WO2011126051A1 - ジャケットヒータ及びその装着方法 - Google Patents
ジャケットヒータ及びその装着方法 Download PDFInfo
- Publication number
- WO2011126051A1 WO2011126051A1 PCT/JP2011/058725 JP2011058725W WO2011126051A1 WO 2011126051 A1 WO2011126051 A1 WO 2011126051A1 JP 2011058725 W JP2011058725 W JP 2011058725W WO 2011126051 A1 WO2011126051 A1 WO 2011126051A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- jacket heater
- heating element
- fiber
- metal foil
- airgel
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 64
- 239000011888 foil Substances 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- 239000012784 inorganic fiber Substances 0.000 claims description 24
- 239000004744 fabric Substances 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000010292 electrical insulation Methods 0.000 claims description 4
- 239000012212 insulator Substances 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 60
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 35
- 239000000463 material Substances 0.000 description 34
- 239000000377 silicon dioxide Substances 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 12
- 239000003365 glass fiber Substances 0.000 description 12
- 239000011810 insulating material Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229910001120 nichrome Inorganic materials 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000004964 aerogel Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001780 ECTFE Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000009958 sewing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 1
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L53/00—Heating of pipes or pipe systems; Cooling of pipes or pipe systems
- F16L53/30—Heating of pipes or pipe systems
- F16L53/35—Ohmic-resistance heating
- F16L53/38—Ohmic-resistance heating using elongate electric heating elements, e.g. wires or ribbons
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/54—Heating elements having the shape of rods or tubes flexible
- H05B3/56—Heating cables
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/54—Heating elements having the shape of rods or tubes flexible
- H05B3/58—Heating hoses; Heating collars
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
Definitions
- the present invention relates to a jacket heater mounted on a heated object such as a pipe and a mounting method thereof.
- piping is surrounded by a flexible jacket heater in order to insulate or heat an object to be heated such as various devices and equipment and piping connected thereto.
- a similar jacket heater is attached.
- Such a jacket heater is also called a mantle heater.
- a mantle heater 10 As such a jacket heater, a mantle heater 10 as shown in FIG. 5 is known, and the present applicant also discloses a patent document 1 between an inner layer material 100 and an outer layer material 200 made of a fluororesin sheet.
- a mantle heater 10 is proposed in which a heating element 300 having a heating wire (not shown) attached to an inorganic fiber sheet 303 and a heat insulating material 400 are stacked to form a laminated shape.
- the heating wire is an electric heater wire, and a power line 306 leading to the outside of the inner layer material 100 and the outer layer material 200 is connected, and power is supplied by connecting the outlet 307 to an external power source (not shown).
- both the peripheral parts 103 and 104 of a longitudinal direction are faced
- Such a mantle heater 10 has an advantage that it can be used in a clean room or the like because it has flexibility and also generates little dust.
- the inner layer material 100 is made of a fluororesin, the melting point thereof is slightly higher than 300 ° C., and the surface temperature setting of the heated object is set to a high temperature exceeding 250 ° C.
- the inner layer material is thermally deteriorated. It is predicted that the demand for the heating temperature will continue to increase. To that end, it is necessary to increase the amount of heat generated by the heating element.
- the amount of heat generated by the heating element increases, it is conceivable to increase the durability by increasing the thickness of the inner layer material 100, but this will impair flexibility and increase costs.
- the energization of the heating element is controlled using a thermostat, a thermocouple, or a resistance temperature detector so as to maintain a predetermined temperature of the piping or the like. If the calorific value is small, there is a concern that the temperature will not rise to a predetermined temperature or it will take time even if the temperature is raised. In order to shorten the heating / heating time, a heating element having a large calorific value may be used. However, the above problem occurs.
- an object of the present invention is to provide a jacket heater that can suppress thermal deterioration of an enclosure (in particular, an inner layer material) such as an inner layer material and an outer layer material even when a heating element having a large calorific value is used.
- the present invention provides the following jacket heater.
- a jacket heater with a built-in heating element A heating element having a watt density of 0.15 W / cm 2 or more; A metal foil disposed adjacent to the heating element; A jacket heater comprising: a heating body and a surrounding body surrounding the metal foil.
