃に加熱した後に仕上げ圧延温度Ar3以上で熱間圧延後、600℃以下で捲取り、酸洗を施し、圧延率30~70%で冷間圧延し、その後720℃以上で、かつ850℃もしくはAc3温度のどちらか低い温度以下の温度を焼鈍温度とする熱処理を行うにあたって、少なくとも600℃から焼鈍温度までの温度範囲を0.5℃/秒以上6℃/秒以下の加熱速度で加熱し、焼鈍温度で10s以上保持したのち、少なくとも焼鈍温度から650℃までの温度範囲を冷却速度5℃/秒以上で冷却し、さらに少なくとも600℃から500℃までの温度範囲を冷却速度3℃/秒以下で冷却したのち、溶融亜鉛めっきまたは合金化溶融亜鉛めっきを施すことを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。焼鈍温度を850℃もしくはAc3温度以下としたのは、これらの温度を超えて加熱すると、鋼板強度が急激に低下し、焼鈍工程での通板性が悪くなるからである。
 本発明により、連続焼鈍工程で一般的な焼鈍温度である720℃以上で、かつ850℃もしくはAc3温度のどちらか低い方の温度以下の温度範囲(易焼鈍温度域)で焼鈍しても材質変動が小さく、成形性が良好で所定の特性を有する高強度溶融亜鉛めっき鋼板を提供することができる。特に780MPa以上の高強度溶融亜鉛めっき鋼板において、顕著な効果を奏する。
図1は、Ti添加鋼、Nb添加鋼及びNb・B添加鋼の再結晶率と焼鈍温度との関係を示すグラフである。 図2は、実施例において低温変態相の面積率を求める際に用いた鋼板の組織を示す顕微鏡写真である。
 本発明の基本的考え方について説明する。
 本発明に係る鋼板は、炭化物形成元素の添加をTiに限定し、従来多用されたNbを無添加とし、さらに再結晶に大きく影響を及ぼすBの添加量を制限したことを特徴している。
 また本発明に係る鋼板の製造方法は、焼鈍時の加熱速度と焼鈍後の冷却速度を最適化することにより、フェライト相率、低温変態相の粒径、フェライト相と低温変態相のナノ硬さの平均値の比と低温変態相の硬さの変動を制御することを特徴としている。
 これらのことにより、材質変動が少ない高強度溶融亜鉛めっき鋼板が製造できることを見出した。
 まず、フェライトの再結晶や析出強化に寄与する炭化物形成元素をTiに限定するとともに、他の炭化物形成元素の含有を制限した理由を以下に示す。
 Nbは再結晶抑制と析出強化に有効な元素である。熱延時の析出挙動は捲取温度に大きく依存する。また、焼鈍工程の加熱時に微細析出する場合でも再結晶を遅延させる効果が大きいため、焼鈍された鋼板の材質が焼鈍温度に大きく依存すると考えられる。
 その他の炭化物形成元素として使用されるV、W、Mo、Zrも同様であり、しかも炭化物析出の熱間圧延での捲取り温度依存性、焼鈍工程の加熱速度依存性および焼鈍温度依存性がそれぞれに異なるため、材質変動の要因となる。
 Tiは、Nbと比較すると、そのSolute dragging効果による再結晶・粒成長遅延効果や炭化物による析出強化の効果が小さい。このため、一般的な連続焼鈍で製造が容易な温度範囲である720℃~800℃の範囲においては引張強度などの材質の焼鈍温度依存性が小さくなる。概念図を図1に示す。
 図1に示すように、Ti添加鋼は、再結晶がフェライト域の温度で開始し、フェライトとオーステナイトの2相域になると変態したオーステナイトにより再結晶が遅延すると考えられる。その後温度を上げると、再結晶が完了する。これよりTi添加鋼は、Nb添加鋼やNb・B添加鋼に比べて、比較的低温で安定した再結晶状態を得ることができる。すなわち、材質変動を小さくすることが可能となると考えられる。上記の理由から炭化物形成元素をTiのみに限定した。
 また、Bは焼鈍後の冷却時にフェライト変態やパーライト変態を遅延させる。そのため、複合組織を得るためには効果的な元素である。しかし、変態抑制効果が大きいため熱延後の鋼板が硬く、冷間圧延が困難になる場合がある。また、図1のNb・B添加鋼の例で示されるように、易焼鈍温度域中の再結晶が抑制されることから、焼鈍温度を高くする必要がある。このため、Bの添加量を制限した。Nb・B添加鋼の再結晶遅延の概念図を図1にあわせて示している。
 Tiの焼鈍工程の加熱中での微細析出を制御するためには、Tiの添加量と熱延条件、特に捲取温度の制限が有効である。さらに焼鈍工程中での加熱にて加熱速度を制限することにより、再結晶の遅延が抑制されて材質変動を小さくできる。
 Tiは熱延加熱時に主にN添加量に相当する量のTiNとして析出する。残存したTiは捲取時にTiCとして析出するので、微細析出を抑制するため捲取温度を制限する。熱延時に析出物を形成しなかったTi、つまり固溶Tiは焼鈍工程の加熱時にTiCとして微細析出するか、もしくは固溶Tiのまま存在して再結晶・粒成長を抑制するものと考えられる。
 次に低温変態相の制御について説明する。低温変態相の粒径、および低温変態相とフェライト相とのナノ硬さの比、およびそれらの変動範囲を制御した。DP鋼では引張強度は低温変態相の強度に大きな影響を受ける。すなわち、低温変態相の硬さが高い場合には引張強度が高くなる。そのため、低温変態相の硬さの変動は、引張強度変動の要因となる。低温変態相の硬さは焼鈍時のオーステナイト中の炭素濃度に依存している。また炭素量が変動すると、変態膨張率が変動し、近接したフェライトに導入される可動転位量に影響を及ぼす。そのため低温変態相とフェライト相との硬さの比とその変動範囲を制限することで、降伏強度の変動を抑制することできる。
 低温変態相とフェライト相との硬さの比は伸びフランジ成形性にも影響を及ぼす。DP鋼では低温変態相の近傍からボイドが発生して割れの起点となる。低温変態相とフェライト相との硬さの比が大きい場合には、歪みが小さくてもボイドが発生し易い。この伸びフランジ成形性の観点では硬さの比は小さい方が望ましい。
 ただし、硬さの比が過度に小さい場合には、低温変態相が変態するときの体積膨張が小さいため、フェライト中に導入される可動転位量が少なくなる。その場合にはDP鋼の特徴である低降伏比が実現されなくなる。
 低温変態相の硬さはオーステナイト中の炭素濃度に依存する。オーステナイトへの炭素の分配が過度に不均一であると低温変態相の硬さの変動は大きくなり、それに伴い降伏強度や伸びフランジ成形性の変動が大きくなる。このため、低温変態相の硬さの変動幅を制御するが材質変動を制御する上で、重要である。
 低温変態相は粒径が微細で、多く分散している方が望ましい。その理由は伸びフランジ成形時のボイド発生が局所的にならないため有利であることと、微細に分散することによりフェライト中への可動転位の導入が均一となることである。
