WO2020047774A1 - 信道信息处理方法和装置 - Google Patents

信道信息处理方法和装置 Download PDF

Info

Publication number
WO2020047774A1
WO2020047774A1 PCT/CN2018/104178 CN2018104178W WO2020047774A1 WO 2020047774 A1 WO2020047774 A1 WO 2020047774A1 CN 2018104178 W CN2018104178 W CN 2018104178W WO 2020047774 A1 WO2020047774 A1 WO 2020047774A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmi
channel information
value
oversampling
network device
Prior art date
Application number
PCT/CN2018/104178
Other languages
English (en)
French (fr)
Inventor
马欣
王绪振
叶威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/104178 priority Critical patent/WO2020047774A1/zh
Publication of WO2020047774A1 publication Critical patent/WO2020047774A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and an apparatus for processing channel information.
  • terminal equipment In the field of communication, terminal equipment needs to communicate with network equipment; network equipment needs to calculate the beamforming weights of multiple terminal equipments based on the channel information.
  • the beamforming weights can enable space division between terminal equipments, and Eliminate interference between terminal equipment and improve cell performance.
  • the terminal device can report channel state information (channel state information, CSI) to the network device, so that the network device can obtain the channel information according to the CSI.
  • channel state information channel state information
  • a terminal device can send a codebook sequence number of a codebook to a network device; the network device obtains channel information according to the codebook sequence number.
  • the codebook can only reflect the main lobe direction of the beam, and after the codebook quantization, the CSI will lose some accuracy. Therefore, the network device cannot obtain accurate channel information according to the codebook, which results in that the interference between the terminal devices cannot be eliminated well, and the cell performance cannot be improved.
  • the present application provides a channel information processing method and device to solve the problems that the interference between terminal devices cannot be eliminated well and the performance of a cell cannot be improved.
  • the present application provides a channel information processing method, including:
  • the frequency information of the channel information is used to calculate the codebook, the feedback accuracy of the channel information is improved; because the orthogonal transformation basis matrix is used to orthogonally transform the channel information, a sparse matrix can be obtained.
  • the sparse matrix has PMI, The weighted sparse amplitude of each PMI in at least one PMI and the weighted sparse phase of each PMI in at least one PMI can also determine the optimal oversampling index information.
  • the weighted sparse amplitude of each PMI in at least one PMI, the weighted sparse phase of each PMI in at least one PMI, and the optimal oversampling index information are sent to the network device, so that the network device recovers the channel information, This can reduce the amount of channel information feedback.
  • the method further includes:
  • Performing orthogonal transformation on the channel information according to the orthogonal transformation basis matrix includes:
  • the configuration parameter includes at least one of the following:
  • the number of ports of the network device the number of horizontal ports of the network device, the number of vertical ports of the network device, the number of time-frequency transform sampling points, the number of horizontal port oversampling, the number of vertical port oversampling, and time-frequency sampling dimension Oversampling multiple, number of feedback samples.
  • the codebook is:
  • N H is the horizontal number of ports of the network device
  • N V is the number of vertical ports of the network device
  • N S is the number of time-frequency transform sample points
  • O H is a horizontal port of the network device oversampled
  • O V is a vertical ports of the network device oversampled
  • O S is the sampling frequency oversampled dimension
  • j, q H, q V , q s, N H, N V, N S, O H, O V, O S is a positive integer.
  • the orthogonal transformation basis matrix is
  • D N, q R N, q ⁇ D N ′, D N ′ is a preset N ⁇ N orthogonal basis matrix, and R N, q is a rotation factor.
  • D N ′ [d 1 d 2 ... d n ... d N-1 ], where,
  • D N ′ [d ′ 1 d ′ 2 ... d ′ n ... d ′ N-1 ], where,
  • the value, the weighted sparse phase of each of the at least one PMI, and the optimal oversampling index information include:
  • the sparse matrix has at least one PMI and a weighted sparse amplitude of each of the at least one PMI And a weighted sparse phase of each of the at least one PMI;
  • the oversampling coefficient corresponding to the minimum difference is determined as the optimal oversampling index information.
  • the sparse matrix is Where i is the unit of the imaginary part, j is the j-th PMI, A j is the weighted sparse amplitude of the j-th PMI, P j is the weighted sparse phase of the j-th PMI, and N FB is the number of feedback samples Number, N FB is a positive integer.
  • the first N FB / 2 PMI is the same as the last N FB / 2 PMI.
  • acquiring channel information according to the configuration coefficient and the pilot information includes:
  • a step of constructing an orthogonal transformation basis matrix according to a preset codebook is performed.
  • the present application provides a channel information processing method, including:
  • At least one precoding matrix indication information PMI of a codebook sent by a terminal device Receiving at least one precoding matrix indication information PMI of a codebook sent by a terminal device, a weighted sparse amplitude of each of the at least one PMI, a weighted sparse phase of each of the at least one PMI, And optimal oversampling index information;
  • Channel information is determined according to the sparse matrix and the orthogonal transform basis matrix.
  • the frequency information of the channel information is used to calculate the codebook, thereby improving the feedback accuracy of the channel information; receiving at least one PMI sent by the terminal device, the weighted sparse amplitude of each of the at least one PMI, and at least one The weighted sparse phase of each PMI in the PMI can also determine the optimal oversampling index information, and then the network device recovers the channel information, which can reduce the amount of channel information feedback.
  • the configuration parameter includes at least one of the following:
  • the number of network devices, the number of horizontal ports of the network device, the number of vertical ports of the network device, the number of time-frequency transformation sampling points, the number of horizontal port oversampling, the number of vertical port oversampling, and the time-frequency sampling dimension oversampling Multiples, number of feedback samples.
  • the codebook is:
  • pi
  • n [0,1, ... N -1]
  • q [0,1, ..., (O N -1)]
  • O N is oversampled, n, O N is a positive integer; the value of N is N H , or the value of N is N V , or the value of N is N S ; when the value of N is N H , the value of q is q H , O The value of m is O H ; when the value of N is N V , the value of q is q V and O m is O V ; when the value of N is N S , the value of q is q s , The value of O m is O S ;
  • N H is the number of horizontal ports of the network device
  • N V is the number of vertical ports of the network device
  • N S is the number of time-frequency conversion sampling points
  • O H is the multiple of the horizontal port oversampling of the network device
  • O V is The vertical port oversampling multiple of the network device, where O S is the time-frequency sampling dimension oversampling multiple; j, q H , q V , q s , N H , NV , N S , O H , O V , O S Is a positive integer.
  • the orthogonal transformation basis matrix is
  • D N, q R N, q ⁇ D N ′, D N ′ is a preset N ⁇ N orthogonal basis matrix, and R N, q is a rotation factor.
  • D N ′ [d 1 d 2 ... d n ... d N-1 ], where,
  • D N ′ [d ′ 1 d ′ 2 ... d ′ n ... d ′ N-1 ], where,
  • the sparse matrix is Where i is the unit of the imaginary part, j is the j-th PMI, A j is the weighted sparse amplitude of the j-th PMI, P j is the weighted sparse phase of the j-th PMI, and N FB is the number of feedback samples Number, N FB is a positive integer.
  • the first N FB / 2 PMI is the same as the last N FB / 2 PMI.
  • the present application provides a channel information processing apparatus on a terminal device side, including:
  • a receiving module configured to receive configuration coefficients and pilot information sent by a network device
  • a processing module configured to obtain channel information according to the configuration coefficient and the pilot information
  • the processing module is further configured to construct an orthogonal transformation basis matrix according to a preset codebook, where the codebook is determined according to frequency information of the channel information;
  • the processing module is further configured to perform orthogonal transformation on the channel information according to the orthogonal transformation basis matrix to obtain at least one precoding matrix indication information PMI of the codebook, and each of the at least one PMI of the PMI.
  • a sending module configured to optimize at least one PMI of the codebook, a weighted sparse amplitude of each PMI in the at least one PMI, a weighted sparse phase of each PMI in the at least one PMI, and optimally
  • the sampling index information is sent to the network device.
  • the processing module is specifically configured to:
  • the channel information After acquiring the channel information according to the configuration coefficient and the pilot information, the channel information is subjected to dimension reduction processing to obtain channel information after dimension reduction, where the sample points in the channel information after dimension reduction are obtained Smaller than the sample points in the channel information;
  • the processing module is further specifically configured to:
  • the configuration parameter includes at least one of the following:
  • the number of ports of the network device the number of horizontal ports of the network device, the number of vertical ports of the network device, the number of time-frequency transform sampling points, the number of horizontal port oversampling, the number of vertical port oversampling, and time-frequency sampling dimension Oversampling multiple, number of feedback samples.
  • the codebook is:
  • N H is the horizontal number of ports of the network device
  • N V is the number of vertical ports of the network device
  • N S is the number of time-frequency transform sample points
  • O H is a horizontal port of the network device oversampled
  • O V is a vertical ports of the network device oversampled
  • O S is the sampling frequency oversampled dimension
  • j, q H, q V , q s, N H, N V, N S, O H, O V, O S is a positive integer.
  • the orthogonal transformation basis matrix is
  • D N, q R N, q ⁇ D N ′, D N ′ is a preset N ⁇ N orthogonal basis matrix, and R N, q is a rotation factor.
  • D N ′ [d 1 d 2 ... d n ... d N-1 ], where,
  • D N ′ [d ′ 1 d ′ 2 ... d ′ n ... d ′ N-1 ], where,
  • the processing module is specifically configured to:
  • the sparse matrix has at least one PMI and a weighted sparse amplitude of each of the at least one PMI And a weighted sparse phase of each of the at least one PMI;
  • the oversampling coefficient corresponding to the minimum difference is determined as the optimal oversampling index information.
  • the sparse matrix is Where i is the unit of the imaginary part, j is the jth PMI, A j is the weighted sparse amplitude of the jth PMI, P j is the weighted sparse phase of the jth PMI, and N FB is the number of feedback samples Number, N FB is a positive integer.
  • the first N FB / 2 PMI is the same as the last N FB / 2 PMI.
  • the processing module is specifically configured to:
  • a step of constructing an orthogonal transformation basis matrix according to a preset codebook is performed.
  • the present application provides a channel information processing apparatus on a network device side, including:
  • a receiving module configured to receive at least one precoding matrix indication information PMI of a codebook sent by a terminal device, a weighted sparse amplitude of each of the at least one PMI, and a value of each of the at least one PMI Weighted sparse phase and optimal oversampling index information;
  • a processing module configured to determine a sparse matrix according to the at least one PMI, a weighted sparse amplitude of each of the at least one PMI, and a weighted sparse phase of each of the at least one PMI;
  • the processing module is further configured to determine an orthogonal transformation basis matrix according to the optimal oversampling index information
  • the processing module is further configured to determine channel information according to the sparse matrix and the orthogonal transform basis matrix.
  • the apparatus further includes:
  • a sending module configured to send a configuration coefficient and pilot information to the terminal device.
  • the configuration parameter includes at least one of the following: the number of ports of the network device, the number of horizontal ports of the network device, the number of vertical ports of the network device, and the number of time-frequency transformation sampling points Number, horizontal port oversampling multiple, vertical port oversampling multiple, time-frequency sampling dimension oversampling multiple, and number of feedback samples.
  • the codebook is:
  • N H is the number of horizontal ports of the network device
  • N V is the number of vertical ports of the network device
  • N S is the number of time-frequency conversion sampling points
  • O H is the multiple of the horizontal port oversampling of the network device
  • O V is The vertical port oversampling multiple of the network device, where O S is the time-frequency sampling dimension oversampling multiple; j, q H , q V , q s , N H , NV , N S , O H , O V , O S Is a positive integer.
  • the orthogonal transformation basis matrix is
  • D N, q R N, q ⁇ D N ′, D N ′ is a preset N ⁇ N orthogonal basis matrix, and R N, q is a rotation factor.
  • D N ′ [d 1 d 2 ... d n ... d N-1 ], where,
  • D N ′ [d ′ 1 d ′ 2 ... d ′ n ... d ′ N-1 ], where,
  • the sparse matrix is Where i is the unit of the imaginary part, j is the j-th PMI, A j is the weighted sparse amplitude of the j-th PMI, P j is the weighted sparse phase of the j-th PMI, and N FB is the number of feedback samples Number, N FB is a positive integer.
  • the first N FB / 2 PMI is the same as the last N FB / 2 PMI.
  • a terminal device which includes units or means for performing each step of any of the methods in the first aspect above.
  • a terminal device including: a processor, a memory, a receiver, and a transmitter; the receiver and the transmitter are both coupled to the processor, and the processor controls the receiver The receiving action, the processor controls the sending action of the transmitter;
  • the memory is used to store computer-executable program code, and the program code includes instructions.
  • the instructions When the processor executes the instructions, the instructions cause the terminal device to execute the method provided by the first aspect or any one of the embodiments of the first aspect.
  • a terminal device including at least one processing element or chip for performing any one of the methods of the first aspect above.
  • a computer-readable storage medium including the program in the eighth aspect.
  • a network device which includes units or means for performing each step of any of the methods in the second aspect above.
  • a network device including: a processor, a memory, a receiver, and a transmitter; the receiver and the transmitter are both coupled to the processor, and the processor controls the receiving The receiving action of the transmitter, the processor controls the transmitting action of the transmitter;
  • the memory is used to store computer-executable program code, and the program code includes instructions.
  • the instructions When the processor executes the instructions, the instructions cause the network device to execute the method provided by the second aspect or any one of the embodiments of the second aspect.
  • a network device including at least one processing element or chip for performing any one of the methods in the second aspect above.
  • a program for executing any method of the above second aspect when executed by a processor.
  • a fourteenth aspect provides a computer-readable storage medium including the program of the thirteenth aspect.
  • a communication system including the channel information processing apparatus on the terminal device side according to any one of the third aspects and the channel information processing apparatus on the network device side according to any one of the fourth aspects.
  • FIG. 1 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 2 is an interaction diagram of a channel information processing method according to an embodiment of the present application.
  • FIG. 3 is an interaction diagram of another channel information processing method according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a channel information processing apparatus terminal device 400 on a terminal device side according to an embodiment of the present application;
  • FIG. 5 is a schematic block diagram of another channel information processing apparatus 500 on a terminal device side according to an embodiment of the present application;
  • FIG. 6 is a schematic block diagram of a channel information processing apparatus 600 on a network device side according to an embodiment of the present application;
  • FIG. 7 is a schematic block diagram of another channel information processing apparatus 700 on a network device side according to an embodiment of the present application.
  • the embodiments of the present application are applied to a 5G communication system or other systems that may appear in the future.
  • this application can be applied to a universal mobile communication system (UMTS) system, code division multiple access (CDMA) System, wireless local area network (wireless local area network, WLAN) or future 5G wireless communication system, etc.
  • UMTS universal mobile communication system
  • CDMA code division multiple access
  • WLAN wireless local area network
  • 5G wireless communication system etc.
  • Terminal equipment also known as terminal and user equipment, is a device that provides voice and / or data connectivity to users, such as handheld devices with wireless connectivity, vehicle-mounted devices, and so on.
  • Common terminal devices include: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), and wearable devices.
  • wearable devices include: smart watches, smart bracelets, step counting ⁇ ⁇ And other.
  • Network equipment also known as radio access network (RAN) equipment is a device that connects terminal equipment to a wireless network through licensed and unlicensed spectrum. It includes networks in various communication systems.
  • the device includes, for example, but is not limited to: a wireless access point (such as a wireless local area network access point), a base station, an evolved Node B (eNB), a radio network controller (RNC), and a node B ( Node B (NB), network equipment controller (BSC), network equipment transceiver (BTS), home network equipment (e.g., home NodeB, or home NodeB, HNB), baseband unit (base band unit, BBU) and so on.
  • a wireless access point such as a wireless local area network access point
  • eNB evolved Node B
  • RNC radio network controller
  • NB node B
  • BSC network equipment controller
  • BTS network equipment transceiver
  • home network equipment e.g., home NodeB, or home NodeB, HNB
  • baseband unit base band unit
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship between related objects, and indicates that there can be three kinds of relationships. For example, A and / or B can indicate: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural. The character “/” generally indicates that the related objects are an "or” relationship. "At least one or more of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one (a) of a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • Associated can refer to a binding relationship, and A to B refers to a binding relationship between A and B.
  • Unassociated can refer to a non-binding relationship.
  • a and B being non-associated refers to a non-binding relationship between A and B, that is, A and B are not bound.
  • Massvie MIMO mass-multiple-input and multiple-output
  • network devices can use large-scale array antennas; network devices can be configured with a large number of antennas to obtain higher antenna freedom, thereby The network device can support more terminal devices to perform multi-user multiple-input multiple-output (MU-MIMO) technology, thereby achieving the purpose of improving cell throughput.
