WO2011124023A1 - 转换装置和方法 - Google Patents

转换装置和方法 Download PDF

Info

Publication number
WO2011124023A1
WO2011124023A1 PCT/CN2010/071593 CN2010071593W WO2011124023A1 WO 2011124023 A1 WO2011124023 A1 WO 2011124023A1 CN 2010071593 W CN2010071593 W CN 2010071593W WO 2011124023 A1 WO2011124023 A1 WO 2011124023A1
Authority
WO
WIPO (PCT)
Prior art keywords
long
spatial correlation
matrix
term
correlation matrix
Prior art date
Application number
PCT/CN2010/071593
Other languages
English (en)
French (fr)
Inventor
宋扬
陈晋辉
杨红卫
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to BR112012025247A priority Critical patent/BR112012025247A2/pt
Priority to EP10849260.4A priority patent/EP2557720B1/en
Priority to KR1020127027457A priority patent/KR101426722B1/ko
Priority to US13/639,580 priority patent/US8989292B2/en
Priority to PCT/CN2010/071593 priority patent/WO2011124023A1/zh
Priority to JP2013502980A priority patent/JP5507001B2/ja
Priority to CN201080062403.9A priority patent/CN102725992B/zh
Publication of WO2011124023A1 publication Critical patent/WO2011124023A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • H04L2025/03808Transmission of equaliser coefficients

