WO2021135837A1 - 一种基于信道互易性的预编码矩阵配置方法及装置 - Google Patents

一种基于信道互易性的预编码矩阵配置方法及装置 Download PDF

Info

Publication number
WO2021135837A1
WO2021135837A1 PCT/CN2020/134269 CN2020134269W WO2021135837A1 WO 2021135837 A1 WO2021135837 A1 WO 2021135837A1 CN 2020134269 W CN2020134269 W CN 2020134269W WO 2021135837 A1 WO2021135837 A1 WO 2021135837A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
terminal
antenna ports
network side
information
Prior art date
Application number
PCT/CN2020/134269
Other languages
English (en)
French (fr)
Inventor
刘正宣
高秋彬
李辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20909250.1A priority Critical patent/EP4087151A4/en
Priority to BR112022012842A priority patent/BR112022012842A2/pt
Priority to KR1020227026077A priority patent/KR20220120667A/ko
Priority to JP2022540537A priority patent/JP7413544B2/ja
Priority to MX2022008053A priority patent/MX2022008053A/es
Priority to US17/785,399 priority patent/US11901979B2/en
Publication of WO2021135837A1 publication Critical patent/WO2021135837A1/zh
Priority to US18/404,856 priority patent/US20240146364A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • This application relates to communication technology, and in particular to a method and device for configuring a precoding matrix based on channel reciprocity.
  • Rel-15 or Rel-16 uses the reciprocity of the angle information in the uplink channel and the downlink channel (that is, the angle information of the uplink channel can be used as the downlink channel Angle information), respectively define the port selection codebook and the enhanced port selection codebook.
  • Each channel state information indication reference signal (Channel State Indication-Resource Signal, CSI-RS) port undergoes beamforming, and its shaped beam can be determined by the reciprocity of the angle information of the uplink and downlink channels.
  • CSI-RS Channel State Indication-Resource Signal
  • X is the total number of CSI-RS ports, and its value is the same as the antenna configuration supported by the enhanced Type II codebook in NR Rel-16.
  • L is the number of configurable CSI-RS ports, L ⁇ 2,4 ⁇ .
  • the configuration status of the CSI-RS port can be expressed as:
  • I represents the sequence number of the CSI-RS port; the i-th element is 1 and the remaining elements are 0; m represents the sequence number of the starting CSI-RS port among the selected consecutive L CSI-RS ports, and its value is: Broadband feedback is adopted; d represents the preset sampling interval, d ⁇ 1,2,3,4 ⁇ , and d ⁇ L, which is used to adjust the sampling interval of each L beam and affect the feedback overhead. At the same time, the choice of d requires Consider avoiding choosing beams with similar directions for linear combining.
  • W is an X ⁇ N 3 precoding matrix, where N 3 represents the number of subbands of the Precoding Matrix Indicator (PMI); W f represents the frequency domain basis vector; it is composed of M discrete Fourier transforms (Discrete Fourier Transform, DFT) vector composition, the terminal determines M DFT basis vector sets according to the parameter M configured by the base station; Represents the linear combination coefficients after compression of the N 3 PMI subband coefficients corresponding to each of the selected 2L CSI-RS port beams by using W f.
  • PMI Precoding Matrix Indicator
  • the embodiment of the present application provides a precoding matrix configuration method based on channel reciprocity, which is used to effectively reduce the calculation complexity of the terminal and reduce the feedback overhead of the terminal.
  • a precoding matrix configuration method based on channel reciprocity includes:
  • the network side sends the corresponding beamformed channel state information indication reference signal CSI-RS to the terminal through each antenna port associated with each transmission layer.
  • the CSI-RS is transmitted through one antenna port.
  • the used beam is obtained based on the angle information and the delay information determined based on the uplink channel state information of the terminal; the beams used by the CSI-RS respectively sent by the respective antenna ports to the terminal are independent and different;
  • the network side receives K0 antenna ports and a set of beam combination coefficients reported by the terminal, the K0 antenna ports are selected by the terminal based on each CSI-RS received, and the set of beam combination coefficients is based on the set of beam combination coefficients.
  • the CSI-RS received on the K0 antenna ports is calculated, and the K0 is an integer greater than zero;
  • the network side determines a precoding matrix for downlink transmission of the terminal according to the beam used when the K0 antenna ports transmit CSI-RS and the beam combination coefficient set.
  • the network side before the network side sends corresponding beamformed CSI-RS to the terminal through each antenna port associated with each transmission layer, it further includes:
  • the network side calculates corresponding uplink channel state information based on the SRS
  • the network side separately determines the angle information and the delay information of each transmission path of the uplink channel of the terminal based on the uplink channel state information;
  • the network side Based on the angle information and delay information of each transmission path of the terminal's uplink channel, the network side separately calculates the beam used when transmitting the CSI-RS through each antenna port associated with each transmission layer in the downlink transmission.
  • the network side obtains the beam used when transmitting CSI-RS through any antenna port according to the angle information and the delay information determined based on the uplink channel state information of the terminal, including:
  • the network side determines the angle information corresponding to any one of the antenna ports, and determines the delay information corresponding to the any one of the antenna ports; wherein the angle information is calculated by using a corresponding spatial basis vector, and the delay information Obtained by calculation using the corresponding frequency domain basis vector;
  • the network side calculates and obtains the beam used when transmitting the CSI-RS through any one of the antenna ports based on the Kronecker product of the space-domain basis vector and the frequency-domain basis vector.
  • the spatial-domain basis vector or/and the frequency-domain basis vector can be expressed in any of the following forms:
  • the beam used when the network side transmits the CSI-RS through different antenna ports associated with the same transmission layer is calculated based on the same or different angle information, and based on the same or different delay information;
  • the beams used when the network side transmits CSI-RS through different antenna ports associated with different transmission layers are calculated based on the same or different angle information, and based on the same or different delay information;
  • the beams used when the network side transmits CSI-RS through different antenna ports in different polarization directions are calculated based on the same or different angle information, and based on the same or different delay information.
  • a precoding matrix configuration method based on channel reciprocity includes:
  • the terminal receives the beamformed channel state information indication reference signal CSI-RS sent by the network side through each antenna port associated with each transmission layer.
  • the CSI-RS is used when sending CSI-RS through one antenna port.
  • the beam is obtained based on the angle information and the delay information determined based on the uplink channel state information of the terminal; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and different;
  • the terminal selects K0 antenna ports based on each CSI-RS received, and calculates a set of beam combination coefficients corresponding to the K0 antenna ports based on the CSI-RS received by the K0 antenna ports;
  • the terminal reports the K0 antenna ports and the set of beam combination coefficients to the network side, so that for the terminal, the network side uses the beams and all the beams used when transmitting CSI-RS according to the K0 antenna ports.
  • the beam combination coefficient set determines a precoding matrix for downlink transmission of the terminal.
  • the method further includes:
  • the terminal sends a sounding reference signal SRS to the network side, so that the network side performs the following operations based on the SRS:
  • the corresponding uplink channel state information is calculated based on the SRS, and based on the uplink channel state information, the angle information and delay information of each transmission path of the terminal uplink channel are determined respectively, and the information based on each transmission path of the terminal uplink channel
  • the angle information and the delay information are respectively calculated in the downlink transmission, and the beam used when transmitting the CSI-RS through each antenna port associated with each transmission layer.
  • the terminal selects K0 antenna ports based on each CSI-RS received, including:
  • the terminal calculates the received power of each CSI-RS received, and selects the antenna ports corresponding to the K0 CSI-RSs with the largest received power; or,
  • the terminal calculates the beam combination coefficients of the antenna ports corresponding to each received CSI-RS, and selects the antenna ports corresponding to the K0 CSI-RSs with the highest power of the beam combination coefficients;
  • the K0 is configured by the network side, or reported by the terminal, or configured by the terminal and the network side through negotiation.
  • the terminal selecting K0 antenna ports and calculating the beam combination coefficient sets corresponding to the K0 antenna ports includes:
  • the terminal separately calculates the beam combination coefficients corresponding to the K0 antenna ports based on the CSI-RS received on the K0 antenna ports;
  • the terminal After the terminal quantizes the obtained beam combination coefficients, they are reported to the base station as a beam combination coefficient set.
  • it further includes:
  • the terminal calculates the corresponding rank indicator RI and channel quality indicator CQI based on the beams used when the K0 antenna ports transmit CSI-RS and combines the beam combination coefficient sets, and sends the RI and the CQI to the network Report on the side.
  • a network side device includes:
  • Memory used to store executable instructions
  • the processor is configured to read the executable instructions stored in the memory and execute the following steps:
  • the corresponding beamformed channel state information indication reference signal CSI-RS is sent to the terminal through each antenna port associated with each transmission layer.
  • the CSI-RS is used when transmitting the CSI-RS through one antenna port.
  • the beam is obtained according to the angle information and the delay information determined based on the uplink channel state information of the terminal; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and different;
  • the K0 antenna ports and beam combination coefficient sets reported by the terminal, where the K0 antenna ports are selected by the terminal based on each CSI-RS received, and the beam combination coefficient set is based on the K0 antennas Obtained by calculation of the CSI-RS received on the port, the K0 is an integer greater than zero;
  • a precoding matrix for downlink transmission of the terminal is determined according to the beam used when the K0 antenna ports transmit CSI-RS and the beam combination coefficient set.
  • the processor is further configured to:
  • the processor when obtaining the beam used when CSI-RS is transmitted through any antenna port according to the angle information and the delay information determined based on the uplink channel state information of the terminal, the processor is configured to:
  • a beam used when the CSI-RS is transmitted through any one of the antenna ports is calculated and obtained.
  • the spatial-domain basis vector or/and the frequency-domain basis vector can be expressed in any of the following forms:
  • the beams used when the processor transmits CSI-RS through different antenna ports associated with the same transmission layer are calculated based on the same or different angle information, and based on the same or different delay information;
  • the beams used when the processor transmits CSI-RS through different antenna ports associated with different transmission layers are calculated based on the same or different angle information, and based on the same or different delay information;
  • the beams used when the processor transmits CSI-RS through different antenna ports in different polarization directions are calculated based on the same or different angle information, and based on the same or different delay information.
  • a terminal includes:
  • Memory used to store executable instructions
  • the processor is configured to read the executable instructions stored in the memory and execute the following steps:
  • the beamformed channel state information indication reference signal CSI-RS sent by the network side is respectively received.
  • the CSI-RS is used when sending the CSI-RS through one antenna port.
  • the beam is obtained according to the angle information and the delay information determined based on the uplink channel state information of the terminal; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and different;
  • the coefficient set determines the precoding matrix for downlink transmission of the terminal.
  • the processor is further configured to:
  • the corresponding uplink channel state information is calculated based on the SRS, and based on the uplink channel state information, the angle information and delay information of each transmission path of the terminal uplink channel are determined respectively, and the information based on each transmission path of the terminal uplink channel
  • the angle information and the delay information are respectively calculated in the downlink transmission, and the beam used when transmitting the CSI-RS through each antenna port associated with each transmission layer.
  • the processor when selecting K0 antenna ports based on each CSI-RS received, the processor is configured to:
  • the terminal calculates the beam combination coefficients of the antenna ports corresponding to each received CSI-RS, and selects the antenna ports corresponding to the K0 CSI-RSs with the highest power of the beam combination coefficients;
  • the K0 is configured by the network side, or reported by the terminal, or configured by the terminal and the network side through negotiation.
  • the processor when selecting K0 antenna ports and calculating the beam combination coefficient sets corresponding to the K0 antenna ports, the processor is configured to:
  • the obtained beam combination coefficients are quantized, they are reported to the base station as a beam combination coefficient set.
  • the processor is further configured to:
  • a network side device includes:
  • the sending unit is used to send the corresponding beamformed channel state information indication reference signal CSI-RS to the terminal through each antenna port associated with each transmission layer in downlink transmission, wherein the CSI-RS is sent through one antenna port.