  • MU-MIMO multi-user multiple-input multiple-output
  • the uplink channel and the downlink channel use the same frequency point, so the terminal device can obtain uplink channel information by measuring an uplink listening reference signal (SRS). Because the uplink channel and the downlink channel use the same frequency point, the uplink channel and the downlink channel have reciprocity.
  • the network device can obtain the downlink channel information based on the uplink channel information; then, the network device can calculate and obtain the downlink channel information based on the downlink channel information.
  • Beam-forming weights of multiple terminal devices since the beam-forming weights enable space division between terminal devices, thereby eliminating interference between terminal devices and improving cell performance.
  • the network device In a frequency division duplexing (FDD) system, there is no reciprocity between the uplink channel and the downlink channel, so the network device cannot obtain the downlink channel information based on the uplink channel information. Therefore, in the current long term evolution (LTE) system, the downlink channel information is fed back to the network device through the terminal device; specifically, the channel information is quantized according to the codebook, and the terminal device The channel information is sent to the network device; because the channel information is quantized by the codebook, the channel information is relatively rough.
  • FDD frequency division duplexing
  • LTE long term evolution
  • the Massive MIMO system cannot effectively eliminate interference between terminal devices and cannot improve cell performance, for example, it cannot It is very good to improve the throughput of the cell; it can be known that the accuracy of the channel information fed back to the network equipment needs to be high to improve the cell performance.
  • linear merger refers to Channel information is described by a weighted combination of two different vectors. As the number of linear merge vectors increases, the accuracy of the acquired channel information will become higher and higher, but the amount of data that the terminal device needs to feed back to the network device also increases, which will greatly occupy the resources of service data. Therefore, on the basis of ensuring that the amount of data is not increased, obtaining high-precision channel information is one of the directions for cell performance optimization.
  • a terminal device sends a codebook sequence number of a codebook to a network device, and the network device obtains channel information according to the codebook requirement.
  • Various codebooks have been proposed in the prior art.
  • the codebook can support up to 32 ports, and the oversampling feature is added to improve the accuracy of CSI.
  • Table 1 shows the codebook when the codebook configuration is 1.
  • Table 1 shows the codebook used when the antenna port configuration of the terminal device is 15 to 14 + P, where P is a positive integer greater than or equal to 1.
  • the codebook used in the first method is based on the smooth evolution of the R10 codebook.
  • the codebook is mainly applied to a switch user (SU) or a two-user (multi-user). , MU), so in these scenarios, the network device only needs to obtain the direction information of the main beam of the channel beam, and then the interference between the terminal devices can be eliminated.
  • the codebook provided in the first way can only reflect the main lobe direction of the beam; and, after the codebook quantization, the CSI will lose some accuracy. Therefore, when multiple terminal devices are multiplexed, it is difficult to eliminate interference between the terminal devices.
  • the codebook can only reflect the main lobe direction of the beam, and the CSI will lose accuracy after the codebook is quantized, and an NR type II codebook can be used.
  • the NR type II codebook uses multiple vectors to synthesize to approximate the purpose of real channel information.
  • i 0 or 1
  • j is 0 or 1
  • k is [0, L-1]
  • k is an integer
  • l is 0 or 1
  • m is 0 or 1.
  • n is [0, L-1]
  • n is an integer
  • t is 0 or 1
  • p is 0 or 1
  • q [0, L-1]
  • q is an integer.
  • the NR type II codebook provided in the second method can improve the accuracy of CSI to a certain extent, but in real-time testing and verification, the NR type II codebook still cannot improve the performance of Massvie MIMO cells.
  • the payload size reported by the NR type II codebook provided in the second method is very large; with a 20 megabyte (M) bandwidth and a 16-port system as an example, the number of subbands is 13
  • Table 2 is a table of payload sizes. According to the standard protocol "3GPP TS 38.214V1.2.0", it can be known that the payload sizes of rank1 and rank2 are shown in Table 2, where the unit of the payload is bits.
  • rank L payload size (bit) 1 4 352 2 4 685
  • the payload size needs to be increased to improve the CSI accuracy, which will cause a large amount of data in the codebook transmitted between the network device and the terminal device, which is not conducive to the codebook transmission.
  • a terminal device can send a codebook sequence number of a codebook to a network device; the network device obtains channel information according to the codebook sequence number.
  • the codebook can only reflect the main lobe direction of the beam, and after the codebook quantization, the CSI will lose some accuracy. Therefore, the network device cannot obtain accurate channel information according to the codebook, which results in that the interference between the terminal devices cannot be eliminated well, and the cell performance cannot be improved.
  • FIG. 1 is a schematic diagram of a scenario provided by an embodiment of the present application. As shown in FIG. 1, this application relates to a network device 11 and a terminal device. As shown in FIG. 1, the network device 11 and the terminal device 1, the terminal device 2, and the terminal device 3 Associated.
  • FIG. 2 is an interaction diagram of a channel information processing method according to an embodiment of the present application. As shown in FIG. 2, the method includes:
  • the network device sends the configuration coefficient and pilot information to the terminal device.
  • the configuration parameters include at least one of the following: the number of ports of the network device, the number of horizontal ports of the network device, the number of vertical ports of the network device, the number of time-frequency conversion sampling points, the number of horizontal port oversampling, and the number of vertical port over Sampling multiple, time-frequency sampling dimension oversampling multiple, and number of feedback samples.
  • the network device adds a CSI feedback mode, and the network device sends configuration parameters to the terminal device, where the configuration parameters include the number of ports of the network device, the number of horizontal ports of the network device, the number of vertical ports of the network device, and time.
  • Frequency conversion sampling points horizontal port oversampling multiples, vertical port oversampling multiples, time-frequency sampling dimension oversampling multiples, and feedback sample points.
  • the network device is configured with a dual-polarized antenna 32 to send and receive 32, the number of pilot ports of the network device is 32, and the port arrangement of the network device is 4 rows and 4 columns of dual polarization.
  • LTE long term evolution
  • RB radio bearers
  • the terminal device obtains channel information according to the configuration coefficient and pilot information.
  • the method may further include: performing dimensionality reduction processing on the channel information to obtain dimensionality-reduced channel information, where the sample points in the channel information after the dimension reduction are smaller than the sample points in the channel information.
  • the terminal device performs channel estimation according to the pilot information to obtain channel information Among them, the channel information H is a one-dimensional vector. You need to use configuration parameters. Among them, channel information The length is 2N H N V N RB , where 2 indicates that the channel information H is dual-polarized.
  • the terminal device constructs an orthogonal transformation basis matrix according to a preset codebook, where the codebook is determined according to frequency information of channel information.
  • the terminal device constructs a codebook w j , where j is a positive integer.
  • j is a positive integer.
  • an orthogonal transformation basis matrix is constructed.
  • the frequency information of the channel information can be used to calculate the codebook w j .
  • the terminal device performs orthogonal transformation on the channel information according to the orthogonal transformation basis matrix to obtain at least one precoding matrix indicator (PMI) of the codebook and a weighted sparse width of each PMI in at least one PMI. Value, a weighted sparse phase of each of the at least one PMI, and optimal oversampling index information.
  • PMI precoding matrix indicator
  • the terminal device performs orthogonal transformation on the channel information according to the orthogonal transformation basis matrix, thereby mapping the channel information into the codebook sequence, and then obtaining a sparse matrix, where the sparse matrix has at least one PMI, at least one The weighted sparse amplitude of each PMI in the PMI and the weighted sparse phase of each PMI in at least one PMI; and an optimal oversampling coefficient can be determined according to a preset oversampling coefficient, and the optimal The oversampling coefficient is used as the optimal oversampling index information.
  • the terminal device sends at least one PMI of the codebook, a weighted sparse amplitude of each PMI in the at least one PMI, a weighted sparse phase of each PMI in the at least one PMI, and sends the optimal oversampling index information.
  • the terminal device sends at least one PMI of the codebook, a weighted sparse amplitude of each PMI in the at least one PMI, a weighted sparse phase of each PMI in the at least one PMI, and sends the optimal oversampling index information.
  • the at least one PMI of the codebook determined by the terminal device the weighted sparse amplitude of each PMI in the at least one PMI, the weighted sparse phase of each PMI in the at least one PMI, and the optimal oversampling
  • the index information is sent to the network device; so that the network device can base on the weighted sparse amplitude of each of the at least one PMI in the codebook, the weighted sparseness of each PMI in the at least one PMI, and
  • the optimal oversampling index information is used to construct the channel information.
  • channel information is obtained according to configuration coefficients and pilot information sent by a network device; an orthogonal transformation basis matrix is constructed according to a preset codebook; the channel information is orthogonally transformed according to the orthogonal transformation basis matrix to obtain a code
  • the frequency information of the channel information is used to calculate the codebook, thereby improving the feedback accuracy of the channel information.
  • the orthogonal transformation basis matrix is used to orthogonally transform the channel information to obtain a sparse matrix.
  • the sparse matrix has a PMI and at least one PMI.
  • the weighted sparse amplitude of each PMI, the phase of the weighted sparseness of each PMI in at least one PMI, and the optimal oversampling index information can also be determined. It is only necessary to change at least one PMI and at least one PMI of the codebook.
  • the weighted sparse amplitude of each PMI, the phase of the weighted sparseness of each PMI in at least one PMI, and the optimal oversampling index information are sent to the network device, so that the network device recovers the channel information, which can reduce the The amount of channel information feedback.
  • FIG. 3 is an interaction diagram of another channel information processing method according to an embodiment of the present application. As shown in FIG. 3, the method includes:
  • the network device sends the configuration coefficient and pilot information to the terminal device.
  • this step may refer to step S11 in FIG. 2, and details are not described herein again.
  • the configuration parameters include the number of ports of the network device N port , the number of horizontal ports of the network device N H , the number of vertical ports of the network device N V , the number of time-frequency conversion sampling points N S , the horizontal port oversampling multiple O H , The vertical port oversampling multiple O V , the time-frequency sampling dimension oversampling multiple O S , and the number of feedback samples N FB .
  • the terminal device obtains channel information according to the configuration coefficient and pilot information.
  • this step may refer to step S12 in FIG. 2, and details are not described herein again.
  • the terminal device performs dimension reduction processing on the channel information to obtain channel information after dimension reduction, where the sample points in the channel information after dimension reduction are smaller than the sample points in the channel information.
  • this step may refer to step S12 in FIG. 2, and details are not described herein again.
  • the terminal device constructs an orthogonal transformation basis matrix according to a preset codebook, where the codebook is determined according to frequency information of the channel information after dimensionality reduction.
  • the codebook is:
  • the codebook w j is constructed to obtain
  • the terminal device constructs the orthogonal transformation basis matrix according to the codebook w j Orthogonal transform basis matrix Is an orthogonal array with dimensions 2N H N V N S ⁇ 2N H N V N S. Orthogonal transform basis matrix for
  • D N, q R N, q ⁇ D N ′, D N, q is an oversampled one-dimensional discrete Fourier transform (DFT), or D N, q is an oversampled one Inverse discrete fourier transform (IDFT) orthogonal basis; where D N ′ is an N ⁇ N orthogonal basis matrix, and R N, q are rotation factors.
  • DFT discrete Fourier transform
  • IDFT Inverse discrete fourier transform
  • q R N, q ⁇ D N ′, when the value of N is N H , Is a preset orthogonal basis matrix of N H ⁇ N H , Is a preset rotation factor; when N is set to N V , Is a preset N V ⁇ N V orthogonal basis matrix, Is a preset rotation factor; when N is N S , Is a preset orthogonal basis matrix of N S ⁇ N S , Is the preset rotation factor.
  • the terminal device performs orthogonal transformation on the channel information according to the orthogonal transformation basis matrix to obtain a sparse matrix, where the sparse matrix has at least one PMI, a weighted sparse amplitude of each PMI in at least one PMI, and at least one The weighted sparse phase of each PMI in the PMI.
  • the sparse matrix is Where i is the unit of the imaginary part, j is the j-th PMI, A j is the weighted sparse amplitude of the j-th PMI, P j is the weighted sparse phase of the j-th PMI, and N FB is the number of feedback samples Number, N FB is a positive integer.
  • each group of oversampling coefficients q [q H q V q S ] corresponds to an orthogonal basis matrix So you can use the orthogonal transformation basis matrix Perform orthogonal transformation on the reduced channel information to obtain the orthogonally transformed channel information
  • the sparse matrix It can be expressed as Among them, i is the unit of the imaginary part, and j is the j-th index; each j is encoded to obtain each PMI respectively.
  • a j is the weighted sparse amplitude of the j-th PMI, and P j is the weighted sparse phase of the j-th PMI.
  • the terminal device obtains the reconstructed channel information under each group of oversampling coefficients according to the sparse matrix and the orthogonal transformation basis matrix.
  • each group of oversampling coefficients [q H q V q S ] corresponds to an orthogonal basis matrix
  • the terminal device determines a difference between the reconstructed channel information under each group of oversampling coefficients and the channel information under each group of oversampling coefficients.
  • channel information is calculated for each group of each group of the through reconstruction [q H q V q S] Under over-sampling factor The difference between the channel information at the sampling coefficient [q H q V q S ].
  • the minimum value of the difference between the reconstructed channel information and the original channel information is determined under each group of oversampling coefficients [q H q V q S ].
  • the terminal device determines an oversampling coefficient corresponding to the minimum difference, which is optimal oversampling index information.
  • the terminal device sends at least one PMI of the codebook, a weighted sparse amplitude of each PMI in the at least one PMI, a weighted sparse phase of each PMI in the at least one PMI, and sends the optimal oversampling index information.
  • the terminal device sends at least one PMI of the codebook, a weighted sparse amplitude of each PMI in the at least one PMI, a weighted sparse phase of each PMI in the at least one PMI, and sends the optimal oversampling index information.
  • the terminal device feedbacks a sequence with a length of 2N H N V N S Medium N FB non-zero value information, that is, the terminal device needs to select N FB codebooks from 2N H N V N S codebooks for feedback. Specifically, the terminal device needs to feedback at least one PMI of the codebook, the weighted sparse amplitude A j of each PMI, the weighted sparse phase P j of each PMI, and the optimal oversampling index information [q ′ H q ′ V q ′ S ].
  • the terminal device can quantize and encode the above-mentioned information that needs to be fed back.
  • the value range of the index j of the PMI is set to For index j
  • the number of bits to be encoded is The amplitude A j corresponding to each PMI is encoded using 3 bits, and the phase P j corresponding to each PMI is encoded using 4 bits.
  • the terminal device sends the quantized encoded PMI, the quantized encoded amplitude of each PMI, the quantized encoded phase of each PMI, and the optimal oversampling index information after quantized encoding to the network device.
  • the network device determines a sparse matrix according to at least one PMI, a weighted sparse amplitude of each PMI in the at least one PMI, and a weighted sparse phase of each PMI in the at least one PMI.
  • the network device can recover the sequence according to the received at least one PMI, the weighted sparse amplitude A j of each PMI, and the weighted sparse phase P j of each PMI.
  • the network device determines an orthogonal transformation basis matrix according to the optimal oversampling index information.
  • the network device may construct a matrix according to the received optimal oversampling index information [q ′ H q ′ V q ′ S ].
  • the network device determines channel information according to the sparse matrix and the orthogonal transformation base matrix.
  • the network device is based on a sparse matrix And orthogonal transform basis matrix Recovery matrix among them, Matrix to be recovered Approximate as channel information To recover the channel information
  • p 1,2, ..., N FB -1, p is a positive integer, Yes Column vector.
  • j p refers to selecting N FB samples from all the column vectors of the orthogonal basis matrix.
  • the terminal device performs steps S21-S29 once; the network device performs steps S210-S212 once.
  • the terminal device performs steps S21-S29 once, so the terminal device Send at least one PMI per receiving antenna, the weighted sparse amplitude of each PMI in at least one PMI, the weighted sparse phase of each PMI in at least one PMI, and the optimal oversampling index information to the network Device; then, for each receiving antenna, the network device executes steps S210-S212. Therefore, the information that the terminal device feeds back to the network device is doubled.
  • the channel information H is a two-dimensional matrix of N UE_RX rows and 2N H N V N RB columns. For each line of channel information H, it can be written as Is a one-dimensional vector of length 2N H N V N RB . According to compression The number of sequence non-zero data is floor (N FB / N UE_RX ).
  • step S22 specifically includes the following steps:
  • the channel information H is a vector. If the antenna of the terminal device is more than 2 receivers, for each receiver, the terminal device can obtain the receiver channel information of each receiver according to the configuration coefficient and pilot information; then, the terminal device receives the receivers of all receivers The channel information constitutes a channel matrix T; then, the terminal device performs singular value decomposition (SVD) on the matrix T H T to obtain at least two maximum eigenvectors.
  • SVD singular value decomposition
  • N Rank 2 maximum eigenvectors
  • N Rank 4 maximum eigenvectors
  • each maximum eigenvector is used as each channel information H; for each channel information H, the terminal device performs S22- Step S29; thus, the terminal device optimizes the weighted sparse amplitude of each PMI of at least one PMI per antenna, the weighted sparseness of each PMI in at least one PMI, and the optimal
  • the sampling index information is sent to the network device; then, for each receiving antenna, the network device performs steps S210-S212.
  • channel information is obtained according to configuration coefficients and pilot information sent by a network device; an orthogonal transformation basis matrix is constructed according to a preset codebook; the channel information is orthogonally transformed according to the orthogonal transformation basis matrix to obtain a code
  • the frequency information of the channel information is used to calculate the codebook, thereby improving the feedback accuracy of the channel information.
  • the orthogonal transformation basis matrix is used to orthogonally transform the channel information to obtain a sparse matrix.
  • the sparse matrix has a PMI and at least one PMI.
  • the weighted sparse amplitude of each PMI, the phase of the weighted sparseness of each PMI in at least one PMI, and the optimal oversampling index information can also be determined. It is only necessary to change at least one PMI and at least one PMI of the codebook.
  • the weighted sparse amplitude of each PMI, the phase of the weighted sparseness of each PMI in at least one PMI, and the optimal oversampling index information are sent to the network device, so that the network device recovers the channel information, which can reduce the The amount of channel information feedback.
  • N H is the number of horizontal ports of the network device
  • N V is the number of vertical ports of the network device
  • N S is the number of time-frequency transformation sampling points
  • O H is the multiple of the horizontal port oversampling of the network device
  • O V is the vertical number of the network device port oversampled
  • O S is the sampling frequency oversampled dimension
  • j, q H, q V , q s, N H, N V, N S, O H, O V, O S is a positive integer.
  • the orthogonal transformation basis matrix is Basis matrix with orthogonal transform in step S24 The difference is that the value of N ′ S is greater than or equal to 1 and less than or equal to N S / 4.
  • the terminal device constructs the orthogonal transformation basis matrix according to the codebook w j Orthogonal transform basis matrix Is a matrix with 2N H N V N S rows and 2N H N V N S / 4 columns. Correspondingly, it has 2N H N V N S / 4 codebooks.
  • D N, q R N, q ⁇ D N ′, where D N ′ is an orthogonal basis matrix of N ⁇ N, and R N, q is a rotation factor.
  • D N, q R N, q ⁇ D N ′, when the value of N is N H , Is a preset orthogonal basis matrix of N H ⁇ N H , Is a preset rotation factor; when N is set to N V , Is a preset N V ⁇ N V orthogonal basis matrix, Is a preset rotation factor; when N is set to N ′ S , Is a preset orthogonal basis matrix of N S ⁇ N S , Is the preset rotation factor.
  • step S29 only the terminal device needs to select N FB codebooks from 2N H N V N S / 4 codebooks for feedback.
  • the terminal device feeds back the following information to the network device: at least one PMI, a weighted sparse amplitude A j of each PMI, a weighted sparse phase P j of each PMI, and optimal oversampling index information [q ′ H q ′ V q ′ S ] is a quarter in FIG. 3.
  • the terminal device may also send a subset of the dimension codebook to the network device
  • the first codebook index is 0 and the codebook width is N S / 4.
  • step S25 the first N FB / 2 PMIs in the sparse matrix are the same as the last N FB / 2 PMIs.
  • step S25 a sparse matrix is obtained Among them, j is the j-th index among the indices of N FB non-zero samples. Can also be expressed as a sparse matrix
  • the PMIs of the two polarization feedbacks can be made the same, that is, the front N FB / 2 PMI and the rear N FB / 2 PMI are constrained.
  • the terminal device quantizes and encodes the foregoing information that needs to be fed back, the value range of the encoding of j is For index j, the number of feedback bits is
  • the channel information processing method according to the embodiment of the present application has been described in detail above.
  • the channel information processing apparatus according to the embodiment of the present application will be described below.
  • the embodiment of the present application describes in detail a schematic structure of a channel information processing apparatus on a terminal device side.
  • FIG. 4 is a schematic block diagram of a channel information processing apparatus terminal device 400 on a terminal device side according to an embodiment of the present application.
  • the apparatus 400 in this embodiment of the present application may be the terminal device terminal device in the foregoing method embodiments, or may be one or more chips in the terminal device.
  • the apparatus 400 may be configured to perform some or all functions of the terminal device in the foregoing method embodiments.
  • the apparatus 400 may include a processing module 410, a receiving module 420, and a sending module 430.
  • the apparatus 400 may further include a storage module 440.
  • the receiving module 420 may be configured to receive a receiving action step on a terminal device side in the foregoing method embodiment.
  • the receiving module 420 is configured to perform step S11 in FIG. 2; or the receiving module 420 is configured to perform step S21 in FIG. 3.
  • the sending module 430 may be configured to execute the sending action on the terminal device side in the foregoing method embodiment.
  • the sending module 430 is configured to perform step S15 in FIG. 2; or the sending module 430 is configured to perform step S29 in FIG. 3.
  • the processing module 410 may be configured to determine a transmission end time according to a transmission duration. For example, the processing module 410 is configured to execute step S12, step S13, step S14 of FIG. 2; or the processing module 410 is configured to execute step S22, step S23, step S24, step S25, step S26, step S27, step S27, step of FIG. 3 S28.
  • the device 400 may also be configured as a general-purpose processing system, such as a chip, and the processing module 410 may include: one or more processors that provide processing functions; the receiving module 420 may be, for example, an input interface, a pin, or a circuit
  • the sending module 430 may be, for example, an output interface, a pin, or a circuit.
  • the input / output interface may be used for information interaction between the chip system and the outside.
  • the one or more processors may execute computer execution instructions stored in the storage module to implement the functions of the terminal device in the foregoing method embodiments.
  • the optional storage module 440 included in the apparatus 400 may be a storage unit in a chip, such as a register, a cache, etc.
  • the storage module 440 may also be a storage unit located outside the chip in a terminal device, such as a read-only Memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), and so on.
  • ROM read-only Memory
  • RAM random access memory
  • FIG. 5 is a schematic block diagram of another channel information processing apparatus 500 on a terminal device side according to an embodiment of the present application.
  • the apparatus 500 in the embodiment of the present application may be a terminal device in the foregoing method embodiment, and the apparatus 500 may be configured to perform some or all functions of the terminal device in the foregoing method embodiment.
  • the device 500 may include a processor 510, a baseband circuit 530, a radio frequency circuit 540, and an antenna 550.
  • the device 500 may further include a memory 520.
  • the various components of the device 500 are coupled together by a bus 560.
  • the bus system 560 includes a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, various buses are marked as the bus system 560 in the figure.
  • the processor 510 may be configured to implement control of a terminal device, and is configured to execute the processing performed by the terminal device in the foregoing embodiment, and may execute a processing procedure involving a network device in the foregoing method embodiment and / or used in the technology described in this application.
  • Other processes can also run the operating system, is responsible for managing the bus, and can execute programs or instructions stored in memory.
  • the baseband circuit 530, the radio frequency circuit 540, and the antenna 550 may be used to support the transmission and reception of information between the terminal device and the network device involved in the foregoing embodiment, so as to support wireless communication between the terminal device and the network device.
  • the information sent from the network device is received via the antenna 550, filtered, amplified, downconverted, and digitized by the RF circuit, and then processed by the baseband circuit such as baseband circuit decoding and data decapsulation according to the protocol, and then processed by the processor.
  • the information sent by the terminal device can be processed by the processor 510, and baseband processing such as encapsulation and coding according to the protocol via the baseband circuit 530, and further analog conversion, filtering, amplification and upconversion by the radio frequency circuit 540 After the radio frequency processing, it is transmitted through the antenna 550.
  • the memory 520 may be used to store the program code and data of the network device.
  • the memory 520 may be the storage module 440 in FIG. It can be understood that the baseband circuit 530, the radio frequency circuit 540, and the antenna 550 can also be used to support a terminal device to communicate with other network entities, for example, to support a terminal device to communicate with a network device associated with the terminal device.
  • FIG. 5 only shows a simplified design of the terminal device.
  • a terminal device may include any number of transmitters, receivers, processors, memories, etc., and all terminal devices that can implement the present invention are within the protection scope of the present invention.
  • the channel information processing device on the terminal device side may also be implemented using the following: one or more field-programmable gate array (FPGA), programmable logic device (programmable logic) device, PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field-programmable gate array
  • PLD programmable logic device
  • controller state machine
  • gate logic discrete hardware components
  • any other suitable circuit any combination of circuits capable of performing the various functions described throughout this application.
  • an embodiment of the present application further provides a computer storage medium.
  • the computer storage medium may store program instructions for instructing any one of the foregoing methods, so that the processor executes the program instructions to implement the foregoing method embodiments. Methods and functions related to terminal equipment.
  • FIG. 6 is a schematic block diagram of a channel information processing apparatus 600 on a network device side according to an embodiment of the present application.
  • the apparatus 600 in this embodiment of the present application may be the network device in the foregoing method embodiment, or may be one or more chips in the network device.
  • the apparatus 600 may be configured to perform some or all functions of the network device in the foregoing method embodiment.
  • the device 600 may include a processing module 610, a receiving module 620, and a sending module 630.
  • the device 600 may further include a storage module 640.
  • the processing module 610 may be configured to perform processing on information and matrices in the foregoing method embodiments.
  • the processing module 610 is configured to execute step S210, step S211, and step S212 in FIG.
  • the receiving module 620 may be configured to execute the receiving action steps in the foregoing method embodiments.
  • the receiving module 620 is configured to perform step S15 in FIG. 2; or the receiving module 620 is configured to perform step S29 in FIG. 3.
  • the sending module 630 may be configured to execute the sending action steps in the foregoing method embodiments.
  • the sending module 630 is configured to perform step S11 in FIG. 2; or the sending module 630 is configured to perform step S21 in FIG. 3.
  • the device 600 may be configured as a general-purpose processing system, such as a chip, and the processing module 610 may include: one or more processors that provide processing functions; the receiving module 620 may be, for example, an input interface, a pin, or a circuit The sending module 630 may be, for example, an output interface, a pin, or a circuit. The input / output interface may be used for information interaction between the chip system and the outside.
  • the processing module may execute computer execution instructions stored in the storage module to implement the functions of the network device in the foregoing method embodiments.
  • the optional storage module 640 included in the device 600 may be a storage unit in a chip, such as a register, a cache, etc.
  • the storage module 640 may also be a storage unit located outside the chip in a network device, such as a ROM or Other types of static storage devices, RAM, etc. that can store static information and instructions.
  • FIG. 7 is a schematic block diagram of another channel information processing apparatus 700 on a network device side according to an embodiment of the present application.
  • the apparatus 700 in the embodiment of the present application may be the network device in the foregoing method embodiment, and the apparatus 700 may be configured to perform some or all functions of the network device in the foregoing method embodiment.
  • the device 700 may include a processor 710, a baseband circuit 730, a radio frequency circuit 740, and an antenna 750.
  • the device 700 may further include a memory 720.
  • the various components of the device 700 are coupled together through a bus 760.
  • the bus system 760 includes a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, various buses are marked as the bus system 760 in the figure.
  • the processor 710 may be configured to implement control on a network device, and is configured to execute the processing performed by the network device in the foregoing embodiment, and may execute the processing process involving the network device in the foregoing method embodiment and / or used in the technology described in this application.
  • Other processes can also run the operating system, is responsible for managing the bus, and can execute programs or instructions stored in memory.
  • the baseband circuit 730, the radio frequency circuit 740, and the antenna 750 can be used to support the transmission and reception of information between the network device and the terminal device involved in the foregoing embodiment, to support wireless communication between the network device and the terminal device, and to support the network device and Other network devices exchange signaling and information to achieve collaboration between network devices.
  • the information sent from the terminal device is received via the antenna 750, filtered, amplified, downconverted, and digitized by the radio frequency circuit 740, and then processed by the baseband circuit 730 such as decoding and decapsulating the data according to the protocol.
  • the processor 710 performs processing; in another example, the matrix or sequence generated by the processor 710 is subjected to baseband processing such as encapsulation and encoding according to the protocol via the baseband circuit 730, and further processed by the radio frequency circuit 740 for analog conversion, filtering, amplification, and upconversion. After processing, it is transmitted through the antenna 750.
  • the memory 720 may be used to store program code and data of the network device, and the memory 720 may be the storage module 640 in FIG. 6. It can be understood that the baseband circuit 730, the radio frequency circuit 740, and the antenna 750 can also be used to support the network device to communicate with other network entities, for example, to support the network device to communicate with network elements on the core network side.
  • the memory 720 is shown as being separate from the processor 710 in FIG. 7, however, it will be readily apparent to those skilled in the art that the memory 720 or any portion thereof may be located outside the 700.
  • the memory 720 may include transmission lines and / or computer products separate from the wireless nodes, and these media may be accessed by the processor 710 through the bus interface 760.
  • the memory 720 or any portion thereof may be integrated into the processor 710, for example, it may be a cache and / or a general-purpose register.
  • FIG. 7 only shows a simplified design of the network device.
  • a network device may include any number of transmitters, receivers, processors, memories, and the like, and all network devices that can implement the present invention are within the protection scope of the present invention.
  • the channel information processing device on the network device side may also be implemented using the following: one or more FPGAs, PLDs, controllers, state machines, gate logic, discrete hardware components, and any other suitable circuits Or any combination of circuits capable of performing the various functions described throughout this application.
  • an embodiment of the present application further provides a computer storage medium.
  • the computer storage medium may store program instructions for instructing any one of the foregoing methods, so that the processor executes the program instructions to implement the foregoing method embodiments. Methods and functions involving network equipment.
  • the processors involved in the above apparatuses 500 and 700 may be general-purpose processors, such as general-purpose central processing units (CPUs), network processors (NPs), microprocessors, etc., or application-specific integrated circuits (applications) -specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program procedures of the present application. It can also be a digital signal processor (DSP), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • the controller / processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • a processor typically performs logic and arithmetic operations based on program instructions stored in memory.
  • the memories involved in the apparatus 500 and the apparatus 700 may further store an operating system and other application programs.
  • the program may include program code, and the program code includes a computer operation instruction.
  • the above-mentioned memory may be a ROM) other types of static storage devices that can store static information and instructions, a RAM, other types of dynamic storage devices that can store information and instructions, a disk memory, and the like.
  • the memory may be a combination of the above storage types.
  • the above computer-readable storage medium / memory may be in the processor, may also be external to the processor, or may be distributed on multiple entities including the processor or the processing circuit.
  • the computer-readable storage medium / memory described above may be embodied in a computer program product.
  • a computer program product may include a computer-readable medium in packaging materials.
  • An embodiment of the present application provides a communication system including a channel information processing apparatus on a terminal device side provided in FIG. 4 and a channel information processing apparatus on a network device side provided in FIG. 6.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of units is only a logical function division.
  • multiple units or components may be combined or integrated To another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website network device, computer, server, or data center via a wired ( (Such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) for transmission to another website network device, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integrations.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信道信息处理方法和装置,其中,该方法包括:根据网络设备发送的配置系数和导频信息,获取信道信息;根据预设的码本,构造正交变换基矩阵;根据正交变换基矩阵对信道信息进行正交变换,得到码本的至少一个PMI、每一个PMI的加权稀疏的幅值、每一个PMI的加权稀疏的相位、以及最优过采样索引信息;将码本的至少一个PMI、每一个PMI的加权稀疏的幅值、每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备,以使网络设备恢复出构造出信道信息。提高信道信息的反馈精度;只需要将码本的PMI、幅值、相位和最优过采样索引信息,发送给网络设备,可以降低信道信息反馈量。

Description

信道信息处理方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及信道信息处理方法和装置。
背景技术
在通信领域中,终端设备需要与网络设备进行通信;网络设备需要根据信道信息计算得到多个终端设备的波束赋形权值,该波束赋形权值能够使终端设备之间达到空分,进而消除终端设备之间的干扰,提高小区性能。现在,终端设备可以向网络设备上报信道状态信息(channel state information,CSI),使得网络设备可以根据CSI获取到信道信息。
现有技术中,终端设备可以将码本的码本序号发送给网络设备;网络设备根据码本序号,获取到信道信息。
然而现有技术中,因为码本只能反映波束的主瓣方向,并且,经过码本量化以后,CSI会损失掉一些精度。从而,网络设备不能根据码本得到精准的信道信息,从而导致不能很好的消除终端设备之间的干扰,不能提高小区性能。
发明内容
本申请提供了一种信道信息处理方法和装置,以解决不能很好的消除终端设备之间的干扰,不能提高小区性能的问题。
第一方面,本申请提供一种信道信息处理方法,包括:
接收网络设备发送的配置系数和导频信息;
根据所述配置系数和所述导频信息,获取信道信息;
根据预设的码本,构造正交变换基矩阵,其中,所述码本根据所述信道信息的频率信息而确定;
根据所述正交变换基矩阵对所述信道信息进行正交变换,得到码本的至少一个预编码矩阵指示信息PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;
将码本的至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发 送给所述网络设备。
本申请中,由于采用信道信息的频率信息去计算码本,从而提高信道信息的反馈精度;由于采用正交变换基矩阵对信道信息进行正交变换,可以得到稀疏矩阵,稀疏矩阵中具有PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位,还可以确定出最优过采样索引信息,只需要将码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备,使得网络设备恢复出信道信息,从而可以降低信道信息反馈量。
在一种可能的实现方式中,在根据所述配置系数和所述导频信息,获取信道信息之后,还包括:
将所述信道信息进行降维处理,得到降维后的信道信息,其中,所述降维后的信道信息中的样本点小于所述信道信息中的样本点;
根据所述正交变换基矩阵对所述信道信息进行正交变换,包括:
根据所述正交变换基矩阵对所述降维后的信道信息进行正交变换。
在一种可能的实现方式中,其特征在于,所述配置参数包括以下的至少一种:
所述网络设备的端口数、所述网络设备的水平端口数、所述网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
在一种可能的实现方式中,其特征在于,所述码本为:
Figure PCTCN2018104178-appb-000001
其中,
Figure PCTCN2018104178-appb-000002
为长度为2N HN VN S的一维行向量,所述一维行向量中的最后N HN VN S个样点值为0;
Figure PCTCN2018104178-appb-000003
或者,
Figure PCTCN2018104178-appb-000004
i是虚部的单位,π是圆周率,n=[0,1,…N-1];q=[0,1,…,(O m-1)];O m是过采样倍数,n、O m为正整数;N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H, O m的取值为O H;N的取值为N V时,q的取值为q V,O m的取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S
N H是所述网络设备的水平端口数、N V是所述网络设备的垂直端口数、N S是时频变换采样点个数,O H是所述网络设备的水平端口过采样倍数,O V是所述网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
在一种可能的实现方式中,所述正交变换基矩阵为
Figure PCTCN2018104178-appb-000005
其中,D N,q=R N,q×D N′,D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。
在一种可能的实现方式中,D N′=[d 1 d 2…d n…d N-1],其中,
Figure PCTCN2018104178-appb-000006
或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
Figure PCTCN2018104178-appb-000007
Figure PCTCN2018104178-appb-000008
在一种可能的实现方式中,根据所述正交变换基矩阵对所述信道信息进行正交变换,得到码本的至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,包括:
根据所述正交变换基矩阵对所述信道信息进行正交变换,得到稀疏矩阵,其中,所述稀疏矩阵中具有至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、以及所述至少一个PMI中的每一个PMI的加权稀疏的相位;
根据稀疏矩阵和所述正交变换基矩阵,得到每一组过采样系数下的重构后的信道信息;
确定每一组过采样系数下的重构后的信道信息与每一组过采样系数下的所述信道信息之间的差值;
确定最小差值所对应的过采样系数,为所述最优过采样索引信息。
在一种可能的实现方式中,所述稀疏矩阵为
Figure PCTCN2018104178-appb-000009
其中,i是虚部的单位,j是第j个PMI,A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位,N FB是反馈样点个数,N FB是正整数。
在一种可能的实现方式中,前N FB/2个PMI与后N FB/2个PMI相同。
在一种可能的实现方式中,在终端设备的天线为至少两个收端时,根据所述配置系数和所述导频信息,获取信道信息,包括:
根据所述配置系数和所述导频信息,获取每一个收端的收端信道信息;
根据所有收端的收端信道信息构成信道矩阵;
对所述信道矩阵与所述信道矩阵的伴随矩阵的乘积进行奇异值分解,得到至少两个最大特征向量;
确定每一个所述最大特征向量,为每一个所述信道信息;
对每一个所述信道信息,执行根据预设的码本,构造正交变换基矩阵的步骤。
第二方面,本申请提供一种信道信息处理方法,包括:
接收终端设备发送的码本的至少一个预编码矩阵指示信息PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;
根据所述至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、以及所述至少一个PMI中的每一个PMI的加权稀疏的相位,确定稀疏矩阵;
根据所述最优过采样索引信息,确定正交变换基矩阵;
根据所述稀疏矩阵和所述正交变换基矩阵,确定信道信息。
本申请中,由于采用信道信息的频率信息去计算码本,从而提高信道信息的反馈精度;接收终端设备发送的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位,还可以确定出最优过采样索引信息,然后网络设备恢复出信道信息,从而可以降低信道信息反馈量。
在一种可能的实现方式中,在所述接收终端设备发送的码本的至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息之前,还包括:
向所述终端设备发送配置系数和导频信息。
在一种可能的实现方式中,所述配置参数包括以下的至少一种:
网络设备的端口数、所述网络设备的水平端口数、所述网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
在一种可能的实现方式中,所述码本为:
Figure PCTCN2018104178-appb-000010
其中,
Figure PCTCN2018104178-appb-000011
为长度为2N HN VN S的一维行向量,所述一维行向量中的最后N HN VN S个样点值为0;
Figure PCTCN2018104178-appb-000012
或者,
Figure PCTCN2018104178-appb-000013
i是虚部的单位,π是圆周率,n=[0,1,…N-1];q=[0,1,…,(O N-1)];O N是过采样倍数,n、O N为正整数;N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H,O m的取值为O H;N的取值为N V时,q的取值为q V,O m的取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S
N H是网络设备的水平端口数、N V是所述网络设备的垂直端口数、N S是时频变换采样点个数,O H是所述网络设备的水平端口过采样倍数,O V是所述网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
在一种可能的实现方式中,所述正交变换基矩阵为
Figure PCTCN2018104178-appb-000014
其中,D N,q=R N,q×D N′,D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。
在一种可能的实现方式中,D N′=[d 1 d 2…d n…d N-1],其中,
Figure PCTCN2018104178-appb-000015
或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
Figure PCTCN2018104178-appb-000016
Figure PCTCN2018104178-appb-000017
在一种可能的实现方式中,所述稀疏矩阵为
Figure PCTCN2018104178-appb-000018
其中,i是虚部的单位,j是第j个PMI,A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位,N FB是反馈样点个数,N FB是正整数。
在一种可能的实现方式中,前N FB/2个PMI与后N FB/2个PMI相同。
第三方面,本申请提供一种终端设备侧的信道信息处理装置,包括:
接收模块,用于接收网络设备发送的配置系数和导频信息;
处理模块,用于根据所述配置系数和所述导频信息,获取信道信息;
所述处理模块,还用于根据预设的码本,构造正交变换基矩阵,其中,所述码本根据所述信道信息的频率信息而确定;
所述处理模块,还用于根据所述正交变换基矩阵对所述信道信息进行正交变换,得到码本的至少一个预编码矩阵指示信息PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;
发送模块,用于将码本的至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给所述网络设备。
在一种可能的实现方式中,所述处理模块,具体用于:
在根据所述配置系数和所述导频信息,获取信道信息之后,将所述信道信息进行降维处理,得到降维后的信道信息,其中,所述降维后的信道信息中的样本点小于所述信道信息中的样本点;
所述处理模块,还具体用于:
根据所述正交变换基矩阵对所述降维后的信道信息进行正交变换。
在一种可能的实现方式中,所述配置参数包括以下的至少一种:
所述网络设备的端口数、所述网络设备的水平端口数、所述网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维 过采样倍数、反馈样点个数。
在一种可能的实现方式中,所述码本为:
Figure PCTCN2018104178-appb-000019
其中,
Figure PCTCN2018104178-appb-000020
为长度为2N HN VN S的一维行向量,所述一维行向量中的最后N HN VN S个样点值为0;
Figure PCTCN2018104178-appb-000021
或者,
Figure PCTCN2018104178-appb-000022
i是虚部的单位,π是圆周率,n=[0,1,…N-1];q=[0,1,…,(O m-1)];O m是过采样倍数,n、O m为正整数;N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H,O m的取值为O H;N的取值为N V时,q的取值为q V,O m的取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S
N H是所述网络设备的水平端口数、N V是所述网络设备的垂直端口数、N S是时频变换采样点个数,O H是所述网络设备的水平端口过采样倍数,O V是所述网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
在一种可能的实现方式中,所述正交变换基矩阵为
Figure PCTCN2018104178-appb-000023
其中,D N,q=R N,q×D N′,D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。
在一种可能的实现方式中,D N′=[d 1 d 2…d n…d N-1],其中,
Figure PCTCN2018104178-appb-000024
或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
Figure PCTCN2018104178-appb-000025
Figure PCTCN2018104178-appb-000026
在一种可能的实现方式中,所述处理模块,具体用于:
根据所述正交变换基矩阵对所述信道信息进行正交变换,得到稀疏矩阵,其中,所述稀疏矩阵中具有至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、以及所述至少一个PMI中的每一个PMI的加权稀疏的相位;
根据稀疏矩阵和所述正交变换基矩阵,得到每一组过采样系数下的重构后的信道信息;
确定每一组过采样系数下的重构后的信道信息与每一组过采样系数下的所述信道信息之间的差值;
确定最小差值所对应的过采样系数,为所述最优过采样索引信息。
在一种可能的实现方式中,所述稀疏矩阵为
Figure PCTCN2018104178-appb-000027
其中,i是虚部的单位,j是第j个PMI,A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位,N FB是反馈样点个数,N FB是正整数。
在一种可能的实现方式中,前N FB/2个PMI与后N FB/2个PMI相同。
在一种可能的实现方式中,在终端设备的天线为至少两个收端时,所述处理模块,具体用于:
根据所述配置系数和所述导频信息,获取每一个收端的收端信道信息;
根据所有收端的收端信道信息构成信道矩阵;
对所述信道矩阵与所述信道矩阵的伴随矩阵的乘积进行奇异值分解,得到至少两个最大特征向量;
确定每一个所述最大特征向量,为每一个所述信道信息;
对每一个所述信道信息,执行根据预设的码本,构造正交变换基矩阵的步骤。
第四方面,本申请提供一种网络设备侧的信道信息处理装置,包括:
接收模块,用于接收终端设备发送的码本的至少一个预编码矩阵指示信息PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;
处理模块,用于根据所述至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、以及所述至少一个PMI中的每一个PMI的加权稀疏的相位,确定稀疏矩阵;
所述处理模块,还用于根据所述最优过采样索引信息,确定正交变换基矩阵;
所述处理模块,还用于根据所述稀疏矩阵和所述正交变换基矩阵,确定信道信息。
在一种可能的实现方式中,所述装置,还包括:
发送模块,用于向所述终端设备发送配置系数和导频信息。
在一种可能的实现方式中,所述配置参数包括以下的至少一种:网络设备的端口数、所述网络设备的水平端口数、所述网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
在一种可能的实现方式中,所述码本为:
Figure PCTCN2018104178-appb-000028
其中,
Figure PCTCN2018104178-appb-000029
为长度为2N HN VN S的一维行向量,所述一维行向量中的最后N HN VN S个样点值为0;
Figure PCTCN2018104178-appb-000030
或者,
Figure PCTCN2018104178-appb-000031
i是虚部的单位,π是圆周率,n=[0,1,…N-1];q=[0,1,…,(O m-1)];O m是过采样倍数,n、O m为正整数;N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H,O m的取值为O H;N的取值为N V时,q的取值为q V,O m的取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S
N H是网络设备的水平端口数、N V是所述网络设备的垂直端口数、N S是时频变换采样点个数,O H是所述网络设备的水平端口过采样倍数,O V是所述网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
在一种可能的实现方式中,所述正交变换基矩阵为
Figure PCTCN2018104178-appb-000032
其中,D N,q=R N,q×D N′,D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。
在一种可能的实现方式中,D N′=[d 1 d 2…d n…d N-1],其中,
Figure PCTCN2018104178-appb-000033
或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
Figure PCTCN2018104178-appb-000034
Figure PCTCN2018104178-appb-000035
在一种可能的实现方式中,所述稀疏矩阵为
Figure PCTCN2018104178-appb-000036
其中,i是虚部的单位,j是第j个PMI,A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位,N FB是反馈样点个数,N FB是正整数。
在一种可能的实现方式中,前N FB/2个PMI与后N FB/2个PMI相同。
第五方面,提供了一种终端设备,包括用于执行以上第一方面的任一方法各个步骤的单元或者手段(means)。
第六方面,提供了一种终端设备,包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述终端设备执行如第一方面或第一方面的任一实施例方式所提供的方法。
第七方面,提供了一种终端设备,包括用于执行以上第一方面的任一方法的至少一个处理元件或芯片。
第八方面,提供了一种程序,该程序在被处理器执行时用于执行以上第一方面的任一方法。
第九方面,提供了一种计算机可读存储介质,包括第八方面的程序。
第十方面,提供了一种网络设备,包括用于执行以上第二方面的任一方法各个步骤的单元或者手段(means)。
第十一方面,提供了一种网络设备,包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执 行指令时,指令使所述网络设备执行如第二方面或第二方面的任一实施例方式所提供的方法。
第十二方面,提供了一种网络设备,包括用于执行以上第二方面的任一方法的至少一个处理元件或芯片。
第十三方面,提供了一种程序,该程序在被处理器执行时用于执行以上第二方面的任一方法。
第十四方面,提供了一种计算机可读存储介质,包括第十三方面的程序。
第十五方面,提供一种通信系统,包括第三方面中任一项所述的终端设备侧的信道信息处理装置和第四方面中任一项所述的网络设备侧的信道信息处理装置。
附图说明
图1为本申请实施例提供的场景示意图;
图2为本申请实施例提供的一种信道信息处理方法的交互图;
图3为本申请实施例提供的另一种信道信息处理方法的交互图;
图4为本申请实施例的一种终端设备侧的信道信息处理装置终端设备400的示意性框图;
图5为本申请实施例的另一种终端设备侧的信道信息处理装置500的示意性框图;
图6为本申请实施例的一种网络设备侧的信道信息处理装置600的示意性框图;
图7为本申请实施例的另一种网络设备侧的信道信息处理装置700的示意性框图。
具体实施方式
本申请实施例应用于5G通信系统或未来可能出现的其他系统,例如,本申请可以应用于通用移动通信系统(universal mobile telecommunications system,UMTS)系统、码分多址(code division multiple access,CDMA)系统、无线局域网(wireless local area network,WLAN)或未来5G无线通信系统等等。以下对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。需要说明的是,需要说明的是,当本申请实施例的方案应用于5G系统或未来可能出现的其他系统时,网络设备、终端设备、网络设备的名称可能发生变化,但这并不影响本申请实施例方案的实施。
下面将结合附图,对本申请实施例的技术方案进行描述。
首先,对本申请所涉及的技术名词进行解释:
1)终端设备,又称为终端、用户设备,是一种向用户提供语音和/或数据连通性的 设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。
2)网络设备,又称为无线接入网(radio access network,RAN)设备是一种将终端设备通过授权频谱和非授权频谱接入到无线网络的设备,其包括各种通信制式中的网络设备,例如包括但不限于:无线接入点(例如无线局域网接入点),基站、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)等。
3)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
4)“相关联”可以指的是一种绑定关系,A与B相关联指的是A与B之间是一种绑定关系。
5)“不相关联”可以指的是一种非绑定关系,A与B不相关联指的是A与B之间为非绑定关系,即A与B不绑定。
需要指出的是,本申请实施例中涉及的名词或术语可以相互参考,不再赘述。
在大规模多入多出(massvie multiple-input multiple-output,Massvie MIMO)技术中,网络设备可以采用大规模阵列天线;网络设备通过配置数量众多的天线,去获得更高的天线自由度,从而网络设备能够支持更多的终端设备进行多用户多入多出技术(multi-user multiple-input multiple-output,MU-MIMO),进而达到提高小区吞吐量的目的。可知,通过Massvei MIMO技术,可以提升小区的性能。
在时分双工(time division duplexing,TDD)系统中,上行信道和下行信道采用相同的频点,因此终端设备可以通过测量上行侦听参考信号(sounding reference signal,SRS)获取到上行信道信息。由于上行信道和下行信道采用相同的频点,从而上行信道 和下行信道之间具有互易性,网络设备可以根据上行信道信息,获取到下行信道信息;然后,网络设备根据下行信道信息,计算得到多个终端设备的波束赋形权值;由于波束赋形权值能够使终端设备之间达到空分,从而消除终端设备之间的干扰,提升小区性能。
在频分双工(frequency division duplexing,FDD)系统中,上行信道和下行信道不存在互易性,从而网络设备不能根据上行信道信息得到下行信道信息。因此,在目前的长期演进(long term evolution,LTE)系统中,下行信道信息都是通过终端设备反馈给网络设备的;具体来说,根据码本对信道信息进行量化,终端设备将量化后的信道信息发送给网络设备;由于信道信息是经过码本量化的,因此信道信息比较粗糙,从而,Massive MIMO系统无法有效的消除终端设备之间的干扰,不能很好的提高小区性能,例如,不能很好的提升小区的吞吐量;可知,反馈给网络设备的信道信息的精度需要较高,才可以很好的提升小区性能。
在协议的演进过程中,码本的大小越来越大,但是仅仅通过增加码本的大小是不足以描述信道的所有属性信息的,现在提出了线性合并的概念,线性合并的概念指的是由两个不同的矢量进行加权合并来描述信道信息。随着线性合并矢量数目的增加,获取的信道信息的精度会越来越高,但是终端设备需要向网络设备反馈的数据量也随着增加,从而会大大占用业务数据的资源。因此如何保证不增加数据量的基础上,获取到高精度的信道信息是小区性能优化的方向之一。
在现有技术中,终端设备将码本的码本序号发送给网络设备,网络设备根据码本需要获取到信道信息。现有技术中提出了多种码本。
第一种方式中:码本可以支持到32个接口(port),并且增加了过采样的特性,进而提高了CSI的精度;表1为码本配置(codebook config)为1时的码本,表1示出了在终端设备的天线端口配置为15至14+P时所采用的码本,其中,P为大于等于1的正整数。
表1 codebook config=1时的码本
Figure PCTCN2018104178-appb-000037
在表1中,
Figure PCTCN2018104178-appb-000038
Figure PCTCN2018104178-appb-000039
其中,l、m、n为正整数;j为虚数的单位。
但是在第一种方式中所采用的码本是基于R10码本平滑演进来的;在较早的R10码本中,码本主要应用切换用户(switch user,SU)或者两用户(multi-user,MU)中的,从而在这些场景下,网络设备只需要获取信道波束主瓣的方向信息,就可以对终端设备之间的干扰进行消除。第一种方式中所提供的码本只能反映波束的主瓣方向;并且,在经过码本量化以后,CSI会损失一些精度。从而在多个终端设备进行复用的时候,难以消除终端设备之间的干扰。在对多个终端设备之间干扰消除的时候,需要采用信道的主瓣的信息和信道的副瓣信息,但是在第一种方式中只码本只能反映主瓣的信息,进一步的难以消除多个终端设备之间的干扰。从而,采用第一种方式的码本进行多个终端设备的MU-MIMO传输,不能使小区达到最优的性能。
第二种方式中:为了弥补第一种方式中,码本只能反映波束的主瓣方向,并且经过码本量化后CSI会损失精度的问题,可以采用NR type Ⅱ码本。NR type Ⅱ码本采用了多个矢量进行合成从而逼近真实信道信息的目的。NR type Ⅱ码本的具体构成为W=W 1*W 2,其中,
Figure PCTCN2018104178-appb-000040
Figure PCTCN2018104178-appb-000041
W 1为宽带的波束矢量,b 0、b L-1指的是波束,L是波束合成的数目,L为正整数,W 2为加权波束的权值信息,
Figure PCTCN2018104178-appb-000042
表示宽带加权系数的幅度信息,
Figure PCTCN2018104178-appb-000043
表示子带加权系数的幅度信息,c t,p,q表示子带加权系数的相位信息。其中,i取值为0或1,j取值为0或1,k取值为[0,L-1],k为整数;l取值为0或1,m取值为0或1,n取值为[0,L-1],n为整数;t取值为0或1,p取值 为0或1,q取值为[0,L-1],q为整数。
第二种方式中提供的NR type Ⅱ码本能够在一定程度上提升CSI的精度,但是实时的测试和验证,NR type Ⅱ码本依然不能够是Massvie MIMO小区的性能提升很高。
并且,第二种方式中提供的NR type Ⅱ码本所上报的有效载荷大小(payload size)非常大;以20兆(M)带宽,16port系统为例,子带(subband)的数目为13个,表2为payload size大小的表格,根据标准协议《3GPP TS 38.214V1.2.0》可知,此时rank1与rank2的payload size大小如表2所示,其中,payload size的单位为比特(bit)。
表2 rank1与rank2的payload size大小
rank L payload size(bit)
1 4 352
2 4 685
可知,对于第二种方式提供的NR type Ⅱ码本,需要增大payload size以提升CSI精度,会导致网络设备与终端设备之间传输的码本的数据量较大,不利于码本传输。
现有技术中,终端设备可以将码本的码本序号发送给网络设备;网络设备根据码本序号,获取到信道信息。然而现有技术中,因为码本只能反映波束的主瓣方向,并且,经过码本量化以后,CSI会损失掉一些精度。从而,网络设备不能根据码本得到精准的信道信息,从而导致不能很好的消除终端设备之间的干扰,不能提高小区性能。
图1为本申请实施例提供的场景示意图,如图1所示,本申请涉及了网络设备11和终端设备,如图1所示,网络设备11与终端设备1、终端设备2、终端设备3相关联。
图2为本申请实施例提供的一种信道信息处理方法的交互图,如图2所示,该方法包括:
S11、网络设备向终端设备发送配置系数和导频信息。
可选的,配置参数包括以下的至少一种:网络设备的端口数、网络设备的水平端口数、网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
示例性地,网络设备增加一种CSI反馈模式,并且网络设备向终端设备发送配置参数,其中,配置参数包括了网络设备的端口数、网络设备的水平端口数、网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
举例来说,网络设备向终端设备发送配置参数,配置参数包括了网络设备的端口 数N port=32、网络设备的水平端口数N H=4、网络设备的垂直端口数N V=4、时频变换采样点个数N S=25、网络设备的水平端口过采样倍数O H=4、网络设备的垂直端口过采样倍数O V=4、时频采样维过采样倍数O S=2、反馈样点个数N FB=16。可知,网络设备配置双极化天线32发32收,网络设备的导频端口数为32,网络设备的端口排列为4行4列双极化。网络设备和终端设备可以在一个长期演进(long term evolution,LTE)系统中进行通信,其中,系统带宽为20兆赫(Mega Hertz,MHz),100个无线承载(RB),即N RB=100。
S12、终端设备根据配置系数和导频信息,获取信道信息。
可选的,在步骤S12之后,还可以包括:将信道信息进行降维处理,得到降维后的信道信息,其中,降维后的信道信息中的样本点小于信道信息中的样本点。
示例性地,终端设备根据导频信息进行信道估计,以获得信道信息
Figure PCTCN2018104178-appb-000044
其中,信道信息H是一个一维向量,在构建信道信息
Figure PCTCN2018104178-appb-000045
的时候需要采用配置参数。其中,信道信息
Figure PCTCN2018104178-appb-000046
的长度为2N HN VN RB,其中,2表示信道信息H是双极化的。
然后,将信道信息
Figure PCTCN2018104178-appb-000047
在N RB维度上进行压缩处理,具体来说,采用平均或协方差矩阵平均等方法,将信道信息
Figure PCTCN2018104178-appb-000048
在N RB维度上进行降维处理,将N RB维度上的N RB个点数降到N S个点数,其中,N RB是RB的个数,N S是时频变换采样点个数,N RB大于N S,得到降维后的信道信息
Figure PCTCN2018104178-appb-000049
其中,
Figure PCTCN2018104178-appb-000050
是一个长度2N HN VN S的一维行向量。例如,N RB=100,N S=25。
S13、终端设备根据预设的码本,构造正交变换基矩阵,其中,码本根据信道信息的频率信息而确定。
示例性地,终端设备构造出了码本w j,其中,j为正整数。将码本w j作为列向量,构造出正交变换基矩阵。可以利用信道信息的频率信息去计算码本w j
S14、终端设备根据正交变换基矩阵对信道信息进行正交变换,得到码本的至少一个预编码矩阵指示信息(precoding matrix indicator,PMI)、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息。
示例性地,终端设备根据正交变换基矩阵对信道信息进行正交变换,从而将信道信息往码本序列中进行映射,然后可以得到稀疏矩阵,其中,稀疏矩阵中具有至少一 个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、以及至少一个PMI中的每一个PMI的加权稀疏的相位;并且可以根据预设的过采样系数,确定出最优过采样系数,将该最优过采样系数作为最优过采样索引信息。
S15、终端设备将码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备。
示例性地,终端设备确定出的码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备;使得网络设备可以根据码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,构造出信道信息。
本申请,通过根据网络设备发送的配置系数和导频信息,获取信道信息;根据预设的码本,构造正交变换基矩阵;根据正交变换基矩阵对信道信息进行正交变换,得到码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;将码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备,以使网络设备恢复出构造出信道信息,网络设备可以获取到信道信息。从而由于采用信道信息的频率信息去计算码本,从而提高信道信息的反馈精度;由于采用正交变换基矩阵对信道信息进行正交变换,可以得到稀疏矩阵,稀疏矩阵中具有PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位,还可以确定出最优过采样索引信息,只需要将码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备,使得网络设备恢复出信道信息,从而可以降低信道信息反馈量。
图3为本申请实施例提供的另一种信道信息处理方法的交互图,如图3所示,该方法包括:
S21、网络设备向终端设备发送配置系数和导频信息。
示例性地,本步骤可以参见图2的步骤S11,不再赘述。其中,配置参数包括了 网络设备的端口数N port、网络设备的水平端口数N H、网络设备的垂直端口数N V、时频变换采样点个数N S、水平端口过采样倍数O H、垂直端口过采样倍数O V、时频采样维过采样倍数O S、反馈样点个数N FB
S22、终端设备根据配置系数和导频信息,获取信道信息。
示例性地,本步骤可以参见图2的步骤S12,不再赘述。
S23、终端设备将信道信息进行降维处理,得到降维后的信道信息,其中,降维后的信道信息中的样本点小于信道信息中的样本点。
示例性地,本步骤可以参见图2的步骤S12,不再赘述。
S24、终端设备根据预设的码本,构造正交变换基矩阵,其中,码本根据降维后的信道信息的频率信息而确定。
可选的,码本为:
Figure PCTCN2018104178-appb-000051
其中,
Figure PCTCN2018104178-appb-000052
为长度为2N HN VN S的一维行向量,一维行向量中的最后N HN VN S个样点值为0;
Figure PCTCN2018104178-appb-000053
或者,
Figure PCTCN2018104178-appb-000054
i是虚部的单位,π是圆周率,n=[0,1,…N-1];q=[0,1,…,(O m-1)];O m是过采样倍数,n、O m为正整数;N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H,O m的取值为O H;N的取值为N V时,q的取值为q V,O m的取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S;N H是网络设备的水平端口数、N V是网络设备的垂直端口数、N S是时频变换采样点个数,O H是网络设备的水平端口过采样倍数,O V是网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
可选的,正交变换基矩阵为
Figure PCTCN2018104178-appb-000055
其中,D N,q=R N,q×D N′, D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。
可选的,D N′=[d 1 d 2…d n…d N-1],其中,
Figure PCTCN2018104178-appb-000056
Figure PCTCN2018104178-appb-000057
或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
Figure PCTCN2018104178-appb-000058
示例性地,构造码本w j,得到
Figure PCTCN2018104178-appb-000059
其中,
Figure PCTCN2018104178-appb-000060
为长度为2N HN VN S的一维行向量,一维行向量中的最后N HN VN S个样点值为0。q H∈0,1,…O H-1,q V∈0,1,…O V-1,q S∈0,1,…O S-1。
在上述码本公式中,
Figure PCTCN2018104178-appb-000061
可知,
Figure PCTCN2018104178-appb-000062
Figure PCTCN2018104178-appb-000063
Figure PCTCN2018104178-appb-000064
或者,在上述码本公式中,
Figure PCTCN2018104178-appb-000065
可知,
Figure PCTCN2018104178-appb-000066
Figure PCTCN2018104178-appb-000067
Figure PCTCN2018104178-appb-000068
终端设备根据码本w j,构造正交变换基矩阵
Figure PCTCN2018104178-appb-000069
正交变换基矩阵
Figure PCTCN2018104178-appb-000070
是一个维度为2N HN VN S×2N HN VN S的正交阵。正交变换基矩阵
Figure PCTCN2018104178-appb-000071
Figure PCTCN2018104178-appb-000072
D N,q=R N,q×D N′,D N,q是一个过采样的一维离散傅里叶变换(discrete fourier transform,DFT),或者,D N,q是一个过采样的一维离散傅里叶逆变换(inverse discrete fourier transform,IDFT)正交基;其中,D N′是N×N的正交基矩阵,R N,q是旋转因子。对于D N,q=R N,q×D N′,在N取值为N H时,
Figure PCTCN2018104178-appb-000073
为预设的N H×N H的正交基矩阵,
Figure PCTCN2018104178-appb-000074
为预设的旋转因子;在N取值为N V时,
Figure PCTCN2018104178-appb-000075
为预设的N V×N V的正交基矩阵,
Figure PCTCN2018104178-appb-000076
为预设的旋转因子;在N取值为N S时,
Figure PCTCN2018104178-appb-000077
为预设的N S×N S的正交基矩阵,
Figure PCTCN2018104178-appb-000078
为预设的旋转因子。
对于D N′的取值具有两种情况。D N′取值的第一种情况为:D N′是一维DFT正交基,即D N′=[d 1 d 2…d n…d N-1],其中,
Figure PCTCN2018104178-appb-000079
Figure PCTCN2018104178-appb-000080
diag()表示R N,q为对角阵公式;在N取值为N H时,
Figure PCTCN2018104178-appb-000081
其中,
Figure PCTCN2018104178-appb-000082
Figure PCTCN2018104178-appb-000083
在N取值为N V时,
Figure PCTCN2018104178-appb-000084
其中,
Figure PCTCN2018104178-appb-000085
Figure PCTCN2018104178-appb-000086
在N取值为N S时,
Figure PCTCN2018104178-appb-000087
其中,
Figure PCTCN2018104178-appb-000088
D N′取值的第二种情况为:D N′是一维IDFT正交基,即D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
Figure PCTCN2018104178-appb-000089
diag() 表示R N,q为对角阵公式;在N取值为N H时,
Figure PCTCN2018104178-appb-000090
其中,
Figure PCTCN2018104178-appb-000091
在N取值为N V时,
Figure PCTCN2018104178-appb-000092
其中,
Figure PCTCN2018104178-appb-000093
Figure PCTCN2018104178-appb-000094
在N取值为N S时,
Figure PCTCN2018104178-appb-000095
其中,
Figure PCTCN2018104178-appb-000096
S25、终端设备根据正交变换基矩阵对信道信息进行正交变换,得到稀疏矩阵,其中,稀疏矩阵中具有至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、以及至少一个PMI中的每一个PMI的加权稀疏的相位。
可选的,稀疏矩阵为
Figure PCTCN2018104178-appb-000097
其中,i是虚部的单位,j是第j个PMI,A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位,N FB是反馈样点个数,N FB是正整数。
示例性地,对每一组过采样系数q的值[q H q V q S]来说,每一组过采样系数q的值[q H q V q S]对应一个正交基矩阵
Figure PCTCN2018104178-appb-000098
从而可以采用正交变换基矩阵
Figure PCTCN2018104178-appb-000099
对将降维后的信道信息进行正交变换,得到正交变换后的信道信息
Figure PCTCN2018104178-appb-000100
然后,使用稀疏度为N FB的稀疏矩阵
Figure PCTCN2018104178-appb-000101
近似表示正交变换后的信道信息
Figure PCTCN2018104178-appb-000102
Figure PCTCN2018104178-appb-000103
其中,稀疏矩阵
Figure PCTCN2018104178-appb-000104
中具有N FB个非零样点个数,其中,N FB的大小远小于
Figure PCTCN2018104178-appb-000105
的序列长度2N HN VN S;其中,N FB是反馈样点个数。
其中,稀疏矩阵
Figure PCTCN2018104178-appb-000106
可以表示为
Figure PCTCN2018104178-appb-000107
其中,i是虚部的单位,j是第j个索引;对每一个j进行编码,分别得到每一个PMI。A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位。
S26、终端设备根据稀疏矩阵和正交变换基矩阵,得到每一组过采样系数下的重构 后的信道信息。
示例性地,根据稀疏矩阵
Figure PCTCN2018104178-appb-000108
和正交变换基矩阵
Figure PCTCN2018104178-appb-000109
可以重构出每一组过采样系数[q H q V q S]下的重构后的信道信息
Figure PCTCN2018104178-appb-000110
可知,每一组过采样系数[q H q V q S]对应了一个正交基矩阵
Figure PCTCN2018104178-appb-000111
S27、终端设备确定每一组过采样系数下的重构后的信道信息与每一组过采样系数下的信道信息之间的差值。
示例性地,针对于每一组过采样系数[q H q V q S],计算出每一组过采样系数[q H q V q S]下的重构后的信道信息与每一组过采样系数[q H q V q S]下的信道信息之间的差值。针对每一组过采样系数[q H q V q S],确定出该组过采样系数[q H q V q S]下的差值的最小值
Figure PCTCN2018104178-appb-000112
从而确定出每一组过采样系数[q H q V q S]下,重构后的信道信息与原始的信道信息之间的差值的最小值。
S28、终端设备确定最小差值所对应的过采样系数,为最优过采样索引信息。
示例性地,遍历所有过采样系数[q H q V q S],每一组过采样系数[q H q V q S]下,具有重构后的信道信息与原始的信道信息之间的差值M qHqVqS的最小值。然后,就可以确定出所有过采样系数[q H q V q S]下最小的差值
Figure PCTCN2018104178-appb-000113
将最小的差值
Figure PCTCN2018104178-appb-000114
所对应的过采样系数,为最优过采样索引信息[q′ H q′ V q′ S]。
S29、终端设备将码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备。
示例性地,终端设备反馈长度为2N HN VN S的序列
Figure PCTCN2018104178-appb-000115
中N FB个非零值信息,即终端设备需要从2N HN VN S个码本里选取N FB个码本进行反馈。具体来说,终端设备需要向网络设备反馈码本的至少一个PMI、每一个PMI的加权稀疏的幅值A j、每一个PMI的加权稀疏的相位P j、以及最优过采样索引信息[q′ H q′ V q′ S]。
终端设备可以对需要反馈的上述信息进行量化编码,例如,设置PMI的索引j的取值范围为
Figure PCTCN2018104178-appb-000116
则对于索引j来说,需要编码bit数为
Figure PCTCN2018104178-appb-000117
每一个PMI对应的幅度A j采用3bit编码,每一个PMI对应的相位P j采用4bit量化编码。然后,终端设备将量化编码后的PMI、每一个PMI的量化编码后的幅值、每一个PMI的量化编 码后的相位、以及量化编码后的最优过采样索引信息,发送给网络设备。
S210、网络设备根据至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、以及至少一个PMI中的每一个PMI的加权稀疏的相位,确定稀疏矩阵。
示例性地,网络设备根据接收到的至少一个PMI、每一个PMI的加权稀疏的幅值A j、以及每一个PMI的加权稀疏的相位P j,可以恢复序列
Figure PCTCN2018104178-appb-000118
将序列
Figure PCTCN2018104178-appb-000119
近似作为稀疏矩阵
Figure PCTCN2018104178-appb-000120
S211、网络设备根据最优过采样索引信息,确定正交变换基矩阵。
示例性地,网络设备根据收到的最优过采样索引信息[q′ H q′ V q′ S],可以构造矩阵
Figure PCTCN2018104178-appb-000121
将矩阵
Figure PCTCN2018104178-appb-000122
近似作为正交变换基矩阵
Figure PCTCN2018104178-appb-000123
S212、网络设备根据稀疏矩阵和正交变换基矩阵,确定信道信息。
示例性地,网络设备根据稀疏矩阵
Figure PCTCN2018104178-appb-000124
和正交变换基矩阵
Figure PCTCN2018104178-appb-000125
恢复出矩阵
Figure PCTCN2018104178-appb-000126
其中,
Figure PCTCN2018104178-appb-000127
将恢复出的矩阵
Figure PCTCN2018104178-appb-000128
近似的作为信道信息
Figure PCTCN2018104178-appb-000129
从而恢复出信道信息
Figure PCTCN2018104178-appb-000130
其中,
Figure PCTCN2018104178-appb-000131
p=1,2,…,N FB-1,p是正整数,
Figure PCTCN2018104178-appb-000132
Figure PCTCN2018104178-appb-000133
的列向量。j p指的是从正交基矩阵的所有列向量里选取N FB个样本。
然后,网络设备可以确定出预编码矩阵
Figure PCTCN2018104178-appb-000134
Figure PCTCN2018104178-appb-000135
p=1,2,…,N FB-1,
Figure PCTCN2018104178-appb-000136
Figure PCTCN2018104178-appb-000137
的列向量,
Figure PCTCN2018104178-appb-000138
也就是本申请所设计的码本。然后网络设备就可以采用预编码矩阵W,对待发送给网络设备的数据进行编码。
对于上述步骤,若终端设备的天线配置为1发1收,则终端设备执行一次步骤S21-S29;网络设备执行一次步骤S210-S212。
对于上述步骤,若终端设备的天线配置为1发2收,由于每1收的天线所估计出的信道信息会不同,针对于每1收天线,终端设备执行一次步骤S21-S29,从而终端设备将每1收天线的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备;然后,针对于每1收天线,网络设备执行一次步骤S210-S212。从而终端设备反馈给网络设备的信息要翻一倍。举例来说,若终端设备的天线配置为1发2收,记N UE_RX=2;则信道信息H为N UE_RX行、2N HN VN RB列的二维矩阵。对于信道信息H的每一行,可以记为
Figure PCTCN2018104178-appb-000139
是长度为2N HN VN RB的一维向量,对
Figure PCTCN2018104178-appb-000140
按照进行压缩得到
Figure PCTCN2018104178-appb-000141
序列非零数据的个数为floor(N FB/N UE_RX)。
对于上述步骤,在终端设备的天线为至少两个收端时,步骤S22具体包括以下步骤:
S221、根据配置系数和导频信息,获取每一个收端的收端信道信息。
S222、根据所有收端的收端信道信息构成信道矩阵。
S223、对信道矩阵与信道矩阵的伴随矩阵的乘积进行奇异值分解,得到至少两个最大特征向量。
S224、确定每一个最大特征向量,为每一个信道信息。
S225、对每一个信道信息,执行根据预设的码本,构造正交变换基矩阵的步骤。
示例性的,如果终端设备的天线是1收的,则信道信息H是向量。如果终端设备的天线是2收以上的时候,针对于每一个收端,终端设备可以根据配置系数和导频信息,获得每一个收端的收端信道信息;然后,终端设备将所有收端的收端信道信息,组成一个信道矩阵T;然后,终端设备对矩阵T HT做奇异值分解(singular value decomposition,SVD),得到至少两个最大特征向量,若天线是2收的,则得到N Rank=2个最大特征向量,若天线是4收的,则得到N Rank=4个最大特征向量;将每一个最大特征向量,作为每一个信道信息H;对于每一个信道信息H,终端设备执行S22-S29的步骤;从而终端设备将每1收天线的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备;然后,针对于每1收天线,网络设备执行一次步骤S210-S212。
举例来说,网络设备的配置与前述步骤中的相同;终端设备的天线配置为1发4收,记N UE_RX=4;终端设备可以确定出信道矩阵T为N UE_RX行、2N HN VN RB列的二维矩阵。终端设备测量获得接收信道Rank值为2,记N Rank=2。然后终端设备对矩阵T HT进行SVD分解,获得N Rank个最大特征向量E r,r=1,2,…,N Rank;然后对于每一个特征向量E i,终端设备得到每一个信道信息
Figure PCTCN2018104178-appb-000142
终端设备对每一个信道信息
Figure PCTCN2018104178-appb-000143
进行处理,获得稀疏矩阵
Figure PCTCN2018104178-appb-000144
的非零数据的个数为floor(N FB/N Rank)。针对于每一个信道信息
Figure PCTCN2018104178-appb-000145
网络设备恢复出信道信息
Figure PCTCN2018104178-appb-000146
本申请,通过根据网络设备发送的配置系数和导频信息,获取信道信息;根据预设的码本,构造正交变换基矩阵;根据正交变换基矩阵对信道信息进行正交变换,得 到码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;将码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备,以使网络设备恢复出构造出信道信息,网络设备可以获取到信道信息。从而由于采用信道信息的频率信息去计算码本,从而提高信道信息的反馈精度;由于采用正交变换基矩阵对信道信息进行正交变换,可以得到稀疏矩阵,稀疏矩阵中具有PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位,还可以确定出最优过采样索引信息,只需要将码本的至少一个PMI、至少一个PMI中的每一个PMI的加权稀疏的幅值、至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给网络设备,使得网络设备恢复出信道信息,从而可以降低信道信息反馈量。
在上述图3所示实施例的基础上,在步骤S24中,正交变换基矩阵可以采用如下矩阵:正交变换基矩阵为
Figure PCTCN2018104178-appb-000147
其中,D N,q=R N,q×D N′,D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。1≤N′ S≤N S/4,N′ S为正整数。
可选的,D N′=[d 1 d 2…d n…d N-1],其中,
Figure PCTCN2018104178-appb-000148
Figure PCTCN2018104178-appb-000149
或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
Figure PCTCN2018104178-appb-000150
N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H,O m的取值为O H;N的取值为N V时,q的取值为q V,的O m取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S。N H是网络设备的水平端口数、N V是网络设备的垂直端口数、N S是时频变换采样点个数,O H是网络设备的水平端口过采样倍数,O V是网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
示例性地,正交变换基矩阵为
Figure PCTCN2018104178-appb-000151
与步骤S24中的正交变换基矩阵
Figure PCTCN2018104178-appb-000152
的不同之处在于N′ S的取值为大于等于1小于等于N S/4。
终端设备根据码本w j,构造正交变换基矩阵
Figure PCTCN2018104178-appb-000153
正交变换基矩阵
Figure PCTCN2018104178-appb-000154
是一个维度为2N HN VN S行、2N HN VN S/4列的矩阵。对应的,具有2N HN VN S/4个码本。
D N,q=R N,q×D N′,其中,D N′是N×N的正交基矩阵,R N,q是旋转因子。对于D N,q=R N,q×D N′,在N取值为N H时,
Figure PCTCN2018104178-appb-000155
为预设的N H×N H的正交基矩阵,
Figure PCTCN2018104178-appb-000156
为预设的旋转因子;在N取值为N V时,
Figure PCTCN2018104178-appb-000157
为预设的N V×N V的正交基矩阵,
Figure PCTCN2018104178-appb-000158
为预设的旋转因子;在N取值为N′ S时,
Figure PCTCN2018104178-appb-000159
为预设的N S×N S的正交基矩阵,
Figure PCTCN2018104178-appb-000160
为预设的旋转因子。
对于D N′的取值具有两种情况。D N′取值的第一种情况为:D N′是一维DFT正交基,即D N′=[d 1 d 2…d n…d N-1],其中,
Figure PCTCN2018104178-appb-000161
Figure PCTCN2018104178-appb-000162
diag()表示R N,q为对角阵公式;在N取值为N H时,
Figure PCTCN2018104178-appb-000163
其中,
Figure PCTCN2018104178-appb-000164
Figure PCTCN2018104178-appb-000165
在N取值为N V时,
Figure PCTCN2018104178-appb-000166
其中,
Figure PCTCN2018104178-appb-000167
Figure PCTCN2018104178-appb-000168
在N取值为N′ S时,
Figure PCTCN2018104178-appb-000169
其中,
Figure PCTCN2018104178-appb-000170
Figure PCTCN2018104178-appb-000171
D N′取值的第二种情况为:D N′是一维IDFT正交基,即D N′=[d′ 1 d′ 2…d′ n…d′ N-1], 其中,
Figure PCTCN2018104178-appb-000172
diag()表示R N,q为对角阵公式;在N取值为N H时,
Figure PCTCN2018104178-appb-000173
其中,
Figure PCTCN2018104178-appb-000174
在N取值为N V时,
Figure PCTCN2018104178-appb-000175
其中,
Figure PCTCN2018104178-appb-000176
Figure PCTCN2018104178-appb-000177
在N取值为N′ S时,
Figure PCTCN2018104178-appb-000178
其中,
Figure PCTCN2018104178-appb-000179
在步骤S29中,只需要终端设备需要从2N HN VN S/4个码本里选取N FB个码本进行反馈。从而终端设备向网络设备反馈以下信息:至少一个PMI、每一个PMI的加权稀疏的幅值A j、每一个PMI的加权稀疏的相位P j、以及最优过采样索引信息[q′ H q′ V q′ S],是图3中的四分之一。从而,在终端设备对需要反馈的上述信息进行量化编码的时候,能够将索引j的取值范围减少到
Figure PCTCN2018104178-appb-000180
对于索引j来说,需要反馈bit数为
Figure PCTCN2018104178-appb-000181
可选的,终端设备也可以向网络设备发送维码本子集
Figure PCTCN2018104178-appb-000182
的首码本索引0和码本宽度N S/4。其他步骤与图3所示实施例相同,不再赘述。
在上述图3所示实施例的基础上,在步骤S25中,稀疏矩阵中的前N FB/2个PMI与后N FB/2个PMI相同。
示例性的,在步骤S25中,得到稀疏矩阵
Figure PCTCN2018104178-appb-000183
其中,j是N FB个非零样点的索引中的第j个索引。也可以表示为稀疏矩阵
Figure PCTCN2018104178-appb-000184
可以令两个极化反馈的PMI相同,即约束前N FB/2个PMI和后N FB/2个PMI相同,则在本实施方式中,令j的取值符合以下原则
Figure PCTCN2018104178-appb-000185
此时p=0,1,…,N FB/2-1。从而在步骤S29中网络设备只需要将N FB/2个PMI、N FB/2个PMI中的每一个PMI的 幅值和相位、以及最优过采样索引信息发送给网络设备。并且,在终端设备对需要反馈的上述信息进行量化编码的时候,j的编码的取值范围为
Figure PCTCN2018104178-appb-000186
对于索引j来说,需要反馈bit数为
Figure PCTCN2018104178-appb-000187
上文中详细描述了根据本申请实施例的信道信息处理方法,下面将描述本申请实施例的信道信息处理装置。
本申请实施例详细描述终端设备侧的信道信息处理装置的示意性结构。
在一个示例中,图4为本申请实施例的一种终端设备侧的信道信息处理装置终端设备400的示意性框图。本申请实施例的装置400可以是上述方法实施例中的终端设备终端设备,也可以是终端设备内的一个或多个芯片。装置400可以用于执行上述方法实施例中的终端设备的部分或全部功能。该装置400可以包括处理模块410、接收模块420和发送模块430,可选的,该装置400还可以包括存储模块440。
例如,该接收模块420,可以用于接收前述方法实施例中的终端设备侧的接收动作的步骤。例如,接收模块420用于执行图2的步骤S11;或者,接收模块420用于执行图3的步骤S21。
该发送模块430,可以用于执行前述方法实施例中的终端设备侧的发送动作的步骤。例如,发送模块430用于执行图2的步骤S15;或者,发送模块430用于执行图3的步骤S29。
处理模块410可用于根据传输时长,确定传输结束时间。例如,处理模块410用于执行图2的步骤S12、步骤S13、步骤S14;或者,处理模块410用于执行图3的步骤S22、步骤S23、步骤S24、步骤S25、步骤S26、步骤S27、步骤S28。
可以替换的,装置400也可配置成通用处理系统,例如通称为芯片,该处理模块410可以包括:提供处理功能的一个或多个处理器;接收模块420例如可以是输入接口、管脚或电路等,发送模块430例如可以是输出接口、管脚或电路等,输入/输出接口可用于负责此芯片系统与外界的信息交互。该一个或多个处理器可执行存储模块中存储的计算机执行指令以实现上述方法实施例中终端设备的功能。在一个示例中,装置400中可选的包括的存储模块440可以为芯片内的存储单元,如寄存器、缓存等,存储模块440还可以是终端设备内的位于芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在另一个示例中,图5为本申请实施例的另一种终端设备侧的信道信息处理装置500的示意性框图。本申请实施例的装置500可以是上述方法实施例中的终端设备,装置500可以用于执行上述方法实施例中的终端设备的部分或全部功能。该装置500可以包括:处理器510,基带电路530,射频电路540以及天线550,可选的,该装置500还可以包括存储器520。装置500的各个组件通过总线560耦合在一起,其中总线系统560除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统560。
处理器510可用于实现对终端设备的控制,用于执行上述实施例中由终端设备进行的处理,可以执行上述方法实施例中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路530、射频电路540以及天线550可以用于支持终端设备和上述实施例中涉及的网络设备之间收发信息,以支持终端设备与网络设备之间进行无线通信。一个示例中,来自网络设备发送的信息经由天线550接收,由射频电路进行滤波、放大、下变频以及数字化等处理后,再经由基带电路解码、按协议解封装数据等基带处理后,由处理器510进行处理;又一个示例中,终端设备发送的信息可由处理器510进行处理,经由基带电路530进行按协议封装,编码等基带处理,进一步由射频电路540进行模拟转换、滤波、放大和上变频等射频处理后,经由天线550发射出去,存储器520可以用于存储网络设备的程序代码和数据,存储器520可以是图5中的存储模块440。可以理解的,基带电路530、射频电路540以及天线550还可以用于支持终端设备与其他网络实体进行通信,例如,用于支持终端设备与该终端设备关联的网络设备进行通信。
可以理解的是,图5仅仅示出了终端设备的简化设计。例如,在实际应用中,终端设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的终端设备都在本发明的保护范围之内。
一种可能的实现方式中,终端设备侧的信道信息处理装置也可以使用下述来实现:一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在又一个示例中,本申请实施例还提供一种计算机存储介质,该计算机存储介质 可以存储用于指示上述任一种方法的程序指令,以使得处理器执行此程序指令实现上述方法实施例中涉及终端设备的方法和功能。
在一个示例中,图6为本申请实施例的一种网络设备侧的信道信息处理装置600的示意性框图。本申请实施例的装置600可以是上述方法实施例中的网络设备,也可以是网络设备内的一个或多个芯片。装置600可以用于执行上述方法实施例中的网络设备的部分或全部功能。如图66所示,该装置600可以包括处理模块610、接收模块620和发送模块630,可选的,该装置600还可以包括存储模块640。
例如,该处理模块610,可以用于执行前述方法实施例中的对信息、矩阵的处理。例如,处理模块610用于执行图3的步骤S210、步骤S211、步骤S212。
该接收模块620,可以用于执行前述方法实施例中的接收动作的步骤。例如,接收模块620用于执行图2的步骤S15;或者接收模块620用于执行图3的步骤S29。
该发送模块630,可以用于执行前述方法实施例中的发送动作的步骤。例如,发送模块630用于执行图2的步骤S11;或者,发送模块630用于执行图3的步骤S21。
可以替换的,装置600也可配置成通用处理系统,例如通称为芯片,该处理模块610可以包括:提供处理功能的一个或多个处理器;接收模块620例如可以是输入接口、管脚或电路等,发送模块630例如可以是输出接口、管脚或电路等,输入/输出接口可用于负责此芯片系统与外界的信息交互。该处理模块可执行存储模块中存储的计算机执行指令以实现上述方法实施例中网络设备的功能。在一个示例中,装置600中可选的包括的存储模块640可以为芯片内的存储单元,如寄存器、缓存等,存储模块640还可以是网络设备内的位于芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
在另一个示例中,图7为本申请实施例的另一种网络设备侧的信道信息处理装置700的示意性框图。本申请实施例的装置700可以是上述方法实施例中的网络设备,装置700可以用于执行上述方法实施例中的网络设备的部分或全部功能。该装置700可以包括:处理器710,基带电路730,射频电路740以及天线750,可选的,该装置700还可以包括存储器720。装置700的各个组件通过总线760耦合在一起,其中总线系统760除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统760。
处理器710可用于实现对网络设备的控制,用于执行上述实施例中由网络设备进 行的处理,可以执行上述方法实施例中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路730、射频电路740以及天线750可以用于支持网络设备和上述实施例中涉及的终端设备之间收发信息,以支持网络设备与终端设备之间进行无线通信,还用于支持网络设备和其他网络设备进行信令和信息的交互,以实现网络设备间的协作。
一个示例中,来自终端设备发送的信息经由天线750接收,由射频电路740进行滤波、放大、下变频以及数字化等处理后,再经由基带电路730解码、按协议解封装数据等基带处理后,由处理器710进行处理;又一个示例中,处理器710生成的矩阵或序列经由基带电路730进行按协议封装,编码等基带处理,进一步由射频电路740进行模拟转换、滤波、放大和上变频等射频处理后,经由天线750发射出去。
存储器720可以用于存储网络设备的程序代码和数据,存储器720可以是图6中的存储模块640。可以理解的,基带电路730、射频电路740以及天线750还可以用于支持网络设备与其他网络实体进行通信,例如,用于支持网络设备与核心网侧的网元进行通信。图7中存储器720被示为与处理器710分离,然而,本领域技术人员很容易明白,存储器720或其任意部分可位于700之外。举例来说,存储器720可以包括传输线、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器710通过总线接口760来访问。可替换地,存储器720或其任意部分可以集成到处理器710中,例如,可以是高速缓存和/或通用寄存器。
可以理解的是,图7仅仅示出了网络设备的简化设计。例如,在实际应用中,网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的网络设备都在本发明的保护范围之内。
一种可能的实现方式中,网络设备侧的信道信息处理装置也可以使用下述来实现:一个或多个FPGA、PLD、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在又一个示例中,本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令,以使得处理器执行此程序指令实现上述方法实施例中涉及网络设备的方法和功能。
上述装置500和装置700中涉及的处理器可以是通用处理器,例如通用中央处理器(CPU)、网络处理器(network processor,NP)、微处理器等,也可以是特定应用 集成电路(application-specific integrated circBIt,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。还可以是数字信号处理器(digital signal processor,DSP)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。控制器/处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。处理器通常是基于存储器内存储的程序指令来执行逻辑和算术运算。
上述装置500和装置700中涉及的存储器还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,上述存储器可以是ROM)可存储静态信息和指令的其他类型的静态存储设备、RAM、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。存储器可以是上述存储类型的组合。并且上述计算机可读存储介质/存储器可以在处理器中,还可以在处理器的外部,或在包括处理器或处理电路的多个实体上分布。上述计算机可读存储介质/存储器可以具体体现在计算机程序产品中。举例而言,计算机程序产品可以包括封装材料中的计算机可读介质。
本申请实施例提供了一种通信系统,该通信系统包括图4所提供的终端设备侧的信道信息处理装置和图6所提供的网络设备侧的信道信息处理装置。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站网络设备、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站网络设备、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种信道信息处理方法,其特征在于,包括:
    接收网络设备发送的配置系数和导频信息;
    根据所述配置系数和所述导频信息,获取信道信息;
    根据预设的码本,构造正交变换基矩阵,其中,所述码本根据所述信道信息的频率信息而确定;
    根据所述正交变换基矩阵对所述信道信息进行正交变换,得到码本的至少一个预编码矩阵指示信息PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;
    将码本的至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给所述网络设备。
  2. 根据权利要求1所述的方法,其特征在于,在根据所述配置系数和所述导频信息,获取信道信息之后,还包括:
    将所述信道信息进行降维处理,得到降维后的信道信息,其中,所述降维后的信道信息中的样本点小于所述信道信息中的样本点;
    根据所述正交变换基矩阵对所述信道信息进行正交变换,包括:
    根据所述正交变换基矩阵对所述降维后的信道信息进行正交变换。
  3. 根据权利要求1或2所述的方法,其特征在于,所述配置参数包括以下的至少一种:
    所述网络设备的端口数、所述网络设备的水平端口数、所述网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述码本为:
    Figure PCTCN2018104178-appb-100001
    其中,
    Figure PCTCN2018104178-appb-100002
    为长度为2N HN VN S的一维行向量,所述一维行向量中的最后N HN VN S个样点值为0;
    Figure PCTCN2018104178-appb-100003
    或者,
    Figure PCTCN2018104178-appb-100004
    i是虚部的单位,π是圆周率,n=[0,1,…N-1]; q=[0,1,…,(O m-1)];O m是过采样倍数,n、O m为正整数;N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H,O m的取值为O H;N的取值为N V时,q的取值为q V,O m的取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S
    N H是所述网络设备的水平端口数、N V是所述网络设备的垂直端口数、N S是时频变换采样点个数,O H是所述网络设备的水平端口过采样倍数,O V是所述网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
  5. 根据权利要求4所述的方法,其特征在于,所述正交变换基矩阵为
    Figure PCTCN2018104178-appb-100005
    其中,D N,q=R N,q×D N′,D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。
  6. 根据权利要求5所述的方法,其特征在于,D N′=[d 1 d 2…d n…d N-1],其中,
    Figure PCTCN2018104178-appb-100006
    或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
    Figure PCTCN2018104178-appb-100007
    Figure PCTCN2018104178-appb-100008
  7. 根据权利要求1-6任一项所述的方法,其特征在于,根据所述正交变换基矩阵对所述信道信息进行正交变换,得到码本的至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,包括:
    根据所述正交变换基矩阵对所述信道信息进行正交变换,得到稀疏矩阵,其中,所述稀疏矩阵中具有至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、以及所述至少一个PMI中的每一个PMI的加权稀疏的相位;
    根据稀疏矩阵和所述正交变换基矩阵,得到每一组过采样系数下的重构后的信道 信息;
    确定每一组过采样系数下的重构后的信道信息与每一组过采样系数下的所述信道信息之间的差值;
    确定最小差值所对应的过采样系数,为所述最优过采样索引信息。
  8. 根据权利要求7所述的方法,其特征在于,所述稀疏矩阵为
    Figure PCTCN2018104178-appb-100009
    其中,i是虚部的单位,j是第j个PMI,A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位,N FB是反馈样点个数,N FB是正整数。
  9. 根据权利要求8所述的方法,其特征在于,前N FB/2个PMI与后N FB/2个PMI相同。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,在终端设备的天线为至少两个收端时,根据所述配置系数和所述导频信息,获取信道信息,包括:
    根据所述配置系数和所述导频信息,获取每一个收端的收端信道信息;
    根据所有收端的收端信道信息构成信道矩阵;
    对所述信道矩阵与所述信道矩阵的伴随矩阵的乘积进行奇异值分解,得到至少两个最大特征向量;
    确定每一个所述最大特征向量,为每一个所述信道信息;
    对每一个所述信道信息,执行根据预设的码本,构造正交变换基矩阵的步骤。
  11. 一种信道信息处理方法,其特征在于,包括:
    接收终端设备发送的码本的至少一个预编码矩阵指示信息PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;
    根据所述至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、以及所述至少一个PMI中的每一个PMI的加权稀疏的相位,确定稀疏矩阵;
    根据所述最优过采样索引信息,确定正交变换基矩阵;
    根据所述稀疏矩阵和所述正交变换基矩阵,确定信道信息。
  12. 根据权利要求11所述的方法,其特征在于,在所述接收终端设备发送的码本的至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息之前,还包括:
    向所述终端设备发送配置系数和导频信息。
  13. 根据权利要求12所述的方法,其特征在于,所述配置参数包括以下的至少一种:
    网络设备的端口数、所述网络设备的水平端口数、所述网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述码本为:
    Figure PCTCN2018104178-appb-100010
    其中,
    Figure PCTCN2018104178-appb-100011
    为长度为2N HN VN S的一维行向量,所述一维行向量中的最后N HN VN S个样点值为0;
    Figure PCTCN2018104178-appb-100012
    或者,
    Figure PCTCN2018104178-appb-100013
    i是虚部的单位,π是圆周率,n=[0,1,…N-1];q=[0,1,…,(O m-1)];O m是过采样倍数,n、O m为正整数;N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H,O m的取值为O H;N的取值为N V时,q的取值为q V,O m的取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S
    N H是网络设备的水平端口数、N V是所述网络设备的垂直端口数、N S是时频变换采样点个数,O H是所述网络设备的水平端口过采样倍数,O V是所述网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
  15. 根据权利要求14所述的方法,其特征在于,所述正交变换基矩阵为
    Figure PCTCN2018104178-appb-100014
    其中,D N,q=R N,q×D N′,D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。
  16. 根据权利要求15所述的方法,其特征在于,D N′=[d 1 d 2…d n…d N-1],其中,
    Figure PCTCN2018104178-appb-100015
    或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
    Figure PCTCN2018104178-appb-100016
    Figure PCTCN2018104178-appb-100017
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述稀疏矩阵为
    Figure PCTCN2018104178-appb-100018
    其中,i是虚部的单位,j是第j个PMI,A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位,N FB是反馈样点个数,N FB是正整数。
  18. 根据权利要求17所述的方法,其特征在于,前N FB/2个PMI与后N FB/2个PMI相同。
  19. 一种终端设备侧的信道信息处理装置,其特征在于,包括:
    接收模块,用于接收网络设备发送的配置系数和导频信息;
    处理模块,用于根据所述配置系数和所述导频信息,获取信道信息;
    所述处理模块,还用于根据预设的码本,构造正交变换基矩阵,其中,所述码本根据所述信道信息的频率信息而确定;
    所述处理模块,还用于根据所述正交变换基矩阵对所述信道信息进行正交变换,得到码本的至少一个预编码矩阵指示信息PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;
    发送模块,用于将码本的至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息,发送给所述网络设备。
  20. 根据权利要求19所述的装置,其特征在于,所述处理模块,具体用于:
    在根据所述配置系数和所述导频信息,获取信道信息之后,将所述信道信息进行降维处理,得到降维后的信道信息,其中,所述降维后的信道信息中的样本点小于所述信道信息中的样本点;
    所述处理模块,还具体用于:
    根据所述正交变换基矩阵对所述降维后的信道信息进行正交变换。
  21. 根据权利要求19或20所述的装置,其特征在于,所述配置参数包括以下的至少一种:
    所述网络设备的端口数、所述网络设备的水平端口数、所述网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
  22. 根据权利要求19或20所述的装置,其特征在于,所述码本为:
    Figure PCTCN2018104178-appb-100019
    其中,
    Figure PCTCN2018104178-appb-100020
    为长度为2N HN VN S的一维行向量,所述一维行向量中的最后N HN VN S个样点值为0;
    Figure PCTCN2018104178-appb-100021
    或者,
    Figure PCTCN2018104178-appb-100022
    i是虚部的单位,π是圆周率,n=[0,1,…N-1];q=[0,1,…,(O m-1)];O m是过采样倍数,n、O m为正整数;N的取值为N H、或者N的取值为N V,或者N的取值为N S;N的取值为N H时,q的取值为q H,O m的取值为O H;N的取值为N V时,q的取值为q V,O m的取值为O V;N的取值为N S时,q的取值为q s,O m的取值为O S
    N H是所述网络设备的水平端口数、N V是所述网络设备的垂直端口数、N S是时频变换采样点个数,O H是所述网络设备的水平端口过采样倍数,O V是所述网络设备的垂直端口过采样倍数,O S是时频采样维过采样倍数;j、q H、q V、q s、N H、N V、N S、O H、O V、O S为正整数。
  23. 根据权利要求22所述的装置,其特征在于,所述正交变换基矩阵为
    Figure PCTCN2018104178-appb-100023
    其中,D N,q=R N,q×D N′,D N′为预设的N×N的正交基矩阵,R N,q为旋转因子。
  24. 根据权利要求23所述的装置,其特征在于,D N′=[d 1 d 2…d n…d N-1],其中,
    Figure PCTCN2018104178-appb-100024
    或者,D N′=[d′ 1 d′ 2…d′ n…d′ N-1],其中,
    Figure PCTCN2018104178-appb-100025
    Figure PCTCN2018104178-appb-100026
  25. 根据权利要求19-24任一项所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述正交变换基矩阵对所述信道信息进行正交变换,得到稀疏矩阵,其中,所述稀疏矩阵中具有至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、以及所述至少一个PMI中的每一个PMI的加权稀疏的相位;
    根据稀疏矩阵和所述正交变换基矩阵,得到每一组过采样系数下的重构后的信道信息;
    确定每一组过采样系数下的重构后的信道信息与每一组过采样系数下的所述信道信息之间的差值;
    确定最小差值所对应的过采样系数,为所述最优过采样索引信息。
  26. 根据权利要求25所述的装置,其特征在于,所述稀疏矩阵为
    Figure PCTCN2018104178-appb-100027
    其中,i是虚部的单位,j是第j个PMI,A j是第j个PMI的加权稀疏的幅值,P j是第j个PMI的加权稀疏的相位,N FB是反馈样点个数,N FB是正整数。
  27. 根据权利要求19-26任一项所述的装置,其特征在于,在终端设备的天线为至少两个收端时,所述处理模块,具体用于:
    根据所述配置系数和所述导频信息,获取每一个收端的收端信道信息;
    根据所有收端的收端信道信息构成信道矩阵;
    对所述信道矩阵与所述信道矩阵的伴随矩阵的乘积进行奇异值分解,得到至少两个最大特征向量;
    确定每一个所述最大特征向量,为每一个所述信道信息;
    对每一个所述信道信息,执行根据预设的码本,构造正交变换基矩阵的步骤。
  28. 一种网络设备侧的信道信息处理装置,其特征在于,包括:
    接收模块,用于接收终端设备发送的码本的至少一个预编码矩阵指示信息PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、所述至少一个PMI中的每一个PMI的加权稀疏的相位、以及最优过采样索引信息;
    处理模块,用于根据所述至少一个PMI、所述至少一个PMI中的每一个PMI的加权稀疏的幅值、以及所述至少一个PMI中的每一个PMI的加权稀疏的相位,确定稀疏矩阵;
    所述处理模块,还用于根据所述最优过采样索引信息,确定正交变换基矩阵;
    所述处理模块,还用于根据所述稀疏矩阵和所述正交变换基矩阵,确定信道信息。
  29. 根据权利要求28所述的装置,其特征在于,所述装置,还包括:
    发送模块,用于向所述终端设备发送配置系数和导频信息。
  30. 根据权利要求29所述的装置,其特征在于,所述配置参数包括以下的至少一种:
    网络设备的端口数、所述网络设备的水平端口数、所述网络设备的垂直端口数、时频变换采样点个数、水平端口过采样倍数、垂直端口过采样倍数、时频采样维过采样倍数、反馈样点个数。
PCT/CN2018/104178 2018-09-05 2018-09-05 信道信息处理方法和装置 WO2020047774A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104178 WO2020047774A1 (zh) 2018-09-05 2018-09-05 信道信息处理方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104178 WO2020047774A1 (zh) 2018-09-05 2018-09-05 信道信息处理方法和装置

Publications (1)

Publication Number Publication Date
WO2020047774A1 true WO2020047774A1 (zh) 2020-03-12

Family

ID=69722831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104178 WO2020047774A1 (zh) 2018-09-05 2018-09-05 信道信息处理方法和装置

Country Status (1)

Country Link
WO (1) WO2020047774A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023016508A1 (zh) * 2021-08-11 2023-02-16 华为技术有限公司 一种信道信息反馈、恢复方法及装置
WO2023236803A1 (zh) * 2022-06-10 2023-12-14 华为技术有限公司 信道信息的传输方法、通信装置及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160810A (zh) * 2015-04-13 2016-11-23 北京信威通信技术股份有限公司 一种二维多输入多输出系统的预编码方法
CN106559121A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种多天线信道测量方法和装置
CN107204794A (zh) * 2016-03-18 2017-09-26 电信科学技术研究院 一种csi反馈方法、预编码方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160810A (zh) * 2015-04-13 2016-11-23 北京信威通信技术股份有限公司 一种二维多输入多输出系统的预编码方法
CN106559121A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种多天线信道测量方法和装置
CN107204794A (zh) * 2016-03-18 2017-09-26 电信科学技术研究院 一种csi反馈方法、预编码方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI.: "Design and performance evaluation for advanced CSI feedback", 3GPP TSG RAN WG1 MEETING #86BIS, R1-1609921, 14 October 2016 (2016-10-14), XP051149947 *
HUAWEI: "Category 1 codebook design for Type II codebook", 3GPP TSG RAN WG1 MEETING #89, R1- 1708139, 19 May 2017 (2017-05-19), XP051262274 *
HUAWEI: "Design for Type I Feedback", 3GPP TSG RAN WG1 NR AD HOC MEETING, R1-1700414, 20 January 2017 (2017-01-20), XP051202535 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023016508A1 (zh) * 2021-08-11 2023-02-16 华为技术有限公司 一种信道信息反馈、恢复方法及装置
WO2023236803A1 (zh) * 2022-06-10 2023-12-14 华为技术有限公司 信道信息的传输方法、通信装置及通信设备

Similar Documents

Publication Publication Date Title
CN107888246B (zh) 基于码本的信道状态信息反馈方法及设备
JP7450625B2 (ja) 無線通信ネットワークにおけるフィードバック報告のための方法および装置
US11811431B2 (en) Enhanced frequency compression for overhead reduction for CSI reporting and usage
US20220224391A1 (en) Methods and Apparatuses for CSI Reporting in a Wirless CFCommunication System
TWI782367B (zh) 一種基於通道互易性的預編碼矩陣配置方法、網路側裝置、終端、存儲介質
WO2019047827A9 (zh) 一种指示及确定预编码矩阵的方法和设备
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
KR20180132865A (ko) 채널 정보 전송 방법, 데이터 전송 방법, 및 장치
US11923940B2 (en) Channel state information reporting method and apparatus
WO2018228599A1 (zh) 通信方法、通信装置和系统
JP6556244B2 (ja) コードブック確定方法及び装置
US20210337565A1 (en) Parameter configuration method and communications apparatus
WO2022021443A1 (zh) 一种预编码方法及装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
CN111602378B (zh) 信息获取方法、装置、设备和存储介质
CN115053465B (zh) 一种信息传输方法及装置
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
WO2019157757A1 (zh) 通信方法、通信装置和系统
WO2015054879A1 (zh) 信道状态信息的测量和反馈方法、终端及基站
WO2020047774A1 (zh) 信道信息处理方法和装置
JP7371270B2 (ja) チャネル状態情報フィードバック方法及び通信装置
WO2023160247A1 (zh) 下行传输的方法及装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020164387A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2023174134A1 (zh) 信道状态信息传输方法、通信装置以及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932391

Country of ref document: EP

Kind code of ref document: A1