WO2011091586A1 - 多输入多输出波束赋形数据发送方法和装置 - Google Patents

多输入多输出波束赋形数据发送方法和装置 Download PDF

Info

Publication number
WO2011091586A1
WO2011091586A1 PCT/CN2010/070377 CN2010070377W WO2011091586A1 WO 2011091586 A1 WO2011091586 A1 WO 2011091586A1 CN 2010070377 W CN2010070377 W CN 2010070377W WO 2011091586 A1 WO2011091586 A1 WO 2011091586A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
matrix
transmitting
antenna
channel
Prior art date
Application number
PCT/CN2010/070377
Other languages
English (en)
French (fr)
Inventor
肖华华
朱登魁
鲁照华
刘锟
张万帅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2010/070377 priority Critical patent/WO2011091586A1/zh
Priority to JP2012528214A priority patent/JP5391335B2/ja
Priority to US13/496,276 priority patent/US8767861B2/en
Priority to EP10844364.9A priority patent/EP2466761B1/en
Priority to CN201080025139.1A priority patent/CN102474315B/zh
Publication of WO2011091586A1 publication Critical patent/WO2011091586A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a downlink MIMO (Multiple Input Multiple Output) beam forming (BF) data transmitting method and apparatus.
  • a downlink MIMO Multiple Input Multiple Output
  • BF beam forming
  • Beamforming is based on the principle of adaptive antenna.
  • the antenna array is used to weight each antenna unit by advanced signal processing algorithms, so that the array can be aligned with the useful signal direction in real time, and zero point is formed in the interference direction to suppress the interference signal, thereby improving the signal.
  • Noise ratio improve system performance and increase system coverage. As shown in Figure 1.
  • MIMO is a communication system in which a plurality of antennas are respectively disposed at a transmitting end and a receiving end. It is mainly divided into two categories. When there are multiple antennas at the transmitting end or the receiving end, and the data set sent by each transmitting antenna is the same, the receiving end combines the signals that obtain multiple branches, thereby improving the reliability of the link. MIMO technology is called spatial diversity. When both the transmitting end and the receiving end are two antennas, one of the diversity encoding modes is shown in FIG. 2( a ), and the antenna 1 transmits the symbol and the - respectively at two adjacent moments (or subcarriers), and the antenna 2 The symbol sum is sent at two adjacent moments (or subcarriers).
  • the MIMO channel is equivalent to multiple parallel channels, multiple data streams can be simultaneously transmitted in parallel, which improves the data transmission rate, which is spatial multiplexing.
  • both the transmitting end and the receiving end are two antennas, one of the spatial multiplexing coding modes is shown in Fig. 2 (b), and antenna 1 and antenna 2 respectively transmit symbols and on the same frequency resources.
  • MIMO and beamforming combine to form a new technology that has both technical advantages, called MIMO beamforming, or MIMO + BF for short. It can suppress interference signals like beamforming, and improve link reliability or transmission rate like MIMO.
  • MIMO beamforming One of the structures of MIMO beamforming is shown in Figure 3.
  • the entire antenna array forms S beams, each beam being equivalent to one virtual antenna.
  • a virtual MIMO system is formed between the virtual antennas.
  • the acquisition of MIMO beamforming weight W is one of the key techniques for MIMO beamforming.
  • the accuracy and timeliness of the weight W greatly affects the performance of MIMO beamforming.
  • the technical problem to be solved by the present invention is to provide a MIMIO beamforming data transmitting method and device, which can effectively combine the two technologies of MIMO and beamforming to maximize the performance and coverage of the system.
  • the present invention provides a data transmission method for multi-input multiple-output beamforming, including:
  • the weight estimation step according to the channel information of the antenna array of the transmitting end to the antenna of the receiving end, obtains the weight of the beamforming of the JxxS dimension of the antenna array of the transmitting end fT f ⁇ .) ⁇ , where ⁇ is the number of transmitting antennas at the transmitting end, S For the number of data streams after MIMO encoding, S ⁇ Tx
  • a beamforming step of weighting the encoded data stream using the weight of the beamforming (W) TxxS , and transmitting the weighted data stream to a corresponding antenna, where the antenna transmits
  • the weight estimation step includes:
  • the obtaining a statistical channel correlation matrix of the antenna array of the transmitting end includes: an initializing step of initializing a statistical channel correlation matrix U of the antenna array of the transmitting end to determine a number of statistical channel correlation matrices for calculating an antenna array of the transmitting end Symbol
  • the updating step selecting a symbol, and calculating a channel correlation matrix R on a specific carrier set on the symbol currently selected by the receiving end to the transmitting antenna array *H(k); update statistical channel correlation
  • the matrix ⁇ ? ⁇ +(1- ?; ⁇ , where HW is the channel coefficient matrix of the A-subcarrier of the specific carrier set on the transmitting antenna to the receiving antenna of the transmitting antenna array, and N represents the carrier on the specific carrier set
  • the number, which is a constant, represents the weight of the A-subcarrier correlation matrix, 7 is a constant, and 0 ⁇ 7 ⁇ 1; the superscript H is a conjugate transpose for the matrix;
  • the control step repeats the update step until the selection
  • the plurality of symbols used to calculate a statistical channel correlation matrix of the transmit antenna array are completed.
  • the transmitting end measures the channel coefficient matrix of the uplink channel of the receiving end to the uplink channel of the transmitting end antenna array, and according to the channel reciprocity, the R row is obtained from the measured channel coefficient matrix.
  • the receiving end measures the channel coefficient matrix of the antenna array of the transmitting end to the receiving antenna of the receiving end and feeds back to the transmitting end, and the transmitting end obtains the H(t) of the Rx row ⁇ column according to the channel coefficient matrix fed back by the receiving end;
  • the uplink channel includes: a data channel for transmitting the uplink service by the receiving end, or an uplink feedback channel for the receiving end to feed back information to the transmitting end, or a channel corresponding to the sounding signal or the pilot signal sent by the receiving end to the transmitting end.
  • det represents the matrix
  • Manner 2 performing eigenvalue decomposition on the statistical channel correlation matrix R rffli , selecting feature vectors corresponding to the first S largest eigenvalues, each feature vector as a column of the matrix, forming a JxxS-dimensional complex matrix Pf, which will be used as the beam The weight of the shape;
  • the eigenvalue decomposition of the statistical channel correlation matrix R rffli is performed, and the eigenvectors corresponding to the first S largest eigenvalues are selected, and each eigenvector is used as a column of the matrix to form a complex matrix of JxxS dimensions, and the matrix is constant modulus.
  • the processing yields the weight that will be shaped as the beam, which means that the matrix ⁇ is subjected to constant modulus processing.
  • the performing MIMO encoding on the data stream refers to a logarithm Space diversity coding or spatial multiplexing coding is performed according to the stream.
  • the weight estimation step before obtaining the weight of the beamforming fT f ⁇ .) ⁇ according to the channel information of the antenna array at the transmitting end to the antenna of the receiving end, it is also determined whether the weight needs to be updated, and if an update is needed, Then, according to the channel information of the antenna array of the transmitting end to the antenna of the receiving end, the weight of the beamforming fT f ⁇ U is obtained. Otherwise, the pre-configured weight or the last determined weight is used as the weight of the beamforming. The data stream is weighted and sent.
  • the invention also provides a data transmission device for multi-input multiple-output beamforming, comprising:
  • a MIMO encoding module configured to perform MIMO encoding on the data stream to obtain the encoded data stream; and a weight estimation module, configured to acquire a beamforming right of the antenna array of the transmitting end according to the channel information of the antenna array at the transmitting end to the antenna of the receiving end antenna
  • fT f ⁇ .) ⁇ The value fT f ⁇ .) ⁇ , where ⁇ is the number of transmitting antennas at the transmitting end, and S is the number of data streams after MIMO encoding, S ⁇ Tx
  • the weight estimation module includes:
  • a statistical channel correlation matrix acquiring unit configured to acquire a statistical channel correlation matrix of the antenna array of the transmitting end according to the channel information
  • the statistical channel correlation matrix acquiring unit includes an initializing subunit, an updating subunit, and a control subunit:
  • ⁇ +(1- ?; ⁇ is the transmitting antenna of the transmitting antenna array a channel coefficient matrix of the A-subcarriers in a specific carrier set on the receiving antenna, where N represents the number of carriers included in the specific carrier set, which is a constant, indicating the weight of the A-subcarrier correlation matrix, 7 is a constant, and 0 ⁇ 7 ⁇ 1; superscript H is a conjugate transposition of the matrix; a control subunit is configured to control the update subunit to repeatedly update until the selected number of statistical channel correlation matrices for calculating the antenna array of the transmitting end are selected Symbols.
  • the update subunit is configured to obtain the foregoing according to the following manner
  • the update subunit measures a channel coefficient matrix of an antenna of the receiving end to an uplink channel of the antenna array of the transmitting end, and according to channel reciprocity, obtains the R row by the measured channel coefficient matrix
  • the receiving end measures the channel coefficient matrix of the antenna array of the transmitting end to the receiving antenna of the receiving end and feeds back to the updating subunit, and the updating subunit obtains the R row queue according to the channel coefficient matrix fed back by the receiving end.
  • the uplink channel includes: a data channel for transmitting the uplink service by the receiving end, or an uplink feedback channel for the receiving end to feed back information to the transmitting end, or a channel corresponding to the sounding signal or the pilot signal sent by the receiving end to the transmitting end.
  • det represents the matrix
  • the eigenvalue decomposition of the statistical channel correlation matrix is performed, and the eigenvectors corresponding to the first S largest eigenvalues are selected, and each eigenvector is used as a column of the matrix to form a JxxS-dimensional complex matrix Pf, which will be used as the beamforming.
  • the eigenvalue decomposition of the statistical channel correlation matrix R rffli is performed, and the eigenvectors corresponding to the first S largest eigenvalues are selected, and each eigenvector is used as a column of the matrix to form a complex matrix of JxxS dimensions, and the matrix is constant.
  • the modulo processing yields ), and the weight that will be shaped as the beam refers to the constant mode processing of the matrix ⁇ .
  • the weight estimation module is configured to use an antenna array according to a transmitting end to a receiving end antenna.
  • the weight of the MIMO beamforming can be obtained, and a reasonable combination of MIMO and beamforming can be realized, thereby maximizing the performance of the system.
  • FIG. 1 is a schematic diagram of a BF system based on a linear antenna array according to the present invention
  • FIG. 2 is a schematic diagram of a MIMO system and an encoding method thereof according to the present invention
  • FIG. 3 is a schematic diagram of a MIMO and BF hybrid system based on a linear antenna array according to the present invention
  • FIG. 4 is a schematic diagram of a type of a transmitting antenna according to the present invention
  • FIG. 5 is a schematic diagram of a MIMO beamforming device based on a linear antenna array according to the present invention
  • FIG. 6 is a schematic diagram of a transmission data flow of each physical antenna on the same time-frequency resource at the transmitting end.
  • Transmitter A device used to transmit data or information, such as a macro base station, a micro base station, and the like.
  • Receiver A device used to receive data or information, such as terminals, mobile stations, handheld devices, data cards, etc.
  • the MIMO encoding refers to forming a plurality of data streams after transforming one or more data streams.
  • MIMO encoding includes spatial diversity coding or spatial multiplexing coding.
  • the spatial diversity coding means: converting each input data stream into a conjugate of a plurality of copies and/or copies and/or a negative conjugate of the copy.
  • the spatial multiplexing coding refers to: directly outputting one or more input data streams.
  • the weight of the beamforming fT f ⁇ U is obtained according to the channel information of the antenna array of the transmitting end to the antenna of the receiving end. Otherwise, the previously reserved weight is used as the weight of the beamforming.
  • the previously reserved weight may be a pre-configured weight of the system or a weight obtained last time based on the channel information.
  • the weight of the beamforming of the TxxS dimension of the antenna array of the transmitting end is obtained according to the channel information of the antenna array at the transmitting end to the antenna of the receiving end fT f ⁇ .) ⁇ includes:
  • Step 101 Acquire a statistical channel correlation matrix of the antenna array of the transmitting end according to the channel information.
  • step 101 further includes:
  • Initializing step initializing a statistical channel correlation matrix of the antenna array of the transmitting end, U determining a plurality of symbols for calculating a statistical channel correlation matrix of the antenna array of the transmitting end;
  • the updating step is repeated until the number of symbols used to calculate the statistical channel correlation matrix of the transmitting antenna array is selected.
  • obtaining H(A) according to the following manner;
  • the transmitting end measures a channel coefficient matrix of the antenna of the receiving end to the uplink channel of the transmitting antenna array, and according to the channel reciprocity, the uplink channel of the R row JX column obtained by the measured channel coefficient matrix includes: the receiving end transmits the uplink service a data channel, or an uplink feedback channel that the receiving end feeds back information to the transmitting end, or a channel corresponding to the sounding signal or the pilot signal sent by the receiving end to the transmitting end;
  • the receiving end measures the channel coefficient matrix of the antenna array of the transmitting end to the receiving antenna of the receiving end and feeds back to the transmitting end, and the transmitting end obtains the H(t) of the Rx row ⁇ column according to the channel coefficient matrix fed back by the receiving end;
