WO2011091588A1 - 双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置 - Google Patents

双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置 Download PDF

Info

Publication number
WO2011091588A1
WO2011091588A1 PCT/CN2010/070379 CN2010070379W WO2011091588A1 WO 2011091588 A1 WO2011091588 A1 WO 2011091588A1 CN 2010070379 W CN2010070379 W CN 2010070379W WO 2011091588 A1 WO2011091588 A1 WO 2011091588A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
antenna
antenna sub
weight
sub
Prior art date
Application number
PCT/CN2010/070379
Other languages
English (en)
French (fr)
Inventor
肖华华
朱登魁
鲁照华
刘锟
张万帅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2010/070379 priority Critical patent/WO2011091588A1/zh
Publication of WO2011091588A1 publication Critical patent/WO2011091588A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas

Definitions

  • Dual-current multi-input multi-output beamforming weight acquisition method and device dual-stream multi-input multi-output beam shaping data transmission method and device
  • the present invention relates to the field of wireless communications, and in particular, to a dual stream MIMO (Multiple Input Multiple Output) beamforming weight acquisition method and apparatus, and a data transmission method and apparatus.
  • MIMO Multiple Input Multiple Output
  • Beamforming is based on the principle of adaptive antenna.
  • the antenna array is used to weight each antenna unit by advanced signal processing algorithms to make the array align with the useful signal direction in real time, and form a zero point in the interference direction to suppress interference. signal. Thereby improving the signal to noise ratio, improving system performance and increasing system coverage. As shown in Figure 1.
  • MIMO is a communication system in which a plurality of antennas are respectively disposed at a transmitting end and a receiving end. It is mainly divided into two categories. When there are multiple antennas at the transmitting end or the receiving end, and the data set sent by each transmitting antenna is the same, the receiving end combines the signals that obtain multiple branches, thereby improving the reliability of the link. MIMO technology is called spatial diversity. When both the transmitting end and the receiving end are two antennas, one of the diversity encoding modes is shown in FIG. 2( a ), and the antenna 1 transmits the symbol and the - respectively at two adjacent moments (or subcarriers), and the antenna 2 The symbol sum is sent at two adjacent moments (or subcarriers).
  • the MIMO channel is equivalent to multiple parallel channels, multiple data streams can be simultaneously transmitted in parallel, which improves the data transmission rate, which is spatial multiplexing.
  • both the transmitting end and the receiving end are two antennas, one of the spatial multiplexing coding modes is shown in Fig. 2 (b), and antenna 1 and antenna 2 respectively transmit symbols and on the same frequency resources.
  • MIMO and beamforming combine to form a new technology that has both technical advantages, called MIMO beamforming. It can suppress interference signals like beamforming, and improve link reliability or transmission rate like MIMO.
  • MIMO beamforming One of the configurations of the MIMO beamforming of the two streams whose transmitting end is configured as a dual-polarized antenna is as shown in FIG. 3(a).
  • the first antenna sub-array and the second antenna sub-array in the same polarization direction respectively form one beam, and each beam is equivalent to one virtual antenna.
  • a two-stream MIMO system is formed between the two virtual antennas.
  • the acquisition of the dual-stream MIMO beam U-shaped weight W is one of the key technologies of the dual-stream MIMO beam U-shape.
  • the accuracy and timeliness of weight W greatly affects the performance of dual-stream MIMO beamforming.
  • the technical problem to be solved by the present invention is to provide a dual-stream MIMO beamforming weight obtaining method and device, and a data transmitting method and device, which can effectively combine the two technologies of MIMO and beamforming to maximize the system's Performance and coverage.
  • the present invention provides a weight acquisition method for dual-stream multiple-input multiple-output beamforming, which is applied to a wireless communication system including a transmitting end and a receiving end.
  • the antenna array at the transmitting end includes two antennas each forming one beam.
  • a sub-array, wherein the weights of beamforming of each antenna sub-array are obtained as follows:
  • the antenna sub-array includes a first one An antenna sub-array and a second antenna sub-array.
  • the channel information of the antenna of the antenna sub-array to the receiving antenna of the antenna sub-array is obtained, and the weight of the beamforming of the antenna sub-array is determined according to the channel information, including:
  • the obtaining a statistical channel correlation matrix of each antenna sub-array includes:
  • Initialization step initializing a statistical channel correlation matrix of each antenna sub-array; determining a plurality of symbols used to calculate a statistical channel correlation matrix of each antenna sub-array; statistics of the i-th antenna sub-array
  • the channel correlation matrix is
  • the statistical channel correlation matrix R . A .R +(1- A .) of the line sub-array, where H'w is the A-subcarrier of the particular carrier set on the transmit antenna to the receive antenna of the ith antenna sub-array a matrix of channel coefficients, where N represents the number of carriers included in a particular set of carriers, "constant, representing the weight of the A-subcarrier correlation matrix of the ith antenna sub-array, which is constant, and 0 ⁇ ?, ⁇ 1;
  • the standard H is a conjugate transposition of the matrix;
  • the controlling step repeats the updating step until the plurality of symbols used to calculate the statistical channel correlation matrix of each antenna sub-array are selected.
  • the H'(t) is obtained according to the following manner:
  • the transmitting end measures the channel coefficient matrix of the antenna of the receiving end to the uplink channel of the i-th antenna sub-array, and according to the channel reciprocity, obtains the H row of the measured channel coefficient matrix, and the H'(t);
  • the receiving end measures the channel coefficient matrix of the ith antenna sub-array of the transmitting end to the receiving antenna of the receiving end and feeds back to the transmitting end, and the transmitting end obtains the H′ of the Rx row Txi column according to the channel coefficient matrix fed back by the receiving end.
  • ' (k) the transmitting end obtains the H′ of the Rx row Txi column according to the channel coefficient matrix fed back by the receiving end.
  • is the number of transmit antennas of the i-th antenna sub-array
  • R is the number of receive antennas at the receive end.
  • the determining the weight of the beamforming of each antenna sub-array according to the statistical channel correlation matrix includes:
  • det Represents the determinant value of the matrix
  • the present invention also provides a dual stream multiple input multiple output beamforming data transmitting method, which includes:
  • a beamforming step of weighting the encoded data stream using weights of beamforming of the first antenna sub-array and the second antenna sub-array, and the weighted data stream is in a corresponding The antenna sub-array is sent out.
  • the performing MIMO encoding on the data stream refers to performing spatial diversity encoding or spatial multiplexing encoding on the data stream.
  • the weight estimation step before determining the weights of the beamforming of the first antenna sub-array and the second antenna sub-array, it is further determined whether the weight needs to be updated, and if updating is required, according to the present invention
  • the method determines the weight of the beamforming of the first antenna sub-array and the second antenna sub-array; otherwise, the system pre-configured weight or the last determined weight is used as the first antenna sub-array and the second The weight of the beam of the antenna sub-array.
  • the MIMO encoding step performs spatial diversity encoding on the data stream.
  • the weight of the first antenna sub-array is obtained as ⁇ ... 1 , the second antenna.
  • the data transmitted on the first antenna of the first antenna sub-array at the first time or subcarrier is, and the data transmitted by the second antenna sub-array on the first antenna is w 2 s 2 ; at the second time or subcarrier, the data transmitted on the first antenna of the first antenna sub-array is -w x 2 , and the data transmitted on the _/ ⁇ th antenna of the second antenna sub-array is;
  • the data transmitted on the first antenna of the first antenna sub-array is that the data transmitted on the antenna of the second antenna sub-array is;
  • the MIMO encoding step performing spatial multiplexing coding on the data stream;
  • ⁇ 1, ⁇ 2 are the number of transmitting antennas of the first antenna sub-array and the second antenna sub-array, respectively.
  • the present invention also provides a weighting device for multi-input multiple-output beamforming, which is applied to a wireless communication system including a transmitting end and a receiving end, where the transmitting end includes two antenna sub-arrays each forming a beam, wherein the right
  • the value obtaining means is configured to acquire channel information of a transmitting antenna of each antenna sub-array to a receiving antenna of the receiving end, and determine a weight of beamforming of each antenna sub-array according to the channel information.
  • the device includes a statistical channel correlation matrix acquiring module and a weight obtaining module: the statistical channel correlation matrix acquiring module, configured to acquire a statistical channel correlation matrix of each antenna sub-array according to the channel information;
  • the weight obtaining module is configured to determine a weight of a beamforming of each antenna sub-array according to the statistical channel correlation matrix.
  • the statistical channel correlation matrix acquiring module includes an initializing unit, an updating unit, and a control unit:
  • the initialization unit initializes a statistical channel correlation matrix of each antenna sub-array; determines a plurality of symbols used to calculate a statistical channel correlation matrix of each antenna sub-array; and a statistical channel correlation matrix of the i-th antenna sub-array is R rffl ;
  • the statistical channel correlation matrix R rffl A JU(l- A .) of the i-th antenna sub-array, where H'W is the A-th of the specific carrier set on the transmit antenna to the receive antenna of the i-th antenna sub-array