 低温変態相の硬さの比とその変動範囲、粒径は焼鈍工程での加熱速度及び冷却速度にて制御できる。その考え方を下記に示す。
 まず加熱速度について説明する。焼鈍の加熱工程では鉄炭化物の溶解とフェライトの回復、再結晶が600℃近傍以上で起こり、700℃近傍のAc1変態点以上ではフェライトからオーステナイトへの変態が起こる。鉄炭化物の溶解は加熱速度を低くすることにより促進され、炭素分布の均一化が図られる。フェライトからオーステナイトへの変態が起こると、フェライトの再結晶が抑制される。このため、600℃から焼鈍温度までの温度領域での加熱速度を制限することにより再結晶率を制御することができる。
 焼鈍温度によりフェライトとオーステナイトの分率が決まり、オーステナイトに炭素などが濃化する。また加熱速度とTi添加量および熱延圧延での捲取り温度の制限によりフェライトの再結晶が制御され、フェライトと低温変態相の硬さの比は適当な範囲に保たれる。
 次に焼鈍後の冷却では、焼鈍温度から650℃までの温度範囲を比較的早く冷却して、変態の核生成サイトを多くし、低温変態相を微細化させる。そして、600℃から500℃の温度範囲を比較的遅く冷却することにより、フェライト変態にて分配されるオーステナイト中の炭素量の変動を小さくすることができる。
 次に、具体的な条件の制限理由を説明する。
 まず化学成分の制限について説明する。なお、特に断りの無い限り「%」は質量%を意味する。
 C:Cは、鋼板の強度を上昇できる元素である。しかし、0.05%未満であるとマルテンサイトを主相とする低温変態相の硬さが低くなるため、780MPa以上の引張強度を確保することが困難となる。一方、0.1%を超えるとスポット溶接性の確保が困難となる。このため、その範囲を0.05~0.1%に限定した。その効果を確実にするために、下限値は0.06%とすることが好ましく、0.07%とするとより好ましく、できれば0.075%とすることが望ましい。また、上限値は0.095%とすることが好ましく、できれば0.09%とすることが望ましい。
 Si:Siは、強化元素であり、鋼板の強度を上昇させることに有効である。しかしながら、0.1%未満であると伸びの劣化による成形性の低下が顕著になり、また1%を超えるとめっきの濡れ性が低下する。従って、Si含有量は0.1~1.0%の範囲に制限した。その効果を確実にするために、下限値は0.25%とすることが好ましく、0.3%とするとより好ましく、できれば0.4%とすることが望ましい。また、上限値は0.8%とすることが好ましく、できれば0.6%、さらには0.5%とすることが望ましい。オールラジアントチューブ式加熱炉を持つ連続溶融亜鉛めっきラインには、0.4~0.5%とすることが最も適する。
 Mn:Mnは、強化元素であり、鋼板の強度を上昇させることに有効である。しかしながら、2.0%未満であると780MPa以上の引張強度を得ることが困難である。逆に多いとP、Sとの共偏析を助長し、曲げ性や伸び穴拡げ性の著しい劣化を招くことから、2.5%を上限とする。その効果を確実にするために、下限値は、2.1%とすることが好ましく、2.2%とするとより好ましい。上限値は、2.4%とすることが好ましく、2.3%とするとより好ましい。
 Ti:Tiは、フェライト結晶粒の成長抑制による細粒強化および転位強化にて、鋼板の強度上昇に寄与する重要な元素である。主相であるフェライトを硬質化し、強化相であるマルテンサイトを主体とする低温変態相とフェライト相の硬さの差を低下させ曲げ性及び穴拡げ性を向上させる。これらの効果は、0.01%未満では得られないため、下限値を0.01%とした。
 一方、0.05%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.05%とした。その効果を確実にするために、下限値は、0.015%とすることが好ましく、0.02%とするとより好ましい。上限値は、0.04%とすることが好ましく、0.03%とするとより好ましい。引張強度を780MPa以上として、降伏強度の変動を小さくする場合には下限値を0.02%、上限値を0.03%と制限すると良い。
 Cr:Crは、強化元素であるとともに焼入れ性の向上に重要であり、オーステナイトフォーマーであるため、低温にてオーステナイト分率を確保するために必須な元素である。0.1%未満ではこれらの効果が得られないため下限値を0.1%とした。逆に、1%超含有すると過度に強度が増加するため、上限値を1%とした。好ましくは、0.2~0.8%、更に好ましくは0.3~0.7%である。
 Al:Alは、フェライト形成を促進し、延性を向上させるので添加しても良い。また、脱酸材としても活用可能である。その効果は0.02%未満では発揮されないので、下限を0.02%とした。しかしながら、過剰な添加はAl系の粗大介在物を形成し、表面傷や穴拡げ性の劣化の原因になる。このことから、Al添加の上限を0.1%とした。好ましくは、0.04~0.09%、更に好ましくは0.05~0.08%である。
 P:Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。そのため少ないほうがよく、むしろ無いほうがよい。0.03%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.03%以下に限定した。Pの下限値は特に定めないが、0.0001質量%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。即ち、不可避的不純物として許容される含有量は0.03%以下とする。
 S:Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。そのため少ないほうがよく、むしろ無いほうがよい。このことから、その上限値を0.01質量%以下とした。Sの下限値は特に定めないが、0.0001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。即ち、不可避的不純物として許容される含有量は0.01%以下とする。
 N:Nは、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させることから、添加量を抑える必要があり、むしろ無いほうがよい。これは、Nが0.01%を超えると、この傾向が顕著となることから、N含有量の範囲を0.01%以下とした。加えて、溶接時のブローホール発生の原因になることから少ない方が良い。下限は、特に定めることなく本発明の効果は発揮されるが、N含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くことから、これが実質的な下限である。即ち、不可避的不純物として許容される含有量は0.01%以下とする。
