WO2011125250A1 - 金属球の製造方法 - Google Patents

金属球の製造方法 Download PDF

Info

Publication number
WO2011125250A1
WO2011125250A1 PCT/JP2010/069310 JP2010069310W WO2011125250A1 WO 2011125250 A1 WO2011125250 A1 WO 2011125250A1 JP 2010069310 W JP2010069310 W JP 2010069310W WO 2011125250 A1 WO2011125250 A1 WO 2011125250A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
metal sphere
nitrogen
plasma
material piece
Prior art date
Application number
PCT/JP2010/069310
Other languages
English (en)
French (fr)
Inventor
麻里子 福丸
剛 韓
辰也 庄司
マハー アイ. ブーロス
Original Assignee
日立金属株式会社
テクナ プラズマ システムズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社, テクナ プラズマ システムズ インコーポレーテッド filed Critical 日立金属株式会社
Priority to JP2012509272A priority Critical patent/JP5599871B2/ja
Priority to CN2010800659413A priority patent/CN102947024A/zh
Publication of WO2011125250A1 publication Critical patent/WO2011125250A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Definitions

  • the present invention relates to a method for producing metal spheres containing high nitrogen suitable for rolling elements used in rolling bearings and the like.
  • Non-Patent Document 1 high nitrogen-containing stainless steel has been proposed in the field of steel materials as a material for further improving the strength and corrosion resistance of rolling elements used in rolling bearings (for example, Non-Patent Document 1).
  • This high nitrogen-containing stainless steel is known to improve strength and corrosion resistance by adding about 0.1 to 0.4% by mass of nitrogen to conventional martensitic stainless steel.
  • a pressure-type electroslag remelting method in which a nitrogen compound is added as a nitrogen source at the time of melting and is dissolved under pressure, Is maintained in a nitrogen gas atmosphere at 1000 ° C.
  • Non-Patent Document 1 A thin wire must be manufactured by repeatedly performing plastic working such as forging and rolling on a steel ingot, and the manufacture of the thin wire alone is expensive.
  • the raw material made into thin wires is compressed into a spherical shape by compressing the pieces cut into a certain length from both sides with female and male molds with hemispherical ball seats, and then two hard casting machines After removing the burrs by applying pressure between them, it is necessary to perform heat treatment for adjusting the structure and to manufacture through a great precision polishing process (for example, Non-Patent Document 2).
  • a great precision polishing process for example, Non-Patent Document 2
  • one of the manufacturing methods of micro metal spheres used for rolling elements, etc. is to solidify after melting once by cutting the raw material used as a wire into a raw material piece by cutting it at regular intervals.
  • Patent Document 1 is a high-carbon chromium bearing steel (for example, SUJ2 steel (1.0 mass% C-1.5 mass% Cr)) that is common as a fine metal sphere for rolling elements, It can only deal with martensitic stainless steel (for example, SUS440C steel (1.2 mass% C-17 mass% Cr)).
  • SUJ2 steel 1.0 mass% C-1.5 mass% Cr
  • martensitic stainless steel for example, SUS440C steel (1.2 mass% C-17 mass% Cr)
  • the manufacturing method of the micro metal sphere disclosed in Patent Document 1 described above reduces the number of steps for manufacturing the base sphere and polishes, thereby manufacturing the micro metal sphere used for, for example, a rolling element economically at low cost. This is advantageous.
  • the process disclosed in Patent Document 1 is limited to the production of metal spheres having the same alloy composition as the raw material wire, and the production of fine metal spheres made of high nitrogen-containing stainless steel having high strength and excellent corrosion resistance. It is necessary to manufacture an expensive wire containing high nitrogen in advance. This necessitates the above-described refining and processing steps for adding nitrogen, increases the cost, and the total cost merit is small.
  • the object of the present invention is not to use expensive high nitrogen-containing stainless steel wire, but also to use a low-cost nitrogen-free steel wire with an alloy composition as a raw material piece, simultaneously with the production of metal spheres by plasma, It is providing the manufacturing method of the metal sphere which can be added as an alloying element.
  • the present inventors have earnestly studied a manufacturing method for adding nitrogen to a metal sphere, and by using a gas containing 2% by volume or more of nitrogen in the plasma generation space, a steel wire having an inexpensive alloy composition that does not contain nitrogen.
  • a raw material piece the inventors have found that metal spheres to which nitrogen is added as an alloy element can be obtained with a low man-hour, and the present invention has been achieved.
  • a step of preparing a raw material piece having a predetermined mass, a plasma flame is formed by plasma operating gas and high frequency energy generated from a high frequency induction coil, and plasma
  • Nitrogen is introduced into the metal sphere through the spheronizing and solidifying steps.
  • the plasma working gas contains 2% by volume or more of nitrogen.