- the jacket heater of the present invention due to the metal foil interposed, for example, even if a heating element with a large heating value of 0.15 W / cm 2 or more is used, thermal degradation of the enclosure (particularly the inner layer material) is suppressed. be able to. Further, since the heat transmitted from the heater is uniformly diffused by the metal foil, it can be heated uniformly in a planar shape, and the heating efficiency is increased. Further, since the watt density can be increased, the heater wires can be shortened in the heater design, the pitch between the heater wires can be increased, and labor can be saved in manufacturing. Furthermore, since the dust generation can be suppressed by the enclosure, it can be suitably used in a clean room or the like.
- FIG. 1 is a view showing a cross section of an example of a jacket heater of the present invention.
- FIG. 2 is a cross-sectional view showing a state in which a glass cloth as an insulating member is further interposed in FIG.
- FIG. 3 is a view showing a cross section of another embodiment of the jacket heater of the present invention.
- FIG. 4 is a graph showing the results of measuring the surface temperatures of Sample A with an aluminum foil interposed between them and Sample B without an aluminum foil interposed therebetween.
- FIG. 5 is a perspective view showing a conventional jacket heater.
- the overall structure of the jacket heater 10 of this embodiment is the same as that shown in FIG. 5, and the support (inorganic fiber sheet) 303 generates heat between the inner layer material 100 and the outer layer material 200 as an enclosure.
- the heating element 300 to which the wire (heating wire) 302 is attached and the heat insulating material 400 are laminated. Further, as shown in a sectional view in FIG. 1, a metal foil is provided between the heating element 300 and the inner layer material 100. 500.
- Examples of the inner layer material 100 and the outer layer material 200 that are envelopes include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
- PTFE polytetrafluoroethylene
- PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- Fluorine made of fluororesin such as polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-ethylene copolymer (ETFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF), etc.
- Resin sheet or cloth made of fluororesin fiber (woven cloth) knitted with the above-mentioned fluororesin fibers cloth made of inorganic fiber made of inorganic fibers such as glass fiber, silica fiber, alumina fiber, silica alumina fiber (woven cloth) ), None like this Etc. may be used fluorocarbon resin coating inorganic fibers made cloth was coated with the fluorine-based resin in fiber-made cloth.
- the thickness of such an enclosure is not particularly limited as long as the effects of the present invention can be obtained, but 0.1 to 8 mm is appropriate, 0.1 to 5 mm is preferable, and 0.1 to 2 mm is more preferable. It is.
- the heating element 300 is not particularly limited as long as the watt density is 0.15 W / cm 2 or more.
- a heating wire (heating wire) 302 such as a nichrome wire that generates heat when energized or a slenless wire can be used.
- Such heating wire 302 is preferably electrically insulated. Such insulation may be achieved by covering the heating wire 302 with an inorganic fiber sleeve made of inorganic fibers such as glass fiber, silica fiber, alumina fiber, or silica alumina fiber, or by coating a resin.
- a carbon heating element or a ceramic heating element may be used instead of the heating wire.
- the watt density is also called power density, and the degree of the surface load (W / cm 2 ) of the heater expressed by the electric capacity (W) per unit surface area (cm 2 ) of the jacket heater. I mean. Generally, if the watt density value is large, the surface temperature of the heater is high, and conversely, if the watt density value is small, the heater surface temperature is low.
- the upper limit of the watt density is not particularly limited, but may be 0.5 W / cm 2 or less, specifically, 0.15 to 0.5 W / cm 2 , and 0.17 to 0. .5 W / cm 2 , 0.20 to 0.5 W / cm 2 , and 0.25 to 0.5 W / cm 2 .
- Such a heating wire 302 may be sewn to the support 303 with a sewing thread 304 in a desired pattern.
- a support 303 for example, an inorganic fiber cloth made of inorganic fibers such as glass fibers, silica fibers, alumina fibers, and silica alumina fibers can be used.
- the diameter of the heating wire can be increased and the length thereof can be shortened, and an interval between adjacent heating wires (hereinafter referred to as pitch).
- pitch an interval between adjacent heating wires
- Such a pitch has conventionally been about 10 to 35 mm in order to ensure heat uniformity.
- it can be set to 40 to 70 mm, preferably 45 to 60 mm, for example.