 Nb:Nbは再結晶抑制効果、フェライト細粒化ならびに析出強化によりフェライト相の強化に効果的が元素である。しかし熱間圧延時の圧延中ならびに捲取工程や焼鈍工程の加熱中にNbCとして析出して析出強化や再結晶の抑制に影響し、固溶NbのままでもSolute dragging効果により再結晶抑制に影響するため強度に大きく影響を及ぼし、そのため製造工程の影響を受けやすく材質変動要因になり、添加は望ましくない。そこで本発明では、積極的には添加しない。存在しても、その含有量を0.0010%以下に制限することが望ましい。この制限は本来無添加とした場合においても、スクラップの利用により当該元素を含有してしまう場合を考え、含有量を制限以下に管理することが望ましいためである。即ち、不可避的不純物として許容される含有量は0.0010%以下とする。
 V、W、Mo、Zr:これらの炭化物形成元素はTi、Nbと比較して析出物を形成しにくいという特徴がある。これらの元素が添加されていると元素毎の析出挙動が異なり、炭化物析出の捲取温度依存性、焼鈍工程での加熱速度依存性や焼鈍温度依存性が変化するため、材質の変動要因になる。そのため添加は望ましくない。そこで本発明ではV、W、Mo、Zrを積極的には添加しない。存在しても、それぞれの含有量を0.0010%以下に制限することが望ましい。この制限は本来無添加とした場合においても、スクラップの利用により当該元素を含有してしまう場合を考え、含有量を制限以下に管理することが望ましいためである。即ち、それぞれの元素が不可避的不純物として許容される含有量は0.0010%以下とする。
 B:Bは焼き入れ性を増加させるとともに再結晶抑制にも効果がある元素である。しかし、B添加により熱延鋼板の強度が高くなり、冷間圧延性が低下する。またフェライトの再結晶を抑制するために、焼鈍温度を上げる必要があり、無添加が望ましい。そこで本発明では、積極的には添加しない。存在しても、その含有量を0.0001%以下に制限することが望ましい。この制限は本来無添加とした場合においても、スクラップの利用により当該元素を含有してしまう場合を考え、含有量を制限以下に管理することが望ましいためである。即ち、不可避的不純物として許容される含有量は0.0001%以下とする。
 Sn:Snは溶融亜鉛めっきをした場合にめっき密着性を向上し、さらに合金化を促進する効果がある。その効果は0.0010%未満では発揮されないため、下限を0.0010%とした。また過度に添加するとスラブの熱間加工性が低下するためその上限を0.1%以下とした。その効果を確実に得るために、下限値を0.002%とすることが、上限値は0.03%とすることが好ましい。さらには、下限値を0.005%、上限値を0.01%とするとより好ましい。
 その他の元素として硫化物形態制御のためCaやREMを添加しても良い。また不可避的不純物としてNi、Cuなどの元素が含有する場合があるが、その含有は本発明の特性に影響を及ぼさない限りは含有してもよい。それら元素の含有量は、目安としてそれぞれの元素につき0.05%以下であることが望ましい。
 次にミクロ組織の限定理由を説明する。
 フェライト相分率70~90%とし、残部はマルテンサイトを含む低温変態相とする。この比率にすることにより引張強度780MPa以上と所定の延性が確保される。フェライト相分率が70%未満ではフェライトによる延性を確保できない。フェライト相分率が90%を超えると低温変態相が少ないために引張強度が780MPaを下回る。フェライト相分率は、好ましくは、75~88%、更に好ましくは80~85%とするとよい。
 低温変態相にマルテンサイトを含むとしたのは、マルテンサイト変態によりフェライト相中に可動転位が導入されて降伏点が低下し、降伏比0.7以下が確保できるためである。
 低温変態相は微細で多く分散している方が望ましい。それにより伸びフランジ成形性が良好となるためだけでなく、フェライト相中への可動転位の導入が均一となるためである。しかし低温変態相の平均粒径が0.1μm未満であると、フェライト中への可動転位の導入量が少なく、降伏比が0.7を超えるようになる。このため低温変態相の平均粒径の下限を0.1μmとした。また低温変態相の平均粒径が過大である場合には伸びフランジ成形性が劣化するため、その上限を1μmとした。上記効果を確実にするため、低温変態相の平均粒径は0.4~0.8μmの範囲がより好ましい。更に好ましくは、0.5~0.7μmとするとよい。
 なお、フェライト相分率や低温変態相の粒径を測定する方法は、後述する実施例中の[低温変態相の平均粒径]項に記載するレベラー法に基づいて測定することができる。
 フェライト相と低温変態相の平均ナノ硬さの比(低温変態相の平均ナノ硬さ/フェライト相の平均ナノ硬さで定義する。ナノ硬さは、鋼板表面から板厚の1/4程度の深さ位置で測定する。)を1.5~3.0にするとよい。硬さの比が3.0を超えると、伸びフランジ成形性が劣化する。また硬さの比が1.5未満の場合には、低温変態相への炭素の濃縮が不十分となり、マルテンサイト変態の体積膨張によるフェライト中への可動転位の導入が不十分となる。そのため、DP鋼としての特徴である低降伏比が確保できなくなる。平均ナノ硬さの比の下限は1.7がより好ましく、1.9が更に好ましい。また、平均ナノ硬さの比の上限は2.8がより好ましく、2.5が更に好ましい。
 ナノ硬さとはJIS Z 2255に規定された三角錐型圧子を用いた超微小負荷硬さであり、その測定荷重は1mNとした。ナノ硬さは測定加重により変動することがある。本発明鋼の場合には測定加重は低温変態相の粒径と圧痕の関係にて1mNが最適であり、この荷重で測定した値により規定する。平均ナノ硬さは最低30点以上の測定結果から求め、望ましくは100点程度がよい。
 従来の複合組織鋼については前述の特許文献6、特許文献7にビッカース硬さによる硬さの比の結果が開示されている。しかし、本発明のように、微細組織間のナノ硬さの比が伸びフランジ成形性に及ぼす影響については、何ら開示されていない。ビッカース硬さでは圧子を除荷したのちにその圧痕のサイズにより測定されるが、ナノ硬さでは負荷状態での圧子の侵入深さにて硬さを求める。そのため、ビッカース硬さの測定で生じる弾性回復による変形が見られないことが特徴である。つまり、ナノ硬さとビッカース硬さは測定方法が明確に異なる。そのため、微細組織の複合組織鋼で、伸びフランジ成形性に及ぼすフェライト相と低温変態相のナノ硬さの比の影響が初めて明らかになったと言える。