  • the metal sphere manufacturing method of the present invention it is preferable to introduce 0.1 mass% or more of nitrogen into the metal sphere.
  • a raw material piece what cut
  • the ratio of the length L of the raw material piece to the diameter ⁇ is preferably 0.5 ⁇ L / ⁇ ⁇ 2.0.
  • the raw material piece is preferably martensitic stainless steel or austenitic stainless steel, and preferably contains 11 to 20% by mass of Cr.
  • the diameter of the metal sphere is preferably in the range of 0.3 to 2.0 mm.
  • a metal sphere containing high nitrogen can be obtained even when a steel wire having an inexpensive alloy composition not containing nitrogen is used as a raw material piece, and a metal sphere having high strength and excellent corrosion resistance can be obtained at low cost and efficiency. Can be manufactured automatically.
  • the present invention employs a gas containing 2% by volume or more of the nitrogen concentration in the plasma generation space.
  • the inventors of the present invention have found that the nitrogen gas added to the plasma flame is partly activated, and that nitrogen is added to the raw material that is in the droplet state during the plasma treatment.
  • the manufacturing method of the metal sphere of this invention is demonstrated in detail.
  • FIG. 1 shows an example of the configuration of a plasma apparatus used in the present invention.
  • the plasma flame 6 supplies a plasma operating gas containing, for example, 2% by volume or more of nitrogen from one side in the axial direction of the high frequency coil 3 provided outside the cooling wall 1, and applies a voltage to the high frequency coil 3.
  • the reaction gas is supplied from the reaction gas supply unit 5 provided at the lower part of the plasma flame 6, thereby adjusting the extension of the tail of the plasma flame 6 and the cooling rate of the obtained metal sphere.
  • the raw material pieces are introduced into the generated plasma flame 6 together with the carrier gas from the raw material piece supply nozzle 7. Since the temperature of the plasma flame 6 itself is about 5000 to 10000 K, the raw material pieces charged into the plasma flame 6 are melted instantly when exposed to the high temperature portion, and due to surface tension in the region of the chamber 8. The metal balls that have been spheroidized and further solidified are collected in the collection container 10. During manufacture, the exhaust in the chamber 8 is performed by the exhaust device 9. In the present invention, in order to obtain a metal sphere containing nitrogen having high strength and excellent corrosion resistance, the nitrogen concentration in the plasma generation space needs to be 2% by volume or more.
  • the plasma generation space is a plasma flame and a space surrounding the plasma flame.
  • a gas supplied into the chamber that is, a plasma working gas
  • a reaction This can be achieved by adjusting the ratio of nitrogen to the total supply amount of gas and carrier gas to be 2% by volume or more.
  • the plasma working gas may contain 50% by volume or more of nitrogen.
  • the plasma operating gas is 50% by volume or more of nitrogen
  • the plasma generation space nitrogen concentration can be 2% by volume or more, and nitrogen can be introduced into the metal sphere.
  • the plasma operating gas contains 2% by volume or more of nitrogen.
  • Nitrogen is not essential for the plasma operating gas, and other plasma operating gases other than nitrogen include inert gases such as He, Ne, Ar, Kr, Xe, and Rn, and gases such as H 2. Applicable. By applying these gases to the plasma operating gas, it is possible to stabilize the plasma flame 6 during processing. Further, when H 2 is applied to the plasma operating gas, the temperature of the plasma flame 6 can be further increased, evaporation of impurities contained in the raw material pieces can be easily promoted, and a higher spheroidizing effect can be expected. Also in the reaction gas, as a gas other than nitrogen, a gas such as H 2 can be applied in addition to a rare gas such as He, Ne, Ar, Kr, Xe, and Rn, which are inert gases.
  • a steel wire cut at a predetermined interval can be used as a raw material piece.
  • stainless steel such as martensitic stainless steel and austenitic stainless steel or other materials can be applied.
  • the steel wire as the raw material piece used in the present invention can of course obtain a metal sphere having high strength and excellent corrosion resistance even if a steel wire previously containing nitrogen is used.
  • the nitrogen concentration in the plasma generation space is contained by 2% by volume or more, so that it is put into a plasma flame and becomes a droplet state.
  • Nitrogen can be added to the raw material, and metal balls having high strength and excellent corrosion resistance can be obtained.
  • the raw material pieces are preferably introduced together and continuously, and each of the raw material pieces is preferably spheroidized and solidified.
  • a droplet obtained by putting a raw material piece into a plasma flame and melting it is spheroidized by surface tension during the fall, and solidified to obtain a highly spherical metal sphere.
  • the atmosphere during the spheroidization treatment of the droplets may be the same as the plasma operating gas, but it is possible to prevent oxidation by using inert gases such as He, Ne, Ar, Kr, Xe, and Rn. It is valid.