- an inorganic fiber mat obtained by collecting glass fibers, ceramic fibers, silica fibers and the like and performing needle processing can be used. Further, it may be formed into a mat shape with an inorganic binder such as colloidal silica, alumina sol or sodium silicate, or an organic binder such as starch. Alternatively, a porous molded body made of a heat-resistant organic resin such as aramid, polyamide, or polyimide can be used.
- the thickness of such a heat insulating material is not particularly limited as long as the effects of the present invention can be obtained, but 5 to 100 mm is suitable, 5 to 50 mm is preferred, and 8 to 30 mm is more preferred.
- a fiber body (aerogel fiber body) filled with aerogel can also be used as a heat insulating material.
- Such an airgel fiber body is a heat insulating material in which a fiber base material is filled with airgel.
- the fiber base material constituting the airgel fiber body examples include organic fibers such as polyethylene terephthalate (PET) fibers, carbon fibers, glass fibers, aluminosilicate fibers, silica fibers, fibers made of inorganic fibers such as mullite fibers and alumina fibers.
- organic fibers such as polyethylene terephthalate (PET) fibers, carbon fibers, glass fibers, aluminosilicate fibers, silica fibers, fibers made of inorganic fibers such as mullite fibers and alumina fibers.
- PET polyethylene terephthalate
- carbon fibers carbon fibers
- glass fibers glass fibers
- aluminosilicate fibers silica fibers
- fibers made of inorganic fibers such as mullite fibers and alumina fibers.
- a substrate can be used, and a fiber substrate made of inorganic fibers having excellent heat resistance can be preferably used.
- a woven or non-woven fabric of inorganic fibers can be preferably used as the fiber base material.
- the non-woven fabric for example, a paper-like material obtained by making an inorganic fiber with a paper-making machine, a blanket obtained by processing the collected inorganic fiber into a mat shape, or an inorganic binder with an organic binder.
- a felt mat or the like formed into a mat shape can be used.
- the airgel fiber body has excellent flexibility.
- Organic fibers such as PET fibers that can be imparted with water can be preferably used.
- an inexpensive glass fiber can be preferably used.
- aluminosilicate fiber, silica fiber, mullite fiber, alumina fiber, etc. having high heat resistance
- These ceramic fibers can be preferably used.
- an airgel made of an inorganic material inorganic airgel
- an airgel made of an organic material organic airgel
- an inorganic airgel excellent in heat resistance can be preferably used.
- silica airgel or alumina airgel can be used as the inorganic airgel. In particular, by using silica airgel, the heat insulation property of the airgel fiber body can be effectively enhanced.
- an inorganic fiber non-woven fabric filled with inorganic airgel can be preferably used.
- an airgel fiber body in which a silica fiber non-woven fabric is filled with silica airgel, or an airgel fiber body in which a glass fiber mat is filled with silica airgel can be preferably used.
- products such as “SCAPELOFT2200”, “SCAPELOFT2250”, “Pyrogel6650”, and “PyrogelXT” are available from Aspen Aerogels Inc.
- the ratio of the airgel and the fiber base contained in the airgel fiber body should be set as appropriate according to the characteristics (for example, heat insulation, heat resistance, low dust generation, flexibility) that the airgel fiber body should have. Can do.
- the density of the airgel fiber body can be, for example, in the range of 20 to 500 kg / m 3 , and preferably in the range of 100 to 300 kg / m 3 .
- Such an airgel fiber body has an excellent heat insulating property because air convection in the airgel fiber body is effectively prevented by the micropores in the airgel filling the voids between the fibers.
- the thermal conductivity of the airgel fiber body at 25 ° C. can be, for example, 0.024 W / m ⁇ K or less, preferably 0.020 W / m ⁇ K or less, and more preferably. May be 0.018 W / m ⁇ K or less.
- the thermal conductivity of the airgel fiber body at 80 ° C. can be, for example, 0.035 W / m ⁇ K or less, preferably 0.027 W / m ⁇ K or less, more preferably 0. 0.025 W / m ⁇ K or less.
- the airgel fiber body since the airgel fiber body has excellent heat insulating properties, it can be thinned while maintaining sufficient heat insulating properties.