 ここで、低温変態相のナノ硬さ測定点の80%以上で、そのナノ硬さがフェライト相の平均ナノ硬さの1~5倍の範囲内であると、伸びフランジ成形性が劣化しないことがわかった。言い換えると、低温変態相のナノ硬さ測定点の20%以上で、そのナノ硬さがフェライト相の平均ナノ硬さの5倍超となると、その低温変態相近傍のフェライトに導入される可動転位密度が高くなり、降伏強度の変動が大きくなるからである。そこで低温変態相のナノ硬さ測定点の80%以上で、そのナノ硬さがフェライト相の平均ナノ硬さの5倍以下とした。また低温変態相のナノ硬さ測定点の20%以上がフェライト相の平均ナノ硬さの1倍未満の場合にはその低温変態相近傍にてマルテンサイト変態での体積膨張が少なく、フェライト中に導入される可動転位が小さくなる。この場合においても降伏強度の変動が大きくなる。そこで、低温変態相のナノ硬さの測定点の80%以上で、そのナノ硬さがフェライト相の平均ナノ硬さの1倍以上とした。引張強度を780MPa以上として、降伏強度の変動を小さくする場合は90%以上とするとよい。好ましくは92%以上とすることが望ましい。なお、低温変態相のナノ硬さ測定は、少なくとも10点以上、できれば20点以上で行うことが望ましい。
 次に引張特性の制限について説明する。
 降伏比を0.7以下としたのは、上記の成分とミクロ組織が形成されている場合にはDP鋼となっており、DP鋼としての特徴である低降伏比を示す条件であるためである。
 同一成分にて鋳造した10本のスラブを、易焼鈍温度域で焼鈍を行う上記[2]の条件で溶融亜鉛めっき鋼板を製造し、10本の鋼板の降伏強度の最大値と最小値の差を、降伏強度の変動と定義する。上記[1]の化学成分とミクロ組織を用いた場合はこの値は60MPa以下となるとよい。
 引張強度は上記[1]に示した化学成分と上記のミクロ組織とすることで780MPa以上の引張強度を得ることができる。
 溶融亜鉛めっきは、通常の溶融亜鉛めっきでもよく、合金化溶融亜鉛めっきでもよい。
 上記[1]に示す溶融亜鉛めっき鋼板はその化学成分とミクロ組織の特徴が上記[1]に示す範囲であればいかなる製造方法によって製造されてもよい。しかし、上記[2]に示す製造方法を用いると容易に製造が可能となる。これよりその製造方法について説明する。
 まず、熱間圧延の条件について説明する。
 スラブ加熱温度は1000~1350℃とした。1000℃未満では圧延荷重が高くなることと、仕上げ圧延までの温度低下により規定の仕上げ温度を確保できないためである。また1350℃超の場合には、スケールが多量に発生してスケール疵の原因となるためである。
 仕上げ圧延温度をAr3以上としたのは、仕上げ温度をこれよりも低い温度とした場合には圧延中に変態が生じて圧延荷重が大きく変動してミスロールの原因となるためである。また、変態が生じた箇所では粒径が粗大となり、冷延焼鈍後のミクロ組織が不均一となり、材質変動の原因になるためである。
 捲取温度を600℃以下としたのは、この温度以下とすることで炭化物形成元素であるTiが固溶状態のまま残存し、組織微細化および転位強化に寄与するためである。また熱延板強度のコイル長手方向の材質変動も小さくなり、冷間圧延時の板厚変動が小さくなる効果もある。更に、600℃を超える捲取温度では粗大な炭化物が生成し、焼鈍中にオーステナイトへ炭化物が溶けにくくなるため、ナノ硬さの比が低下し、本発明鋼の低降伏比が実現できなくなる。
 冷間圧延のトータル圧延率(以下、冷間圧延のトータル圧延率を、単に圧延率という。)は30~70%とし、1パス当たりの圧下率を30%以下とした。圧延率が30%未満である場合は焼鈍後の組織が粗大となり、上記[1]に示した低温変態相の粒径の制限を確保できないため、下限を30%とした。また、圧延率が70%超の場合には再結晶の駆動力が大きくなって再結晶が促進するため、未再結晶フェライトの確保が困難となって強度が低下するため、上限を70%とした。
 また、1パス当たりの圧下率が30%を超える場合、強固な剪断帯がまばらにでき、剪断帯付近の歪が大きくなるため、鋼板内での歪分布が不均一となる。焼鈍時には歪の高い領域のフェライト粒径は小さくなるため、鋼板内部の組織の均一性が低下する。
 更に、粒径の小さなフェライトは粒成長の駆動力が高いため、その大きさは焼鈍温度の影響を強く受け、製造時の降伏強度の変動が大きくなる。
 そこで、1パス当たりの圧下率を30%以下とすれば、強固な剪断帯の生成を抑えることができ、鋼板内の歪の蓄積を均一にすることが可能となる。1パス当たりの圧下率を好ましくは25%以下、更に好ましくは20%以下、最も好ましくは15%以下とすることで更に歪の蓄積を均一にすることが可能となる。
 焼鈍は連続溶融亜鉛めっきラインにて行うことが好ましい。その際の温度制御の制限について説明する。
 加熱速度については、少なくとも600℃から後述する焼鈍温度までの温度範囲を平均加熱速度0.5~6℃/秒、望ましくは0.5~4℃/秒とするとよい。平均加熱速度は焼鈍温度から600℃を引いた値を600℃から焼鈍温度まで達した時間で割った値(=(焼鈍温度−600℃)/(600℃から焼鈍温度までの所要時間))を用いる。平均加熱速度が高い場合には鉄炭化物の溶解の時間が不足して、鋼板中の炭素の分布が不均一になる。またフェライトの再結晶も不十分となるため強度が過大となり、強度延性バランスが低下する。そこで、その上限の加熱速度を6℃/秒、望ましくは4℃/秒とした。また加熱速度が0.5℃/秒未満となった場合には、フェライトの粒成長が進むために細粒強化の効果が期待できず、強度が不足し、また焼鈍ライン長も過度に必要となることから経済的ではなくなるため、下限を0.5℃/秒とした。
 焼鈍は、焼鈍温度720℃以上でかつ850℃もしくはAc3温度の低い方の温度以下の温度範囲、望ましくは740以上でかつ800℃もしくはAc3温度の低い方の温度以下の温度範囲で10s以上保持することとした。焼鈍温度が720℃未満の場合にはオーステナイト量が不十分となり引張強度が780MPa未満となり、またマルテンサイトを主相とする低温変態相の硬さも高くなり、上記[1]の範囲を満足しない。
 そのため、下限を720℃とした。また焼鈍温度の下限を740℃とすることで充分なオーステナイト分率が確保され、強度延性バランス及び伸びフランジ成形性が良好となる。