Definitions

  • the present invention generally relates to a multiple input multiple output/multiple input single outgoing wireless communication system, and more particularly to conversion of long-term wideband channel characteristic feedback in a multiple input multiple output/multiple input single outgoing wireless communication system.
  • the decision on feedback determines that the precoder for a subband is composed of two matrices, one of which is a matrix for broadband and/or long-term channel characteristics, One is a matrix for frequency selective and/or short-term channel characteristics.
  • the codebook may or may not change over time and/or different subbands.
  • one of the long-term broadband beamforming matrix or the long-term broadband transmission spatial correlation matrix is used as the long-term broadband channel characteristic feedback, and the mobile station feeds back to the base station according to the downlink state.
  • long-term broadband beamforming matrices and long-term broadband transmission spatial correlation matrices have been extensively discussed in the LTE-Advanced standardization process.
  • the long-term broadband beamforming matrix is used to form a beam pattern for a receiver in a single-user multiple-input multiple-output/multi-input single-out wireless communication system or a multi-user multiple-input multiple-output/multi-input single-out wireless communication system. ), a precoding matrix.
  • the long-term wideband transmission spatial correlation matrix can be directly used to generate a precoding matrix, for example, a signal leakage ratio algorithm (SLNR) used in a multi-user multiple input multiple-output wireless communication system, or used to generate a transform capable of reducing quantization error. Codebook, and so on.
  • SLNR signal leakage ratio algorithm
  • CSI channel state information
  • the transmission spatial related information is, for example, a long-term broadband transmission spatial correlation matrix as described above, which can be measured by the UE and fed back to the eNodeB.
  • a long-term broadband transmission spatial correlation matrix as described above, which can be measured by the UE and fed back to the eNodeB.
  • the UEs in some systems may only feed back the long-term broadband beamforming matrix to the eNodeB as long-term broadband information. Therefore, in this case, the eNodeB cannot obtain a long-term broadband transmission spatial correlation matrix from the UE through feedback.
  • the UE feeds back an index corresponding to the long-term broadband beamforming matrix or the long-term broadband transmission spatial correlation matrix selected from the codebook.
  • long-term information can be specified in related standards (for example, LTE-Advanced), or only one form of long-term may be allowed in a specific application.
  • broadband information ie long-term broadband beamforming matrices or long-term broadband spatial correlation matrices.
  • the present invention provides an embodiment for converting feedback of two forms of long-term and/or wideband channel characteristics in a multiple-input multiple-output/multi-output single-outlet wireless communication system, from one
  • the form derives another form, which also transforms the feedback long-time broadband beamforming matrix into a long-term broadband transmission spatial correlation matrix or transforms the feedback long-time broadband transmission spatial correlation matrix into a long-time broadband beamforming matrix, thereby adapting The requirements for a specific multi-input/multiple-out/out-out wireless communication system.
  • a conversion apparatus for converting a long-term wideband channel characteristic of feedback.
  • the conversion apparatus includes: a first conversion unit configured to construct a long-term wideband beamforming matrix U fed back from the receiver as an estimated R estimate of the long-term wideband transmission spatial correlation matrix R, where R is estimated to be u u U , where H represents the conjugate of the matrix Transpose; and/or a second conversion unit that obtains a long-term wideband beamforming matrix or precoding matrix by transmitting a spatial correlation matrix R from a long-term wideband fed back from the receiver.
  • a conversion method for converting a long-term wideband channel characteristic of feedback includes: a first converting step of constructing a long-term wideband beamforming matrix 11 fed back from the receiver as an estimated R estimate of the long-term broadband transmission spatial correlation matrix R, wherein R estimates - ⁇ , where ⁇ Representing the conjugate transposition of the matrix; and/or the second conversion step, directly obtaining the long-term wideband beamforming matrix or precoding matrix by transmitting the spatial correlation matrix from the long-term wideband fed back from the receiver.
  • a base station device comprising a conversion device according to the present invention.
  • FIG. 1 illustrates a multiple input multiple output/multiple outgoing single wireless communication system that can be implemented in accordance with an embodiment of the present invention
  • Fig. 2 shows a schematic block diagram of a conversion device according to an embodiment of the present invention
  • Fig. 3 shows a schematic flow chart of a conversion method according to an embodiment of the present invention.
  • FIG. 1 shows a multiple input multiple output/multiple outgoing single wireless communication system that can be implemented in accordance with an embodiment of the present invention.
  • FIG. 1 an application scenario according to an embodiment of the present invention is described by taking a downlink of a base station to a user equipment in a multiple input and multiple radio communication system as an example.
  • base station 101 has a plurality of transmit antennas for transmitting signals to a particular user equipment 102 in a spatial diversity manner in the downlink direction.
  • User equipment 102 has a single or multiple receive antennas.
  • the user equipment 102 measures the downlink signal to feed back to the base station 101 for frequency selective and/or short time messages.
  • the present invention relates to the transformation of information on the broadband and/or long-term channel characteristics of the feedback.
  • feedback of two forms of long-term and/or wide-band channel characteristics in a multiple-input multiple-output/multi-out-out wireless communication system may derive another form from one form, that is,
  • the feedback long-time broadband beamforming matrix transforms into a long-term broadband transmission spatial correlation matrix or transforms the feedback long-term broadband transmission spatial correlation matrix into a long-time broadband beamforming matrix, thereby adapting to a specific multi-input/multiple-out/multi-outlet Requirements for wireless communication systems.
  • the base station or user equipment can construct a normalized using the long-term broadband beamforming matrix by using the conversion apparatus according to an embodiment of the present invention.
  • Long-term broadband transmission spatial correlation matrix estimation This is because the main eigenvector carries most of the information of the correlation matrix in the correlation matrix, and the long-term wideband beamforming matrix fed back by the specific UE can reflect the transmission spatial correlation matrix indicating the correlation of the base station antenna for the specific UE.
  • the main feature vector Further accuracy of the constructed long-term wideband transmission spatial correlation matrix can be further improved by utilizing additional information of feedback in accordance with further embodiments of the present invention.
  • the base station or user equipment can use the long-term broadband transmission spatial correlation matrix to obtain long-term using the conversion apparatus according to an embodiment of the present invention.
  • Broadband beamforming matrix When the long-term wideband and/or wideband channel characteristics are characterized by the transmitted long-term broadband transmission spatial correlation matrix, the base station or user equipment can use the long-term broadband transmission spatial correlation matrix to obtain long-term using the conversion apparatus according to an embodiment of the present invention. Broadband beamforming matrix.
  • Fig. 2 shows a schematic block diagram of a conversion device according to an embodiment of the present invention.
  • the conversion device 200 includes a first conversion unit 201 for constructing a long-term broadband beamforming matrix of the feedback to construct an estimate of the long-term broadband transmission spatial correlation matrix.
  • the first converting unit 201 estimates the long-term broadband transmission spatial correlation matrix in response to receiving the long-term wideband beamforming matrix u characterizing the feedback of the long-term and/or wide-band channel characteristics.
  • Count In spatially correlated channels, for long-term broadband beamforming matrices, the commonly used codebook is a DFT-based codebook.
  • the long-term wideband beamforming matrix 11 can reflect the information of the main feature vector of the long-term broadband transmission spatial matrix measured by the UE.
  • the long-term broadband beamforming matrix U l may be determined based on a principal eigenvector of the long-term wideband transmission spatial correlation matrix measured by the UE.