- the thickness of the airgel fiber body can be, for example, in the range of 1 to 50 mm, preferably in the range of 1 to 25 mm, and more preferably in the range of 1 to 15 mm. it can.
- the metal foil 500 is not particularly limited as long as the thermal conductivity is high.
- Aluminum foil is suitable because it is inexpensive, but other metals such as copper and stainless steel may be used. Further, if the thickness of the metal foil 500 is too thin, the metal foil 500 may be broken, and if it is too thick, the flexibility is impaired and the cost is increased, so 20 ⁇ m to 5 mm is appropriate, and 30 to 100 ⁇ m is preferable. 40 to 70 ⁇ m is more preferable.
- an insulating member 600 having electrical insulation can be further interposed between the heating wire 302 and the metal foil 500 constituting the heating element 300.
- an inorganic fiber cloth such as glass fiber, silica fiber, alumina fiber, silica alumina fiber, or the like is suitable.
- Such an insulating member can ensure electrical insulation between the heating wire and the metal foil.
- the metal foil 500 and the insulating member 600 integrally joined may be interposed between the heating element and the enclosure so that the insulating member 600 is on the heating element side.
- the inorganic fiber cloth exposes the aluminum processed cloth such as the one made by heat-sealing aluminum foil on the surface of the inorganic fiber cloth, the one obtained by bonding the aluminum vapor-deposited film, the one obtained by aluminum transfer processing, etc. What is necessary is just to arrange
- an aluminum processing cloth for example, “Aluminum processing cloth” manufactured by NICHIAS Corporation can be used.
- the surface temperature rises to near 500 ° C., so that heat is directly transmitted in the portion immediately below the heating wire of the inner layer material 100.
- the inner layer material 100 can be directly applied from the heating wire. Heat transfer is suppressed and thermal degradation can be prevented.
- peripheral portions 103 and 104 of the inner layer material 100 and the outer layer material 200 are joined together by stitching, heat welding, or the like so that the heating element 300, the heat insulating material 400, and the metal foil 500 are stacked, Surrounded by the outer layer material 200.
- the cross-sectional structure including the jacket heater of the present invention and a heated object such as piping the outer surface of the piping toward the radially outer side of the piping, the inner layer material as the envelope of the jacket heater of the present invention.
- the metal foil, the heating element, the heat insulating material, and the outer layer material as the enclosure are sequentially laminated.
- an insulating member may be interposed between the metal foil and the heating element.
- the peripheral edge portions 103 and 104 are brought into contact with each other. For example, it is fixed through the hook-and-loop fasteners 105 and 106 on the end faces.
- a known fixing means such as a hook or a buckle or belts can be used.
- the jacket heater 10 has a cylindrical shape that can be attached to the pipe 20, and is entirely curved or L-shaped so that it can be attached to a curved pipe or an L-shaped pipe.
- the object to be heated has a square case shape, it can be formed in a box shape or a plate shape.
- the jacket heater of the present invention can set the maximum surface temperature (maximum use temperature) of the body to be heated to more than 250 ° C.
- the maximum surface temperature of the object to be heated may be 200 to 250 ° C. In this case, it is possible to provide a jacket heater having a high temperature rising rate.
- the nichrome wire inserted into the silica fiber sleeve was sewn onto the surface of a glass cloth (thickness: 0.25 mm) as a support with a sewing thread to form a heating element.
- the watt density of this heating element was 0.17 W / cm 2 .
- the aluminum foil as a 50-micrometer-thick metal foil was laminated
- the laminate is surrounded by a glass fiber cloth (thickness: 0.25 mm) subjected to a fluororesin (PTFE) coating treatment as an enclosure, and the end portions are joined to each other, and a cross-sectional shape as shown in FIG. Sample A was prepared.
- the melting point of PTFE coated on the glass fiber cloth is 327 ° C.
- Sample B was prepared in the same manner except that no aluminum foil was interposed.