 一方、過度の高温加熱は、コストの上昇を招くことから経済的に好ましくないばかりでなく、高温通板時の板形状が劣悪になったり、ロールの寿命を低下させたりとトラブルを誘発することから、最高加熱温度の上限を850℃もしくはAc3温度の低い方の温度とする。また焼鈍温度が850℃超では鋼板表面に生じた酸化物がハースロールにピックアップし、それらが鋼板に押し疵を生じるピット疵が発生する場合がある。また、本発明では、Ti添加によりAc3温度より低温でも再結晶できるため、Ac3以上の温度に上げる必要がないからである(図1参照)。
 そこで、焼鈍温度の上限は850℃もしくはAc3温度の低い方の温度とすることが望ましく、800℃もしくはAc3温度の低い方の温度とすることがより望ましい。この温度域での熱処理時間は、鉄炭化物の溶解のために、10秒以上の熱処理が必要となる。この時間より短い場合には低温変態相の硬さの変動が大きくなるばかりでなく、その粒径も過度に微細になる。一方、熱処理時間が600秒超となると、コストの上昇を招くことから経済的に好ましくない。
 冷却条件については、少なくとも焼鈍温度から650℃までの温度範囲を冷却速度5℃/秒以上、望ましくは7℃/秒以上で冷却し、少なくとも600℃から500℃までの温度範囲を冷却速度3℃/秒以下、望ましくは2℃/秒以下で冷却することとした。
 まず、焼鈍温度から650℃までの温度範囲の冷却速度を早くすることにより650℃以上でのフェライト変態を抑制する。フェライトが過冷却されることより、フェライト変態の核生成サイトが多くなってフェライトが微細化し、その粒界に残存するオーステナイトの粒径も微細化されると推察される。この冷却速度を5℃/秒未満とすると高温でフェライト変態が生じ、その結果として上記[1]に示した低温変態相の平均粒径の制限が満足されず、伸びフランジ性が劣化する。そのため下限を5℃/秒とした。この冷却速度を7℃/秒とすることで安定的に微細化した低温変態相を得ることができるので、望ましくは7℃/秒以上の冷却速度とした。
 また、600℃から500℃までの温度範囲における冷却速度を相対的に低速としたのは、この温度域で生じるフェライト変態を進め、オーステナイトに濃縮する炭素量を均一化させるためである。この温度範囲の平均冷却速度が3℃/秒超である場合には、低温変態相のナノ硬さのフェライトの平均ナノ硬さに対する割合が上記[1]で制限する範囲を満足しないため、その上限を3℃/秒とした。望ましくは2℃/秒とした場合には低温変態相のナノ硬さの変動は小さくなり、降伏強度の変動が小さくなる。
 上記の条件で冷却されたのち、溶融亜鉛めっき浴を通過し、ガスワイピングを通過して目付け量を調整する。場合によってはその後に合金化炉を通過させて、地鉄を亜鉛めっき層に拡散させる合金化処理を行なう。合金化炉の温度はライン速度により調整し、合金化が完了する温度を選択すればよく、その温度は通常は460~600℃の範囲になる。460℃以下の場合には合金化が遅くて生産性が悪い。また600℃を超えるとフェライト−パーライト変態が生じ、特性が悪化するためである。
 その後、スキンパス圧延およびテンションレベラーなどの形状矯正工程を経て製品が完成する。スキンパス圧延の圧下率は、0.1~1.5%の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが下限となる。1.5%超えると生産性が著しく低下するのでこれを上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。また、トリミングなどを行なっても良い。
 焼鈍炉の形式はNOF−RF形式やオールライアントチューブ炉形式などどの形式を用いても良い。また、めっき性を制御するために露点や雰囲気成分などを調整してもよい。また、連続溶融亜鉛めっきライン前にめっき性を改善する目的でNiなどの電気めっきを施しても良い。また、めっき後に耐食性などの特性を付与するために各種後処理を施しても良い。
 次に、本発明を実施例により詳細に説明する。
(実施例1)
 表1に示す化学成分を有するスラブとして符号A~AQを、表2に示すスラブ加熱温度、仕上げ圧延温度にて熱間圧延を行い、水冷帯にて水冷の後、表2に示す温度で捲取り処理を行った。仕上げ圧延温度はいずれもAr3点以上であった。熱延板を酸洗した後、冷延を行い、冷延板とした。熱延板厚、冷延率及び冷延板厚を表2に示す。
 その後、連続合金化溶融亜鉛めっき設備にて、熱処理と溶融亜鉛めっき処理を施した。溶融亜鉛めっきを施す鋼板については、表2に示す600℃から焼鈍温度までの平均加熱速度、焼鈍温度と保持時間、焼鈍温度から650℃までの平均冷却速度、600℃から500℃までの平均冷却速度で通板した。亜鉛めっき浴に通板した後に室温まで10℃/秒の冷却速度で室温まで冷却したのち、0.3%の圧下率でスキンパス圧延を行った。
 また、同一条件で製造した冷延鋼板を同一条件で焼鈍して亜鉛めっき浴に通板したのち合金化炉に通板することにより合金化処理を行った。合金化処理温度はライン速度に応じて460℃~600℃の範囲の温度を選択した。合金化処理後、室温まで10℃/秒の冷却速度で室温まで冷却したのち、0.3%の圧下率でスキンパス圧延を行った。目付け量としては、両面とも約50g/mとした。
 得られた溶融亜鉛めっき鋼板について、引張試験を行い、YS(降伏強度)、TS(引張強度)、El(伸び率)を測定した。なお、降伏強度は0.2%オフセット法により測定した。引張試験は、1.4mm厚の板から圧延方向に直角方向にJIS5号試験片を採取し、引張特性を評価した。それら測定値から、以下の各特性について評価し、その結果を表2に示す。
[引張強度(応力)(TS)]
 引張強度は780MPa以上の場合には○、780MPa未満の場合には×として表2に示した。
[降伏比]
 降伏比は0.7以下である場合を○、0.7を超える場合を×として表2に示した。0.7以上あればよい。
[強度延性バランス]
 強度延性バランス(TS×El[MPa・%])を求めてプレス成形性の指標とし、表2に示した。以下に凡例を示す。14000以上あればよい。
 ◎:16000以上、
 ○15000以上、16000未満、
 △:14000以上、15000未満、
 ×:14000未満。
[降伏強度の変動]