  • N represents the number of carriers included in a specific carrier set, which is a constant, and represents a weight of a channel coefficient matrix of the A-subcarrier, which is a channel coefficient matrix of the A-th subcarrier in a specific carrier set.
  • the weight of the beamforming may be obtained by using a fixed weight method, an eigenvector weight method, and a constant modulus eigenvector weight method according to the statistical channel correlation matrix R rffli .
  • the final statistical channel correlation matrix may be obtained by the transmitting end, and the sending end obtains the weight according to the statistical channel correlation matrix.
  • the final statistical channel correlation matrix may also be obtained by the receiving end, and the final is fed back to the transmitting end.
  • the transmitting end obtains the weight according to the final statistical channel correlation matrix; or, after the receiving end obtains the final statistical channel correlation matrix, obtains the weight or weight index according to the final statistical channel correlation matrix, and feeds back On the sending end, the sending end obtains the weight according to the weight or weight index fed back by the receiving end.
  • 1, 2, .., M
  • 1, 2, .., ⁇ It is a complex matrix of JxxS dimensions, where ⁇ is the number of transmitting antennas, S is the number of ⁇ encoded data streams, and S ⁇ ⁇ .
  • the weight selection principle may be based on a statistical channel correlation matrix R rffli .
  • the weight selection principle based on the statistical channel correlation matrix R rffli can be based on a formula
  • W ovt max ded JVi) , that is, the ⁇ which makes A t(W r H R ⁇ ) the largest is selected as the weight of beamforming, and det represents the determinant value of the matrix.
  • the steps of the feature vector weight method include:
  • the steps of the constant modulus feature vector method include:
  • the present invention also provides an apparatus for MIMO beamforming data transmission, as shown in FIG. 5, including:
  • the weight estimation module is configured to obtain, according to the channel information of the antenna array of the transmitting end to the antenna of the receiving end, the weight of the beamforming of the antenna array of the transmitting end, fT f ⁇ .) ⁇ , where ⁇ is the number of transmitting antennas at the transmitting end, and S is Number of data streams after MIMO encoding, S ⁇ Tx
  • the weight estimation module includes:
  • a statistical channel correlation matrix acquiring unit configured to acquire a statistical channel correlation matrix of the antenna array of the transmitting end according to the channel information
  • the statistical channel correlation matrix acquiring unit includes an initializing subunit, an updating subunit, and a control subunit:
  • N represents the number of carriers included in a specific carrier set, is a constant, represents the weight of the A-subcarrier correlation matrix, 7 is a constant, and 0 ⁇ 7 ⁇ 1; the superscript H is a conjugate transpose of the matrix;
  • a unit configured to control the update subunit to repeatedly update until the selected symbols for calculating a statistical channel correlation matrix of the transmit antenna array are selected.
  • the update subunit is configured to obtain the foregoing according to the following manner
  • the update subunit measures a channel coefficient matrix of an antenna of the receiving end to an uplink channel of the transmitting antenna array, and obtains the R row JX column from the measured channel coefficient matrix according to channel reciprocity
  • the receiving end measures the channel coefficient matrix of the antenna array of the transmitting end to the receiving antenna of the receiving end and feeds back to the updating subunit, and the updating subunit obtains the R row queue according to the channel coefficient matrix fed back by the receiving end.
  • the uplink channel includes: a data channel for transmitting the uplink service by the receiving end, or an uplink feedback channel for the receiving end to feed back information to the transmitting end, or a channel corresponding to the sounding signal or the pilot signal sent by the receiving end to the transmitting end.
  • det represents the matrix
  • the eigenvalue decomposition of the statistical channel correlation matrix is performed, and the eigenvectors corresponding to the first S largest eigenvalues are selected, and each eigenvector is used as a column of the matrix to form a JxxS-dimensional complex matrix Pf, which will be used as the beamforming.
  • the eigenvalue decomposition of the statistical channel correlation matrix R rffli is performed, and the eigenvectors corresponding to the first S largest eigenvalues are selected, and each eigenvector is used as a column of the matrix to form a complex matrix of JXXS dimensions, and the matrix is constant.
  • the modulo processing yields a weight that will be shaped as the beam.
  • the MIMO encoding module is configured to perform spatial diversity coding or spatial multiplexing coding on the data stream.
  • An antenna configuration portion of the present invention is directed to an embodiment of a linear array antenna.
  • each antenna is installed at the transmitting end or the receiving end, and each antenna is on the same line in the same plane.
  • Each antenna may be an omnidirectional antenna that transmits electromagnetic waves in all directions, or a directional antenna that transmits electromagnetic waves to a certain range of angles, or a single-polarized antenna that is polarized in a certain direction.
  • the antenna configuration portion of the present invention is directed to an embodiment of a dual polarized antenna.
  • each pair of antennas is installed at the transmitting end or the receiving end, and each pair of antennas is on the same straight line of the same plane.
  • Each pair of antennas is a pair of dual-polarized antennas that are polarized in a certain direction. For example, one of the pair of dual-polarized antennas is +45° polarized and the other is -45° polarized.
  • An antenna configuration portion of the present invention is directed to an embodiment of a cylindrical antenna.
  • each antenna is installed at the transmitting end or the receiving end, and each antenna is on an elliptical side.
  • Each antenna may be an omnidirectional antenna that transmits electromagnetic waves in all directions, or a directional antenna that transmits electromagnetic waves to a range of angles, or a single-polarized antenna that is polarized in a certain direction.
  • the channel coefficient acquisition section of the present invention is an embodiment of obtaining a channel coefficient matrix using channel reciprocity.
  • the transmitting end and the receiving end are respectively installed with ⁇ and R antennas, and the antenna configuration may be the line in FIG. Array antenna, or dual-polarized antenna, or cylindrical antenna.
  • the receiving end sends a data stream to the transmitting end by using part or all of the installed antennas.
  • the data stream may be information that the receiving end feeds back to the transmitting end, or a pilot, or a Sounding sequence or service data.
  • the number of antennas at which the receiving end transmits the data stream is Rt, and Rt ⁇ RX.
  • the downlink channel matrix from the sender to the receiver is (H ( )) T ,
  • denotes the transpose of a matrix or vector.
  • the sender obtains the weight using the weight estimation module and H UL (t, k)) T.
  • the transmitting end and the receiving end are respectively installed with ⁇ and R antennas, and the antenna configuration may be the linear array antenna in FIG. 4, or a dual-polarized antenna, or a cylindrical antenna.
  • the receiving end either uses H D ( ) to obtain the weight of the beamforming, or the index of the weight, or statistical channel correlation matrix, and then feeds back to the transmitting end; either reverses H D ( ) or quantized ⁇ ⁇ ( ) Feeder, the sender uses H D ( ) or quantized H DL ( ⁇ k, obtains beamforming weights
  • An embodiment of the MIMO encoding portion of the present invention relates to spatial diversity scheme-encoding.
  • the transmitting end has a root transmitting physical antenna, and the entire antenna group is virtualized into two beams, each of which is a virtual antenna.
  • the data beam shaping weight sent is:
  • virtual antenna 1 transmits data streams at two adjacent times (or subcarriers) and antenna 2 transmits data streams at two adjacent times (or subcarriers), respectively. That is, the first time (or subcarrier) is mapped to the physical antenna as shown in FIG. 6(a), and the second time (or subcarrier) of the superimposed data is transmitted on the first antenna, and the physical antenna is mapped.
  • the transmitting end has a root transmitting physical antenna, and the entire antenna group is virtualized into two beams, each of which is a virtual antenna.
  • the transmitted data beam shaping weight is: During the inter-diversity, the virtual antenna 1 transmits the data stream at the same time (or subcarrier) and the virtual antenna 2 transmits the data stream at the same time (or subcarrier). That is, the same time (or subcarrier) is mapped to the physical antenna as shown in FIG. 6(b), and the superimposed data is transmitted on the first antenna.
  • Example 8 An embodiment of the MIMO encoding portion of the present invention with respect to spatial multiplexing coding.
  • the sender has a JX root to send a physical antenna, and the entire antenna group is virtualized into two beams, each of which is a virtual antenna.
  • the data beam shaping weight sent is: In spatial diversity, the virtual antenna 1 transmits the data stream at the same time (or subcarrier) and the virtual antenna 2 transmits the data stream at the same time (or subcarrier). That is, the same time (or subcarrier) is mapped to the physical antenna as shown in FIG. 6(a), and the superimposed data is transmitted on the first antenna.
  • 1, ' ⁇ , ⁇ .
  • the sender is in the weight acquisition module, and determines whether the weight needs to be updated. If the weight is not required to be updated, the system pre-configured weight or the last reserved weight is used. If the weight value needs to be updated, then the weight is obtained by the fixed weight method, and the steps include
  • N represents the number of carriers included in a specific carrier set, and is a channel coefficient matrix of the A-th subcarrier in a specific carrier set.
  • the number of transmitting and receiving antennas at the transmitting end and the receiving end respectively, and the superscript H is a conjugate transposition for the matrix.
  • weight obtaining portion of the present invention acquires a weight with respect to a feature vector weight method.
  • the sender is in the weight acquisition module, and determines whether the weight needs to be updated. If the weight is not required to be updated, the system pre-configured weight or the last reserved weight is used. If the weight value needs to be updated, the eigenvector weight method is used to obtain the weight, and the steps include
  • N denotes the number of carriers included on a specific carrier set
  • H 73 ⁇ 4 (t) is a channel coefficient matrix of the third subcarrier in a specific carrier set.
  • the number of transmitting and receiving antennas at the transmitting end and the receiving end respectively
  • H is a common-transfer for the matrix.
  • Example 11 The weight obtaining part of the present invention is an embodiment of obtaining a weight by the constant modulus feature vector method.
  • the sender is in the weight acquisition module, and determines whether the weight needs to be updated. If the weight is not required to be updated, the system pre-configured weight or the last reserved weight is used. If the weight value needs to be updated, the weight is obtained by using the constant modulus feature vector weight method, and the steps include
  • N denotes the number of carriers included on a specific carrier set
  • H 73 ⁇ 4 (t) is a channel coefficient matrix of the A-th subcarrier in a specific carrier set.
  • the number of transmitting and receiving antennas at the transmitting end and the receiving end respectively
  • H is a conjugate transposition for the matrix.
  • Constant modulus processing on the matrix ⁇ /( ), where / is a constant modulus processing, which makes the absolute value of each element in the processed matrix or vector equal. Finally, a matrix of constant modes is formed, which is the weight of the MIMO beamforming.
  • the transmitting end is a base station, which has a root antenna, and the antennas are arranged on a linear array.
  • the base station performs the following operations for each user to implement the MIMO beam U-shape.
  • the data stream sent by the base station to the user is input into the MIMO coding module, and the MIMO coding module divides the data stream into two groups, which are recorded as spatial diversity coding.
  • the weight calculated in the weight estimation module is a matrix of ⁇ 2.
  • the weight estimation module decides whether it is necessary to update the weight. If the weight is not required to be updated, the system pre-configured weight or the last retained weight is used. If the weight value needs to be updated, then the weight is obtained by using a fixed weight method, and the steps include
  • N represents the number of carriers included in a specific carrier set, and is a channel coefficient matrix of the third subcarrier in a specific carrier set, which is obtained by estimating the channel on which the uplink is transmitted.
  • the number of transmitting and receiving antennas at the transmitting end and the receiving end respectively, and the superscript H is a common-transfer for the matrix.
  • the transmitting end is a base station, which has JX/2 dual-polarized antennas, and the antennas are arranged on a linear array. There are two users under the base station, and each user has two antennas.
  • the base station performs the following operations for each user to achieve ⁇ beamforming.
  • the weight calculated in the weight estimation module is a matrix of ⁇ 2.
  • the weight estimation module decides whether the weight needs to be updated. If the weight is not required to be updated, the system pre-configured weight or the last retained weight is used. If the weight value needs to be updated, the weight is obtained by using a fixed weight method, and the steps include
  • N represents the number of carriers included in a specific carrier set, and is a channel coefficient matrix of the A-th subcarrier in a specific carrier set.
  • the number of transmitting and receiving antennas at the transmitting end and the receiving end respectively, and the superscript H is a conjugate transposition for the matrix.
  • the transmitting end is a base station, which has a root antenna, the antenna is a linear array antenna, or a cylindrical antenna, or a dual-polarized antenna. There are two users under the base station, and each user has R antennas.
  • the base station performs the following operations for each user to implement the ⁇ beam U-shape.
  • the base station encodes the data stream sent to the user. ⁇ The encoded data stream is
  • Xi ( ⁇ - ⁇ s) T ⁇
  • S is the number of data streams
  • i ⁇ ,-', N s IS
  • is the total length of the data stream.
  • the data stream is weighted by the weight.
  • the weight of the MIMO beamforming can be obtained, and a reasonable combination of MIMO and beamforming can be realized, thereby maximizing the performance of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