  • the beam used in the RS is obtained based on the angle information and the delay information determined based on the uplink channel state information of the terminal; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and independent identical;
  • the receiving unit is configured to receive K0 antenna ports and a set of beam combination coefficients reported by the terminal, the K0 antenna ports are selected by the terminal based on each CSI-RS received, and the set of beam combination coefficients is based on Obtained by calculating the CSI-RS received on the K0 antenna ports, the K0 is an integer greater than zero;
  • the processing unit is configured to determine, for the terminal, a precoding matrix for downlink transmission of the terminal according to the beam used when the K0 antenna ports transmit CSI-RS and the beam combination coefficient set.
  • a terminal includes:
  • the receiving unit is used to receive the beamformed channel state information indication reference signal CSI-RS sent by the network side through each antenna port associated with each transmission layer in downlink transmission, wherein the CSI-RS is sent through one antenna port.
  • the beam used in the RS is obtained based on the angle information and the delay information determined based on the uplink channel state information of the terminal; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and independent identical;
  • a calculation unit configured to select K0 antenna ports based on each received CSI-RS, and calculate the beam combination coefficient set corresponding to the K0 antenna ports based on the CSI-RS received by the K0 antenna ports;
  • the sending unit is configured to report the K0 antenna ports and the set of beam combination coefficients to the network side, so that the network side sends the CSI-RS beams according to the K0 antenna ports for the terminal And the beam combination coefficient set to determine a precoding matrix for downlink transmission of the terminal.
  • a storage medium when an instruction in the storage medium is executed by a processor, enables the processor to execute the method according to any one of the above-mentioned first aspects.
  • a storage medium when the instructions in the storage medium are executed by a processor, the processor is able to execute the method according to any one of the above second aspects.
  • the network side uses the beams calculated based on the angle information and the delay information determined by the uplink channel state information through each antenna port associated with each transmission layer, and sends the beam-shaped beams to the terminal.
  • CSI-RS and receiving K0 antenna ports and beam combination coefficient sets selected based on the CSI-RS reported by the terminal, and transmitting the CSI-RS according to the K0 antenna ports using the beam and the beam combination
  • the set of coefficients determines the precoding matrix for the downlink transmission of the terminal; in this way, the reciprocity of angle information and the reciprocity of delay information between the uplink and downlink channels can be used at the same time to directly calculate the shaped beam without the need
  • the SVD calculation is performed on the effective channel information of each PMI subband, thereby significantly reducing the calculation complexity of the terminal, effectively reducing the feedback overhead of the terminal, and further improving the system performance.
  • FIG. 1 is a flow chart of precoding matrix configuration based on channel reciprocity in an embodiment of this application
  • FIG. 2 is a schematic diagram of the entity architecture of the network side device in an embodiment of the application
  • Figure 3 is a schematic diagram of the terminal entity architecture in an embodiment of the application.
  • FIG. 4 is a schematic diagram of a logical architecture of a base station of a network side device in an embodiment of the application
  • FIG. 5 is a schematic diagram of the logical architecture of a terminal according to an embodiment of the application.
  • the network side combines the reciprocity of angle information between the uplink and downlink channels and the reciprocity of delay information through The terminal feeds back a small amount of auxiliary information, thereby finally calculating the downlink transmission precoding matrix of the terminal.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • NR New Radio
  • terminals include but are not limited to mobile stations (Mobile Station, MS), mobile terminals (Mobile Terminal), mobile phones (Mobile Telephone), mobile phones (handset), portable equipment (portable equipment), etc.
  • the device can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the user equipment can be a mobile phone (or called a "cellular" phone), a computer with wireless communication function, etc.
  • the user equipment can also be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device.
  • the network-side device may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface, or the network-side device may be an access point (AP)
  • the network side device may also be a network node composed of a central unit (Central Unit, CU) and multiple transmission reception points (Transmission Reception Points, TRP) managed and controlled by it.
  • Central Unit Central Unit
  • TRP Transmission Reception Points
  • the network-side device can be used to convert received air frames and IP packets into each other, as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the network side device can also coordinate the attribute management of the air interface.
  • the network side device can be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB) in TD-SCDMA or WCDMA, or an evolved base station (eNodeB or eNB or LTE) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNodeB evolved base station
  • gNB evolutional Node B
  • LPN low power node
  • pico, femto etc.
  • the embodiments of the application are not limited.
  • the network side device is a gNB as an example for description.
  • the detailed process of the network side configuring the precoding matrix for downlink transmission based on channel reciprocity is as follows:
  • Step 101 The terminal sends a sounding reference signal (Sounding Reference Signal, SRS) to the gNB.
  • SRS Sounding Reference Signal
  • Step 102 The gNB calculates corresponding uplink channel state information according to the received SRS, and then uses the uplink channel state information to calculate the angle information and delay information of each transmission path of the terminal's uplink channel.
  • the uplink channel state information can be recorded as
  • each transmission layer ie Rank
  • each transmission layer can be associated with several antenna ports, and one antenna port corresponds to one angle information and one time delay information.
  • the angle information can be calculated by using the corresponding spatial basis vector.
  • Information can be calculated by using the corresponding frequency domain basis vector, Rank ⁇ 1.
  • the gNB After obtaining the uplink channel state information, the gNB can separately determine the angle information and delay information used by the terminal in each antenna port associated with each transmission layer in the uplink transmission based on the uplink channel state information.
  • Step 103 In the downlink transmission, the gNB sends corresponding beamformed CSI-RS to the terminal through each antenna port associated with each transmission layer, wherein the beam used when transmitting the CSI-RS through one antenna port, Is obtained according to the angle information and the time delay information determined based on the uplink channel state information of the terminal;
  • the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and different.
  • the gNB sends K beamformed CSI-RSs to the terminal respectively through K antenna ports.
  • the beam used by the base station to transmit CSI-RS to the terminal through an antenna port in downlink transmission is calculated based on an angle information and a delay information corresponding to the terminal in uplink transmission, for example, First calculate a spatial basis vector used for an angle information, and a frequency domain basis vector used for calculating a delay information, and then based on the Kronecker product of the one spatial basis vector and a frequency domain basis vector, the said Transmit the beam of the antenna port.
  • the calculation method introduced in this way is only an example, and there are many methods for obtaining CSI-RS in practical applications, which will not be repeated here.
  • the reason why the beam can be obtained in the above manner is that the angle information and delay information of the uplink and downlink channels are reciprocal, that is, the angle information and the delay information corresponding to the uplink channel state information and the downlink channel state information are equal. Therefore, gNB Based on the angle information and the time delay information corresponding to any one antenna port in the uplink transmission, the beam used when the any one antenna port transmits the CSI-RS in the downlink transmission can be calculated.
  • the above-mentioned spatial-domain basis vector or/and frequency-domain basis vector can be expressed in any of the following forms:
  • DCT Discrete Cosine Transform
  • step 103 when executed, it specifically includes:
  • the beam used when the base station transmits CSI-RS through different antenna ports associated with the same transmission layer is based on the same or different angle information, and based on the same or different time. Calculated by delay information;
  • the angle information corresponding to different antenna ports associated with the same transmission layer may be the same or different.
  • the corresponding delay information may be the same or different for different antenna ports associated with the same transmission layer.
  • the beam used when the base station transmits CSI-RS through different antenna ports associated with different transmission layers is calculated based on the same or different angle information, and based on the same or different delay information.
  • the angle information corresponding to different antenna ports associated with different transmission layers may be the same or different.
  • the corresponding delay information may be the same or different for different antenna ports associated with different transmission layers.
  • the beam used when the base station transmits CSI-RS through different antenna ports in different polarization directions is based on the same or different angle information, and based on the same or different Time delay information is calculated.
  • the corresponding angle information may be the same or different.
  • the corresponding delay information may be the same or different.
  • the terminal no longer needs to feed back the calculation delay information to the base station, thereby effectively reducing the terminal's feedback overhead and reducing the calculation complexity.
  • Step 104 The terminal selects K0 antenna ports based on the CSI-RS received through each antenna port associated with each transmission layer in downlink transmission, and calculates the beam combination coefficient set of each transmission path corresponding to the K0 antenna port.
  • the terminal calculates the received power of the K CSI-RSs, and selects the CSI-RS The K0 antenna ports with the largest received power are reported to gNB.
  • the terminal will calculate the beam combination coefficients corresponding to each of the K0 antenna ports based on the CSI-RS received on the selected K0 antenna ports, denoted as Then, after quantizing these beam combination coefficients, they are reported to the gNB as a beam combination coefficient set.
  • Step 105 The terminal reports the K0 antenna ports and the beam combination coefficient set to the gNB.
  • the K0 may be configured by the base station, or reported by the terminal, or configured through negotiation between the terminal and the base station.
  • the terminal may continue to calculate the corresponding Rank Indication (RI) and channel quality indicator based on the CSI-RS received on the selected K0 antenna ports in combination with the beam combination coefficient set (Channel Quality Indicator, CQI), and report the calculation result to the base station.
  • RI Rank Indication
  • CQI Beam Quality Indicator
  • Step 106 For the terminal, the gNB determines a precoding matrix for downlink transmission of the terminal according to the beams used when the K0 antenna ports transmit CSI-RS and the beam combination coefficient set.
  • a dual-polarized two-dimensional planar antenna array is installed on the gNB, and the antenna array is mapped into 2N 1 N 2 antenna ports, where N 1 and N 2 represent the number of antenna ports in the horizontal dimension and the number of antenna ports in the vertical dimension, respectively.
  • the number of PMI subbands is denoted as N 3 .
  • the precoding matrix used in downlink data transmission can be obtained by performing the following steps:
  • A1 The terminal sends SRS to gNB.
  • A2 gNB obtains uplink channel state information according to SRS estimation
  • the power value after compression where, Represents the channel average of each PMI subband channel, namely Among them, v′ i represents the i-th spatial basis vector.
  • gNB uses airspace basis vector pairs After compression, select 2L spatial basis vectors with the largest power value and orthogonal to obtain the spatial basis vector matrix selected by gNB, denoted as
  • A3 For the nth PMI subband, gNB performs eigenvalue decomposition on the covariance matrix of the PMI subband, and sets the eigenvector corresponding to the largest eigenvalue to h n , then the subband combination corresponding to the PMI subband The coefficient is V H h n ⁇ C 2L ⁇ 1 .
  • the subband combination coefficients corresponding to each of the N 3 PMI subbands can be obtained, that is, the set of subband combination coefficients corresponding to all PMI subbands is expressed as
  • A4 Let [W 2 ] l,: denote the combination coefficients of all subbands in the lth row in W 2 , and gNB calculates the following content by traversal: using frequency domain basis vectors f l,j to combine coefficients of each subband in the matrix W 2
  • the compression power corresponding to the coefficients in the lth row of after being compressed is denoted as Wherein, f l, j represents the j using the frequency-domain-based vector W 2 of the second row in each sub-band l composition is compressed coefficients, [W 2] l ,: W 2 represent the respective sub first row l With combination coefficient.
  • A6 The terminal receives the corresponding CSI-RS through K antenna ports, and calculates the received power of the CSI-RS on each antenna port, then selects the K0 antenna ports with the largest received power, and sets the selected K0 ports Report to gNB.
  • the K0 downlink effective channels after beamforming can be expressed as:
  • A7 The terminal supports the above K0 downlink effective channels Eigenvalue decomposition is performed on the covariance matrix of, and the eigenvector corresponding to the largest eigenvalue is selected as the K0 beam combination coefficients, denoted as Then, the terminal quantizes the obtained K0 beam combination coefficients to obtain It is then reported to gNB as a set of beam combination coefficients.
  • the terminal may also calculate the corresponding RI and CQI according to the beams and beam combination coefficient sets used when transmitting the CSI-RS by the K0 antenna ports and report them to the gNB.