  • the normalized long-term broadband transmission spatial correlation matrix R can be expressed as:
  • the long-term wideband transmission spatial correlation matrix R is estimated in the first conversion unit 201 as:
  • the first converting unit 201 can further improve the accuracy of the constructed long-term broadband spatial correlation matrix by using the additional information of the feedback.
  • the non-diagonal scale factor of the spatial correlation matrix of the base station for a specific user equipment, a N may be fed back to the base station from the user equipment of the mobile station as additional information, so as to be corrected by the first conversion unit 201.
  • the estimate of the spatial correlation matrix of the wideband transmission can be expressed as Wherein the symbol * indicates a conjugate of a complex number.
  • the ratio of the feature values ⁇ and ⁇ (where i > 2) and the corresponding feature vector may be fed back to the base station from the user equipment, eg, the mobile station, as additional information to correct the estimated by the first conversion unit 201.
  • Long-term broadband transmission spatial correlation matrix R estimation For example, feedback from the mobile station to the base station, c 2+ ⁇ and the corresponding feature vector u 2 , ... , u 2+ . (where 0 ⁇ j ⁇ N - 2 ) as additional information,
  • Equation 1 the normalized long-term broadband transmission spatial correlation matrix R can be expanded to:
  • the first conversion unit if the preferred long-term broadband beamforming matrix is selected from the codebook by other criteria such as acquiring the maximum capacity of the system, the first conversion unit
  • Equation 2 Equation 2
  • the corrected R fe is able to help form the transformed codebook derived from the base codebook to better accommodate the characteristics of the user channel, and further Improve system performance especially for multi-user, multiple-input, multiple-out/multi-out-out systems. Therefore, the estimated long-term wideband transmission spatial correlation matrix (or preferably the corrected long-term wideband transmission spatial correlation matrix) and the basic codebook output by the first conversion means 201 can form a transformed codebook, using the codebook of the read conversion The precoding matrix and the effective channel matrix can be quantized to obtain a better quantization error.
  • the converting apparatus 200 further includes a second converting unit 202 for directly obtaining a long-term wideband beamforming matrix or a precoding matrix by using the feedback long-term wideband transmission spatial correlation matrix.
  • the second converting unit 202 can directly generate a precoding matrix, that is, a long-time broadband beamforming matrix, by using a long-term broadband transmission spatial correlation matrix by using some algorithms.
  • Such an algorithm may be, for example, a Signal Leakage Ratio Algorithm (SLNR) or the like.
  • the second converting unit 202 determines a long-term broadband beamforming matrix as follows:
  • the long-time broadband beamforming matrix is composed of a plurality of eigenvectors of the spatial correlation matrix,
  • the plurality of feature vectors are selected according to the feature values of the feature vector descending from large to small, and the number of selected feature vectors depends on the number of streams sent to the same user.
  • the downlink scenario of the base station to the user equipment is used as an example.
  • the switching device 200 can also serve an uplink scenario from the user equipment to the base station. That is to say, the conversion device 200 can serve and/or integrate into multiple input/multiple output/multiple output single output. Any transmitter in the line communication system that needs to utilize long-term broadband channel information fed back from the receiver side, including base stations, user equipment, and relay equipment.
  • FIG. 2 includes the first conversion unit 201 and the second conversion unit 202, those skilled in the art may understand that the conversion device 200 may only have the first conversion unit in a specific application scenario. 201 or one of the second conversion units 202.
  • FIG. 3 shows a schematic flow chart of a conversion method according to an embodiment of the present invention. As shown in Fig. 3, in step S300, the processing flow starts.
  • step S301 feedback of long-term and/or wideband channel characteristics is received.
  • step S302 it is judged whether or not the long-term and/or wide-band channel characteristics of the feedback need to be converted.
  • the transmitter can utilize two different forms of long-term broadband information, a long-term broadband beamforming matrix and a long-term broadband transmission spatial correlation matrix. If the long-term broadband channel characteristics of the feedback are not the long-term broadband information that the transmitter is expected to utilize, then the received feedback needs to be converted. If the result of the determination is "YES", the process proceeds to step S303 or S305; if the result of the determination is "NO", the process flow ends at step S306.
  • steps S303-S304 the received long-term wideband beamforming matrix is converted to generate a desired long-term wideband transmission spatial correlation matrix R.
  • step S303 the long-term wideband transmission spatial correlation matrix is estimated according to Equation 2) described above, that is, R is estimated to be where H represents the conjugate transpose of the matrix.
  • the R estimate is further corrected using the additional information of the feedback (for the sake of brevity, the step of receiving the additional information of the feedback is not shown in FIG. 3).
  • the additional information is, for example, the off-diagonal scale factor of the spatial correlation matrix of the transmitter for a particular receiver, and the corrected long-term wideband transmission spatial correlation matrix is as described above for Equation 3).
  • the receiver direction transmitter side feedback long-term wideband transmission spatial correlation matrix in descending order of eigenvalues d, d N d 2 /d h ... , d 2+j ld , and corresponding eigenvectors u 2 , .. .
  • the corrected long-term broadband transmission spatial correlation matrix is as shown in the following equation 4).
  • j 0
  • the corrected long-term broadband transmission spatial correlation moment The array is as described above for 5).
  • step S305 the received long-term wideband transmission spatial correlation matrix R is converted to directly generate a desired long-term wideband beamforming matrix or precoding matrix.
  • some algorithms can generate a precoding matrix directly by using a long-term broadband transmission spatial correlation matrix, that is, a long-time broadband beamforming matrix, so as to be used for multiple users. Incoming/outgoing out the precoding process of the wireless communication system.
  • a long-term broadband transmission spatial correlation matrix that is, a long-time broadband beamforming matrix
  • Such an algorithm may for example be a Signal Leakage Ratio Algorithm (SLNR) Temple.
  • SLNR Signal Leakage Ratio Algorithm
  • a long-term broadband beamforming matrix For a single-user multiple-input multiple-output/multi-out-out wireless communication system, for example, a long-term broadband beamforming matrix can be determined as follows: The long-time broadband beamforming matrix is composed of a plurality of feature vectors of a spatial correlation matrix, the plurality of features The vector is selected according to the eigenvalues of the feature vector descending from largest to smallest, and the number of selected feature vectors depends on the number of streams sent to the same user.
  • step S306 the method flow ends.
  • the conversion device and the conversion method have been described above in accordance with an embodiment of the present invention.
  • the processing steps performed by the conversion device and the conversion device according to the present invention may be implemented as separate functional modules, or may be combined into one or a few functional modules.
  • the functional modules can be implemented in a fully hardware implementation, in a fully software-implemented form, or in both hardware and software units.
  • the processes described in the detailed description may be stored in a readable storage medium of a computing device, and may be any device or medium capable of storing code and/or data for use by a computer system. This includes, but is not limited to, application specific integrated circuit (ASIC) field programmable gate arrays (FPGAs), semiconductor memories, and the like.
  • ASIC application specific integrated circuit
  • FPGAs field programmable gate arrays
  • each of the foregoing processing devices may be implemented by using a device that drives a general-purpose computer, and other processors such as a microcontroller, a field programmable gate array (FPGA) application specific integrated circuit (ASIC), or a combination thereof may be used.
  • Equipment implementation such as a microcontroller, a field programmable gate array (FPGA) application specific integrated circuit (ASIC), or a combination thereof may be used.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Complex Calculations (AREA)