  • the channel coefficient matrix of the carrier, N represents the number of carriers included in the specific carrier set, and is a constant indicating the weight of the A-subcarrier correlation matrix of the i-th antenna sub-array, which is constant, and 0 ⁇ ?,. ⁇ 1;
  • the superscript H is a conjugate transposition of the matrix;
  • the control unit is configured to control the update unit to repeatedly update the statistical channel correlation matrix until the selected symbols for calculating a statistical channel correlation matrix of each antenna sub-array are selected.
  • the present invention also provides a dual-stream multiple-input multiple-output beamforming data transmitting apparatus, including: a ⁇ encoding module for ⁇ encoding a data stream to obtain an encoded data stream; and a weight estimation module for using the present invention The method determines weights of beamforming of the first antenna sub-array and the second antenna sub-array;
  • a beamforming module configured to weight the encoded data stream by using weights of beamforming of the first antenna sub-array and the second antenna sub-array, and the weighted data stream is The corresponding antenna sub-array is sent out.
  • the weight of the dual stream ⁇ beamforming can be obtained, and a reasonable combination of ⁇ and beamforming can be achieved, thereby maximizing the performance of the system.
  • FIG. 1 is a schematic diagram of a BF system based on a linear antenna array according to the present invention
  • FIG. 3 is a schematic diagram of a dual stream MIMO beamforming hybrid system according to the present invention.
  • FIG. 4 is a schematic diagram of a dual-stream MIMO beamforming device based on a dual-polarized antenna according to the present invention
  • FIG. 5 is a schematic diagram of a dual-stream MIMO beamforming device based on a linear antenna array according to the present invention
  • Figure 6 is a schematic diagram of data transmission of each physical antenna on the same time-frequency resource at the transmitting end.
  • Transmitter A device used to transmit data or information, such as a macro base station, a micro base station, and the like.
  • Receiver A device used to receive data or information, such as terminals, mobile stations, handheld devices, data cards, etc.
  • the present invention provides a data transmission method for dual-stream MIMO beamforming, which is applied to a wireless communication system including a transmitting end and a receiving end, including:
  • the MIMO encoding refers to forming a plurality of data streams after transforming one or more data streams.
  • the MIMO encoding includes spatial diversity and spatial multiplexing.
  • said spatial diversity refers to transforming each input data stream into a plurality of copies and/or a conjugate of the copy and/or a negative conjugate of the copy.
  • the spatial multiplexing refers to: directly outputting one or more input data streams.
  • the weight of the beam shape of one antenna sub-array and the second antenna sub-array, otherwise, the pre-configured weight of the system or the weight obtained last time according to the channel information is taken as the first antenna sub-array and the second The weight of the beamforming of the antenna sub-arrays.
  • the process of obtaining a weight according to the channel information includes: acquiring, for any antenna sub-array, channel information of a transmitting antenna of the antenna sub-array to a receiving antenna of the receiving end, and determining beamforming of the antenna sub-array according to the channel information.
  • the antenna sub-array includes a first antenna sub-array and a second antenna sub-array, and further includes:
  • Step 101 Obtain a statistical channel correlation matrix Rstat Rstat, 2 of each antenna sub-array according to the channel information.
  • Step 102 Acquire weights of beamforming of each antenna sub-array according to a statistical channel correlation matrix.
  • step 101 specifically includes:
  • Initializing step initializing a statistical channel correlation matrix of each antenna sub-array; determining a plurality of symbols used to calculate a statistical channel correlation matrix of each antenna sub-array; and a statistical channel correlation matrix of the i-th antenna sub-array is R rffl ;
  • the statistical channel correlation matrix R . A .R +(1- A .) of the line sub-array, where H'w is the A-subcarrier of the particular carrier set on the transmit antenna to the receive antenna of the ith antenna sub-array a matrix of channel coefficients, where N represents the number of carriers included in a particular set of carriers, "constant, representing the weight of the A-subcarrier correlation matrix of the ith antenna sub-array, which is constant, and 0 ⁇ ?, ⁇ 1;
  • the standard H is a conjugate transposition of the matrix;
  • the controlling step repeats the updating step until the plurality of symbols used to calculate the statistical channel correlation matrix of each antenna sub-array are selected.
  • the H'(t) is obtained according to the following manner:
  • the transmitting end measures a channel coefficient matrix of the antenna of the receiving end to the uplink channel of the ith antenna sub-array, and obtains the H'(t) of the R row and column from the measured channel coefficient matrix according to channel reciprocity; or, receives
  • the terminal measures the channel coefficient matrix of the ith antenna sub-array of the transmitting end to the receiving antenna of the receiving end and feeds back to the transmitting end, and the transmitting end obtains the Rx according to the channel coefficient matrix fed back by the receiving end.
  • a specific algorithm for obtaining a statistical channel correlation matrix based on channel information is:
  • R stat Ata , select the symbol index used to count the channel correlation matrix.
  • the fixed weight method, the eigenvector weight method, or the constant modulus may be used to obtain the statistical channel correlation matrix by the transmitting end, and the weight is obtained according to the statistical channel correlation matrix; and the statistical channel may also be obtained by the receiving end.
  • the statistical channel correlation matrix is fed back to the transmitting end, and the transmitting end obtains the weight of the beamforming according to the statistical channel correlation matrix; or, after the receiving end obtains the statistical channel correlation matrix, the beam is obtained according to the statistical channel correlation matrix.
  • the weight or weight index of the shape is fed back to the sender, and the sender obtains the weight of the beam shape according to the weight or weight index fed back by the receiver.
  • the weight selection principle may be based on a statistical channel correlation matrix of two sub-arrays, 2 to obtain a corresponding weight;
  • the determinant values, ⁇ and ⁇ are the final statistical channel correlation matrices.
  • the steps of the feature vector weight method include:
  • the steps of the constant modulus feature vector method include:
  • the present invention also provides a weighting device for multi-input multiple-output beamforming, which is applied to a wireless communication system including a transmitting end and a receiving end, where the transmitting end includes two antenna sub-arrays each forming a beam, wherein the right
  • the value obtaining means is configured to acquire channel information of a transmitting antenna of each antenna sub-array to a receiving antenna of the receiving end, and determine a weight of beamforming of each antenna sub-array according to the channel information.
  • the device includes a statistical channel correlation matrix acquiring module and a weight obtaining module: the statistical channel correlation matrix acquiring module, configured to acquire a statistical channel correlation matrix of each antenna sub-array according to the channel information;
  • the weight obtaining module is configured to determine a weight of a beamforming of each antenna sub-array according to the statistical channel correlation matrix.
  • the statistical channel correlation matrix acquiring module includes an initializing unit, an updating unit, and a control unit:
  • the initialization unit initializes a statistical channel correlation matrix of each antenna sub-array; determines a plurality of symbols used to calculate a statistical channel correlation matrix of each antenna sub-array; and a statistical channel correlation matrix of the i-th antenna sub-array is R rffl ;
  • H' W is a channel coefficient matrix of the A-th sub-carrier in the specific carrier set of the transmitting antenna to the receiving antenna of the i-th antenna sub-array
  • N represents the number of carriers included in a specific carrier set, "constant, indicating the weight of the A-subcarrier correlation matrix of the i-th antenna sub-array, which is a constant, and ⁇ ⁇ ?, ⁇ ⁇ ;
  • superscript H is a pair of matrices Conjugate transposition
  • the control unit is configured to control the update unit to repeatedly update the statistical channel correlation matrix until the selected symbols for calculating a statistical channel correlation matrix of each antenna sub-array are selected.
  • the updating unit is configured to obtain the H′ ( t) as follows:
  • the updating unit measures a channel coefficient matrix of an antenna of the receiving end to an uplink channel of the ith antenna sub-array, and obtains the H k of the R row 73 ⁇ 4 column from the measured channel coefficient matrix according to channel reciprocity;
  • the receiving end measures the channel coefficient matrix of the ith antenna sub-array of the transmitting end to the receiving antenna of the receiving end and feeds back to the updating unit, and the updating unit obtains the R line according to the channel coefficient matrix fed back by the receiving end: H'(t);
  • is the number of transmit antennas of the i-th antenna sub-array
  • R is the number of receive antennas at the receive end.
  • the present invention also provides a dual stream ⁇ beamforming data transmitting apparatus, as shown in the schematic diagrams 4 and 5, comprising:
  • ⁇ encoding module ⁇ encoding the data stream to obtain a coded data stream, including, performing spatial diversity coding or spatial multiplexing coding;
  • ⁇ , ⁇ 2 are the number of transmitting antennas of the first antenna sub-array and the second antenna sub-array, respectively; a beamforming module: for weighting the encoded data stream using weights of beamforming of the first antenna sub-array and the second antenna sub-array, and the weighted data stream is The corresponding antenna sub-array is sent out.
  • the beamforming module is configured to send data w A on the first antenna of the first antenna sub-array at the first time or subcarrier,
  • the second antenna sub-array transmits data on the _/ ⁇ th antenna at a second time or subcarrier, and transmits data on the first antenna sub-array on the first antenna.
  • the second antenna sub-array is at the _/ ⁇ root Sending data on the antenna ⁇ ; or, at the same time or subcarrier, transmitting data w lA on the ith antenna of the first antenna sub-array, and transmitting data w 2 on the j-th antenna of the second antenna sub-array;
  • 1,.. ⁇ , ⁇ 1,_/ ⁇ 1 . ⁇ , ⁇ 2, and are the data streams to be sent.
  • the beamforming module is configured to send data on the first antenna of the first antenna sub-array at the same time or subcarrier, and the second antenna
  • the antenna configuration portion of the present invention is directed to an embodiment of a dual polarized antenna.
  • each pair of antennas is installed at the transmitting end or the receiving end, and each pair of antennas is on the same line on the same plane.
  • Each pair of antennas is a pair of dual-polarized antennas that are polarized in two directions.
  • one of the pair of dual-polarized antennas is +45° polarized and the other is -45° polarized.
  • the antennas in the same polarization direction form one beam, and each beam is equivalent to one virtual antenna.
  • Embodiments of the antenna configuration portion of the present invention with respect to linear antenna grouping are described.
  • each antenna is on the same straight line of the same plane.
  • Each antenna may be an omnidirectional antenna that transmits electromagnetic waves in all directions, or a directional antenna that transmits electromagnetic waves to a certain range of angles, or a single-polarized antenna that is polarized in a certain direction.
  • the first antenna sub-array has a root antenna, and the second antenna The array has ⁇ 2 antennas.
  • Each antenna sub-array forms one beam, and each beam is equivalent to one virtual antenna.
  • the channel coefficient acquisition section of the present invention is an embodiment of obtaining a channel coefficient matrix using channel reciprocity.
  • the transmitting end and the receiving end respectively install the ⁇ and R antennas, and the antenna configuration may be the linear array antenna or the dual polarized antenna in FIG.
  • the receiving end sends a data stream to the transmitting end by using part or all of the installed antenna.
  • the data stream may be information that the receiving end feeds back to the transmitting end, or a pilot, or a Sounding sequence or service data.
  • the number of antennas that the receiving end sends the data stream is Rt, and Rt ⁇ Rx.
  • the first antenna sub-array estimates the uplink channel, and the estimated channel coefficients are channels on the sub-carriers at t times between the antennas used by the receiving end to transmit data and the first antennas of the first antenna sub-array.
  • the downlink antenna matrix of the first antenna sub-array and the second antenna sub-array to the receiving end is , r represents the transpose of a matrix or vector.
  • the weight estimation module at the transmitting end obtains the weight according to (H )) T , (H ( )) T .
  • the transmitting end and the receiving end respectively install ⁇ and R antennas, and the antenna configuration may be the linear array antenna or the dual polarized antenna in FIG.
  • the receiving end estimates the channel coefficient of the downlink from the first antenna sub-array to the receiving end. ( ⁇ ), which indicates that the antenna of the first antenna sub-array is on the A-subcarrier at time t between the antenna of the receiving end and the first antenna of the receiving end.
  • the number of symbols and the number of subcarriers in the frequency domain Expressed in matrix form
  • the channel coefficient matrix of two antenna sub-arrays is estimated.
  • the receiving end either uses H (a) and H (a) to obtain the weight of the beamforming, or the index of the weight, or obtain the statistical channel correlation matrix, and then feed back to the transmitting end; or H ( ) and H D 2 L (t, k), or quantized ⁇ ( ) and ⁇ ( ⁇ ) feedback senders, the sender uses H ( ) and H D 2 L ⁇ t,k) , or quantized ii t,k, and d ⁇ k ) Obtain the weight of the beamforming.
  • An embodiment of the MIMO encoding portion of the present invention relates to spatial diversity scheme-encoding.
  • the transmitting physical antennas at the transmitting end are divided into two groups, each antenna sub-array is virtualized into one beam, and each beam is a virtual antenna.
  • the data stream sent and the beam shaping weight are:
  • the virtual antenna 1 transmits the data stream and the virtual antenna 2 at two adjacent times (or subcarriers) respectively at two adjacent times (or subcarriers) to transmit the data stream sum.
  • the second time (or subcarrier) of the transmitted data is mapped to the physical antenna as shown in Figure 6 (c), the first antenna sub-array transmits data on the first antenna; and the second antenna sub-array is in the first _/ ⁇
  • the ⁇ coding section of the present invention is directed to an embodiment of spatial diversity scheme two coding.
  • the transmitting physical antennas at the transmitting end are divided into two groups, each antenna sub-array is virtualized into one beam, and each beam is a virtual antenna.
  • the data stream sent is the beamforming weight:
  • virtual antenna 1 and virtual antenna 2 respectively transmit data streams and at the same time (or subcarriers), that is, at the same time (or subcarriers), as shown in Figure 6 (b).
  • An embodiment of the MIMO encoding portion of the present invention with respect to spatial multiplexing coding is shown.
  • the transmitting physical antennas at the transmitting end are divided into two groups, each antenna sub-array is virtualized into one beam, and each beam is a virtual antenna.
  • the data stream sent and the beam shaping weight are:
  • the virtual antenna 1 and the virtual antenna 2 respectively transmit data streams at the same time (or subcarriers), that is, at the same time (or subcarriers), and mapped to the physical antenna as shown in FIG. 6(a).
  • the weight obtaining module of the sending end determines whether the weight needs to be updated. If the weight is not required to be updated, the system pre-configured weight or the last reserved weight is used. If the weight value needs to be updated, then the weight is obtained by using a fixed weight method, and the steps include
  • the first antenna sub-array can obtain a corresponding weight based on the formula ⁇ max det ( ⁇ R rfflil ), and the second antenna sub-array can be based on a formula.
  • Pi max d e t( ⁇ R rffli2 ) to obtain the corresponding weight, where det represents the determinant value of the matrix.
  • weight obtaining portion of the present invention acquires a weight with respect to a feature vector weight method.
  • the value obtaining module of the sending end determines whether the weight needs to be updated. If the weight is not required to be updated, the system pre-configured weight or the last reserved weight is used. If you need to update Weight, then using the fixed weight method to obtain the weight, the steps include
  • the number of carriers is a channel coefficient matrix of the A-th sub-carrier in a specific carrier set on the first antenna sub-array and the second antenna sub-array in the transmit antenna-to-receiver antenna.
  • R ⁇ 2 ⁇ 2 +(l- ⁇ : ⁇ , ⁇ , ⁇ is a constant and 0 ⁇ A, A ⁇ 1, the current symbol index is increased by 1.
  • the weight obtaining part of the present invention is an embodiment of obtaining a weight by the constant modulus feature vector method.
  • the value obtaining module of the sending end determines whether the weight needs to be updated. If the weight is not required to be updated, the system pre-configured weight or the last reserved weight is used. If the weight value needs to be updated, then the weight is obtained by using a fixed weight method, and the steps include
  • Embodiment 11 A specific embodiment of the entire embodiment of the present invention.
  • the transmitting end is a base station, which has 2 antennas, and the omnidirectional antennas whose antennas are arranged in a linear array are divided into two groups, and each group has an antenna.
  • the base station performs the following operations for each user to implement a dual stream ⁇ beam U-shape.
  • the weights of the two antenna sub-arrays and ⁇ , W x and ⁇ are vectors of ⁇ are calculated in the weight estimation module.
  • the weight estimation module decides whether the weight needs to be updated, and if the weight is not required to be updated, then Use the system's pre-configured or last-retained weights. If the weight value needs to be updated, then the weight is obtained by using a fixed weight method, and the steps include
  • the number of carriers is a channel coefficient matrix of the first subcarrier of the specific carrier set on the first antenna sub-array and the second antenna sub-array to the receiving end antenna, respectively.
  • the first antenna sub-array can obtain the corresponding weight based on the formula ⁇ max det( ⁇ R rfflil ), and the second antenna sub-array can obtain the corresponding value based on the formula ⁇ max det( ⁇ R ⁇ 2 ⁇ ) Among them, det represents the determinant value of the matrix.
  • the data stream is weighted by the weight, and after weighting, the data is transmitted on the first antenna sub-array and the second antenna sub-array on the first antenna time of the time pair. w and A2 .
  • the transmitting end is a base station, which has a pair of dual-polarized antennas, and the antennas are arranged on a linear array. There are two users under the base station, and each user has two antennas.
  • the base station performs the following operations for each user to implement dual stream ⁇ beamforming.
  • the weight estimation module decides whether it is necessary to update the weight. If the weight is not required to be updated, the system pre-configured or last reserved weight is used. If the weight value needs to be updated, the feature vector method is used to obtain the weight, and the steps include
  • N represents the number of carriers included in the specific carrier set, which is the channel coefficient matrix of the first sub-carrier and the second sub-sub-array to the first sub-carrier in the specific carrier set on the receiving antenna.
  • the data stream is weighted by the weight.
  • Example 13 A generalized embodiment of the overall scheme of the invention.
  • the transmitting end is a base station, which has 2 antennas, and the antenna is a linear array antenna or a dual-polarized antenna.
  • the antenna is a linear array antenna or a dual-polarized antenna.
  • the base station performs the following operations for each user to implement dual stream ⁇ beamforming.
  • the base station inputs the data stream sent to the user to the coding module.
  • the weight estimation module obtains the weights of the first antenna sub-array and the second antenna sub-array W x ⁇ W u ,---, W Txl ) T , W 2 ⁇ W l2 ,---,W Tx2 , , f 2 are the matrix of ⁇ .
  • the weight of the dual-stream MIMO beamforming can be obtained, and a reasonable combination of MIMO and beamforming can be realized, thereby maximizing the performance of the system.