  • A8: gNB receives the set of K0 antenna ports and beam combination coefficients reported by the terminal, and calculates the precoding matrix of the downlink transmission data used on the transmission layer x, which is recorded as:
  • p ⁇ 0,1 ⁇ represents the beam used when the K0 antenna ports selected by the terminal in the two polarization directions send CSI-RS.
  • the terminal uses Nr antennas to transmit or receive signals, and transmit a layer of data downlink, called transmission layer x, and the number of spatial basis vectors used by gNB is 2L, and the number of frequency domain basis vectors used is M.
  • a dual-polarized two-dimensional planar antenna array is installed on the gNB, and the antenna array is mapped into 2N 1 N 2 antenna ports, where N 1 and N 2 represent the number of antenna ports in the horizontal dimension and the number of antenna ports in the vertical dimension, respectively.
  • the number of PMI subbands is denoted as N 3 .
  • the precoding matrix used in downlink data transmission can be obtained by performing the following steps:
  • the terminal sends an SRS to the gNB.
  • B2 gNB obtains uplink channel state information according to SRS estimation
  • gNB uses airspace basis vector pairs After compression, select L maximum power values and orthogonality and the two polarization directions use the same spatial basis vector, the matrix composed of the spatial basis vector selected by gNB can be obtained, denoted as
  • v 0 v L
  • v 1 v L+1
  • v L-1 v 2L-1 .
  • gNB For the nth PMI subband, gNB performs eigenvalue decomposition on the covariance matrix of the subband channel, and sets the eigenvector corresponding to the maximum eigenvalue to h n , then the subband combination corresponding to the PMI subband The coefficient is V H h n ⁇ C 2L ⁇ 1 .
  • the subband combination coefficients corresponding to each of the N3 PMI subbands can be obtained, that is, the set of subband combination coefficients corresponding to all PMI subbands is expressed as
  • B4 gNB is calculated by traversal Select M frequency-domain basis vectors with the largest compression power from the N 3 frequency-domain basis vectors of the candidates.
  • the terminal receives the corresponding CSI-RS through K antenna ports, respectively calculates the received power of the CSI-RS on each antenna port, then selects the K0 antenna ports with the largest received power, and calculates the corresponding beam combination coefficient And report the K0 antenna ports and the set of beam combination coefficients to the gNB.
  • B7 gNB receives the set of K0 antenna ports and beam combination coefficients reported by the terminal, and calculates the precoding matrix of the downlink transmission data used on the transmission layer x, which is recorded as:
  • p ⁇ 0,1 ⁇ which represents the beam used by the K0 antenna ports selected by the terminal in the two polarization directions when transmitting CSI-RS.
  • the terminal uses Nr antennas to send or receive signals, and downlink to transmit two layers of data, called transmission layer x and transmission layer y.
  • transmission layer x For each transmission layer, the number of spatial basis vectors used by gNB is 2L, and the number of frequency domain basis vectors used is M'.
  • a dual-polarized two-dimensional planar antenna array is installed on the gNB, and the antenna array is mapped into 2N 1 N 2 antenna ports, where N 1 and N 2 represent the number of antenna ports in the horizontal dimension and the number of antenna ports in the vertical dimension, respectively.
  • the number of PMI subbands is denoted as N 3 .
  • the precoding matrix used in downlink data transmission can be calculated through the following steps:
  • the terminal sends an SRS to the gNB.
  • the gNB uses the same or different spatial basis vector as the transmission layer x, and uses the same or different frequency domain basis vector as the transmission layer x to calculate the beam for sending data.
  • gNB uses the same spatial basis vector for transmission layer x and transmission layer y, and uses different frequency domain basis vectors, the selection of the frequency domain basis vector for transmission layer y by gNB is for each corresponding to transmission layer y.
  • the sub-band combination coefficients are compressed.
  • the calculation of the combination coefficients of each sub-band corresponding to the transmission layer y is similar to the foregoing A3 or the foregoing B3, except that for the nth PMI sub-band, the gNB performs the calculation of the PMI
  • the covariance matrix of the sub-band is subjected to eigenvalue decomposition, so that the eigenvector corresponding to the second largest eigenvalue is h′ n , and then the sub-band combination of the PMI sub-band is calculated by V H h′ n ⁇ C 2L ⁇ 1 coefficient.
  • the subband combination coefficients corresponding to each of the N 3 PHI subbands can be calculated.
  • the terminal calculates the beam combination coefficient corresponding to the transmission layer y, for K0 downlink effective channels Perform eigenvalue decomposition on the covariance matrix of, and select the eigenvector corresponding to the second largest eigenvalue as K0 beam combination coefficients, denoted as
  • the terminal calculates the beam combination coefficient of the transmission layer y in the same calculation method as the transmission layer x.
  • p ⁇ 0,1 ⁇ represents the beam used by the K0 ports selected by the terminal in the two polarization directions when transmitting CSI-RS, Represents the beam combination coefficients corresponding to the two transmission layers.
  • the method for gNB to calculate the precoding matrix of the two transmission layers is the same as that of the transmission layer x, that is, the precoding of the y layer is calculated by the following formula matrix:
  • an embodiment of the present application provides a network-side device (eg, gNB, eNB, etc.) including:
  • the memory 20 is used to store executable instructions
  • the processor 21 is configured to read executable instructions stored in the memory, and execute the following steps:
  • the corresponding beamformed CSI-RS is sent to the terminal through each antenna port associated with each transmission layer.
  • the beam used when sending the CSI-RS through one antenna port is based on the The angle information and the time delay information determined by the uplink channel state information of the terminal are obtained; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and different;
  • the K0 antenna ports and beam combination coefficient sets reported by the terminal, where the K0 antenna ports are selected by the terminal based on each CSI-RS received, and the beam combination coefficient set is based on the K0 antennas Obtained by calculation of the CSI-RS received on the port, the K0 is an integer greater than zero;
  • a precoding matrix for downlink transmission of the terminal is determined according to the beam used when the K0 antenna ports transmit CSI-RS and the beam combination coefficient set.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 21 and various circuits of the memory represented by the memory 20 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 21 is responsible for managing the bus architecture and general processing, and the memory 20 can store data used by the processor 21 when performing operations.
  • the processor 21 is further configured to:
  • the processor 21 when obtaining the beam used when transmitting the CSI-RS through any antenna port according to the angle information and the delay information determined based on the uplink channel state information of the terminal, the processor 21 is configured to:
  • a beam used when the CSI-RS is transmitted through any one of the antenna ports is calculated and obtained.
  • the spatial-domain basis vector or/and the frequency-domain basis vector can be expressed in any of the following forms:
  • the beams used when the processor 21 transmits CSI-RS through different antenna ports associated with the same transmission layer are calculated based on the same or different angle information, and based on the same or different delay information.
  • the beams used when the processor 21 transmits CSI-RS through different antenna ports associated with different transmission layers are calculated based on the same or different angle information, and based on the same or different delay information;
  • the beams used when the processor 21 transmits CSI-RS through different antenna ports in different polarization directions are calculated based on the same or different angle information, and based on the same or different delay information.
  • an embodiment of the present application provides a terminal, including:
  • the memory 30 is used to store executable instructions
  • the processor 31 is configured to read executable instructions stored in the memory, and execute the following steps:
  • the beam-forming CSI-RS sent by the network side is received through each antenna port associated with each transmission layer.
  • the beam used when sending the CSI-RS through one antenna port is based on the The angle information and the time delay information determined by the uplink channel state information of the terminal are obtained; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and different;
  • the coefficient set determines the precoding matrix for downlink transmission of the terminal.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 31 and various circuits of the memory represented by the memory 30 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface may also be an interface that can externally and internally connect the required equipment.
  • the connected equipment includes, but is not limited to, a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 31 is responsible for managing the bus architecture and general processing, and the memory 30 can store data used by the processor 31 when performing operations.
  • the processor 31 is further configured to:
  • the corresponding uplink channel state information is calculated based on the SRS, and based on the uplink channel state information, the angle information and delay information of each transmission path of the terminal uplink channel are determined respectively, and the information based on each transmission path of the terminal uplink channel
  • the angle information and the delay information are respectively calculated in the downlink transmission, and the beam used when transmitting the CSI-RS through each antenna port associated with each transmission layer.
  • the processor 31 when selecting K0 antenna ports based on each CSI-RS received, the processor 31 is configured to:
  • the K0 is configured by the network side, or reported by the terminal, or configured by the terminal and the network side through negotiation.
  • the processor 31 when selecting K0 antenna ports and calculating the beam combination coefficient sets corresponding to the K0 antenna ports, the processor 31 is configured to:
  • the obtained beam combination coefficients are quantized, they are reported to the network side as a beam combination coefficient set.
  • the processor 31 is further configured to:
  • the corresponding RI and CQI are calculated, and the RI and CQI are reported to the network side.
  • an embodiment of the present application provides a network side, including:
  • the sending unit 40 is configured to send corresponding beamformed CSI-RS to the terminal through each antenna port associated with each transmission layer in downlink transmission, where the CSI-RS used when transmitting the CSI-RS through one antenna port
  • the beam is obtained according to the angle information and the delay information determined based on the uplink channel state information of the terminal; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and different;
  • the receiving unit 41 is configured to receive K0 antenna ports and a set of beam combination coefficients reported by the terminal, where the K0 antenna ports are selected by the terminal based on each CSI-RS received, and the set of beam combination coefficients is Calculated based on the CSI-RS received on the K0 antenna ports, the K0 is an integer greater than zero;
  • the processing unit 42 is configured to determine, for the terminal, a precoding matrix for downlink transmission of the terminal according to the beam used when the K0 antenna ports transmit CSI-RS and the beam combination coefficient set.
  • the foregoing sending unit 40, receiving unit 41, and processing unit 42 are used to implement any method executed on the network side in the foregoing embodiment.
  • an embodiment of the present application provides a terminal, including:
  • the receiving unit 50 is configured to receive the beamformed channel state information indication reference signal CSI-RS sent by the base station through each antenna port associated with each transmission layer in downlink transmission, wherein the CSI-RS is sent through one antenna port.
  • the beam used in the RS is obtained based on the angle information and the delay information determined based on the uplink channel state information of the terminal; the beams used by the CSI-RS respectively sent by the antenna ports to the terminal are independent and independent identical;
  • the calculation unit 51 is configured to select K0 antenna ports based on each CSI-RS received, and calculate the set of beam combination coefficients corresponding to the K0 antenna ports based on the CSI-RS received by the K0 antenna ports;
  • the sending unit 52 is configured to report the K0 antenna ports and the set of beam combination coefficients to the base station, so that the base station sends the CSI-RS according to the K0 antenna ports and beams used when transmitting the CSI-RS for the terminal.
  • the beam combination coefficient set determines a precoding matrix for downlink transmission of the terminal.
  • the foregoing receiving unit 50, computing unit 51, and sending unit 52 cooperate with each other to implement any method executed by the terminal in the foregoing embodiment.
  • a storage medium is provided.
  • the processor can execute any method executed by the base station.
  • a storage medium is provided.
  • the processor can execute any method executed by the terminal.
  • the network side uses the beams calculated based on the angle information and delay information determined by the uplink channel state information through each antenna port associated with each transmission layer to send to the terminal respectively Beamforming CSI-RS, and receiving K0 antenna ports and beam combination coefficient sets selected based on the CSI-RS reported by the terminal, and transmitting the CSI-RS according to the K0 antenna ports.
  • the beam combination coefficient set to determine the precoding matrix for downlink transmission of the terminal in this way, the reciprocity of angle information and the reciprocity of delay information between the uplink and downlink channels can be used at the same time to directly calculate the shaping
  • the beam does not need to perform SVD calculation for the effective channel information of each PMI subband, thereby significantly reducing the calculation complexity of the terminal, effectively reducing the feedback overhead of the terminal, and further improving the system performance.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Error Detection And Correction (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