多输入多输出波束赋形数据发送方法和装置
技术领域
本发明涉及无线通讯领域, 尤其涉及一种下行 MIMO ( Multiple Input Multiple Output, 多输入多输出)波束赋形 ( Beam forming, BF )数据发送方 法和装置。 背景技术
波束赋形是基于自适应天线原理, 利用天线阵列通过先进的信号处理算 法分别对各天线单元加权处理, 使阵列实时对准有用信号方向, 而在干扰方 向形成零点以抑制干扰信号, 从而提高信噪比, 提升系统性能, 增加系统的 覆盖范围。 如图 1所示。
MIMO是在发送端和接收端分别安置多根天线的通信系统。 它主要分成 两类。 当发送端或接收端有多根天线时, 且每根发送天线发送的数据集是相 同的, 接收端对获得多个分支的信号进行合并, 从而提高链路的可靠性, 我 们将这一类 MIMO技术叫做空间分集。对于发送端和接收端都是两根天线时 , 其中的一种分集编码方式如图 2 ( a )所示, 天线 1在两个相邻时刻 (或子载 波)分别发送符号 和 - , 天线 2在两个相邻时刻 (或子载波)分别发送符 号 和 。 另外, 当发送端和接收端同时存在多根天线时, 由于 MIMO信道 等效成多个并行的信道, 从而可以同时并行发送多个数据流, 提高了数据的 传输速率, 这就是空间复用。 对于发送端和接收端都是两根天线时, 其中的 一种空间复用编码方式如图 2 ( b )所示, 天线 1和天线 2在同时频资源上分 别发送符号 和 。
MIMO和波束赋形相结合, 形成一种同时具有两种技术优点的新技术, 叫 MIMO波束赋形,简称 MIMO + BF。它既能像波束赋形那样抑制干扰信号, 又能像 MIMO那样提高链路的可靠性或传输速率。其中的一种 MIMO波束赋 形的结构如图 3所示。 整个天线阵列形成 S个波束, 每个波束相当于一根虚 拟天线。 虚拟天线之间构成一个 MIMO系统。 当波束赋形与空间分集相结合 时, 我们叫它空间分集波束赋形; 当波束赋形与空间复用相结合时, 我们叫 它空间复用波束赋形。
MIMO波束赋形权值 W的获取 , 是 MIMO波束赋形的关键技术之一。 权值 W的准确性和及时性很大程度上影响着 MIMO波束赋形的性能。
发明内容
本发明要解决的技术问题是提供一种 MIMIO 波束赋形数据发送方法和 装置, 可实现 MIMO和波束赋形两种技术的有效结合, 最大限度地提高系统 的性能和覆盖范围。
为了解决上述问题, 本发明提供了一种多输入多输出波束赋形的数据发 送方法, 包括:
MIMO编码步骤, 对数据流进行多输入多输出 (MIMO)编码, 得到编 码后的数据流;
权值估计步骤, 根据发送端的天线阵列到接收端天线的信道信息获取发 送端的天线阵列的 JxxS维的波束赋形的权值 fT f^.)^ , 其中, Γχ为发送端 的发送天线数目, S为进行 MIMO编码后的数据流个数, S<Tx
波束赋形步骤, 使用所述波束赋形的权值 = (W )TxxS对所述编码后的数 据流进行加权, 将所述加权后的数据流在相应的天线发送出去, 其中, 天线 发送的数据是叠加数据 ^Λ., = 1,..·,Γχ, · = 1,..·, , χ是编码后的第 ·个数 据流。
其中, 所述权值估计步骤中包括:
根据所述信道信息获取所述发送端的天线阵列的统计信道相关矩阵; 根据所述统计信道相关矩阵确定所述发送端的天线阵列的波束赋形的权
其中, 所述获取所述发送端的天线阵列的统计信道相关矩阵包括: 初始化步骤,初始化所述发送端的天线阵列的统计信道相关矩阵 U确 定用于计算该发送端的天线阵列的统计信道相关矩阵的若干个符号;
更新步骤, 选择符号, 计算接收端到发送端天线阵列当前选择的符号上 特定载波集合上的信道相关性矩阵 R
Figure imgf000004_0001
*H(k); 更新统计信道相关 矩阵 ^= ? ^+(1- ?;^ , 其中, HW是发送端天线阵列的发送天线到接收 端天线上特定载波集合中第 A个子载波的信道系数矩阵, N表示特定载波集 合上包含载波的数目, 为常数, 表示第 A个子载波相关矩阵的权重, 7为 常量, 且 0≤ 7 ≤1; 上标 H是对矩阵求共轭转置; 控制步骤, 重复所述更新步骤, 直到选择完用于计算发送端天线阵列的 统计信道相关矩阵的所述若干个符号。
其中, 所述更新步骤中, 才艮据如下方式获取所述
发送端测量接收端的天线到发送端天线阵列的上行信道的信道系数矩 阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 Γχ列的所述
或者, 接收端测量发送端的天线阵列到接收端的接收天线的信道系数矩 阵并反馈给发送端, 发送端根据接收端反馈的所述信道系数矩阵得到 Rx行 Γχ 列的所述 H(t);
其中, Γχ为发送端天线阵列的发送天线数目, R 是接收端的接收天线数。 其中, 所述上行信道包括: 接收端传输上行业务的数据信道、 或者接收 端向发送端反馈信息的上行反馈信道, 或者接收端向发送端发送的探通信号 或导频信号对应的信道。
其中, 所述根据统计信道相关矩阵确定所述发送端的天线阵列的波束赋 形的权值 W = (Wj )TxxS包括如下方式之一:
方式一、在预先设定的矩阵集合^ = 1,2,..·, M中,选择使得 det(f RrfflifTm) 最大的 作为波束赋形的权值, 其中, det 表示求矩阵的行列式值, f m, = 1, 2,… ,Μ是 Γχχ S维的复数矩阵;
方式二、对统计信道相关矩阵 Rrffli进行特征值分解,选择前 S个最大特征 值对应的特征向量,每个特征向量作为矩阵 的一列, 形成一个 JxxS维的复 数矩阵 Pf, 将 作为所述波束赋形的权值;
方式三、对统计信道相关矩阵 Rrffli进行特征值分解,选出前 S个最大特征 值对应的特征向量, 每个特征向量作为矩阵 的一列, 形成一个 JxxS维的复 数矩阵 , 对矩阵 进行恒模处理得到 = 将 作为所述波束赋形的 权值, 是指对矩阵 ^进行恒模处理。
其中,所述 MIMO编码步骤中,所述对数据流进行 MIMO编码是指对数 据流进行空间分集编码或者空间复用编码。
其中, 所述权值估计步骤中, 在根据发送端的天线阵列到接收端天线的 信道信息获取波束赋形的权值 fT f^.)^前, 还判断是否需要更新权值, 如 果需要更新, 则根据发送端的天线阵列到接收端天线的信道信息获取波束赋 形的权值 fT f^U 否则, 使用系统预先配置的权值或者上一次确定的权 值作为波束赋形的权值对编码后的数据流进行加权并发送。
本发明还提供一种多输入多输出波束赋形的数据发送装置, 包括:
MIMO编码模块,用于对数据流进行 MIMO编码,得到编码后的数据流; 权值估计模块, 用于根据发送端的天线阵列到接收端天线的信道信息获 取发送端的天线阵列的波束赋形的权值 fT f^.)^ , 其中, Γχ为发送端的发 送天线数目, S为进行 MIMO编码后的数据流个数, S<Tx
波束赋形模块, 用于使用所述波束赋形的权值 W = (W )TxxS对所述编码后 的数据流进行加权, 将所述加权后的数据流在相应的天线发送出去, 其中, 天线 发送的数据是叠加数据 ^Λ., · = 1,...,Γχ, = 1,...^, χ是编码后的第
_/·个数据流。
其中, 所述权值估计模块包括:
统计信道相关矩阵获取单元, 用于根据所述信道信息获取所述发送端的 天线阵列的统计信道相关矩阵;
权值获取单元, 根据所述统计信道相关矩阵确定所述发送端的天线阵列 的波束赋形的权值 W = (Wj )TxxS
其中, 所述统计信道相关矩阵获取单元包括初始化子单元、 更新子单元 和控制子单元:
初始化子单元, 用于初始化所述发送端的天线阵列的统计信道相关矩阵 R ; 确定用于计算该发送端的天线阵列的统计信道相关矩阵的若干个符号; 更新子单元, 用于选择符号, 计算接收端到发送端天线阵列当前选择的 符号上特定载波集合上的信道相关性矩阵 R
Figure imgf000006_0001
*H(t); 更新统计信 道相关矩阵 ^= ? ^+(1- ?;^ , 其中, 是发送端天线阵列的发送天线 到接收端天线上特定载波集合中第 A个子载波的信道系数矩阵, N表示特定 载波集合上包含载波的数目, 为常数, 表示第 A个子载波相关矩阵的权重, 7为常量, 且 0≤ 7 ≤1; 上标 H是对矩阵求共轭转置; 控制子单元, 用于控制所述更新子单元重复进行更新, 直到选择完用于 计算发送端天线阵列的统计信道相关矩阵的所述若干个符号。
其中, 所述更新子单元, 用于才艮据如下方式获取所述
所述更新子单元测量接收端的天线到发送端天线阵列的上行信道的信道 系数矩阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 Γχ列的所述
或者, 接收端测量发送端的天线阵列到接收端的接收天线的信道系数矩 阵并反馈给所述更新子单元, 所述更新子单元根据接收端反馈的所述信道系 数矩阵得到 R 行 Γχ列的所述 ;
其中, Γχ为发送端天线阵列的发送天线数目, R 是接收端的接收天线数。 其中, 所述上行信道包括: 接收端传输上行业务的数据信道、 或者接收 端向发送端反馈信息的上行反馈信道, 或者接收端向发送端发送的探通信号 或导频信号对应的信道。
其中, 所述权值获取单元用于使用如下方式之一获取所述波束赋形的权 i W = (W j)Tx S