 つぎに、降伏強度の変動を評価するために、焼鈍温度を変化させ、溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板を製造した。すなわち、同一成分で鋳造したスラブを同一熱延条件、冷延条件で原板を作成し、焼鈍工程では加熱と冷却条件は同一にして、焼鈍温度を720~800℃の範囲に変動させて、めっき浴を通板後に室温まで10℃/秒の冷却速度で室温まで冷却したのち、0.3%の圧下率でスキンパス圧延を行う場合と、合金化処理を施してから室温まで10℃/秒の冷却速度で室温まで冷却したのち、0.3%の圧下率でスキンパス圧延を行う場合の双方について試験した。これらの鋼板の引張特性を評価した。その際、720~730℃、730~740℃、740~750℃、750℃~760℃、760℃~770℃、770℃~780℃、780℃~790℃、790℃~800℃のそれぞれの範囲について2点以上測定した。望ましくは3点以上の測定データがあるとよい。本実施例では、複数のコイルを用いて各々焼鈍温度を変化させて測定した。一本のコイルを用いて焼鈍温度を変化させて測定してもかまわない。降伏強度の変動の凡例を以下に示す。60MPa以下であればよい。
 ◎:焼鈍温度の範囲を720~800℃とした場合の降伏強度の最大値と最小値の差が40MPa以下、
 ○:焼鈍温度の範囲を720~800℃とした場合の降伏強度の最大値と最小値の差が40MPaを超え、60MPa以下、
 ×:焼鈍温度の範囲を720~800℃とした場合の降伏強度の最大値と最小値の差が60MPaを超える場合。
 この結果を表2に示す。
[低温変態相の平均粒径]
 ミクロ組織は板厚断面を研磨したのち、レペラー法により腐食を行い、1000倍の倍率で金属顕微鏡にて観察した。レペラー腐食では軟質なフェライト相が着色され、硬質な低温変態相が白色のまま残存する。これによりフェライト相の分率及び低温変態相の平均粒径を求めた。平均粒径は長さ1.5μmの正方形のグリッドを用いてポイントカウントにより低温変態相の面積率を求めた。この組織写真とグリッドを図2に示す。カウントしたポイントの数は200点である。また、ポイントカウントで面積率を求めた領域に含まれる低温変態相の個数を数え、面積率と個数から結晶粒を円形とした場合の平均直径を計算した。この結果を表2に示した。
[強度穴拡げバランス]
 強度穴拡げバランスは、伸びフランジ成形性にて評価した。伸びフランジ成形性については鉄鋼連盟規格JFST1001−1996に示される穴拡げ試験により穴拡げ値λを用いて評価した。この場合も強度−穴拡げ値バランス(TS×λ[MPa・%])を求めて、伸びフランジ成形性の指標とし、結果を表2に示した。以下に凡例を示す。20000以上あればよい。
 ◎:24000以上、
 ○:22000以上、24000未満、
 △:20000以上、22000未満、
 ×:20000未満。
[ナノ硬さの変動]
 ナノ硬さはJIS Z 2255に規定された超微小負荷硬さ方法に従い測定し、その測定荷重は1mNとした。平均ナノ硬さは100点の測定を行なった。フェライト硬さ、低温変態相硬さとも鋼板を切断してその板厚断面を研磨した後、電解腐食を行なうことによりミクロ組織を出現させ、SPM像の観察からフェライト相と低温変態相を判別してナノ硬さを測定した。低温変態相のナノ硬さの変動については、低温変態相がフェライト相の平均硬さの1~5倍の範囲に含まれる割合により判定し、その結果を表2に示した。凡例を以下に示す。80%以上あればよい。
 ◎:100%、
 ○:90%以上100%未満、
 △:80%以上90%未満、
 ×:80%未満。
[スポット溶接性]
 スポット溶接性は次の条件で評価した。電極(ドーム型):先端径6mmφ、加圧力4.3kN、溶接電流:散り発生直前の電流(CE)kA及び(CE+1.5)kA、溶接時間:15サイクル、保持時間:10サイクル。溶接後、JIS Z 3137に従って、十字引張試験を行った。溶接電流を(CE)kAとする溶接を10回行い、その中の最低値をCTS(CE)とした。これに対し、溶接電流を散り発生領域である(CE+1.5)kAとする溶接を10回行った時のCTSの最低値をCTS(CE+1.5)とした。これら値の比(=CTS(CE+1.5)/CTS(CE))により以下のように評価した。0.7以上あればよい。
 ○:0.8以上
 △:0.7以上0.8未満
 ×:0.7未満
[めっき性][合金化反応性]
 めっき性、合金化反応はそれぞれ下記のように評価した。めっき性を示す凡例を下記に示す。
 ○:不めっきなし、
 △:不めっき若干あり、
 ×:不めっき多数あり。
 合金化反応性を示す凡例を下記に示す。
 ○:表面外観に合金化ムラなし、
 △:表面外観に合金化ムラ若干あり、
 ×:表面外観に合金化ムラ多い。
 上記の結果を表2に示した。どちらも×でなければ問題はない。
 結果をまとめた表2から、本発明の鋼板はいずれも成形性、溶接性、めっき性に優れており、材質変動が小さいことがわかる。
(実施例2)
 表1に示す化学成分を有するスラブとして符号AR~BAを、実施例1と同様に表2に示す製造条件にて合金化溶融亜鉛めっき鋼板を製造した。なお、熱間圧延時の仕上げ温度はいずれもAr3点以上であった。この実験により亜鉛めっきの合金化に及ぼすSn添加の影響を検討した。
 評価方法としては連続溶融亜鉛めっきラインを用いて、表2に示す焼鈍条件で通板したのち、亜鉛めっき浴を通板し、合金化が充分生じる最低温度をSn添加がされていない実験番号44、49により求めた。その後、実験番号45~48、50~53を行い、合金化が充分生じる最低温度を探索し、実験番号44、49で求めた最低温度との差を求めた。
 その結果を表2に合わせて示す。これよりSn添加により合金化が促進されることが分かった。ただし、Snの添加量を制限以上とした実験番号48、53では熱延板に疵が発生した。また実施例1で行なったその他の評価も行い、表2に示した。これらより、本発明の鋼板はいずれも成形性、溶接性、めっき性に優れており、材質変動が小さいことがわかる。
(実施例3)
 表1に示す化学成分を有するスラブとして符号A、C、Hを用いて、実施例1と同様に表2に示す製造条件にて溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を製造して実施例1と同様の評価を行った。なお、熱間圧延時の仕上げ温度はいずれもAr3点以上であった。この実験により鋼板の製造条件の影響を検討した。評価結果を表2に示す。これより本発明の鋼板はいずれも成形性、溶接性、めっき性に優れており、材質変動が小さいことがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000014
 本発明は、自動車に適用される車体部品に好適な、引張強度で780MPa以上の高強度と優れた成形性を有する鋼板を安定的に安価に提供するものであり、自動車の軽量化に大きく貢献することが期待でき、産業上の効果は極めて高い。