  • a liquid refrigerant such as water can be used for the atmosphere that solidifies the spheroidized droplets.
  • the nitrogen content of the obtained metal sphere is 0.1% by mass or more in order for nitrogen to exhibit the effect of improving strength and corrosion resistance as an alloy composition.
  • the ratio of the length L of the raw material piece to the diameter ⁇ is preferably 0.5 ⁇ L / ⁇ ⁇ 2.0. This is because when the L / ⁇ ratio is less than 0.5, the diameter ⁇ of the raw material piece is larger than the length L, and sufficient melting cannot be achieved with a short residence time in the high-temperature plasma flame region. This is because spheroidization becomes difficult. On the other hand, when the L / ⁇ ratio exceeds 2.0, the length L of the raw material piece becomes longer than the diameter ⁇ , and it becomes difficult to spheroidize for the same reason as described above.
  • the ratio of the length L of the raw material piece to the diameter ⁇ is 0.5 ⁇ L / ⁇ ⁇ 2.0, spheroidization becomes easier even with a short residence time in the high-temperature plasma flame region, A metal sphere with high sphericity can be obtained.
  • the L / ⁇ ratio is preferably about 1.0.
  • the method for producing a metal sphere of the present invention is most suitable for a metal sphere having a diameter of 0.3 to 2.0 mm.
  • the diameter of the metal sphere is preferably 2.0 mm or less.
  • the smaller the particle size the easier the melt spheroidization by plasma treatment, but the number of steps for obtaining a steel wire as a raw material piece increases, so the diameter of the metal sphere is preferably 0.3 mm or more.
  • the metal sphere was manufactured using an AC thermal plasma apparatus constituted by the inductively coupled RF plasma torch shown in FIG.
  • a stainless steel wire having a diameter ⁇ of 0.5 mm, 0.077 mass% C-8.0 mass% Ni-18.2 mass% Cr, and the balance mainly Fe, has a length L of 0.
  • a raw material piece cut at a predetermined interval so as to be 6 mm (L / ⁇ 1.2) was prepared.
  • 160 L / min (nor) of N 2 gas and 40 L / min (nor) of Ar gas were mixed as a plasma operating gas from one side in the axial direction of the high frequency coil 3 from the operating gas supply unit 4.
  • a gas was supplied to generate a plasma flame 5 in the plasma generation space 2 partitioned by the cooling wall 1 inside the high-frequency coil 3. At this time, the plasma output was 100 kW.
  • the raw material pieces were supplied from the raw material piece supply nozzle 7 together with Ar gas 40 L / min (nor) as a carrier gas at a supply rate of 30 g / min and put into the plasma flame 6. At this time, the nitrogen concentration in the generation space of the plasma flame 6 was 66.7% by volume.
  • the droplets introduced into the plasma flame 6 and melted fall in the atmosphere of a mixed gas of N 2 and Ar in the chamber 8 having an inner diameter of 400 mm and a height of 3300 mm, and are spheroidized by the surface tension, and are collected into a recovery container.
  • the product was cooled with water in 10 and solidified to obtain metal spheres. At this time, processing was performed while exhausting the inside of the chamber 8 with the exhaust device 9.
  • the nitrogen content of the obtained metal spheres was analyzed by an inert gas dissolution heat conduction method. The results are shown in Table 1. From the analysis results shown in Table 1, it was possible to introduce 0.1 mass% or more of nitrogen into the obtained metal sphere with respect to the raw material piece. Moreover, the scanning electron micrograph of the external appearance of the metal sphere obtained in FIG. 2 is shown. According to the method for producing a metal sphere of the present invention, it was confirmed that a metal sphere can be obtained as shown in FIG.
  • Example 2 metal spheres were manufactured using an AC thermal plasma apparatus composed of the inductively coupled RF plasma torch shown in FIG.
  • a stainless steel wire having a diameter ⁇ of 0.1 mm, 0.026 mass% C-9.98 mass% Ni-18 mass% Cr, and the balance mainly Fe, and a length L of 0.1 mm
  • Stainless steel spherical powder having a diameter ⁇ of 0.1 mm was prepared as another raw material piece.
  • N 2 gas and Ar are supplied from the working gas supply unit 4 from one side in the axial direction of the high-frequency coil 3 to the space where the plasma flame 6 partitioned by the cooling wall 1 inside the high-frequency coil 3 is generated.
  • a mixed gas of gases was supplied, and N 2 gas or Ar gas was supplied from the reaction gas supply unit 5.
  • An experiment was conducted in which no gas was supplied from the reaction gas supply unit 5 depending on the conditions. At this time, the plasma output was 30 kW.
  • a raw material piece was supplied from the raw material piece supply nozzle 7 together with Ar gas 5 L / min (nor) as a carrier gas and put into the plasma flame 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Rolling Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明は、所定質量の原料片を準備するステップと、プラズマ動作ガスと高周波誘導コイルから発生する高周波エネルギによりプラズマ炎を形成するとともに、プラズマ発生空間の窒素濃度を2体積%以上にするステップと、原料片をプラズマ炎中に投入し溶融させて球状化させるステップと、溶融して球状化した原料を凝固させるステップとを含み、球状化させるステップ及び凝固させるステップにより、窒素を金属球に導入する。