- Jacket heater (mantle heater) 100 inner layer material 200 outer layer material 300 heating element 400 heat insulating material 500 metal foil
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Resistance Heating (AREA)
- Surface Heating Bodies (AREA)
- Pipe Accessories (AREA)
Abstract
Description
(1)発熱体を内蔵するジャケットヒータであって、
ワット密度0.15W/cm2以上の発熱体と、
発熱体に隣接して配置される金属箔と、
発熱体及び金属箔を包囲する包囲体と、を備えるジャケットヒータ。
(2)包囲体が、フッ素樹脂製シートまたはフッ素樹脂コーティング処理を施した無機繊維製クロスである、上記(1)に記載のジャケットヒータ。
(3)発熱体と金属箔との間に電気絶縁性を有する絶縁部材が介在している、上記(1)または(2)に記載のジャケットヒータ。
(4)発熱体の、金属箔が配置される側とは反対側に断熱材が配置される、上記(1)~(3)の何れか一つに記載のジャケットヒータ。
(5)発熱体が電熱線を含む、上記(1)~(4)の何れか一つに記載のジャケットヒータ。
(6)包囲体の金属箔側の面が被加熱体に接するように装着される、上記(1)~(5)の何れか一つに記載のジャケットヒータ。
(7)上記(1)~(6)の何れか一つに記載のジャケットヒータを被加熱体に装着する装着方法であって、包囲体の金属箔側の面が被加熱体に接するように装着する、装着方法。
シリカ繊維製スリーブに挿入したニクロム線を、支持体としてのガラスクロス(厚さ0.25mm)の表面に縫い糸で縫い付けて発熱体とした。この発熱体のワット密度は0.17W/cm2であった。そして、ガラスクロス側に厚さ50μmの金属箔としてのアルミ箔を積層し、ニクロム線側に断熱材としてのガラス繊維製マット(厚さ16mm)を積層して積層体を作成した。次いで、この積層体を包囲体としてのフッ素樹脂(PTFE)コーティング処理を施したガラス繊維製クロス(厚さ0.25mm)で包囲し、端部を接合して、図3に示すような断面形状を有するサンプルAを作製した。尚、ガラス繊維製クロスにコーティングしたPTFEの融点は327℃である。
被加熱体としての配管の表面温度が250℃になるように設定し、サンプルA、Bのニクロム線に通電し、ニクロム線の直下の配管に接するフッ素樹脂(PTFE)コーティング処理を施したガラス繊維製クロスの表面の温度を測定した。結果を図4に示すが、アルミ箔を介在させないサンプルBでは、表面温度が約300℃まで昇温したのに対し、アルミ箔を介在させたサンプルAでは最高でも約270℃であり、本発明に従いアルミ箔を介在させることの効果が確認された。
本出願は、2010年4月6日出願の日本特許出願2010-088006に基づくものであり、その内容はここに参照として取り込まれる。
100 内層材
200 外層材
300 発熱体
400 断熱材
500 金属箔
Claims (7)
- 発熱体を内蔵するジャケットヒータであって、
ワット密度0.15W/cm2以上の発熱体と、
発熱体に隣接して配置される金属箔と、
発熱体及び金属箔を包囲する包囲体と、を備えるジャケットヒータ。 - 包囲体が、フッ素樹脂製シートまたはフッ素樹脂コーティング処理を施した無機繊維製クロスである、請求項1に記載のジャケットヒータ。
- 発熱体と金属箔との間に電気絶縁性を有する絶縁部材が介在している、請求項1または2に記載のジャケットヒータ。
- 発熱体の、金属箔が配置される側とは反対側に断熱材が配置される、請求項1~3の何れか一項に記載のジャケットヒータ。
- 発熱体が電熱線を含む、請求項1~4の何れか一項に記載のジャケットヒータ。
- 包囲体の金属箔側の面が被加熱体に接するように装着される、請求項1~5の何れか一項に記載のジャケットヒータ。
- 請求項1~6の何れか一項に記載のジャケットヒータを被加熱体に装着する装着方法であって、包囲体の金属箔側の面が被加熱体に接するように装着する、装着方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/640,256 US9380649B2 (en) | 2010-04-06 | 2011-04-06 | Jacket heater and method for attaching same |
KR1020127025951A KR101462325B1 (ko) | 2010-04-06 | 2011-04-06 | 재킷 히터 및 그 장착 방법 |
EP11765951.6A EP2557894B1 (en) | 2010-04-06 | 2011-04-06 | Jacket heater and method for attaching same |
CN201180017804.7A CN102860123B (zh) | 2010-04-06 | 2011-04-06 | 护套式加热器及其安装方法 |
JP2012509687A JP5602219B2 (ja) | 2010-04-06 | 2011-04-06 | ジャケットヒータ及びその装着方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010088006 | 2010-04-06 | ||
JP2010-088006 | 2010-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011126051A1 true WO2011126051A1 (ja) | 2011-10-13 |
Family
ID=44762986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/058725 WO2011126051A1 (ja) | 2010-04-06 | 2011-04-06 | ジャケットヒータ及びその装着方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9380649B2 (ja) |