Description

转换装置和方法 技术领域
本发明总体上涉及多入多出 /多入单出无线通信系统, 更具体地 涉及在多入多出 /多入单出无线通信系统中对长时 (long-term ) 宽带 信道特性反馈的转换方法和装置。 背景技术
在 3GPP RAN 删会议中达成一致的下一步有关反馈的决定确 定了对于一个子带的预编码器是由两个矩阵构成的, 其中之一是针 对宽带和 /或长时信道特性的矩阵, 另一个是针对频率选择性和 /或短 时信道特性的矩阵。 码本可以随着时间和 /或不同的子带变化, 也可 以不发生变化。
通常, 在系统中, 将长时宽带波束成形矩阵或者长时宽带发送空 间相关矩阵之一作为长时宽带信道特性反馈, 由移动台根据下行链 路状态向基站进行反馈。
作为发射机可以利用的长时宽带信息的两种不同形式,长时宽带 波束成形矩阵和长时宽带发送空间相关矩阵已经在 LTE- Advanced 的标准化进程中进行了广泛的讨论。 其中长时宽带波束成形矩阵在 单用户多入多出 /多入单出无线通信系统或多用户多入多出 /多入单 出无线通信系统中用于针对接收机来形成波束形状( beam pattern ) , 一种预编码矩阵。 长时宽带发送空间相关矩阵能够被直接用来生成 预编码矩阵, 例如, 在多用户多入多出无线通信系统中使用的信号 泄漏比算法 (SLNR ) , 或者用于生成能够降低量化误差的变换的码 本, 等等。
实际上, 由于提高信道状态信息 (CSI ) 的准确度不仅使得单用 户多入多出 /多入单出无线系统获益, 而且使得多用户多入多出 /多入 单出无线通信系统获益更为明显, 因此通常认为应该尽量降低量化 误差。 当前的研究表明, 发送空间相关性能够帮助形成一种从基础 码本中导出的变换的码本, 以更好地适应用户信道的特性, 并且进 一步提高特别是针对多用户多入多出 /多入单出系统的系统性能。 因 此, 对于下行链路而言, 需要诸如 eNodeB的基站方能够知晓针对各 个用户设备 (UE ) 的发送空间相关信息。 发送空间相关信息例如是 如上所述的长时宽带发送空间相关矩阵, 可以由 UE 测量并反馈到 eNodeB。 但是, 并不是所有系统都向 eNodeB反馈长时宽带发送空 间相关矩阵, 正如上文中已经指出的, 有些系统中的 UE 可能仅向 eNodeB反馈长时宽带波束成形矩阵, 作为长时宽带信息。 因此, 在 这种情况下, eNodeB无法通过反馈从 UE获得长时宽带发送空间相 关矩阵。 通常, UE反馈的是从码本中选择的长时宽带波束成形矩阵 或者长时宽带发送空间相关矩阵所对应的索引。
此外, 本领域技术人员可以理解, 在有关标准中 (例如, LTE-Advanced中) 只能规定一种形式的长时信息, 或者在某一特定 应用场合下可能仅允许使用一种形式的长时和 /或宽带信息, 即长时 宽带波束成形矩阵或者长时宽带空间相关矩阵。
需要一种方法能够根据需要将一种形式的长时和 /或宽带信息转 换为另一种形式的长时和 /或宽带信息。 发明内容
为了解决现有技术中存在的问题,本发明提供的实施方式在多入 多出 /多出单出无线通信系统中对两种形式的长时和 /或宽带信道特 性的反馈进行转换, 从一种形式导出另一种形式, 也即将反馈的长 时宽带波束成形矩阵变换为长时宽带发送空间相关矩阵或者将反馈 的长时宽带发送空间相关矩阵变换为长时宽带波束成形矩阵, 由此 适应特定多入多出 /多出单出无线通信系统的要求。
根据本发明的一个方面, 提供一种转换装置, 用于对反馈的长时 宽带信道特征进行转换。 该转换装置包括: 第一转换单元, 用于将 从接收机反馈的长时宽带波束成形矩阵 U ,构建为长时宽带发送空间 相关矩阵 R的估计 R估计, 其中 R估计 = ul U , 其中 H表示矩阵的共轭 转置; 和 /或第二转换单元, 利用从接收机反馈的长时宽带发送空间 相关矩阵 R获得长时宽带波束成形矩阵或预编码矩阵。
根据本发明的第二方面, 提供一种转换方法, 用于对反馈的长时 宽带信道特征进行转换。 该转换方法包括: 第一转换步骤, 将从接 收机反馈的长时宽带波束成形矩阵 11 ,构建为长时宽带发送空间相关 矩阵 R的估计 R估计, 其中 R估计 - ι^ι^ ,其中 Η表示矩阵的共辄转置; 和 /或第二转换步骤, 利用从接收机反馈的长时宽带发送空间相关矩 阵直接获得长时宽带波束成形矩阵或预编码矩阵。
根据本发明的其它方 ¾,还提供包括根据本发明的转换装置的基 站设备、 用户设备和中继设备。
根据本发明的又一方面, 还提供一种相应的计算机程序产品。 结合附图阅读本发明实施方式的详细描述后, 本发明的其它特 点和优点将变得更加清楚。 附图说明
图 1 示出根据本发明的实施方式能够实施于其中的多入多出 /多 出单出无线通信系统;
图 2示出根据本发明一个实施方式的转换装置的示意性框图; 图 3示出根据本发明一个实施方式的转换方法的示意性流程图。 具体实施方式
图 1 示出根据本发明的实施方式能够实施于其中的多入多出 /多 出单出无线通信系统。
在图 1 中,以多入多出无线通信系统中基站到用户设备的下行链 路作为示例描述了根据本发明的实施方式的应用场景。
如图 1所示, 基站 101具有多个发射天线, 用于在下行链路方向 向特定用户设备 102以空间分集方式发送信号。