Description

金属球の製造方法
 本発明は、転がり軸受等に使用される転動体にも好適な高窒素を含有する金属球の製造方法に関するものである。
 近年、転がり軸受に用いる転動体の強度や耐食性を更に向上させるための材料として、鉄鋼材料の分野では、高窒素含有ステンレス鋼が提案されている(例えば非特許文献1)。この高窒素含有ステンレス鋼とは、従来のマルテンサイト系ステンレス鋼に窒素を、0.1~0.4質量%程度含有させることにより、強度や耐食性を向上できることが知られている。
 高窒素含有ステンレス鋼を製造する方法としては、例えば、非特許文献1に開示されるように、溶解時に窒素源として窒素化合物を添加して加圧溶解する加圧式エレクトロスラグ再溶解法や、鋼材を1000℃以上の窒素ガス雰囲気中に保持することで、窒素原子を固相内へ拡散させ高窒素化を図る固相窒素吸収法等、特殊な処理が必要とされる。
 このような高強度で耐食性に優れる高窒素含有ステンレス鋼でなる金属球を製造するためには、先ず、上述した非特許文献1に開示される特殊な処理を必要とする高窒素含有ステンレス鋼の鋼塊に鍛造や圧延といった塑性加工を繰り返し行い、細線を製造しなければならず、細線の製造だけでも高価となる。その上、細線とした原料を、一定の長さに切断したピースを両側から半球状の球座をもつ雌、雄の金型で圧縮して球形に成形し、次に2枚の硬質鋳物盤の間に挟んで圧力をかけて転動させ、バリを除去した後、組織調整のための熱処理を行い、多大な精密研磨過程を経て製造する必要がある(例えば、非特許文献2)。このように、高窒素含有ステンレス鋼からなる金属球を製造するためには、多大な工程が必要となりコストが高い。
 一方、転動体などに用いられる微小金属球の製造方法の一つに、線材とした原料を、一定の間隔で切断して原料片とし、プラズマ炎中に導入することにより、一旦溶融した後に凝固させる球状の微小金属球を製造する方法がある。この微小金属球の製造方法は、素球製造の工数を大幅に省略することができ、経済的な方法とされている(例えば、特許文献1参照)。
 ただし、特許文献1に開示される方法は、転動体用の微小金属球として一般的である高炭素クロム軸受鋼(例えばSUJ2鋼(1.0質量%C-1.5質量%Cr))や、マルテンサイト系ステンレス鋼(例えばSUS440C鋼(1.2質量%C-17質量%Cr))にしか対応できていない。
2006年度物質材料アウトルック(インターネット<URL: http://e-materials.net/outlook/OUTLOOK2006/OL2006_cap/cap3-5-7c.pdf>) 株式会社天辻鋼球製作所ホームページ(2009)(インターネット<URL: http://www.aksball.co.jp/seir.htm>)
特開2006-249549号公報
 上述した特許文献1に開示される微小金属球の製造方法は、素球製造の工数を減らし、研磨をすることにより、例えば転動体などに用いられる微小金属球を経済的に低コストで製造することでは有利である。しかしながら、特許文献1に開示されるプロセスでは、原料の線材と同じ合金組成を有する金属球の製造に限られており、高強度で耐食性に優れる高窒素含有ステンレス鋼からなる微小金属球を製造するには、予め高窒素を含有した高価な線材の製造が必要である。これでは、上述した窒素を添加するための精錬や加工工程が必要となり、コストが嵩み、トータルのコストメリットは小さい。
 本発明の目的は、高価な高窒素含有ステンレス鋼の線材を用いることなく、低コストな窒素を含有しない安価な合金組成の鋼線を原料片としても、プラズマによる金属球の製造と同時に、窒素を合金元素として添加することのできる金属球の製造方法を提供することである。
 本発明者等は、金属球に窒素を添加する製造方法を鋭意的に研究し、プラズマ発生空間に窒素を2体積%以上含むガスを用いることで、窒素を含有しない安価な合金組成の鋼線を原料片としても、窒素が合金元素として添加された金属球を低工数で得ることができることを見いだし、本発明に到達した。
 すなわち、本発明に係る高窒素を含有する金属球の製造方法は、所定質量の原料片を準備するステップと、プラズマ動作ガスと高周波誘導コイルから発生する高周波エネルギによりプラズマ炎を形成するとともに、プラズマ発生空間の窒素濃度を2体積%以上にするステップと、原料片をプラズマ炎中に投入し溶融させて球状化させるステップと、溶融して球状化した原料を凝固させるステップとを含む。球状化させるステップおよび凝固させるステップを通じて、窒素が金属球に導入される。
 本発明の金属球の製造方法では、プラズマ動作ガスに窒素を2体積%以上含むことが好ましい。
 この本発明の金属球の製造方法では、金属球に窒素を0.1質量%以上導入させることが好ましい。
 また、原料片としては、鋼線を所定の間隔で切断して原料片としたものが好ましい。原料片の長さLと直径φの比は、0.5≦L/φ≦2.0であることが好ましい。
 また、原料片は、マルテンサイト系ステンレス鋼またはオーステナイト系ステンレス鋼であることが好ましく、Crを11~20質量%含むことが好ましい。
 また、金属球の直径は、0.3~2.0mmの範囲であることが好ましい。
 本発明によれば、窒素を含有しない安価な合金組成の鋼線を原料片としても、高窒素を含有する金属球を得ることができ、高強度で耐食性に優れる金属球を低コスト、かつ効率的に製造することができる。