Claims (2)

  1.  鋼の成分として、質量%で、
     C:0.05~0.1%、
     Si:0.1~1.0%、
     Mn:2.0%~2.5%、
     Al:0.02~0.1%、
     Ti:0.01~0.05%、
     Cr:0.1~1.0%、
     Sn:0.0010~0.1%、
     残部Fe及び不可避的不純物を含有し、
     ミクロ組織としてフェライト相分率70~90%、残部がマルテンサイトを含む低温変態相であり、
     低温変態相の平均粒径が0.1~1μm、
     フェライト相と低温変態相の平均ナノ硬さの比が1.5~3.0、
     低温変態相のナノ硬さは測定点の80%以上でフェライト相の平均ナノ硬さの1~5倍に入ることを特徴とする高強度溶融亜鉛めっき鋼板。
  2.  請求項1に記載の鋼成分を有するスラブを1000~1350℃に加熱した後に仕上げ圧延温度Ar3以上で熱間圧延後、600℃以下で捲取り、酸洗を施し、圧延率30~70%で冷間圧延し、その後720℃以上で、かつ850℃もしくはAc3温度のどちらか低い温度以下の温度を焼鈍温度とする熱処理を行うにあたって、少なくとも600℃から焼鈍温度までの温度範囲を0.5℃/秒以上6℃/秒以下の加熱速度で加熱し、焼鈍温度で10秒以上保持したのち、少なくとも焼鈍温度から650℃までの温度範囲を5℃/秒以上の冷却速度で冷却し、さらに少なくとも600℃から500℃までの温度範囲を3℃/秒以下の冷却速度で冷却したのち、溶融亜鉛めっきまたは合金化溶融亜鉛めっきを施すことを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
PCT/JP2011/058749 2010-03-31 2011-03-31 成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 WO2011126064A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112012024275A BR112012024275A2 (pt) 2010-03-31 2011-03-31 Folha de aço galvanizado mergulhado no quente de alta resistência e de excelente moldabilidade e método de produção da mesma
MX2012011280A MX2012011280A (es) 2010-03-31 2011-03-31 Placa de acero galvanizado por inmersion en caliente de alta resitencia con excelente maleabilidad y proceso para producirla.
CN201180004821.7A CN102639738B (zh) 2010-03-31 2011-03-31 成形性优良的高强度热浸镀锌钢板及其制造方法
KR1020127012690A KR101410435B1 (ko) 2010-03-31 2011-03-31 성형성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
US13/635,805 US9228244B2 (en) 2010-03-31 2011-03-31 High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
JP2012509693A JP5114760B2 (ja) 2010-03-31 2011-03-31 成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
US14/857,578 US10113220B2 (en) 2010-03-31 2015-09-17 High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-083390 2010-03-31
JP2010083390 2010-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/635,805 A-371-Of-International US9228244B2 (en) 2010-03-31 2011-03-31 High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same
US14/857,578 Continuation US10113220B2 (en) 2010-03-31 2015-09-17 High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same