方式一、在预先设定的矩阵集合^ = 1, 2, .. · , M中,选择使得 det(f RrfflifTm) 最大的 作为波束赋形的权值, 其中, det 表示求矩阵的行列式值, f m, = 1, 2,… ,Μ是 Γχχ S维的复数矩阵;
方式二,对统计信道相关矩阵 进行特征值分解,选择前 S个最大特征 值对应的特征向量,每个特征向量作为矩阵 的一列, 形成一个 JxxS维的复 数矩阵 Pf, 将 作为所述波束赋形的权值;
方式三,对统计的信道相关矩阵 Rrffli进行特征值分解,选出前 S个最大特 征值对应的特征向量, 每个特征向量作为矩阵 的一列, 形成一个 JxxS维的 复数矩阵 , 对矩阵 进行恒模处理得到 = ), 将 作为所述波束赋形 的权值, 是指对矩阵 ^进行恒模处理。
其中, 所述权值估计模块, 用于在根据发送端的天线阵列到接收端天线 的信道信息获取波束赋形的权值 = (W )TxxS前, 还判断是否需要更新权值, 如果需要更新, 则根据发送端的天线阵列到接收端天线的信道信息获取波束 赋形的权值 fT f^U 否则, 使用系统预先配置的权值或者上一次确定的 权值作为波束赋形的权值。
釆用本发明所述的方法和装置, 可以得到 MIMO波束赋形的权值, 并且 实现 MIMO与波束赋形的合理结合, 从而最大限度地提高系统的性能。
附图概述
图 1是本发明所述的基于线性天线阵列的 BF系统示意图;
图 2是本发明所述的 MIMO系统及其一种编码方式的示意图;
图 3是本发明所述的基于线性天线阵列的 MIMO与 BF混合系统示意图; 图 4是本发明所述的发送端天线的类型示意图;
图 5是本发明所述的基于线性天线阵列的 MIMO波束赋形装置示意图; 图 6是发送端每根物理天线在同一个时频资源上的发送数据流示意图。
本发明的较佳实施方式
本发明用到的一些术语定义如下:
发送端: 用来发送数据或者信息的设备, 比如宏基站, 微基站等。
接收端: 用来接收数据或者信息的设备, 如终端, 移动台, 手持设备, 数据卡等。
本发明提供了一种 MIMO波束赋形的权值数据发送方法, 包括: 将数据流进行 MIMO编码, 得到编码后的数据流 = (χ, , · -, xs)T; 根据发送端的天线阵列到接收端天线的信道信息获取发送端的天线阵列 的 Jxx S维的波束赋形的权值 fT f^. )^ ,其中, Γχ为发送端的发送天线数目, S为进行 MIMO编码后的数据流个数;
使用波束赋形的权值 W = (W )TxxS对 MIMO编码后的数据进行加权, 将加 权后的数据流经过相应的天线发送出去。 其中, 天线 发送的数据是叠加数据 ;, i = - , TxJ = - , S . 其中所述 MIMO编码是指将一个或者多个数据流进行变换处理之后形成 多个数据流。 MIMO编码包括空间分集编码或空间复用编码。 其中所述空间 分集编码是指: 将输入的每个数据流变换成多份拷贝和 /或者拷贝的共轭和 / 或拷贝的负共轭。 其中所述空间复用编码是指: 将输入的一个或者多个数据 流直接输出。
其中,根据信道信息获取波束赋形的权值前, 还判断是否需要更新权值, 如果需要更新, 则根据发送端的天线阵列到接收端天线的信道信息获取波束 赋形的权值 fT f^U 否则, 使用先前保留的权值作为波束赋形的权值。 先前保留的权值可以是系统预先配置的权值, 也可以是上一次根据信道信息 获取的权值。
其中, 根据发送端的天线阵列到接收端天线的信道信息获取发送端的天 线阵列的 TxxS维的波束赋形的权值 fT f^.)^ 包括:
步骤 101, 根据所述信道信息获取所述发送端的天线阵列的统计信道相 关矩阵;
步骤 102, 根据所述统计信道相关矩阵确定所述发送端的天线阵列的波 束赋形的权值 W = (W )TxxS
其中, 步骤 101进一步包括:
初始化步骤: 初始化所述发送端的天线阵列的统计信道相关矩阵 U确 定用于计算该发送端的天线阵列的统计信道相关矩阵的若干个符号;
更新步骤, 选择符号, 计算接收端到发送端天线阵列当前选择的符号上 特定载波集合上的信道相关性矩阵 R
Figure imgf000009_0001
*H(k); 更新统计信道相关 矩阵 ^= ? ^+(1- ?;^ , 其中, 是发送端天线阵列的发送天线到接收 端天线上特定载波集合中第 A个子载波的信道系数矩阵, N表示特定载波集 合上包含载波的数目, 为常数, 表示第 A个子载波相关矩阵的权重, ?为 常量, 且 0≤ ? ≤1; 上标 H是对矩阵求共轭转置; 控制步骤, 重复所述更新步骤, 直到选择完用于计算发送端天线阵列的 统计信道相关矩阵的所述若干个符号。 其中, 更新步骤中, 根据如下方式获取 H(A);
发送端测量接收端的天线到发送端天线阵列的上行信道的信道系数矩 阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 JX列的所述 所 述上行信道包括: 接收端传输上行业务的数据信道、 或者接收端向发送端反 馈信息的上行反馈信道, 或者接收端向发送端发送的探通信号或导频信号对 应的信道;
或者, 接收端测量发送端的天线阵列到接收端的接收天线的信道系数矩 阵并反馈给发送端, 发送端根据接收端反馈的所述信道系数矩阵得到 Rx行 Γχ 列的所述 H(t);
其中, Γχ为发送端天线阵列的发送天线数目, R 是接收端的接收天线数。 获取统计信道相关矩阵 Rrffli的一种具体算法是:
( 1 )初始化统计信道相关矩阵 Rrffli, 选取用于统计信道相关矩阵的符号 索引;
(2)计算该接收端当前符号索引对应符号上特定载波集合上的信道相关 性矩阵:
Figure imgf000010_0001
这里, N表示特定载波集合上包含载波的 数目, 为常数, 表示第 A个子载波的信道系数矩阵的权重, 是特定 载波集合中第 A个子载波的信道系数矩阵,
( 3 )统计信道相关矩阵更新为 Rstat = f(Rstat,R ) , /代表一个函数, 优选 地, f(R R = pR t +( — PR , ?为常量且 0≤ ?≤1, 获取下一符号索引;
(4)重复(2) ~ (3 )直到选择完用于获取统计信道相关矩阵的符号, 比如, 使用一帧的符号获取统计信道相关矩阵, 则重复(2) - (3 )直到该 帧结束, 得到最终的统计信道相关矩阵。
步骤 102中, 可以根据统计信道相关矩阵 Rrffli , 用固定权值方法、 特征向 量权值方法和恒模特征向量权值方法来获取波束赋形的权值。 其中, 可以由 发送端获取最终的统计信道相关矩阵, 发送端根据统计信道相关矩阵得到权 值; 也可以由接收端获取最终的统计信道相关矩阵后, 向发送端反馈该最终 的统计信道相关矩阵, 发送端根据最终的统计信道相关矩阵获取权值; 或者, 由接收端获取最终的统计信道相关矩阵后, 根据最终的统计信道相关矩阵获 取权值或权值索引, 反馈给发送端, 发送端根据接收端反馈的权值或权值索 引得到权值。
( 1 ) 固定权值方法
在预先设定的矩阵集合 , = 1,2,..·, M中按照权值选择原则选取一个矩 阵作为 MIMO波束赋形的权值, 这里, ^, = 1,2,..·,Μ是 JxxS维的复数矩阵, 其中 Γχ为发送天线数目, S为 ΜΙΜΟ编码后的数据流个数, 且 S≤ Γχ。
优选地, 权值选择原则可以基于统计信道相关矩阵 Rrffli
优选地, 基于统计信道相关矩阵 Rrffli的权值选择原则可以基于公式
Wovt = max ded JVi) ,即选择使得 A t(Wr H R^)最大的 ^作为波束赋形的权 值, det表示求矩阵的行列式值。
(2)特征向量权值方法
特征向量权值方法的步骤包括:
A)对统计信道相关矩阵 Rrffli进行特征值分解, 且特征值 ^对应的特征向 量为^, 其中, ^是 Γχχΐ的向量, = 1,2,..·,Γχ, Γχ为发送端的发送天线数目。
Β)选出前 S个最大特征值对应的特征向量, 每个特征向量作为矩阵 的一列, 形成一个 JxxS维的复数矩阵 W 将 作为 MIMO波束赋形的权值。
(3) 恒模特征向量方法
恒模特征向量方法的步骤包括:
A)对统计信道相关矩阵 R 进行特征值分解,且特征值 A对应的特征向量 为^, 其中, ^是 Γχχΐ的向量, = 1,2,..·,Γχ, Γχ为发送端的发送天线数目。
Β)选出前 S个最大特征值对应的特征向量, 每个特征向量作为矩阵 ^的 一列, 形成一个 JxxS维的复数矩阵^。
C)对矩阵 ^进行恒模处理后得到 = /( ), 其中, 是指对矩阵 ^进 行恒模处理, 其使得处理后的矩阵或向量里的每个元素绝对值相等, 将该恒 模的矩阵 作为 MIMO波束赋形的权值。 本发明还提供一种 MIMO波束赋形数据发送的装置,如图 5所示,包括:
MIMO编码模块: 用于对数据流进行 MIMO编码, 得到编码后的数据流 Χ = {χλ,-,χ5)τ , 所述 MIMO编码包括空间分集编码或者空间复用编码;
权值估计模块: 用于根据发送端的天线阵列到接收端天线的信道信息获 取发送端的天线阵列的波束赋形的权值 fT f^.)^ , 其中, Γχ为发送端的发 送天线数目, S为进行 MIMO编码后的数据流个数, S<Tx
波束赋形模块, 用于使用所述波束赋形的权值 W = (W )TxxS对所述编码后 的数据流进行加权, 将所述加权后的数据流在相应的天线发送出去, 其中, 天线 发送的数据是叠加数据 ^Λ., · = 1,...,Γχ, = 1,...^, χ是编码后的第