本発明の金属球の製造方法の一例を示す模式図である。 本発明の製造方法で得られた金属球の一例を示す走査型電子顕微鏡写真である。 本発明の製造方法で得られた金属球の別の例を示す走査型電子顕微鏡写真である。
 上述したように、本発明は、プラズマ発生空間の窒素濃度を2体積%以上含むガスを採用する。本発明者等は、プラズマ炎中に添加した窒素ガスは一部活性化し、プラズマ処理中に液滴状態となった原料への窒素添加を実現することを見出した。以下、本発明の金属球の製造方法について詳細に説明する。
 本発明は、所定質量の原料片をプラズマ炎に導入し、溶融した液滴は、落下中に表面張力により球状化、凝固させて金属球を得るものである。原料片は、鋼線を所定の間隔に切断して製作できるが、その他の原料片でもよい。図1に本発明に用いられるプラズマ装置構成の一例を示す。プラズマ炎6は、冷却壁1の外側に設けた高周波コイル3の軸線方向の一方から、例えば窒素を2体積%以上含むプラズマ動作ガスを供給部4から供給し、高周波コイル3に電圧をかけることで、高周波コイル3の内側の冷却壁1で仕切られたプラズマ発生空間2に発生させる。また、プラズマ炎6下部に設けた反応ガス供給部5より、反応ガスを供給することで、プラズマ炎6の尾部の伸長の調整や得られる金属球の冷却速度を調整する。
 次いで、発生させたプラズマ炎6に、原料片供給ノズル7からキャリアガスとともに原料片を投入する。プラズマ炎6中に投入した原料片は、プラズマ炎6の温度自体が5000~10000K程度であるため、原料片が高温部に曝されることで瞬時に溶融し、チャンバ8の領域で表面張力により球状化させ、さらに凝固させた金属球を回収容器10で回収する。尚、製造中には、排気装置9によりチャンバ8内の排気を行う。
 本発明では、高強度で耐食性に優れる窒素を含有した金属球を得るために、プラズマ発生空間の窒素濃度を2体積%以上にする必要がある。これは、プラズマ発生空間の窒素濃度が2体積%未満であると、得られる金属球への窒素添加を実現することが困難となるためである。
 ここで、プラズマ発生空間とは、プラズマ炎およびプラズマ炎を取り巻く空間のことであり、プラズマ発生空間の窒素濃度を2体積%以上にするには、チャンバ内に供するガス、すなわちプラズマ動作ガス、反応ガス、およびキャリアガスの総供給量に占める窒素の割合が2体積%以上となるように調整することにより可能となる。
 一具体例として、プラズマ動作ガスが窒素50体積%以上含むことができる。プラズマ動作ガスが窒素50体積%以上の場合、通常の反応ガス、およびキャリアガスであれば、プラズマ発生空間窒素濃度を2体積%以上にでき、金属球に窒素を導入することが可能になる。
 また本発明の金属球の製造方法では、プラズマ動作ガスに窒素を2体積%以上含むことが好ましい。尚、プラズマ動作ガスに窒素は必須ではなく、窒素以外のプラズマ動作ガスとしては、不活性ガスである、He、Ne、Ar、Kr、Xe、Rnの希ガスに加え、Hなどのガスが適用できる。これらのガスをプラズマ動作ガスに適用することで、処理中のプラズマ炎6の安定化を図ることができる。また、プラズマ動作ガスにHを適用すると、プラズマ炎6の温度をより高めることができ、原料片に含まれる不純物の蒸発を促進しやすく、より高い球状化効果が期待できる。反応ガスにおいても窒素以外のガスとしては、不活性ガスである、He、Ne、Ar、Kr、Xe、Rnの希ガスに加え、Hなどのガスが適用できる。
 本発明は、原料片として、所定の間隔で切断した鋼線を用いることができる。本発明でいう鋼線には、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼などのステンレス鋼またはその他材料が適用できる。ベアリング等の転動体用の用途には、耐食性および炭化物形成による耐摩耗性を得るため鋼線にCrを11~20質量%含ませることが好ましい。本発明で用いる原料片としての鋼線は、もちろん予め窒素を含有した鋼線を用いても、高強度で耐食性に優れる金属球を得ることが可能である。しかしながら、本発明では、窒素を含有しない安価な合金組成の鋼線を原料片としても、プラズマ発生空間の窒素濃度を2体積%以上含有させることで、プラズマ炎に投入されて液滴状態となった原料への窒素添加を行うことができ、高強度で耐食性に優れる金属球を得ることができる。鋼線を所定の間隔で切断して原料片とすることにより、原料片の個々の体積が一定となり、直径が一定した金属球を得ることができる。
 尚、実際の生産では、原料片を纏めてかつ連続的に導入し、原料片のそれぞれを球状化、凝固させることが好ましい。
 本発明で原料片をプラズマ炎中に投入して溶融した液滴は、落下中に表面張力により球状化し、凝固させることにより高い真球度の金属球を得ることができる。
 また、液滴の球状化処理中の雰囲気は、プラズマ動作ガスと同じでもよいが、不活性ガスである、He、Ne、Ar、Kr、Xe、Rnの希ガスを用いることで、酸化防止に有効である。
 また、球状化処理後の液滴を凝固させる雰囲気には、水等の液体冷媒の使用も可能である。
 本発明の金属球の製造方法では、金属球に窒素を0.1質量%以上導入させることが好ましい。これは、合金組成として窒素が強度や耐食性を向上する効果を発揮するためには、得られる金属球の窒素含有量が0.1質量%以上であることが望ましいためである。