本申请涉及通信技术,公开了一种基于信道互易性的预编码矩阵配置方法及装置,该方法为:网络侧在下行传输中,通过各个传输层关联的各个天线端口,采用基于上行信道状态信息确定的角度信息和时延信息计算的波束,向终端分别发送经过波束赋形的CSI-RS,并根据所述终端基于所述CSI-RS选择的K0个天线端口上发送的波束以及波束组合系数集合,确定所述终端的下行传输的预编码矩阵;这样,便可以同时利用上下行信道之间的角度信息互易性和时延信息的互易性,直接计算发送CSI-RS的赋形波束,而不需要针对各个PMI子带的有效信道信息进行SVD计算,从而降低了终端的计算复杂度,减少了终端的反馈开销,以及也提升了系统性能。

Description

一种基于信道互易性的预编码矩阵配置方法及装置
相关申请的交叉引用
本申请要求在2019年12月30日提交中国专利局、申请号为201911404709.7、申请名称为“一种基于信道互易性的预编码矩阵配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,特别涉及一种基于信道互易性的预编码矩阵配置方法及装置。
背景技术
在新空口(New Radio,NR)系统中,针对Type II码本,Rel-15或Rel-16利用上行信道和下行信道中的角度信息互易性(即上行信道的角度信息可作为下行信道的角度信息),分别定义了端口选择码本和增强的端口选择码本。
NR Rel-16中,定义了一种增强的Type II码本,可支持Rank=1~4,其通过端口选择矩阵(记为:W1)实现端口选择,并采用与Rel-16 TypeII码本相同的方式实现端口间的线性合并。每个信道状态信息指示参考信号(Channel State Indication-Resource Signal,CSI-RS)端口均经过波束赋形,其赋形波束可以通过上下行信道的角度信息的互易性确定。其中,W1表示为:
Figure PCTCN2020134269-appb-000001
其中,X为CSI-RS端口总数目,其取值与NR Rel-16中增强的Type II码本所支持的天线配置相同。L为可配置的CSI-RS端口数目,L∈{2,4}。其中,CSI-RS端口的配置状态可表示为:
Figure PCTCN2020134269-appb-000002
其中,
Figure PCTCN2020134269-appb-000003
表示长度为
Figure PCTCN2020134269-appb-000004
的向量;i表示CSI-RS端口的序号;第i个元素为1其余元素为0;m表示选择的连续L个CSI-RS端口中,起始CSI-RS端口的序号,其取值为:
Figure PCTCN2020134269-appb-000005
采用宽带反馈;d表示预设的采样间隔,d∈{1,2,3,4},且d≤L,用于调整每L个波束的采样间隔,并影响反馈开销,同时d的选择需要考虑避免选择方向类似的波束用于线性合并。
对于选择的L个CSI-RS个端口,采用Rel-16的Type II码本结构计算得到端口选择码本。以Rank=1为例,Rel-16的Type II码本结构可写为:
Figure PCTCN2020134269-appb-000006
W是一个X×N 3的预编码矩阵,其中,N 3表示预编码矩阵(Precoding Matrix Indicator,PMI)子带个数;W f表示频域基向量;它是由M个离散傅里叶变换(Discrete Fourier Transform,DFT)向量组成,终端根据基站配置的参数M确定M个DFT基向量集合;
Figure PCTCN2020134269-appb-000007
表示采用W f对选择的2L个CSI-RS端口波束各自对应的N 3个PMI子带系数,进行压缩后的线性合并系数。
然而,已有技术下,终端采用NR Rel-16中增强的Type II端口选择码本时,需要对每个PMI子带的有效信道信息做奇异值分解(Singular Value Decomposition,SVD)计算,从而增加了终端的计算复杂度和反馈开销。
有鉴于此,需要设计一种新的预编码方法,以克服上述缺陷。
发明内容
本申请实施例提供一种基于信道互易性的预编码矩阵配置方法,用于有效降低终端的计算复杂度,以及减少终端的反馈开销。
本申请实施例提供的具体技术方案如下:
第一方面,一种基于信道互易性的预编码矩阵配置方法,包括:
网络侧在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
所述网络侧接收所述终端上报的K0个天线端口以及波束组合系数集合,所述K0个天线端口是所述终端基于接收的各个CSI-RS选择的,以及所述波束组合系数集合是基于所述K0个天线端口上接收的CSI-RS计算获得的,所述K0为大于零的整数;
针对所述终端,所述网络侧根据所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
可选的,网络侧在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的CSI-RS之前,进一步包括:
所述网络侧接收所述终端发送的探测参考信号SRS;
所述网络侧基于所述SRS,计算相应的上行信道状态信息;
所述网络侧基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息;
所述网络侧基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
可选的,所述网络侧根据基于所述终端的上行信道状态信息确定的角度信息和时延信息,获得通过任意一个天线端口发送CSI-RS时所使用的波束,包括:
所述网络侧确定所述任意一个天线端口对应的角度信息,以及确定所述任意一个天线端口对应的时延信息;其中,所述角度信息采用相应的空域基向量计算获得,所述时延信息采用相应的频域基向量计算获得;
所述网络侧基于所述空域基向量和所述频域基向量的克罗内克积,计算 获得通过所述任意一个天线端口发送CSI-RS时所使用的波束。
可选的,所述空域基向量或/和所述频域基向量,采用以下任意一种形式表示:
特征向量;
离散傅里叶变换DFT向量;
离散余弦变换DCT向量;
多项式系数;
正交变换KLT向量。
可选的,所述网络侧通过同一传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
所述网络侧通过不同传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
所述网络侧通过不同极化方向上的不同天线端口发送CSI-RS时使用的波束是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的。
第二方面,一种基于信道互易性的预编码矩阵配置方法,包括:
终端在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
所述终端基于接收的各个CSI-RS,选择K0个天线端口,以及基于所述K0个天线端口接收的CSI-RS,计算所述K0个天线端口对应的波束组合系数集合;
所述终端向所述网络侧上报所述K0个天线端口和所述波束组合系数集 合,使得所述网络侧针对所述终端,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
可选的,所述终端在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的参考信CSI-RS之前,进一步包括:
所述终端向所述网络侧发送探测参考信号SRS,使得所述网络侧基于所述SRS,执行以下操作:
基于所述SRS计算相应的上行信道状态信息,并基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息,以及基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
可选的,所述终端基于接收的各个CSI-RS,选择K0个天线端口,包括:
所述终端计算接收的各个CSI-RS的接收功率,选择接收功率最大的K0个CSI-RS对应的天线端口;或,
所述终端计算接收的各个CSI-RS对应的天线端口的波束组合系数,选择所述波束组合系数的功率最大的K0个CSI-RS对应的天线端口;
其中,所述K0由所述网络侧配置,或者,由所述终端上报,或者,由所述终端和所述网络侧通过协商配置。
可选的,所述终端选择K0个天线端口,并计算所述K0个天线端口对应的波束组合系数集合,包括:
所述终端基于在所述K0个天线端口上接收的CSI-RS,分别计算所述K0个天线端口各自对应的波束组合系数;
所述终端对获得的各个波束组合系数进行量化后,作为波束组合系数集合上报给基站。
可选的,进一步包括:
所述终端基于所述K0个天线端口发送CSI-RS时使用的波束,结合所述波束组合系数集合,计算相应的秩指示RI和信道质量指示CQI,以及将所述 RI和所述CQI向网络侧进行上报。
第三方面,一种网络侧装置,包括:
存储器,用于存储可执行指令;
处理器,用于读取所述存储器中存储的可执行指令,执行以下步骤:
在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
接收所述终端上报的K0个天线端口以及波束组合系数集合,所述K0个天线端口是所述终端基于接收的各个CSI-RS选择的,以及所述波束组合系数集合是基于所述K0个天线端口上接收的CSI-RS计算获得的,所述K0为大于零的整数;
针对所述终端,根据所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
可选的,在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的CSI-RS之前,所述处理器进一步用于:
接收所述终端发送的探测参考信号SRS;
基于所述SRS,计算相应的上行信道状态信息;
基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息;
基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
可选的,根据基于所述终端的上行信道状态信息确定的角度信息和时延信息,获得通过任意一个天线端口发送CSI-RS时所使用的波束时,所述处理器用于:
确定所述任意一个天线端口对应的角度信息,以及确定所述任意一个天线端口对应的时延信息;其中,所述角度信息采用相应的空域基向量计算获得,所述时延信息采用相应的频域基向量计算获得;
基于所述空域基向量和所述频域基向量的克罗内克积,计算获得通过所述任意一个天线端口发送CSI-RS时所使用的波束。
可选的,所述空域基向量或/和所述频域基向量,采用以下任意一种形式表示:
特征向量;
离散傅里叶变换DFT向量;
离散余弦变换DCT向量;
多项式系数;
正交变换KLT向量。
可选的,所述处理器通过同一传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
所述处理器通过不同传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
所述处理器通过不同极化方向上的不同天线端口发送CSI-RS时使用的波束是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的。
第四方面,一种终端,包括:
存储器,用于存储可执行指令;
处理器,用于读取所述存储器中存储的可执行指令,执行以下步骤:
在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态 信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
基于接收的各个CSI-RS,选择K0个天线端口,以及基于所述K0个天线端口接收的CSI-RS,计算所述K0个天线端口对应的波束组合系数集合;
向所述网络侧上报所述K0个天线端口和所述波束组合系数集合,使得所述网络侧针对所述终端,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
可选的,在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的CSI-RS之前,所述处理器进一步用于:
向所述网络侧发送探测参考信号SRS,使得所述网络侧基于所述SRS,执行以下操作:
基于所述SRS计算相应的上行信道状态信息,并基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息,以及基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
可选的,基于接收的各个CSI-RS,选择K0个天线端口时,所述处理器用于:
计算接收的各个CSI-RS的接收功率,选择接收功率最大的K0个CSI-RS对应的天线端口;或,
所述终端计算接收的各个CSI-RS对应的天线端口的波束组合系数,选择所述波束组合系数的功率最大的K0个CSI-RS对应的天线端口;
其中,所述K0由所述网络侧配置,或者,由所述终端上报,或者,由所述终端和所述网络侧通过协商配置。
可选的,选择K0个天线端口,并计算所述K0个天线端口对应的波束组合系数集合时,所述处理器用于:
基于在所述K0个天线端口上接收的CSI-RS,分别计算所述K0个天线端口各自对应的波束组合系数;
对获得的各个波束组合系数进行量化后,作为波束组合系数集合上报给基站。
可选的,所述处理器进一步用于:
基于所述K0个天线端口发送CSI-RS时使用的波束,结合所述波束组合系数集合,计算相应的秩指示RI和信道质量指示CQI,以及将所述RI和所述CQI向网络侧进行上报。
第五方面,一种网络侧装置,包括:
发送单元,用于在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
接收单元,用于接收所述终端上报的K0个天线端口以及波束组合系数集合,所述K0个天线端口是所述终端基于接收的各个CSI-RS选择的,以及所述波束组合系数集合是基于所述K0个天线端口上接收的CSI-RS计算获得的,所述K0为大于零的整数;
处理单元,用于针对所述终端,根据所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
第六方面,一种终端,包括:
接收单元,用于在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
计算单元,用于基于接收的各个CSI-RS,选择K0个天线端口,以及基于所述K0个天线端口接收的CSI-RS,计算所述K0个天线端口对应的波束组 合系数集合;
发送单元,用于向所述网络侧上报所述K0个天线端口和所述波束组合系数集合,使得所述网络侧针对所述终端,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