_/·个数据流。
其中, 所述权值估计模块包括:
统计信道相关矩阵获取单元, 用于根据所述信道信息获取所述发送端的 天线阵列的统计信道相关矩阵;
权值获取单元, 根据所述统计信道相关矩阵确定所述发送端的天线阵列 的波束赋形的权值 W = (Wj )TxxS
其中, 所述统计信道相关矩阵获取单元包括初始化子单元、 更新子单元 和控制子单元:
初始化子单元: 用于初始化所述发送端的天线阵列的统计信道相关矩阵 R ; 确定用于计算该发送端的天线阵列的统计信道相关矩阵的若干个符号; 更新子单元, 用于选择符号, 计算接收端到发送端天线阵列当前选择的 符号上特定载波集合上的信道相关性矩阵 R
Figure imgf000012_0001
*H(t); 更新统计信 道相关矩阵 ^= ? ^+(1- ?;^ , 其中, 是发送端天线阵列的发送天线 到接收端天线上特定载波集合中第 A个子载波的信道系数矩阵, N表示特定 载波集合上包含载波的数目, 为常数, 表示第 A个子载波相关矩阵的权重, 7为常量, 且 0≤ 7 ≤1; 上标 H是对矩阵求共轭转置; 控制子单元, 用于控制所述更新子单元重复进行更新, 直到选择完用于 计算发送端天线阵列的统计信道相关矩阵的所述若干个符号。 其中, 所述更新子单元, 用于才艮据如下方式获取所述
所述更新子单元测量接收端的天线到发送端天线阵列的上行信道的信道 系数矩阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 JX列的所述
或者, 接收端测量发送端的天线阵列到接收端的接收天线的信道系数矩 阵并反馈给所述更新子单元, 所述更新子单元根据接收端反馈的所述信道系 数矩阵得到 R 行 Γχ列的所述 ;
其中, Γχ为发送端天线阵列的发送天线数目, R 是接收端的接收天线数。 其中, 所述上行信道包括: 接收端传输上行业务的数据信道、 或者接收 端向发送端反馈信息的上行反馈信道, 或者接收端向发送端发送的探通信号 或导频信号对应的信道。
其中, 所述权值获取单元用于使用如下方式之一获取所述波束赋形的权 i W = (W j)Tx S
方式一、在预先设定的矩阵集合^ = 1, 2, .. · , M中,选择使得 det(f RrfflifTm) 最大的 作为波束赋形的权值, 其中, det 表示求矩阵的行列式值, f m, = 1, 2,… ,Μ是 Γχχ S维的复数矩阵;
方式二,对统计信道相关矩阵 进行特征值分解,选择前 S个最大特征 值对应的特征向量,每个特征向量作为矩阵 的一列, 形成一个 JxxS维的复 数矩阵 Pf, 将 作为所述波束赋形的权值;
方式三,对统计的信道相关矩阵 Rrffli进行特征值分解,选出前 S个最大特 征值对应的特征向量, 每个特征向量作为矩阵 的一列, 形成一个 JXXS维的 复数矩阵 , 对矩阵 进行恒模处理得到 ), 将 作为所述波束赋形 的权值。
其中, 所述 MIMO编码模块, 用于对所述数据流进行空间分集编码或者 空间复用编码。
其中, 所述权值估计模块, 用于在根据发送端的天线阵列到接收端天线 的信道信息获取波束赋形的权值 = (W )TxxS前, 还判断是否需要更新权值, 如果需要更新, 则根据发送端的天线阵列到接收端天线的信道信息获取波束 赋形的权值 fT f^U 否则, 使用系统预先配置的权值或者上一次确定的 权值作为波束赋形的权值。
实施例 1
本发明天线配置部分关于线性阵列天线的实施例。
如图 4 ( a )所示, 发送端或者接收端安装了多根天线, 每根天线处于同 一平面的同一直线上。 每根天线可以是向所有方向发送电磁波的全向天线, 或者是向某一角度范围发送电磁波的方向天线, 或者是向某一方向极化的单 极化天线。
实施例 2
本发明天线配置部分关于双极化天线的实施例。
如图 4 ( b )所示, 发送端或者接收端安装了多对天线, 每对天线处于同 一平面的同一直线上。 每对天线是向某一方向极化的一对双极化天线, 如, 这对双极化天线中的一根极化天线为 +45°极化, 另外一根是 -45°极化。
实施例 3
本发明天线配置部分关于圓柱天线的实施例。
如图 4 ( c )所示, 发送端或者接收端安装了多根天线, 每根天线处于一 个椭圓形的边上。 每根天线可以是向所有方向发送电磁波的全向天线, 或者 是向某一角度范围发送电磁波的方向天线, 或者是向某一方向极化的单极化 天线。
实施例 4
本发明信道系数获取部分关于利用信道互易性得到信道系数矩阵的实施 例。
发送端和接收端分别安装了 Γχ和 R根天线, 天线配置可以是图 4中的线 性阵列天线, 或者双极化天线, 或者圓柱天线。 接收端用部分或者全部安装 的天线向发送端发送数据流,这个数据流可以是接收端向发送端反馈的信息, 或者导频, 或者 Sounding序列或者业务数据。 这里, 接收端发送数据流的天 线数目为 Rt , 且 Rt≤RX。 发送端进行上行信道估计, 估计出来的信道系数为 h (t, k),表示接收端用来发送数据的天线 j到发送端 i之间的 t时刻第 A子载波 上的信道系数, 这里, i = \,---,Tx,j = \,---,Rt , t = \,---,Ts, k = l,---,N , 7¾和 表 示用来估计权值的资源块在时域上的符号个数和频域上的子载波个数。 表示 成矩阵形式为
Figure imgf000015_0001
x , 那么,利用信道的互易性,发送端到接收端的下行信道矩阵为(H ( ))T,
Γ表示矩阵或者向量的转置。 发送端用权值估计模块和 HUL (t, k))T获得权值。
实施例 5
本发明信道系数矩阵获取部分关于下行反馈得到信道系数矩阵的实施 例
发送端和接收端分别安装了 Γχ和 R根天线, 天线配置可以是图 4中的线 性阵列天线, 或者双极化天线, 或者圓柱天线。 接收端估计发送端到接收端 的下行链路的信道系数/^ ( ),表示发送端天线 _/·到接收端 之间的 t时刻第 子载波上的信道系数,这里, j = \,---,Tx,i = \,---,Rx, t = \,---,Ts, k = \,---,N , 7¾和 N表示用来估计权值的资源块在时域上的符号个数和频域上的子载波个数。 表示成矩阵形式为
Figure imgf000015_0002
JltxyJx
接收端要么利用 HD( )获得波束赋形的权值, 或者权值的索引, 或者统 计信道相关矩阵, 然后反馈给发送端; 要么将 HD( )或者量化的^ ^( )反 馈发送端 , 发送端利用 HD ( )或者量化的 HDL(^k、获取波束赋形权值
实施例 6
本发明 MIMO编码部分关于空间分集方案一编码的实施例。
发送端有 Γχ根发送物理天线, 整个天线组被虚拟成两个波束, 每个波束 是一个虚拟天线。 发送的数据 束赋形权值为:
Figure imgf000016_0001
空间分集时,虚拟天线 1在两个相邻时刻(或子载波)分别发送数据流 ^ 和 天线 2在两个相邻时刻 (或子载波)分别发送数据流 和 。 即, 第 一个时刻(或子载波), 映射到物理天线的情况如图 6 (a)所示, 第 根天线 上发送叠加数据 第二个时刻 (或子载波) , 映射到物理天线的情 况如图 6(c)所示, 第 根天线上发送叠加数据 - + M , 这里, i = l,''-,Tx。
实施例 7
本发明 MIMO编码部分关于空间分集方案二编码的实施例。
发送端有 Γχ根发送物理天线, 整个天线组被虚拟成两个波束, 每个波束 是一个虚拟天线。 发送的数据 波束赋形权值为:
Figure imgf000016_0002
间分集时, 虚拟天线 1 在同一时刻 (或子载波)发送数据流 ^和虚拟 天线 2在同一时刻(或子载波)发送数据流 。 即, 同一个时刻(或子载波), 映射到物理天线的情况如图 6(b)所示,第 根天线上发送叠加数据
Figure imgf000016_0003
这里, = 1,···,Γχ。
实施例 8 本发明 MIMO编码部分关于空间复用编码的实施例。
发送端有 JX根发送物理天线, 整个天线组被虚拟成两个波束, 每个波束 是一个虚拟天线。 发送的数据 束赋形权值为:
Figure imgf000017_0001
空间分集时, 虚拟天线 1 在同一时刻 (或子载波)发送数据流 ^和虚拟 天线 2在同一时刻(或子载波)发送数据流 。 即, 同一个时刻(或子载波), 映射到物理天线的情况如图 6(a)所示,第 根天线上发送叠加数据
这里, ί = 1,'··,Τχ。
实施例 9
本发明权值获取部分关于固定权值方法获取权值的实施例。
发送端预先设定的矩阵(向量)集合^ , = l,2,...,N, 这里, ^, = l,2,...,N 是 JxxS维的复数矩阵, 其中 Γχ为发送天线数目, S为 ΜΙΜΟ编码后的数据流 个数, 且 S≤Jx。
发送端在权值获取模块, 判决是是否需要更新权值, 如果不需要更新权 值, 那么使用系统预先配置好的权值或者上一次保留下来的权值。 如果需要 更新权值, 那么利用固定权值方法获取权值, 其步骤包括,
(1)初始化统计信道相关矩阵 Rrffli, 如果是第 1帧, 那么初始化为全零 的矩阵, 否则初化为上一次保留下来的值。 选取用于统计信道相关矩阵的符 号索引。