 本発明で用いる原料片は、原料片の長さLと直径φの比が0.5≦L/φ≦2.0であることが好ましい。これは、L/φ比が0.5未満である場合には、原料片の直径φが長さLに対して大きくなり、高温プラズマ炎域での短い滞在時間では十分な溶融ができず、球状化が困難となるためである。一方、L/φ比が2.0を超える場合には、原料片の長さLが直径φに対して長くなり、上述した理由と同様に球状化が困難となる。よって、原料片の長さLと直径φの比が0.5≦L/φ≦2.0であると、高温プラズマ炎域での短い滞在時間であっても球状化がより容易になり、真球度の高い金属球が得られる。また、より高い真球度を得るためには、L/φ比は約1.0が好ましい。
 また、本発明の金属球の製造方法は、直径が0.3~2.0mmの金属球に最適である。直径が2.0mmを超える場合には、プラズマ炎で球状化する原料片は、高温プラズマ炎域での滞在時間が短いため、プラズマ炎と原料片の熱交換時間が限られ、原料片は充分な溶融ができず、安定した球状の金属球を得ることが困難である。このため、金属球の直径は2.0mm以下が好ましい。一方、粒径が小さいほどプラズマ処理による溶融球状化は容易であるが、原料片となる鋼線を得るための工数が増大するため、金属球の直径は0.3mm以上が好ましい。
 実施例では、図1に示す誘導結合型RFプラズマトーチで構成される交流熱プラズマ装置を用いて金属球を製造した。先ず、原料片として、直径φが0.5mmで、0.077質量%C-8.0質量%Ni-18.2質量%Cr、残部主としてFeからなるステンレス鋼線を、長さLが0.6mm(L/φ=1.2)となるように所定の間隔で切断した原料片を準備した。
 次いで、図1に示すように、高周波コイル3の軸線方向の一方から動作ガス供給部4よりプラズマ動作ガスとしてNガスを160L/min(nor)、Arガスを40L/min(nor)混合したガスを供給して、高周波コイル3の内側の冷却壁1で仕切られたプラズマ発生空間2にプラズマ炎5を発生させた。このとき、プラズマ出力は100kWとした。
 次いで、原料片供給ノズル7からキャリアガスとしてのArガス40L/min(nor)とともに原料片を供給速度30g/minで供給してプラズマ炎6中に投入した。このときのプラズマ炎6の発生空間の窒素濃度は、66.7体積%であった。プラズマ炎6中に投入して溶融した液滴は、内径が400mm、高さが3300mmのチャンバ8内のNおよびArの混合ガスの雰囲気中を落下し、表面張力により球状化され、回収容器10内の水により冷却し凝固させ金属球を得た。このとき、排気装置9でチャンバ8内を排気しながら処理した。
 得られた金属球の窒素含有量を不活性ガス溶解熱伝導法で分析した。その結果を表1に示す。表1に示す分析結果より、原料片に対し、得られた金属球には0.1質量%以上の窒素を導入させることができた。
 また、図2に得られた金属球の外観の走査型電子顕微鏡写真を示す。本発明の金属球の製造方法によれば、図2に示すように、金属球を得ることができることを確認できた。
Figure JPOXMLDOC01-appb-T000001
 実施例2では図1に示す誘導結合型RFプラズマトーチで構成される交流熱プラズマ装置を用いて金属球を製造した。先ず、原料片として、直径φが0.1mmで、0.026質量%C-9.98質量%Ni-18質量%Cr、残部主としてFeからなるステンレス鋼線を、長さLが0.1mm(L/φ=1.0)となるように所定の間隔で切断した原料片を準備した。その他の原料片として、直径φが0.1mmのステンレス鋼球状粉を準備した。
 次いで、図1に示すように高周波コイル3の内側の冷却壁1で仕切られたプラズマ炎6が発生する空間に、高周波コイル3の軸線方向の一方から動作ガス供給部4よりNガスおよびArガスの混合ガスを供給し、また反応ガス供給部5よりNガスまたはArガスを供給した。条件により反応ガス供給部5からのガス供給をしない実験も行った。このとき、プラズマ出力は30kWとした。
 次いで、原料片供給ノズル7からキャリアガスとしてのArガス5L/min(nor)とともに原料片を供給してプラズマ炎6中に投入した。プラズマ炎6中に投入して溶融した液滴は、内径が300mm、高さが900mmのチャンバ8内のNおよびArの混合ガスの雰囲気中を落下し、表面張力により球状化され、回収容器10で金属球を得た。このとき、排気装置9でチャンバ8内を排気しながら処理した。表2にそれぞれの実験条件を示す。これらの条件により得られた金属球の窒素含有量を不活性ガス溶解熱伝導法で分析した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示す分析結果より、プラズマ発生空間に窒素濃度2体積%以上を含むガスを使用することで、原料片に対し、得られた金属球には0.1質量%以上の窒素を導入させることができた。
 また、図3に得られた金属球の外観の走査型電子顕微鏡写真を示す。本発明の金属球の製造方法によれば、図3に示すように、金属球を得ることができることを確認できた。
 以上述べたように、本発明による高窒素を含有する金属球の製造方法の構成を一例として説明したが、この構成に限定されるものではなく、請求の範囲から離脱することなく種々の変更が可能であることは言うまでもない。
 1 冷却壁
 2 プラズマ発生空間
 3 高周波コイル
 4 動作ガス供給部
 5 反応ガス供給部
 6 プラズマ炎
 7 原料片供給ノズル
 8 チャンバ
 9 排気装置
 10 回収容器