第七方面,一种存储介质,当所述存储介质中的指令由处理器执行时,使得所述处理器能够执行上述第一方面中任一项所述的方法。
第八方面,一种存储介质,当所述存储介质中的指令由处理器执行时,使得所述处理器能够执行上述第二方面中任一项所述的方法。
本申请实施例中,网络侧在下行传输中,通过各个传输层关联的各个天线端口,采用基于上行信道状态信息确定的角度信息和时延信息计算的波束,向终端分别发送经过波束赋形的CSI-RS,以及接收所述终端上报的基于所述CSI-RS选择的K0个天线端口以及波束组合系数集合,并根据所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵;这样,便可以同时利用上下行信道之间的角度信息互易性和时延信息的互易性,直接计算赋形波束,而不需要针对各个PMI子带的有效信道信息进行SVD计算,从而显著降低了终端的计算复杂度,有效减少了终端的反馈开销,进一步地,也提升了系统性能。
附图说明
图1为本申请实施例中基于信道互易性的预编码矩阵配置流程图;
图2为本申请实施例中网络侧装置实体架构示意图;
图3为本申请实施例中终端实体架构示意图;
图4为本申请实施例中网络侧装置基站逻辑架构示意图;
图5为本申请实施例终端逻辑架构示意图。
具体实施方式
为了进一步降低终端的计算复杂度,减少终端的反馈开销,提升系统性能,本申请实施例中,网络侧结合上下行信道之间的角度信息的互易性和时延信息的互易性,通过终端反馈少量辅助信息,从而最终计算出该终端的下行传输预编码矩阵。
下面结合附图对本申请优先的实施方式作出进一步详细说明。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio,NR)等。
在本申请实施例中,终端包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,网络侧装置可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备,或者,网络侧设备可以接入点(Access Point,AP);网络侧设备也可以是中央单元(Central Unit,CU)与其管理和控制的多个传输接收点(Transmission Reception Point,TRP)共同组成的网络节点。
网络侧装置可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。网络侧装置还可协调对空中接口的属性管理。例如,网络侧装 置可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是TD-SCDMA或WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNodeB或eNB或e-NodeB,evolutional Node B),或者是5G NR中的基站(gNB),还可以是低功率节点(low power node,LPN)、皮基站(pico)、飞蜂窝(femto)等等小站,本申请实施例并不限定。
后续实施例中,均以网络侧装置是gNB为例进行说明。
参阅图1所示,本申请实施例中,网络侧基于信道互易性配置下行传输的预编码矩阵的详细流程如下:
步骤101:终端向gNB发送探测参考信号(Sounding Reference Signal,SRS)。
步骤102:gNB根据接收到的SRS,计算相应的上行信道状态信息,再采用所述上行信道状态信息,计算终端上行信道各个传输路径的角度信息和时延信息。
具体的,本申请实施例中,可以将上行信道状态信息记为
Figure PCTCN2020134269-appb-000008
通常情况下,各个传输层(即Rank)可以关联若干天线端口,一个天线端口对应一个角度信息和一个时延信息,其中,所述角度信息可以采用相应的空域基向量计算获得,所述时延信息可以采用相应的频域基向量计算获得,Rank≥1。
gNB在获得上行信道状态信息后,可以基于上行信道状态信息,分别确定终端在上行传输中,在各个传输层关联的各个天线端口使用的角度信息和时延信息。
步骤103:gNB在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;
所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的。
本申请实施例中,假设gNB通过K个天线端口分别向终端发送K个经过波束赋形后的CSI-RS。
其中,可选的,基站在下行传输中,通过一个天线端口向终端发送CSI-RS时使用的波束,是基于终端在上行传输中对应的一个角度信息和一个时延信息计算得到的,例如,首先计算一个角度信息所用的一个空域基向量,以及计算一个时延信息所用的一个频域基向量,再基于所述一个空域基向量和一个频域基向量的克罗内克积,获得所述发送天线端口的波束。当然,此种介绍的计算方式仅为举例,实际应用中会有多种获得CSI-RS的方法,在此不再一一赘述。
之所以可以采用上述方式获得波束,是由于上下行信道的角度信息和时延信息具有互易性,即上行信道状态信息与下行信道状态信息所对应的角度信息和时延信息相等,因此,gNB基于任意一个天线端口在上行传输中对应的一个角度信息和一个时延信息,便可以计算出在所述任意一个天线端口在下行传输中发送CSI-RS时使用的波束。
可选的,上述空域基向量或/和频域基向量,均可以采用以下任意一种形式表示:
特征向量;
DFT向量;
离散余弦变换(Discrete Cosine Transform,DCT)向量;
多项式系数;
正交变换(Karhunen-Loeve Transform,KLT)向量。
另一方面,在执行步骤103时,具体包括:
针对Rank=1,或者,Rank>1的情况,基站通过同一传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
换言之,同一传输层关联的不同天线端口,对应的角度信息可以相同也可以不相同,同时,同一传输层关联的不同天线端口,对应的时延信息可以 相同也可以不相同。
针对Rank>1的情况,基站通过不同传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的。
换言之,不同传输层关联的不同天线端口,对应的角度信息可以相同也可以不相同,同时,不同传输层关联的不同天线端口,对应的时延信息可以相同也可以不相同。
针对Rank=1,或者,Rank>1的情况,基站通过不同极化方向上的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的。
换言之,不同极化方向关联的不同天线端口,对应的角度信息可以相同也可以不相同,同时,不同极化方向关联的不同天线端口,对应的时延信息可以相同也可以不相同。
同时,由于结合了角度信息和时延信息来进行波束计算,终端不再需要计算时延信息反馈给基站,从而有效实现了减少终端的反馈开销,以及降低了计算复杂度。
步骤104:终端基于下行传输中,通过各个传输层关联的各个天线端口接收到的CSI-RS,选择K0个天线端口,并计算所述K0个天线端口对应的各个传输路径的波束组合系数集合。
可选的,终端在各个传输层关联的各个天线端口上,接收到经过波束赋形之后的K个CSI-RS后,分别计算所述K个CSI-RS的接收功率,以及选择CSI-RS的接收功率最大的K0个天线端口上报给gNB。
进一步地,终端会基于在选择的K0个天线端口上接收的CSI-RS,分别计算所述K0个天线端口各自对应的波束组合系数,记为
Figure PCTCN2020134269-appb-000009
然后对这些波束组合系数进行量化后,作为波束组合系数集合上报给gNB。
步骤105:终端向gNB上报所述K0个天线端口和所述波束组合系数集合。
可选的,所述K0可以由基站配置,也可以由终端上报,还可以是终端和基站之间通过协商配置。
进一步地,在执行步骤105之后,终端可以继续基于在选择的K0个天线端口上接收的CSI-RS,结合所述波束组合系数集合,计算相应的秩指示(Rank Indication,RI)和信道质量指示(Channel Quality Indicator,CQI),并将计算结果向基站进行上报。
步骤106:gNB针对所述终端,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
下面采用三个不同的应用场景对上述实施例作出进一步详细说明。
应用场景1:Rank=1,网络侧配置了K个天线端口,并且不同的天线端口之间使用不同的波束发送CSI-RS。
具体的,假设终端使用Nr根天线发送信号或接收信号,且下行传输一层数据,称为传输层x,并且gNB采用的空域基向量的数目为2L,采用的频域基向量的数目为M l,l=0,…2L-1,其中下标l对应第l个空域基向量。
gNB上安装了双极化的二维平面天线阵列,天线阵列映射成2N 1N 2个天线端口,其中,N 1和N 2分别表示水平维的天线端口数目和垂直维方向的天线端口数目,PMI子带的数目记为N 3
那么,下行数据传输所采用的预编码矩阵,可以通过执行以下步骤得到:
A1:终端向gNB发送SRS。
A2:gNB根据SRS估计得到上行信道状态信息
Figure PCTCN2020134269-appb-000010
其中,令
Figure PCTCN2020134269-appb-000011
Figure PCTCN2020134269-appb-000012
分别表示第n个PMI子带上第一极化方向的信道和第二极化方向的信道,n=1,…,N 3,基站以遍历方式通过
Figure PCTCN2020134269-appb-000013
i=0,N 1N 2-1,p=0,1计算采用空域基向量v′ i
Figure PCTCN2020134269-appb-000014
进行压缩后的功率值,其中,
Figure PCTCN2020134269-appb-000015
表示各个PMI子带信道的信道平均值,即
Figure PCTCN2020134269-appb-000016
其中,v′ i表示第i个空域基向量。
gNB采用空域基向量对
Figure PCTCN2020134269-appb-000017
进行压缩后,选择2L个功率值最大且正交的空域基向量,可得gNB选择的空域基向量矩阵,记为
Figure PCTCN2020134269-appb-000018
A3:针对第n个PMI子带,gNB对所述PMI子带的协方差矩阵进行特征值分解,令其最大特征值对应的特征向量为h n,则所述PMI子带对应的子带组合系数为V Hh n∈C 2L×1
类似地,可得N 3个PMI子带各自对应的子带组合系数,即,所有PMI子带对应的子带组合系数集合表示为
Figure PCTCN2020134269-appb-000019
A4:令[W 2] l,:表示W 2中第l行所有子带组合系数,gNB通过遍历方式计算以下内容:采用频域基向量f l,j对各子带组合系数矩阵W 2中的第l行中的各系数进行压缩后所对应的压缩功率,记为
Figure PCTCN2020134269-appb-000020
其中,f l,j表示采用了第j个频域基向量对W 2中的第l行中各个子带组合系数进行压缩,[W 2] l,:表示W 2中第l行的各个子带组合系数。从候选的N 3个频域基向量中选择压缩功率最大的Ml个频域基向量。
同样地,对W 2的中所有行的各个子带组合系数进行频域压缩后,可得
Figure PCTCN2020134269-appb-000021
频域基向量。
A5:gNB通过
Figure PCTCN2020134269-appb-000022
Figure PCTCN2020134269-appb-000023
计算出通过K个天线端口发送CSI-RS时使用的波束,其中,f l,m表示从 Ml个频域基向量中选择的第m个频域基向量,用于压缩W 2中第l行的各子带组合系数。
A6:终端分别通过K个天线端口接收相应的CSI-RS,并分别计算各个天线端口上的CSI-RS的接收功率,然后,选择接收功率最大的K0个天线端口,并把选择的K0个端口上报给gNB。
经过波束赋形之后的K0个下行有效信道可表示为:
Figure PCTCN2020134269-appb-000024
其中,
Figure PCTCN2020134269-appb-000025
可以通过对K0个天线端口接收到的CSI-RS进行估计得到。
A7:终端对上述K0个下行有效信道
Figure PCTCN2020134269-appb-000026
的协方差矩阵进行特征值分解,选择最大特征值对应的特征向量作为K0个波束组合系数,记为
Figure PCTCN2020134269-appb-000027
然后,终端对获得K0个波束组合系数进行量化后得到
Figure PCTCN2020134269-appb-000028
再作为波束组合系数集合上报给gNB。
进一步地,终端还可以根据所述K0个天线端口发送CSI-RS时使用的波束和波束组合系数集合,计算出相应的RI和CQI上报给gNB。
A8:gNB接收到终端上报的K0个天线端口和波束组合系数集合,计算在述传输层x上使用的下行传输数据的预编码矩阵,记为:
Figure PCTCN2020134269-appb-000029
其中,
Figure PCTCN2020134269-appb-000030
p∈{0,1}表示终端在两个极化方向上选择的K0个天线端口在发送CSI-RS时使用的波束。
应用场景2:Rank=1、共关联了K个天线端口,并且不同极化方向包含的多个天线端口使用的空域基向量相同。
具体的,假设终端使用Nr根天线发送信号或接收信号,下行传输一层数据,称为传输层x,并且gNB采用的空域基向量的数目为2L,采用的频域基向量的数目为M。
gNB上安装了双极化的二维平面天线阵列,天线阵列映射成2N 1N 2个天线端口,其中,N 1和N 2分别表示水平维的天线端口数目和垂直维方向的天线端口数目,PMI子带个数记为N 3
那么,下行数据传输所采用的预编码矩阵,可以通过执行以下步骤得到:
B1:终端向gNB发送SRS。
B2:gNB根据SRS估计得到上行信道状态信息
Figure PCTCN2020134269-appb-000031
其中,
Figure PCTCN2020134269-appb-000032
分别表示各个PMI子带上第一极化方向的信道和第二极化方向的信道。基站以遍历方式通过
Figure PCTCN2020134269-appb-000033
i=0,N 1N 2-1,计算采用空域基向量v′ i
Figure PCTCN2020134269-appb-000034
压缩后的功率值,其中,
Figure PCTCN2020134269-appb-000035
表示各个PMI子带在两个极化方向的信道平均值,
Figure PCTCN2020134269-appb-000036
表示第i个空域基向量。
gNB采用空域基向量对
Figure PCTCN2020134269-appb-000037
