WO2017206527A1 - 一种波束赋形方法、信号发射设备以及信号接收设备 - Google Patents

一种波束赋形方法、信号发射设备以及信号接收设备 Download PDF

Info

Publication number
WO2017206527A1
WO2017206527A1 PCT/CN2017/071714 CN2017071714W WO2017206527A1 WO 2017206527 A1 WO2017206527 A1 WO 2017206527A1 CN 2017071714 W CN2017071714 W CN 2017071714W WO 2017206527 A1 WO2017206527 A1 WO 2017206527A1
Authority
WO
WIPO (PCT)
Prior art keywords
mub
codebook
matrix
signal transmitting
downlink pilot
Prior art date
Application number
PCT/CN2017/071714
Other languages
English (en)
French (fr)
Inventor
杨非
朱秋平
徐波
阙程晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017206527A1 publication Critical patent/WO2017206527A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a beamforming method, a signal transmitting device, and a signal receiving device.
  • the beamforming technology is a multi-antenna transmission technology. Its main principle is to generate a strong directional radiation pattern by using the wave interference principle, so that the main lobe of the radiation pattern is adaptively directed to the direction of the mobile terminal. Beamforming technology can compensate for signal fading and distortion introduced by factors such as space loss and multipath effect during wireless propagation, and reduce interference between co-channel users to improve communication link performance and system capacity.
  • eNB Evolved Node B
  • UE User Equipment
  • the existing beamforming method is as follows: the eNB transmits a sequence of downlink pilot symbols on all transmitting antennas, and the UE receives through different receiving antennas. a downlink pilot symbol sequence, performing pilot channel estimation on a channel between the eNB and the UE according to a downlink pilot symbol sequence, and selecting a precoding matrix that best matches a current channel condition from the precoding codebook according to a preset optimization criterion,
  • the feedback link feeds a Precoding Matrix Indicator (PMI) to the eNB. After receiving the PMI, the eNB selects a precoding codebook with reference to the PMI and performs beamforming on the downlink data.
  • PMI Precoding Matrix Indicator
  • the present application provides a beamforming method, a signal transmitting device, and a signal receiving device, which can improve the accuracy of the directional beam and reduce beam leakage between users.
  • a first aspect provides a communication system applied to a multi-antenna beamforming method, multi-antenna communication system, the signal transmitting apparatus and a signal reception apparatus are provided an antenna array, the antenna array comprising N T antennas, the method comprising: a signal transmitting apparatus acquires a downlink pilot symbol sequence and a mutually unbiased base MUB codebook; according to the MUB codebook, weighting the downlink pilot symbol sequence to obtain a downlink pilot symbol set; and transmitting a downlink pilot symbol on all antennas in a pilot weighting period Generating, so that the signal receiving device acquires a precoding matrix indication group according to the downlink pilot symbol set, wherein the N T downlink pilot symbols are transmitted on each pilot subframe through each antenna port; and the received signal receiving device sends
  • the precoding matrix indicates a group, calculates a reconstructed channel feature vector according to the precoding matrix indication group, and performs beamforming on the downlink data according to the reconstructed channel feature vector.
  • the signal transmitting device can perform uniform linear transformation on the channel, and the signal receiving device quantizes the linearly transformed equivalent channels, and the signal transmitting device averages a plurality of different quantized results to reduce reconstruction.
  • the calculation formula is as follows: among them, For the downlink pilot symbol mapped by the lth pilot resource of the i-th antenna port in the sth subframe, X l is the lth downlink pilot symbol in the downlink pilot symbol sequence, Is MUB codebook s-th MUB matrix i th element of l + 1 CART + 1 line, l is greater than or equal to 0 and less than the natural number N T, i is greater than or equal to 0 and less than the natural number N T of.
  • the signal transmitting device calculates the reconstructed channel feature vector according to the precoding matrix indication group, including:
  • the signal transmitting device determines the precoding matrix group according to the precoding matrix indication group
  • the signal transmitting device calculates the reconstructed channel matrix according to the precoding matrix group and the MUB matrix, and the calculation formula is as follows:
  • Z(t) is the reconstructed channel matrix corresponding to the tth subframe
  • Q s(t- ⁇ ) is the MUB matrix corresponding to the t- ⁇ th subframe
  • w t- ⁇ is the corresponding t- ⁇ subframe
  • Precoding matrix a conjugate symmetric matrix of w t- ⁇ , a conjugate symmetric matrix of Q s(t- ⁇ ) ;
  • the signal transmitting device performs singular value decomposition on the reconstructed channel matrix, and selects the feature vector corresponding to the largest eigenvalue as the reconstructed channel feature vector.
  • the MUB codebook is a Kerdock codebook.
  • the antenna array includes four antennas
  • the MUB codebook includes:
  • the antenna array includes at least two sets of cross-polarized antennas
  • the MUB codebook includes:
  • Q k is the kth matrix in the MUB codebook.
  • 0 2 ⁇ 2 indicates that the 2 ⁇ 2 matrix contains all elements of 0.
  • the antenna array includes at least two sets of cross-polarized antennas
  • the MUB matrix includes:
  • Q k is the kth matrix in the MUB codebook.
  • the kth Kerdock matrix in the Kerdock codebook corresponding to the four antennas.
  • the acquiring, by the signal transmitting device, the MUB codebook includes: acquiring, by the signal transmitting device, a moving speed of the signal receiving device, determining a speed interval corresponding to the moving speed, determining a quantity of the matrix according to the speed interval and a preset correspondence;
  • the transmitting device selects the MUB matrix as the MUB codebook from the preset codebook according to the number of matrices, and the preset codebook includes N T +1 MUB matrices.
  • the second aspect provides a system applied to a multi-antenna communication method of beamforming, multi-antenna communication system, the signal transmitting apparatus and a signal reception apparatus are provided an antenna array, the antenna array comprising N T antennas, the method comprising: signal receiving apparatus And performing channel estimation on a channel between the transmitting antenna array and the receiving antenna array according to the downlink pilot symbol set sent by the signal transmitting device; the signal receiving device respectively obtains a precoding matrix indication according to the channel estimation result of each pilot subframe, and And precoding the precoding matrix obtained in the pilot period as a precoding matrix indication group; the signal receiving device sends the precoding matrix indication group to the signal transmitting device, so that the signal transmitting device calculates the reconstructed channel feature vector according to the precoding matrix indication group, And shaping the downlink data according to the reconstructed channel feature vector.
  • a third aspect provides a signal transmitting apparatus having the function of implementing the signal transmitting apparatus of the first aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the signal transmitting apparatus comprising: an antenna array, a processor, a memory, and a bus; interconnected communication, the antenna array comprising N T antennas among the antenna array, a processor and a memory by a bus, wherein, by Calling the operation instruction stored in the memory, the processor is configured to: obtain a downlink pilot symbol sequence and a mutually unbiased base MUB codebook; and perform weighting on the downlink pilot symbol sequence according to the MUB codebook to obtain a downlink pilot symbol set; Transmitting a downlink pilot symbol set on all antennas in a pilot weighting period, so that the signal receiving device acquires a precoding matrix indication group according to a downlink pilot symbol set, where each antenna port is on each pilot subframe. And transmitting N T downlink pilot symbols; receiving a precoding matrix indication group sent by the signal receiving device, calculating a reconstructed channel feature vector according to the precoding matrix indication group, and performing beamforming on the downlink data according to the reconstructed channel feature vector.
  • a fourth aspect provides a signal receiving apparatus having the function of implementing the signal receiving apparatus in the second aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the signal receiving apparatus comprising: an antenna array, a processor, a memory and a bus; connection between antenna array processor and a memory by a bus N T antennas communicate with each other, comprising an antenna array, wherein, by Calling an operation instruction stored in the memory, the processor is configured to perform channel estimation on a channel between the transmitting antenna array and the receiving antenna array according to the downlink pilot symbol set sent by the signal transmitting device, where each antenna port is And receiving, by each downlink pilot subframe, N T downlink pilot symbols; respectively acquiring a precoding matrix indication according to a channel estimation result of each pilot subframe, and using the precoding matrix indication obtained in the pilot period as the precoding The matrix indicates the group; the precoding matrix indication group is sent to the signal transmitting device, so that the signal transmitting device calculates the reconstructed channel feature vector according to the precoding matrix indication group, and performs beamforming on the downlink data according to the reconstructed channel feature vector.
  • the signal transmitting device uses the MUB codebook to weight the downlink pilot symbol sequence to obtain a downlink pilot symbol set, and the signal receiving device performs channel estimation on the channel according to the downlink pilot symbol set, and obtains precoding. And indicating, the signal transmitting device calculates a reconstructed channel feature vector according to the precoding indication group, and performs beamforming on the downlink data according to the reconstructed channel feature vector. Since each matrix in the MUB codebook is composed of base vectors of equal distance, the signal transmitting device can perform uniform linear transformation on the channel, and the signal receiving device quantizes these linearly transformed equivalent channels, and the signal transmitting device has multiple pairs. The averaging of different quantization results can reduce the error between the reconstructed channel eigenvector and the main eigenvector of the real channel, thereby improving the accuracy of the directional beam and reducing the beam leakage between users.
  • FIG. 1 is a schematic diagram of a beamforming method in the prior art
  • FIG. 3(a) is a schematic diagram of an application scenario in an embodiment of the present invention.
  • FIG. 3(b) is another schematic diagram of an application scenario in an embodiment of the present invention.
  • FIG. 3(c) is another schematic diagram of an application scenario in an embodiment of the present invention.
  • FIG. 3(d) is another schematic diagram of an application scenario in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a principle of a beamforming method according to an embodiment of the present invention.
  • FIG. 5 is a signaling flowchart of a beamforming method according to an embodiment of the present invention.
  • 6(a) is a schematic diagram of transmitting pilot symbols in the prior art
  • 6(b) is a schematic diagram of transmitting pilot symbols in an embodiment of the present invention.
  • FIG. 7 is another schematic diagram of periodically transmitting pilot symbols in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a cross-polarized antenna array according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a multi-antenna communication system according to an embodiment of the present invention.
  • Channel quantization codebook A matrix or vector used to quantize a MIMO channel that has been set by a communication protocol standard.
  • a precoding codebook Precoding Codebook
  • SINR Signal to Interference Plus Noise Ratio
  • PMI codeword In the LTE system, the PMI fed back by the UE is in the precoding codebook as follows:
  • B is the precoding codebook size
  • N T is the number of antennas of the eNB
  • r is the rank of the precoding matrix
  • the PMI itself is a pre The index (i) of each codeword in the codebook.
  • Rank of feedback The rank of the precoding codebook W on which the UE feedback is based. When the rank is 1, each PMI codeword is an N T -dimensional complex sequence vector.
  • the rank of the feedback may be explicitly restricted by the eNB in the downlink signaling, or may be selected by the UE according to the current channel quality, and the rank adopted by the feedback PMI is fed back.
  • the real channel state information reflects the accurate instantaneous channel state. For the MIMO channel, it includes the channel coefficient matrix, the channel correlation matrix, the channel feature vector, etc.; the reconstructed channel state. The information refers to the result of the reconstruction of the above parameters on the base station side.
  • the CSI that the UE feeds back refers to the PMI and the Channel Quality Indicator (CQI).
  • Singular Value Decomposition (SVD) is used for the channel coefficient matrix, and the right singular vector corresponding to the largest singular value is the main eigenvector of the channel.
  • FIG. 3(a) is a schematic diagram of an application scenario of a single-cell, single-user multiple input/output (Single-User MIMO, SU-MIMO);
  • FIG. 3(b) is a schematic diagram of an application scenario of a single-cell, multi-user multiple input/output (Multi-User MIMO, MU-MIMO);
  • FIG. 3(c) is an application scenario of Coordinated Multiple Points (CoMP) and SU-MIMO;
  • Figure 3 (d) shows the application scenario of CoMP and MU-MIMO.
  • the eNB may include one or more signal transmitting devices, and the UE may include one or more signal receiving devices.
  • the antenna array provided by the signal transmitting device is also referred to as a transmitting antenna array, and the antenna may be referred to as a transmitting antenna, and the signal receiving device is disposed.
  • An antenna array is also referred to as a receiving antenna array, and an antenna thereof may be referred to as a receiving antenna.
  • the LTE protocol adopts a method of quantization feedback, that is, the UE quantizes the measured downlink channel into a precoding matrix in a limited precoding codebook, because the precoding codebook is small in scale.
  • the precoding codebook is small in scale.
  • the beamforming vector is calculated based on the downlink channel state information, and a large quantization error will result in poor beam accuracy.
  • the present invention uses the pilot weighting codebook to weight the downlink pilot symbols, and converts the channel between the base station and the terminal into multiple equivalent channels, and the terminal is equivalent to multiple equivalents.
  • Channel letter The channel estimation obtains a corresponding quantized codeword (PMI), and the base station performs channel reconstruction calculation according to the quantized codeword fed back by the terminal, obtains a reconstructed channel feature vector, and then sets a beamforming weight according to the reconstructed channel feature vector, and downlinks The data is beamformed. Since the quantization error of the single quantization result and the real channel may be large or small, the average of the plurality of channel estimation results is averaged, and the obtained result is closer to the real channel.
  • PMI quantized codeword
  • the method includes:
  • the signal transmitting device acquires a downlink pilot symbol sequence and a MUB matrix.
  • the pilot signals of the antenna ports are transmitted on the transmission resources orthogonal in the time domain, the frequency domain or the code domain, as shown in FIG. 6.
  • the signal transmitting device can acquire a sequence of downlink pilot symbols.
  • the signal transmitting device can also acquire the MUB codebook, and the MUB codebook can include at most (N T +1) MUB matrices, and each column element of the MUB matrix corresponds to a set of standard orthogonal bases.
  • N T 2 m
  • N T +1 groups of MUBs can be obtained as follows:
  • N T is the total number of antenna ports
  • N T 2 m
  • m is a natural number
  • Q s is the sth pilot weighting matrix
  • Is the element of the (i+1)th line of the (l+1)th column of the sth matrix for example Is the element of the first row of the first column of the sth matrix, It is the element of the first row of the second column of the sth matrix, and other matrix elements can be deduced by analogy, and will not be described here.
  • the signal transmitting device weights the downlink pilot symbol sequence according to the MUB matrix to obtain a downlink pilot symbol set.
  • the step 502 can be specifically implemented in the following manner:
  • the signal transmitting device weights the downlink pilot symbol sequence according to the MUB matrix to obtain a downlink pilot symbol set, and the calculation formula is as follows:
  • X l is the lth downlink pilot symbol in the downlink pilot symbol sequence
  • l is greater than or equal to 0 and less than the natural number N T
  • i is greater than or equal to 0 and less than the natural number N T of.
  • the signal transmitting device sends a downlink pilot symbol set on all antennas in a pilot weighting period.
  • each antenna port corresponding to the signal transmitting apparatus N T transmission resources on each pilot sub-frame each transmission resource can be used as pilot resources, a downlink pilot may be transmitted on each transmission resource Frequency symbol.
  • the signal transmitting device may separately map the downlink pilot symbols to the pilot resources.
  • the signal transmitting device transmits the downlink pilot symbol set to the signal receiving device in a manner of frame transmission.
  • the downlink pilot symbols included in each downlink pilot subframe may be considered as a subset of the downlink pilot symbol set.
  • the signal transmitting apparatus may transmit N T ⁇ N T downlink pilot symbols across all the antennas. If the pilot weighting period includes S pilot subframes, the number of downlink pilot symbols in the downlink pilot symbol set transmitted by the signal transmitting device is N T ⁇ N T ⁇ S, and S is an integer between 0 and N T .
  • FIG. 6(a) is a pilot transmitting manner specified by the existing LTE standard, and each antenna port separately transmits a pilot symbol x0 on orthogonal pilot resources.
  • 6(b) shows the pilot transmission method of the present invention.
  • the first column indicates R 0
  • the second column indicates R 1
  • the third column indicates R 2
  • the fourth column indicates R 3 .
  • Each antenna port can send a weighted pilot symbol on each pilot resource, and the weight is based on the antenna port number as the row number, the pilot resource sequence number is the column number, and the corresponding element is selected from the pilot weight matrix. , which is
  • the subframe in which the pilot is transmitted is exemplified by t n , t n+1 , t n+2 , . . . for the subframe t n+s
  • the signal transmitting device may perform weighting by using Q s as follows:
  • Q s the mapping relationship between pilot resources and downlink pilot symbols is as follows:
  • the mapping relationship between the pilot resource and the pilot symbol of the antenna port in the s subframe is described above.
  • the following describes the mapping relationship between the pilot symbol and the pilot resource in the pilot period, as shown in FIG.
  • the first row of squares represents R 0
  • the second row of squares represents R 1
  • the third row of squares represents R 2
  • the fourth row of squares represents R 3 .
  • Q 0 is used as the pilot weighting
  • Q 1 is used as the pilot weighting
  • the Q 2 is used as the pilot weighting
  • the weighting is sequentially performed in the subframe. use Pilot weighting.
  • the length of one round of weighting using all the matrices in the codebook is the pilot weighting period.
  • the next pilot weighting period in the subframe Use Q 1 as the pilot weighting in the subframe
  • the Q 2 is used as the pilot weighting, and other subframes can be deduced by analogy, and will not be described here.
  • the pilot weighting matrix and the subframe weighting order are not fixed correspondences, and are not limited herein.
  • the signal receiving device performs channel estimation on a channel between the transmitting antenna array and the receiving antenna array according to the downlink pilot symbol set sent by the signal transmitting device.
  • the signal reception apparatus may receive ports on each downlink subframe pilot through each antenna Up to N T downlink pilot symbols. Therefore, on each downlink pilot subframe, the signal receiving device can receive N T ⁇ N T downlink pilot symbols through all antenna ports, and then according to each downlink pilot subframe to the antenna port
  • the channel is subjected to channel estimation, and a channel matrix, that is, a channel estimation result of the pilot subframe, can be obtained.
  • the pilot period includes S subframes
  • the channel matrix group obtained by the signal receiving device can be expressed as H 1 , H 2 , . . . , H S .
  • the process of performing channel estimation by the signal receiving device according to the downlink pilot symbols is similar to the prior art, and details are not described herein again.
  • the channel matrix of the transmitting antenna array to the receiving antenna array is H'
  • the signal receiving device obtains a precoding matrix indication according to a channel estimation result of each pilot subframe, and uses a precoding matrix indication obtained in a pilot period as a precoding matrix indication group.
  • the signal receiving device may calculate the precoding matrix according to the channel matrix, and the calculation formula is as follows:
  • w s is the precoding matrix corresponding to the sth subframe
  • w i is the ith precoding matrix in the precoding codebook
  • W is the precoding codebook
  • H s is the channel matrix corresponding to the s subframe.
  • the signal receiving device may determine the precoding matrix indication corresponding to the precoding matrix, and use the precoding indication obtained in the pilot period as the precoding matrix indication group.
  • the pilot period corresponds to the pilot weighting period. If the pilot period includes S pilot subframes, the precoding matrix indication group includes S precoding indications.
  • the signal receiving device sends the precoding matrix indication group to the signal transmitting device.
  • the signal transmitting device calculates a reconstructed channel feature vector according to the precoding matrix indication group.
  • Step 507 can be specifically implemented by:
  • the signal transmitting device determines the precoding matrix according to the precoding matrix indication group, calculates the reconstructed channel matrix according to the precoding matrix group and the MUB matrix, performs singular value decomposition on the reconstructed channel matrix, and selects the eigenvector corresponding to the largest eigenvalue as the reconstructed channel. Feature vector.
  • the signal transmitting device calculates the reconstructed channel matrix according to the precoding matrix group and the MUB matrix, and the calculation formula is as follows:
  • Z(t) is the reconstructed channel matrix corresponding to the tth subframe
  • Q s(t- ⁇ ) is the MUB matrix corresponding to the t- ⁇ th subframe
  • w t- ⁇ is the precoding corresponding to the t- ⁇ subframes
  • Matrix indication a conjugate symmetric matrix of w t- ⁇
  • Is a conjugate symmetric matrix of Q s(t- ⁇ ) .
  • the second equation in this step indicates the error relationship between the reconstructed channel matrix and the real channel eigenvector, which is specifically described below:
  • Z ve (t) Due to e s and Orthogonal, Z ve (t) is 0; the error accumulation term Z ee (t) is inversely proportional to the size of the pilot weighted codebook (N T +1), so It has the greatest impact on Z(t). Z(t) is subjected to singular value decomposition to obtain the eigenvector V(t) corresponding to the largest eigenvalue, and the error between it and the eigenvector of the real channel is inversely proportional to (N T +1).
  • the signal transmitting device performs beamforming on the downlink data according to the reconstructed channel feature vector.
  • the signal transmitting device calculates the beamforming weight using the obtained reconstructed channel feature vector, and performs beamforming on the downlink data according to the beamforming weight. It should be noted that the reconstructed channel feature vector can also be used for downlink scheduling.
  • the signal receiving device may perform multiple channel estimation on the downlink channel to obtain multiple channel matrices. After the signal transmitting device performs channel reconstruction calculation on multiple channel matrices, the quantization error may be reduced, and the channel reconstruction result may be obtained. Close to the real channel, thereby improving the accuracy of the directional beam and reducing interference between users.
  • the MUB codebook is a Kerdock codebook.
  • the MUB codebook includes the following MUB matrix:
  • the MUB codebook includes the following MUB matrices:
  • Kerdock codebook only contains 0, 1, -1, j, -j elements, and the storage space requirement is small.
  • the pilot weighting operation overhead is small.
  • the transmit antenna array includes four antennas, and the matrix included in the MUB codebook is as follows:
  • a base station of 4 antenna ports is generally configured with two sets of cross-polarized antenna elements.
  • FIG. 8 is a schematic diagram of a 4-antenna port, a cross-polarized antenna array, in which antenna 0 and antenna 2 intersect, antenna 1 and antenna 3 cross, antenna 0 and antenna 1 are co-polarized antennas, antenna 2 and antenna.
  • the quantization precision of the precoding codebook for the phase difference ⁇ i between the co-polarized antennas is different from the quantization precision of the phase difference ⁇ i between the cross-polarizations.
  • the former has a minimum interval of ⁇ /4, the latter.
  • the minimum interval is ⁇ /2.
  • the matrix included in the MUB codebook is as follows:
  • Q k is the kth matrix in the MUB codebook.
  • 0 2 ⁇ 2 indicates that the 2 ⁇ 2 matrix contains all elements of 0.
  • the code is linearly transformed by using the codebook of this embodiment, which is equivalent to exchanging the channels of antenna port 1 and antenna port 2 (the antenna ports are 0, 1, 2, and 3), so that the ⁇ i of the PMI codebook is
  • the channel of the quantized co-polarized antenna becomes a channel of the quantized cross-polarized antenna. Since the quantization precision of ⁇ i is higher than ⁇ i , the channel estimation error can be reduced, thereby improving the accuracy of channel estimation.
  • the MUB codebook includes:
  • Q k is the kth matrix in the MUB codebook.
  • the kth Kerdock matrix in the Kerdock codebook corresponding to the four antennas.
  • the channel is linearly transformed by using the codebook of this embodiment, and is similar to the linear transformation of the channel by using the codebook of the previous embodiment, and details are not described herein again.
  • the codebook contains more MUB matrices, and the signal receiving device can acquire more channel estimation results, so the quantization error is smaller.
  • the present invention provides the following methods:
  • the acquiring, by the signal transmitting device, the MUB codebook may be implemented by: acquiring, by the signal transmitting device, a moving speed of the signal receiving device, determining a speed interval corresponding to the moving speed, according to the speed interval. And determining the number of matrices according to the preset correspondence relationship; the signal transmitting device selects the MUB matrix as the MUB codebook from the preset codebook according to the number of matrices, and the preset codebook includes N T +1 MUB matrices.
  • the signal transmitting device may acquire mobility information (such as positioning information, open loop link adaptive information, and the like) of the signal receiving device, thereby determining a moving speed thereof, and then determining a matrix number S according to the speed interval corresponding to the moving speed, and then determining the number of matrices S, and then Select S matrices from the preset codebook as the MUB codebook.
  • the signal transmitting device may select the first S MUB matrices as the MUB codebook.
  • the signal transmitting device can modify the length of the PMI buffer queue to S, and calculate the reconstructed channel matrix according to the S PMI and the S MUB matrices, and the calculation formula is as follows:
  • the correspondence between the speed interval and the MUB codebook can be as follows:
  • Speed interval MUB codebook [0km/h, 10km/h) Q 0 , Q 1 , Q 2 , Q 3 , Q 4 [10km/h to 20km/h) Q 0 , Q 1 , Q 2 , Q 3 [20km/h ⁇ 49km/h) Q 0 , Q 1 , Q 2 [50km/h ⁇ 120km/h] Q 0 , Q 1
  • the multi-antenna communication system in the embodiment of the present invention is introduced.
  • the multi-antenna communication system includes a signal transmitting device and a signal receiving device, and the signal is transmitted.
  • the device and signal receiving device have the functionality to implement the embodiment or alternative embodiment shown in FIG.
  • the signal transmitting device includes an antenna array 901, a processor 902, a memory 903, and a bus; the antenna array 901, the processor 902, and the memory 903 are connected to each other via a bus, wherein the processor 902 is operated by calling an operation instruction stored in the memory 903. Used to perform the following methods:
  • the indication group calculates a reconstructed channel feature vector according to the precoding matrix indication group, and performs beamforming on the downlink data according to the reconstructed channel feature vector.
  • the processor 902 is specifically configured to weight the downlink pilot symbol sequence according to the MUB codebook to obtain a downlink pilot symbol set, and the calculation formula is as follows:
  • X l is the lth downlink pilot symbol in the downlink pilot symbol sequence
  • l is greater than or equal to 0 and less than the natural number N T
  • i is greater than or equal to 0 and less than the natural number N T of.
  • the processor 902 is specifically configured to determine a precoding matrix group according to the precoding matrix indication group, calculate a reconstructed channel matrix according to the precoding matrix group and the MUB matrix, and reconstruct the channel matrix.
  • the singular value decomposition is performed, and the eigenvector corresponding to the largest eigenvalue is selected as the reconstructed channel eigenvector, wherein the formula for calculating the reconstructed channel matrix is as follows:
  • Z(t) is the reconstructed channel matrix corresponding to the tth subframe
  • Q s(t- ⁇ ) is the MUB matrix corresponding to the t- ⁇ th subframe
  • w t- ⁇ is the corresponding t- ⁇ subframe
  • Precoding matrix indication a conjugate symmetric matrix of w t- ⁇
  • Is a conjugate symmetric matrix of Q s(t- ⁇ ) .
  • the MUB codebook is a Kerdock codebook.
  • the antenna array includes four antennas
  • the MUB codebook includes:
  • the antenna array 901 includes at least two sets of cross-polarized antennas
  • the MUB codebook includes:
  • Q k is the kth matrix in the MUB codebook.
  • 0 2 ⁇ 2 indicates that the 2 ⁇ 2 matrix contains all elements of 0.
  • the antenna array 901 includes at least two sets of cross-polarized antennas
  • the MUB matrix includes:
  • Q k is the kth matrix in the MUB codebook.
  • the kth Kerdock matrix in the Kerdock codebook corresponding to the four antennas.
  • the processor 902 is specifically configured to acquire a moving speed of the signal receiving device, determine a speed interval corresponding to the moving speed, determine a number of matrices according to the speed interval and a preset correspondence, according to the number of matrices.
  • the MUB matrix is selected as the MUB codebook from the preset codebook, and the preset codebook includes N T +1 MUB matrices.
  • the signal receiving device includes:
  • the antenna array 904, the processor 905, the memory 906, and the bus; the antenna array 904, the processor 905, and the memory 906 are connected to each other by a bus.
  • the processor 905 is configured to execute the following method by calling an operation instruction stored in the memory 906. :
  • Channel estimation is performed on a channel between the transmit antenna array and the receive antenna array according to the downlink pilot symbol set sent by the signal transmitting device, where each of the downlink pilot subframes receives N T downlink guides through each antenna port. a frequency symbol; respectively, obtaining a precoding matrix indication according to a channel estimation result of each pilot subframe, and using the precoding matrix indication obtained in the pilot period as a precoding matrix indication group; and transmitting the precoding matrix indication group to the signal transmission And a device, so that the signal transmitting device calculates the reconstructed channel feature vector according to the precoding matrix indication group, and performs beamforming on the downlink data according to the reconstructed channel feature vector.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种波束赋形方法,包括:信号发射设备获取下行导频符号序列以及MUB码本,根据MUB码本对下行导频符号序列进行加权得到下行导频符号集合,在导频加权周期内在所有天线上发送下行导频符号集合,接收信号接收设备发送的预编码矩阵指示组,根据预编码矩阵指示组计算重构信道特征向量,根据重构信道特征向量对下行数据进行波束赋形,能够提高指向性波束的精度,减少用户间的波束泄露。本发明还提供一种可以实现上述波束赋形方法的信号发射设备以及信号接收设备。

Description

一种波束赋形方法、信号发射设备以及信号接收设备
本申请要求于2016年5月30日提交中国专利局、申请号为201610367706.0、发明名称为“一种波束赋形方法、信号发射设备及信号接收设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种波束赋形方法、信号发射设备及信号接收设备。
背景技术
波束赋形技术是一种多天线传输技术,其主要原理是利用波的干涉原理产生强方向性辐射方向图,使得辐射方向图的主瓣自适应地指向移动终端方向。波束赋形技术可以补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰,达到改善通信链路性能以及提高系统容量的目的。在多天线通信系统中,演进型基站(Evolved Node B,简称eNB)和用户设备(User Equipment,简称UE)分别设置有若干天线,每个发送天线的天线端口到每个接收天线的天线端口之间形成一个信道。
在采用频分双工(Frequency Division Duplexing,简称FDD)的多天线通信系统中,现有的波束赋形方法大致如下:eNB在所有发射天线上发送下行导频符号序列,UE通过不同接收天线接收下行导频符号序列,根据下行导频符号序列对eNB到UE之间的信道进行导频信道估计,按照预设优化准则从预编码码本中选择与当前信道条件最为匹配的预编码矩阵,通过反馈链路将预编码矩阵指示(Precoding Matrix Indicator,简称PMI)反馈给eNB,eNB接收PMI之后,以PMI为参考选择预编码码本,对下行数据进行波束赋形。
在MU-MIMO系统中,对于信道主特征向量所在的4维复向量空间,在长期演进(Long Term Evolution,简称LTE)R11以及之前的版本中,只定义了16个预编码矩阵,根据上述预编码矩阵计算得到的主特征向量与真实信道的主特征向量之间存在比较显著的误差,针对不同用户产生的指向性波束容易交叉,波束交叉会造成强烈的用户间干扰。
发明内容
本申请提供了一种波束赋形方法、信号发射设备以及信号接收设备,能够提高指向性波束的精度,减少用户间的波束泄露。
第一方面提供了应用于多天线通信系统的波束赋形方法,多天线通信系统中信号发射设备和信号接收设备分别设置天线阵列,天线阵列包含NT个天线,该方法包括:信号发射设备获取下行导频符号序列以及相互无偏基MUB码本;根据MUB码本,对下行导频符号序列进行加权得到下行导频符号集合;在导频加权周期内,在所有天线上发送下行导频符号集合,以使得信号接收设备根据下行导频符号集合获取预编码矩阵指示组,其中,通过每个天线端口在每个导频子帧上发送NT个下行导频符号;接收信号接收设备发送的预编码 矩阵指示组,根据预编码矩阵指示组计算重构信道特征向量,根据重构信道特征向量对下行数据进行波束赋形。以此实施方式,信号发射设备可以对信道进行均匀的线性变换,信号接收设备对这些线性变换后的等效信道进行量化,信号发射设备对多个不同的量化结果进行平均,可以减小重构信道特征向量与真实信道的主特征向量之间的误差,从而提高指向性波束的精度,减少用户间的波束泄露。
一种可能的实现方式中,在信号发射设备根据MUB码本,对下行导频符号序列进行加权得到下行导频符号集合的过程中,计算公式如下:
Figure PCTCN2017071714-appb-000001
其中,
Figure PCTCN2017071714-appb-000002
为在第s个子帧中第i个天线端口第l个导频资源映射的下行导频符号,Xl为下行导频符号序列中第l个下行导频符号,
Figure PCTCN2017071714-appb-000003
为MUB码本中第s个MUB矩阵中第l+1列第i+1行的元素,l为大于等于0且小于NT的自然数,i为大于等于0且小于NT的自然数。
进一步的,信号发射设备根据预编码矩阵指示组计算重构信道特征向量,包括:
信号发射设备根据预编码矩阵指示组确定预编码矩阵组;
信号发射设备根据预编码矩阵组以及MUB矩阵计算重构信道矩阵,计算公式如下:
Figure PCTCN2017071714-appb-000004
其中,Z(t)为第t个子帧对应的重构信道矩阵,Qs(t-τ)为第t-τ个子帧对应的MUB矩阵,wt-τ为第t-τ个子帧对应的预编码矩阵,
Figure PCTCN2017071714-appb-000005
为wt-τ的共轭对称矩阵,
Figure PCTCN2017071714-appb-000006
为Qs(t-τ)的共轭对称矩阵;
信号发射设备将重构信道矩阵进行奇异值分解,选取最大特征值对应的特征向量作为重构信道特征向量。
另一种可能的实现方式中,MUB码本为Kerdock码本。
另一种可能的实现方式中,天线阵列包含4个天线,MUB码本包括:
Figure PCTCN2017071714-appb-000007
另一种可能的实现方式中,天线阵列包含至少两组交叉极化天线,MUB码本包括:
Figure PCTCN2017071714-appb-000008
其中,Qk为MUB码本中第k个矩阵,
Figure PCTCN2017071714-appb-000009
为双天线对应的Kerdock码本中第k个Kerdock矩阵,02×2表示2×2的矩阵包含的元素均为0。
另一种可能的实现方式中,天线阵列包含至少两组交叉极化天线,MUB矩阵包括:
Figure PCTCN2017071714-appb-000010
其中,Qk为MUB码本中第k个矩阵,
Figure PCTCN2017071714-appb-000011
为四天线对应的Kerdock码本中第k个Kerdock矩阵。
另一种可能的实现方式中,信号发射设备获取MUB码本包括:信号发射设备获取信号接收设备的移动速度,确定移动速度对应的速度区间,根据速度区间以及预设对应关系确定矩阵数量;信号发射设备按照矩阵数量,从预设码本中选取MUB矩阵作为MUB码本,预设码本包含NT+1个MUB矩阵。
第二方面提供一种应用于多天线通信系统的波束赋形方法,多天线通信系统中信号发射设备和信号接收设备分别设置天线阵列,天线阵列包含NT个天线,该方法包括:信号接收设备根据信号发射设备发送的下行导频符号集合,对发送天线阵列到接收天线阵列之间的信道进行信道估计;信号接收设备分别根据每个导频子帧的信道估计结果获取预编码矩阵指示,并将导频周期内获得的预编码矩阵作为预编码矩阵指示组;信号接收设备将预编码矩阵指示组发送给信号发射设备,以使得信号发射设备根据预编码矩阵指示组计算重构信道特征向量,并根据重构信道特征向量对下行数据进行波束赋形。
第三方面提供一种信号发射设备,具有实现第一方面中信号发射设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实现方式中,该信号发射设备包括:天线阵列、处理器、存储器和总线;天线阵列、处理器和存储器之间通过总线相互连接通信,天线阵列包括NT个天线,其中,通过调用存储器存储的操作指令,处理器用于执行如下方法:获取下行导频符号序列以及相互无偏基MUB码本;根据MUB码本,对下行导频符号序列进行加权得到下行导频符号集合;在导频加权周期内,在所有天线上发送下行导频符号集合,以使得信号接收设备根据下行导频符号集合获取预编码矩阵指示组,其中,通过每个天线端口在每个导频子帧上发送NT个下行导频符号;接收信号接收设备发送的预编码矩阵指示组,根据预编码矩阵指示组计算重构信道特征向量,根据重构信道特征向量对下行数据进行波束赋形。
第四方面提供一种信号接收设备,具有实现第二方面中信号接收设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实现方式中,该信号接收设备包括:天线阵列、处理器、存储器和总线; 天线阵列、处理器和存储器之间通过总线相互连接通信,天线阵列包括NT个天线,其中,通过调用存储器存储的操作指令,处理器用于执行如下方法:根据信号发射设备发送的下行导频符号集合,对发送天线阵列到接收天线阵列之间的信道进行信道估计,其中,通过每个天线端口在每个下行导频子帧上接收NT个下行导频符号;分别根据每个导频子帧的信道估计结果获取预编码矩阵指示,并将导频周期内获得的预编码矩阵指示作为预编码矩阵指示组;将预编码矩阵指示组发送给信号发射设备,以使得信号发射设备根据预编码矩阵指示组计算重构信道特征向量,并根据重构信道特征向量对下行数据进行波束赋形。
在本申请提供的技术方案中,信号发射设备采用MUB码本对下行导频符号序列进行加权得到下行导频符号集合,信号接收设备根据下行导频符号集合对信道进行信道估计,并获取预编码指示组,信号发射设备根据预编码指示组计算重构信道特征向量,根据该重构信道特征向量对下行数据进行波束赋形。由于MUB码本中各矩阵是由距离相等的基向量组成的,因此信号发射设备可以对信道进行均匀的线性变换,信号接收设备对这些线性变换后的等效信道进行量化,信号发射设备对多个不同的量化结果进行平均,可以减小重构信道特征向量与真实信道的主特征向量之间的误差,从而提高指向性波束的精度,减少用户间的波束泄露。
附图说明
图1为现有技术中波束赋形方法的一个示意图;
图2为现有技术设置下行预编码的一个示意图;
图3(a)为本发明实施例中应用场景的一个示意图;
图3(b)为本发明实施例中应用场景的另一个示意图;
图3(c)为本发明实施例中应用场景的另一个示意图;
图3(d)为本发明实施例中应用场景的另一个示意图;
图4为本发明实施例中波束赋形方法的原理示意图;
图5为本发明实施例中波束赋形方法的一个信令流程图;
图6(a)为现有技术中发送导频符号的一个示意图;
图6(b)为本发明实施例中发送导频符号的一个示意图;
图7为本发明实施例中周期发送导频符号的另一个示意图;
图8为本发明实施例中交叉极化天线阵列的一个示意图;
图9为本发明实施例中多天线通信系统的一个示意图。
具体实施方式
为便于理解,下面先对本申请中的专业术语进行介绍:
1、信道量化码本:通信协议标准已经设定的、用于量化MIMO信道的矩阵或向量,对LTE系统而言即预编码码本(Precoding Codebook)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称SINR)量化表。
2、PMI码字:LTE系统中,UE反馈的PMI在预编码码本如下:
Figure PCTCN2017071714-appb-000012
中对应的预编码矩阵
Figure PCTCN2017071714-appb-000013
r,i∈{0,...,B-1},B是预编码码本大小,矩阵的行数NT是eNB的天线数,列数r是预编码矩阵的秩;PMI本身是预编码码本中各码字的索引(i)。
3、反馈的秩(Rank):UE反馈所基于的预编码码本W的秩。秩为1时每个PMI码字都是一个NT维复数列向量。反馈的秩可以由eNB在下行信令中显式限制UE,也可以由UE根据当前信道质量自行选择,在反馈PMI同时反馈其采用的秩。
4、导频加权码本:本发明提出的用于对多天线下行导频符号加权的矩阵集合Q={Q0,Q1,...,QL-1},L是导频加权码本大小;其中,每一个矩阵Qj,j∈{0,...,L-1}也称为一个导频加权码字。
5、信道状态信息(Channel State Information,简称CSI):真实信道状态信息反映的是准确的瞬时信道状态,对于MIMO信道,包括信道系数矩阵、信道相关矩阵、信道特征向量等;重构的信道状态信息指上述参数在基站侧的重构计算结果;在LTE系统中,UE反馈的CSI特指PMI、信道质量指示(Channel Quality Indicator,简称CQI)。
6、信道的主特征向量:将信道系数矩阵作奇异值分解(Singular Value Decomposition,简称SVD),其最大奇异值对应的右奇异向量即信道的主特征向量。
7、互为无偏的基(Mutually Unbiased Bases,简称MUB)码本。
下面对本申请的技术方案所应用的系统架构进行介绍,如图3(a)~图3(d)所示。
图3(a)为单小区,单用户多输入输出(Single-User MIMO,简称SU-MIMO)的应用场景示意图;
图3(b)为单小区,多用户多输入输出(Multiple-User MIMO,简称MU-MIMO)的应用场景示意图;
图3(c)为协同多点传输(Coordinated Multiple Points,简称CoMP),SU-MIMO的应用场景;
图3(d)为CoMP,MU-MIMO的应用场景。
其中,eNB可以包括一个或多个信号发射设备,UE可以包括一个或多个信号接收设备,信号发射设备设置的天线阵列也称为发送天线阵列,其天线可称为发送天线,信号接收设备置的天线阵列也称为接收天线阵列,其天线可称为接收天线。
由于FDD系统上下行信道不具有互易性,LTE协议采用量化反馈的方式,即UE将测量的下行信道量化为有限的预编码码本中的一个预编码矩阵,由于预编码码本规模很小,对具有4个天线端口的eNB只有16个矩阵,因此量化结果与真实信道之间存在误差,且这种量化误差可能很大,也可能较小,具有随机性。另一方面,波束赋形向量是根据下行信道状态信息计算的,较大的量化误差将导致波束精度较差。
为了解决量化误差导致波束精度不高的问题,本发明采用导频加权码本对下行导频符号进行加权,将基站到终端之间的信道变换为多个等效信道,终端对多个等效信道进行信 道估计,获得相应的量化码字(PMI),基站依据终端反馈的量化码字进行信道重构计算,获得重构信道特征向量,再根据重构信道特征向量设置波束赋形权值,对下行数据进行波束赋形。由于单次量化结果与真实信道的量化误差可能大,也可能小,因此对多个信道估计结果求平均,得到的结果更加接近真实信道。
下面对本申请提供的波束赋形方法进行详细介绍,请参阅图5,该方法包括:
501、信号发射设备获取下行导频符号序列以及MUB矩阵;
在现有LTE协议中,天线端口的导频信号是在时域、频域或码域正交的传输资源上发送的,如图6所示。在导频资源Rl(l=0,1,...,NT-1)上,下行导频符号序列可记为xl(l=0,1,...,NT-1),信号发射设备可以获取下行导频符号序列。
信号发射设备还可以获取MUB码本,MUB码本最多可以包含(NT+1)个MUB矩阵,MUB矩阵的每列元素与一组标准正交基对应。
举例来说,对于d维复向量空间,其两组标准正交基ε={e1,e2,...,ed}和F={f1,f2,...,fd}被称为MUB,当空间维数恰好是某质数的整数次幂,MUB的最大数目为(d+1)。由于eNB天线端口数为2的整数次幂:NT=2m,因此对于本实施例中的信号发射设备,可以获得NT+1组MUB,如下所示:
Figure PCTCN2017071714-appb-000014
将每一组MUB的向量按列组成矩阵:
Figure PCTCN2017071714-appb-000015
这些矩阵即构成了导频加权的MUB码本:
Figure PCTCN2017071714-appb-000016
Figure PCTCN2017071714-appb-000017
其中,NT为天线端口总数,NT=2m,m为自然数。Qs为第s个导频加权矩阵。
需要说明的是,
Figure PCTCN2017071714-appb-000018
是第s个矩阵的第(l+1)列第(i+1)行的元素,例如
Figure PCTCN2017071714-appb-000019
是第s个矩阵的第一列第一行的元素,
Figure PCTCN2017071714-appb-000020
是第s个矩阵的第二列第一行的元素,其他矩阵元素可依此类推,此处不再赘述。
可以理解的是,获取下行导频符号序列与获取MUB矩阵为两个独立的过程,并无固定先后顺序,具体执行顺序此处不作限定。
502、信号发射设备根据MUB矩阵,对下行导频符号序列进行加权得到下行导频符号集合;
其中,步骤502具体可以通过以下方式实现:
信号发射设备根据MUB矩阵,对下行导频符号序列进行加权得到下行导频符号集合,计算公式如下:
Figure PCTCN2017071714-appb-000021
其中,
Figure PCTCN2017071714-appb-000022
为在第s个子帧中第i个天线端口第l个导频资源映射的下行导频符号,Xl为下行导频符号序列中第l个下行导频符号,
Figure PCTCN2017071714-appb-000023
为MUB码本中第s个MUB矩阵中第l+1列第i+1行的元素,l为大于等于0且小于NT的自然数,i为大于等于0且小于NT的自然数。
503、在导频加权周期内,信号发射设备在所有天线上发送下行导频符号集合;
本实施例中,信号发射设备的每个天线端口在每个导频子帧上对应NT个传输资源,每个传输资源都可以作为导频资源,在每个传输资源上可以发送一个下行导频符号。信号发射设备获取下行导频符号集合之后,可以将其中的下行导频符号分别映射到导频资源。信号发射设备以分帧发送的方式,将下行导频符号集合发送给信号接收设备。每个下行导频子帧包含的下行导频符号可以认为是下行导频符号集合的一个子集。
可以理解的是,在一个导频子帧上,信号发射设备通过所有天线可以发送NT×NT个下行导频符号。若导频加权周期包含S个导频子帧,则信号发射设备发送的下行导频符号集合中下行导频符号数量为NT×NT×S,S为0到NT之间的整数。
举例来说,当信号发射设备具有4天线端口时,图6(a)为现有LTE标准规定的导频发送方式,每个天线端口在正交的导频资源上分别发送导频符号x0、x1、x2、x3。图6(b)为本发明的导频发送方式,第一列方块表示R0,第二列方块表示R1,第三列方块表示R2,第四列方块表示R3。每个天线端口在每个导频资源上可以发送加权后的导频符号,权值是以天线端口序号为行序号、导频资源序号为列序号,从导频加权矩阵中选出相应的元素,即
Figure PCTCN2017071714-appb-000024
发送导频的子帧以tn,tn+1,tn+2,...为例,对于子帧tn+s,信号发射设备可以采用Qs来进行加权,具体如下所示:在天线端口(Port)上,导频资源与下行导频符号的映射关系如下表所示:
Figure PCTCN2017071714-appb-000025
以上对第s个子帧上天线端口的导频资源与导频符号的映射关系进行了描述,下面对导频符号在导频周期内与导频资源的映射关系进行介绍,请参阅图7,第一行方块表示R0, 第二行方块表示R1,第三行方块表示R2,第四行方块表示R3。在子帧tn使用Q0作导频加权,在子帧tn+1使用Q1作导频加权,在子帧tn+2使用Q2作导频加权,依次进行加权,在子帧
Figure PCTCN2017071714-appb-000026
使用
Figure PCTCN2017071714-appb-000027
作导频加权。在上述过程中,使用了码本中的全部矩阵进行一轮加权的时长为导频加权周期。接下来,在下一个导频加权周期,在子帧
Figure PCTCN2017071714-appb-000028
使用Q1作导频加权,在子帧
Figure PCTCN2017071714-appb-000029
使用Q2作导频加权,其他子帧可依此类推,此处不再赘述。需要说明的是,导频加权矩阵与子帧加权顺序并不是固定的对应关系,具体此处不作限定。
504、信号接收设备根据信号发射设备发送的下行导频符号集合,对发送天线阵列到接收天线阵列之间的信道进行信道估计;
信号发射设备通过每个天线端口在每个下行导频子帧上发送NT个下行导频符号,与之相应的,信号接收设备通过每个天线端口在每个下行导频子帧上可以接收到NT个下行导频符号。由此可知,在每个下行导频子帧上,信号接收设备通过所有天线端口可以接收到NT×NT个下行导频符号,然后根据每个下行导频子帧对天线端口之间的信道进行信道估计,可以得到一个信道矩阵,即该导频子帧的信道估计结果。当导频周期包含S个子帧时,信号接收设备获得的信道矩阵组可以表示为H1,H2,…,HS。信号接收设备根据下行导频符号进行信道评估的过程与现有技术相似,此处不再赘述。
需要说明的是,记现有技术中发送天线阵列到接收天线阵列的信道矩阵为H′,则本实施例中的信道矩阵与上述信道矩阵的关系为Hs=H′Qs
505、信号接收设备分别根据每个导频子帧的信道估计结果获取预编码矩阵指示,并将导频周期内获得的预编码矩阵指示作为预编码矩阵指示组;
具体的,信号接收设备可以根据信道矩阵计算预编码矩阵,计算公式如下:
Figure PCTCN2017071714-appb-000030
其中,ws为第s个子帧对应的预编码矩阵,wi为预编码码本中第i个预编码矩阵,W为预编码码本,Hs为第s个子帧对应的信道矩阵,
Figure PCTCN2017071714-appb-000031
为Hs的共轭对称矩阵,
Figure PCTCN2017071714-appb-000032
为wi的共轭对称矩阵。
需要说明的是,信号接收设备根据信道矩阵获取预编码矩阵指示的过程与现有技术相似。
获取预编码矩阵之后,信号接收设备可以确定预编码矩阵对应的预编码矩阵指示,并将导频周期内获的的预编码指示作为预编码矩阵指示组。其中,导频周期与上述导频加权周期对应,若导频周期包含S个导频子帧,则预编码矩阵指示组包含S个预编码指示。
需要说明的是,由于导频加权采用的矩阵
Figure PCTCN2017071714-appb-000033
相互独立,所以每次PMI量化的误差也是独立的。
506、信号接收设备将预编码矩阵指示组发送给信号发射设备;
507、信号发射设备根据预编码矩阵指示组计算重构信道特征向量;
步骤507具体可以通过以下方式实现:
信号发射设备根据预编码矩阵指示组确定预编码矩阵,根据预编码矩阵组以及MUB矩阵计算重构信道矩阵,将重构信道矩阵进行奇异值分解,选取最大特征值对应的特征向量作为重构信道特征向量。
具体的,信号发射设备根据预编码矩阵组以及MUB矩阵计算重构信道矩阵,计算公式如下:
Figure PCTCN2017071714-appb-000034
Z(t)为第t个子帧对应的重构信道矩阵,Qs(t-τ)为第t-τ个子帧对应的MUB矩阵,wt-τ为第t-τ个子帧对应的预编码矩阵指示,
Figure PCTCN2017071714-appb-000035
为wt-τ的共轭对称矩阵,
Figure PCTCN2017071714-appb-000036
为Qs(t-τ)的共轭对称矩阵。
需要说明的是,此步骤中第二个等式表明重构信道矩阵与真实信道特征向量之间的误差关系,下面进行具体说明:
其中,
Figure PCTCN2017071714-appb-000037
Figure PCTCN2017071714-appb-000038
由于es
Figure PCTCN2017071714-appb-000039
正交,Zve(t)为0;误差累积项Zee(t)与导频加权码本的大小(NT+1)成反比,因此
Figure PCTCN2017071714-appb-000040
对Z(t)的影响最大。将Z(t)进行奇异值分解,获取最大特征值对应的特征向量V(t),其与真实信道的特征向量之间的误差与(NT+1)成反比。
508、信号发射设备根据重构信道特征向量对下行数据进行波束赋形。
信号发射设备利用得到的重构信道特征向量,计算波束赋形权值,依据波束赋形权值对下行数据进行波束赋形。需要说明的是,该重构信道特征向量还可以用于下行调度。
本实施例中,信号接收设备可以对下行信道进行多次信道估计,得到多个信道矩阵,信号发射设备对多个信道矩阵进行信道重构计算之后,可以减小量化误差,使信道重构结果接近真实信道,从而提高指向性波束的精度,减少用户间干扰。
可选的,在本申请的一个实施例中,MUB码本为Kerdock码本。
具体的,当天线数量为2时,MUB码本包括以下MUB矩阵:
Figure PCTCN2017071714-appb-000041
当天线数量为4时,MUB码本包括以下MUB矩阵:
Figure PCTCN2017071714-appb-000042
Figure PCTCN2017071714-appb-000043
Figure PCTCN2017071714-appb-000044
Kerdock码本的优点在于它只包含0,1,-1,j,-j这些元素,存储空间需求小,采用该码本加权时,导频加权运算开销小。
可选的,在本申请的另一个实施例中,发送天线阵列包含4个天线,MUB码本包含的矩阵如下:
Figure PCTCN2017071714-appb-000045
Figure PCTCN2017071714-appb-000046
Figure PCTCN2017071714-appb-000047
系统仿真结果表明,与Kerdock码本相比,这种码本在两用户配对下吞吐量性能更好。
4天线端口的基站一般配置两组交叉极化的天线单元(element)。3GPP Rel.8至Rel.11 的下行4天线Rank=1预编码码本的设计考虑了这种天线配置下的信道特征,认为对于两天线单元距离较近(典型值为1/2波长)的阵列,极化方向相同的两天线之间信道系数相关性较高,而正交的两个极化方向天线之间的信道系数相关性较低。请参阅图8,图8为4天线端口,交叉极化天线阵列示意图,其中,天线0和天线2交叉,天线1和天线3交叉,天线0和天线1为同极化天线,天线2和天线3为同极化天线。极化方向相同的两天线之间信道系数相关性较高,而正交的两个极化方向天线之间的信道系数相关性较低。在4天线Rank=1预编码码本中,有12个码字具有以下的结构:
Figure PCTCN2017071714-appb-000048
请参阅下表,预编码码本对于同极化天线之间相位差αi的量化精度,与对交叉极化之间相位差βi的量化精度不同,前者最小间隔为π/4,后者最小间隔为π/2。
Figure PCTCN2017071714-appb-000049
Figure PCTCN2017071714-appb-000050
为了提高交叉极化天线之间相位差的量化精度,可选的,在本申请的另一个实施例中,MUB码本包括的矩阵如下:
Figure PCTCN2017071714-appb-000051
其中,Qk为MUB码本中第k个矩阵,
Figure PCTCN2017071714-appb-000052
为双天线对应的Kerdock码本中第k个Kerdock矩阵,02×2表示2×2的矩阵包含的元素均为0。
具体的,采用本实施例的码本对信道进行线性变换,相当于交换了天线端口1与天线端口2的信道(天线端口为0、1、2、3),使PMI码本的αi从量化同极化天线的信道变为量化交叉极化天线的信道,由于αi比βi的量化精度更高,因此可以减少信道估计误差,从而提高信道估计的准确度。
可选的,在本申请的另一个实施例中,MUB码本包括:
Figure PCTCN2017071714-appb-000053
其中,Qk为MUB码本中第k个矩阵,
Figure PCTCN2017071714-appb-000054
为四天线对应的Kerdock码本中第k个Kerdock矩阵。
具体的,采用本实施例的码本对信道进行线性变换,与采用前一个实施例的码本对信道进行线性变换相似,此处不再赘述。与前一个实施例的码本相比,该码本包含的MUB矩阵更多,信号接收设备可以获取更多信道估计结果,因此量化误差更小。
在实际应用中,随着终端的移动速度加快,信道变化的速度会变快,若导频加权周期跨越多个信道相干时间,则在导频加权周期内测量所得信道估计结果严重偏离真实信道。为了解决移动速度过快导致信道估计结果失真,本发明提供了以下方法:
可选的,在本申请的另一个实施例中,信号发射设备获取MUB码本具体可以通过以 下方式实现:信号发射设备获取信号接收设备的移动速度,确定移动速度对应的速度区间,根据速度区间以及预设对应关系确定矩阵数量;信号发射设备按照矩阵数量,从预设码本中选取MUB矩阵作为MUB码本,预设码本包含NT+1个MUB矩阵。
具体的,信号发射设备可以获取信号接收设备的移动性信息(例如定位信息,开环链路自适应信息等),从而确定其移动速度,再根据移动速度对应的速度区间确定矩阵数量S,然后从预设码本中选取S个矩阵作为MUB码本。可选的,信号发射设备可以选取前S个MUB矩阵作为MUB码本。相应的,信号发射设备可以将PMI缓存队列的长度修改为S,根据S个PMI以及S个MUB矩阵计算重构信道矩阵,计算公式如下:
Figure PCTCN2017071714-appb-000055
需要说明的是,速度越快,矩阵数量S越少;速度越慢,矩阵数量S越多。
举例来说,速度区间与MUB码本的对应关系可以如下表所示:
速度区间 MUB码本
[0km/h,10km/h) Q0、Q1、Q2、Q3、Q4
[10km/h~20km/h) Q0、Q1、Q2、Q3
[20km/h~49km/h) Q0、Q1、Q2
[50km/h~120km/h] Q0、Q1
可以理解的是,速度区间与MUB码本的对应关系不限于以上举例,具体此处不作限定。
以上对本发明实施例中波束赋形方法进行了介绍,下面对本发明实施例中的多天线通信系统进行介绍,请参阅图9,该多天线通信系统包括信号发射设备以及信号接收设备,该信号发射设备以及信号接收设备具有实现图5所示实施例或可选实施例的功能。
信号发射设备包括:天线阵列901、处理器902、存储器903和总线;天线阵列901、处理器902和存储器903之间通过总线相互连接通信,其中,通过调用存储器903存储的操作指令,处理器902用于执行如下方法:
获取下行导频符号序列以及MUB码本;根据MUB码本,对下行导频符号序列进行加权得到下行导频符号集合;在导频加权周期内,在所有天线上发送下行导频符号集合,以使得信号接收设备根据下行导频符号集合获取预编码矩阵指示组,其中,通过每个天线端口在每个导频子帧上发送NT个下行导频符号;接收信号接收设备发送的预编码矩阵指示组,根据预编码矩阵指示组计算重构信道特征向量,根据重构信道特征向量对下行数据进行波束赋形。
可选的,在本发明的一个实施例中,处理器902具体用于根据MUB码本,对下行导频符号序列进行加权得到下行导频符号集合,计算公式如下:
Figure PCTCN2017071714-appb-000056
其中,
Figure PCTCN2017071714-appb-000057
为在第s个子帧中第l个天线端口第i个导频资源映射的下行导频符号, Xl为下行导频符号序列中第l个下行导频符号,
Figure PCTCN2017071714-appb-000058
为MUB码本中第s个MUB矩阵中第l+1列第i+1行的元素,l为大于等于0且小于NT的自然数,i为大于等于0且小于NT的自然数。
可选的,在本发明的一个实施例中,处理器902具体用于根据预编码矩阵指示组确定预编码矩阵组,根据预编码矩阵组以及MUB矩阵计算重构信道矩阵,将重构信道矩阵进行奇异值分解,选取最大特征值对应的特征向量作为重构信道特征向量,其中,计算重构信道矩阵的公式如下:
Figure PCTCN2017071714-appb-000059
其中,Z(t)为第t个子帧对应的重构信道矩阵,Qs(t-τ)为第t-τ个子帧对应的MUB矩阵,wt-τ为第t-τ个子帧对应的预编码矩阵指示,
Figure PCTCN2017071714-appb-000060
为wt-τ的共轭对称矩阵,
Figure PCTCN2017071714-appb-000061
为Qs(t-τ)的共轭对称矩阵。
可选的,在本发明的一个实施例中,MUB码本为Kerdock码本。
可选的,在本发明的一个实施例中,天线阵列包含4个天线,MUB码本包括:
Figure PCTCN2017071714-appb-000062
可选的,在本发明的一个实施例中,天线阵列901包含至少两组交叉极化天线,MUB码本包括:
Figure PCTCN2017071714-appb-000063
其中,Qk为MUB码本中第k个矩阵,
Figure PCTCN2017071714-appb-000064
为双天线对应的Kerdock码本中第k个Kerdock矩阵,02×2表示2×2的矩阵包含的元素均为0。
可选的,在本发明的一个实施例中,天线阵列901包含至少两组交叉极化天线,MUB矩阵包括:
Figure PCTCN2017071714-appb-000065
其中,Qk为MUB码本中第k个矩阵,
Figure PCTCN2017071714-appb-000066
为四天线对应的Kerdock码本中第k个Kerdock矩阵。
可选的,在本发明的一个实施例中,处理器902具体用于获取信号接收设备的移动速度,确定移动速度对应的速度区间,根据速度区间以及预设对应关系确定矩阵数量,按照矩阵数量从预设码本中选取MUB矩阵作为MUB码本,预设码本包含NT+1个MUB矩阵。
信号接收设备包括:
天线阵列904、处理器905、存储器906和总线;天线阵列904、处理器905和存储器906之间通过总线相互连接通信,其中,通过调用存储器906存储的操作指令,处理器905用于执行如下方法:
根据信号发射设备发送的下行导频符号集合,对发送天线阵列到接收天线阵列之间的信道进行信道估计,其中,通过每个天线端口在每个下行导频子帧上接收NT个下行导频符号;分别根据每个导频子帧的信道估计结果获取预编码矩阵指示,并将导频周期内获得的预编码矩阵指示作为预编码矩阵指示组;将预编码矩阵指示组发送给信号发射设备,以使得信号发射设备根据预编码矩阵指示组计算重构信道特征向量,并根据重构信道特征向量对下行数据进行波束赋形。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (18)

  1. 一种应用于多天线通信系统的波束赋形方法,所述多天线通信系统中信号发射设备和信号接收设备分别设置天线阵列,天线阵列包含NT个天线,其特征在于,所述方法包括:
    信号发射设备获取下行导频符号序列以及相互无偏基MUB码本;
    所述信号发射设备根据所述MUB码本,对所述下行导频符号序列进行加权得到下行导频符号集合;
    在导频加权周期内,所述信号发射设备在所有天线上发送所述下行导频符号集合,以使得所述信号接收设备根据所述下行导频符号集合获取预编码矩阵指示组,其中,所述信号发射设备通过每个天线端口在每个导频子帧上发送NT个下行导频符号;
    所述信号发射设备接收所述信号接收设备发送的预编码矩阵指示组,根据所述预编码矩阵指示组计算重构信道特征向量,根据所述重构信道特征向量对下行数据进行波束赋形。
  2. 根据权利要求1所述的方法,其特征在于,在所述信号发射设备根据所述MUB码本,对所述下行导频符号序列进行加权得到下行导频符号集合的过程中,计算公式如下:
    Figure PCTCN2017071714-appb-100001
    其中,
    Figure PCTCN2017071714-appb-100002
    为在第s个子帧中第i个天线端口第l个导频资源映射的下行导频符号,Xl为所述下行导频符号序列中第l个下行导频符号,
    Figure PCTCN2017071714-appb-100003
    为所述MUB码本中第s个MUB矩阵中第l+1列第i+1行的元素,l为大于等于0且小于NT的自然数,i为大于等于0且小于NT的自然数。
  3. 根据权利要求1所述的方法,其特征在于,所述信号发射设备根据所述预编码矩阵指示组计算重构信道特征向量,包括:
    所述信号发射设备根据预编码矩阵指示组确定预编码矩阵组;
    所述信号发射设备根据预编码矩阵组以及所述MUB矩阵计算重构信道矩阵,计算公式如下:
    Figure PCTCN2017071714-appb-100004
    其中,Z(t)为第t个子帧对应的重构信道矩阵,Qs(t-τ)为第t-τ个子帧对应的MUB矩阵,wt-τ为第t-τ个子帧对应的预编码矩阵,
    Figure PCTCN2017071714-appb-100005
    为wt-τ的共轭对称矩阵,
    Figure PCTCN2017071714-appb-100006
    为Qs(t-τ)的共轭对称矩阵;
    所述信号发射设备将所述重构信道矩阵进行奇异值分解,选取最大特征值对应的特征向量作为重构信道特征向量。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述MUB码本为Kerdock码本。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述天线阵列包含4个天线,所述MUB码本包括:
    Figure PCTCN2017071714-appb-100007
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述天线阵列包含至少两组交叉极化天线,所述MUB码本包括:
    Figure PCTCN2017071714-appb-100008
    其中,Qk为所述MUB码本中第k个矩阵,所述
    Figure PCTCN2017071714-appb-100009
    为双天线对应的Kerdock码本中第k个Kerdock矩阵,02×2表示2×2的矩阵包含的元素均为0。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述天线阵列包含至少两组交叉极化天线,所述MUB矩阵包括:
    Figure PCTCN2017071714-appb-100010
    其中,Qk为所述MUB码本中第k个矩阵,
    Figure PCTCN2017071714-appb-100011
    为四天线对应的Kerdock码本中第k个Kerdock矩阵。
  8. 根据权利要求1至3中任一项所述的方法,其特征在于,所述信号发射设备获取MUB码本包括:
    所述信号发射设备获取所述信号接收设备的移动速度,确定所述移动速度对应的速度区间,根据所述速度区间以及预设对应关系确定矩阵数量;
    所述信号发射设备按照所述矩阵数量,从预设码本中选取MUB矩阵作为MUB码本,所述预设码本包含NT+1个MUB矩阵。
  9. 一种应用于多天线通信系统的波束赋形方法,所述多天线通信系统中信号发射设备和信号接收设备分别设置天线阵列,天线阵列包含NT个天线,其特征在于,包括:
    信号接收设备根据信号发射设备发送的下行导频符号集合,对发送天线阵列到接收天线阵列之间的信道进行信道估计,所述信号接收设备通过每个天线端口在每个下行导频子帧上接收NT个下行导频符号;
    所述信号接收设备分别根据每个导频子帧的信道估计结果获取预编码矩阵指示,并将 导频周期内获得的预编码矩阵指示作为预编码矩阵指示组;
    所述信号接收设备将所述预编码矩阵指示组发送给所述信号发射设备,以使得所述信号发射设备根据所述预编码矩阵指示组计算重构信道特征向量,并根据重构信道特征向量对下行数据进行波束赋形。
  10. 一种信号发射设备,其特征在于,包括:
    天线阵列、处理器、存储器和总线;所述天线阵列、处理器和存储器之间通过总线相互连接通信,所述天线阵列包括NT个天线,其中,通过调用所述存储器存储的操作指令,所述处理器用于执行如下方法:
    获取下行导频符号序列以及相互无偏基MUB码本;
    根据所述MUB码本,对所述下行导频符号序列进行加权得到下行导频符号集合;
    在导频加权周期内,在所有天线上发送所述下行导频符号集合,以使得所述信号接收设备根据所述下行导频符号集合获取预编码矩阵指示组,其中,通过每个天线端口在每个导频子帧上发送NT个下行导频符号;
    接收所述信号接收设备发送的预编码矩阵指示组,根据所述预编码矩阵指示组计算重构信道特征向量,根据所述重构信道特征向量对下行数据进行波束赋形。
  11. 根据权利要求10所述的信号发射设备,其特征在于,所述处理器具体用于根据所述MUB码本,对所述下行导频符号序列进行加权得到下行导频符号集合,计算公式如下:
    Figure PCTCN2017071714-appb-100012
    其中,
    Figure PCTCN2017071714-appb-100013
    为在第s个子帧中第i个天线端口第l个导频资源映射的下行导频符号,Xl为所述下行导频符号序列中第l个下行导频符号,
    Figure PCTCN2017071714-appb-100014
    为所述MUB码本中第s个MUB矩阵中第l+1列第i+1行的元素,l为大于等于0且小于NT的自然数,i为大于等于0且小于NT的自然数。
  12. 根据权利要求10所述的信号发射设备,其特征在于,所述处理器具体用于根据预编码矩阵指示组确定预编码矩阵组,根据预编码矩阵组以及所述MUB矩阵计算重构信道矩阵,将所述重构信道矩阵进行奇异值分解,选取最大特征值对应的特征向量作为重构信道特征向量,其中,计算重构信道矩阵的公式如下:
    Figure PCTCN2017071714-appb-100015
    其中,Z(t)为第t个子帧对应的重构信道矩阵,Qs(t-τ)为第t-τ个子帧对应的MUB矩阵,wt-τ为第t-τ个子帧对应的预编码矩阵,
    Figure PCTCN2017071714-appb-100016
    为wt-τ的共轭对称矩阵,
    Figure PCTCN2017071714-appb-100017
    为Qs(t-τ)的共轭对称矩阵。
  13. 根据权利要求10至12中任一项所述的信号发射设备,其特征在于,所述MUB码本为Kerdock码本。
  14. 根据权利要求10至12中任一项所述的信号发射设备,其特征在于,所述天线阵列包含4个天线,所述MUB码本包括:
    Figure PCTCN2017071714-appb-100018
  15. 根据权利要求10至12中任一项所述的信号发射设备,其特征在于,所述天线阵列包含至少两组交叉极化天线,所述MUB码本包括:
    Figure PCTCN2017071714-appb-100019
    其中,Qk为所述MUB码本中第k个矩阵,所述
    Figure PCTCN2017071714-appb-100020
    为双天线对应的Kerdock码本中第k个Kerdock矩阵,02×2表示2×2的矩阵包含的元素均为0。
  16. 根据权利要求10至12中任一项所述的信号发射设备,其特征在于,所述天线阵列包含至少两组交叉极化天线,所述MUB矩阵包括:
    Figure PCTCN2017071714-appb-100021
    其中,Qk为所述MUB码本中第k个矩阵,
    Figure PCTCN2017071714-appb-100022
    为四天线对应的Kerdock码本中第k个Kerdock矩阵。
  17. 根据权利要求10至12中任一项所述的信号发射设备,其特征在于,所述处理器具体用于获取所述信号接收设备的移动速度,确定所述移动速度对应的速度区间,根据所述速度区间以及预设对应关系确定矩阵数量,按照所述矩阵数量从预设码本中选取MUB矩阵作为MUB码本,所述预设码本包含NT+1个MUB矩阵。
  18. 一种信号接收设备,其特征在于,包括:
    天线阵列、处理器、存储器和总线;所述天线阵列、处理器和存储器之间通过总线相互连接通信,所述天线阵列包括NT个天线,其中,通过调用所述存储器存储的操作指令,所述处理器用于执行如下方法:
    根据信号发射设备发送的下行导频符号集合,对发送天线阵列到接收天线阵列之间的 信道进行信道估计,其中,通过每个天线端口在每个下行导频子帧上接收NT个下行导频符号;
    分别根据每个导频子帧的信道估计结果获取预编码矩阵指示,并将导频周期内获得的预编码矩阵指示作为预编码矩阵指示组;
    将所述预编码矩阵指示组发送给所述信号发射设备,以使得所述信号发射设备根据所述预编码矩阵指示组计算重构信道特征向量,并根据重构信道特征向量对下行数据进行波束赋形。
PCT/CN2017/071714 2016-05-30 2017-01-19 一种波束赋形方法、信号发射设备以及信号接收设备 WO2017206527A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610367706.0A CN105959046B (zh) 2016-05-30 2016-05-30 一种波束赋形方法、信号发射设备以及信号接收设备
CN201610367706.0 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017206527A1 true WO2017206527A1 (zh) 2017-12-07

Family

ID=56910994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071714 WO2017206527A1 (zh) 2016-05-30 2017-01-19 一种波束赋形方法、信号发射设备以及信号接收设备

Country Status (2)

Country Link
CN (1) CN105959046B (zh)
WO (1) WO2017206527A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917671A (zh) * 2020-08-07 2020-11-10 北京信息科技大学 用于无线通信的装置和方法
WO2020253419A1 (zh) * 2019-06-21 2020-12-24 中兴通讯股份有限公司 一种实现波束赋形的方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105959046B (zh) * 2016-05-30 2019-05-10 上海华为技术有限公司 一种波束赋形方法、信号发射设备以及信号接收设备
CN108271265B (zh) * 2017-01-03 2023-04-07 华为技术有限公司 通信方法、基站和终端设备
CN113328769B (zh) * 2020-02-28 2022-09-02 上海华为技术有限公司 数据处理方法及其设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260234A1 (en) * 2009-04-09 2010-10-14 Motorola, Inc. Closed-loop transmission feedback in wireless communication systems
CN102035619A (zh) * 2009-09-29 2011-04-27 大唐移动通信设备有限公司 信道质量信息反馈的方法、系统和设备
US20110176581A1 (en) * 2010-01-15 2011-07-21 Motorola, Inc. Method and apparatus for pilot signal processing in a wireless communication system
CN103944687A (zh) * 2014-04-15 2014-07-23 电子科技大学 一种基于傅里叶扰动矩阵的码本设计方法
CN105959046A (zh) * 2016-05-30 2016-09-21 上海华为技术有限公司 一种波束赋形方法、信号发射设备以及信号接收设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330486B (zh) * 2007-06-21 2011-07-13 电信科学技术研究院 下行专用导频的传输方法与装置
US8699603B1 (en) * 2008-07-03 2014-04-15 Avaya Inc. Iterative precoding selection
WO2010148552A1 (zh) * 2009-06-23 2010-12-29 上海贝尔股份有限公司 Tdd系统中校准上下行互逆误差的方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260234A1 (en) * 2009-04-09 2010-10-14 Motorola, Inc. Closed-loop transmission feedback in wireless communication systems
CN102035619A (zh) * 2009-09-29 2011-04-27 大唐移动通信设备有限公司 信道质量信息反馈的方法、系统和设备
US20110176581A1 (en) * 2010-01-15 2011-07-21 Motorola, Inc. Method and apparatus for pilot signal processing in a wireless communication system
CN103944687A (zh) * 2014-04-15 2014-07-23 电子科技大学 一种基于傅里叶扰动矩阵的码本设计方法
CN105959046A (zh) * 2016-05-30 2016-09-21 上海华为技术有限公司 一种波束赋形方法、信号发射设备以及信号接收设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020253419A1 (zh) * 2019-06-21 2020-12-24 中兴通讯股份有限公司 一种实现波束赋形的方法及装置
CN111917671A (zh) * 2020-08-07 2020-11-10 北京信息科技大学 用于无线通信的装置和方法
CN111917671B (zh) * 2020-08-07 2023-11-14 北京信息科技大学 用于无线通信的装置和方法

Also Published As

Publication number Publication date
CN105959046B (zh) 2019-05-10
CN105959046A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
US11424795B2 (en) Precoding a transmission from a multi-panel antenna array
US10348373B2 (en) Method and device for quantizing and feeding back channel information and precoding data
CN108631847B (zh) 传输信道状态信息的方法、终端设备和网络设备
JP5361870B2 (ja) 複数入力通信システムにおいて送信されるデータを事前処理するための方法及び装置
US9231683B2 (en) Transform-domain feedback signaling for MIMO communication
US20190089441A1 (en) Method and system for mimo communication
US8861639B2 (en) Method for determining precoding matrix and corresponding communication methods and devices
WO2017206527A1 (zh) 一种波束赋形方法、信号发射设备以及信号接收设备
EP3963733A1 (en) Methods and apparatuses for csi reporting in a wireless communication system
KR20130006682A (ko) 정보 피드백 및 프리코딩을 위한 방법 및 장치
CN107395259B (zh) 一种二级预编码方法及装置
WO2015184927A1 (zh) 一种下行导频信号的处理方法及系统
US20200136700A1 (en) Channel Prediction for Adaptive Channel State Information (CSI) Feedback Overhead Reduction
CN101626265A (zh) 一种无线通信系统中实现下行波束赋形的方法
WO2016045524A1 (zh) 导频发送方法、信道信息测量反馈方法、发送端及接收端
KR20130032322A (ko) 프리코딩 행렬을 결정하는 방법 및 대응하는 통신 방법들 및 디바이스들
US8982973B2 (en) Correlation-matrix feedback method and system for antenna array
KR101409732B1 (ko) 다중 입력 다중 출력 시스템에서 하이 랭크 적응성 코드북을 생성 및 피드백하기 위한 방법 및 디바이스
US20120057645A1 (en) method for communicating in a network
WO2020007486A1 (en) Devices and methods for adaptively adjusting a mimo transmission scheme
WO2018032492A1 (zh) 一种下行传输方法及网络设备
EP4274112A1 (en) Channel state information feedback method and communication apparatus
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
CN107888261B (zh) 一种信道矩阵确定方法及相关设备
WO2017088658A1 (zh) 获取信道信息的方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805478

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17805478

Country of ref document: EP

Kind code of ref document: A1