Publications (1)

Publication Number Publication Date
WO2011126064A1 true WO2011126064A1 (ja) 2011-10-13

Family

ID=44762999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058749 WO2011126064A1 (ja) 2010-03-31 2011-03-31 成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法

Country Status (7)

Country Link
US (2) US9228244B2 (ja)
JP (1) JP5114760B2 (ja)
KR (1) KR101410435B1 (ja)
CN (1) CN102639738B (ja)
BR (1) BR112012024275A2 (ja)
MX (1) MX2012011280A (ja)
WO (1) WO2011126064A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104114729A (zh) * 2012-02-13 2014-10-22 新日铁住金株式会社 冷轧钢板、镀敷钢板和它们的制造方法
US10131981B2 (en) * 2012-08-03 2018-11-20 Nippon Steel and Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method of the same
CN115161443A (zh) * 2022-07-28 2022-10-11 江苏联峰实业有限公司 一种耐热钢退火工艺

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2014008430A (es) * 2012-01-13 2014-10-06 Nippon Steel & Sumitomo Metal Corp Articulo moldeado estampado en caliente y metodo para la produccion de articulo moldeado estampado en caliente.
CN104040010B (zh) 2012-01-13 2016-06-15 新日铁住金株式会社 冷轧钢板及冷轧钢板的制造方法
KR101592808B1 (ko) * 2012-04-25 2016-02-05 신닛테츠스미킨 카부시키카이샤 스폿 용접 조인트
KR101510505B1 (ko) * 2012-12-21 2015-04-08 주식회사 포스코 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
KR101730292B1 (ko) * 2013-07-01 2017-04-25 신닛테츠스미킨 카부시키카이샤 냉연 강판, 아연 도금 냉연 강판 및 그것들의 제조 방법
EP2998415B1 (en) * 2013-08-02 2017-09-06 JFE Steel Corporation High-strength, high-young's modulus steel plate, and manufacturing method thereof
JP5800098B2 (ja) 2013-08-02 2015-10-28 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
CN107787375A (zh) * 2015-07-01 2018-03-09 塔塔钢铁艾默伊登有限责任公司 高强度热镀锌钢带材
WO2017102982A1 (en) 2015-12-15 2017-06-22 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
CN110268084B (zh) * 2017-02-13 2021-05-25 杰富意钢铁株式会社 冷轧钢板及其制造方法
CN110541120B (zh) * 2019-10-18 2021-03-16 山东钢铁集团日照有限公司 汽车板用无屈服平台的热镀锌低合金高强钢的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279693A (ja) * 1998-03-27 1999-10-12 Nippon Steel Corp 焼付硬化性に優れた良加工性高強度熱延鋼板とその製造方法
JP2007009317A (ja) * 2005-05-31 2007-01-18 Jfe Steel Kk 伸びフランジ成形性に優れた高強度冷延鋼板および溶融亜鉛めっき鋼板とそれらの製造方法
JP2009144251A (ja) * 2003-04-16 2009-07-02 Jfe Steel Corp 高張力冷延鋼板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704350B2 (ja) 1992-11-02 1998-01-26 新日本製鐵株式会社 プレス成形性の良好な高強度鋼板の製造方法
JP3370875B2 (ja) 1996-11-18 2003-01-27 株式会社神戸製鋼所 耐衝撃性に優れた高強度鋼板及びその製造方法
JP3990550B2 (ja) 2001-06-08 2007-10-17 新日本製鐵株式会社 形状凍結性に優れた低降伏比型高強度鋼板とその製造方法
CA2422753C (en) * 2000-09-21 2007-11-27 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
JP2002363685A (ja) 2001-06-07 2002-12-18 Nkk Corp 低降伏比高強度冷延鋼板
EP1587966B1 (en) * 2003-01-15 2017-05-17 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
KR20060032139A (ko) * 2003-08-26 2006-04-14 제이에프이 스틸 가부시키가이샤 고장력 냉연강판 및 그 제조방법
JP4510488B2 (ja) * 2004-03-11 2010-07-21 新日本製鐵株式会社 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法
JP4957185B2 (ja) * 2006-10-31 2012-06-20 Jfeスチール株式会社 塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板およびその製造方法
JP5141232B2 (ja) 2007-12-18 2013-02-13 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5564754B2 (ja) 2008-01-16 2014-08-06 新日鐵住金株式会社 曲げ性に優れた高強度冷延鋼板の製造方法
JP5272412B2 (ja) 2008-01-17 2013-08-28 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5359296B2 (ja) 2008-01-17 2013-12-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
US8128762B2 (en) 2008-08-12 2012-03-06 Kobe Steel, Ltd. High-strength steel sheet superior in formability
JP5709151B2 (ja) * 2009-03-10 2015-04-30 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4883216B2 (ja) * 2010-01-22 2012-02-22 Jfeスチール株式会社 加工性とスポット溶接性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279693A (ja) * 1998-03-27 1999-10-12 Nippon Steel Corp 焼付硬化性に優れた良加工性高強度熱延鋼板とその製造方法
JP2009144251A (ja) * 2003-04-16 2009-07-02 Jfe Steel Corp 高張力冷延鋼板
JP2007009317A (ja) * 2005-05-31 2007-01-18 Jfe Steel Kk 伸びフランジ成形性に優れた高強度冷延鋼板および溶融亜鉛めっき鋼板とそれらの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104114729A (zh) * 2012-02-13 2014-10-22 新日铁住金株式会社 冷轧钢板、镀敷钢板和它们的制造方法
US10253384B2 (en) 2012-02-13 2019-04-09 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet, plated steel sheet, and method for manufacturing the same
US10131981B2 (en) * 2012-08-03 2018-11-20 Nippon Steel and Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method of the same
CN115161443A (zh) * 2022-07-28 2022-10-11 江苏联峰实业有限公司 一种耐热钢退火工艺

Also Published As

Publication number Publication date
JPWO2011126064A1 (ja) 2013-07-11
BR112012024275A2 (pt) 2023-12-05
US20130000796A1 (en) 2013-01-03
US9228244B2 (en) 2016-01-05
MX2012011280A (es) 2012-11-06
CN102639738A (zh) 2012-08-15
KR20120068990A (ko) 2012-06-27
US10113220B2 (en) 2018-10-30
JP5114760B2 (ja) 2013-01-09
KR101410435B1 (ko) 2014-06-20
US20160002756A1 (en) 2016-01-07
CN102639738B (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5114760B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP4635525B2 (ja) 深絞り性に優れた高強度鋼板およびその製造方法
KR101528080B1 (ko) 성형성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP5709151B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5967320B2 (ja) 高強度鋼板およびその製造方法
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
US10961600B2 (en) Steel sheet and plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
US20110048589A1 (en) High-strength steel sheet and method for manufacturing the same
JP5251208B2 (ja) 高強度鋼板とその製造方法
JP4542515B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに、高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
WO2009054539A1 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101445465B1 (ko) 가공성과 스폿 용접성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
JP5326362B2 (ja) 高強度鋼板およびその製造方法
CN113227415B (zh) 钢板、构件和它们的制造方法
JP4407449B2 (ja) 高強度鋼板およびその製造方法
US10336037B2 (en) Galvanized steel sheet and method for producing the same
JP2006283156A (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに、高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2009144225A (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5678695B2 (ja) 高強度鋼板およびその製造方法
JP6947327B2 (ja) 高強度鋼板、高強度部材及びそれらの製造方法
JP2008214656A (ja) 高張力冷延鋼板、高張力亜鉛めっき鋼板およびそれらの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004821.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509693

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127012690

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13635805

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/011280

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1201005156

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8578/DELNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11765964

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024275

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024275

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120925