EP (1) | EP2557894B1 (ja) |
JP (1) | JP5602219B2 (ja) |
KR (1) | KR101462325B1 (ja) |
CN (1) | CN102860123B (ja) |
TW (1) | TWI502148B (ja) |
WO (1) | WO2011126051A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102398411A (zh) * | 2011-11-25 | 2012-04-04 | 芜湖风雪橡胶有限公司 | 热转印机装置 |
KR101359743B1 (ko) | 2012-09-21 | 2014-02-21 | (주)씨에이유니트 | 아라미드 재질의 부직포를 이용한 배관용 히팅 커버의 제조 방법. |
WO2015045279A1 (ja) * | 2013-09-30 | 2015-04-02 | ニチアス株式会社 | テープヒータ |
WO2015045280A1 (ja) * | 2013-09-30 | 2015-04-02 | ニチアス株式会社 | ジャケットヒータ |
JP2016099005A (ja) * | 2014-11-25 | 2016-05-30 | 株式会社 ティーエスシー | 配管用ヒーター |
JP2021197229A (ja) * | 2020-06-11 | 2021-12-27 | 日精樹脂工業株式会社 | バンドヒータ |
WO2024177145A1 (ja) * | 2023-02-24 | 2024-08-29 | ニチアス株式会社 | ジャケットヒータ、ジャケットヒータの製造方法、及び断熱構造 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3009049B1 (en) | 2013-06-10 | 2017-08-09 | Panasonic Intellectual Property Management Co., Ltd. | Seat heater |
DE202013103243U1 (de) * | 2013-07-19 | 2014-10-20 | Rehau Ag + Co | Medienleitung, insbesondere zum Transport einer Harnstoff-Wasser-Lösung |
KR101655253B1 (ko) * | 2014-11-25 | 2016-09-08 | 주식회사 티에스시 | 배관용 히터 |
CN104486854A (zh) * | 2014-12-04 | 2015-04-01 | 沈阳工业大学 | 螺杆泵加热保温装置 |
JP6616265B2 (ja) * | 2015-10-16 | 2019-12-04 | 株式会社Kokusai Electric | 加熱部、基板処理装置、及び半導体装置の製造方法 |
GB2545233B (en) * | 2015-12-09 | 2018-06-27 | Dyson Technology Ltd | Flexible heating plate for hair |
KR101828958B1 (ko) * | 2016-07-28 | 2018-02-13 | 주식회사 비엠티 | 옥외 배관용 히팅재킷 |
CN107018589A (zh) * | 2017-03-30 | 2017-08-04 | 袁芳革 | 一种耐高温的发热线 |
CN107708233A (zh) * | 2017-08-21 | 2018-02-16 | 李家俊 | 高效率柔性万能红外贴 |
KR102041157B1 (ko) * | 2019-03-22 | 2019-11-06 | 주식회사 티에스시 | 고온용 배관구조를 위한 히터 자켓 |
WO2020197920A1 (en) | 2019-03-28 | 2020-10-01 | Mks Instruments | Low profile heater apparatus and method of manufacture |
DE102019127273A1 (de) * | 2019-10-10 | 2021-04-15 | Norma Germany Gmbh | Beheizbare Fluidleitung mit interner und externer Heizeinrichtung |
CN112637980B (zh) * | 2020-12-21 | 2022-04-19 | 天津华能杨柳青热电有限责任公司 | 一种远红外线柔性电加热套 |
KR102540130B1 (ko) * | 2021-03-04 | 2023-06-05 | 주식회사 티에스시 | 열반사층을 이용한 배관용 히터자켓 |
EP4352780A1 (en) * | 2021-06-09 | 2024-04-17 | Watlow Electric Manufacturing Company | Cold conduit insulation device |
FR3139878A1 (fr) | 2022-09-19 | 2024-03-22 | Plastic Omnium New Energies France | Réservoir de gaz sous pression pour véhicule |
WO2024167679A1 (en) * | 2023-02-06 | 2024-08-15 | Parker-Hannifin Corporation | Extreme coolant hose assembly with heater system for cover heating |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0189494U (ja) * | 1987-12-07 | 1989-06-13 | ||
JPH1116669A (ja) * | 1997-06-19 | 1999-01-22 | Kurabe Ind Co Ltd | 発熱体 |
JP2002295783A (ja) | 2001-03-30 | 2002-10-09 | Nichias Corp | マントルヒータ及びその製造方法 |
JP2010088006A (ja) | 2008-10-02 | 2010-04-15 | Kyocera Mita Corp | 入出力制御装置、画像読取装置及び画像形成装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2485852A (en) * | 1946-03-09 | 1949-10-25 | Gordon B Tebo | Strap-on heater |
US2889445A (en) * | 1955-03-28 | 1959-06-02 | Herman B Wolf | Electrically heated mat |
US3614967A (en) * | 1968-10-08 | 1971-10-26 | Royston Lab | Multilayered pipe coatings and coated pipe |
GB1579729A (en) * | 1976-09-30 | 1980-11-26 | Micropore International Ltd | Electrical heating units |
DE68928596T2 (de) * | 1988-05-27 | 1998-07-30 | Ceramaspeed Ltd., Droitwich, Worcestershire | Elektrische Strahlungsheizgeräte |
JPH05234666A (ja) * | 1991-02-01 | 1993-09-10 | Hitachi Cable Ltd | 積層フレキシブルヒータ |
US6111234A (en) * | 1991-05-07 | 2000-08-29 | Batliwalla; Neville S. | Electrical device |
KR20010110449A (ko) * | 1999-02-26 | 2001-12-13 | 지.윌리암 래그랜드 | 일체형 가열기를 구비한 음식물 운반 용기 |
DE60030636T2 (de) * | 1999-07-13 | 2007-09-20 | Showa Electric Wire & Cable Co., Ltd., Kawasaki | Netzartiges Heizelement versehen mit einem in der Form eines Maschennetzwerks ausgebildeten Erhitzungsgenerator |
US20060199135A1 (en) * | 2002-11-25 | 2006-09-07 | Ibiden Co., Ltd. | Metal heater |
JP2004303580A (ja) * | 2003-03-31 | 2004-10-28 | Nichias Corp | テープヒーター |
JP4418201B2 (ja) * | 2003-09-30 | 2010-02-17 | ニチアス株式会社 | 配管の断熱保温構造および断熱保温用具キット |
CN100594747C (zh) * | 2006-07-03 | 2010-03-17 | 北京有色金属研究总院 | 防垢电加热管及其制备方法 |
CA2700732A1 (en) * | 2007-10-19 | 2009-04-23 | Shell Internationale Research Maatschappij B.V. | Cryogenic treatment of gas |
US20090321416A1 (en) * | 2008-06-27 | 2009-12-31 | Christos Sarigiannidis | Enhanced energy delivery mechanism for bulk specialty gas supply systems |
-
2011
- 2011-04-06 TW TW100111751A patent/TWI502148B/zh active
- 2011-04-06 WO PCT/JP2011/058725 patent/WO2011126051A1/ja active Application Filing
- 2011-04-06 KR KR1020127025951A patent/KR101462325B1/ko active IP Right Grant
- 2011-04-06 US US13/640,256 patent/US9380649B2/en active Active
- 2011-04-06 CN CN201180017804.7A patent/CN102860123B/zh active Active
- 2011-04-06 JP JP2012509687A patent/JP5602219B2/ja active Active
- 2011-04-06 EP EP11765951.6A patent/EP2557894B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0189494U (ja) * | 1987-12-07 | 1989-06-13 | ||
JPH1116669A (ja) * | 1997-06-19 | 1999-01-22 | Kurabe Ind Co Ltd | 発熱体 |
JP2002295783A (ja) | 2001-03-30 | 2002-10-09 | Nichias Corp | マントルヒータ及びその製造方法 |