Description

双流多输入多输出波束赋形权値获取方法和装置, 双流多 输入多输出波束赋形数据发送方法和装置 技术领域
本发明涉及无线通讯领域, 尤其涉及一种双流 MIMO ( Multiple Input Multiple Output , 多输入多输出)波束赋形权值获取方法和装置, 以及数据发 送方法和装置。
背景技术
波束赋形 (Beamforming, BF)是基于自适应天线原理, 利用天线阵列通过 先进的信号处理算法分别对各天线单元加权处理, 使阵列实时对准有用信号 方向, 而在干扰方向形成零点以抑制干扰信号。 从而提高信噪比, 提升系统 性能, 增加系统的覆盖范围。 如图 1所示。
MIMO是在发送端和接收端分别安置多根天线的通信系统。 它主要分成 两类。 当发送端或接收端有多根天线时, 且每根发送天线发送的数据集是相 同的, 接收端对获得多个分支的信号进行合并, 从而提高链路的可靠性, 我 们将这一类 MIMO技术叫做空间分集。对于发送端和接收端都是两根天线时 , 其中的一种分集编码方式如图 2 ( a )所示, 天线 1在两个相邻时刻 (或子载 波)分别发送符号 和 - , 天线 2在两个相邻时刻 (或子载波)分别发送符 号 和 。 另外, 当发送端和接收端同时存在多根天线时, 由于 MIMO信道 等效成多个并行的信道, 从而可以同时并行发送多个数据流, 提高了数据的 传输速率, 这就是空间复用。 对于发送端和接收端都是两根天线时, 其中的 一种空间复用编码方式如图 2 ( b )所示, 天线 1和天线 2在同时频资源上分 别发送符号 和 。
MIMO和波束赋形相结合, 形成一种同时具有两种技术优点的新技术, 叫 MIMO波束赋形。它既能像波束赋形那样抑制干扰信号, 又能像 MIMO那 样提高链路的可靠性或传输速率。 其中的一种发送端配置为双极化天线的两 个流的 MIMO波束赋形的结构如图 3 ( a )所示。 同一极化方向的第 1个天线 子阵列和第 2个天线子阵列分别各形成一个波束, 每个波束相当于一根虚拟 天线。 两根虚拟天线之间构成一个两个流的 MIMO系统。 另外一种结构是基 于线性阵列的, 如图 3 ( b )所示, 整个线性天线阵列被分成两组, 每组形成 一个波束, 每个波束相当于一个虚拟天线, 两个虚拟天线之间构成一个两个 流的 MIMO系统。我们把这两种方案叫双流 MIMO波束赋形。 当波束赋形与 空间分集相结合时, 我们叫它空间分集波束赋形; 当波束赋形与空间复用相 结合时, 我们叫它空间复用波束赋形。
双流 MIMO波束 U武形权值 W的获取,是双流 MIMO波束 U武形的关键技 术之一。 权值 W的准确性和及时性很大程度上影响着双流 MIMO波束赋形 的性能。
发明内容
本发明要解决的技术问题是提供一种双流 MIMO波束赋形权值获取方法 和装置、 以及数据发送方法和装置, 可实现 MIMO和波束赋形两种技术的有 效结合, 最大限度地提高系统的性能和覆盖范围。
为了解决上述问题, 本发明提供了一种双流多输入多输出波束赋形的权 值获取方法, 应用于包括发送端和接收端的无线通信系统, 发送端的天线阵 列包括各形成一个波束的 2个天线子阵列, 其中, 按如下方式获取各天线子 阵列的波束赋形的权值:
对任一天线子阵列, 获取该天线子阵列的发送天线到接收端的接收天线 的信道信息, 根据该信道信息确定该天线子阵列的波束赋形的权值; 所述天 线子阵列包括第 1个天线子阵列和第 2个天线子阵列。
其中, 所述对任一天线子阵列, 获取该天线子阵列的发送天线到接收端 的接收天线的信道信息, 根据该信道信息确定该天线子阵列的波束赋形的权 值包括:
根据所述信道信息获取各天线子阵列的统计信道相关矩阵;
根据所述统计信道相关矩阵确定各天线子阵列的波束赋形的权值。
其中, 所述获取各天线子阵列的统计信道相关矩阵包括:
初始化步骤: 初始化各天线子阵列的统计信道相关矩阵; 确定用于计算 各天线子阵列的统计信道相关矩阵的若干个符号; 第 i个天线子阵列的统计 信道相关矩阵为
更新步骤, 选择符号, 计算接收端到第 i个天线子阵列当前选择的符号 上特定载波集合上的信道相关性矩阵 =| (H ))ff *H ); 更新第 i个天
1
线子阵列的统计信道相关矩阵 R .=A.R +(1-A.) , 其中, H'w是第 i个天 线子阵列的发送天线到接收端天线上特定载波集合中第 A个子载波的信道系 数矩阵, N表示特定载波集合上包含载波的数目, 《 为常数, 表示第 i个天 线子阵列的第 A个子载波相关矩阵的权重, 为常量, 且 0≤ ?,.≤1; 上标 H是 对矩阵求共轭转置;
控制步骤, 重复所述更新步骤, 直到选择完用于计算各天线子阵列的统 计信道相关矩阵的所述若干个符号。
其中, 所述更新步骤中, 才艮据如下方式获取所述 H'(t):
发送端测量接收端的天线到第 i个天线子阵列的上行信道的信道系数矩 阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 ·列的所述 H'(t);
或者, 接收端测量发送端的第 i个天线子阵列到接收端的接收天线的信 道系数矩阵并反馈给发送端, 发送端根据接收端反馈的所述信道系数矩阵得 到 Rx行 Txi列的所述 H'' (k);
其中, ·为第 i个天线子阵列的发送天线数目, R 是接收端的接收天线 数。
其中, 所述根据统计信道相关矩阵确定各天线子阵列的波束赋形的权值 包括:
在预设的向量集合 ^.,_/· = 1,2,.··,Μ中, 选择使得 det«Rrffli )最大的向量 作为第 i个天线子阵列的波束赋形的权值, det表示求矩阵的行列式值;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量 作为第 i个天线子阵列的波束赋形的权值, 其中, ^是 Γχ χΐ的向量, ·为第 i个天线子阵列的发送天线数目;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量^做恒模处理后得到的向量 ^ = 作为第 i 个天线子阵列的波束赋形的权值, 其中, ^ 是 Γχ χΐ的向量, 是对向 量^进行恒模操作。 本发明还提高一种双流多输入多输出波束赋形数据发送方法, 其中, 包 括:
MIMO编码步骤, 对数据流进行多输入多输出 ( MIMO )编码, 得到编 码后的数据流;
权值估计步骤, 根据本发明所述方法确定第 1个天线子阵列和第 2个天 线子阵列的波束赋形的权值;
波束赋形步骤, 使用所述第 1个天线子阵列和第 2个天线子阵列的波束 赋形的权值对所述编码后的数据流进行加权, 将所述加权后的数据流在相应 的天线子阵列发送出去。
其中,所述 MIMO编码步骤中,所述对数据流进行 MIMO编码是指对数 据流进行空间分集编码或者空间复用编码。
其中, 所述权值估计步骤中, 确定第 1个天线子阵列和第 2个天线子阵 列的波束赋形的权值之前, 还判断是否需要更新权值, 如果需要更新, 则根 据本发明所述方法确定第 1个天线子阵列和第 2个天线子阵列的波束赋形的 权值; 否则, 使用系统预先配置的权值或者上一次确定的权值作为第 1个天 线子阵列和第 2个天线子阵列的波束 ϋ武形的权值。
其中, 所述 MIMO编码步骤中, 对所述数据流进行空间分集编码; 所述权值估计步骤中, 得到第 1个天线子阵列的权值为^ = ^... 1 , 第 2个天线子阵列的权值为 ^ =(w21...w27¾2)T , Γχ1,Γχ2分别是第 1个天线子阵列 和第 2个天线子阵列发送天线数;
所述波束赋形步骤中, 在第一个时刻或子载波, 第 1个天线子阵列第 根 天线上发送的数据为 ,, 第 2 个天线子阵列在第 ·根天线上发送的数据为 w2 s2; 在第二个时刻或子载波,第 1个天线子阵列第 根天线上发送的数据为 -wx 2 , 第 2个天线子阵列第 _/·根天线上发送的数据为 ;
或者, 同一个时刻或子载波, 第 1个天线子阵列的第 根天线上发送的数 据为 , 第 2个天线子阵列第 ·根天线上发送的数据为 ;
其中, / =1,···,Γχ1,7=1,···,Γχ2 , 和 为待发送的数据流。
其中, 所述 MIMO编码步骤中, 对所述数据流进行空间复用编码; 所述权值估计步骤中, 得到第 1个天线子阵列的权值为^ = ^... 1 , 第 2个天线子阵列的权值为 ^ = (w2 1...w27¾2)T , Γχ1,Γχ2分别是第 1个天线子阵列 和第 2个天线子阵列发送天线数,
所述波束赋形步骤中, 同一个时刻或子载波, 第 1个天线子阵列第 根天 线上发送的数据为 ,第 2 个线子阵列在第 _/·根天线上发送的数据为 ; 其中, ,· = 1, .. ·, Γχ1, 7 = 1, · · ·, Γχ2 , 和 为待发送的数据流。
本发明还提供一种双流多输入多输出波束赋形的权值获取装置, 应用于 包括发送端和接收端的无线通信系统, 发送端包括各形成一个波束的 2个天 线子阵列, 其中, 该权值获取装置用于获取各天线子阵列的发送天线到接收 端的接收天线的信道信息, 根据信道信息确定各天线子阵列的波束赋形的权 值。
其中, 所述装置包括统计信道相关矩阵获取模块和权值获取模块: 所述统计信道相关矩阵获取模块, 用于根据所述信道信息获取各天线子 阵列的统计信道相关矩阵;
所述权值获取模块, 用于根据所述统计信道相关矩阵确定各天线子阵列 的波束赋形的权值。
其中, 所述统计信道相关矩阵获取模块包括初始化单元、 更新单元和控 制单元:
所述初始化单元, 初始化各天线子阵列的统计信道相关矩阵; 确定用于 计算各天线子阵列的统计信道相关矩阵的若干个符号; 第 i个天线子阵列的 统计信道相关矩阵为 Rrffl ;
所述更新单元, 用于选择符号, 计算接收端到第 i个天线子阵列当前选 择的符号上特定载波集合上的信道相关性矩阵 =| ^(/ ^) *H ) ; 更新
1
第 i个天线子阵列的统计信道相关矩阵 Rrffl =AJU(l-A.) , 其中, H'W是 第 i个天线子阵列的发送天线到接收端天线上特定载波集合中第 A个子载波 的信道系数矩阵, N表示特定载波集合上包含载波的数目, 《 为常数, 表示 第 i个天线子阵列的第 A个子载波相关矩阵的权重, 为常量, 且 0≤ ?,.≤1; 上标 H是对矩阵求共轭转置; 所述控制单元,用于控制所述更新单元重复更新所述统计信道相关矩阵, 直到选择完用于计算各天线子阵列的统计信道相关矩阵的所述若干个符号。
其中, 所述权值获取模块, 用于按如下方式获取各天线子阵列的权值: 在预设的向量集合 ^.,_/· = 1,2,.··,Μ中, 选择使得 det«Rrffli )最大的向量 作为第 i个天线子阵列的波束赋形的权值, det表示求矩阵的行列式值;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量 作为第 i个天线子阵列的波束赋形的权值, 其中, 是 Γχ χΐ的向量, ·为第 i个天线子阵列的发送天线数目;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量^做恒模处理后得到的向量 ^ = Μ)作为第 i 个天线子阵列的波束赋形的权值, 其中, ^ 是 Γχ χΐ的向量, 是对向 量^进行恒模操作。
本发明还提供一种双流多输入多输出波束赋形数据发送装置, 包括: ΜΙΜΟ编码模块,用于对数据流进行 ΜΙΜΟ编码,得到编码后的数据流; 权值估计模块, 用于根据本发明所述方法确定第 1个天线子阵列和第 2 个天线子阵列的波束赋形的权值;
波束赋形模块, 用于使用所述第 1个天线子阵列和第 2个天线子阵列的 波束赋形的权值对所述编码后的数据流进行加权, 将所述加权后的数据流在 相应的天线子阵列发送出去。
釆用本发明所述的方法和装置, 可以得到双流 ΜΙΜΟ波束赋形的权值, 并且实现 ΜΙΜΟ与波束赋形的合理结合, 从而最大限度地提高系统的性能。
附图概述
图 1是本发明所述的基于线性天线阵列的 BF系统示意图;
图 2是本发明所述的 ΜΙΜΟ系统及其一种空间分集和空间复用编码方式 的示意图;
图 3是本发明所述的双流 MIMO波束赋形混合系统示意图;
图 4是本发明所述的基于双极化天线的双流 MIMO 波束赋形装置示意 图;
图 5是本发明所述的基于线性天线阵列的双流 MIMO波束赋形装置示意 图;
图 6发送端每根物理天线在同一个时频资源上的发送数据示意图。 本发明的较佳实施方式
本发明用到的一些术语定义如下:
发送端: 用来发送数据或者信息的设备, 比如宏基站, 微基站等。
接收端: 用来接收数据或者信息的设备, 如终端, 移动台, 手持设备, 数据卡等。
本发明提供了一种双流 MIMO波束赋形的数据发送方法, 应用于包括发 送端和接收端的无线通信系统, 包括:
将数据流进行 MIMO编码, 得到编码后的数据流;
确定第 1个天线子阵列和第 2个天线子阵列的波束赋形的权值; 使用所述第 1个天线子阵列和第 2个天线子阵列的波束赋形的权值对所 述编码后的数据流进行加权, 将所述加权后的数据流在相应的天线子阵列发 送出去。
其中所述 MIMO编码是指将一个或者多个数据流进行变换处理之后形成 多个数据流。
进一步地, 所述 MIMO编码包括空间分集和空间复用。 其中所述空间分 集是指:将输入的每个数据流变换成多份拷贝和 /或者拷贝的共轭和 /或拷贝的 负共轭。 其中所述空间复用是指: 将输入的一个或者多个数据流直接输出。
进一步地, 确定第 1个天线子阵列和第 2个天线子阵列的波束赋形的权 值前, 判断是否需要更新权值, 如果需要更新, 则根据当前信道信息获取第
1个天线子阵列和第 2个天线子阵列的波束 ϋ武形的权值, 否则, 将系统预先 配置的权值或者上一次根据信道信息获取的权值作为第 1个天线子阵列和第 2个天线子阵列的波束赋形的权值。
所述根据信道信息获取权值的过程包括: 对任一天线子阵列, 获取该天 线子阵列的发送天线到接收端的接收天线的信道信息, 根据该信道信息确定 该天线子阵列的波束赋形的权值; 所述天线子阵列包括第 1个天线子阵列和 第 2个天线子阵列, 进一步包括:
步骤 101 , 根据信道信息获取各天线子阵列的统计信道相关矩阵 Rstat Rstat,2 ,
步骤 102, 根据统计信道相关矩阵获取各天线子阵列的波束赋形的权值。 其中, 步骤 101具体包括:
初始化步骤: 初始化各天线子阵列的统计信道相关矩阵; 确定用于计算 各天线子阵列的统计信道相关矩阵的若干个符号; 第 i个天线子阵列的统计 信道相关矩阵为 Rrffl ;
更新步骤, 选择符号, 计算接收端到第 i个天线子阵列当前选择的符号 上特定载波集合上的信道相关性矩阵 =| (H ))ff *H'(t); 更新第 i个天
二 1
线子阵列的统计信道相关矩阵 R . =A.R +(1-A.) , 其中, H'w是第 i个天 线子阵列的发送天线到接收端天线上特定载波集合中第 A个子载波的信道系 数矩阵, N表示特定载波集合上包含载波的数目, 《 为常数, 表示第 i个天 线子阵列的第 A个子载波相关矩阵的权重, 为常量, 且 0≤ ?,.≤1; 上标 H是 对矩阵求共轭转置;
控制步骤, 重复所述更新步骤, 直到选择完用于计算各天线子阵列的统 计信道相关矩阵的所述若干个符号。
其中, 更新步骤中, 根据如下方式获取所述 H'(t):
发送端测量接收端的天线到第 i个天线子阵列的上行信道的信道系数矩 阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 ·列的所述 H'(t); 或者, 接收端测量发送端的第 i个天线子阵列到接收端的接收天线的信道系 数矩阵并反馈给发送端, 发送端根据接收端反馈的所述信道系数矩阵得到 Rx 行 ·列的所述 H'(t); 其中, ·为第 i个天线子阵列的发送天线数目, R 是 接收端的接收天线数。
根据信道信息获取统计信道相关矩阵的一种具体的算法为:
( 1 )初始化第 1个天线子阵列和第 2个天线子阵列的统计信道相关矩阵
Rstat Ata , 选取用于统计信道相关矩阵的符号索引。
( 2 )分别计算该接收端到每个天线子阵列当前符号索引对应符号上特定 载波集合上的信道相 关性矩阵:
Figure imgf000011_0001
* Jxl(k) 和
Figure imgf000011_0002
*HR 2 xJx2(k) , 其中, N表示特定载波集合上包含载波的数 目, 《u2t分别表示第 1个天线子阵列和第 2个天线子阵列第 A个子载波相 关矩阵的权重, 且为常数。 H ™ ( 分别是第 1个天线子阵列和第 2 个天线子阵列里的发送天线到接收端天线上特定载波集合中第 A个子载波的 信道系数矩阵;
( 3 )分别将两个天线子阵列的统计信道相关矩阵更新为 RstaO=fU 和 Rstat f2U /2代表函数, 优选地为
Figure imgf000011_0003
2(^2 ) = ^2+(1- )^' Α,Α为常量且 0≤Α,Α≤1, 当前符号索引加 1。
(4)重复(2) ~ (3)直到选择完用于获取统计信道相关矩阵的符号, 比如, 使用一帧的符号获取统计信道相关矩阵, 则重复(2) - (3)直到该 帧结束。
其中, 步骤 102中, 可以釆用固定权值方法、 特征向量权值方法或恒模 以由发送端获取统计信道相关矩阵后, 根据统计信道相关矩阵得到权值; 也 可以由接收端获取统计信道相关矩阵后, 向发送端反馈统计信道相关矩阵, 发送端根据该统计信道相关矩阵获取波束赋形的权值; 或者, 由接收端获取 统计信道相关矩阵后, 根据统计信道相关矩阵获取波束 J武形的权值或权值索 引, 反馈给发送端, 发送端根据接收端反馈的权值或权值索引得到波束娬形 的权值。 ( 1 ) 固定权值方法
在预先设定的向量集合^, = 1,2,..·,Μ中按照权值选择原则根据两个天线 子阵列的统计信道相关矩阵 Rrfflil, ^选取向量作为各天线子阵列的 MIMO 波束赋形的权值, 其中, ^, = 1,2,..·,Μ是一个复数列向量。
优选地, 权值选择原则可以基于两个子阵列的统计信道相关矩阵 , ,2来获取相应的权值;
优选地,第 1个天线子阵列可以基于公式 Pi= max det(^ Rrfflil )来获得 相应的权值,即选择使得 det(^ Rrfflil )最大的向量 作为第 1个天线子阵列的 权值,第 2个天线子阵列可以基于公式 。pi= max det(^ Rrffli2 )来获得相应的 权值, 即选择使得 det(^ R 2 )最大得向量 作为第 2个天线子阵列的权值, 其中, det表示求矩阵的行列式值, ^和 ^为最终的统计信道相关矩阵。
(2)特征向量权值方法
特征向量权值方法的步骤包括:
(21 )对最终的统计信道相关矩阵 Rrfflil进行特征值分解, 且将最大特征 值对应的特征向量 作为第 1个天线子阵列的权值,其中, 是 Γχΐχΐ的向量, Γχΐ为第 1个天线子阵列发送天线数目;
(22)对最终的统计信道相关矩阵 Rrffli2进行特征值分解, 且将最大特征 值对应的特征向量 ^作为第 2个天线子阵列的权值, 其中, ^是 Γχ2χ1的向 量, Γχ2为第 2个天线子阵列发送天线数目。
(3) 恒模特征向量方法
恒模特征向量方法的步骤包括:
(31 )对最终的统计信道相关矩阵 Rrfflil进行特征值分解, 且将最大特征 值对应的特征向量^做恒模处理 =/( )后的向量 作为第 1个天线子阵列 的权值, 其中, 是 Γχΐχΐ的向量, Γχΐ为第 1个天线子阵列发送天线数目, /是一种恒模操作, 它使得操作后的向量每个元素的绝对值相等。
(32)对最终的统计信道相关矩阵 Rrffli2进行特征值分解, 且将最大特征 值对应的特征向量 2做恒模处理 2=/( 2)后的向量^2作为第 2 个天线子阵 列的权值, 其中, 2, 2是 Γχ2χ1的向量, Γχ2为第 2个天线子阵列发送天线数 目, /是一种恒模操作, 它使得操作后的向量里每个元素的绝对值相等。 本发明还提供一种双流多输入多输出波束赋形的权值获取装置, 应用于 包括发送端和接收端的无线通信系统, 发送端包括各形成一个波束的 2个天 线子阵列, 其中, 该权值获取装置用于获取各天线子阵列的发送天线到接收 端的接收天线的信道信息, 根据信道信息确定各天线子阵列的波束赋形的权 值。
其中, 所述装置包括统计信道相关矩阵获取模块和权值获取模块: 所述统计信道相关矩阵获取模块, 用于根据所述信道信息获取各天线子 阵列的统计信道相关矩阵;
所述权值获取模块, 用于根据所述统计信道相关矩阵确定各天线子阵列 的波束赋形的权值。
其中, 所述统计信道相关矩阵获取模块包括初始化单元、 更新单元和控 制单元:
所述初始化单元, 初始化各天线子阵列的统计信道相关矩阵; 确定用于 计算各天线子阵列的统计信道相关矩阵的若干个符号; 第 i个天线子阵列的 统计信道相关矩阵为 Rrffl ;
所述更新单元, 用于选择符号, 计算接收端到第 i个天线子阵列当前选 择的符号上特定载波集合上的信道相关性矩阵 =| ^(/ ^) *H ) ; 更新
1
第 个天线子阵列的统计信道相关矩阵^ ^ +^ ^. , 其中, H' W是 第 i个天线子阵列的发送天线到接收端天线上特定载波集合中第 A个子载波 的信道系数矩阵, N表示特定载波集合上包含载波的数目, 《 为常数, 表示 第 i个天线子阵列的第 A个子载波相关矩阵的权重, 为常量, 且 ο≤ ?,.≤ι ; 上标 H是对矩阵求共轭转置;
所述控制单元,用于控制所述更新单元重复更新所述统计信道相关矩阵, 直到选择完用于计算各天线子阵列的统计信道相关矩阵的所述若干个符号。
其中, 所述更新单元, 用于按如下方式获取所述 H' ( t) :
所述更新单元测量接收端的天线到第 i个天线子阵列的上行信道的信道 系数矩阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 7¾列的所述 H k) ; 或者, 接收端测量发送端的第 i个天线子阵列到接收端的接收天线的信 道系数矩阵并反馈给更新单元, 所述更新单元根据接收端反馈的所述信道系 数矩阵得到 R 行: ·列的所述 H' ( t);
其中, ·为第 i个天线子阵列的发送天线数目, R 是接收端的接收天线 数。
其中, 所述权值获取模块, 用于按如下方式获取各天线子阵列的权值: 在预设的向量集合 ^.,_/· = 1, 2, . · ·,Μ中, 选择使得 det«Rrffli )最大的向量 作为第 i个天线子阵列的波束赋形的权值, det表示求矩阵的行列式值;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量 作为第 i个天线子阵列的波束赋形的权值, 其中, 是 Γχ χΐ的向量, ·为第 i个天线子阵列的发送天线数目;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量^做恒模处理后得到的向量 ^ = 作为第 i 个天线子阵列的波束赋形的权值, 其中, ^ 是 Γχ χΐ的向量, 是对向 量 进行恒模操作。
本发明还提供一种双流 ΜΙΜΟ波束赋形数据发送装置, 如示意图 4和 5 所示, 包括:
ΜΙΜΟ编码模块: 将数据流进行 ΜΙΜΟ编码, 得到编码后的数据流, 包 括, 进行空间分集编码或者空间复用编码;
权值估计模块: 用于确定第 1个天线子阵列和第 2个天线子阵列的波束 赋形的权值; 还用于在确定第 1个天线子阵列和第 2个天线子阵列的波束赋 形的权值前, 判断是否需要更新权值, 如果需要, 则根据本发明方法实施例 中提到的方法确定第 1个天线子阵列和第 2个天线子阵列的波束赋形的权值; 否则, 使用先前保留的权值作为第 1个天线子阵列和第 2个天线子阵列的权 值; 其中, 确定第 1个天线子阵列的权值为^^ ...^ , 第 2个天线子阵 列的权值为 ^ = (w2 1...w2 7¾2)T , Γχΐ, Γχ2分别是第 1个天线子阵列和第 2个天线子 阵列发送天线数; 波束赋形模块: 用于使用所述第 1个天线子阵列和第 2个天线子阵列的 波束赋形的权值对所述编码后的数据流进行加权, 将所述加权后的数据流在 相应的天线子阵列发送出去。
在 MIMO编码模块对所述数据流进行空间分集编码时, 所述波束赋形模 块, 用于在第一个时刻或子载波, 在第 1个天线子阵列第 根天线上发送数据 w A , 在第 2 个天线子阵列在第 _/·根天线上发送数据 在第二个时刻或 子载波, 在第 1个天线子阵列第 根天线上发送数据 第 2个天线子阵 列在第 _/·根天线上发送数据^ ; 或者, 同一个时刻或子载波, 在第 1 个天 线子阵列的第 i根天线上发送数据 wlA , 第 2个天线子阵列的第 j根天线上发 送数据 w2 ;; 其中, = 1,..·,Γχ1,_/· = 1 .·,Γχ2, 和 为待发送的数据流。
ΜΙΜΟ编码模块对所述数据流进行空间复用编码时,所述波束赋形模块, 用于在同一个时刻或子载波,在第 1个天线子阵列第 根天线上发送数据 , 第 2个天线子阵列第 ·根天线上发送数据 w2 2,其中, = 1,..·,Γχ1, 7 = 1,···, Γχ2, sx和 为待发送的数据流。
实施例 1
本发明天线配置部分关于双极化天线的实施例。
如图 3 (a)所示, 发送端或者接收端安装了多对天线, 每对天线处于同 一平面的同一直线上。 每对天线是向两个方向极化的一对双极化天线, 如, 这对双极化天线中的一根极化天线为 +45°极化, 另外一根是 -45°极化。 其中, 处于同一极化方向的天线形成一个波束, 每根波束相当于一根虚拟天线。
实施例 2
本发明天线配置部分关于线性天线分组的实施例。
如图 3 (b)所示, 发送端或者接收端安装了多根天线, 每根天线处于同 一平面的同一直线上。 每根天线可以是向所有方向发送电磁波的全向天线, 或者是向某一角度范围发送电磁波的方向天线, 或者是向某一方向极化的单 极化天线。 将天线分成两组, 第 1个天线子阵列有 Γχΐ根天线, 第 2个天线子 阵列有 Γχ2根天线。每个天线子阵列形成一个波束,每个波束相当于一根虚拟 天线。
实施例 3
本发明信道系数获取部分关于利用信道互易性得到信道系数矩阵的实施 例。
发送端和接收端分别安装了 Γχ和 R根天线, 天线配置可以是图 3中的线 性阵列天线或者双极化天线。 接收端用部分或者全部安装的天线向发送端发 送数据流, 这个数据流可以是接收端向发送端反馈的信息, 或者导频, 或者 Sounding序列或者业务数据。 其中, 接收端发送数据流的天线数目为 Rt , 且 Rt<Rx。 第 1 个天线子阵列对上行信道进行估计, 估计出来的信道系数为 表示接收端用来发送数据的天线 ·到第 1个天线子阵列的第 根天线之 间的 t时刻第 子载波上的信道系数, 其中, i = \,'-、mj = \,''、Rt , t = - s, k = \,---,N, 7¾和 N表示用来估计权值的资源块在时域上的符号个数和频域上 的子载波个数。 表示成矩阵
Figure imgf000016_0001
同样地, 估计出第 2个天线子阵列的信道系数矩阵
... h,2 Rt(t,k) x2,\ , x2 , ) J 那么, 利用信道的互易性, 第 1个天线子阵列和第 2个天线子阵列到接 收端的下行信道矩阵为
Figure imgf000016_0002
, r表示矩阵或者向量的转置。 发送端的权值估计模块根据 (H ))T、 (H ( ))T获得权值。
实施例 4
本发明信道系数矩阵获取部分关于下行反馈得到信道系数矩阵的实施 例。
发送端和接收端分别安装了 Γχ和 R根天线, 天线配置可以是图 3中的线 性阵列天线或者双极化天线。 接收端估计第 1个天线子阵列到接收端的下行 链路的信道系数 .(^),表示第 1个天线子阵列的天线 ·到接收端第 根天线之 间的 t时刻第 A子载波上的信道系数, 其中, ' = 1,.. = 1, t = \,---,Ts, k = \,---,N, 7¾和 N表示用来估计权值的资源块在时域上的符号个数和频域上 的子载波个数。 表示成矩阵形式为
Figure imgf000017_0001
同样地, 估计出 2个天线子阵列的信道系数矩阵
Figure imgf000017_0002
接收端要么利用 H (a)和 H (a)获得波束赋形的权值, 或者权值的索 引, 或者获得统计信道相关矩阵, 然后反馈给发送端; 要么将 H ( )和 HD 2 L(t,k) , 或者量化的 ^( )和 ^(^)反馈发送端, 发送端利用 H ( )和 HD 2 L{t,k) , 或者量化的 ii t,k、和 d^k)获取波束赋形的权值。
实施例 5
本发明 MIMO编码部分关于空间分集方案一编码的实施例。
发送端的发送物理天线被分成两组,每个天线子阵列被虚拟成一个波束, 每个波束是一根虚拟天线。 发送的数据流是 和 波束赋形权值为:
Figure imgf000017_0003
空间分集时,虚拟天线 1在两个相邻时刻(或子载波)分别发送数据流 ^ 和 虚拟天线 2在两个相邻时刻(或子载波)分别发送数据流 和 。 即, 第一个时刻 (或子载波) , 映射到物理天线的情况如图 6 (a)所示, 第 1个 天线子阵列第 根天线上发送数据 和第 2个天线子阵列在第 ·根天线上发 送数据 第二个时刻 (或子载波) , 映射到物理天线的情况如图 6 (c) 所示, 第 1个天线子阵列第 根天线上发送数据- ;和第 2个天线子阵列在 第 _/·根天线上发送数据 w2;. , 其中, = 1,..·,Γχ1,_/· = 1,···,Γχ2。
实施例 6
本发明 ΜΙΜΟ编码部分关于空间分集方案二编码的实施例。
发送端的发送物理天线被分成两组,每个天线子阵列被虚拟成一个波束, 每个波束是一根虚拟天线。 发送的数据流是 波束赋形权值为:
Figure imgf000018_0001
空间分集时, 虚拟天线 1和虚拟天线 2在同一时刻 (或子载波)分别发 送数据流 和 , 即, 同一个时刻(或子载波), 映射到物理天线的情况如图 6 (b)所示, 第 1个天线子阵列第 根天线上发送数据 和第 2个天线子阵 列在第 _ /根天线上发送数据 w2;. , 其中, = 1,···,Γχ1, j = \ '、Tx2。
实施例 7
本发明 MIMO编码部分关于空间复用编码的实施例。
发送端的发送物理天线被分成两组,每个天线子阵列被虚拟成一个波束, 每个波束是一根虚拟天线。 发送的数据流是 和 波束赋形权值为:
Figure imgf000018_0002
空间复用时, 虚拟天线 1和虚拟天线 2在同一时刻 (或子载波)分别发 送数据流 和 , 即, 同一个时刻(或子载波), 映射到物理天线的情况如图 6 (a)所示, 第 1个天线子阵列第 根天线上发送数据 和第 2个天线子阵 列在第 _/·根天线上分别发送数据 w2;. , 其中, = 1 .·,Γχ1, j = \,''-,Tx2。
实施例 8
本发明权值获取部分关于固定权值方法获取权值的实施例。
发送端预先设定的向量集合 ^, = 1,2, 其中, ^, = l,2,...,N复数向量, 其中 Γχ为发送天线数目。
发送端的权值获取模块, 判决是否需要更新权值, 如果不需要更新权值, 那么使用系统预先配置好的权值或者上一次保留下来的权值。 如果需要更新 权值, 那么利用固定权值方法获取权值, 其步骤包括,
( 1 )初始化每个天线子阵列的统计信道相关矩阵 Rrfflil,Rrffli2 , 选取用于统 计信道相关矩阵的符号索引;
( 2 )分别计算该接收端到每个天线子阵列当前符号索引对应符号上特定 和
Figure imgf000019_0001
目, H ™ ( 分别是第 1个天线子阵列和第 2个天线子阵列里的到接收端 天线上特定载波集合中第 A个子载波的信道系数矩阵;
( 3 )分别将两个子阵列的统计信道相关矩阵更新为 Rrffl =
和 ^ = ,2+(l-A) , Α,Α为常量且 0≤A,A≤1, 当前符号索引加 1。
(4)重复(2) ~ (3)直到本帧结束。
(5)第 1个天线子阵列可以基于公式^ max det(^ Rrfflil )来获得相 应的权值,第 2个天线子阵列可以基于公式 。pi= max det(^ Rrffli2 )来获得相 应的权值, 其中, det表示求矩阵的行列式值。
实施例 9
本发明权值获取部分关于特征向量权值方法获取权值的实施例。
发送端的值获取模块, 判决是否需要更新权值, 如果不需要更新权值, 那么使用系统预先配置好的权值或者上一次保留下来的权值。 如果需要更新 权值, 那么利用固定权值方法获取权值, 其步骤包括,
( 1 )初始化每个天线子阵列的统计信道相关矩阵 Rrfflil,Rrffli2 , 选取用于统 计信道相关矩阵的符号索引
( 2 )分别计算该接收端到每个天线子阵列当前符号索引对应符号上特定 和
Figure imgf000020_0001
载波数目, 分别是第 1个天线子阵列和第 2个天线子阵列里的发送天线 到接收端天线上特定载波集合中第 A个子载波的信道系数矩阵。
( 3 )分别将两个子阵列的统计信道相关矩阵更新为 Rrffl =
和 R^2= ^2+(l- Α:^, Α,Α为常量且 0≤A,A≤1, 当前符号索引加 1。
(4)重复(2) ~ (3 )直到本帧结束。
( 5 )对统计信道相关矩阵 Rrfflil进行特征值分解, 且将最大特征值对应的 特征向量 作为第 1 个天线子阵列的权值, 其中, 是 Γχΐχΐ的向量, Γχΐ为 第 1个天线子阵列发送天线数目。
(6)对统计信道相关矩阵 Rrffli2进行特征值分解, 且将最大特征值对应的 特征向量 ^作为第 2个天线子阵列的权值, 其中, ^是 Γχ2χ1的向量, Γχ2为 第 2个天线子阵列发送天线数目。
实施例 10
本发明权值获取部分关于恒模特征向量方法获取权值的实施例。
发送端的值获取模块, 判决是否需要更新权值, 如果不需要更新权值, 那么使用系统预先配置好的权值或者上一次保留下来的权值。 如果需要更新 权值, 那么利用固定权值方法获取权值, 其步骤包括,
( 1 )初始化每个天线子阵列的统计信道相关矩阵 Rrfflil,Rrffli2 , 选取用于统 计信道相关矩阵的符号索引。
( 2 )分别计算该接收端每个天线子阵列当前符号索引对应符号上特定载 波 集 合 上 的 信 道 相 关 性 矩 阵 :
Figure imgf000020_0002
和 R2
Figure imgf000021_0001
*HR 2 xTx2{k) , 其中, N表示特定载波集合上包含的载波数目, 分别是第 1个天线子阵列和第 2个天线子阵列到接收端天线 上特定载波集合中第 个子载波的信道系数矩阵。
( 3 )分别将两个子阵列的统计信道相关矩阵更新为 Rrffl =
和 ^ = ,2+(l-A) , Α,Α为常量且 0≤A,A≤1, 当前符号索引加 1。
(4)重复(2) ~ (3)直到本帧结束。
( 5 )对统计信道相关矩阵 Rrfflil进行特征值分解, 且将最大特征值对应的 特征向量^做恒模处理 =/( )后的向量 作为第 1个天线子阵列的权值, 其中, ^, 是 Γχΐχΐ的向量, Γχΐ为第 1 个天线子阵列发送天线数目, /是一 种恒模操作 , 它使得操作后的向量每个元素的绝对值相等。
( 6 )对统计信道相关矩阵 Rrffli2进行特征值分解, 且将最大特征值对应的 特征向量 2做恒模处理 W2 = /( 2)后的向量 2作为第 2个天线子阵列的权值, 其中, 2, 2是 Γχ2χ1的向量, Γχ2为第 2个天线子阵列发送天线数目, /是一 种恒模操作, 它使得操作后的向量里每个元素的绝对值相等。
实施例 11 本发明整个方案的一个具体实施例。
发送端为基站,它有 2Γχ根天线,天线排列在一个线性阵列上的全向天线, 被分成两个组, 每个组 Γχ根天线。 基站预先设定的向量集合 , = 1,2, 其中, ^, = l,2,...,N是 Γχχΐ维的复数向量, 其中 Γχ为发送天线数目。
该基站下面有 Μ个用户, 每个用户有两根天线。 基站对每个用户进行如 下操作 , 以实现双流 ΜΙΜΟ波束 U武形。
将基站发送给用户的数据流输入 ΜΙΜΟ编码模块, ΜΙΜΟ编码模块将数 据流分成两两一组, 记为 , 对其进行空间分集编码 = 1 ,… , / 2 , N为数据流的长度。 在权值估计模块中计算两个天线子阵列的权值 和 ^ , Wx和 ^是 Γχχΐ的 向量。 权值估计模块判决是是否需要更新权值, 如果不需要更新权值, 那么 使用系统预先配置好的或者上一次保留下来的权值。 如果需要更新权值, 那 么利用固定权值方法获取权值, 其步骤包括,
( 1 )初始化每个天线子阵列的统计信道相关矩阵 Rrfflil,Rrffli2 , 选取用于统 计信道相关矩阵的符号索引。
( 2 )分别计算该接收端到每个天线子阵列当前符号索引对应符号上特定 和
Figure imgf000022_0001
载波数目, 分别是第 1个天线子阵列和第 2个天线子阵列到接收端天线 上特定载波集合中第 个子载波的信道系数矩阵。
( 3 )分别将两个子阵列的统计信道相关矩阵更新为 Rrffl =
和 ^ = ,2+(l-A) , Α,Α为常量且 0≤A,A≤1, 当前符号索引加 1。
(4)重复(2) ~ (3)直到本帧结束。
(5)第 1个天线子阵列可以基于公式^ max det(^ Rrfflil )来获得相 应的权值 ,第 2个天线子阵列可以基于公式^ max det(^ R^2^)来获得 相应的权值 其中, det表示求矩阵的行列式值。 得到权值后, 用权值对数据流进行加权, 加权后, 在时间对的第一个符 号时间上,第 1个天线子阵列和第 2个天线子阵列第 ·根天线上分别发送数据 wwA2。 在第二个符号时间上, 第 1个天线子阵列和第 2个天线子阵 列第 _/根天线上分别发送数据 -^ 2和^ , 其中, j = l,''、Tx, i = \,'--,Ns/2。
实施例 12
本发明整个方案的另一个具体实施例。
发送端为基站, 它有 Γχ对双极化天线, 天线排列在一个线性阵列上。 该 基站下面有 Μ个用户,每个用户有两根天线。基站对每个用户进行如下操作, 以实现双流 ΜΙΜΟ波束赋形。
将基站发送给用户的数据流输入 ΜΙΜΟ编码模块, ΜΙΜΟ编码模块将数 据流分成两两一组,记为 , ,对其进行空间分集编码「¾ /=1 ---,N /2,N 为数据流的长度。
在权值估计模块中计算两个天线子阵列的权值 和 ^ , 和 w2是一个
Γχχΐ的向量。权值估计模块判决是是否需要更新权值, 如果不需要更新权值, 那么使用系统预先配置好的或者上一次保留下来的权值。如果需要更新权值, 利用特征向量方法获取权值, 其步骤包括,
( 1 )初始化每个天线子阵列的统计信道相关矩阵 Rrfflil,Rrffli2 , 选取用于统 计信道相关矩阵的符号索引
( 2 )分别计算该接收端到每个天线子阵列当前符号索引对应符号上特定 载 波集合上 的 信道相 关 性矩 阵 :
Figure imgf000023_0001
Figure imgf000023_0002
其中, N表示特定载波集合上包含的载波数目, 分别是第 1个天线子阵列和第 2个天线子阵列到接收端天线 上特定载波集合中第 个子载波的信道系数矩阵。
( 3 )分别将两个子阵列的统计信道相关矩阵更新为 Rrffl =
和 ^ = ,2+(l-A) , Α,Α为常量且 0≤A,A≤1, 当前符号索引加 1。
(4)重复(2) ~ (3)直到本帧结束。
( 5 )对统计信道相关矩阵 Rrfflil进行特征值分解, 且将最大特征值对应的 特征向量 作为第 1 个天线子阵列的权值, 其中, 是 Γχΐχΐ的向量, Γχΐ为 第 1个天线子阵列发送天线数目。
( 6 )对统计信道相关矩阵 Rrffli2进行特征值分解, 且将最大特征值对应的 特征向量 ^作为第 2个天线子阵列的权值, 其中, ^是 Γχ2χ1的向量, Γχ2为 第 2个天线子阵列发送天线数目。
得到权值后, 用权值对数据流进行加权。 加权后, 第 1个天线子阵列和 第 2个天线子阵列第 j根天线在同第一符号时间上分别发送^ .¾, 2Α2, 其 中, = 1,···, Γχ, i = \,"',Nsl2。
实施例 13 本发明整个方案的一个般化的实施例。 发送端为基站,它有 2Γχ根天线,天线是线性阵列天线,或者双极化天线。 该基站下面有 Μ个用户,每个用户有 R根天线。基站对每个用户进行如下操 作, 以实现双流 ΜΙΜΟ波束赋形。
基站将发送给用户的数据流输入 ΜΙΜΟ编码模块。 ΜΙΜΟ编码后的数据 流为^=( ,¾) 其中, i = \,"',Nsl2 , ^为数据流的总长度。
用权值估计模块获取第 1 个天线子阵列和第 2 个天线子阵列的权值 Wx^{Wu,---,WTxl)T ,W2^{Wl2,---,WTx2 , ,f 2是 Γχχΐ的矩阵。
得到权值后, 用权值对数据流进行加权, 加权后, 第 1个天线子阵列和 第 2 个天线子阵列的第 j 根天线在同第一符号时间上分别发送发送^ 1 和 Wj2xin , 其中, = 1,···, Γχ, i = \,"',Nsl2。
工业实用性
釆用本发明所述的方法和装置, 可以得到双流 MIMO波束赋形的权值, 并且实现 MIMO与波束赋形的合理结合, 从而最大限度地提高系统的性能。

Claims

权 利 要 求 书
1、 一种双流多输入多输出波束赋形的权值获取方法,应用于包括发送 端和接收端的无线通信系统, 发送端的天线阵列包括各形成一个波束的 2个 天线子阵列, 其中, 按如下方式获取各天线子阵列的波束赋形的权值:
对任一天线子阵列, 获取该天线子阵列的发送天线到接收端的接收天线 的信道信息, 根据该信道信息确定该天线子阵列的波束赋形的权值; 所述天 线子阵列包括第 1个天线子阵列和第 2个天线子阵列。
2、 如权利要求 1所述的方法, 其中, 所述对任一天线子阵列, 获取该 天线子阵列的发送天线到接收端的接收天线的信道信息, 根据该信道信息确 定该天线子阵列的波束赋形的权值包括:
根据所述信道信息获取各天线子阵列的统计信道相关矩阵;
根据所述统计信道相关矩阵确定各天线子阵列的波束赋形的权值。
3、 如权利要求 2所述的方法,其中, 所述获取各天线子阵列的统计信 道相关矩阵包括:
初始化步骤: 初始化各天线子阵列的统计信道相关矩阵; 确定用于计算 各天线子阵列的统计信道相关矩阵的若干个符号; 第 i个天线子阵列的统计 信道相关矩阵为 Rrffl ;
更新步骤, 选择符号, 计算接收端到第 i个天线子阵列当前选择的符号 上特定载波集合上的信道相关性矩阵 =| (H ))ff *H ) ; 更新第 i个天
二 1
线子阵列的统计信道相关矩阵 Rrffl = A.R . +(l-A.) , 其中, H'W是第 i个天 线子阵列的发送天线到接收端天线上特定载波集合中第 A个子载波的信道系 数矩阵, N表示特定载波集合上包含载波的数目, 《 为常数, 表示第 i个天 线子阵列的第 A个子载波相关矩阵的权重, 为常量, 且 0≤ ?,.≤1; 上标 H是 对矩阵求共轭转置;
控制步骤, 重复所述更新步骤, 直到选择完用于计算各天线子阵列的统 计信道相关矩阵的所述若干个符号。
4、 如权利要求 3所述的方法, 其中, 所述更新步骤中, 根据如下方式 获取所述 H'(t) : 发送端测量接收端的天线到第 i个天线子阵列的上行信道的信道系数矩 阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 ·列的所述 H' ( t) ;
或者, 接收端测量发送端的第 i个天线子阵列到接收端的接收天线的信 道系数矩阵并反馈给发送端, 发送端根据接收端反馈的所述信道系数矩阵得 到 Rx行 Txi列的所述 H'' (k);
其中, ·为第 i个天线子阵列的发送天线数目, R 是接收端的接收天线 数。
5、 如权利要求 2所述的方法,其中, 所述根据统计信道相关矩阵确定 各天线子阵列的波束赋形的权值包括:
在预设的向量集合 ^.,_/· = 1,2,.··,Μ中, 选择使得 det«Rrffli )最大的向量 作为第 i个天线子阵列的波束赋形的权值, det表示求矩阵的行列式值;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量 作为第 i个天线子阵列的波束赋形的权值, 其中, 是 Γχ χΐ的向量, ·为第 i个天线子阵列的发送天线数目;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量 ^做恒模处理后得到的向量 ^ = fc )作为第 i 个天线子阵列的波束赋形的权值, 其中, ^ 是 Γχ χΐ的向量, 是对向 量^进行恒模操作。
6、 一种双流多输入多输出波束赋形数据发送方法, 其中, 包括: ΜΙΜΟ编码步骤, 对数据流进行多输入多输出 ( ΜΙΜΟ )编码, 得到编 码后的数据流;
权值估计步骤, 根据权利要求 1至 5任一所述方法确定第 1个天线子阵 列和第 2个天线子阵列的波束赋形的权值;
波束赋形步骤, 使用所述第 1个天线子阵列和第 2个天线子阵列的波束 赋形的权值对所述编码后的数据流进行加权, 将所述加权后的数据流在相应 的天线子阵列发送出去。
7、 如权利要求 6所述的方法, 其中,
所述 ΜΙΜΟ编码步骤中 ,所述对数据流进行 ΜΙΜΟ编码是指对数据流进 行空间分集编码或者空间复用编码。
8、 如权利要求 6所述的方法, 其中,
所述权值估计步骤中, 确定第 1个天线子阵列和第 2个天线子阵列的波 束赋形的权值之前, 还判断是否需要更新权值, 如果需要更新, 则根据权利 要求 1至 5任一所述方法确定第 1个天线子阵列和第 2个天线子阵列的波束 赋形的权值; 否则, 使用系统预先配置的权值或者上一次确定的权值作为第 1个天线子阵列和第 2个天线子阵列的波束 ϋ武形的权值。
9、 如权利要求 6所述的方法, 其中,
所述 ΜΙΜΟ编码步骤中, 对所述数据流进行空间分集编码;
所述权值估计步骤中, 得到第 1个天线子阵列的权值为^ = ^... 1 , 第 2个天线子阵列的权值为 ^ =(w21...w27¾2)T , Γχ1,Γχ2分别是第 1个天线子阵列 和第 2个天线子阵列发送天线数;
所述波束赋形步骤中, 在第一个时刻或子载波, 第 1个天线子阵列第 根 天线上发送的数据为 ,, 第 2 个天线子阵列在第 ·根天线上发送的数据为 w2 s2; 在第二个时刻或子载波,第 1个天线子阵列第 根天线上发送的数据为 -w 2 , 第 2个天线子阵列第 _/·根天线上发送的数据为 ;
或者, 同一个时刻或子载波, 第 1个天线子阵列的第 根天线上发送的数 据为 , 第 2个天线子阵列第 ·根天线上发送的数据为 ;
其中, /
Figure imgf000027_0001
, 和 为待发送的数据流。
10、 如权利要求 6所述的方法, 其中:
所述 ΜΙΜΟ编码步骤中, 对所述数据流进行空间复用编码;
所述权值估计步骤中, 得到第 1个天线子阵列的权值为^ = ^... 1 , 第 2个天线子阵列的权值为 ^ =(w21...w27¾2)T , Γχ1,Γχ2分别是第 1个天线子阵列 和第 2个天线子阵列发送天线数,
所述波束赋形步骤中, 同一个时刻或子载波, 第 1个天线子阵列第 根天 线上发送的数据为 ,第 2 个线子阵列在第 _/·根天线上发送的数据为 2^2; 其中, ,· = 1,..·,Γχ1, 7 = 1,···, Γχ2 , 和 为待发送的数据流。
11、 一种双流多输入多输出波束赋形的权值获取装置,应用于包括发送 端和接收端的无线通信系统,发送端包括各形成一个波束的 2个天线子阵列, 其中, 该权值获取装置用于获取各天线子阵列的发送天线到接收端的接收天 线的信道信息, 根据信道信息确定各天线子阵列的波束赋形的权值。
12、 如权利要求 11所述的装置, 其中, 所述装置包括统计信道相关矩 阵获取模块和权值获取模块:
所述统计信道相关矩阵获取模块, 用于根据所述信道信息获取各天线子 阵列的统计信道相关矩阵;
所述权值获取模块, 用于根据所述统计信道相关矩阵确定各天线子阵列 的波束赋形的权值。
13、 如权利要求 12所述的装置, 其中, 所述统计信道相关矩阵获取模 块包括初始化单元、 更新单元和控制单元:
所述初始化单元, 初始化各天线子阵列的统计信道相关矩阵; 确定用于 计算各天线子阵列的统计信道相关矩阵的若干个符号; 第 i个天线子阵列的 统计信道相关矩阵为 R
所述更新单元, 用于选择符号, 计算接收端到第 i个天线子阵列当前选 择的符号上特定载波集合上的信道相关性矩阵 =| ^(/ ^) *H ) ; 更新
二 1
第 个天线子阵列的统计信道相关矩阵^ ^ +^ ^. , 其中, H' W是 第 i个天线子阵列的发送天线到接收端天线上特定载波集合中第 A个子载波 的信道系数矩阵, N表示特定载波集合上包含载波的数目, 《 为常数, 表示 第 i个天线子阵列的第 A个子载波相关矩阵的权重, 为常量, 且 ο≤ ?,.≤ι ; 上标 H是对矩阵求共轭转置;
所述控制单元,用于控制所述更新单元重复更新所述统计信道相关矩阵, 直到选择完用于计算各天线子阵列的统计信道相关矩阵的所述若干个符号。
14、 如权利要求 12所述的装置, 其中, 所述权值获取模块, 用于按如 下方式获取各天线子阵列的权值:
在预设的向量集合 ^.,_/· = 1,2,. · ·,Μ中, 选择使得 det«Rrffli )最大的向量 作为第 i个天线子阵列的波束赋形的权值, det表示求矩阵的行列式值;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量 作为第 i个天线子阵列的波束赋形的权值, 其中, 是 Γχ χΐ的向量, ·为第 i个天线子阵列的发送天线数目;
或者,对第 i个天线子阵列的统计信道相关矩阵 Rrffl 进行特征值分解,且 将最大特征值对应的特征向量^做恒模处理后得到的向量 = /„„( )作为第 i 个天线子阵列的波束赋形的权值, 其中, ^ 是 Γχ χΐ的向量, 是对向 量^进行恒模操作。
15、 一种双流多输入多输出波束赋形数据发送装置, 包括:
ΜΙΜΟ编码模块,用于对数据流进行 ΜΙΜΟ编码,得到编码后的数据流; 权值估计模块, 用于根据权利要求 1至 5任一所述方法确定第 1个天线 子阵列和第 2个天线子阵列的波束赋形的权值;
波束赋形模块, 用于使用所述第 1个天线子阵列和第 2个天线子阵列的 波束赋形的权值对所述编码后的数据流进行加权, 将所述加权后的数据流在 相应的天线子阵列发送出去。
PCT/CN2010/070379 2010-01-27 2010-01-27 双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置 WO2011091588A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070379 WO2011091588A1 (zh) 2010-01-27 2010-01-27 双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070379 WO2011091588A1 (zh) 2010-01-27 2010-01-27 双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置

Publications (1)

Publication Number Publication Date
WO2011091588A1 true WO2011091588A1 (zh) 2011-08-04

Family

ID=44318613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070379 WO2011091588A1 (zh) 2010-01-27 2010-01-27 双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置

Country Status (1)

Country Link
WO (1) WO2011091588A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368628A (zh) * 2013-07-18 2013-10-23 西安科技大学 一种td-lte系统中基于码本的双流波束赋形方法
CN103401659A (zh) * 2013-07-18 2013-11-20 西安科技大学 一种td-lte系统中基于码本的单流波束赋形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953574A (zh) * 2005-10-18 2007-04-25 上海贝尔阿尔卡特股份有限公司 分布式基站、通信系统及其使用的信号传输方法
CN101286823A (zh) * 2007-04-12 2008-10-15 中兴通讯股份有限公司 用于多输入多输出系统的数据传输方法及数据传输系统
CN101359949A (zh) * 2007-08-01 2009-02-04 中兴通讯股份有限公司 自适应数据流模式切换方法
WO2009020903A2 (en) * 2007-08-07 2009-02-12 Cisco Technology, Inc. Method and apparatus for generalized mimo-beamforming weight estimation
US7561632B1 (en) * 2005-04-28 2009-07-14 Qualcomm Incorporated Beamforming techniques for MIMO communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561632B1 (en) * 2005-04-28 2009-07-14 Qualcomm Incorporated Beamforming techniques for MIMO communication systems
CN1953574A (zh) * 2005-10-18 2007-04-25 上海贝尔阿尔卡特股份有限公司 分布式基站、通信系统及其使用的信号传输方法
CN101286823A (zh) * 2007-04-12 2008-10-15 中兴通讯股份有限公司 用于多输入多输出系统的数据传输方法及数据传输系统
CN101359949A (zh) * 2007-08-01 2009-02-04 中兴通讯股份有限公司 自适应数据流模式切换方法
WO2009020903A2 (en) * 2007-08-07 2009-02-12 Cisco Technology, Inc. Method and apparatus for generalized mimo-beamforming weight estimation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368628A (zh) * 2013-07-18 2013-10-23 西安科技大学 一种td-lte系统中基于码本的双流波束赋形方法
CN103401659A (zh) * 2013-07-18 2013-11-20 西安科技大学 一种td-lte系统中基于码本的单流波束赋形方法
CN103401659B (zh) * 2013-07-18 2017-02-15 西安科技大学 一种td‑lte系统中基于码本的单流波束赋形方法
CN103368628B (zh) * 2013-07-18 2017-05-03 西安科技大学 一种td‑lte系统中基于码本的双流波束赋形方法

Similar Documents

Publication Publication Date Title
US9509380B2 (en) Methods for opportunistic multi-user beamforming in collaborative MIMO-SDMA
KR100809313B1 (ko) 무선 통신 시스템
US8885750B2 (en) Method and system for transmitting data using collaborative multiple input multiple output beamforming
WO2011091586A1 (zh) 多输入多输出波束赋形数据发送方法和装置
US8660060B2 (en) System and method for communications using spatial multiplexing with incomplete channel information
CN108886826A (zh) 用于无线多天线和频分双工系统的混合波束成形方法
JP2010527186A (ja) 複数入力通信システムにおいて送信されるデータを事前処理するための方法及び装置
EP2652885A1 (en) Beamforming method, apparatus for polarized antenna array and radio communication device and system thereof
JP6208370B2 (ja) チャンネル情報フィードバック方法、基地局及び端末
CN104871437A (zh) Fdd系统中信道互易性补偿方法和装置
US8391408B2 (en) Method and apparatus for spatial mapping matrix searching
WO2007036139A1 (fr) Pluralite de procedes de multiplexage de canaux d’antennes
KR20100110965A (ko) 다중 셀 다중 안테나 시스템에서 간섭을 고려한 빔포밍 방법 및 장치
CN105519029A (zh) Ofdm通信系统及信号收发方法与装置
WO2017206527A1 (zh) 一种波束赋形方法、信号发射设备以及信号接收设备
WO2013107377A1 (zh) 码本反馈方法及信号接收装置、信号发送方法及装置
WO2011124023A1 (zh) 转换装置和方法
CN102223168B (zh) 基于阵列天线和mimo联合传输波束成形方法
WO2006114030A1 (fr) Procede permettant d’augmenter la capacite dans le sens montant d’un systeme a entrees multiples et a sorties multiples du type wcdma et son appareil
WO2011091588A1 (zh) 双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置
KR20090053599A (ko) 다중 입출력 안테나를 포함하는 시분할다중화무선통신시스템에서 상향 링크 데이터 전송을 위한 송신안테나 선택과 다중 입출력 채널 추정을 위한 데이터송/수신 장치 및 방법
JP4001880B2 (ja) 空間多重伝送装置
CN102624433A (zh) 多径波束成形方法及实现多径波束成形的终端
WO2012171292A1 (zh) 一种上行mimo模式间切换方法、装置及设备
WO2011079449A1 (zh) 多输入多输出系统中提高无线发射信号质量的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844366

Country of ref document: EP

Kind code of ref document: A1