进行压缩后,选择L个功率值最大且正交且两个极化方向采用相同的空域基向量,可得gNB选择的空域基向量组成的矩阵,记为
Figure PCTCN2020134269-appb-000038
其中,v 0=v L,v 1=v L+1,...,v L-1=v 2L-1.
B3:对于第n个PMI子带,gNB对所述子带信道的协方差矩阵进行特征值分解,令其最大特征值对应的特征向量为h n,则所述PMI子带对应的子带组合系数为V Hh n∈C 2L×1
类似地,可得N3个PMI子带各自对应的子带组合系数,即,所有PMI 子带对应的子带组合系数集合表示为
Figure PCTCN2020134269-appb-000039
B4:gNB通过遍历方式计算
Figure PCTCN2020134269-appb-000040
从候选的N 3个频域基向量中选择压缩功率最大的M个频域基向量。
因此,gNB可得M个频域基向量,记为f m,m=0,...,M。
B5:gNB通过
Figure PCTCN2020134269-appb-000041
l=0,...,2L-1;m=0,...,M-1;p=0,1;k=lM+m
计算出通过K天线端口发送CSI-RS时使用的波束,然后再向终端发送经过波束赋形之后的CSI-RS。
B6:终端分别通过K个天线端口接收相应的CSI-RS,并分别计算各个天线端口上的CSI-RS的接收功率,然后,选择接收功率最大的K0个天线端口,以及计算相应的波束组合系数集合,并将所述K0个天线端口和所述波束组合系数集合上报给gNB。
具体执行过程与A6-A7相同,在此不再赘述。
B7:gNB接收到终端上报的K0个天线端口和波束组合系数集合,计算在传输层x上使用的下行传输数据的预编码矩阵,记为:
Figure PCTCN2020134269-appb-000042
其中,
Figure PCTCN2020134269-appb-000043
p∈{0,1},表示终端在两个极化方向上选择的K0个天线端口在发送CSI-RS时所使用的波束。
应用场景3:Rank=2,共使用K个天线端口。
具体的,假设终端用Nr根天线发送信号或接收信号,且下行传输两层数据,称为传输层x和传输层y。对于每一个传输层,gNB采用的空域基向量的 数目为2L,采用的频域基向量的数目为M′。
gNB上安装了双极化的二维平面天线阵列,天线阵列映射成2N 1N 2个天线端口,其中,N 1和N 2分别表示水平维的天线端口数目和垂直维方向的天线端口数目,PMI子带的数目记为N 3
下行数据传输所采用的预编码矩阵,可通过以下步骤计算得到:
C1:终端向gNB发送SRS。
C2:对于传输层x,gNB采用的空域基向量和频域基向量的计算方式与上述A2-A4或上述2-B4相同,在此不再赘述。
对应传输层y,gNB采用与传输层x相同或不同的空域基向量,以及采用与传输层x采用相同或不同的频域基向量,计算发送数据的波束。
若gNB针对传输层x和传输层y,采用了相同的空域基向量,以及采用不同的频域基向量,则gNB针对传输层y的频域基向量的选择是对传输层y所对应的各子带组合系数进行压缩,其中,传输层y所对应的各子带的组合系数的计算,与上述A3或上述B3类似,不同之处在于,对于第n个PMI子带,gNB对所述PMI子带的协方差矩阵进行特征值分解,令其第二最大特征值对应的特征向量为h′ n,然后再通过V Hh′ n∈C 2L×1计算所述PMI子带的子带组合系数。
类似地,可以计算出N 3个PHI子带各自对应的子带组合系数。
C3:若在传输层x和传输层y采用相同的空域基向量和相同的频域基向量,则终端计算传输层y对应的波束组合系数时,对K0个下行有效信道
Figure PCTCN2020134269-appb-000044
的协方差矩阵进行特征值分解,并选择第二最大特征值对应的特征向量作为K0个波束组合系数,记为
Figure PCTCN2020134269-appb-000045
C4:若在传输层x和传输层y采用不同的空域基向量或采用不同的频域基向量,则终端计算传输层y的波束组合系数时,计算方式与传输层x相同。
C5:若在传输层x和传输层y采用相同的空域基向量和频域基向量,gNB计算获得的两个传输层的预编码矩阵可记为:
Figure PCTCN2020134269-appb-000046
其中,
Figure PCTCN2020134269-appb-000047
p∈{0,1}表示终端在两个极化方向上选择的K0个端口在发送CSI-RS时使用的波束,
Figure PCTCN2020134269-appb-000048
表示两个传输层对应的波束组合系数。
若在传输层x和传输层y采用不同的空域基向量或频域基向量,则gNB计算两个传输层的预编码矩阵的方法与传输层x相同,即通过以下公式计算y层的预编码矩阵:
Figure PCTCN2020134269-appb-000049
基于同一发明构思,参阅图2所示中,本申请实施例提供一种网络侧装置(如,gNB,eNB等等)包括:
存储器20,用于存储可执行指令;
处理器21,用于读取所述存储器中存储的可执行指令,执行以下步骤:
在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
接收所述终端上报的K0个天线端口以及波束组合系数集合,所述K0个天线端口是所述终端基于接收的各个CSI-RS选择的,以及所述波束组合系数集合是基于所述K0个天线端口上接收的CSI-RS计算获得的,所述K0为大于零的整数;
针对所述终端,根据所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
其中,参阅图2所示,总线架构可以包括任意数量的互联的总线和桥,具体由处理器21代表的一个或多个处理器和存储器20代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器21负责管理总线架构和通常的处理,存储器20可以存储处理器21在执行操作时所使用的数据。
可选的,在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的CSI-RS之前,所述处理器21进一步用于:
接收所述终端发送的SRS;
基于所述SRS,计算相应的上行信道状态信息;
基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息;
基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
可选的,根据基于所述终端的上行信道状态信息确定的角度信息和时延信息,获得通过任意一个天线端口发送CSI-RS时所使用的波束时,所述处理器21用于:
确定所述任意一个天线端口对应的角度信息,以及确定所述任意一个天 线端口对应的时延信息;其中,所述角度信息采用相应的空域基向量计算获得,所述时延信息采用相应的频域基向量计算获得;
基于所述空域基向量和所述频域基向量的克罗内克积,计算获得通过所述任意一个天线端口发送CSI-RS时所使用的波束。
可选的,所述空域基向量或/和所述频域基向量,采用以下任意一种形式表示:
特征向量;
离散傅里叶变换DFT向量;
离散余弦变换DCT向量;
多项式系数;
正交变换KLT向量。
可选的,所述处理器21通过同一传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
所述处理器21通过不同传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
所述处理器21通过不同极化方向上的不同天线端口发送CSI-RS时使用的波束是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的。
基于同一发明构思,参阅图3所示中,本申请实施例提供一种终端,包括:
存储器30,用于存储可执行指令;
处理器31,用于读取所述存储器中存储的可执行指令,执行以下步骤:
在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时 延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
基于接收的各个CSI-RS,选择K0个天线端口,以及基于所述K0个天线端口接收的CSI-RS,计算所述K0个天线端口对应的波束组合系数集合;
向所述网络侧上报所述K0个天线端口和所述波束组合系数集合,使得所述网络侧针对所述终端,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
其中,参阅图3所示,总线架构可以包括任意数量的互联的总线和桥,具体由处理器31代表的一个或多个处理器和存储器30代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器31负责管理总线架构和通常的处理,存储器30可以存储处理器31在执行操作时所使用的数据。
可选的,在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的CSI-RS之前,所述处理器31进一步用于:
向所述网络侧发送SRS,使得所述网络侧基于所述SRS,执行以下操作:
基于所述SRS计算相应的上行信道状态信息,并基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息,以及基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
可选的,基于接收的各个CSI-RS,选择K0个天线端口时,所述处理器31用于:
计算接收的各个CSI-RS的接收功率,选择接收功率最大的K0个CSI-RS 对应的天线端口;或,
计算接收的各个CSI-RS对应的天线端口的波束组合系数,选择所述波束组合系数的功率最大的K0个CSI-RS对应的天线端口;
其中,所述K0由所述网络侧配置,或者,由所述终端上报,或者,由所述终端和所述网络侧通过协商配置。
可选的,选择K0个天线端口,并计算所述K0个天线端口对应的波束组合系数集合时,所述处理器31用于:
基于在所述K0个天线端口上接收的CSI-RS,分别计算所述K0个天线端口各自对应的波束组合系数;
对获得的各个波束组合系数进行量化后,作为波束组合系数集合上报给网络侧。
可选的,所述处理器31进一步用于:
基于所述K0个天线端口发送CSI-RS时使用的波束,结合所述波束组合系数集合,计算相应的RI和CQI,以及将所述RI和所述CQI向网络侧进行上报。
基于同一发明构思,参阅图4所示,本申请实施例提供一种网络侧,包括:
发送单元40,用于在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
接收单元41,用于接收所述终端上报的K0个天线端口以及波束组合系数集合,所述K0个天线端口是所述终端基于接收的各个CSI-RS选择的,以及所述波束组合系数集合是基于所述K0个天线端口上接收的CSI-RS计算获得的,所述K0为大于零的整数;
处理单元42,用于针对所述终端,根据所述K0个天线端口发送CSI-RS 时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
上述发送单元40、接收单元41和处理单元42,以实现上述实施例中网络侧执行的任一种方法。
基于同一发明构思,参阅图5所示,本申请实施例提供一种终端,包括:
接收单元50,用于在下行传输中,通过各个传输层关联的各个天线端口,分别接收基站发送的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
计算单元51,用于基于接收的各个CSI-RS,选择K0个天线端口,以及基于所述K0个天线端口接收的CSI-RS,计算所述K0个天线端口对应的波束组合系数集合;
发送单元52,用于向所述基站上报所述K0个天线端口和所述波束组合系数集合,使得所述基站针对所述终端,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
上述接收单元50、计算单元51和发送单元52之间相互配合,以实现上述实施例中终端执行的任一种方法。
基于同一发明构思,提供一种存储介质,当所述存储介质中的指令由处理器执行时,使得所述处理器能够执行上述基站执行的任一种方法。
基于同一发明构思,提供一种存储介质,当所述存储介质中的指令由处理器执行时,使得所述处理器能够执行上述终端执行的任一种方法。
综上所述,本申请实施例中,网络侧在下行传输中,通过各个传输层关联的各个天线端口,采用基于上行信道状态信息确定的角度信息和时延信息计算的波束,向终端分别发送经过波束赋形的CSI-RS,以及接收所述终端上报的基于所述CSI-RS选择的K0个天线端口以及波束组合系数集合,并根据 所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵;这样,便可以同时利用上下行信道之间的角度信息互易性和时延信息的互易性,直接计算赋形波束,而不需要针对各个PMI子带的有效信道信息进行SVD计算,从而显著降低了终端的计算复杂度,有效减少了终端的反馈开销,进一步地,也提升了系统性能。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了 基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种基于信道互易性的预编码矩阵配置方法,其特征在于,包括:
    网络侧在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
    所述网络侧接收所述终端上报的K0个天线端口以及波束组合系数集合,所述K0个天线端口是所述终端基于接收的各个CSI-RS选择的,以及所述波束组合系数集合是基于所述K0个天线端口上接收的CSI-RS计算获得的,所述K0为大于零的整数;
    针对所述终端,所述网络侧根据所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
  2. 如权利要求1所述的方法,其特征在于,网络侧在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的CSI-RS之前,进一步包括:
    所述网络侧接收所述终端发送的探测参考信号SRS;
    所述网络侧基于所述SRS,计算相应的上行信道状态信息;
    所述网络侧基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息;
    所述网络侧基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
  3. 如权利要求2所述的方法,其特征在于,所述网络侧基于所述终端上行信道各个传输路径的角度信息和时延信息,获得通过任意一个天线端口发送CSI-RS时所使用的波束,包括:
    所述网络侧确定所述任意一个天线端口对应的角度信息,以及确定所述任意一个天线端口对应的时延信息;其中,所述角度信息采用相应的空域基向量计算获得,所述时延信息采用相应的频域基向量计算获得;
    所述网络侧基于所述空域基向量和所述频域基向量的克罗内克积,计算获得通过所述任意一个天线端口发送CSI-RS时所使用的波束。
  4. 如权利要求3所述的方法,其特征在于,所述空域基向量或/和所述频域基向量,采用以下任意一种形式表示:
    特征向量;
    离散傅里叶变换DFT向量;
    离散余弦变换DCT向量;
    多项式系数;
    正交变换KLT向量。
  5. 如权利要求2-4任一项所述的方法,其特征在于,所述网络侧通过同一传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
    所述网络侧通过不同传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
    所述网络侧通过不同极化方向上的不同天线端口发送CSI-RS时使用的波束是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的。
  6. 一种基于信道互易性的预编码矩阵配置方法,其特征在于,包括:
    终端在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
    所述终端基于接收的各个CSI-RS,选择K0个天线端口,以及基于所述K0个天线端口接收的CSI-RS,计算所述K0个天线端口对应的波束组合系数集合,所述K0为大于零的整数;
    所述终端向所述网络侧上报所述K0个天线端口和所述波束组合系数集合,使得所述网络侧,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输预编码矩阵。
  7. 如权利要求6所述的方法,其特征在于,所述终端在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的参考信CSI-RS之前,进一步包括:
    所述终端向所述网络侧发送探测参考信号SRS,使得所述网络侧基于所述SRS,执行以下操作:
    基于所述SRS计算相应的上行信道状态信息,并基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息,以及基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
  8. 如权利要求6或7所述的方法,其特征在于,所述终端基于接收的各个CSI-RS,选择K0个天线端口,包括:
    所述终端计算接收的各个CSI-RS的接收功率,选择接收功率最大的K0个CSI-RS对应的天线端口;或,
    所述终端计算接收的各个CSI-RS对应的天线端口的波束组合系数,选择所述波束组合系数的功率最大的K0个CSI-RS对应的天线端口;
    其中,所述K0由所述网络侧配置,或者,由所述终端上报,或者,由所述终端和所述网络侧通过协商预定义。
  9. 如权利要求6或7所述的方法,其特征在于,所述终端选择K0个天线端口,并计算所述K0个天线端口对应的波束组合系数集合,包括:
    所述终端基于在所述K0个天线端口上接收的CSI-RS,分别计算所述K0个天线端口各自对应的波束组合系数;
    所述终端对获得的各个波束组合系数进行量化后,作为波束组合系数集合上报给网络侧。
  10. 如权利要求9所述的方法,其特征在于,进一步包括:
    所述终端基于所述K0个天线端口发送CSI-RS时使用的波束,结合所述波束组合系数集合,计算相应的秩指示RI和信道质量指示CQI,以及将所述RI和所述CQI向网络侧进行上报。
  11. 一种网络侧装置,其特征在于,包括:
    存储器,用于存储可执行指令;
    处理器,用于读取所述存储器中存储的可执行指令,执行以下步骤:
    在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
    接收所述终端上报的K0个天线端口以及波束组合系数集合,所述K0个天线端口是所述终端基于接收的各个CSI-RS选择的,以及所述波束组合系数集合是基于所述K0个天线端口上接收的CSI-RS计算获得的,所述K0为大于零的整数;
    针对所述终端,根据所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
  12. 如权利要求11所述的网络侧装置,其特征在于,在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的CSI-RS之前,所述处理器进一步用于:
    接收所述终端发送的探测参考信号SRS;
    基于所述SRS,计算相应的上行信道状态信息;
    基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息;
    基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
  13. 如权利要求12所述的网络侧装置,其特征在于,所述网络侧基于所述终端上行信道各个传输路径的角度信息和时延信息,获得通过任意一个天线端口发送CSI-RS时所使用的波束时,所述处理器用于:
    确定所述任意一个天线端口对应的角度信息,以及确定所述任意一个天线端口对应的时延信息;其中,所述角度信息采用相应的空域基向量计算获得,所述时延信息采用相应的频域基向量计算获得;
    基于所述空域基向量和所述频域基向量的克罗内克积,计算获得通过所述任意一个天线端口发送CSI-RS时所使用的波束。
  14. 如权利要求13所述的网络侧装置,其特征在于,所述空域基向量或/和所述频域基向量,采用以下任意一种形式表示:
    特征向量;
    离散傅里叶变换DFT向量;
    离散余弦变换DCT向量;
    多项式系数;
    正交变换KLT向量。
  15. 如权利要求12-14任一项所述的网络侧装置,其特征在于,所述处理器通过同一传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
    所述处理器通过不同传输层关联的不同天线端口发送CSI-RS时使用的波束,是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的;
    所述处理器通过不同极化方向上的不同天线端口发送CSI-RS时使用的波束是基于相同的或不同的角度信息,以及基于相同的或不同的时延信息计算获得的。
  16. 一种终端,其特征在于,包括:
    存储器,用于存储可执行指令;
    处理器,用于读取所述存储器中存储的可执行指令,执行以下步骤:
    在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
    基于接收的各个CSI-RS,选择K0个天线端口,以及基于所述K0个天线端口接收的CSI-RS,计算所述K0个天线端口对应的波束组合系数集合,所述K0为大于零的整数;
    向所述网络侧上报所述K0个天线端口和所述波束组合系数集合,使得所述网络侧针对所述终端,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
  17. 如权利要求16所述的终端,其特征在于,终端在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的CSI-RS之前,所述处理器进一步用于:
    向所述网络侧发送探测参考信号SRS,使得所述网络侧基于所述SRS,执行以下操作:
    基于所述SRS计算相应的上行信道状态信息,并基于所述上行信道状态信息,分别确定所述终端上行信道各个传输路径的角度信息和时延信息,以及基于所述终端上行信道各个传输路径的角度信息和时延信息,分别计算在下行传输中,通过各个传输层关联的各个天线端口发送CSI-RS时使用的波束。
  18. 如权利要求16或17所述的终端,其特征在于,基于接收的各个CSI-RS,选择K0个天线端口时,所述处理器用于:
    计算接收的各个CSI-RS的接收功率,选择接收功率最大的K0个CSI-RS对应的天线端口;或,
    计算接收的各个CSI-RS对应的天线端口的波束组合系数,选择所述波束组合系数的功率最大的K0个CSI-RS对应的天线端口;
    其中,所述K0由所述网络侧配置,或者,由所述终端上报,或者,由所述终端和所述网络侧通过协商配置。
  19. 如权利要求16或17所述的终端,其特征在于,选择K0个天线端口,并计算所述K0个天线端口对应的波束组合系数集合时,所述处理器用于:
    基于在所述K0个天线端口上接收的CSI-RS,分别计算所述K0个天线端口各自对应的波束组合系数;
    对获得的各个波束组合系数进行量化后,作为波束组合系数集合上报给网络侧。
  20. 如权利要求19所述的终端,其特征在于,所述处理器进一步用于:
    基于所述K0个天线端口发送CSI-RS时使用的波束,结合所述波束组合系数集合,计算相应的秩指示RI和信道质量指示CQI,以及将所述RI和所述CQI向网络侧进行上报。
  21. 一种网络侧装置,其特征在于,包括:
    发送单元,用于在下行传输中,通过各个传输层关联的各个天线端口,向终端分别发送相应的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
    接收单元,用于接收所述终端上报的K0个天线端口以及波束组合系数集合,所述K0个天线端口是所述终端基于接收的各个CSI-RS选择的,以及所述波束组合系数集合是基于所述K0个天线端口上接收的CSI-RS计算获得的,所述K0为大于零的整数;
    处理单元,用于针对所述终端,根据所述K0个天线端口发送CSI-RS时使用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
  22. 一种终端,其特征在于,包括:
    接收单元,用于在下行传输中,通过各个传输层关联的各个天线端口,分别接收网络侧发送的经过波束赋形的信道状态信息指示参考信号CSI-RS,其中,通过一个天线端口发送CSI-RS时所使用的波束,是根据基于所述终端的上行信道状态信息确定的角度信息和时延信息获得的;所述各个天线端口向终端分别发送的CSI-RS所使用的波束是独立且不相同的;
    计算单元,用于基于接收的各个CSI-RS,选择K0个天线端口,以及基于所述K0个天线端口接收的CSI-RS,计算所述K0个天线端口对应的波束组合系数集合,所述K0为大于零的整数;
    发送单元,用于向所述网络侧上报所述K0个天线端口和所述波束组合系数集合,使得所述网络侧针对所述终端,根据所述K0个天线端口发送CSI-RS时采用的波束和所述波束组合系数集合,确定所述终端的下行传输的预编码矩阵。
  23. 一种存储介质,其特征在于,当所述存储介质中的指令由处理器执行时,使得所述处理器能够执行如权利要求1至5中任一项所述的方法。
  24. 一种存储介质,其特征在于,当所述存储介质中的指令由处理器执行时,使得所述处理器能够执行如权利要求6-10中任一项所述的方法。
PCT/CN2020/134269 2019-12-30 2020-12-07 一种基于信道互易性的预编码矩阵配置方法及装置 WO2021135837A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20909250.1A EP4087151A4 (en) 2019-12-30 2020-12-07 METHOD AND APPARATUS FOR CONFIGURATION OF A PRECODING MATRIX ON A CHANNEL RECIPROCITY BASIS
BR112022012842A BR112022012842A2 (pt) 2019-12-30 2020-12-07 Aparelho e método de configuração de matriz de pré-codificação baseada em reciprocidade de canal
KR1020227026077A KR20220120667A (ko) 2019-12-30 2020-12-07 채널 호혜성 기반 프리코딩 매트릭스 구성 방법 및 장치
JP2022540537A JP7413544B2 (ja) 2019-12-30 2020-12-07 チャネル相反性に基づくプリコーディングマトリックスの構成方法および装置
MX2022008053A MX2022008053A (es) 2019-12-30 2020-12-07 Terapia de combinacion de radioinmunoconjugados con inhibidor del punto de control.
US17/785,399 US11901979B2 (en) 2019-12-30 2020-12-07 Channel reciprocity-based precoding matrix configuration method and apparatus
US18/404,856 US20240146364A1 (en) 2019-12-30 2024-01-04 Channel reciprocity-based precoding matrix configuration method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911404709.7 2019-12-30
CN201911404709.7A CN113131978B (zh) 2019-12-30 2019-12-30 一种基于信道互易性的预编码矩阵配置方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/785,399 A-371-Of-International US11901979B2 (en) 2019-12-30 2020-12-07 Channel reciprocity-based precoding matrix configuration method and apparatus
US18/404,856 Continuation US20240146364A1 (en) 2019-12-30 2024-01-04 Channel reciprocity-based precoding matrix configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2021135837A1 true WO2021135837A1 (zh) 2021-07-08

Family

ID=76686426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134269 WO2021135837A1 (zh) 2019-12-30 2020-12-07 一种基于信道互易性的预编码矩阵配置方法及装置

Country Status (9)

Country Link
US (2) US11901979B2 (zh)
EP (1) EP4087151A4 (zh)
JP (1) JP7413544B2 (zh)
KR (1) KR20220120667A (zh)
CN (1) CN113131978B (zh)
BR (1) BR112022012842A2 (zh)
MX (1) MX2022008053A (zh)
TW (2) TWI795336B (zh)
WO (1) WO2021135837A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024073882A1 (en) * 2022-10-08 2024-04-11 Qualcomm Incorporated Encoding and decoding spatial domain basis selection for multiple transmission reception point communication

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258974B (zh) * 2020-02-10 2022-12-30 大唐移动通信设备有限公司 信道状态信息反馈方法、装置、终端、网络侧和存储介质
US11909472B2 (en) * 2021-11-16 2024-02-20 Samsung Electronics Co., Ltd Method and apparatus for selection of linear combination coefficients for precoding in frequency-selective channels
CN114448757A (zh) * 2022-01-21 2022-05-06 华中科技大学 Fdd大规模mimo系统中基于信道部分互易性的信道估计方法
CN116846431A (zh) * 2022-03-22 2023-10-03 北京紫光展锐通信技术有限公司 用于多传输接收点trp的码本反馈、确定方法及装置
WO2023206047A1 (zh) * 2022-04-25 2023-11-02 北京小米移动软件有限公司 信道状态信息csi上报方法和装置
CN117321925A (zh) * 2022-04-27 2023-12-29 北京小米移动软件有限公司 Csi的上报方法、预编码矩阵的确定方法、装置及设备
CN117254839A (zh) * 2022-06-10 2023-12-19 中兴通讯股份有限公司 信道状态参考信号的波束赋形方法、装置及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105120A1 (en) * 2014-12-23 2016-06-30 Samsung Electronics Co., Ltd. Channel state information feedback schemes for fd-mimo

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872953B2 (ja) 1999-12-27 2007-01-24 株式会社東芝 アダプティブアンテナを用いた無線通信装置
CN103095356B (zh) * 2011-11-04 2015-09-23 上海瀚讯无线技术有限公司 一种波束成形方法、基站和交通运输装置
US20130343299A1 (en) 2012-06-21 2013-12-26 Samsung Electronics Co., Ltd Method for cqi feedback without spatial feedback (pmi/ri) for tdd coordinated multi-point and carrier aggregation scenarios
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
CN103905101B (zh) 2012-12-27 2019-02-12 中兴通讯股份有限公司 Lte系统中下行预编码粒度的确定方法及基站
US9825742B2 (en) * 2014-10-03 2017-11-21 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
US9893777B2 (en) 2014-11-17 2018-02-13 Samsung Electronics Co., Ltd. Method and apparatus for precoding channel state information reference signal
KR102335741B1 (ko) * 2015-08-13 2021-12-06 삼성전자주식회사 이동 통신 시스템에서 빔포밍된 csi-rs를 이용하는 통신 기법
CN105246086B (zh) * 2015-10-08 2018-10-16 北京邮电大学 一种确定天线角度的方法和设备
CN107204794B (zh) 2016-03-18 2020-02-21 电信科学技术研究院 一种csi反馈方法及装置
US10419086B2 (en) * 2016-04-26 2019-09-17 Samsung Electronics Co., Ltd. Method and apparatus for enabling uplink MIMO
CN107689821A (zh) * 2016-08-05 2018-02-13 北京信威通信技术股份有限公司 一种beamforming矢量调整的方法及装置
US10484064B2 (en) * 2016-09-01 2019-11-19 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink CSI acquisition
CN107888323B (zh) 2016-09-29 2020-01-17 电信科学技术研究院 一种信道状态信息的传输方法和设备
US9768928B1 (en) * 2016-12-16 2017-09-19 Futurewei Technologies, Inc. High dimensional (HiDi) radio environment characterization and representation
EP3631997B1 (en) * 2017-05-30 2021-02-17 Telefonaktiebolaget LM Ericsson (publ) Technique for channel state acquisition
CN108039903B (zh) * 2017-09-11 2021-06-01 华为技术有限公司 一种通信方法及设备
US11695462B2 (en) * 2019-01-29 2023-07-04 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105120A1 (en) * 2014-12-23 2016-06-30 Samsung Electronics Co., Ltd. Channel state information feedback schemes for fd-mimo

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Other issues on NR eMIMO in R16", 3GPP DRAFT; R1-1910399, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789204 *
HUAWEI, HISILICON: "Rel-17 work scope of Sub-3 GHz FDD enhancements", 3GPP DRAFT; RP-191009 REL-17 WORK SCOPE OF SUB-3GHZ FDD ENHANCEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190603 - 20190606, 2 June 2019 (2019-06-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051747220 *
HUAWEI, HISILICON: "Rel-17 work scope on NR MIMO and sub-3GHz FDD enhancements", 3GPP DRAFT; RP-191762 REL-17 WORK SCOPE ON NR MIMO AND SUB-3 GHZ FDD ENHANCEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190916 - 20190920, 9 September 2019 (2019-09-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051782322 *
HUAWEI: "Overview of Rel-17 Work Areas for NR and LTE", 3GPP DRAFT; RP-191007 OVERVIEW OF REL-17 WORK AREAS FOR NR AND LTE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Newport Beach; 20190603 - 20190606, 2 June 2019 (2019-06-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051747216 *
HUAWEI: "Overview of Rel-17 Work Areas for NR and LTE", 3GPP DRAFT; RP-191486 OVERVIEW OF REL-17 WORK AREAS FOR NR AND LTE (WAS RP-191007), 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Newport Beach; 20190603 - 20190606, 4 June 2019 (2019-06-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051748411 *
SAMSUNG: "Summary of email Discussion for Rel.17 enhancements on MIMO for NR", 3GPP DRAFT; RP-192435, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Sitges, Spain; 20191209 - 20191212, 3 December 2019 (2019-12-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051835464 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024073882A1 (en) * 2022-10-08 2024-04-11 Qualcomm Incorporated Encoding and decoding spatial domain basis selection for multiple transmission reception point communication

Also Published As

Publication number Publication date
KR20220120667A (ko) 2022-08-30
TWI782367B (zh) 2022-11-01
TW202304159A (zh) 2023-01-16
JP2023509924A (ja) 2023-03-10
US11901979B2 (en) 2024-02-13
EP4087151A1 (en) 2022-11-09
US20240146364A1 (en) 2024-05-02
CN113131978B (zh) 2022-04-19
MX2022008053A (es) 2022-07-27
TW202125991A (zh) 2021-07-01
US20230009991A1 (en) 2023-01-12
BR112022012842A2 (pt) 2022-09-06
TWI795336B (zh) 2023-03-01
JP7413544B2 (ja) 2024-01-15
CN113131978A (zh) 2021-07-16
EP4087151A4 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021135837A1 (zh) 一种基于信道互易性的预编码矩阵配置方法及装置
WO2018171727A1 (zh) 传输信道状态信息的方法、终端设备和网络设备
WO2018127044A1 (zh) 通信方法、基站和终端设备
WO2017193961A1 (zh) 一种信道信息发送方法、数据发送方法和设备
US10673508B2 (en) Channel state information feedback method, user equipment, and base station
WO2017166281A1 (zh) 一种预编码矩阵指示的反馈方法及装置
WO2018171604A1 (zh) 信息的传输方法和设备
WO2021160122A1 (zh) 信道状态信息反馈方法、装置、终端、网络侧和存储介质
CN109478948B (zh) 一种信道信息传输装置、方法和系统
JP6556244B2 (ja) コードブック確定方法及び装置
US10965355B2 (en) Precoding matrix index reporting method, communications apparatus, and medium
JP2019509686A (ja) チャネル状態情報のフィードバック方法および装置
WO2016183835A1 (zh) 传输信号的方法和设备
WO2021083157A1 (zh) 一种预编码矩阵的处理方法和通信装置
US11159346B2 (en) Co-polarized feedback for frequency domain compression
WO2020047774A1 (zh) 信道信息处理方法和装置
WO2022160322A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2021159537A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2020073788A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2024001744A1 (zh) 一种信道状态信息的上报方法及通信装置
WO2022083307A1 (zh) 信道测量的方法及通信装置
WO2019233340A1 (zh) 信道状态信息反馈方法、预编码矩阵确定方法及装置
CN118054820A (zh) 确定波束赋形中的组合系数的方法、终端及装置
WO2020227941A1 (zh) 上报信道状态信息的方法、装置及相关设备
CN117498902A (zh) 一种信息传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540537

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022012842

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227026077

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020909250

Country of ref document: EP

Effective date: 20220801

ENP Entry into the national phase

Ref document number: 112022012842

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220628