( 2 )计算该接收端当前符号索引对应符号上特定载波集合上的信道相关 性矩阵:
Figure imgf000017_0002
这里, N表示特定载波集合上包含载波的数 目, 是特定载波集合中第 A个子载波的信道系数矩阵。 Γχ, 分别是发 送端和接收端的发送和接收天线数目, 上标 H是对矩阵求共轭转置。
(3)统计信道相关矩阵更新为 Rrffli = 7Rrffli+(l- 7)R , ?为常量且 0≤ ?≤1, 当前符号索引加 1。 (4)重复(2) ~ (3)直到本帧结束。
( 5 )基于公式 W。 t = max det(^ffRitai^)选出最适合的权值 Wovt作为该接收 端的波束赋形权值, 这里, det表示求矩阵的行列式值。
实施例 10
本发明权值获取部分关于特征向量权值方法获取权值的实施例。
发送端在权值获取模块, 判决是是否需要更新权值, 如果不需要更新权 值, 那么使用系统预先配置好的权值或者上一次保留下来的权值。 如果需要 更新权值, 那么利用特征向量权值方法获取权值, 其步骤包括,
( 1 )初始化统计信道相关矩阵 Rrffli, 如果是第 1帧, 那么初始化为全零 的矩阵, 否则初化为上一次保留下来的值。 选取用于统计信道相关矩阵的符 号索引。
( 2 )计算该接收端当前符号索引对应符号上特定载波集合上的信道相关 性矩阵:
Figure imgf000018_0001
这里, N表示特定载波集合上包含载波的数 目, H (t)是特定载波集合中第 Α个子载波的信道系数矩阵。 Γχ, 分别是发 送端和接收端的发送和接收天线数目, 上标 H是对矩阵求共厄转置。
(3)统计信道相关矩阵更新为 Rrffli = 7Rrffli + (i- 7)R , ?为常量且 ο≤ ?≤ι, 当前符号索引加 1。
(4)重复(2) ~ (3)直到本帧结束。
(5)对统计信道相关矩阵 Rrffli进行特征值分解, 且特征值 ^对应的特征 向量为 , 这里, 是 Γχχΐ的向量, = 1,2,..·,Γχ, Γχ为发送端的发送天线数 。
( 6 )选出前 S个最大特征值对应的特征向量,每个特征向量作为 ΜΙΜΟ 波束赋形权值矩阵 的一列。形成一个 JxxS维的复数矩阵 W。 就是 MIMO 波束赋形的权值。
实施例 11 本发明权值获取部分关于恒模特征向量方法获取权值的实施例。
发送端在权值获取模块, 判决是是否需要更新权值, 如果不需要更新权 值, 那么使用系统预先配置好的权值或者上一次保留下来的权值。 如果需要 更新权值, 那么利用恒模特征向量权值方法获取权值, 其步骤包括,
( 1 )初始化统计信道相关矩阵 Rrffli, 如果是第 1帧, 那么初始化为全零 的矩阵, 否则初化为上一次保留下来的值。 选取用于统计信道相关矩阵的符 号索引
( 2 )计算该接收端当前符号索引对应符号上特定载波集合上的信道相关 性矩阵:
Figure imgf000019_0001
这里, N表示特定载波集合上包含载波的数 目, H (t)是特定载波集合中第 A个子载波的信道系数矩阵。 Γχ, 分别是发 送端和接收端的发送和接收天线数目, 上标 H是对矩阵求共轭转置。
(3)统计信道相关矩阵更新为 Rrffli = 7Rrffli + (i- 7)R, ?为常量且 ο≤ ?≤ι, 当前符号索引加 1。
(4)重复(2) ~ (3)直到本帧结束。
(5)对统计信道相关矩阵 Rrffli进行特征值分解, 且特征值 ^对应的特征 向量为 , 这里, 是 Γχχΐ的向量, = 1,2,..·,Γχ , Γχ为发送端的发送天线数 。
( 6 )选出前 S个最大特征值对应的特征向量,每个特征向量作为 ΜΙΜΟ 波束赋形权值矩阵 的一列。 形成一个 Γχχ S维的复数矩阵 ^。
(7)对矩阵 ^进行恒模处理 = /( ), 这里, /是一种恒模处理, 它使 得处理后的矩阵或向量里的每个元素绝对值相等。 最后, 形成一个恒模的矩 阵 , 该 作为 MIMO波束赋形的权值。
实施例 12
本发明整个方案的一个具体实施例。
发送端为基站, 它有 Γχ根天线, 天线排列在一个线性阵列上。 基站预先 设定的矩阵(向量)集合^ , = l,2,...,N, 这里, ^, = l,2,...,N是 Γχχ2维的复数 矩阵, 其中 Γχ为发送天线数目。 该基站下面有 M个用户, 每个用户有两根天线。 基站对每个用户进行如 下操作 , 以实现 MIMO波束 U武形。
将基站发送给用户的数据流输入 MIMO编码模块, MIMO编码模块将数 据流分成两两一组, 记为 , 对其进行空间分集编码
Figure imgf000020_0001
= l,...,N /2,^为数据流的长度。 在权值估计模块中计算权值 是一个 Γχχ2的矩阵。 权值估计模块判 决是是否需要更新权值, 如果不需要更新权值, 那么使用系统预先配置好的 权值或者上一次保留下来的权值。 如果需要更新权值, 那么利用固定权值方 法获取权值, 其步骤包括,
(1)初始化统计信道相关矩阵 Rrffli, 如果是第 1帧, 那么初始化为全零 的矩阵, 否则初化为上一次保留下来的值。 选取用于统计信道相关矩阵的符 号索引。
( 2 )计算该接收端当前符号索引对应符号上特定载波集合上的信道相关 性矩阵:
Figure imgf000020_0002
这里, N表示特定载波集合上包含载波的数 目, 是特定载波集合中第 Α个子载波的信道系数矩阵, 它通过估计上 行发送 Sounding的信道得到。 Γχ, 分别是发送端和接收端的发送和接收天线 数目, 上标 H是对矩阵求共厄转置。
(3 )统计信道相关矩阵更新为 Rrffli = 7Rrffli + (l- 7)R , ?为常量且 0≤ ?≤1, 当前符号索引加 1。 (4)重复(2) ~ (3)直到本帧结束。
( 5 )基于公式 W。 t = max ded U选出最适合的权值 Wovt作为该接收 、 端的波束赋形权值 W ,这里 , det表示求矩阵的行列式值。其中, = ; ; 得到权值后, 用权值对数据流进行加权, 加权后, 天线 j在时间对的第 一个符号时间上发送 + , 在第二个符号时间上发送 K2 + W2 S , 这里, = 1,···, Γχ, i = \,''-,NJ2。 实施例 13
本发明整个方案的另一个具体实施例。
发送端为基站, 它有 JX/2根双极化天线, 天线排列在一个线性阵列上。 该基站下面有 Μ个用户, 每个用户有两根天线。 基站对每个用户进行如下操 作, 以实现 ΜΙΜΟ波束赋形。
将基站发送给用户的数据流输入 ΜΙΜΟ编码模块, ΜΙΜΟ编码模块将数 据流分成两两一组,记为 , ,对其进行空间分集编码 / = 1... N /2,N 为数据流的长度。
在权值估计模块中计算权值 是一个 Γχχ2的矩阵。 权值估计模块判 决是是否需要更新权值, 如果不需要更新权值, 那么使用系统预先配置好的 权值或者上一次保留下来的权值。 如果需要更新权值, 那么利用固定权值方 法获取权值, 其步骤包括,
( 1 )初始化统计信道相关矩阵 Rrffli, 如果是第 1帧, 那么初始化为全零 的矩阵, 否则初化为上一次保留下来的值。 选取用于统计信道相关矩阵的符 号索引。
( 2 )计算该接收端当前符号索引对应符号上特定载波集合上的信道相关 性矩阵:
Figure imgf000021_0001
这里, N表示特定载波集合上包含载波的数 目, 是特定载波集合中第 A个子载波的信道系数矩阵。 Γχ, 分别是发 送端和接收端的发送和接收天线数目, 上标 H是对矩阵求共轭转置。
(3)统计信道相关矩阵更新为 Rrffli = 7Rrffli + (i- 7)R, ?为常量且 ο≤ ?≤ι, 当前符号索引加 1。
(4)重复(2) ~ (3)直到本帧结束。
(5)对统计信道相关矩阵 Rrffli进行特征值分解, 且特征值 ^对应的特征 向量为 , 这里, 是 Γχχΐ的向量, = 1,2,..·,Γχ, Γχ为发送端的发送天线数 目。
( 6 )选出前 S个最大特征值对应的特征向量,每个特征向量作为 ΜΙΜΟ 波束赋形权值矩阵 的一列。形成一个 JxxS维的复数矩阵 W。 就是 MIMO 波束赋形的权值。 其中,
Figure imgf000022_0001
得到权值后, 用权值对数据流进行加权, 加权后, 天线 j在同第一符号 时间上发送^ .¾+^,.2, 这里, = 1,···, Γχ, i = \,'",Ns/2。
实施例 14
本发明整个方案的一个般化的实施例。
发送端为基站, 它有 Γχ根天线, 天线是线性阵列天线, 或者圓柱天线, 或者双极化天线。 该基站下面有 Μ个用户, 每个用户有 R根天线。基站对每 个用户进行如下操作 , 以实现 ΜΙΜΟ波束 U武形。
基站将发送给用户的数据流进行 ΜΙΜΟ编码。 ΜΙΜΟ编码后的数据流为
Xi =( ^-^ s)T ^ 这里, S是数据流的个数, i = \,-'、NsIS , ^为数据流的总长 度。
用权值估计模块获取权值 是一个 JxxS的矩阵。
得到权值后, 用权值对数据流进行加权, 加权后, 天线 j在同第一符号 时间上发送∑ ¾, 这里, J = H i = ,"',NsIS。
工业实用性
釆用本发明所述的方法和装置, 可以得到 MIMO波束赋形的权值, 并且 实现 MIMO与波束赋形的合理结合, 从而最大限度地提高系统的性能。