用户设备 102具有单个或者多个接收天线。用户设备 102对下行 链路信号进行测量, 以向基站 101反馈针对频率选择性和 /或短时信 道特性, 以及针对宽带和 /或长时信道特性的信息。 在本发明涉及对 反馈的宽带和 /或长时信道特性的信息的变换。
根据本发明的实施方式, 在多入多出 /多出单出无线通信系统中 对两种形式的长时和 /或宽带信道特性的反馈, 可以从一种形式导出 另一种形式, 也即将反馈的长时宽带波束成形矩阵变换为长时宽带 发送空间相关矩阵或者将反馈的长时宽带发送空间相关矩阵变换为 长时宽带波束成形矩阵, 由此适应特定多入多出 /多出单出无线通信 系统的要求。
当由反馈的长时宽带波束成形矩阵表征长时和 /或宽带信道特性 时, 利用根据本发明的一个实施方式的转换装置, 基站或者用户设 备能够利用长时宽带波束成形矩阵构建归一化的长时宽带发送空间 相关矩阵的估计。 这是因为在相关矩阵中主特征向量携带了该相关 矩阵的绝大部分信息,而特定 UE反馈的长时宽带波束成形矩阵能够 反映表明针对谅特定 UE 的基站天线的相关性的发送空间相关矩阵 的主特征向量。 根据本发明进一步的实施方式的还可以通过利用反 馈的附加信息进一步提高该构建的长时宽带发送空间相关矩阵的准 确性。
当由反馈的长时宽带发送空间相关矩阵表征长时和 /或宽带信道 特征时, 利用根据本发明的一个实施方式的转换装置, 基站或者用 户设备能够利用长时宽带发送空间相关矩阵获得长时宽带波束成形 矩阵。
以下参照图 2和图 3具体对根据本发明的实施方式的转换装置的 工作过程和原理以及根据本发明的实施方式的转换方法的流程进行 说明。
图 2示出根据本发明一个实施方式的转换装置的示意性框图。 如图 2所示, 转换装置 200包括第一转换单元 201 , 用于将反馈 的长时宽带波束成形矩阵构建长时宽带发送空间相关矩阵的估计。 第一转换单元 201响应于接收到表征长时和 /或宽带信道特征的反馈 的长时宽带波束成形矩阵 u 对长时宽带发送空间相关矩阵进行估 计。 在空间相关信道中, 对于长时宽带波束成形矩阵来说, 常用的 码本是基于 DFT的码本。 通常, 长时宽带波束成形矩阵 11 ,能够反映 UE测得的长时宽带发送空间矩阵的主特征向量的信息。 特别地, 长 时宽带波束成形矩阵 U l可以是基于 UE测得的长时宽带发送空间相 关矩阵的主特征向量确定的。
使得 表示针对一个特定 UE 的按照降序排列的长时宽带 发送空间相关矩阵的特征值, 其中 N是发送空间相关矩阵的秩, 在 满秩的情况下, N就是基站的发射天线个数; Ul, ..., 是与 ^对 应的特征向量, 则归一化的长时宽带发送空间相关矩阵 R可以以下 式表示:
R = normalize
Figure imgf000007_0001
由于主特征向量 u,携带了谅相关矩阵 R的绝大部分信息, 因此 在第一转换单元 201 中将长时宽带发送空间相关矩阵 R估计为:
估计二11^? 2 ) 进一步地,第一转换单元 201可以利用反馈的附加信息进一步提 高该构建的长时宽带空间相关矩阵的准确性。
作为一个示例,基站对于特定用户设备的空间相关矩阵的非对角 线比例因子 , aN一、可以作为附加信息,从例如移动台的用户设备反 馈给基站, 以便由第一转换单元 201 校正所估计的长时宽带发送
\,N
Ί2 22
间相关矩阵 R 估计。若1^估计 ,则经过校正的长时
,;V
宽带发送空间相关矩阵的估计可以表述为
Figure imgf000008_0001
其中, 符号 *表示某一复数的共轭。
本领域技术人员可以理解, 这种校正能够有效地修正估计的 R 中各元素的模值, 使之更加逼近真实的长时宽带发送空间相关矩阵。 特别是在高空间相关性的信道中非对角线比例因子能够呈现这样的 特性^ ) = " 。 因此, 在高空间相关性的信道中该对谅附加信息的反 馈并未显著增加系统的反馈负担。
作为又一示例, 特征值 ^ 与 ^ 的比值 (其中 i>2 ) 以及 对应 的特征向量 可以作为附加信息, 从例如移动台的用户设备反馈给 基站, 以便由第一转换单元 201 校正所估计的长时宽带发送空间相 关矩阵 R估计。 例如, 可以从移动台向基站反馈 … ,c 2+ ^以及 对应的特征向量 u2, ... ,u2+. (其中 0≤j≤N -2 ) 作为附加信息, 对
R估计进行校正。 这是因为根据式 1 ) , 归一化的长时宽带发送空间相 关矩阵 R可以展开为:
R =
因此
Figure imgf000008_0002
由于特征值越大, 其对应的特征向量携带相关矩阵 R 的信息量 越高。 因此, 考虑到系统反馈效率和校正 R 估计的折中, 在一种优选 方案中, 第一转换单元 201仅需要 和 112对1 估计进行校正,也即 上述式 4)中 j=0的情况:
( d
R校 = normalize u,u +— u2u^ )
V J 需要说明的是, 如果优选长时宽带波束成型矩阵 ^是通过诸如 获取系统最大容量等的其它准则从码本中选择的, 则第一转换单元
201也可以利用上述式 2 ) 计算 R 估计, 也即:
R估计 = Ulll「
利用估计的长时宽带发送空间相关矩阵 R i+ , 特别地优选为经 过校正的 R fe正能够帮助形成从基础码本中导出的变换的码本, 以更 好地适应用户信道的特性, 并且进一步提高特别是针对多用户多入 多出 /多出单出系统的系统性能。 因此, 由第一转换装置 201输出的 估计的长时宽带发送空间相关矩阵 (或者优选地校正的长时宽带发 送空间相关矩阵) 和基本码本可以形成变换的码本, 利用读变换的 码本能够量化预编码矩阵和有效信道矩阵, 获得更优的量化误差。
优选地, 如图 2所示, 转换装置 200还包括第二转换单元 202, 用于利用反馈的长时宽带发送空间相关矩阵直接获得长时宽带波束 成形矩阵或预编码矩阵。
对于多用户多入多出 /多出单出无线通信系统,第二转换单元 202 通过使用一些算法可以利用长时宽带发送空间相关矩阵直接生成预 编码矩阵, 也即长时宽带波束成形矩阵, 以便用于多用户多入多出 / 多出单出无线通信系统的预编码过程。 这样的算法例如可以是信号 泄漏比算法 ( SLNR ) 等。
对于单用户多入多出 /多出单出无线通信系统,第二转换单元 202 按照如下方式确定长时宽带波束成形矩阵: 长时宽带波束成形矩阵 由空间相关矩阵的多个特征向量构成, 该多个特征向量是按照特征 向量的特征值从大到小降序选择的, 所选特征向量的个数取决于向 同一个用户发送的流的个数。
需要说明的是, 虽然在参照图 2所示的实施方式中, 利用基站到 用户设备的下行链路场景作为示例进行了说明。 但是应 i亥理解的是, 转换装置 200也可以服务于从用户设备到基站的上行链路场景。 也 就是说, 转换装置 200可以服务于和 /或集成于多入多出 /多出单出无 线通信系统中任何需要利用从接收机侧反馈的长时宽带信道信息的 发射机方, 包括基站、 用户设备和中继设备。
此外,虽然参照图 2所示的实施方式包括第一转换单元 201和第 二转换单元 202 , 但是本领域技术人员可以理解, 在特定的应用场景 中, 转换装置 200也可以仅具有第一转换单元 201 或第二转换单元 202之一。
图 3示出根据本发明一个实施方式的转换方法的示意性流程图。 如图 3所示, 在步骤 S300中, 该处理流程开始。
在步骤 S301 中, 接收到长时和 /或宽带信道特性的反馈。
在步骤 S302中,判断是否需要对该反馈的长时和 /或宽带信道特 性进行转换。 发射机可以利用的长时宽带信息的两种不同形式, 长 时宽带波束成形矩阵和长时宽带发送空间相关矩阵。 如果反馈的长 时宽带信道特性并非发射机所期望利用的长时宽带信息, 则需要对 接收的反馈进行转换。如果判断结果为 "是", 则继续执行步骤 S303 或者 S305; 如果判断结果为 "否" , 则该处理流程在步骤 S306 结 束。
在步骤 S303- S304中,对接收到的反馈的长时宽带波束成形矩阵 进行转换, 以生成所需的长时宽带发送空间相关矩阵 R。
在步骤 S303 中, 按照上文所述的式 2 ) 估计长时宽带发送空间 相关矩阵, 也即 R估计 其中 H表示矩阵的共轭转置。
优选地, 在步驟 S304 中, 利用反馈的附加信息进一步对 R 估计 进行校正 (为了简洁起见, 图 3 中未示出接收反馈的附加信息的步 骤) 。 附加信息例如是发射机方对于特定接收机的空间相关矩阵的 非对角线比例因子 ^...,^^ 则校正的后的长时宽带发送空间相关矩 阵如前所述的式 3 )。 在又一示例中, 接收机方向发射机方反馈长时 宽带发送空间相关矩阵的按降序排列的特征值 d、 dN 中 d2/dh … , d2+jld、 以及对应的特征向量 u2, .. . , u2+j ( 其中 0 < j < N - 2 ) , 则校正的后的长时宽带发送空间相关矩阵如前所述 的式 4 ) 。 优选地, 令 j=0, 则校正的后的长时宽带发送空间相关矩 阵如前所述的式 5 ) 。
在步骤 S305中, 对接收到的反馈的长时宽带发送空间相关矩阵 R 进行转换, 以直接生成所需的长时宽带波束成形矩阵或预编码矩 阵。
对于多用户多入多出 /多出单出无线通信系统, 例如, 一些算法 可以利用长时宽带发送空间相关矩阵直接生成预编码矩阵, 也即长 时宽带波束成形矩阵, 以便用于多用户多入多出 /多出单出无线通信 系统的预编码过程。这样的算法例如可以是信号泄漏比算法( SLNR ) 寺。
对于单用户多入多出 /多出单出无线通信系统, 例如可以按照如 下方式确定长时宽带波束成形矩阵: 长时宽带波束成形矩阵由空间 相关矩阵的多个特征向量构成, 该多个特征向量是按照特征向量的 特征值从大到小降序选择的, 所选特征向量的个数取决于向同一个 用户发送的流的个数。
在步骤 S306中, 该方法流程结束。
以上根据本发明的实施例, 对转换装置和转换方法做出了描述。 在根据本发明的转换装置以及转换装置所执行的处理 能步骤可以 实现为单独的功能模块, 也可合并为一个或少数几个功能模块。 其 中, 功能模块能够采用完全硬件化的实现形式、 完全软件化的实现 形式或者同时包含硬件和软件单元的实现形式。 根据一种实现方式, 详细描述中所述的处理过程可以存储于计算设备的可读存储介质 中, 可以是能够存储代码和 /或数据以由计算机系统能够使用的任何 设备或介质。 这包括, 但不限于, 专用集成电路 (ASIC ) 现场可编 程门阵列 (FPGA ) 、 半导体存储器等。 根据一种实现方式, 上述各 处理装置可以利用驱动通用计算机的装置实现, 也可以使用诸如微 控制器、 现场可编程门阵列 (FPGA)专用集成电路 (ASIC)或其组合 之类的其它处理器设备实现。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可 以在所附权利要求的范围内做出各种变形或修改。

Claims

权 利 要 求 书
1. 一种转换装置, 用于对反馈的长时宽带信道特征进行转换, 包括:
第一转换单元, 用于将从接收机反馈的长时宽带波束成形矩阵 u,构建为长时宽带发送空间相关矩阵 R的估计 R估计, 其中
R估计 = 11,1^ , 其中 H表示矩阵的共轭转置
和 /或
第二转换单元,利用从接收机反馈的长时宽带发送空间相关矩阵 直接获得长时宽带波束成形矩阵或预编码矩阵。
2. 根据权利要求 1 所述的转换装置, 其中所述第一转换单元利 用从接收机反馈的附加信息校正长时宽带空间相关矩阵的估计, 从 而提高转换的准确性。
3. 根据权利要求 2所述的转换装置, 其中反馈的附加信息包括 发射机对于特定接收机的空间相关矩阵的非对角线比例因子
IN
r\2 r22
, 其中 ^古计 , 则经过校正的长时宽带
IN
发送空间相关矩阵的估计为
, 其中符号 *表示表示复
Figure imgf000012_0001
数的共轭, N为发送空间相关矩阵的秩。
4. 根据权利要求 2所述的转换装置, 其中反馈的附加信息包括 从接收机反馈的长时宽带发送空间相关矩阵的特征值 之比 d2/d … ,i 2+ /^以及对应的特征向量 U2, ...,U2+ , 其中特征值 4 , . . . , ^ 按照降序排列并且 0≤j≤N - 2 , N 为发送空间相关矩阵的秩, 则经 过校正的长时宽带发送空间相关矩阵的估计为:
H
R校正 = normalize
Figure imgf000013_0001
5. 根据权利要求 4所述的转换装置, 其中 j=0, 经过校正的长时 宽带发送空间相关矩阵的估计为:
( d
R校正 = normalize] u, 1u" 1 + 1 ~ , u ",2u" 2
v ^〗
6. 根据权利要求 1 所述的转换装置, 其中所述第二转换装置对 于多用户多入多出 /多出单出无线通信系统通过使用从以下组中选择 的算法利用长时宽带发送空间相关矩阵直接生成预编码矩阵, 其中 i亥组包括信号泄漏比算法 SLNR。
7. 根据权利要求 1 所述的转换装置, 其中所述第二转换装置对 于单用户多入多出 /多出单出无线通信系统按照如下方式确定长时宽 带波束成形矩阵: 长时宽带波束成形矩阵由长时宽带空间相关矩阵 的多个特征向量构成, 该多个特征向量是按照特征向量的特征值从 大到小降序选择的, 所选特征向量的个数取决于向同一个用户发送 的流的个数。
8. 一种转换方法, 用于对反馈的长时宽带信道特征进行转换, 包括:
第一转换步骤, 将从接收机反馈的长时宽带波束成形矩阵 !^构 建为长时宽带发送空间相关矩阵 R的估计 R 估计, 其中
R估计 = Uiu「, 其中 H表示矩阵的共轭转置;
和 /或
第二转换步骤,利用从接收机反馈的长时宽带发送空间相关矩阵 直接获得长时宽带波束成形矩阵或预编码矩阵。
9. 根据权利要求 8所述的转换方法, 其中在所述第一转换步骤 中, 利用从接收机反馈的附加信息校正长时宽带空间相关矩阵的估 计, 从而提高转换的准确性。
10. 根据权利要求 9所述的转换方法, 其中反馈的附加信息包括 发射机对于特定接收机的空间相关矩阵的非对角线比例因子
i,w
Figure imgf000014_0001
a 其中 K估计一 , 则经过校正的长时宽带
N—\,N
r\,N ' ' '
发送空间相关矩阵的估计为
Figure imgf000014_0002
22
R校正 atr N, -\,N 其中符号 *表示表示复 a N' Ar\,N N-\,N ' Ν,Ν
数的共轭, Ν为发送空间相关矩阵的秩。
11. 根据权利要求 9所述的转换方法, 其中反馈的附加信息包括 从接收机反馈的长时宽带发送空间相关矩阵的特征值 ..., 之比 d2/d!, … ,ί2+/ 以及对应的特征向量 u2, ... ,u2+j, 其中特征值 …, 按照降序排列并且 0≤j≤N-2,N为发送空间相关矩阵的秩, 则经过校正的长时宽带发送空间相关矩阵的估计为:
ί 、
R TP - normalize
12. 根据权利要求 11所述的转换方法, 其中 j=0, 经过校正的长 时宽带发送空间相关矩阵的估计为:
R校 ff =
Figure imgf000014_0003
13. 根据权利要求 8所述的转换方法,其中在所述第二转步骤中, 对于多用户多入多出 /多出单出无线通信系统通过使用从以下組中选 择的算法利用长时宽带发送空间相关矩阵直接生成预编码矩阵, 其 中该组包括信号泄漏比算法 SLNR。
14. 根据权利要求 8所述的转换方法, 其中在所述第二转换步骤 中, 对于单用户多入多出 /多出单出无线通信系统按照如下方式确定 长时宽带波束成形矩阵: 长时宽带波束成形矩阵由长时宽带空间相 关矩阵的多个特征向量构成, 该多个特征向量是按照特征向量的特 征值从大到小降序选择的, 所选特征向量的个数取决于向同一个用 户发送的流的个数。
15. 一种基站设备, 包括根据权利要求 1 -7之任一所述的转换装 置。
16. 一种用户设备, 包括根据权利要求 1 -7之任一所述的转换装 置。
17. 一种中继设备, 包括根据权利要求 1 -7之任一所述的转换装 置。
18. 一种计算机程序产品, 包括在计算设备中运行时执行根据权 利要求 8- 14之任一所述的转换方法的程序指令。
PCT/CN2010/071593 2010-04-07 2010-04-07 转换装置和方法 WO2011124023A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112012025247A BR112012025247A2 (pt) 2010-04-07 2010-04-07 aparelho e método de transformação
EP10849260.4A EP2557720B1 (en) 2010-04-07 2010-04-07 Transformation device and method
KR1020127027457A KR101426722B1 (ko) 2010-04-07 2010-04-07 변환 디바이스 및 방법
US13/639,580 US8989292B2 (en) 2010-04-07 2010-04-07 Transformation apparatus and method
PCT/CN2010/071593 WO2011124023A1 (zh) 2010-04-07 2010-04-07 转换装置和方法
JP2013502980A JP5507001B2 (ja) 2010-04-07 2010-04-07 変換装置および方法
CN201080062403.9A CN102725992B (zh) 2010-04-07 2010-04-07 转换装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071593 WO2011124023A1 (zh) 2010-04-07 2010-04-07 转换装置和方法

Publications (1)

Publication Number Publication Date
WO2011124023A1 true WO2011124023A1 (zh) 2011-10-13

Family

ID=44762016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071593 WO2011124023A1 (zh) 2010-04-07 2010-04-07 转换装置和方法

Country Status (7)

Country Link
US (1) US8989292B2 (zh)
EP (1) EP2557720B1 (zh)
JP (1) JP5507001B2 (zh)
KR (1) KR101426722B1 (zh)
CN (1) CN102725992B (zh)
BR (1) BR112012025247A2 (zh)
WO (1) WO2011124023A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973409A (zh) * 2013-01-31 2014-08-06 富士通株式会社 预编码装置和包含该预编码装置的发射机
CN106452539A (zh) * 2015-08-05 2017-02-22 上海贝尔股份有限公司 混合波束赋形方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165645B2 (ja) * 2014-01-29 2017-07-19 日本電信電話株式会社 無線通信方法、無線通信システムおよび制御局装置
CN107370525B (zh) 2016-05-12 2021-03-30 华为技术有限公司 用于信道状态信息反馈的方法、基站、终端设备及系统
EP3446416B1 (en) * 2016-05-13 2020-11-04 Huawei Technologies Co., Ltd. Precoding and channel state information acquisition for multi-stream transmissions in massive mimo systems
US11336349B2 (en) * 2020-05-13 2022-05-17 Semiconductor Components Industries, Llc Steering matrix derivation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369871A (zh) * 2008-10-16 2009-02-18 上海交通大学 基于有限反馈的多用户mimo系统预编码方法和装置
CN101512929A (zh) * 2006-08-17 2009-08-19 交互数字技术公司 用于在mimo无线通信系统中提供有效预编码反馈的方法和设备
US20090304103A1 (en) * 2008-06-06 2009-12-10 Karthik Vaidyanathan Power Allocation Method for MIMO Transmit Beamforming

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124932B1 (ko) * 2005-05-30 2012-03-28 삼성전자주식회사 어레이 안테나를 이용하는 이동 통신 시스템에서의 데이터송/수신 장치 및 방법
CN100547945C (zh) * 2006-03-27 2009-10-07 普天信息技术研究院 一种下行波束赋形的方法及装置
US8649456B2 (en) * 2009-03-12 2014-02-11 Futurewei Technologies, Inc. System and method for channel information feedback in a wireless communications system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512929A (zh) * 2006-08-17 2009-08-19 交互数字技术公司 用于在mimo无线通信系统中提供有效预编码反馈的方法和设备
US20090304103A1 (en) * 2008-06-06 2009-12-10 Karthik Vaidyanathan Power Allocation Method for MIMO Transmit Beamforming
CN101369871A (zh) * 2008-10-16 2009-02-18 上海交通大学 基于有限反馈的多用户mimo系统预编码方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973409A (zh) * 2013-01-31 2014-08-06 富士通株式会社 预编码装置和包含该预编码装置的发射机
CN106452539A (zh) * 2015-08-05 2017-02-22 上海贝尔股份有限公司 混合波束赋形方法和装置
CN106452539B (zh) * 2015-08-05 2020-02-04 上海诺基亚贝尔股份有限公司 混合波束赋形方法和装置

Also Published As

Publication number Publication date
JP5507001B2 (ja) 2014-05-28
US8989292B2 (en) 2015-03-24
EP2557720A4 (en) 2016-04-20
EP2557720B1 (en) 2020-02-26
KR20120131224A (ko) 2012-12-04
EP2557720A1 (en) 2013-02-13
BR112012025247A2 (pt) 2016-06-21
CN102725992A (zh) 2012-10-10
US20130022141A1 (en) 2013-01-24
CN102725992B (zh) 2016-03-23
JP2013527654A (ja) 2013-06-27
KR101426722B1 (ko) 2014-08-13

Similar Documents

Publication Publication Date Title
CN102725967B (zh) 用于信息反馈以及预编码的方法和装置
US8594161B2 (en) Method and system for beamforming in a multiple user multiple input multiple output (MIMO) communication system using a codebook
EP3171525B1 (en) System and method for channel information feedback in a wireless communications system
WO2020221582A1 (en) Methods and apparatuses for csi reporting in a wireless communication system
US20160105226A1 (en) Methods for Opportunistic Multi-User Beamforming in Collaborative MIMO-SDMA
US20180131486A1 (en) System and Method for Transmitting a Sub-Space Selection
US8761283B2 (en) MIMO channel matrix feedback in OFDM systems
US10778294B2 (en) Channel state information feedback method, terminal device, and network device
US8582672B2 (en) System and method for wireless communications using spatial multiplexing with incomplete channel information
WO2021135837A1 (zh) 一种基于信道互易性的预编码矩阵配置方法及装置
WO2017194007A1 (zh) 一种二级预编码方法及装置
JP2009141957A (ja) Mimoシステムのプレコーディング伝送方法
WO2014101170A1 (zh) Fdd系统中信道互易性补偿方法和装置
WO2011140782A1 (zh) 多输入多输出系统的下行传输方法和基站
US9520924B2 (en) Method for communicating in a network
US9276658B2 (en) Method for communicating in a MIMO network
WO2011124023A1 (zh) 转换装置和方法
WO2011124065A1 (zh) 一种信道状态信息反馈方法和系统
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
WO2015196974A1 (zh) 一种针对csi反馈系统的发射加权方法及装置
WO2017088658A1 (zh) 获取信道信息的方法及装置
WO2011091588A1 (zh) 双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置
CN108288981B (zh) 一种信道信息反馈及确定方法、接收端和发射端设备
WO2015127748A1 (zh) Mimo系统及其传输方法、基站、用户设备、存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062403.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010849260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13639580

Country of ref document: US

Ref document number: 2013502980

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027457

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9338/CHENP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012025247

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012025247

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121003