Claims (8)

  1.  高窒素を含有する金属球の製造方法において、
     所定質量の原料片を準備するステップと、
     プラズマ動作ガスと高周波誘導コイルから発生する高周波エネルギとによりプラズマ炎を形成するとともに、プラズマ発生空間の窒素濃度を2体積%以上にするステップと、
     前記原料片を、前記プラズマ炎中に投入し、溶融させて球状化させるステップと、
     前記溶融して球状化した原料を凝固させるステップとを含み、
    前記球状化させるステップ及び前記凝固させるステップにより、窒素を前記金属球に導入することを特徴とする高窒素を含有する金属球の製造方法。
  2.  前記プラズマ動作ガスが、窒素を2体積%以上含むことを特徴とする請求項1に記載の金属球の製造方法。
  3.  前記金属球に窒素を0.1質量%以上導入させることを特徴とする請求項1または請求項2に記載の金属球の製造方法。
  4.  前記原料片を準備するステップが、鋼線を所定の間隔で切断して原料片とするステップを含むことを特徴とする請求項1から請求項3までのいずれか1項に記載の金属球の製造方法。
  5.  前記原料片の長さLと直径φの比が、0.5≦L/φ≦2.0であることを特徴とする請求項4に記載の金属球の製造方法。
  6.  前記原料片が、マルテンサイト系ステンレス鋼またはオーステナイト系ステンレス鋼であることを特徴とする請求項1から請求項5までのいずれか1項に記載の金属球の製造方法。
  7.  前記原料片が、Crを11~20質量%含むことを特徴とする請求項1から請求項6のいずれか1項に記載された金属球の製造方法。
  8.  前記金属球の直径が0.3~2.0mmの範囲である請求項1から請求項7までのいずれか1項に記載された金属球の製造方法。
PCT/JP2010/069310 2010-04-07 2010-10-29 金属球の製造方法 WO2011125250A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012509272A JP5599871B2 (ja) 2010-04-07 2010-10-29 金属球の製造方法
CN2010800659413A CN102947024A (zh) 2010-04-07 2010-10-29 金属球的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-088558 2010-04-07
JP2010088558 2010-04-07

Publications (1)

Publication Number Publication Date
WO2011125250A1 true WO2011125250A1 (ja) 2011-10-13

Family

ID=44762225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069310 WO2011125250A1 (ja) 2010-04-07 2010-10-29 金属球の製造方法

Country Status (3)

Country Link
JP (1) JP5599871B2 (ja)
CN (1) CN102947024A (ja)
WO (1) WO2011125250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215257A1 (de) 2013-08-02 2015-02-05 Wacker Chemie Ag Verfahren zum Zerkleinern von Silicium und Verwendung des zerkleinerten Siliciums in einer Lithium-Ionen-Batterie

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521711B (zh) * 2013-09-27 2016-02-24 扬州市江都区飞跃泵业有限公司 一种金属球成型模具及其制造方法
CN103736435B (zh) * 2013-12-27 2015-11-18 中国神华能源股份有限公司 一种利用交流等离子体球化粉体的设备及系统
CN108421984A (zh) * 2018-03-16 2018-08-21 广东正德材料表面科技有限公司 一种用于增材制造的不锈钢粉末及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442326B2 (ja) * 1973-09-01 1979-12-13
JPH11246928A (ja) * 1998-03-05 1999-09-14 Sanyo Special Steel Co Ltd 高靱性高強度ステンレス鋼の製造方法
JP2003342619A (ja) * 2002-05-30 2003-12-03 Minebea Co Ltd 金属球の製造方法
JP2004232084A (ja) * 2003-01-09 2004-08-19 Hitachi Metals Ltd 微小金属球の製造方法
JP2006249549A (ja) * 2005-03-14 2006-09-21 Hitachi Metals Ltd 微小金属球の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540351B2 (ja) * 2004-01-15 2010-09-08 Ntn株式会社 鋼の熱処理方法および軸受部品の製造方法
US20060075850A1 (en) * 2004-10-07 2006-04-13 Lockheed Martin Corporation Nitrogen-modified titanium and method of producing same
CN2782261Y (zh) * 2005-01-07 2006-05-24 肯麦特精密科技股份有限公司 金属球制造装置
CN1327006C (zh) * 2005-10-27 2007-07-18 上海交通大学 用附加阴极辉光放电冶炼高氮钢的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442326B2 (ja) * 1973-09-01 1979-12-13
JPH11246928A (ja) * 1998-03-05 1999-09-14 Sanyo Special Steel Co Ltd 高靱性高強度ステンレス鋼の製造方法
JP2003342619A (ja) * 2002-05-30 2003-12-03 Minebea Co Ltd 金属球の製造方法
JP2004232084A (ja) * 2003-01-09 2004-08-19 Hitachi Metals Ltd 微小金属球の製造方法
JP2006249549A (ja) * 2005-03-14 2006-09-21 Hitachi Metals Ltd 微小金属球の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215257A1 (de) 2013-08-02 2015-02-05 Wacker Chemie Ag Verfahren zum Zerkleinern von Silicium und Verwendung des zerkleinerten Siliciums in einer Lithium-Ionen-Batterie
US10637050B2 (en) 2013-08-02 2020-04-28 Wacker Chemie Ag Method for size-reduction of silicon and use of the size-reduced silicon in a lithium-ion battery

Also Published As

Publication number Publication date
CN102947024A (zh) 2013-02-27
JPWO2011125250A1 (ja) 2013-07-08
JP5599871B2 (ja) 2014-10-01

Similar Documents

Publication Publication Date Title
KR102393229B1 (ko) 텅스텐 모노카바이드(wc) 구형 분말의 제조
JP4235813B2 (ja) 金属多孔質体の製造方法
JP5599871B2 (ja) 金属球の製造方法
WO2015151420A1 (ja) アトマイズ金属粉末の製造方法
US20130098510A1 (en) Metal composites and methods for forming same
CN108705096B (zh) 一种细粒径球形18Ni300粉末的制备方法
US9142350B2 (en) Synthesis of ordered L10-type FeNi nanoparticles
CN108034844B (zh) 一种高熔点等组元高熵合金的半固态成形方法
CN104259469A (zh) 微米和纳米金属球形粉末的制造方法
CN101767203B (zh) 一种微细球形储氢合金粉末的制备方法
CN117177827A (zh) 球化铜或其它金属粉末的微波等离子体加工
JP2009287106A (ja) チタン球状粉末の製造方法およびチタン球状粉末
US9194027B2 (en) Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
KR20240027010A (ko) 탄탈럼-텅스텐 합금 분말 및 그의 제조방법
Ciftci et al. Atomization and characterization of a glass forming alloy {(Fe0. 6Co0. 4) 0.75 B0. 2Si0. 05} 96Nb4
CN111112634A (zh) 一种制备金属粉末的装置及方法
JP2013204075A (ja) 細還元鉄粉の製造方法
CN102896320A (zh) 粉末冶金的温压工艺
Li et al. Estimation of the glass forming ability of the Fe-based bulk metallic glass Fe 68.8 C 7.0 Si 3.5 B 5.0 P 9.6 Cr 2.1 Mo 2.0 Al 2.0 that contains non-metallic inclusions
CN113020605B (zh) 一种面向激光3d打印专用原位增韧高性能球形钨粉及其制备方法
JP2008038209A (ja) 機能部材の製造方法
CN113894176A (zh) 一种异构高氮钢丝材的制备方法
Zhao et al. Characterization of 17-4PH stainless steel powders produced by supersonic gas atomization
Tong et al. Compact process for the preparation of microfine spherical high-niobium-containing TiAl alloy powders
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065941.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509272

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849490

Country of ref document: EP

Kind code of ref document: A1