Claims

权 利 要 求 书
1、 一种多输入多输出波束赋形的数据发送方法, 包括:
MIMO编码步骤, 对数据流进行多输入多输出 ( MIMO )编码, 得到编 码后的数据流;
权值估计步骤, 根据发送端的天线阵列到接收端天线的信道信息获取发 送端的天线阵列的 JxxS维的波束赋形的权值 fT f^.)^ , 其中, Γχ为发送端 的发送天线数目, S为进行 MIMO编码后的数据流个数, S<Tx
波束赋形步骤, 使用所述波束赋形的权值 = (W )TxxS对所述编码后的数 据流进行加权, 将所述加权后的数据流在相应的天线发送出去, 其中, 天线 发送的数据是叠加数据 ^Λ., · = 1,...,Γχ, = 1,...^, χ是编码后的第 ·个数 据流。
2、 如权利要求 1所述的方法, 其中, 所述权值估计步骤中包括: 根据所述信道信息获取所述发送端的天线阵列的统计信道相关矩阵; 根据所述统计信道相关矩阵确定所述发送端的天线阵列的波束赋形的权 值 fT = (^) xS
3、 如权利要求 2所述的方法,其中, 所述获取所述发送端的天线阵列 的统计信道相关矩阵包括:
初始化步骤,初始化所述发送端的天线阵列的统计信道相关矩阵 U确 定用于计算该发送端的天线阵列的统计信道相关矩阵的若干个符号;
更新步骤, 选择符号, 计算接收端到发送端天线阵列当前选择的符号上 特定载波集合上的信道相关性矩阵 R
Figure imgf000023_0001
*H(k); 更新统计信道相关 矩阵 ^= ? ^+(1- ?;^ , 其中, 是发送端天线阵列的发送天线到接收 端天线上特定载波集合中第 A个子载波的信道系数矩阵, N表示特定载波集 合上包含载波的数目, 为常数, 表示第 A个子载波相关矩阵的权重, ?为 常量, 且 0≤ ? ≤1; 上标 H是对矩阵求共轭转置; 控制步骤, 重复所述更新步骤, 直到选择完用于计算发送端天线阵列的 统计信道相关矩阵的所述若干个符号。
4、 如权利要求 3所述的方法, 其中, 所述更新步骤中, 根据如下方式 获取所述 H(A) :
发送端测量接收端的天线到发送端天线阵列的上行信道的信道系数矩 阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 JX列的所述
或者, 接收端测量发送端的天线阵列到接收端的接收天线的信道系数矩 阵并反馈给发送端, 发送端根据接收端反馈的所述信道系数矩阵得到 R 行 Γχ 列的所述 H( t) ;
其中, Γχ为发送端天线阵列的发送天线数目, R 是接收端的接收天线数。
5、 如权利要求 4所述的方法, 其中, 所述上行信道包括: 接收端传输 上行业务的数据信道、 或者接收端向发送端反馈信息的上行反馈信道, 或者 接收端向发送端发送的探通信号或导频信号对应的信道。
6、 如权利要求 2所述的方法,其中, 所述根据统计信道相关矩阵确定 所述发送端的天线阵列的波束赋形的权值 W = (W )TxxS包括如下方式之一: 方式一、在预先设定的矩阵集合^ = 1, 2, .. · , M中,选择使得 det(f RrfflifTm) 最大的^作为波束赋形的权值, 其中, det 表示求矩阵的行列式值, f m , = 1, 2,… ,Μ是 Γχ X S维的复数矩阵;
方式二、对统计信道相关矩阵 Rrffli进行特征值分解,选择前 S个最大特征 值对应的特征向量,每个特征向量作为矩阵 的一列, 形成一个 JXXS维的复 数矩阵 Pf, 将 作为所述波束赋形的权值;
方式三、对统计信道相关矩阵 Rrffli进行特征值分解,选出前 S个最大特征 值对应的特征向量, 每个特征向量作为矩阵 的一列, 形成一个 JxxS维的复 数矩阵 , 对矩阵 进行恒模处理得到 = 将 作为所述波束赋形的 权值, 是指对矩阵 ^进行恒模处理。
7、 如权利要求 1所述的方法, 其中, 所述 MIMO编码步骤中, 所述 对数据流进行 MIMO 编码是指对数据流进行空间分集编码或者空间复用编 码。
8、 如权利要求 1所述的方法, 其中, 所述权值估计步骤中, 在根据发 送端的天线阵列到接收端天线的信道信息获取波束赋形的权值 = (W )TxxS 前, 还判断是否需要更新权值, 如果需要更新, 则根据发送端的天线阵列到 接收端天线的信道信息获取波束赋形的权值 fT f^U 否则, 使用系统预 先配置的权值或者上一次确定的权值作为波束赋形的权值对编码后的数据流 进行力。权并发送。
9、 一种多输入多输出波束赋形的数据发送装置, 包括:
MIMO编码模块,用于对数据流进行 MIMO编码,得到编码后的数据流; 权值估计模块, 用于根据发送端的天线阵列到接收端天线的信道信息获 取发送端的天线阵列的波束赋形的权值 fT f^.)^ , 其中, Γχ为发送端的发 送天线数目, S为进行 MIMO编码后的数据流个数, S<Tx
波束赋形模块, 用于使用所述波束赋形的权值 W = (W )TxxS对所述编码后 的数据流进行加权, 将所述加权后的数据流在相应的天线发送出去, 其中, 天线 发送的数据是叠加数据 ^Λ., = 1,..·,Γχ, · = 1,..·, , χ是编码后的第
_/·个数据流。
10、 如权利要求 9所述的装置, 其中, 所述权值估计模块包括: 统计信道相关矩阵获取单元, 用于根据所述信道信息获取所述发送端的 天线阵列的统计信道相关矩阵;
权值获取单元, 根据所述统计信道相关矩阵确定所述发送端的天线阵列 的波束赋形的权值 W = (Wj )TxxS
11、 如权利要求 10所述的装置, 其中, 所述统计信道相关矩阵获取单 元包括初始化子单元、 更新子单元和控制子单元:
初始化子单元, 用于初始化所述发送端的天线阵列的统计信道相关矩阵
R ; 确定用于计算该发送端的天线阵列的统计信道相关矩阵的若干个符号; 更新子单元, 用于选择符号, 计算接收端到发送端天线阵列当前选择的 符号上特定载波集合上的信道相关性矩阵 R
Figure imgf000025_0001
更新统计信 道相关矩阵 ^= ? ^+(1- ?;^ , 其中, 是发送端天线阵列的发送天线 到接收端天线上特定载波集合中第 A个子载波的信道系数矩阵, N表示特定 载波集合上包含载波的数目, 为常数, 表示第 A个子载波相关矩阵的权重, 7为常量, 且 0≤ 7 ≤1; 上标 H是对矩阵求共轭转置; 控制子单元, 用于控制所述更新子单元重复进行更新, 直到选择完用于 计算发送端天线阵列的统计信道相关矩阵的所述若干个符号。
12、 如权利要求 1 1所述的装置, 其中, 所述更新子单元, 用于根据如 下方式获取所述 H^) :
所述更新子单元测量接收端的天线到发送端天线阵列的上行信道的信道 系数矩阵, 根据信道互易性, 由测量的信道系数矩阵得到 R 行 JX列的所述 H{k);
或者, 接收端测量发送端的天线阵列到接收端的接收天线的信道系数矩 阵并反馈给所述更新子单元, 所述更新子单元根据接收端反馈的所述信道系 数矩阵得到 R 行 Γχ列的所述 ;
其中, Γχ为发送端天线阵列的发送天线数目, R 是接收端的接收天线数。
13、 如权利要求 12所述的装置, 其中, 所述上行信道包括: 接收端传 输上行业务的数据信道、 或者接收端向发送端反馈信息的上行反馈信道, 或 者接收端向发送端发送的探通信号或导频信号对应的信道。
14、 如权利要求 10所述的装置, 其中, 所述权值获取单元用于使用如 下方式之一获取所述波束赋形的权值 W = {W j )TxxS
方式一、在预先设定的矩阵集合^ = 1, 2, .. · , M中,选择使得 det(f RrfflifTm) 最大的^作为波束赋形的权值, 其中, det 表示求矩阵的行列式值, f m, = 1, 2,… ,Μ是 Γχχ S维的复数矩阵;
方式二,对统计信道相关矩阵 进行特征值分解,选择前 S个最大特征 值对应的特征向量,每个特征向量作为矩阵 的一列, 形成一个 JxxS维的复 数矩阵 Pf, 将 作为所述波束赋形的权值;
方式三,对统计的信道相关矩阵 Rrffli进行特征值分解,选出前 S个最大特 征值对应的特征向量, 每个特征向量作为矩阵 的一列, 形成一个 JXXS维的 复数矩阵 , 对矩阵 进行恒模处理得到 ), 将 作为所述波束赋形 的权值, 是指对矩阵 ^进行恒模处理。
15、 如权利要求 9所述的装置, 其中, 所述权值估计模块, 用于在根据 发送端的天线阵列到接收端天线的信道信息获取波束赋形的权值 ^ = (^.)^ 前, 还判断是否需要更新权值, 如果需要更新, 则根据发送端的天线阵列到 接收端天线的信道信息获取波束赋形的权值 fT f^U 否则, 使用系统预 先配置的权值或者上一次确定的权值作为波束赋形的权值。
PCT/CN2010/070377 2010-01-27 2010-01-27 多输入多输出波束赋形数据发送方法和装置 WO2011091586A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2010/070377 WO2011091586A1 (zh) 2010-01-27 2010-01-27 多输入多输出波束赋形数据发送方法和装置
JP2012528214A JP5391335B2 (ja) 2010-01-27 2010-01-27 多入力多出力ビーム形成のデータ送信方法及び装置
US13/496,276 US8767861B2 (en) 2010-01-27 2010-01-27 Multiple input multiple output and beam-forming data transmission method and device
EP10844364.9A EP2466761B1 (en) 2010-01-27 2010-01-27 Multiple input multiple output and beam-forming data transmission method and device
CN201080025139.1A CN102474315B (zh) 2010-01-27 2010-01-27 多输入多输出波束赋形数据发送方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070377 WO2011091586A1 (zh) 2010-01-27 2010-01-27 多输入多输出波束赋形数据发送方法和装置