JP2010088006A (ja) | 2008-10-02 | 2010-04-15 | Kyocera Mita Corp | 入出力制御装置、画像読取装置及び画像形成装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2557894A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102398411A (zh) * | 2011-11-25 | 2012-04-04 | 芜湖风雪橡胶有限公司 | 热转印机装置 |
KR101359743B1 (ko) | 2012-09-21 | 2014-02-21 | (주)씨에이유니트 | 아라미드 재질의 부직포를 이용한 배관용 히팅 커버의 제조 방법. |
WO2015045279A1 (ja) * | 2013-09-30 | 2015-04-02 | ニチアス株式会社 | テープヒータ |
WO2015045280A1 (ja) * | 2013-09-30 | 2015-04-02 | ニチアス株式会社 | ジャケットヒータ |
JP2015069931A (ja) * | 2013-09-30 | 2015-04-13 | ニチアス株式会社 | ジャケットヒータ |
JP2015069930A (ja) * | 2013-09-30 | 2015-04-13 | ニチアス株式会社 | テープヒータ |
US10602570B2 (en) | 2013-09-30 | 2020-03-24 | Nichias Corporation | Heating jacket |
US10667331B2 (en) | 2013-09-30 | 2020-05-26 | Nichias Corporation | Heating tape |
JP2016099005A (ja) * | 2014-11-25 | 2016-05-30 | 株式会社 ティーエスシー | 配管用ヒーター |
JP2021197229A (ja) * | 2020-06-11 | 2021-12-27 | 日精樹脂工業株式会社 | バンドヒータ |
JP7093809B2 (ja) | 2020-06-11 | 2022-06-30 | 日精樹脂工業株式会社 | バンドヒータ |
WO2024177145A1 (ja) * | 2023-02-24 | 2024-08-29 | ニチアス株式会社 | ジャケットヒータ、ジャケットヒータの製造方法、及び断熱構造 |
Also Published As
Publication number | Publication date |
---|---|
CN102860123B (zh) | 2015-02-18 |
EP2557894A1 (en) | 2013-02-13 |
US9380649B2 (en) | 2016-06-28 |
CN102860123A (zh) | 2013-01-02 |
EP2557894B1 (en) | 2017-08-09 |
KR20130006463A (ko) | 2013-01-16 |
EP2557894A4 (en) | 2016-03-16 |
US20130062338A1 (en) | 2013-03-14 |
KR101462325B1 (ko) | 2014-11-14 |
JPWO2011126051A1 (ja) | 2013-07-11 |
TW201144647A (en) | 2011-12-16 |
JP5602219B2 (ja) | 2014-10-08 |
TWI502148B (zh) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5602219B2 (ja) | ジャケットヒータ及びその装着方法 | |
JP5800832B2 (ja) | ジャケットヒータ及びジャケットヒータを用いた加熱方法 | |
JP4418201B2 (ja) | 配管の断熱保温構造および断熱保温用具キット | |
JP5465192B2 (ja) | 断熱体及びヒータ | |
TWI580302B (zh) | Heating sets | |
JP5133159B2 (ja) | 面状ヒータ | |
JP2004303580A (ja) | テープヒーター | |
JP2023002984A (ja) | シート状ヒータ | |
JP2010097809A (ja) | 電熱ヒーター | |
JP2015122180A (ja) | 可撓性ヒータ | |
KR102077903B1 (ko) | 히터 장치 및 이것을 이용한 피가열체의 가열 방법 | |
JP2011220393A (ja) | 保温または加温用被覆部材 | |
JP5883354B2 (ja) | ヒータ及び伝熱部材 | |
TWI461092B (zh) | 面狀加熱器 | |
WO2024177146A1 (ja) | ジャケットヒータ、ジャケットヒータの製造方法、及び断熱構造 | |
CN116530209A (zh) | 加热构造体及其制造方法 | |
JP2024120393A (ja) | ヒータ装置、加熱部及びヒータ装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180017804.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11765951 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012509687 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127025951 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011765951 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011765951 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13640256 Country of ref document: US |