Publications (1)

Publication Number Publication Date
WO2011091586A1 true WO2011091586A1 (zh) 2011-08-04

Family

ID=44318611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070377 WO2011091586A1 (zh) 2010-01-27 2010-01-27 多输入多输出波束赋形数据发送方法和装置

Country Status (5)

Country Link
US (1) US8767861B2 (zh)
EP (1) EP2466761B1 (zh)
JP (1) JP5391335B2 (zh)
CN (1) CN102474315B (zh)
WO (1) WO2011091586A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110870216A (zh) * 2017-07-14 2020-03-06 华为技术有限公司 一种波束成形方法及设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377467B (zh) * 2010-08-23 2015-02-04 中国移动通信集团公司 八天线下行控制信道发送方法及装置
GB2517218B (en) 2013-08-16 2017-10-04 Analog Devices Global Communication unit and method of antenna array calibration
GB2517217B (en) * 2013-08-16 2018-03-21 Analog Devices Global Communication unit, integrated circuit and method for generating a plurality of sectored beams
KR101547421B1 (ko) * 2014-01-22 2015-08-26 한국과학기술원 통계적 채널정보 기반의 혼합 빔포밍 방법, 및 이를 수행하는 장치들
US10068577B2 (en) * 2014-04-25 2018-09-04 Dolby Laboratories Licensing Corporation Audio segmentation based on spatial metadata
PT3266119T (pt) 2015-03-06 2018-07-23 Ericsson Telefon Ab L M Formação de feixe utilizando uma configuração de antena
US10070454B2 (en) * 2015-05-22 2018-09-04 Qualcomm Incorporated Smart grouping for multi-user multiple-input/multiple-output stations
US10700762B2 (en) 2016-05-04 2020-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Beam forming using an antenna arrangement
CN115580328A (zh) * 2021-06-21 2023-01-06 大唐移动通信设备有限公司 一种波束赋形方法、装置、存储介质及程序产品
CN116073929B (zh) * 2023-03-17 2023-06-09 湖南迈克森伟电子科技有限公司 一种mimo卫星通信系统中的数据检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953574A (zh) * 2005-10-18 2007-04-25 上海贝尔阿尔卡特股份有限公司 分布式基站、通信系统及其使用的信号传输方法
CN101160749A (zh) * 2005-03-10 2008-04-09 高通股份有限公司 在多输入多输出通信系统中进行波束成形的系统和方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169884B2 (ja) * 1999-09-24 2008-10-22 富士通株式会社 適応アンテナを用いた通信装置
JP3685697B2 (ja) 2000-09-01 2005-08-24 三洋電機株式会社 無線受信システムおよびウェイト更新方法
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
JP4350491B2 (ja) * 2002-12-05 2009-10-21 パナソニック株式会社 無線通信システム、無線通信方法、及び無線通信装置
JP4546177B2 (ja) * 2003-07-28 2010-09-15 パナソニック株式会社 無線通信装置および無線通信方法
GB2407008B (en) * 2003-10-10 2006-01-18 Toshiba Res Europ Ltd A mimo communication system
KR20050106658A (ko) * 2004-05-06 2005-11-11 한국전자통신연구원 Ofdm/tdd 방식의 하향링크용 고유빔을 형성하기위한 스마트 안테나 시스템 및 그 방법
KR20070020079A (ko) * 2004-05-19 2007-02-16 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Tv-rf 입력 회로 및 이것을 포함하는 튜너
US20060203794A1 (en) * 2005-03-10 2006-09-14 Qualcomm Incorporated Systems and methods for beamforming in multi-input multi-output communication systems
US9246560B2 (en) * 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) * 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
JP2007036403A (ja) 2005-07-22 2007-02-08 Nippon Telegr & Teleph Corp <Ntt> 空間多重送信装置および送信方法
JP4829064B2 (ja) 2006-09-28 2011-11-30 京セラ株式会社 無線通信装置及び無線通信方法
JP4840088B2 (ja) * 2006-11-08 2011-12-21 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
US8081690B2 (en) * 2008-01-11 2011-12-20 Qualcomm Incorporated OFDM channel estimation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101160749A (zh) * 2005-03-10 2008-04-09 高通股份有限公司 在多输入多输出通信系统中进行波束成形的系统和方法
CN1953574A (zh) * 2005-10-18 2007-04-25 上海贝尔阿尔卡特股份有限公司 分布式基站、通信系统及其使用的信号传输方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110870216A (zh) * 2017-07-14 2020-03-06 华为技术有限公司 一种波束成形方法及设备
CN110870216B (zh) * 2017-07-14 2021-06-15 华为技术有限公司 一种波束成形方法及设备
US11265054B2 (en) 2017-07-14 2022-03-01 Huawei Technologies Co., Ltd. Beamforming method and device

Also Published As

Publication number Publication date
EP2466761A4 (en) 2015-05-27
EP2466761A1 (en) 2012-06-20
US20120287981A1 (en) 2012-11-15
US8767861B2 (en) 2014-07-01
CN102474315A (zh) 2012-05-23
JP2013504901A (ja) 2013-02-07
JP5391335B2 (ja) 2014-01-15
EP2466761B1 (en) 2018-04-25
CN102474315B (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2011091586A1 (zh) 多输入多输出波束赋形数据发送方法和装置
US8660060B2 (en) System and method for communications using spatial multiplexing with incomplete channel information
JP5554844B2 (ja) 協調多入力多出力ビーム形成のデータ送信方法およびシステム
WO2015149312A1 (zh) 一种基于波束成形的通信方法及装置
US20020127978A1 (en) Radio communication system
TWI517620B (zh) 在多輸入多輸出(mimo)網路中通信的方法及裝置
JP2010527186A (ja) 複数入力通信システムにおいて送信されるデータを事前処理するための方法及び装置
WO2012100533A1 (zh) 预编码处理方法、基站和通信系统
CN102356566B (zh) 在使用预编码的多用户网络中的通信方法及其设备
KR20090109644A (ko) 복합 분할 복신 기반의 다중 입출력 무선통신 시스템에서빔포밍 장치 및 방법
WO2017206527A1 (zh) 一种波束赋形方法、信号发射设备以及信号接收设备
JP6208370B2 (ja) チャンネル情報フィードバック方法、基地局及び端末
US8391408B2 (en) Method and apparatus for spatial mapping matrix searching
WO2013107377A1 (zh) 码本反馈方法及信号接收装置、信号发送方法及装置
KR101409732B1 (ko) 다중 입력 다중 출력 시스템에서 하이 랭크 적응성 코드북을 생성 및 피드백하기 위한 방법 및 디바이스
CN106850010B (zh) 基于混合波束赋形的信道反馈方法及装置
CN102696180A (zh) 空间信道状态反馈方法和装置
WO2011124023A1 (zh) 转换装置和方法
CN102223168B (zh) 基于阵列天线和mimo联合传输波束成形方法
KR20090043174A (ko) 프리코딩을 이용한 송신 데이터 생성 방법, 생성된 송신데이터 전송 방법, 생성된 송신 데이터 수신 방법 및 그전송 장치
WO2011091588A1 (zh) 双流多输入多输出波束赋形权值获取方法和装置,双流多输入多输出波束赋形数据发送方法和装置
CN101783699A (zh) 多用户mimo系统中下行链路的信号发射方法和装置
CN102624433A (zh) 多径波束成形方法及实现多径波束成形的终端
CN108288981B (zh) 一种信道信息反馈及确定方法、接收端和发射端设备
WO2018210276A1 (zh) Tdd通信系统的造流方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025139.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012528214

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13496276

Country of ref document: US

Ref document number: 2010844364

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE