WO2017193961A1 - 一种信道信息发送方法、数据发送方法和设备 - Google Patents

一种信道信息发送方法、数据发送方法和设备 Download PDF

Info

Publication number
WO2017193961A1
WO2017193961A1 PCT/CN2017/083978 CN2017083978W WO2017193961A1 WO 2017193961 A1 WO2017193961 A1 WO 2017193961A1 CN 2017083978 W CN2017083978 W CN 2017083978W WO 2017193961 A1 WO2017193961 A1 WO 2017193961A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel information
factor
reference signal
vectors
ports
Prior art date
Application number
PCT/CN2017/083978
Other languages
English (en)
French (fr)
Inventor
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112018072357-6A priority Critical patent/BR112018072357A2/pt
Priority to CN201780029430.8A priority patent/CN109417441B/zh
Priority to JP2018554576A priority patent/JP6687290B2/ja
Priority to EP22211295.5A priority patent/EP4213425A1/en
Priority to CA3023971A priority patent/CA3023971C/en
Priority to KR1020187032702A priority patent/KR102156208B1/ko
Priority to EP17795579.6A priority patent/EP3447952B1/en
Priority to ES17795579T priority patent/ES2954669T3/es
Publication of WO2017193961A1 publication Critical patent/WO2017193961A1/zh
Priority to US16/188,911 priority patent/US10727916B2/en
Priority to US16/940,201 priority patent/US11251845B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a channel information sending method, a data transmitting method, and a device.
  • a user equipment performs channel estimation according to a reference signal sent by a base station, and then determines channel status information. And feedback, the channel state information includes a Rank Indicator (RI), a Precoding Matrix Indicator (PMI), and a Channel Quality Indicator (CQI).
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • the PMI is an index to the precoding matrix.
  • the UE feeds back the PMI to the base station.
  • the base station determines a corresponding precoding matrix according to the received PMI, and performs precoding processing according to the determined precoding matrix to improve downlink communication quality.
  • a way to feed back PMI in an LTE FDD system is to feed back the precoding matrix W according to the structure of the dual codebook:
  • B0, b2, ..., bM-1 are vectors included in a W1 code word corresponding to the precoding matrix W, which may be a DFT vector, and M is an integer not less than 2.
  • the vector bi is a column vector that is a number of ports that are long for the base station to transmit antennas.
  • the value of M may be a preset value or a value pre-configured by the base station.
  • W1 represents a set of M vectors
  • W2 contains column selection information and co-phase information.
  • the column selection information e k is a unit vector of M ⁇ 1, and only the kth element is 1, and the values of other elements are 0; e i is the same.
  • Co-phase information The phase difference between the two polarization directions of the transmitting antenna of the second device 102 is in the range of 0 to 2 ⁇ .
  • W2 can only select one vector from the M vectors b0, b2, ..., bM-1, and the feedback to the precoding matrix W is not accurate enough.
  • a channel information sending method, a data sending method, and a device are provided to improve the feedback precision of the channel information related to the precoding matrix, thereby improving the adaptive performance of the downlink.
  • an embodiment of the present invention provides a method for sending channel information, including:
  • the second device sends a reference signal to the first device, where the reference signal is sent by the S antenna ports, the S antenna ports belong to the H reference signal resource port group, and H is an integer greater than or equal to 1; After the reference signal is received, the received reference signal is measured, and the first channel information and the second channel information are obtained and sent to the second device. The second device generates the pre-form according to the received first channel information and the second channel information. Encoding the matrix and transmitting data to the first device according to the generated precoding matrix.
  • the first channel information includes identification information of M first vectors, where M is an integer not less than 2, and the second channel information includes N first vectors in the M first vectors. And performing information of the weighted combining weighted combining factor, N being a positive integer not greater than M; the weighted combining factor comprising: a first factor and/or a second factor; the first factor being an amplitude factor, the second factor Is the phase factor or time delay factor.
  • the dimension of the first vector is the number of antenna ports in each reference signal resource port group, or the dimension of the first vector is half of the number of antenna ports in each reference signal resource port group.
  • the first device performs channel estimation according to the received reference signal, and feeds back, to the second device, second channel information, which is used for performing weighted combining of the M first vectors.
  • the second device may perform weighted combining on the M first vectors according to the weighted combining factor indicated by the received second channel information, instead of selecting one feature vector from multiple feature vectors.
  • the generated precoding matrix is more accurate, improves the link adaptation capability of the second device for data transmission, and improves system performance.
  • the weighted combining factor comprises zero elements, which enables selection of the N first vectors.
  • the first device further measures the reference signal, obtains third channel information, and sends the third channel information to the second device.
  • the third channel information is used to indicate a phase difference between two sets of antenna ports of the reference signal, and the second device generates the precoding matrix according to the first channel information, the second channel information, and the third channel information.
  • the first device further measures the reference signal, obtains fourth channel information, and sends the fourth channel information to the second device.
  • the fourth channel information includes selection information for selecting the N first vectors from the M first vectors;
  • the second device generates the precoding matrix according to the first channel information, the second channel information, and the fourth channel information.
  • the precoding matrix may also be generated according to the third channel information.
  • the second channel information includes only information about a weighted combining factor that performs weighted combining on the N first vectors indicated by the fourth channel information.
  • the selection of the N first vectors can be implemented, thereby reducing the amount of feedback information of the second channel information.
  • the first device further measures the reference signal to obtain seventh channel information, and sends the seventh channel information to the second device, where the seventh channel information includes The identification information of the Y reference signal resource port groups is selected in the H reference signal resource port groups; the second device generates a precoding matrix according to the first channel information, the second channel information, and the seventh channel information.
  • the precoding matrix may also be generated according to the third channel information and/or the fourth channel information.
  • the seventh channel information is not fed back in the same subframe as other channel information.
  • the first channel information includes: a group number of each of the X vector groups formed by the M first vectors in the K vector groups, where the K vector groups All first vectors constitute a complete set of the first vector, the K being a positive integer and X being a positive integer not greater than K.
  • the M first vectors are measured according to the Y reference signal resource port groups selected by the H reference signal resource port groups, and Y is a positive integer.
  • the vector group, the at least two vector groups correspond to a reference signal resource port group of the Y reference signal resource port groups, X>Y.
  • multiple strong beam groups can be selected, so that the precoding matrix can be more adapted to the actual channel conditions, and the link adaptation performance is improved.
  • the first device sends information indicating a value of the X to the second device; or the first device receives information indicating a value of the X from the second device. .
  • the first vector included in different vector groups has a repetition or a non-duplication
  • the number of the first vectors included in different vector groups is the same or different.
  • the second channel information corresponding to different vector groups is the same, and the first device only feeds back the same second channel information for different vector groups;
  • the second channel information corresponding to the different vector groups is different, and the first device separately feeds back the second channel information for different vector groups.
  • each channel information may be fed back in a flexible feedback manner to improve channel information feedback accuracy and minimize information feedback.
  • the first channel information is broadband feedback
  • the second channel information is subband feedback
  • the first channel information and the second channel information are subband feedback
  • the first channel information is The feedback bandwidth is larger than the feedback bandwidth of the second channel information
  • the feedback period of the first channel information is longer than the feedback period of the second channel information
  • the first channel information is broadband feedback
  • the second channel information and the third channel information are subband feedback
  • the first channel information, the second channel information, and the third channel information are subband feedback
  • the feedback bandwidth of the first channel information is larger than the feedback bandwidth of the second channel information and the third channel information
  • the feedback period of the first channel information is longer than the feedback period of the second channel information and the third channel information.
  • the first channel information and the second channel information are broadband feedback
  • the third channel information is subband feedback
  • the feedback bandwidth of the first channel information and the second channel information are both The feedback bandwidth of the third channel information is large
  • the first channel information and the second channel information are long-term feedback, and the third channel information is short-term feedback;
  • the feedback period of the first channel information and the second channel information is longer than the feedback period of the third channel information.
  • the first channel information is broadband feedback
  • the second channel information, the third channel information, and the fourth channel information are all subband feedback
  • the feedback bandwidth of the first channel information is greater than a feedback bandwidth of the second channel information, the third channel information, and the fourth channel information
  • the feedback period of the first channel information is longer than the feedback period of the second channel information, the third channel information, and the fourth channel information.
  • the first channel information and the second channel information are both broadband feedback; the third channel information and the fourth channel information are subband feedback; or the first channel information and the The feedback bandwidth of the second channel information is greater than the feedback bandwidth of the third channel information and the fourth channel information;
  • the feedback period of the first channel information and the second channel information is longer than the feedback period of the third channel information and the fourth channel information.
  • the first channel information, the second channel information, and the fourth channel information are all broadband feedback; the third channel information is subband feedback; or the first channel information, the The feedback bandwidth of the second channel information and the fourth channel information is greater than the feedback bandwidth of the third channel information;
  • the feedback period of the first channel information, the second channel information, and the fourth channel information is longer than a feedback period of the third channel information.
  • the first channel information and the fourth channel information are both broadband feedback; the second channel information and the third channel information are subband feedback; or the first channel information, The feedback bandwidth of the fourth channel information is greater than the feedback bandwidth of the second channel information and the third channel information;
  • the feedback period of the first channel information and the fourth channel information is longer than the feedback period of the second channel information and the third channel information.
  • the first device measures the reference signal to obtain fifth channel information and sixth channel information; and the first device sends the fifth channel information and the sixth channel information to the Said second device;
  • the fifth channel information includes information indicating a number of data spatial multiplexing of the second device to the first device, and the sixth channel information includes Information about the channel quality of the channel of the first device;
  • the second device further generates a precoding matrix according to the fifth channel information and the sixth channel information;
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information and the sixth channel information are fed back in a second subframe in a second period.
  • the first period is not less than the second period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe, the sixth channel
  • the information is fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe, the sixth channel
  • the information is fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the fifth channel information is fed back in a first period in a first subframe, the first channel information is fed back in a second subframe in a second period, and the second channel information is in a third subframe.
  • the sixth letter is fed back in the third cycle
  • the track information is fed back in a fourth period in a fourth period; the first period is not less than the second period, the second period is not less than the third period, and the third period is not less than the The fourth cycle.
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information and the third channel information are fed back in a second subframe in a second period.
  • the sixth channel information is fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information, the third channel information, and the sixth channel information are in a second
  • the subframe is fed back in a second period; the first period is not less than the second period; or
  • the first channel information, the second channel information, and the fifth channel information are fed back in a first period in a first subframe, and the third channel information and the sixth channel information are in a second
  • the subframe is fed back in a second period; the first period is not less than the second period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe; the third channel The information and the sixth channel information are fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe, the third channel The information is fed back in a third period in a third subframe, the sixth channel information is fed back in a fourth period in a fourth subframe; the first period is not less than the second period, the second The period is not less than the third period, and the third period is not less than the fourth period; or
  • the fifth channel information is fed back in a first period in a first subframe, the first channel information is fed back in a second subframe in a second period, and the second channel information is in a third subframe.
  • the three-cycle feedback is that the third channel information is fed back in a fourth period in a fourth subframe, and the sixth channel information is fed back in a fifth period in a fifth subframe; the first period is not less than In the second period, the second period is not less than the third period, the third period is not less than the fourth period, and the fourth period is not less than the fifth period.
  • the first channel information, the fourth channel information, and the fifth channel information are fed back in a first period in a first subframe, and the second channel information and the third channel information are in a second
  • the subframe is fed back in a second period
  • the sixth channel information is fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than The third cycle; or
  • the first channel information, the fourth channel information, and the fifth channel information are fed back in a first period in a first subframe, the second channel information and the third channel information, and the The six channel information is fed back in the second period in the second subframe; the first period is not less than the second period; or
  • the fifth channel information is fed back in a first period in a first subframe, and the first channel information and the fourth channel information are fed back in a second period in a second subframe, the second channel
  • the information and the third channel information are fed back in a third period in a third subframe, and the sixth channel information is fed back in a fourth period in a fourth subframe;
  • the first period is not less than the first period a second period, the second period is not less than the third period, and the third period is not less than the fourth period; or
  • the fifth channel information is fed back in a first period in a first subframe, and the first channel information and the fourth channel information are fed back in a second period in a second subframe, the second channel
  • the information, the third channel information, and the fourth channel information are fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the Third cycle; or
  • the fifth channel information, the first channel information, the second channel information, and the fourth channel information are fed back in a first period in a first subframe, the third channel information and the first The six channel information is fed back in the second period in the second subframe; the first period is not less than the second period; or
  • the fifth channel information, the first channel information, and the fourth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe.
  • the third channel information and the sixth channel information are fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than The third cycle; or
  • the fifth channel information, the first channel information, and the fourth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe.
  • the third channel information is fed back in a third period in a third subframe, and the sixth channel information is fed back in a fourth period in a fourth subframe; the first period is not less than the first period a second period, the second period is not less than the third period, and the third period is not less than the fourth period; or
  • the fifth channel information is fed back in a first period in a first subframe, and the first channel information and the fourth channel information are fed back in a second period in a second subframe, the second channel
  • the information is fed back in a third period in a third subframe, the third channel information is fed back in a fourth period in a fourth subframe, and the sixth channel information is fed back in a fifth period in a fifth subframe.
  • the first period is not less than the second period
  • the second period is not less than the third period
  • the third period is not less than the fourth period
  • the fourth period is not less than The fifth cycle.
  • the first channel information, the second channel information, and the third channel information form the precoding matrix with a rank of 1 based on:
  • B i is the M first vectors
  • c k is the weighted combining factor
  • c k,0 is used to weight b i,0
  • c k,m is used to perform b i,m
  • Weighting, c k, M-1 is used to weight b i, M-1
  • m is an integer, and 0 ⁇ m ⁇ M
  • is a normalization factor.
  • B i is a vector group of group number i in the K vector groups
  • All of the first vectors of the K vector groups constitute a complete set of the first vector, and the K is a positive integer;
  • the first channel information includes: information for indicating i.
  • X vector groups The group numbers in the K vector groups are sequentially a vector group of i 0 to i X-1 ; x is an integer, and 0 ⁇ x ⁇ X-1; X is a positive integer;
  • All of the first vectors of the K vector groups constitute a complete set of the first vector, and K is a positive integer;
  • the first channel information includes information for indicating i 0 to i X-1 , respectively.
  • the first channel information, the second channel information, the third channel information, and the fourth channel information are configured to form the precoding matrix with rank 1 according to the following manner:
  • B i is the M first vectors
  • c k is a weighted combining factor for weighting and combining the N first vectors
  • c k,0 is used for Weighting
  • c k,m for pairing Weighting
  • c k, N-1 for pairing Weighting
  • m is an integer, and 0 ⁇ m ⁇ M-1
  • the number of lines is M
  • the fourth channel information is information for indicating the m 0 to m N-1 ;
  • is a normalization factor.
  • the first device sends information indicating a value of the N to the second device; or the first device receives, from the second device, a value indicating the N information.
  • the fourth channel information is used to indicate or
  • the fourth channel information includes M bits, and among the M bits, m 0 to m N-1 are 1, and the remaining bits are 0.
  • the first channel information, the second channel information, and the third channel information are configured to form the precoding matrix with rank 2 according to the following manner:
  • R, S is a positive integer, R ⁇ M, and S ⁇ M, B i and B j together constitute the M first vectors;
  • c k and c y are the weighted combining factors, wherein c k,0 is used to weight b i,0 , c k,m is used to weight b i,m , c k,R-1 is used Weighting b i, R-1 , c y, 0 is used to weight b j, 0 , c y, n is used to weight b j, n , c y, S-1 is used for b j, S-1 is weighted; m is an integer, and 0 ⁇ m ⁇ R-1, n is an integer, and 0 ⁇ n ⁇ S-1; a phase difference between two sets of antenna ports of the reference signal indicated by the third channel information;
  • is a normalization factor.
  • B i and B j are the same, c k and c m are different; or
  • B i and B j are different, c k and c m are different; or
  • B i and B j are the same, and c k and c m are the same.
  • X vector groups The group numbers in the K vector groups are sequentially a vector group of i 0 to i X-1 ; x is an integer, and 0 ⁇ x ⁇ X-1; X is a positive integer;
  • All of the first vectors of the K vector groups constitute a complete set of the first vector, and K is a positive integer;
  • the first channel information includes information for indicating i 0 to i X-1 , respectively.
  • the second channel information is a time delay factor
  • the form of the precoding matrix formed by the first channel information and the second channel information in the time domain is as follows:
  • ⁇ m is the time delay factor corresponding to the mth vector of the N first vectors.
  • Each of the first vectors in B i is obtained from a second vector in the second set of vectors and a third vector in the third set of vectors from the Crohnenko product:
  • the first channel information includes: first subchannel information and second subchannel information
  • the first subchannel information is used to indicate the p
  • the second subchannel information is used to indicate the t
  • N 1 is the number of antenna ports of the first dimension in the antenna array
  • Q 1 is a factor for oversampling the DFT vector of the codeword set constituting the first dimension antenna
  • S 1 is a positive integer
  • N 2 is the number of antenna ports in the second dimension of the antenna array
  • Q 2 is a factor that oversamples the DFT vector constituting the codeword set of the second-dimensional antenna
  • S 2 is an integer
  • the number of groups of the second vector group is greater than or equal to 2, and the number of groups of the third vector group is equal to 1; or
  • the number of groups of the third vector group is greater than or equal to 2, and the number of groups of the second vector group is equal to 1; or
  • the number of groups of the third vector group is equal to 1, and the number of groups of the second vector group is equal to 1.
  • the second vector and the third vector are DFT vectors
  • the ensemble of the second vector and the ensemble of the third vector including the number of vectors are configured independently of each other.
  • the second channel information includes third subchannel information, where the third subchannel information is used to indicate the first factor
  • the third subchannel information is not quantized.
  • the third subchannel information is subjected to first quantization, and the quantization order of the first quantization is not greater than a preset first quantization step threshold.
  • the second channel information includes fourth subchannel information, where the fourth subchannel information is used to indicate the second factor;
  • the fourth subchannel information is not quantized.
  • the fourth subchannel information is subjected to second quantization, and the quantization order of the second quantization is not less than a preset second quantization step threshold.
  • an embodiment of the present invention provides a first device, where the first device has a function of implementing behavior of a first device in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the first device includes a processor and a transmitter and a receiver, and the processor is configured to support the first device to perform a corresponding function in the foregoing method.
  • the transmitter is configured to support the first device to send the message or data involved in the foregoing method to the second device.
  • the receiver is configured to receive, from the second device, a message or data involved in the foregoing method.
  • the first device can also include a memory for coupling with a processor that retains program instructions and data necessary for the first device.
  • an embodiment of the present invention provides a second device, where the second device has a function of implementing behavior of a second device in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the second device includes a transmitter, a receiver, and a processor.
  • the receiver is configured to support the second device to receive the message or data involved in the foregoing method from the first device, where the transmitter is configured to support the second device to send the message involved in the foregoing method to the first device. Or data; the processor configured to support the first device to perform a corresponding function in the above method.
  • the second device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the second device.
  • an embodiment of the present invention provides a wireless communication system, where the wireless communication system includes the first device and the second device according to any one of the first to third aspects.
  • the embodiment of the present invention provides a computer storage medium, configured to store computer software instructions for use in the first device of any of the first to fourth aspects, Aspect of the program designed.
  • an embodiment of the present invention provides a computer storage medium, configured to store computer software instructions for use in a second device according to any of the first to fourth aspects, Aspect of the program designed.
  • an embodiment of the present invention provides a method for sending channel information, including:
  • the second device sends a reference signal to the first device, where the first device receives the reference signal sent by the second device, and after receiving the reference signal, the first device measures the received reference signal, obtains and sends the reference signal to the second device.
  • First channel information and second channel information the second device generates a precoding matrix according to the received first channel information and the second channel information, and performs data transmission to the first device according to the generated precoding matrix.
  • the first channel information includes identifier information of N antenna ports of the M antenna ports of the reference signal, where M is an integer not less than 2, and N is a positive integer not greater than M;
  • the channel information includes information of a weighted combining factor that performs weighted combining on the N antenna ports; the weighted combining factor includes: a first factor and/or a second factor; the first factor is an amplitude factor, the first
  • the two factors are phase factors or time delay factors.
  • the first device performs channel estimation according to the received reference signal, and feeds back, to the second device, second channel information for weighting and combining the weighted combining factors of the M antenna ports of the reference signal.
  • the second device may perform weighted combining on the M antenna ports according to the weighted combining factor indicated by the received second channel information, and may also generate a more accurate precoding matrix, which also improves the number.
  • the link between the two devices for data transmission is adaptive The ability to improve system performance.
  • the weighted combining factor includes zero elements, which enables selection of N antenna ports.
  • the first device performs measurement on the reference signal to obtain third channel information, and sends the third channel information to the second device.
  • the third channel information includes: the M devices.
  • the phase difference between the two sets of antenna ports that the antenna port is divided into.
  • the second device generates the precoding matrix according to the first channel information, the second channel information, and the third channel information.
  • each channel information may be fed back in a flexible feedback manner to improve channel information feedback accuracy and minimize information feedback.
  • the first channel information is broadband feedback
  • the second channel information is subband feedback
  • the first channel information and the second channel information are subband feedback
  • the first channel information is The feedback bandwidth is larger than the feedback bandwidth of the second channel information
  • the feedback period of the first channel information is longer than the feedback period of the second channel information
  • the first channel information is broadband feedback
  • the second channel information and the third channel information are subband feedback
  • the first channel information, the second channel information, and the third channel information are subband feedback
  • the feedback bandwidth of the first channel information is larger than the feedback bandwidth of the second channel information and the third channel information
  • the feedback period of the first channel information is longer than the feedback period of the second channel information and the third channel information.
  • the first channel information and the second channel information are broadband feedback
  • the third channel information is subband feedback
  • the feedback bandwidth of the first channel information and the second channel information are both The feedback bandwidth of the third channel information is large
  • the first channel information and the second channel information are long-term feedback, and the third channel information is short-term feedback; or the feedback periods of the first channel information and the second channel information are both feedbacks of the third channel information.
  • the cycle is long.
  • the first device measures the reference signal to obtain fifth channel information and sixth channel information; and the first device sends the fifth channel information and the sixth channel information to the Said second device;
  • the fifth channel information includes information indicating a number of data spatial multiplexing of the second device to the first device, and the sixth channel information includes Information about the channel quality of the channel of the first device;
  • the second device further generates a precoding matrix according to the fifth channel information and the sixth channel information;
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information and the sixth channel information are fed back in a second subframe in a second period.
  • the first period is not less than the second period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe, the sixth channel
  • the information is fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe, the sixth channel
  • the information is fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the fifth channel information is fed back in a first period in a first subframe
  • the first channel information is fed back in a second subframe in a second period
  • the second channel information is in a third subframe.
  • the sixth channel information is fed back in a fourth period in a fourth period, and the first period is not less than the second period, the second period
  • the period is not less than the third period, and the third period is not less than the fourth period.
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information and the third channel information are fed back in a second subframe in a second period.
  • the sixth channel information is fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information, the third channel information, and the sixth channel information are in a second
  • the subframe is fed back in a second period; the first period is not less than the second period; or
  • the first channel information, the second channel information, and the fifth channel information are fed back in a first period in a first subframe, and the third channel information and the sixth channel information are in a second
  • the subframe is fed back in a second period; the first period is not less than the second period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe; the third channel The information and the sixth channel information are fed back in a third period in a third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe, the third channel The information is fed back in a third period in a third subframe, the sixth channel information is fed back in a fourth period in a fourth subframe; the first period is not less than the second period, the second The period is not less than the third period, and the third period is not less than the fourth period; or
  • the fifth channel information is fed back in a first period in a first subframe, the first channel information is fed back in a second subframe in a second period, and the second channel information is in a third subframe.
  • the three-cycle feedback is that the third channel information is fed back in a fourth period in a fourth subframe, and the sixth channel information is fed back in a fifth period in a fifth subframe; the first period is not less than In the second period, the second period is not less than the third period, the third period is not less than the fourth period, and the fourth period is not less than the fifth period.
  • the first channel information, the second channel information, and the third channel information are configured to form the precoding matrix with a rank of 1 according to the following manner:
  • c k is a weighted combining factor for weighting and combining the N/2 ports, where c k,0 is used to weight the m 0 and m 0 +N/2 ports, c k,m is used to weight the m mth and m m +N/2 ports, and c k,N-1 is used for the m n N-1 and the m n-1 +N/2 ports Weighted; m is an integer, and 0 ⁇ m ⁇ M-1; a phase difference between two sets of antenna ports of the reference signal indicated by the third channel information; The number of rows is M, and
  • the first device sends, to the second device, information indicating a value of the N;
  • the first device receives information from the second device indicating a value of the N.
  • the first channel information is used to indicate or
  • the first channel information includes M bits, and among the M bits, m 0 to m N-1 are 1, and the remaining bits are 0.
  • the first channel information, the second channel information, and the third channel information are configured to form the precoding matrix with rank 2 according to the following manner:
  • R, S are positive integers, R ⁇ M, and S ⁇ M,
  • c k and c y are the weighted combining factors, wherein c k,0 is used to weight the ith 0th and ith 0 +N/2 ports, and c k,m is used for the ith m and the ith m + N / 2 ports are weighted, c k, R - 1 is used to weight the i - R - 1 and i - R - 1 + N / 2 ports, c y, 0 is used for the j 0 0 and The j 0 + N/2 ports are weighted, c y, n are used to weight the j j nth and j n + N/2 ports, c y, S-1 is used for the j j -1 and The jth S-1 + N/2 ports are weighted; m is an integer, and 0 ⁇ m ⁇ R-1, n is an integer, and 0 ⁇ n ⁇ S-1; a phase difference between two sets of
  • E i and E j are the same, c k and c m are different; or
  • E i is different from E j , and c k and c m are the same; or
  • E i is different from E j , and c k and c m are different; or
  • E i is the same as E j
  • c k and c m are the same.
  • the second channel information is a time delay factor
  • the form of the precoding matrix formed by the first channel information and the second channel information in the time domain is as follows:
  • ⁇ m is the time delay factor corresponding to the mth vector of the N first vectors.
  • the second channel information includes first subchannel information, where the first subchannel information is used to indicate the first factor;
  • the first subchannel information is not quantized; or
  • the first subchannel information is subjected to first quantization, and the quantization order of the first quantization is not greater than a preset first quantization step threshold.
  • the second channel information includes second subchannel information, where the second subchannel information is used to indicate the second factor;
  • the second subchannel information is not quantized.
  • the second subchannel information is subjected to second quantization, and the quantization order of the first quantization is not less than a preset second quantization step threshold.
  • an embodiment of the present invention provides a first device, where the first device has a function of implementing behavior of a first device in the method provided by the seventh aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the first device includes a processor and a transmitter and a receiver, and the processor is configured to support the first device to perform a corresponding function in the method provided by the seventh aspect.
  • the transmitter is configured to support the first device to send the message or data involved in the foregoing method to the second device.
  • the receiver is configured to receive, from the second device, a message or data involved in the foregoing method.
  • the first device can also include a memory for coupling with a processor that retains program instructions and data necessary for the first device.
  • the embodiment of the present invention provides a second device, where the second device has a function of implementing the behavior of the second device in the method provided by the seventh aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the second device includes a transmitter, a receiver, and a processor.
  • the receiver is configured to support the second device to receive the message or data involved in the foregoing method from the first device, where the transmitter is configured to support the second device to send the message involved in the foregoing method to the first device. Or data; the processor configured to support the first device to perform a corresponding function in the above method.
  • the second device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the second device.
  • an embodiment of the present invention provides a wireless communication system, where the wireless communication system includes the first device and the second device according to any one of the seventh to ninth aspects.
  • the embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the first device of any of the seventh to tenth aspects, The program designed in the above aspects.
  • the embodiment of the present invention provides a computer storage medium, configured to store computer software instructions for use in the second device of any of the seventh to tenth aspects, including The program designed in the above aspects.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is an interaction diagram between a first device and a second device according to an embodiment of the present invention
  • 3 is a schematic diagram of a beam direction
  • FIG. 4 to FIG. 8 are schematic diagrams showing a process of performing beam selection and weight combining in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of dividing a system frequency band into a plurality of sub-bands
  • FIG. 10 is a schematic diagram of a channel information feedback manner according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a beam formed by an antenna in a polarization direction
  • FIG. 12 is a schematic diagram of a dual-polarized antenna, a beam generated by precoding
  • FIG. 13 is a schematic structural diagram of a first device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a second device according to an embodiment of the present invention.
  • the second device sends a reference signal to the first device, and the first device performs channel estimation according to the received reference signal, generates channel information, and feeds back to the second device, where the second device determines the pre-channel according to the received channel information. Encoding the matrix and transmitting data to the first device according to the determined precoding matrix.
  • the method is divided into the first scheme and the second scheme.
  • the reference signal sent by the second device is a beam-formed reference signal and a beam-formed reference signal
  • the first device performs channel estimation according to the received reference signal, and feeds back, to the second device, second channel information, which is used for performing weighted combining of the M first vectors, where the M first vectors may be pre-coded as described above.
  • the second device may perform weighted combining on the M first vectors according to the weighted combining factor indicated by the received second channel information, instead of selecting one vector from multiple vectors to generate
  • the precoding matrix is more accurate, which improves the link adaptation capability of the second device for data transmission and improves system performance.
  • the first device performs channel estimation according to the received reference signal, and feeds back to the second device, M antennas for the reference signal.
  • the port performs weighted combining of the second channel information of the weighted combining factor.
  • the second device may perform weighted combining on the M antenna ports according to the weighted combining factor indicated by the received second channel information, and may also generate a more accurate precoding matrix, which also improves the number.
  • the ability of the two devices to perform link adaptation for data transmission improves system performance.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention. As shown in FIG. 1, the wireless communication system includes a first device 101 and a second device 102.
  • the second device 102 sends a reference signal to the first device 101, and the first device 101 performs channel estimation according to the reference signal received from the second device 102, and transmits channel information for indicating the channel estimation result to the second device 102.
  • the second device 102 performs data transmission to the first device 101 according to the received channel information.
  • the above interaction process of the first device 101 and the second device 102 can be as shown in FIG. 2.
  • the first device 101 may be a network device, such as a base station, and the second device 102 may be a terminal device; or the first device 101 may be a terminal device, and the second device 102 may be a network device; or the first device 101 and The second device 102 is a terminal device; or the first device 101 and the second device 102 are both network devices.
  • a network device such as a base station
  • the second device 102 may be a terminal device
  • the first device 101 may be a terminal device
  • the second device 102 may be a network device
  • the first device 101 and The second device 102 is a terminal device
  • the first device 101 and the second device 102 are both network devices.
  • Channel estimation and feedback of channel information can be performed by using channel 1 or scheme 2 of the embodiment of the present invention to obtain more accurate channel estimation results and improve link adaptation performance.
  • duplex mode used for communication between the first device 101 and the second device 102, such as the FDD duplex mode described above, or the duplex mode of Time Division Duplexing (TDD),
  • TDD Time Division Duplexing
  • the communication system for communication between the first device 101 and the second device 102 may include, but is not limited to, Global System of Mobile communication (GSM), Code Division Multiple Access (CDMA) IS. -95, Code Division Multiple Access (CDMA) 2000, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), Time Division Duplexing-Long Term Evolution (TDD LTE), Frequency Division Duplexing-Long Term Evolution (FDD LTE), Long Term Evolution-Enhancement (Long Term Evolution) -Advanced, LTE-advanced), Personal Handy-phone System (PHS), Wireless Fidelity (WiFi) specified by the 802.11 series protocol, Worldwide Interoperability for Microwave Access (WiMAX) ), as well as various wireless communication systems that are evolving in the future.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchro
  • the foregoing terminal device may be a wireless terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, and a Remote Terminal.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the foregoing network device may include a base station, or a radio resource management device for controlling the base station, or a base station and a radio resource management device for controlling the base station; wherein the base station may be a macro station or a small station, such as a small cell (small cell)
  • the base station may also be a home base station, such as a Home NodeB (HNB), a Home eNodeB (HeNB), etc., and the base station may also include a relay node (relay) )Wait.
  • HNB Home NodeB
  • HeNB Home eNodeB
  • the foregoing network device may be an evolved Node B (eNodeB), and the terminal device may be a UE; for a TD-SCDMA system or a WCDMA system, the foregoing network
  • the device may include: a Node B (NodeB) and/or a Radio Network Controller (RNC), and the terminal device may be a UE; for the GSM system, the foregoing network device may include a Base Transceiver Station (BTS) And the base station controller (BSC), the terminal device may be a mobile station (MS); for the WiFi system, the foregoing network device may include: An access point (AP) and/or an access controller (AC), and the terminal device can be a station (STAtion, STA).
  • NodeB Node B
  • RNC Radio Network Controller
  • BTS Base Transceiver Station
  • BSC Base Station Controller
  • MS mobile station
  • the foregoing network device may include: An access point (AP) and/or an access controller (AC), and the terminal device can
  • scheme 1 and scheme 2 are respectively introduced.
  • the channel information sent by the first device 101 to the second device 102 is as shown in Table 1 below.
  • the M first vectors are M first vectors in the entire set of the first vector.
  • the M value may be preset, such as predefined in a communication standard that is commonly followed when the first device 101 and the second device 102 communicate, or may be notified by the first device 101 before transmitting the first channel information to the second device 102.
  • the second device 102, or the second device 102 notifies the first device 101 between transmitting the reference signals.
  • the ensemble of the first vector, each of the first vectors may represent a beam direction transmitted by the second device 102 to the first device 101.
  • the first device 101 notifies the second device 102 by transmitting the first channel information to the second device 102: which reference directions the first device 101 expects to receive from the beam direction; and by transmitting the second channel information to the second device 102, The second device 102 is notified to: the composite beam that the first device 101 desires to receive is a weighted combined adjustment amount of the amplitude and phase weights of the respective beam directions (each first vector) in the first channel information.
  • the first device 101 may measure the reference signal to obtain a channel estimation result, and determine whether the maximum received signal to noise ratio (SNR) or the maximum capacity can be achieved.
  • SNR received signal to noise ratio
  • the second device 102 needs to transmit data, and the second device 102 needs to adjust the amplitude and phase weighted combined adjustments in the respective beam directions of the transmitted data, and then pass the first channel information and the first The second channel information is notified to the second device 102.
  • the first channel information is used to identify b 0 , b 1 , b 2 , b 3 .
  • is the normalization factor.
  • the values of the amplitude factor and phase factor here are only examples.
  • the whole beam selection and weighted combining process can be as shown in FIG. 4.
  • the beams b 0 , b 1 , b 2 , b 3 are selected by W 1 , and the beams are phase-weighted by ⁇ k to obtain phase-weighted vectors b′ 0 , b′ 1 , b′ 2 , b′ 3 , using p k for amplitude weighting, the beam b" 0 , b" 1 , b" 2 , b" 3 is obtained , and then the vectors b" 0 , b " 1 , b " 2 , b " 3 are merged and merged The latter vector, which corresponds to a composite beam.
  • the phase weighting is in the front, and the amplitude weighting is in the back.
  • the amplitude weighting is also preceded, the phase weighting is followed, or the amplitude weighting and phase weighting are performed simultaneously.
  • the weighting amount is the same for each vector, the first device 101 can only feed back one phase factor for multiple beams; similarly, if the weighting values are the same for each vector, the first device 101 can also Only one amplitude factor is fed back for multiple vectors, such as: p, as shown in Figure 5.
  • the first vector may be a vector included in a W1 codeword corresponding to the foregoing precoding matrix W, which may be a Discrete Fourier Transform (DFT) vector, such as the form shown in Equation 1 below.
  • DFT Discrete Fourier Transform
  • L and I are positive integers, and L represents the number of first vectors included in the entire set of the first vector. That is, the number of beams in different beam directions that the second device 102 can transmit.
  • I that is, the dimension of the first vector, when the antenna of the second device 102 transmits the reference signal adopts a single polarization polarization mode, the number of antenna ports of the reference signal; when the second device 102 transmits the reference signal, the antenna adopts a bipolar When the polarization mode is used, it is half of the number of antenna ports of the reference signal.
  • the antenna port of the reference signal is an antenna port used by the second device 102 to transmit the reference signal.
  • the second channel information may include only the first factor, or only the second factor, or both the first factor and the second factor.
  • the vectors may not be phase-weighted, or the M first vectors may be phase-weighted according to the preset same phase weighting amount.
  • the phase weighting is then performed according to a preset different phase weighting amount for different first vectors. Since it is preset, the first device 101 does not need to feed back to the second device 102.
  • each of the first vectors may be weighted according to a preset same amplitude value, or according to a preset for different first The different amplitude factors of the vectors respectively weight the respective first vectors, and since it is preset, the first device 101 does not need to feed back to the second device 102.
  • phase factor and the time delay factor in the second factor are actually phase weighting the first vector from the perspective of the frequency domain and the time domain, respectively.
  • the time delay in the time domain is equivalent to the phase weighting in the frequency domain. Therefore, if a feedback phase factor is required, only one of the phase factor and the time delay factor needs to be fed back.
  • the phase factor is subband feedback and the time delay factor is wideband feedback.
  • the third channel information is used to indicate a phase difference between the two sets of antenna ports of the reference signal. For example, if two sets of antenna ports have different polarization directions, the phase difference represents a phase difference between two sets of antenna ports having different polarization directions. For example, there are a total of 8 antenna ports, of which 4 antenna ports are horizontally polarized, and the other 4 antenna ports are vertically polarized, and the third channel information is used to represent the two sets of horizontally polarized and vertically planned antenna ports. The phase difference between them.
  • the M first vectors are partial first vectors in the first vector ensemble.
  • An optional implementation manner is: dividing the complete set of the first vector into K vector groups, and K is a positive integer.
  • the M first vectors belong to X vector groups, and the X vector groups are part or all of the K vector groups.
  • K is a positive integer and X is a positive integer not greater than K.
  • the first vector included in the different vector groups has repetition or non-repetition.
  • K 8
  • b 0 , b 1 , b 2 , b 3 are a vector group
  • b 4 , b 5 , b 6 , b 7 are a vector group, and so on.
  • K 16
  • each group has 4 first vectors.
  • b 0 , b 1 , b 2 , b 3 is a vector group
  • b 5 is a vector group, and so on.
  • the M first vectors include two vector groups X (i) and X (j) .
  • b i,0 , b i,1 ,b i,2 ,b i,3 are four vectors in vector group i, b j,0 , b j,1 ,b j,2 ,b j,3
  • is a normalization factor, equal to the square sum of the norms of all elements in W. The purpose is to make the power sum of all beams to be 1.
  • the first channel information includes: X vector groups formed by M first vectors.
  • the group number of each vector group in the K vector groups For example: information used to indicate the preceding vector group numbers i and j.
  • Such a feedback method can reduce the number of information bits of the first channel information.
  • W 2 is used to weight all the first vectors in W 1 (i) and W 1 (j) , respectively, for example, including amplitude weighting. Also includes phase weighting, then the expression of W2 can be:
  • c i,k p i,k * ⁇ i,k .
  • ⁇ i,k the phase adjustment amount before the first vector is combined
  • ⁇ 1,-1,j,-j ⁇ the given ⁇ 1,-1,j,-j ⁇
  • p i,k the amplitude adjustment amount before the first vector is merged
  • the amplitude factor and the weighting factor of each first vector in the same vector group may be the same.
  • An application scenario of grouping the first vector is: multiple beams can be divided into different clusters.
  • the first device 101 can select the received reference signals in the multiple clusters. A cluster of beams with a large signal strength or power value.
  • the second device 102 can perform data transmission on the beams of the multiple beam clusters, and the first device 101 can receive the downlink from multiple beams with better reception quality. Data, better performance.
  • the vector group 1 includes four first vectors b 0 , b 1 , b 2 , and b 3 , and the beams represented by the four vectors form a strong beam cluster: cluster 1
  • the vector group 2 includes four first vectors b 4 , b 5 , b 6 , b 7 , and the beams represented by the four vectors form a strong beam cluster: cluster 2.
  • W1(1) is used to select cluster 1
  • W1(2) is used to select cluster 2.
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 are respectively used for phase weighting the beams represented by the first vectors b 0 , b 1 , b 2 , b 3 , and the first vectors after phase weighting are respectively: b′ 0 . b' 1 , b' 2 , b' 3 .
  • ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 are respectively used for phase weighting the beams represented by the first vectors b 4 , b 5 , b 6 , b 7 , and the first vectors after phase weighting are respectively: b′ 4 . b' 5 , b' 6 , b' 7 .
  • the amplitude factor of each vector in the vector group 1 (ie, cluster 1) is p0
  • the amplitude factor of each vector in the vector group 2 (ie, cluster 2) is p1
  • the first device 101 is transmitting
  • only one amplitude factor p0 can be fed back for each first vector in vector group 1
  • only one amplitude factor p1 is fed back for each first vector in vector group 2.
  • the first device 101 may also send information to the second device 102 for indicating the value of X, that is, how many vector groups the M first vectors belong to; or the first device 101 receives from the second device 102. Information used to indicate the value of this X.
  • the number of the first vectors included in the different vector groups is equal, but in actual implementation, the number of the first vectors included in the different vector groups may also be different, as shown in FIG. 7 .
  • the second channel information corresponding to the different vector groups is the same in the X vector groups, and the first device 101 sends only the same second to the second device 102 for different vector groups.
  • Channel information which saves the number of bits of the second channel information.
  • the second channel information corresponding to different vector groups is different.
  • the first device 101 needs to separately feed back the second channel information.
  • the second channel information is used to perform weighted combining of the N first vectors in the M first vectors. Save In the following situations:
  • the weighted combining factor indicated by the second channel information includes zero elements.
  • the first vector with the amplitude factor of 0 is removed from the M first vectors, that is, the amplitude factor is not selected.
  • the first vector is 0 if the amplitude factor corresponding to a certain one of the M first vectors is 0, the first vector with the amplitude factor of 0 is removed from the M first vectors, that is, the amplitude factor is not selected. The first vector.
  • the fourth channel information is used to indicate that N first vectors are selected from the M first vectors.
  • the first device 101 If the first device 101 sends the fourth channel information, the first device 101 does not need to send the weighted combining factor of each of the M first vectors when transmitting the second channel information, but only sends the selected information.
  • the weighted combining factor of each of the N first vectors may be.
  • the M first vectors include X vector groups, then for each of the X vector groups, there may be corresponding fourth channel information for selecting the first vector from the vector group.
  • the number of first vectors selected in different vector groups may be the same or different.
  • column selection is performed internally for each vector group, that is, the selection of the first vector is followed by weighted combining.
  • the number of column selections within each vector group can be different. For example: for W1(1), select 2 first vectors (ie select two beams); for W1(2), select 3 first vectors (ie select 3 beams), then pair 2 beams and 3 respectively The beams are phase weighted and amplitude adjusted.
  • the first vector and each channel information are introduced. Next, how to construct a precoding matrix based on these channel information is described.
  • a precoding matrix is formed based on the first channel information, the second channel information, and the third channel information, and the rank is 1.
  • the precoding matrix W is:
  • B i is M first vectors and c k is a weighted combining factor, where c k,0 is used to weight b i,0 , c k,m is used to weight b i,m ,c k , M-1 is used to weight b i, M-1 ; m is an integer, and 0 ⁇ m ⁇ M;
  • is a normalization factor.
  • B i is a vector group with the group number i in the foregoing K vector groups; at this time, the first channel information includes information for indicating i.
  • B i is expressed as Where X vector groups
  • the group number in the K vector groups is a vector group of i 0 to i X-1 in sequence; x is an integer, and 0 ⁇ x ⁇ X-1; X is a positive integer; all first vectors in the K vector groups Forming a complete set of the first vector, K is a positive integer; and the first channel information includes: information for indicating i 0 to i X-1 , respectively.
  • the precoding matrix is formed based on the first channel information, the second channel information, the third channel information, and the fourth channel information, and the rank is 1.
  • the precoding matrix W is:
  • B i is M first vectors
  • c k is a weighted combining factor for weighting and combining the N first vectors
  • c k,0 is used for Weighting
  • c k,m for pairing Weighting
  • c k, N-1 for pairing Weighting
  • m is an integer, and 0 ⁇ m ⁇ M-1
  • the number of lines is M
  • the fourth channel information is information for indicating m 0 to m N-1 ;
  • is a normalization factor.
  • the first device 101 sends, to the second device 102, information indicating a value of the N;
  • the first device 101 receives information from the second device 102 indicating a value of the N.
  • the fourth channel information can be used to indicate the above or
  • the fourth channel information includes M bits, of which m 0 to m N-1 are 1 and the remaining bits are 0.
  • the precoding matrix is formed based on the first channel information, the second channel information, and the third channel information, and the rank is 2.
  • the precoding matrix W is:
  • R, S is a positive integer, R ⁇ M, and S ⁇ M, B i and B j together constitute the M first vectors;
  • c k and c y are the weighted combining factors, wherein c k,0 is used to weight b i,0 , c k,m is used to weight b i,m , c k,R-1 is used Weighting b i, R-1 , c y, 0 is used to weight b j, 0 , c y, n is used to weight b j, n , c y, S-1 is used for b j, S-1 is weighted; m is an integer, and 0 ⁇ m ⁇ R-1, n is an integer, and 0 ⁇ n ⁇ S-1; a phase difference between two sets of antenna ports of the reference signal indicated by the third channel information;
  • is a normalization factor.
  • B i and B j are different, c k and c m are different; or
  • B i and B j are the same, and c k and c m are the same.
  • the precoding matrix composed of the first channel information and the second channel information is in the time domain as follows:
  • ⁇ m is a time delay factor corresponding to the mth vector of the N first vectors.
  • the description of the foregoing scheme 1 can be used in the case where the transmitting antenna of the second device 102 is a line array, and the codebook of the precoding matrix is a 1D (Dimension, D) codebook.
  • the foregoing solution 1 can also be used in the case where the transmitting antenna of the second device 102 includes the antenna array in the horizontal direction and the vertical direction.
  • the codebook of the precoding matrix is a 2D codebook.
  • each of the first vectors in W1 is obtained from the Kronecker product of two-dimensional vectors.
  • the vectors of these two dimensions are referred to as "second vector” and "third vector”, respectively.
  • Each of the first vectors in B i is obtained from a second vector in the second set of vectors and a third vector in the third set of vectors from the Crohnenko product:
  • b i,m is the first vector, a second vector numbered m 1 in the second vector group numbered p, a third vector numbered m 2 in the third vector group numbered t;
  • the first channel information includes: first subchannel information and second subchannel information
  • the first subchannel information is used to indicate p, and the second subchannel information is used to indicate t;
  • N 1 is the number of antenna ports of the first dimension (eg, the aforementioned horizontal antenna) in the antenna array
  • Q 1 is a factor of oversampling the DFT vector constituting the codeword set of the first dimension antenna
  • S 1 is a positive integer.
  • N 2 is the number of antenna ports of the second dimension in the antenna array
  • Q 2 is a factor for oversampling the DFT vector of the codeword set constituting the second-dimensional antenna
  • S 2 is a positive integer
  • the number of groups of the second vector group is greater than or equal to 2, and the number of groups of the third vector group is equal to 1; or
  • the number of groups of the third vector group is greater than or equal to 2, and the number of groups of the second vector group is equal to 1; or
  • the number of groups of the third vector group is equal to 1, and the number of groups of the second vector group is equal to 1.
  • the second vector and the third vector are DFT vectors
  • the ensemble of the second vector and the ensemble of the third vector including the number of vectors are configured independently of each other.
  • the description of the foregoing scheme 1 can be applied to the case where the antenna ports of the reference signal are not grouped.
  • the reference signal is on the S antenna ports, and the S antenna ports belong to the H reference signal resource port groups, and H is an integer greater than or equal to 1.
  • the reference signal is a beamformed reference signal.
  • the dimension of the first vector is the number of antenna ports in each reference signal resource port group; when the second device 102 transmits the reference signal When the antenna adopts a dual polarization polarization mode, the dimension of the first vector is half of the number of antenna ports in each reference signal resource port group.
  • the number of ports in the one reference signal resource port group is 32, and the dimension of the first vector is 32 or 16.
  • the antenna ports in the first reference signal resource port group are ports 0 to port 7
  • the antenna ports in the second reference signal resource port group are port 8 to port 15
  • the third reference signal resource port group The antenna ports are port16 to port23
  • the antenna ports in the fourth reference signal resource port group are port24 to port31.
  • the dimension of the first vector The degree is 8 (single polarization) or 4 (double polarization).
  • the first device 101 is further configured to perform measurement on the reference signal to obtain seventh channel information, and send the seventh channel information to the second device.
  • the seventh channel information includes identifier information for selecting Y reference signal resource port groups from the H reference signal resource port groups.
  • the seventh channel information is not fed back in the same subframe as the other channel information, that is, the feedback is separately. And the feedback period of the seventh channel information is greater than or equal to other channel information.
  • the M first vectors may be measured according to the Y reference signal resource port groups selected by the H reference signal resource port groups, where Y is a positive integer.
  • M first vectors correspond to X vector groups, and at least two vector groups correspond to one reference signal resource port group of Y reference signal resource port groups, X>Y.
  • X vector groups The group numbers in the K vector groups are sequentially a vector group of i 0 to i X-1 ; x is an integer, and 0 ⁇ x ⁇ X-1; X is a positive integer;
  • All of the first vectors of the K vector groups constitute a complete set of the first vector, and K is a positive integer;
  • the first channel information includes information for indicating i 0 to i X-1 , respectively.
  • the first device 101 is configured to measure a reference signal sent by the first reference signal resource port group of the Y reference signal resource port groups in the Hth reference signal resource port group, Is that the first device 101 measures the reference signal sent on the xth reference signal resource port group of the Y reference signal resource port groups in the Hth reference signal resource port group, The first device 101 measures the reference signal transmitted on the Xth reference signal resource port group of the Y reference signal resource port groups in the Hth reference signal resource port group.
  • the channel information sent by the first device 101 to the second device 102 is as shown in Table 2 below.
  • the weighted combining factor indicated by the second channel information includes a zero element.
  • the construction of the precoding matrix is as follows:
  • c k is a weighted combining factor for weighting and combining N/2 ports, wherein c k,0 is used to weight m 0 and m 0 +N/2 ports, c k m is used to weight the m mth and m m + N/2 ports, and c k, N-1 is used to weight the m n N-1 and the m n-1 + N/2 ports; m is an integer and 0 ⁇ m ⁇ M-1; a phase difference between two sets of antenna ports of the reference signal indicated by the third channel information; The number of rows is M, and
  • the first device 101 transmits information indicating the value of N to the second device 102; or the first device 101 receives information indicating the value of N from the second device 102.
  • the first channel information is used to indicate or
  • the first channel information includes M bits, and among the M bits, m 0 to m N-1 are 1, and the remaining bits are 0.
  • R, S are positive integers, R ⁇ M, and S ⁇ M,
  • c k and c y are weighted combining factors, where c k,0 is used to weight the ith 0 and ith 0 +N/2 ports, and c k,m is used for ith m and ith m + N/2 ports are weighted, c k, R-1 is used to weight the i r R-1 and i r R + 5 + N/2 ports, c y, 0 is used for j j 0 and j 0 + N / 2 ports are weighted, c y, n is used to weight the j n and j n + N/2 ports, c y, S-1 is used for the jth S-1 and j S-1 + N/2 ports are weighted; m is an integer, and 0 ⁇ m ⁇ R-1, n is an integer, and 0 ⁇ n ⁇ S-1;
  • is a phase difference between the two sets of antenna ports of the reference signal indicated by the third channel information
  • E i and E j are the same, c k and c m are different; or
  • E i is different from E j , and c k and c m are the same; or
  • E i is different from E j , and c k and c m are different; or
  • E i is the same as E j
  • c k and c m are the same.
  • the second channel information is a time delay factor
  • the precoding matrix formed by the first channel information and the second channel information is in the time domain as follows:
  • ⁇ m is a time delay factor corresponding to the mth vector of the N first vectors.
  • the channel state information-reference signal (CSI-RS) after the beam is shaped by the reference signal is taken as an example.
  • the pre- The encoding can be digital beamforming, or analog beamforming, which has formed beam directions.
  • the four beam directions b0, b1, b2, and b3 correspond to antenna ports: port 0, port 1, port 2, and port 3.
  • Fig. 11 only the beam formed by one antenna in the polarization direction is shown. If a dual-polarized antenna is considered, the two sets of antennas in the two polarization directions respectively generate the same beam direction, as shown in Fig. 12, one on the left side.
  • the four antennas of the group generate beam 1, the beam 2, the beam 3, and the beam 4 by precoding weighting, and the four antennas on the right side of the other group of polarization directions corresponding thereto also generate beam 1 and beam 2 by precoding weighting.
  • the second device 102 transmits the CSI-RS on a total of 8 antenna ports.
  • the propagation path of the second device 102 to the first device 101 is assumed to have four paths, wherein the direct path ray1, the reflection paths ray0, ray2, and ray3.
  • the second device 102 transmits four beams for scanning: beam0, beam1, beam2, and beam3. Since beam0, beam2, and beam3 are more closely matched with the propagation path, the first device 101 can receive the energy of b0, b2, and b3. Since the beam in the b1 direction has no propagation path, the first device 101 cannot detect its energy.
  • the first device 101 determines ports port 0, port 2, port 3 corresponding to beams b0, b2, and b3 whose energy exceeds a certain threshold, and port 4, port 6, and port 7 in another polarization direction.
  • the first device 101 reports the antenna port selection information (ie, the aforementioned first channel information), and the weighting information of the amplitude and phase on each antenna port (ie, the aforementioned second channel information) is reported.
  • W W s W 2 , where e m is a unit vector, e m is the column vector whose mth element is 1, and other elements are 0, and the dimension of the column vector of e m is equal to half of the number of ports of the W 1 'reference signal.
  • the first device 101 when the first device 101 feeds back the channel information, it may be considered to adopt different feedback manners for different channel information.
  • the feedback manners of the first channel information, the second channel information, and the third channel information are applicable to both the first scheme and the second scheme, but in the first scheme and the second scheme, the contents of the channel information are different.
  • the feedback manner of the fourth channel information and the seventh channel information is only applicable to the first scheme.
  • Feedback methods include: broadband feedback or sub-band feedback, feedback cycle, analog feedback or post-quantization feedback. Under Introduce various feedback methods one by one.
  • Broadband feedback means that only one channel of information is fed back in one feedback period for the entire system bandwidth.
  • Subband feedback means that for a plurality of subbands preset in the system bandwidth, each subband feeds back channel information in one feedback period.
  • sub-band feedback With sub-band feedback, the accuracy of channel information feedback is higher, but the information overhead is also larger. With sub-band feedback, the accuracy of channel information feedback is low, and corresponding information overhead is small. Some channel information that is important for restoring channel characteristics, or channel information that is different for different sub-band values may be used for sub-band feedback; and channel information that is less important for restoring channel characteristics, or for different sub-band values, does not differ. Large channel information can be used for wideband feedback.
  • Subband feedback means that the first device 101 generates corresponding channel information for each of the 10 subbands.
  • Broadband feedback means that the first device 101 generates one channel information for the entire system band.
  • Some channel information that is important for restoring channel characteristics, or channel information that changes faster with time, may be fed back with a shorter feedback period; and channel information that is less important for restoring channel characteristics, or channel information that changes slowly over time Feedback is used with a longer feedback period.
  • Some channel information that is important for restoring channel characteristics can be quantized and quantized by high-precision quantization, for example, the quantization order is large; and channel information that is less important for restoring channel characteristics can be quantized by low-precision quantization. Feedback.
  • the purpose of using different feedback methods for different channel information is to ensure the feedback accuracy of the channel information, so as to be able to generate a high-precision precoding matrix and minimize the amount of information feedback.
  • any of the feedback methods in Table 3 can be used.
  • the feedback period of the first channel information is longer than the feedback period of the second channel information, and the third channel information and the fourth channel information are not fed back.
  • the feedback period of the first channel information is longer than the feedback period of the second channel information and the third channel information, and the fourth channel information is not fed back.
  • the first channel information and the second channel information are long-term feedback, and the third channel information is short-term feedback.
  • the feedback periods of the first channel information and the second channel information are both longer than the feedback period of the third channel information.
  • the feedback period of the first channel information is longer than the feedback period of the second channel information, the third channel information, and the fourth channel information.
  • the feedback period of the first channel information and the second channel information is longer than the feedback period of the third channel information and the fourth channel information.
  • the feedback period of the first channel information, the second channel information, and the fourth channel information is longer than the feedback period of the third channel information.
  • the feedback period of the first channel information and the fourth channel information is longer than the feedback period of the second channel information and the third channel information.
  • the first device 101 may also measure the reference signal sent by the second device 102 to obtain the fifth channel information and/or the sixth channel information, and send the information to the second device 102.
  • the fifth channel information includes information indicating the number of data spatial multiplexing of the second device 102 to the first device 101, such as an RI in an LTE system.
  • the sixth channel information includes information indicating a channel quality of a channel of the second device 102 to the first device 101, such as a CQI in an LTE system.
  • the feedback manner of the fifth channel information and the sixth channel information may be applicable to both the first scheme and the second scheme.
  • the following channel information feedback manner may be adopted:
  • the first channel information and the fifth channel information are fed back in the first period in the first subframe, and the second channel information and the sixth channel information are fed back in the second period in the second subframe; the first period is not less than the first period. Two cycles; or
  • the first channel information and the fifth channel information are fed back in the first subframe in the first period, the second channel information is fed back in the second subframe in the second period, and the sixth channel information is in the third subframe.
  • the third period is fed back; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in the first subframe in the first period, the second channel information is fed back in the second subframe in the second period, and the sixth channel information is in the third subframe.
  • the third period is fed back; the first period is not less than the second period, and the second period is not less than the third period; or
  • the fifth channel information is fed back in the first period in the first subframe, the first channel information is fed back in the second subframe in the second period, and the second channel information is fed back in the third subframe in the third period.
  • the sixth channel information is fed back in the fourth period in the fourth subframe; the first period is not less than the second period, the second period is not less than the third period, and the third period is not less than the fourth period.
  • the following channel information feedback method may be adopted:
  • the first channel information and the fifth channel information are fed back in the first subframe in the first period
  • the second channel information and the third channel information are fed back in the second subframe in the second period
  • the sixth channel information is in the second channel.
  • the third subframe is fed back in a third period; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in the first subframe in the first period, and the second channel information, the third channel information, and the sixth channel information are fed back in the second subframe in the second period;
  • One cycle is not less than the second cycle; or
  • the first channel information, the second channel information, and the fifth channel information are fed back in the first subframe in the first period, and the third channel information and the sixth channel information are fed back in the second subframe in the second period;
  • One cycle is not less than the second cycle; or
  • the first channel information and the fifth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe; the third channel information and the sixth channel information are in The third subframe is fed back in a third period; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information and the fifth channel information are fed back in the first subframe in the first period, the second channel information is fed back in the second subframe in the second period, and the third channel information is in the third subframe.
  • the sixth channel information is fed back in the fourth period in the fourth period; the first period is not less than the second period, the second period is not less than the third period, and the third period is not less than the fourth period. ;or
  • the fifth channel information is fed back in the first subframe in the first period, and the first channel information is in the second subframe in the second subframe.
  • the second channel information is fed back in the third subframe in the third period
  • the third channel information is fed back in the fourth subframe in the fourth period
  • the sixth channel information is in the fifth subframe.
  • the fifth period is fed back; the first period is not less than the second period, the second period is not less than the third period, the third period is not less than the fourth period, and the fourth period is not less than the fifth period.
  • the following channel information feedback method may be adopted:
  • the first channel information, the fourth channel information, and the fifth channel information are fed back in a first period in a first subframe, and the second channel information and the third channel information are fed back in a second period in a second subframe,
  • the six channel information is fed back in the third period in the third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the first channel information, the fourth channel information, and the fifth channel information are fed back in a first period in the first subframe, and the second channel information and the third channel information and the sixth channel information are second in the second subframe. Periodically fed back; the first period is not less than the second period; or
  • the fifth channel information is fed back in the first period in the first subframe, and the first channel information and the fourth channel information are fed back in the second subframe in the second period, and the second channel information and the third channel information are in The third subframe is fed back in the third period, and the sixth channel information is fed back in the fourth period in the fourth subframe; the first period is not less than the second period, the second period is not less than the third period, and the third period is Not less than the fourth period; or
  • the fifth channel information is fed back in the first subframe in the first period, and the first channel information and the fourth channel information are fed back in the second subframe in the second period, the second channel information, the third channel information, and the second channel information.
  • the four channel information is fed back in the third period in the third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the fifth channel information, the first channel information, the second channel information, and the fourth channel information are fed back in the first subframe in the first period, and the third channel information and the sixth channel information are in the second subframe in the second subframe.
  • the first period is not less than the second period; or
  • the fifth channel information, the first channel information, and the fourth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe, the third channel information and the third channel information
  • the six channel information is fed back in the third period in the third subframe; the first period is not less than the second period, and the second period is not less than the third period; or
  • the fifth channel information, the first channel information, and the fourth channel information are fed back in a first period in a first subframe, and the second channel information is fed back in a second period in a second subframe, and the third channel information is in The third subframe is fed back in the third period, and the sixth channel information is fed back in the fourth period in the fourth subframe; the first period is not less than the second period, the second period is not less than the third period, and the third period is Not less than the fourth period; or
  • the fifth channel information is fed back in the first subframe in the first period
  • the first channel information and the fourth channel information are fed back in the second subframe in the second period
  • the second channel information is in the third subframe.
  • the third channel information is fed back in the fourth period in the fourth subframe
  • the sixth channel information is fed back in the fifth period in the fifth subframe; the first period is not less than the second period, the first period
  • the second period is not less than the third period, the third period is not less than the fourth period, and the fourth period is not less than the fifth period.
  • Figure 10 shows a possible feedback manner of channel information.
  • the second channel information includes third subchannel information, and the third subchannel information is used to indicate the first factor.
  • the third subchannel information is not quantized; or the third subchannel information is subjected to the first quantization, and the first quantized quantization step is not greater than a preset first quantization step threshold.
  • the second channel information includes fourth subchannel information, and the fourth subchannel information is used to indicate the second cause. child.
  • the fourth subchannel information is not quantized; or the fourth subchannel information is subjected to second quantization, and the second quantized quantization step is not less than a preset second quantization step threshold.
  • FIG. 13 is a schematic structural diagram of a first device according to an embodiment of the present invention. As shown in FIG. 13, the first device includes: a receiving module 1301, a processing module 1302, and a sending module 1303.
  • the receiving module 1301 is configured to receive a reference signal sent by the second device, where the reference signal is sent by S antenna ports, where the S antenna ports belong to H reference signal resource port groups, and S and H are integers greater than or equal to 1. ;
  • the processing module 1302 is configured to perform measurement on the reference signal to obtain first channel information and second channel information.
  • the sending module 1303 is configured to send the first channel information and the second channel information to the second device;
  • the first channel information includes identification information of M first vectors, where M is an integer not less than 2;
  • the second channel information includes information about weighted combining factors for weighting and combining the N first vectors of the M first vectors, where N is a positive integer not greater than M;
  • the weighted combining factor includes: a first factor and/or a second factor
  • the first factor is an amplitude factor
  • the second factor is a phase factor or a time delay factor
  • the first channel information and the second channel information are used to form a precoding matrix
  • the dimension of the first vector is the number of antenna ports in each reference signal resource port group, or the dimension of the first vector is half of the number of antenna ports in each reference signal resource port group.
  • the receiving module 1301 is configured to perform a receiving operation of the first device 101
  • the processing module 1302 is configured to perform a processing operation of the first device 101
  • the sending module 1303 is configured to perform a sending operation of the first device 101.
  • the receiving module 1301 is configured to receive a reference signal sent by the second device, where
  • the processing module 1302 is configured to measure the reference signal to obtain first channel information and second channel information.
  • the sending module 1303 is configured to send the first channel information and the second channel information to the second device;
  • the first channel information includes identification information of N antenna ports of the M antenna ports of the reference signal, where M is an integer not less than 2, and N is a positive integer not greater than M;
  • the second channel information includes information about a weighted combining factor that performs weighted combining on the N antenna ports;
  • the weighted combining factor includes: a first factor and/or a second factor
  • the first factor is an amplitude factor
  • the second factor is a phase factor or a time delay factor
  • the first channel information and the second channel information are used to form a precoding matrix.
  • the receiving module 1301 is configured to perform a receiving operation of the first device 101
  • the processing module 1302 is configured to perform a processing operation of the first device 101
  • the sending module 1303 is configured to perform a sending operation of the first device 101.
  • the receiving module 1301 may be implemented by a receiver
  • the processing module 1302 may be implemented by a processor
  • the transmitting module 1303 may be implemented by a transmitter.
  • FIG. 14 is a schematic structural diagram of a second device according to an embodiment of the present invention. As shown in FIG. 14, the second device includes: a receiving module 1401, a processing module 1402, and a sending module 1403.
  • the sending module 1403 is configured to send a reference signal to the first device, where the reference signal is sent at the S antenna ports.
  • the S antenna ports belong to H reference signal resource port groups, and S and H are integers greater than or equal to 1;
  • the receiving module 1401 is configured to receive, by the first device, first channel information and second channel information, where the first channel information and the second channel information are the reference signals received by the first device pair Obtained by measurement;
  • the first channel information includes identification information of M first vectors, where M is an integer not less than 2;
  • the second channel information includes information about weighted combining factors for weighting and combining the N first vectors of the M first vectors, where N is a positive integer not greater than M;
  • the weighted combining factor includes: a first factor and/or a second factor
  • the first factor is an amplitude factor
  • the second factor is a phase factor or a time delay factor
  • the dimension of the first vector is the number of antenna ports in each reference signal resource port group, or the dimension of the first vector is half of the number of antenna ports in each reference signal resource port group;
  • the processing module 1402 is configured to generate the precoding matrix according to the first channel information and the second channel information;
  • the sending module 1403 is further configured to send data to the first device according to the precoding matrix generated by the processing module.
  • the receiving module 1401 is configured to perform a receiving operation of the second device 102
  • the processing module 1402 is configured to perform a processing operation of the second device 102
  • the sending module 1403 is configured to perform a sending operation of the second device 102.
  • the sending module 1403 is configured to send a reference signal to the first device.
  • the receiving module 1401 is configured to receive, by the first device, first channel information and second channel information, where the first channel information and the second channel information are the reference signals received by the first device pair Obtained by measurement;
  • the first channel information includes identification information of N antenna ports of the M antenna ports of the reference signal, where M is an integer not less than 2, and N is a positive integer not greater than M;
  • the second channel information includes information about a weighted combining factor that performs weighted combining on the N antenna ports;
  • the weighted combining factor includes: a first factor and/or a second factor
  • the first factor is an amplitude factor
  • the second factor is a phase factor or a time delay factor
  • the processing module 1402 is configured to generate a precoding matrix according to the first channel information and the second channel information;
  • the sending module 1403 is further configured to send data to the first device according to the precoding matrix generated by the processing module 1402.
  • the receiving module 1401 is configured to perform a receiving operation of the second device 102
  • the processing module 1402 is configured to perform a processing operation of the second device 102
  • the sending module 1403 is configured to perform a sending operation of the second device 102.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the present invention is directed to a flowchart of a method, apparatus (system), and computer program product according to an embodiment of the present invention. And / or block diagram to describe. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

信道信息发送方法、数据发送方法和设备,以提高预编码矩阵的反馈精度。一种第一设备,包括:接收模块,用于接收参考信号,处理模块,用于对参考信号进行测量,得到第一信道信息和第二信道信息;发送模块,用于发送第一信道信息和第二信道信息;第一信道信息包括M个第一向量的标识信息,M为不小于2的整数;第二信道信息包括对M个第一向量中的N个第一向量进行加权合并的加权合并因子的信息,N为不大于M的正整数;第一信道信息和第二信道信息用于构成预编码矩阵。第二设备在生成预编码矩阵时,可根据收到的第二信道信息所指示的加权合并因子对M个第一向量进行加权合并,而不仅是从多个特征向量中选择一个特征向量,生成的预编码矩阵更精确。

Description

一种信道信息发送方法、数据发送方法和设备
本申请要求在2016年5月13日提交中国专利局、申请号为201610319166.9、发明名称为“一种信道信息发送方法、数据发送方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种信道信息发送方法、数据发送方法和设备。
背景技术
目前,在长期演进(Long Term Evolution,LTE)频分双工(Frequency Division Duplexing,FDD)系统中,用户设备(User Equipment,UE)根据基站发送的参考信号进行信道估计,然后确定信道的状态信息并进行反馈,信道状态信息包括秩指示(Rank Indicator,RI),预编码矩阵索引(Precoding Matrix Indicator,PMI)和信道质量指示(Channel Quality Indicator,CQI)。
其中,PMI是对预编码矩阵的索引,UE向基站反馈PMI,基站根据收到的PMI确定对应的预编码矩阵,并根据确定的预编码矩阵进行预编码处理,以提高下行通信质量。
目前,LTE FDD系统中的一种反馈PMI的方式是:将预编码矩阵W按照双码本的结构进行反馈:即:
W=W1×W2     公式1
其中,
Figure PCTCN2017083978-appb-000001
b0,b2,…,bM-1是预编码矩阵W对应的一个W1码字中包含的向量,可以是DFT向量,M为不小于2的整数。向量bi是一个长为基站发送天线的端口数的列向量。其中M的值可以是一个预设的值或者是由基站预先配置的一个值。
对于信道矩阵的秩等于1的情况,有:
Figure PCTCN2017083978-appb-000002
对于信道矩阵的秩等于2的情况,有:
Figure PCTCN2017083978-appb-000003
其中,W1表示M个向量组成的集合,W2包含列选择信息和联合相位(co-phase)的信息。
其中,列选择信息ek是M×1的单位向量,只有第k个元素是1,其他元素的值均为 0;ei同理。
Co-phase信息
Figure PCTCN2017083978-appb-000004
第二设备102的发送天线的两个极化方向的相位差,取值范围是0到2π任意一个数。
目前的双码本结构中,W2只能实现从b0,b2,…,bM-1这M个向量中选择一个向量,对预编码矩阵W的反馈不够精确。
发明内容
有鉴于此,提供一种信道信息发送方法、数据发送方法和设备,用以提高预编码矩阵相关的信道信息的反馈精度,进而提高下行链路的自适应性能。
第一方面,本发明实施例提供一种信道信息的发送方法,包括:
第二设备向第一设备发送参考信号,所述参考信号在S个天线端口发送,所述S个天线端口属于H个参考信号资源端口组,H为大于等于1的整数;第一设备在收到参考信号后,对接收的所述参考信号进行测量,得到并向第二设备发送第一信道信息和第二信道信息;第二设备根据收到的第一信道信息和第二信道信息生成预编码矩阵,并根据生成的预编码矩阵向第一设备进行数据发送。
其中,所述第一信道信息,包括M个第一向量的标识信息,M为不小于2的整数;所述第二信道信息,包括对所述M个第一向量中的N个第一向量进行加权合并的加权合并因子的信息,N为不大于M的正整数;所述加权合并因子包括:第一因子和/或第二因子;所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子。
所述第一向量的维度是每个参考信号资源端口组内的天线端口数,或者所述第一向量的维度是每个参考信号资源端口组内的天线端口数的一半。
其中,第一设备根据接收的参考信号进行信道估计,向第二设备反馈用于对M个第一向量进行加权合并的加权合并因子的第二信道信息。这样,第二设备在生成预编码矩阵时,可根据收到的第二信道信息所指示的加权合并因子对M个第一向量进行加权合并,而不仅是从多个特征向量中选择一个特征向量,生成的预编码矩阵更精确,提高了第二设备进行数据发送的链路自适应的能力,提高了系统性能。
可选地,所述加权合并因子包括零元素,这实现了对N个第一向量的选择。
可选地,所述第一设备还对参考信号进行测量,得到第三信道信息,并将所述第三信道信息发送给所述第二设备;
所述第三信道信息,用于指示所述参考信号的两组天线端口间的相位差,第二设备根据第一信道信息、第二信道信息和第三信道信息生成所述预编码矩阵。
可选地,所述第一设备还对参考信号进行测量,得到第四信道信息,并将所述第四信道信息发送给所述第二设备;
所述第四信道信息,包括用于从所述M个第一向量选择所述N个第一向量的选择信息;
所述第二设备根据第一信道信息、第二信道信息和所述第四信道信息生成所述预编码矩阵,可选地,还可根据第三信道信息生成所述预编码矩阵。其中,所述第二信道信息,仅包括:对所述第四信道信息所指示的所述N个第一向量进行加权合并的加权合并因子的信息。
通过第一设备反馈第四信道信息,可实现对N个第一向量的选择,从而减少了第二信道信息的反馈信息量。
可选地,所述第一设备还对参考信号进行测量,得到第七信道信息,并将所述第七信道信息发送给所述第二设备;所述第七信道信息,包括用于从所述H个参考信号资源端口组中选择Y个参考信号资源端口组的标识信息;所述第二设备根据第一信道信息、第二信道信息和第七信道信息生成预编码矩阵。可选地,还可根据第三信道信息和/或第四信道信息生成预编码矩阵。
可选地,所述第七信道信息与其他信道信息不在同一个子帧中反馈。
可选地,所述第一信道信息,包括:所述M个第一向量构成的X个向量组中的每一个向量组在K个向量组中的组编号,所述K个向量组中的所有第一向量构成所述第一向量的全集,所述K为正整数,X为不大于K的正整数。
可选地,M个第一向量是根据H个参考信号资源端口组选择出来的Y个参考信号资源端口组测量得到的,Y为正整数。
可选地,M个第一向量对应于X个向量组,每个向量组对应于Y个参考信号资源端口组的一个参考信号资源端口组,X=Y;或者M个第一向量对应于X个向量组,至少两个向量组对应于Y个参考信号资源端口组的一个参考信号资源端口组,X>Y。
通过将M个第一向量分组,可实现多个强波束组的选择,使得生成预编码矩阵更能够适应实际的信道条件,提高了链路自适应的性能。
可选地,所述第一设备向所述第二设备发送用于指示所述X的值的信息;或所述第一设备从所述第二设备接收用于指示所述X的值的信息。
可选地,所述K个向量组中,不同向量组包括的所述第一向量有重复或不重复;
所述K个向量组中,不同向量组包括的所述第一向量的个数相同或不同。
可选地,所述X个向量组中,不同向量组对应的所述第二信道信息相同,对于不同的向量组所述第一设备仅反馈一个相同的所述第二信道信息;或
不同向量组对应的所述第二信道信息不同,对于不同的向量组所述第一设备分别反馈所述第二信道信息。
可选地,对各个信道信息可采取灵活的反馈方式进行反馈,以提高信道信息反馈精度,并尽可能减少信息反馈量。
比如:所述第一信道信息是宽带反馈,所述第二信道信息是子带反馈;或所述第一信道信息和所述第二信道信息均为子带反馈,且所述第一信道信息的反馈带宽比第二信道信息的反馈带宽大;
所述第一信道信息的反馈周期比所述第二信道信息的反馈周期长;
再比如:所述第一信道信息是宽带反馈,所述第二信道信息和第三信道信息是子带反馈;或所述第一信道信息、所述第二信道信息和所述第三信道信息均为子带反馈,所述第一信道信息的反馈带宽比所述第二信道信息和所述第三信道信息的反馈带宽大;
所述第一信道信息的反馈周期比所述第二信道信息和所述第三信道信息的反馈周期长。
再比如:所述第一信道信息和所述第二信道信息是宽带反馈,所述第三信道信息是子带反馈;或所述第一信道信息和所述第二信道信息的反馈带宽均比所述第三信道信息的反馈带宽大;
所述第一信道信息和第二信道信息是长期反馈,所述第三信道信息是短期反馈;
或者所述第一信道信息和所述第二信道信息的反馈周期均比第三信道信息的反馈周期长。
再比如:所述第一信道信息是宽带反馈;所述第二信道信息、所述第三信道信息和所述第四信道信息均为子带反馈;或所述第一信道信息的反馈带宽大于所述第二信道信息、所述第三信道信息和所述第四信道信息的反馈带宽;
所述第一信道信息的反馈周期比所述第二信道信息、所述第三信道信息和所述第四信道信息的反馈周期长。
可选地,所述第一信道信息和所述第二信道信息均为宽带反馈;所述第三信道信息和所述第四信道信息均为子带反馈;或所述第一信道信息和所述第二信道信息的反馈带宽大于所述第三信道信息和所述第四信道信息的反馈带宽;
所述第一信道信息和所述第二信道信息的反馈周期比所述第三信道信息和所述第四信道信息的反馈周期长。
可选地,所述第一信道信息、所述第二信道信息和所述第四信道信息均为宽带反馈;所述第三信道信息为子带反馈;或所述第一信道信息、所述第二信道信息和所述第四信道信息的反馈带宽大于所述第三信道信息的反馈带宽;
所述第一信道信息、所述第二信道信息和所述第四信道信息的反馈周期比所述第三信道信息的反馈周期长。
可选地,所述第一信道信息和所述第四信道信息均为宽带反馈;所述第二信道信息和所述第三信道信息均为子带反馈;或所述第一信道信息、所述第四信道信息的反馈带宽大于所述第二信道信息和所述第三信道信息的反馈带宽;
所述第一信道信息和所述第四信道信息的反馈周期比所述第二信道信息和所述第三信道信息的反馈周期长。
可选地,所述第一设备对所述参考信号进行测量,得到第五信道信息和第六信道信息;所述第一设备将所述第五信道信息和所述第六信道信息发送给所述第二设备;
所述第五信道信息,包括用于指示所述第二设备到所述第一设备的数据空间复用的数目的信息;所述第六信道信息,包括用于指示所述第二设备到所述第一设备的信道的信道质量的信息;
所述第二设备还根据第五信道信息和第六信道信息生成预编码矩阵;
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息和所述第六信道信息是在第二子帧以第二周期反馈的;所述第一周期不小于所述第二周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的,所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的,所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第五信道信息是在第一子帧以第一周期反馈的,所述第一信道信息是在第二子帧以第二周期反馈的,所述第二信道信息是在第三子帧以第三周期反馈的,所述第六信 道信息是在第四子帧以第四周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期,所述第三周期不小于所述第四周期。
或者,对于反馈第三信道信息的情况,
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息和所述第三信道信息是在第二子帧以第二周期反馈的,所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息、所述第三信道信息和所述第六信道信息是在第二子帧以第二周期反馈的;所述第一周期不小于所述第二周期;或
所述第一信道信息、所述第二信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第三信道信息和所述第六信道信息是在第二子帧以第二周期反馈的;所述第一周期不小于所述第二周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的;所述第三信道信息和所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的,所述第三信道信息是在第三子帧以第三周期反馈的,所述第六信道信息是在第四子帧以第四周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期,且所述第三周期不小于所述第四周期;或
所述第五信道信息是在第一子帧以第一周期反馈的,第一信道信息是在第二子帧以第二周期反馈的,所述第二信道信息是在第三子帧以第三周期反馈的,所述第三信道信息是在第四子帧以第四周期反馈的,所述第六信道信息是在第五子帧以第五周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期,所述第三周期不小于所述第四周期,且所述第四周期不小于所述第五周期。
再或者,对于反馈第四信道信息的情况,
所述第一信道信息、所述第四信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息和所述第三信道信息是在第二子帧以第二周期反馈的,所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第一信道信息、所述第四信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息和所述第三信道信息和所述第六信道信息是在第二子帧以第二周期反馈的;所述第一周期不小于所述第二周期;或
所述第五信道信息是在第一子帧以第一周期反馈的,所述第一信道信息和所述第四信道信息是在第二子帧以第二周期反馈的,所述第二信道信息和所述第三信道信息是在第三子帧以第三周期反馈的,所述第六信道信息是在第四子帧以第四周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期,且所述第三周期不小于所述第四周期;或
所述第五信道信息是在第一子帧以第一周期反馈的,所述第一信道信息和所述第四信道信息是在第二子帧以第二周期反馈的,所述第二信道信息、所述第三信道信息和所述第四信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期;或
所述第五信道信息、所述第一信道信息、所述第二信道信息和所述第四信道信息是在第一子帧以第一周期反馈的,所述第三信道信息和所述第六信道信息是在第二子帧以第二周期反馈的;所述第一周期不小于所述第二周期;或
所述第五信道信息、所述第一信道信息和所述第四信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的,所述第三信道信息和所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第五信道信息、所述第一信道信息和所述第四信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的,所述第三信道信息是在第三子帧以第三周期反馈的,所述第六信道信息是在第四子帧以第四周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期,且所述第三周期不小于所述第四周期;或
所述第五信道信息是在第一子帧以第一周期反馈的,所述第一信道信息和所述第四信道信息是在第二子帧以第二周期反馈的,所述第二信道信息是在第三子帧以第三周期反馈的,所述第三信道信息是在第四子帧以第四周期反馈的,所述第六信道信息是在第五子帧以第五周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期,所述第三周期不小于所述第四周期,且所述第四周期不小于所述第五周期。
可选地,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为1的所述预编码矩阵:
Figure PCTCN2017083978-appb-000005
ck=[ck,0 … ck,m … ck,M-1]T,Bi=[bi,0 … bi,m … bi,M-1]
其中,Bi为所述M个第一向量,ck为所述加权合并因子,其中,ck,0用于对bi,0进行加权,ck,m用于对bi,m进行加权,ck,M-1用于对bi,M-1进行加权;m为整数,且0≤m≤M;
Figure PCTCN2017083978-appb-000006
为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
可选地,Bi为K个向量组中的组号为i的向量组;
所述K个向量组中的所有第一向量构成所述第一向量的全集,所述K为正整数;
所述第一信道信息包括:用于指示i的信息。
可选地,
Figure PCTCN2017083978-appb-000007
其中X个向量组
Figure PCTCN2017083978-appb-000008
为K个向量组中的组号依次为i0至iX-1的向量组;x为整数,且0≤x≤X-1;X为正整数;
所述K个向量组中的所有第一向量构成所述第一向量的全集,K为正整数;
所述第一信道信息包括:分别用于指示i0至iX-1的信息。
可选地,所述第一信道信息、所述第二信道信息、所述第三信道信息和所述第四信道信息基于如下方式构成秩为1的所述预编码矩阵:
Figure PCTCN2017083978-appb-000009
ck=[ck,0 … ck,m … ck,N-1]T,Bi=[bi,0 bi,m … bi,M-1]
其中,Bi为所述M个第一向量,ck为对所述N个第一向量进行加权合并的加权合并因子,其中,ck,0用于对
Figure PCTCN2017083978-appb-000010
进行加权,ck,m用于对
Figure PCTCN2017083978-appb-000011
进行加权,ck,N-1用于对
Figure PCTCN2017083978-appb-000012
进行加权;m为整数,且0≤m≤M-1;
Figure PCTCN2017083978-appb-000013
为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;
Figure PCTCN2017083978-appb-000014
的行数为M,所述第四信道信息为用于指示所述m0至mN-1的信息;||q||为归一化因子。
可选地,所述第一设备向所述第二设备发送用于指示所述N的值的信息;或所述第一设备从所述第二设备处接收用于指示所述N的值的信息。
可选地,所述第四信道信息用于指示
Figure PCTCN2017083978-appb-000015
或者
所述第四信道信息包括M比特,所述M比特中,第m0至mN-1为1,其余比特为0。
可选地,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为2的所述预编码矩阵:
Figure PCTCN2017083978-appb-000016
ck=[ck,0 ck,m … ck,R-1]T,Bi=[bi,0 bi,m … bi,R-1],
cy=[cy,0 cy,n … cy,S-1]T,Bj=[bj,0 bj,n … bj,S-1],
R、S为正整数,R≤M,且S≤M,Bi和Bj共同构成所述M个第一向量;
ck和cy为所述加权合并因子,其中,ck,0用于对bi,0进行加权,ck,m用于对bi,m进行加权,ck,R-1用于对bi,R-1进行加权,cy,0用于对bj,0进行加权,cy,n用于对bj,n进行加权,cy,S-1用于对bj,S-1进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
Figure PCTCN2017083978-appb-000017
为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
可选地,Bi和Bj相同,ck和cm不同;或
Bi和Bj不同,ck和cm相同;或
Bi和Bj不同,ck和cm不同;或
Bi和Bj相同,ck和cm相同。
可选地,
Figure PCTCN2017083978-appb-000018
其中,X个向量组
Figure PCTCN2017083978-appb-000019
为K个向量组中的组号依次为i0至iX-1的向量组;x为整数,且0≤x≤X-1;X为正整数;
所述K个向量组中的所有第一向量构成所述第一向量的全集,K为正整数;
所述第一信道信息包括:分别用于指示i0至iX-1的信息。
Figure PCTCN2017083978-appb-000020
对应于第H个参考信号资源端口组中的Y个参考信号资源端口组中第一个参考信 号资源端口组,
Figure PCTCN2017083978-appb-000021
对应于第H个参考信号资源端口组中的Y个参考信号资源端口组中的第x个参考信号资源端口组,
Figure PCTCN2017083978-appb-000022
对应于第H个参考信号资源端口组中的Y个参考信号资源端口组中的第X个参考信号资源端口组。
可选地,所述第二信道信息为时间延迟因子;
所述第一信道信息和所述第二信道信息构成的所述预编码矩阵在时域的形式如下:
Figure PCTCN2017083978-appb-000023
其中,τm为所述N个第一向量中的第m个向量对应的所述时间延迟因子。
可选地,Bi为所述M个第一向量,Bi=[bi,0 bi,m … bi,M-1];
Bi中的每一个第一向量由第二向量组中的一个第二向量和一个第三向量组中的一个第三向量进行克罗内科积得到:
Figure PCTCN2017083978-appb-000024
其中,bi,m为所述第一向量,
Figure PCTCN2017083978-appb-000025
为编号为p的第二向量组中的编号为m1的所述第二向量,
Figure PCTCN2017083978-appb-000026
为编号为t的第三向量组中的编号为m2的所述第三向量;
所述第一信道信息包括:第一子信道信息和第二子信道信息;
所述第一子信道信息用于指示所述p,所述第二子信道信息用于指示所述t,
Figure PCTCN2017083978-appb-000027
其中N1为天线阵列中第一维度的天线端口数,Q1为对构成第一维度天线的码字集合的DFT向量进行过采样的因子,S1正整数,
Figure PCTCN2017083978-appb-000028
其中N2为天线阵列中第二维度的天线端口数,Q2为对构成第二维度天线的码字集合的DFT向量进行过采样的因子,S2正整数,
可选地,所述第二向量组的组的个数大于等于2,所述第三向量组的组个数等于1;或
所述第三向量组的组的个数大于等于2,所述第二向量组的组个数等于1;或
所述第三向量组的组的个数等于1,所述第二向量组的组个数等于1。
可选地,所述第二向量和所述第三向量为DFT向量;
所述第二向量的全集和所述第三向量的全集中包括向量的个数是相互独立地配置的。
可选地,所述第二信道信息中包括第三子信道信息,所述第三子信道信息用于指示所述第一因子;
所述第三子信道信息未经过量化;或者
所述第三子信道信息经过第一量化,所述第一量化的量化阶数不大于预设的第一量化阶数阈值。
可选地,所述第二信道信息中包括第四子信道信息,所述第四子信道信息用于指示所述第二因子;
所述第四子信道信息未经过量化;或者
所述第四子信道信息经过第二量化,所述第二量化的量化阶数不小于预设的第二量化阶数阈值。
第二方面,本发明实施例提供一种第一设备,该第一设备具有实现上述方法中第一设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方案中,该第一设备的结构中包括处理器和发送器和接收器,所述处理器被配置为支持第一设备执行上述方法中相应的功能。所述发送器用于支持第一设备向第二设备发送上述方法中所涉及的消息或数据。所述接收器,用于从第二设备处接收上述方法中涉及的消息或数据。所述第一设备还可以包括存储器,所述存储器用于与处理器耦合,其保存第一设备必要的程序指令和数据。
第三方面,本发明实施例提供一种第二设备,该第二设备具有实现上述方法中第二设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方案中,该第二设备的结构中包括发送器、接收器和处理器。所述接收器,用于支持第二设备从第一设备处接收上述方法中所涉及的消息或数据;所述发送器,用于支持第二设备向第一设备发送上述方法中所涉及的消息或数据;所述处理器,被配置为支持第一设备执行上述方法中相应的功能。所述第二设备还可以包括存储器,所述存储器用于与处理器耦合,其保存第二设备必要的程序指令和数据。
第四方面,本发明实施例提供了一种无线通信系统,该无线通信系统包括上述第一方面至第三方面任一方面所述的第一设备和第二设备。
第五方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第一方面至第四方面的任一方面所述的第一设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第六方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第一方面至第四方面的任一方面所述的第二设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第七方面,本发明实施例提供一种信道信息的发送方法,包括:
第二设备向第一设备发送参考信号,第一设备接收第二设备发送的参考信号,第一设备在收到参考信号后,对接收的所述参考信号进行测量,得到并向第二设备发送第一信道信息和第二信道信息;第二设备根据收到的第一信道信息和第二信道信息生成预编码矩阵,并根据生成的预编码矩阵向第一设备进行数据发送。
其中,所述第一信道信息,包括所述参考信号的M个天线端口中的N个天线端口的标识信息,M为不小于2的整数,N为不大于M的正整数;所述第二信道信息,包括对所述N个天线端口进行加权合并的加权合并因子的信息;所述加权合并因子包括:第一因子和/或第二因子;所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子。
第一设备根据接收的参考信号进行信道估计,向第二设备反馈用于对所述参考信号的M个天线端口进行加权合并的加权合并因子的第二信道信息。这样,第二设备在生成预编码矩阵时,可根据收到的第二信道信息所指示的加权合并因子对M个天线端口进行加权合并,也能够生成较精确的预编码矩阵,同样提高了第二设备进行数据发送的链路自适 应的能力,提高了系统性能。
可选地,所述加权合并因子包括零元素,这实现了对N个天线端口的选择。
可选地,所述第一设备对参考信号进行测量,得到第三信道信息,并将所述第三信道信息发送给所述第二设备;所述第三信道信息,包括:所述M个天线端口分成的两组天线端口间的相位差。第二设备根据第一信道信息、第二信道信息和第三信道信息生成所述预编码矩阵。
可选地,对各个信道信息可采取灵活的反馈方式进行反馈,以提高信道信息反馈精度,并尽可能减少信息反馈量。
比如:所述第一信道信息是宽带反馈,所述第二信道信息是子带反馈;或所述第一信道信息和所述第二信道信息均为子带反馈,且所述第一信道信息的反馈带宽比第二信道信息的反馈带宽大;
所述第一信道信息的反馈周期比所述第二信道信息的反馈周期长;
再比如:所述第一信道信息是宽带反馈,所述第二信道信息和第三信道信息是子带反馈;或所述第一信道信息、所述第二信道信息和所述第三信道信息均为子带反馈,所述第一信道信息的反馈带宽比所述第二信道信息和所述第三信道信息的反馈带宽大;
所述第一信道信息的反馈周期比所述第二信道信息和所述第三信道信息的反馈周期长。
再比如:所述第一信道信息和所述第二信道信息是宽带反馈,所述第三信道信息是子带反馈;或所述第一信道信息和所述第二信道信息的反馈带宽均比所述第三信道信息的反馈带宽大;
所述第一信道信息和第二信道信息是长期反馈,所述第三信道信息是短期反馈;或者所述第一信道信息和所述第二信道信息的反馈周期均比第三信道信息的反馈周期长。
可选地,所述第一设备对所述参考信号进行测量,得到第五信道信息和第六信道信息;所述第一设备将所述第五信道信息和所述第六信道信息发送给所述第二设备;
所述第五信道信息,包括用于指示所述第二设备到所述第一设备的数据空间复用的数目的信息;所述第六信道信息,包括用于指示所述第二设备到所述第一设备的信道的信道质量的信息;
所述第二设备还根据第五信道信息和第六信道信息生成预编码矩阵;
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息和所述第六信道信息是在第二子帧以第二周期反馈的;所述第一周期不小于所述第二周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的,所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的,所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第五信道信息是在第一子帧以第一周期反馈的,所述第一信道信息是在第二子帧以第二周期反馈的,所述第二信道信息是在第三子帧以第三周期反馈的,所述第六信道信息是在第四子帧以第四周期反馈的;所述第一周期不小于所述第二周期,所述第二 周期不小于所述第三周期,所述第三周期不小于所述第四周期。
或者,对于反馈第三信道信息的情况,
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息和所述第三信道信息是在第二子帧以第二周期反馈的,所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息、所述第三信道信息和所述第六信道信息是在第二子帧以第二周期反馈的;所述第一周期不小于所述第二周期;或
所述第一信道信息、所述第二信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第三信道信息和所述第六信道信息是在第二子帧以第二周期反馈的;所述第一周期不小于所述第二周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的;所述第三信道信息和所述第六信道信息是在第三子帧以第三周期反馈的;所述第一周期不小于所述第二周期,且所述第二周期不小于所述第三周期;或
所述第一信道信息和所述第五信道信息是在第一子帧以第一周期反馈的,所述第二信道信息是在第二子帧以第二周期反馈的,所述第三信道信息是在第三子帧以第三周期反馈的,所述第六信道信息是在第四子帧以第四周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期,且所述第三周期不小于所述第四周期;或
所述第五信道信息是在第一子帧以第一周期反馈的,第一信道信息是在第二子帧以第二周期反馈的,所述第二信道信息是在第三子帧以第三周期反馈的,所述第三信道信息是在第四子帧以第四周期反馈的,所述第六信道信息是在第五子帧以第五周期反馈的;所述第一周期不小于所述第二周期,所述第二周期不小于所述第三周期,所述第三周期不小于所述第四周期,且所述第四周期不小于所述第五周期。
可选地,所述第一信道信息、所述第二信道信息、所述第三信道信息基于如下方式构成秩为1的所述预编码矩阵:
Figure PCTCN2017083978-appb-000029
ck=[ck,0 … ck,m … ck,N-1]T,Bi=[bi,0 bi,m … bi,M-1]
其中,
Figure PCTCN2017083978-appb-000030
对应于第一信道信息,ck为对所述N/2个端口进行加权合并的加权合并因子,其中,ck,0用于对第m0以及m0+N/2个端口进行加权,ck,m用于对第mm个以及第mm+N/2端口进行加权,ck,N-1用于对第mN-1以及第mN-1+N/2个端口进行加权;m为整数,且0≤m≤M-1;
Figure PCTCN2017083978-appb-000031
为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;
Figure PCTCN2017083978-appb-000032
的行数为M,||q||为归一化因子。
可选地,所述第一设备向所述第二设备发送用于指示所述N的值的信息;或
所述第一设备从所述第二设备处接收用于指示所述N的值的信息。
可选地,
所述第一信道信息用于指示
Figure PCTCN2017083978-appb-000033
或者
所述第一信道信息包括M比特,所述M比特中,第m0至mN-1为1,其余比特为0。
可选地,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为2的所述预编码矩阵:
Figure PCTCN2017083978-appb-000034
Figure PCTCN2017083978-appb-000035
Figure PCTCN2017083978-appb-000036
R、S为正整数,R≤M,且S≤M,
ck和cy为所述加权合并因子,其中,ck,0用于对第i0和第i0+N/2个端口进行加权,ck,m用于对第im以及第im+N/2个端口进行加权,ck,R-1用于对第iR-1以及第iR-1+N/2个端口进行加权,cy,0用于对第j0以及第j0+N/2个端口进行加权,cy,n用于对第jn以及第jn+N/2个端口进行加权,cy,S-1用于对第jS-1以及第jS-1+N/2个端口进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
Figure PCTCN2017083978-appb-000037
为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
可选地,Ei和Ej相同,ck和cm不同;或
Ei和Ej不同,ck和cm相同;或
Ei和Ej不同,ck和cm不同;或
Ei和Ej相同,ck和cm相同。
可选地,所述第二信道信息为时间延迟因子;
所述第一信道信息和所述第二信道信息构成的所述预编码矩阵在时域的形式如下:
Figure PCTCN2017083978-appb-000038
其中,τm为所述N个第一向量中的第m个向量对应的所述时间延迟因子。
可选地,所述第二信道信息中包括第一子信道信息,所述第一子信道信息用于指示所述第一因子;
所述第一子信道信息未经过量化;或者
所述第一子信道信息经过第一量化,所述第一量化的量化阶数不大于预设的第一量化阶数阈值。
可选地,所述第二信道信息中包括第二子信道信息,所述第二子信道信息用于指示所述第二因子;
所述第二子信道信息未经过量化;或者
所述第二子信道信息经过第二量化,所述第一量化的量化阶数不小于预设的第二量化阶数阈值。
第八方面,本发明实施例提供一种第一设备,该第一设备具有实现第七方面提供的方法中第一设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方案中,该第一设备的结构中包括处理器和发送器和接收器,所述处理器被配置为支持第一设备执行第七方面提供的方法中相应的功能。所述发送器用于支持第一设备向第二设备发送上述方法中所涉及的消息或数据。所述接收器,用于从第二设备处接收上述方法中涉及的消息或数据。所述第一设备还可以包括存储器,所述存储器用于与处理器耦合,其保存第一设备必要的程序指令和数据。
第九方面,本发明实施例提供一种第二设备,该第二设备具有实现第七方面提供的方法中第二设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方案中,该第二设备的结构中包括发送器、接收器和处理器。所述接收器,用于支持第二设备从第一设备处接收上述方法中所涉及的消息或数据;所述发送器,用于支持第二设备向第一设备发送上述方法中所涉及的消息或数据;所述处理器,被配置为支持第一设备执行上述方法中相应的功能。所述第二设备还可以包括存储器,所述存储器用于与处理器耦合,其保存第二设备必要的程序指令和数据。
第十方面,本发明实施例提供了一种无线通信系统,该无线通信系统包括上述第七方面至第九方面任一方面所述的第一设备和第二设备。
第十一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第七方面至第十方面的任一方面所述的第一设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十二方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第七方面至第十方面的任一方面所述的第二设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
附图说明
图1为本发明实施例提供的无线通信系统的结构示意图;
图2为本发明实施例中第一设备和第二设备之间的交互图;
图3为波束方向的示意图;
图4~图8为本发明实施例中进行波束选择、加权合并过程的示意图;
图9为系统频带划分为多个子频带的示意图;
图10为本发明实施例中,信道信息反馈方式的示意图;
图11为一个极化方向的天线形成的波束的示意图;
图12为双极化天线,通过预编码产生的波束的示意图;
图13为本发明实施例提供的一种第一设备的结构示意图;
图14为本发明实施例提供的一种第二设备的结构示意图。
具体实施方式
为了更好地理解本申请的上述目的、方案和优势,下文提供了详细描述。该详细描述通过使用框图、流程图等附图和/或示例,阐明了装置和/或方法的各种实施方式。在这些框图、流程图和/或示例中,包含一个或多个功能和/或操作。本领域技术人员将理解到:这些框图、流程图或示例内的各个功能和/或操作,能够通过各种各样的硬件、软件、固件单独或共同实施,或者通过硬件、软件和固件的任意组合实施。
本发明实施例中,第二设备向第一设备发送参考信号,第一设备根据接收的参考信号进行信道估计,生成信道信息并反馈给第二设备,第二设备根据收到的信道信息确定预编码矩阵,并按照确定的预编码矩阵向第一设备发送数据。
本发明实施例中,按照第一设备反馈信道信息的不同,以及预编码矩阵的构成方式不同,分为方案一和方案二。
方案一中,第二设备发送的参考信号是未经过波束赋形的参考信号和经过波束赋形的参考信号,未经过波束赋形的参考信号对应于H=1,经过波束赋形的参考信号对应于H>1,对于H>1,不同的参考信号资源端口组对应的波束方向不同,对于一个参考信号资源端口组内的各个天线端口对应的波束方向相同,例如H=4组,每个组内8个天线端口,第一组的参考信号资源端口组内的8个天线端口都是经过相同的波束赋形得到波束方向1,第二组的参考信号资源端口组内的8个天线端口都是经过相同的波束赋形得到波束方向2,等等。第一设备根据接收的参考信号进行信道估计,向第二设备反馈用于对M个第一向量进行加权合并的加权合并因子的第二信道信息,该M个第一向量可为前述的预编码矩阵W对应的一个W1码字中包含的向量。这样,第二设备在生成预编码矩阵时,可根据收到的第二信道信息所指示的加权合并因子对M个第一向量进行加权合并,而不仅是从多个向量中选择一个向量,生成的预编码矩阵更精确,提高了第二设备进行数据发送的链路自适应的能力,提高了系统性能。
方案二中,若第二设备发送的参考信号是经过波束赋形后的参考信号,第一设备根据接收的参考信号进行信道估计,向第二设备反馈用于对所述参考信号的M个天线端口进行加权合并的加权合并因子的第二信道信息。这样,第二设备在生成预编码矩阵时,可根据收到的第二信道信息所指示的加权合并因子对M个天线端口进行加权合并,也能够生成较精确的预编码矩阵,同样提高了第二设备进行数据发送的链路自适应的能力,提高了系统性能。
下面,结合附图对本发明实施例进行详细说明。
首先,介绍对于方案一和方案二均适用的无线通信系统的构成。
图1为本发明实施例提供的无线通信系统的结构示意图。如图1所示,该无线通信系统包括:第一设备101和第二设备102。
其中,第二设备102向第一设备101发送参考信号,第一设备101根据从第二设备102接收的参考信号进行信道估计,并将用于表示信道估计结果的信道信息发送给第二设备102;第二设备102根据接收的信道信息,向第一设备101进行数据发送。
第一设备101和第二设备102的上述交互过程可如图2所示。
其中,第一设备101可为网络设备,比如:基站,第二设备102可为终端设备;或者第一设备101可为终端设备,第二设备102可为网络设备;再或者第一设备101和第二设备102均为终端设备;再或者,第一设备101和第二设备102均为网络设备。
只要第二设备102向第一设备101发送参考信号,第一设备101根据参考信号进行信 道估计并反馈信道信息,都可使用本发明实施例提供的方案一或方案二进行信道信息上报以及数据发送,以获取更精确的信道估计结果,提高链路自适应性能。
并且,无论第一设备101和第二设备102之间通信时采用何种双工方式,比如前述的FDD双工方式,抑或是时分双工(Time Division Duplexing,TDD)的双工方式,均可使用本发明实施例提供的方案一或方案二,获取精确的信道估计结果,提高链路自适应性能。
其中,第一设备101和第二设备102之间通信的通信制式可包括但不限于:全球移动通信系统(Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)IS-95、码分多址(Code Division Multiple Access,CDMA)2000、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced)、个人手持电话系统(Personal Handy-phone System,PHS)、802.11系列协议规定的无线保真(Wireless Fidelity,WiFi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX),以及未来演进的各种无线通信系统。
其中,前述的终端设备可以是无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户设备(User Equipment)。
前述的网络设备可包括基站,或用于控制基站的无线资源管理设备,或包括基站和用于控制基站的无线资源管理设备;其中基站可为宏站或小站,比如:小小区(small cell)、微小区(pico cell)等,基站也可为家庭基站,比如:家庭节点B(Home NodeB,HNB)、家庭演进节点B(Home eNodeB,HeNB)等,基站也可包括中继节点(relay)等。
比如:对于TDD LTE、FDD LTE或LTE-A等LTE系统,前述的网络设备可为演进节点B(evolved NodeB,eNodeB),终端设备可为UE;对于TD-SCDMA系统或WCDMA系统,前述的网络设备可包括:节点B(NodeB)和/或无线网络控制器(Radio Network Controller,RNC),终端设备可为UE;对于GSM系统,前述的网络设备可包括基站收发台(Base Transceiver Station,BTS)和/或基站控制器(Base Station Controller,BSC),终端设备可为移动台(Mobile Station,MS);对于WiFi系统,前述的网络设备可包括: 接入点(Access Point,AP)和/或接入控制器(Access Controller,AC),终端设备可为站点(STAtion,STA)。
下面,参照图1所示的无线通信系统,分别介绍方案一和方案二。
【方案一】
方案一中,第一设备101向第二设备102发送的信道信息如下面的表1所示。
表1、方案一中的信道信息
Figure PCTCN2017083978-appb-000039
一、第一向量、信道信息
其中,M个第一向量为第一向量的全集中的M个第一向量。该M值可预先设定,比如在第一设备101和第二设备102通信时共同遵循的通信标准中预先定义,也可由第一设备101在向第二设备102发送第一信道信息之前通知第二设备102,或者由第二设备102在发送参考信号之间通知第一设备101。
这里,将第一向量的全集记为B=[b0 b1 … bL-1],其中,L为正整数,为第一向量的全集中包括的第一向量的个数。
第一向量的全集中,每一个第一向量可代表第二设备102向第一设备101发送的一个波束方向。
参见图3,设L=12,则B=[b0 b1 … b11],则向量b0 b1 … b11分别代表图3中的12个波束方向。
第一设备101通过向第二设备102发送第一信道信息,来通知第二设备102:第一设备101期望从哪些波束方向上接收参考信号;以及通过向第二设备102发送第二信道信息,来通知第二设备102:第一设备101期望接收的合成波束是对第一信道信息中对应的各个波束方向(各个第一向量)的幅度和相位加权的加权合并的调整量。
第一设备101在确定第一信道信息和第二信道信息时,可对参考信号进行测量,得到信道估计的结果,确定能够达到最大接收信噪比(Signal to Noise Ratio,SNR)或者是容量最大化时,第二设备102需要在哪些波束方向上发送数据,以及第二设备102需要在发送数据的各个波束方向上的幅度和相位加权的加权合并的调整量,然后通过第一信道信息和第二信道信息通知第二设备102。
仍设L=12,B=[b0 b1 … b11],若预编码矩阵采用双码本结构:W=W1×W2,M=4,第一设备101选择了前四个第一向量:b0,b1,b2,b3,则预编码矩阵W可表示为:
Figure PCTCN2017083978-appb-000040
其中,
Figure PCTCN2017083978-appb-000041
其中,第一信道信息即用于标识b0,b1,b2,b3
第二信道信息为ck=pkk,其中,
Figure PCTCN2017083978-appb-000042
αk∈{α0123}∈{1,-1,j,-j},其中,pk为幅度因子,αk为相位因子,p0用于对b0进行幅度加权,α0用于对b0进行相位加权,以此类推。||q||为归一化因子。这里的幅度因子和相位因子的取值仅为举例。整个波束选择、加权合并的过程可如图4所示。其中,通过W1选择了波束b0,b1,b2,b3,利用αk对波束进行相位加权,得到了相位加权后的向量b'0,b'1,b'2,b'3,利用pk进行幅度加权得到了波束b”0,b”1,b”2,b”3,再对向量b”0,b”1,b”2,b”3进行合并,得到合并后的一个向量,该向量对应于一个合成波束。图4中相位加权在前,幅度加权在后,这里仅为示意,实际上,也可以幅度加权在前,相位加权在后,或者幅度加权和相位加权同时进行。可选地,若对于各个向量相位加权量都相同,则第一设备101可针对多个波束仅反馈一个相位因子;同理,若对于各个向量幅度加权值都相同,则第一设备101也可针对多个向量仅反馈一个幅度因子,比如:p,如图5所示。
第一向量可为前述的预编码矩阵W对应的一个W1码字中包含的向量,其可为离散傅里叶变换(Discrete Fourier Transform,DFT)向量,比如:如下面公式1所示的形式。
Figure PCTCN2017083978-appb-000043
其中,L和I为正整数,L表示第一向量的全集中包括的第一向量的个数。即表示第二设备102可发送的不同波束方向的波束个数。I,即第一向量的维度,当第二设备102发送参考信号的天线采用单极化的极化方式时,为参考信号的天线端口数;当第二设备102发送参考信号的天线采用双极化的极化方式时,为参考信号的天线端口数的一半。其中,参考信号的天线端口即为第二设备102发送参考信号所使用的天线端口。
比如:对于L=32,I=4,则
B=[b0 b1 … b31]……公式6
其中,
Figure PCTCN2017083978-appb-000044
第二信道信息可仅包括第一因子,或仅包括第二因子,或既包括第一因子也包括第二因子。
比如:若仅包括第一因子,则在对M个第一向量进行加权合并时,可不对各个向量进行相位加权,或者按照预设的相同的相位加权量对M个第一向量进行相位加权,再或者按照预设的针对不同的第一向量的不同的相位加权量进行相位加权,由于是预设的,因此第一设备101无需向第二设备102反馈。
再比如:若仅包括第二因子,则在对M个第一向量进行加权合并时,可按照预设的相同的幅度值对各个第一向量进行加权,或者按照预设的针对不同的第一向量的不同的幅度因子分别对各个第一向量进行加权,由于是预设的,因此第一设备101无需向第二设备102反馈。
第二因子中的相位因子和时间延迟因子,实际是分别从频域和时域的角度对第一向量进行相位加权。时域上的时间延迟即相当于频域上的相位加权。因此,若需要反馈相位因子,则只需反馈相位因子和时间延迟因子两者之一。可选地,相位因子是子带反馈,时间延迟因子是宽带反馈。
第三信道信息用于指示参考信号的两组天线端口间的相位差。比如:两组天线端口具有不同的极化方向,则该相位差表示具有不同极化方向的两组天线端口之间的相位差。比如:一共有8个天线端口,其中4个天线端口是水平极化,另4个天线端口是垂直极化,则第三信道信息用于表示这两组水平极化和垂直计划的天线端口之间的相位差。
M个第一向量是第一向量全集中的部分第一向量。一种可选的实现方式是:将第一向量的全集分为K个向量组,K为正整数。M个第一向量属于X个向量组,这X个向量组为K个向量组中的部分或全部向量组。K为正整数,X为不大于K的正整数。
这K个向量组中,不同向量组包括的第一向量有重复或不重复。
比如:第一向量的全集为B=[b0 b1 … b31],其中,向量b0 b1 … b31即为所有32个第一向量。
第一向量不重复的分组方式可为:b0 b1 … b31分为8个组(K=8),每组有4个第一向量。比如:b0,b1,b2,b3为一个向量组,b4,b5,b6,b7为一个向量组,依次类推。
第一向量重复的分组方式可为:b0 b1 … b31分为16个组(K=16),每组有4个第一向量。比如:b0,b1,b2,b3为一个向量组,b2,b3 b4,b5为一个向量组,依次类推。
下面也是一种重复的分组方式:32个第一向量共分为16组,组编号k为0~15,K=16。
X(k)∈{[b2k mod 32 b(2k+1)mod 32 b(2k+2)mod 32 b(2k+3)mod 32]:k=0,1,…,15}……公式7
其中,
Figure PCTCN2017083978-appb-000045
若M个第一向量包括两个向量组X(i)和X(j),则
Figure PCTCN2017083978-appb-000046
Figure PCTCN2017083978-appb-000047
其中,bi,0,bi,1,bi,2,bi,3为向量组i中的四个向量,bj,0,bj,1,bj,2,bj,3为向量组j中的四个向量,这八个向量共同构成M个第一向量,M=8,||q||是归一化因子,等于W中所有元素的模的平方和后开根号,目的就是使得所有的波束的功率和为1。
若采用上述分组的方式,则第一信道信息,包括:M个第一向量构成的X个向量组中 的每一个向量组在K个向量组中的组编号。比如:用于指示前面的向量组号i和j的信息。这样的反馈方式可减少第一信道信息的信息比特数。
假设第一设备101选择了上述向量组i和向量组j,则W2用于分别对W1 (i)和W1 (j)中的所有的第一向量进行加权,比如:既包括幅度加权也包括相位加权,则W2的表达式可为:
Figure PCTCN2017083978-appb-000048
其中ci=[ci,0 ci,1 ci,2 ci,3]T,cj=[cj,0 cj,1 cj,2 cj,3]T
ci,k=pi,ki,k。比如:
Figure PCTCN2017083978-appb-000049
αi,k∈{1,-1,j,-j},其中αi,k为第一向量合并前的相位调整量,给出的{1,-1,j,-j}只是一个例子,不限于这4个取值,pi,k为第一向量进行合并前的幅度调整量,同一个向量组内部的各个第一向量的幅度因子和加权因子可以是相同的。
将第一向量分组的一个应用场景是:可以将多个波束分为不同的波束簇(cluster),实际应用中,第一设备101可在这多个簇中,选择接收到的参考信号的接收信号强度或功率值较大的波束簇。这样,第一设备101在反馈了信道信息后,第二设备102可分别在这多个波束簇的波束上进行数据发送,第一设备101则可从多个接收质量较好的波束上接收下行数据,性能更好。
参考图6,首先,选择两组第一向量,向量组1包括b0,b1,b2,b3四个第一向量,四个向量所代表的波束构成较强的波束簇:簇1;向量组2包括b4,b5,b6,b7四个第一向量,四个向量所代表的波束构成较强的波束簇:簇2。W1(1)用于选择簇1,W1(2)用于选择簇2。α0123分别用于对第一向量b0,b1,b2,b3代表的波束进行相位加权,相位加权后的第一向量分别为:b'0,b'1,b'2,b'3。α4567分别用于对第一向量b4,b5,b6,b7代表的波束进行相位加权,相位加权后的第一向量分别为:b'4,b'5,b'6,b'7。图6中,向量组1(即簇1)中的各个向量的幅度因子均为p0,向量组2(即簇2)中的各个向量的幅度因子均为p1,因此第一设备101在发送第二信道信息时,可对于向量组1中的各个第一向量仅反馈一个幅度因子p0,对于向量组2中的各个第一向量仅反馈一个幅度因子p1。
可选地,第一设备101还可向第二设备102发送用于指示X的值的信息,即M个第一向量分属于多少个向量组;或者第一设备101从第二设备102处接收用于指示该X的值的信息。
上述举例中,不同向量组中包括的第一向量的个数是相等的,但在实际实现时,不同向量组中包括的第一向量的个数也可以不等,如图7所示。
在一种可选的实现方式中,上述X个向量组中,不同向量组对应的第二信道信息相同,对于不同的向量组,第一设备101仅向第二设备102发送一个相同的第二信道信息,这样可节省第二信道信息的比特数。
另一种可选的实现方式时,不同的向量组对应的第二信道信息不同,对于不同的向量组,第一设备101需要分别反馈第二信道信息。
参考表1,第二信道信息用于对M个第一向量中的N个第一向量进行加权合并。则存 在以下几种情况:
情况一、M=N,则对于所有M个第一向量均进行加权合并,第二信道信息需要包括这M个第一向量的每一个向量的加权因子。
情况二、N<M,则有两种方式可以实现从M个第一向量中选择N个第一向量:
第二信道信息指示的加权合并因子包括零元素。
比如:M个第一向量中的某个第一向量对应的幅度因子为0,则实现了从M个第一向量中去除该幅度因子为0的第一向量,即没有选择该幅度因子对应的第一向量。
通过发送第四信道信息,用于指示从M个第一向量中选择N个第一向量。
若第一设备101发送了第四信道信息,则第一设备101在发送第二信道信息时,无需发送M个第一向量中的每一个第一向量的加权合并因子,而是只发送选择后的N个第一向量中的每一个第一向量的加权合并因子即可。
若M个第一向量包括X个向量组,则针对X个向量组中的每一个向量组,均可有对应的第四信道信息,用于从该向量组中选择第一向量。不同向量组中选择的第一向量的个数可以相同或不同。
参考图8,每个向量组内部进行列选择,即第一向量的选择后再进行加权合并。并且每个向量组内部的列选择的个数可以是不同的。比如:对于W1(1),选择2个第一向量(即选择两个波束);对于W1(2),选择3个第一向量(即选择3个波束),再分别对2个波束和3个波束进行相位加权和幅度的调整。
以上,介绍了第一向量以及各个信道信息。下面,介绍如何根据这些信道信息构造预编码矩阵。
二、预编码矩阵的构造
1、基于第一信道信息、第二信道信息和第三信道信息构成预编码矩阵,且秩为1。
预编码矩阵W为:
Figure PCTCN2017083978-appb-000050
ck=[ck,0 … ck,m … ck,M-1]T,Bi=[bi,0 … bi,m … bi,M-1]
其中,Bi为M个第一向量,ck为加权合并因子,其中,ck,0用于对bi,0进行加权,ck,m用于对bi,m进行加权,ck,M-1用于对bi,M-1进行加权;m为整数,且0≤m≤M;
Figure PCTCN2017083978-appb-000051
为第三信道信息指示的参考信号的两组天线端口间的相位差;||q||为归一化因子。
若对M个第一向量采用分组的方式,则Bi为前述的K个向量组中的组号为i的向量组;此时,第一信道信息包括用于指示i的信息。若Bi表示为
Figure PCTCN2017083978-appb-000052
其中X个向量组
Figure PCTCN2017083978-appb-000053
为K个向量组中的组号依次为i0~iX-1的向量组;x为整数,且0≤x≤X-1;X为正整数;K个向量组中的所有第一向量构成所述第一向量的全集,K为正整数;则第一信道信息包括:分别用于指示i0~iX-1的信息。
2、基于第一信道信息、第二信道信息、第三信道信息和第四信道信息构成预编码矩阵,且秩为1。
预编码矩阵W为:
Figure PCTCN2017083978-appb-000054
ck=[ck,0 … ck,m … ck,N-1]T,Bi=[bi,0 bi,m … bi,M-1]
其中,Bi为M个第一向量,ck为对N个第一向量进行加权合并的加权合并因子,其中,ck,0用于对
Figure PCTCN2017083978-appb-000055
进行加权,ck,m用于对
Figure PCTCN2017083978-appb-000056
进行加权,ck,N-1用于对
Figure PCTCN2017083978-appb-000057
进行加权;m为整数,且0≤m≤M-1;
Figure PCTCN2017083978-appb-000058
为第三信道信息指示的参考信号的两组天线端口间的相位差;
Figure PCTCN2017083978-appb-000059
的行数为M,第四信道信息为用于指示m0~mN-1的信息;||q||为归一化因子。
可选地,所述第一设备101向所述第二设备102发送用于指示所述N的值的信息;或
所述第一设备101从所述第二设备102处接收用于指示所述N的值的信息。
可选地,第四信道信息可用于指示上述
Figure PCTCN2017083978-appb-000060
或者
第四信道信息包括M比特,所述M比特中,第m0~mN-1为1,其余比特为0。
3、基于第一信道信息、第二信道信息和第三信道信息构成预编码矩阵,且秩为2。
预编码矩阵W为:
Figure PCTCN2017083978-appb-000061
ck=[ck,0 ck,m … ck,R-1]T,Bi=[bi,0 bi,m … bi,R-1],
cy=[cy,0 cy,n … cy,S-1]T,Bj=[bj,0 bj,n … bj,S-1],
R、S为正整数,R≤M,且S≤M,Bi和Bj共同构成所述M个第一向量;
ck和cy为所述加权合并因子,其中,ck,0用于对bi,0进行加权,ck,m用于对bi,m进行加权,ck,R-1用于对bi,R-1进行加权,cy,0用于对bj,0进行加权,cy,n用于对bj,n进行加权,cy,S-1用于对bj,S-1进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
Figure PCTCN2017083978-appb-000062
为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
其中,Bi和Bj相同,ck和cm不同;或
Bi和Bj不同,ck和cm相同;或
Bi和Bj不同,ck和cm不同;或
Bi和Bj相同,ck和cm相同。
4、若第二信道信息为时间延迟因子,则由第一信道信息和第二信道信息构成的预编码矩阵在时域的形式如下:
Figure PCTCN2017083978-appb-000063
其中,τm为N个第一向量中的第m个向量对应的时间延迟因子。
三、2维码本
以上方案一的描述可用于第二设备102的发送天线是线阵的情况,上述预编码矩阵的码本为1维(Dimension,D)码本。上述方案一也可用于第二设备102的发送天线包括水平方向和垂直方向的天线阵列情况,此时,预编码矩阵的码本为2D码本。对于2D码本的情况,预编码矩阵仍可表示为:W=W1W2
但与1D码本不同的是,W1中的每一个第一向量是由两个维度的向量进行克罗内克积得到的。这两个维度的向量分别称为“第二向量”和“第三向量”。
Bi为M个第一向量,Bi=[bi,0 bi,m … bi,M-1];
Bi中的每一个第一向量由第二向量组中的一个第二向量和一个第三向量组中的一个 第三向量进行克罗内科积得到:
Figure PCTCN2017083978-appb-000064
其中,bi,m为第一向量,
Figure PCTCN2017083978-appb-000065
为编号为p的第二向量组中的编号为m1的第二向量,
Figure PCTCN2017083978-appb-000066
为编号为t的第三向量组中的编号为m2的第三向量;
第一信道信息包括:第一子信道信息和第二子信道信息;
第一子信道信息用于指示p,第二子信道信息用于指示t;
Figure PCTCN2017083978-appb-000067
其中N1为天线阵列中第一维度(比如:前述的水平天线)的天线端口数,Q1为对构成第一维度天线的码字集合的DFT向量进行过采样的因子,S1正整数,
Figure PCTCN2017083978-appb-000068
其中N2为天线阵列中第二维度的天线端口数,Q2为对构成第二维度天线的码字集合的DFT向量进行过采样的因子,S2为正整数,
可选地,第二向量组的组的个数大于等于2,第三向量组的组个数等于1;或
第三向量组的组的个数大于等于2,第二向量组的组个数等于1;或
第三向量组的组的个数等于1,第二向量组的组个数等于1。
可选地,第二向量和第三向量为DFT向量;
第二向量的全集和第三向量的全集中包括向量的个数是相互独立地配置的。
四、参考信号的天线端口分组的情况
前面方案一的描述可适用于参考信号的天线端口不分组的情况。另一种可能的情况是,参考信号在S个天线端口上,而这S个天线端口属于H个参考信号资源端口组,H为大于等于1的整数。参考信号为经过波束赋形的参考信号。
当第二设备102发送参考信号的天线采用单极化的极化方式时,所述第一向量的维度是每个参考信号资源端口组内的天线端口数;当第二设备102发送参考信号的天线采用双极化的极化方式时,所述第一向量的维度是每个参考信号资源端口组内的天线端口数的一半。
可见,当H=1时,即参考信号的天线端口不分组,即为前述的方案一的情况,可适用于未经过波束赋形的参考信号的情况。
比如:参考信号的天线端口数为32个,H=1,只有一个参考信号资源端口组,该一个参考信号资源端口组内的端口数为32,则第一向量的维度为32或者16。
再比如:参考信号的天线端口数为32个,H=4,则32个天下你端口分为4个参考信号资源端口组,每个参考信号资源端口组内的天线端口的个数为8。比如:第一个参考信号资源端口组内的天线端口为端口(port)0至port7,第二个参考信号资源端口组内的天线端口为port8至port15,第三个参考信号资源端口组内的天线端口为port16至port23,第四个参考信号资源端口组内的天线端口为port24至port31。则第一向量的维 度为8(单极化)或者4(双极化)。
可选地,第一设备101对还通过对参考信号进行测量,得到第七信道信息,并将所述第七信道信息发送给所述第二设备;
所述第七信道信息,包括用于从所述H个参考信号资源端口组中选择Y个参考信号资源端口组的标识信息。
其中,第七信道信息与其他信道信息不在同一个子帧中反馈,即单独反馈。且第七信道信息的反馈周期大于等于其他信道信息。
其中,M个第一向量可根据H个参考信号资源端口组选择出来的Y个参考信号资源端口组测量得到,Y为正整数。
可选地,M个第一向量对应于X个向量组,每个向量组对应于Y个参考信号资源端口组的一个参考信号资源端口组,X=Y;
或者M个第一向量对应于X个向量组,至少两个向量组对应于Y个参考信号资源端口组的一个参考信号资源端口组,X>Y。
对于第一设备101向第二设备102反馈第七信道信息的情形,设
Figure PCTCN2017083978-appb-000069
其中,X个向量组
Figure PCTCN2017083978-appb-000070
为K个向量组中的组号依次为i0至iX-1的向量组;x为整数,且0≤x≤X-1;X为正整数;
所述K个向量组中的所有第一向量构成所述第一向量的全集,K为正整数;
所述第一信道信息包括:分别用于指示i0至iX-1的信息。
Figure PCTCN2017083978-appb-000071
是第一设备101对第H个参考信号资源端口组中的Y个参考信号资源端口组中第一个参考信号资源端口组发送的参考信号进行测量得到的,
Figure PCTCN2017083978-appb-000072
是第一设备101对第H个参考信号资源端口组中的Y个参考信号资源端口组中的第x个参考信号资源端口组上发送的参考信号进行测量得到的,
Figure PCTCN2017083978-appb-000073
是第一设备101对第H个参考信号资源端口组中的Y个参考信号资源端口组中的第X个参考信号资源端口组上发送的参考信号测量得到的。
【方案二】
方案一中,第一设备101向第二设备102发送的信道信息如下面的表2所示。
表2、方案二中的信道信息
Figure PCTCN2017083978-appb-000074
可选地,第二信道信息指示的加权合并因子包括零元素。
方案二中,预编码矩阵的构造的方式如下:
1、基于第一信道信息、第二信道信息、第三信道信息,按照如下方式构成秩为1的预编码矩阵:
Figure PCTCN2017083978-appb-000075
ck=[ck,0 … ck,m … ck,N-1]T,Bi=[bi,0 bi,m … bi,M-1]
其中,
Figure PCTCN2017083978-appb-000076
对应于第一信道信息,ck为对N/2个端口进行加权合并的加权合并因子,其中,ck,0用于对第m0以及m0+N/2个端口进行加权,ck,m用于对第mm个以及第mm+N/2端口进行加权,ck,N-1用于对第mN-1以及第mN-1+N/2个端口进行加权;m为整数,且0≤m≤M-1;
Figure PCTCN2017083978-appb-000077
为第三信道信息指示的参考信号的两组天线端口间的相位差;
Figure PCTCN2017083978-appb-000078
的行数为M,||q||为归一化因子。
可选地,第一设备101向第二设备102发送用于指示N的值的信息;或第一设备101从第二设备102处接收用于指示N的值的信息。
可选地,第一信道信息用于指示
Figure PCTCN2017083978-appb-000079
或者
第一信道信息包括M比特,M比特中,第m0至mN-1为1,其余比特为0。
2、基于第一信道信息、第二信道信息和第三信道信息,按照如下方式构成秩为2的预编码矩阵:
Figure PCTCN2017083978-appb-000080
Figure PCTCN2017083978-appb-000081
Figure PCTCN2017083978-appb-000082
R、S为正整数,R≤M,且S≤M,
ck和cy为加权合并因子,其中,ck,0用于对第i0和第i0+N/2个端口进行加权,ck,m用于对第im以及第im+N/2个端口进行加权,ck,R-1用于对第iR-1以及第iR-1+N/2个端口进行加权,cy,0用于对第j0以及第j0+N/2个端口进行加权,cy,n用于对第jn以及第jn+N/2个端口进行加权,cy,S-1用于对第jS-1以及第jS-1+N/2个端口进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
Figure PCTCN2017083978-appb-000083
为第三信道信息指示的参考信号的两组天线端口间的相位差;||q||为归一化因子。
可选地,Ei和Ej相同,ck和cm不同;或
Ei和Ej不同,ck和cm相同;或
Ei和Ej不同,ck和cm不同;或
Ei和Ej相同,ck和cm相同。
3、第二信道信息为时间延迟因子,第一信道信息和第二信道信息构成的预编码矩阵在时域的形式如下:
Figure PCTCN2017083978-appb-000084
其中,τm为N个第一向量中的第m个向量对应的时间延迟因子。
这里以参考信号为波束赋形后的信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)为例,这里,参考信号的每一个天线端口都经过了预编码处理后,该预编码可以是数字波束赋型(digital beamforming),或者是模拟波束赋型,已经形成了波束方向。
如图11所示,b0,b1,b2,b3四个波束方向分别对应天线端口:port 0、port1、port2和port3。
图11中仅示出一个极化方向的天线形成的波束,如果考虑双极化天线,则两个极化方向的两组天线分别产生相同的波束方向,如图12所示,左侧的一组4个天线通过预编码加权产生波束1,波束2,波束3,波束4,与之对应的另一组极化方向的右侧的四个天线也通过预编码加权产生波束1,波束2,波束3,波束4。第二设备102总共在8个天线端口上发送CSI-RS。
第二设备102到第一设备101的传播路径假设有4条路径,其中直射径ray1,反射径ray0、ray2和ray3。第二设备102发射四个波束进行扫描,分别为:beam0,beam1,beam2,beam3,由于beam0,beam2,beam3与传播路径更加匹配,因此第一设备101可以接收到b0,b2,b3的能量,b1方向的波束由于没有传播路径,因此第一设备101无法检测到其能量。
第一设备101确定检测到能量超过一定门限的波束b0,b2,b3对应的端口port0,port2,port3,另一个极化方向的port4,port6,port7。第一设备101将天线端口选择信息(即前述的第一信道信息)上报,以及每个天线端口上的幅度和相位的加权信息(即前述的第二信道信息)进行上报。
W=WsW2,其中
Figure PCTCN2017083978-appb-000085
em是单位向量,
Figure PCTCN2017083978-appb-000086
em即第m个元素为1,其他元素都为0的列向量,em的列向量的维度和W1'参考信号的端口数的一半相等。
【信道信息的反馈方式】
无论是方案一还是方案二,第一设备101在反馈信道信息时,可考虑对于不同的信道信息采用不同的反馈方式。
下面的描述中,第一信道信息、第二信道信息、第三信道信息的反馈方式既适用于方案一也适用于方案二,只不过方案一和方案二中,这些信道信息的内容不同。第四信道信息和第七信道信息的反馈方式仅适用于方案一。
下面,具体介绍各种反馈方式。
反馈方式包括:宽带反馈还是子带反馈、反馈周期、模拟反馈还是量化后反馈。下 面对各种反馈方式逐一介绍。
一、宽带反馈或子带反馈
宽带反馈是指,针对整个系统带宽,在一个反馈周期内,仅反馈一次信道信息。
子带反馈是指,针对系统带宽内预设的多个子频带,在一个反馈周期内,每一个子频带都反馈信道信息。
采用子带反馈,信道信息反馈的精度更高,但信息开销也比较大。采用子带反馈,信道信息反馈的精度低,相应地信息开销较小。可以对还原信道特性重要的一些信道信息,或者对于不同子频带取值差异较大的信道信息采用子带反馈;而对于还原信道特性不太重要的信道信息,或者对于不同子频带取值区别不大的信道信息可采用宽带反馈。
参考图9,假设整个系统频带被预先分为10个子频带(subband):子频带1~子频带10。子带反馈是指第一设备101针对这10个子频带中的每一个子频带,均生成对应的信道信息。宽带反馈是指第一设备101针对整个系统频带生成一个信道信息。
二、反馈周期
可以对还原信道特性重要的一些信道信息,或者随时间变换较快的信道信息采用较短的反馈周期进行反馈;而对于还原信道特性不太重要的信道信息,或者随时间变换较慢的信道信息采用较长的反馈周期进行反馈。
三、模拟反馈或量化后反馈
可以对还原信道特性重要的一些信道信息采用高精度的量化方式进行量化后反馈,比如:量化阶数较大;而对于还原信道特性不太重要的信道信息可采用低精度的量化方式进行量化后反馈。
对于不同的信道信息采用不同的反馈方式的目的是既保证信道信息的反馈精度,以能够生成高精度的预编码矩阵,又能够尽量减少信息反馈量。
在实际应用时,可根据不同的产品实现采用不同的反馈方式。
比如:对于宽带反馈还是子带反馈,可采用表3中的任一种反馈方式。
表3、宽带反馈或子带反馈的反馈方式
Figure PCTCN2017083978-appb-000087
Figure PCTCN2017083978-appb-000088
对于反馈周期,可采用如下的可选方式:
方式一
第一信道信息的反馈周期比第二信道信息的反馈周期长,不反馈第三信道信息和第四信道信息。
方式二
第一信道信息的反馈周期比第二信道信息和第三信道信息的反馈周期长,不反馈第四信道信息。
方式三
第一信道信息和第二信道信息是长期反馈,第三信道信息是短期反馈。
方式四
第一信道信息和第二信道信息的反馈周期均比第三信道信息的反馈周期长。
方式五
第一信道信息的反馈周期比第二信道信息、第三信道信息和第四信道信息的反馈周期长。
方式六
第一信道信息和第二信道信息的反馈周期比第三信道信息和第四信道信息的反馈周期长。
方式七
第一信道信息、第二信道信息和第四信道信息的反馈周期比第三信道信息的反馈周期长。
方式八
第一信道信息和第四信道信息的反馈周期比第二信道信息和第三信道信息的反馈周期长。
除了反馈上述信道信息之外,第一设备101还可对第二设备102发送的参考信号进行测量,得到第五信道信息和/或第六信道信息,并将这些信息发送给第二设备102。
其中,第五信道信息,包括用于指示第二设备102到第一设备101的数据空间复用的数目的信息,比如:LTE系统中的RI。第六信道信息,包括用于指示第二设备102到第一设备101的信道的信道质量的信息,比如:LTE系统中的CQI。第五信道信息和第六信道信息的反馈方式可既适用于方案一也适用于方案二。
在不反馈第三信道信息和第四信道信息的情况下,可采用如下的信道信息反馈方式:
第一信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息和第六信道信息是在第二子帧以第二周期反馈的;第一周期不小于第二周期;或
第一信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息是在第二子帧以第二周期反馈的,第六信道信息是在第三子帧以第三周期反馈的;第一周期不小于第二周期,且第二周期不小于第三周期;或
第一信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息是在第二子帧以第二周期反馈的,第六信道信息是在第三子帧以第三周期反馈的;第一周期不小于第二周期,且第二周期不小于第三周期;或
第五信道信息是在第一子帧以第一周期反馈的,第一信道信息是在第二子帧以第二周期反馈的,第二信道信息是在第三子帧以第三周期反馈的,第六信道信息是在第四子帧以第四周期反馈的;第一周期不小于第二周期,第二周期不小于第三周期,第三周期不小于第四周期。
在不反馈第四信道信息的情况下,可采用如下的信道信息反馈方式:
第一信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息和第三信道信息是在第二子帧以第二周期反馈的,第六信道信息是在第三子帧以第三周期反馈的;第一周期不小于第二周期,且第二周期不小于第三周期;或
第一信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息、第三信道信息和第六信道信息是在第二子帧以第二周期反馈的;第一周期不小于第二周期;或
第一信道信息、第二信道信息和第五信道信息是在第一子帧以第一周期反馈的,第三信道信息和第六信道信息是在第二子帧以第二周期反馈的;第一周期不小于第二周期;或
第一信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息是在第二子帧以第二周期反馈的;第三信道信息和第六信道信息是在第三子帧以第三周期反馈的;第一周期不小于第二周期,且第二周期不小于第三周期;或
第一信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息是在第二子帧以第二周期反馈的,第三信道信息是在第三子帧以第三周期反馈的,第六信道信息是在第四子帧以第四周期反馈的;第一周期不小于第二周期,第二周期不小于第三周期,且第三周期不小于第四周期;或
第五信道信息是在第一子帧以第一周期反馈的,第一信道信息是在第二子帧以第二 周期反馈的,第二信道信息是在第三子帧以第三周期反馈的,第三信道信息是在第四子帧以第四周期反馈的,第六信道信息是在第五子帧以第五周期反馈的;第一周期不小于第二周期,第二周期不小于第三周期,第三周期不小于第四周期,且第四周期不小于第五周期。
在既反馈第三信道信息,也反馈第四信道信息的情况下,可采用如下的信道信息反馈方式:
第一信道信息、第四信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息和第三信道信息是在第二子帧以第二周期反馈的,第六信道信息是在第三子帧以第三周期反馈的;第一周期不小于第二周期,且第二周期不小于第三周期;或
第一信道信息、第四信道信息和第五信道信息是在第一子帧以第一周期反馈的,第二信道信息和第三信道信息和第六信道信息是在第二子帧以第二周期反馈的;第一周期不小于第二周期;或
第五信道信息是在第一子帧以第一周期反馈的,第一信道信息和第四信道信息是在第二子帧以第二周期反馈的,第二信道信息和第三信道信息是在第三子帧以第三周期反馈的,第六信道信息是在第四子帧以第四周期反馈的;第一周期不小于第二周期,第二周期不小于第三周期,且第三周期不小于第四周期;或
第五信道信息是在第一子帧以第一周期反馈的,第一信道信息和第四信道信息是在第二子帧以第二周期反馈的,第二信道信息、第三信道信息和第四信道信息是在第三子帧以第三周期反馈的;第一周期不小于第二周期,第二周期不小于第三周期;或
第五信道信息、第一信道信息、第二信道信息和第四信道信息是在第一子帧以第一周期反馈的,第三信道信息和第六信道信息是在第二子帧以第二周期反馈的;第一周期不小于第二周期;或
第五信道信息、第一信道信息和第四信道信息是在第一子帧以第一周期反馈的,第二信道信息是在第二子帧以第二周期反馈的,第三信道信息和第六信道信息是在第三子帧以第三周期反馈的;第一周期不小于第二周期,且第二周期不小于第三周期;或
第五信道信息、第一信道信息和第四信道信息是在第一子帧以第一周期反馈的,第二信道信息是在第二子帧以第二周期反馈的,第三信道信息是在第三子帧以第三周期反馈的,第六信道信息是在第四子帧以第四周期反馈的;第一周期不小于第二周期,第二周期不小于第三周期,且第三周期不小于第四周期;或
第五信道信息是在第一子帧以第一周期反馈的,第一信道信息和第四信道信息是在第二子帧以第二周期反馈的,第二信道信息是在第三子帧以第三周期反馈的,第三信道信息是在第四子帧以第四周期反馈的,第六信道信息是在第五子帧以第五周期反馈的;第一周期不小于第二周期,第二周期不小于第三周期,第三周期不小于第四周期,且第四周期不小于第五周期。
图10示出了一种信道信息的可能的反馈方式。
对于模拟反馈或量化反馈,针对第二信道信息可采用灵活的反馈方式。
比如:第二信道信息中包括第三子信道信息,第三子信道信息用于指示第一因子。其中,第三子信道信息未经过量化;或者第三子信道信息经过第一量化,第一量化的量化阶数不大于预设的第一量化阶数阈值。
可选地,第二信道信息中包括第四子信道信息,第四子信道信息用于指示第二因 子。其中,第四子信道信息未经过量化;或者第四子信道信息经过第二量化,第二量化的量化阶数不小于预设的第二量化阶数阈值。
图13为本发明实施例提供的一种第一设备的结构示意图。如图13所示,该第一设备包括:接收模块1301、处理模块1302和发送模块1303。
在一种可选的实现方式中,
接收模块1301,用于接收第二设备发送的参考信号,所述参考信号在S个天线端口发送,所述S个天线端口属于H个参考信号资源端口组,S、H为大于等于1的整数;
处理模块1302,用于所述参考信号进行测量,得到第一信道信息和第二信道信息;
发送模块1303,用于将所述第一信道信息和所述第二信道信息发送给第二设备;
所述第一信道信息,包括M个第一向量的标识信息,M为不小于2的整数;
所述第二信道信息,包括对所述M个第一向量中的N个第一向量进行加权合并的加权合并因子的信息,N为不大于M的正整数;
所述加权合并因子包括:第一因子和/或第二因子;
所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
所述第一信道信息和所述第二信道信息用于构成预编码矩阵;
所述第一向量的维度是每个参考信号资源端口组内的天线端口数,或者所述第一向量的维度是每个参考信号资源端口组内的天线端口数的一半。
该可选的实现方式下,该第一设备的其他可选实现可参考前述的方案一中第一设备101。其中,接收模块1301用于执行第一设备101的接收操作,处理模块1302用于执行第一设备101的处理操作,发送模块1303用于执行第一设备101的发送操作。
在另一种可选的实现方式中,
接收模块1301,用于接收第二设备发送的参考信号,
处理模块1302,用于对所述参考信号进行测量,得到第一信道信息和第二信道信息;
发送模块1303,用于将所述第一信道信息和所述第二信道信息发送给第二设备;
所述第一信道信息,包括所述参考信号的M个天线端口中的N个天线端口的标识信息,M为不小于2的整数,N为不大于M的正整数;
所述第二信道信息,包括对所述N个天线端口进行加权合并的加权合并因子的信息;
所述加权合并因子包括:第一因子和/或第二因子;
所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
所述第一信道信息和所述第二信道信息用于构成预编码矩阵。
在该可选的实现方式下,该第一设备的其他可选实现可参考前述的方案二中第一设备101。其中,接收模块1301用于执行第一设备101的接收操作,处理模块1302用于执行第一设备101的处理操作,发送模块1303用于执行第一设备101的发送操作。
可选地,接收模块1301可由接收器实现,处理模块1302可由处理器实现,发送模块1303可由发送器实现。
图14为本发明实施例提供的一种第二设备的结构示意图。如图14所示,该第二设备包括:接收模块1401、处理模块1402和发送模块1403。
在一种可选的实现方式中,
发送模块1403,用于向第一设备发送参考信号;所述参考信号在S个天线端口发送, 所述S个天线端口属于H个参考信号资源端口组,S、H为大于等于1的整数;
接收模块1401,用于从所述第一设备处接收第一信道信息和第二信道信息,所述第一信道信息和所述第二信道信息是所述第一设备对接收的所述参考信号进行测量得到的;
所述第一信道信息,包括M个第一向量的标识信息,M为不小于2的整数;
所述第二信道信息,包括对所述M个第一向量中的N个第一向量进行加权合并的加权合并因子的信息,N为不大于M的正整数;
所述加权合并因子包括:第一因子和/或第二因子;
所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
所述第一向量的维度是每个参考信号资源端口组内的天线端口数,或者所述第一向量的维度是每个参考信号资源端口组内的天线端口数的一半;
处理模块1402,用于根据所述第一信道信息和所述第二信道信息生成所述预编码矩阵;
所述发送模块1403,还用于按照所述处理模块生成的所述预编码矩阵向所述第一设备发送数据。
该可选的实现方式下,该第二设备的其他可选实现可参考前述的方案一中第二设备102。其中,接收模块1401用于执行第二设备102的接收操作,处理模块1402用于执行第二设备102的处理操作,发送模块1403用于执行第二设备102的发送操作。
在另一种可选的实现方式中,
发送模块1403,用于向第一设备发送参考信号;
接收模块1401,用于从所述第一设备处接收第一信道信息和第二信道信息,所述第一信道信息和所述第二信道信息是所述第一设备对接收的所述参考信号进行测量得到的;
所述第一信道信息,包括所述参考信号的M个天线端口中的N个天线端口的标识信息,M为不小于2的整数,N为不大于M的正整数;
所述第二信道信息,包括对所述N个天线端口进行加权合并的加权合并因子的信息;
所述加权合并因子包括:第一因子和/或第二因子;
所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
处理模块1402,用于根据所述第一信道信息和所述第二信道信息生成预编码矩阵;
所述发送模块1403,还用于按照所述处理模块1402生成的所述预编码矩阵向所述第一设备发送数据。
该可选的实现方式下,该第二设备的其他可选实现可参考前述的方案二中第二设备102。其中,接收模块1401用于执行第二设备102的接收操作,处理模块1402用于执行第二设备102的处理操作,发送模块1403用于执行第二设备102的发送操作。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图 和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (56)

  1. 一种第一设备,其特征在于,包括:
    接收模块,用于接收第二设备发送的参考信号,所述参考信号在S个天线端口发送,所述S个天线端口属于H个参考信号资源端口组,S、H为大于等于1的整数;
    处理模块,用于所述参考信号进行测量,得到第一信道信息和第二信道信息;
    发送模块,用于将所述第一信道信息和所述第二信道信息发送给第二设备;
    所述第一信道信息,包括M个第一向量的标识信息,M为不小于2的整数;
    所述第二信道信息,包括对所述M个第一向量中的N个第一向量进行加权合并的加权合并因子的信息,N为不大于M的正整数;
    所述加权合并因子包括:第一因子和/或第二因子;
    所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
    所述第一信道信息和所述第二信道信息用于构成预编码矩阵;
    所述第一向量的维度是每个参考信号资源端口组内的天线端口数,或者所述第一向量的维度是每个参考信号资源端口组内的天线端口数的一半。
  2. 如权利要求1所述第一设备,其特征在于,
    所述处理模块,还用于对所述参考信号进行测量,得到第三信道信息;
    所述发送模块,还用于将所述第三信道信息发送给所述第二设备;
    所述第三信道信息,用于指示所述参考信号的两组天线端口间的相位差;
    所述第三信道信息也用于构成所述预编码矩阵。
  3. 如权利要求2所述第一设备,其特征在于,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为2的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100001
    ck=[ck,0 ck,m … ck,R-1]T,Bi=[bi,0 bi,m … bi,R-1],
    cy=[cy,0 cy,n … cy,S-1]T,Bj=[bj,0 bj,n … bj,S-1],
    R、S为正整数,R≤M,且S≤M,Bi和Bj共同构成所述M个第一向量;
    ck和cy为所述加权合并因子,其中,ck,0用于对bi,0进行加权,ck,m用于对bi,m进行加权,ck,R-1用于对bi,R-1进行加权,cy,0用于对bj,0进行加权,cy,n用于对bj,n进行加权,cy,S-1用于对bj,S-1进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
    Figure PCTCN2017083978-appb-100002
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
  4. 如权利要求3所述第一设备,其特征在于,Bi和Bj相同,ck和cm不同;或者
    Bi和Bj不同,ck和cm不同。
  5. 如权利要求1或2所述第一设备,其特征在于,
    所述处理模块,还用于对所述参考信号进行测量,得到第四信道信息;
    所述发送模块,还用于将所述第四信道信息发送给所述第二设备;
    所述第四信道信息,包括用于从所述M个第一向量选择所述N个第一向量的选择信息;
    所述第四信道信息也用于构成所述预编码矩阵;
    所述第二信道信息,仅包括:对所述第四信道信息所指示的所述N个第一向量进行加权合并的加权合并因子的信息。
  6. 如权利要求1至5任一项所述第一设备,其特征在于,
    所述处理模块,还用于对所述参考信号进行测量,得到第七信道信息;
    所述发送模块,还用于将所述第七信道信息发送给所述第二设备;
    所述第七信道信息,包括用于从所述H个参考信号资源端口组中选择Y个参考信号资源端口组的标识信息。
  7. 如权利要求1至6任一项所述第一设备,其特征在于,
    所述第一信道信息,包括:所述M个第一向量构成的X个向量组中的每一个向量组在K个向量组中的组编号,所述K个向量组中的所有第一向量构成所述第一向量的全集,所述K为正整数,X为不大于K的正整数。
  8. 如权利要求1至7任一项所述第一设备,其特征在于,所述第一信道信息的反馈方式为带宽反馈,所述第二信道信息的反馈方式为子带反馈。
  9. 一种第二设备,其特征在于,包括:
    发送模块,用于向第一设备发送参考信号;所述参考信号在S个天线端口发送,所述S个天线端口属于H个参考信号资源端口组,S、H为大于等于1的整数;
    接收模块,用于从所述第一设备处接收第一信道信息和第二信道信息,所述第一信道信息和所述第二信道信息是所述第一设备对接收的所述参考信号进行测量得到的;
    所述第一信道信息,包括M个第一向量的标识信息,M为不小于2的整数;
    所述第二信道信息,包括对所述M个第一向量中的N个第一向量进行加权合并的加权合并因子的信息,N为不大于M的正整数;
    所述加权合并因子包括:第一因子和/或第二因子;
    所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
    所述第一向量的维度是每个参考信号资源端口组内的天线端口数,或者所述第一向量的维度是每个参考信号资源端口组内的天线端口数的一半;
    处理模块,用于根据所述第一信道信息和所述第二信道信息生成所述预编码矩阵;
    所述发送模块,还用于按照所述处理模块生成的所述预编码矩阵向所述第一设备发送数据。
  10. 如权利要求9所述第二设备,其特征在于,
    所述接收模块,还用于从所述第一设备处接收第三信道信息,所述第三信道信息是所述第一设备对所述参考信号进行测量得到的;
    所述第三信道信息,用于指示所述参考信号的两组天线端口间的相位差;
    所述处理模块,具体用于:根据所述第一信道信息、所述第二信道信息和所述第三信道信息生成所述预编码矩阵。
  11. 如权利要求10所述第二设备,其特征在于,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为2的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100003
    ck=[ck,0 ck,m … ck,R-1]T,Bi=[bi,0 bi,m … bi,R-1],
    cy=[cy,0 cy,n … cy,S-1]T,Bj=[bj,0 bj,n … bj,S-1],
    R、S为正整数,R≤M,且S≤M,Bi和Bj共同构成所述M个第一向量;
    ck和cy为所述加权合并因子,其中,ck,0用于对bi,0进行加权,ck,m用于对bi,m进行加权,ck,R-1用于对bi,R-1进行加权,cy,0用于对bj,0进行加权,cy,n用于对bj,n进行加权,cy,S-1用于对bj,S-1进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
    Figure PCTCN2017083978-appb-100004
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
  12. 如权利要求11所述第二设备,其特征在于,Bi和Bj相同,ck和cm不同;或者
    Bi和Bj不同,ck和cm不同。
  13. 如权利要求9或10所述第二设备,其特征在于,
    所述接收模块,还用于从所述第一设备处接收第四信道信息,所述第四信道信息是所述第一设备对所述参考信号进行测量得到的;
    所述第四信道信息,包括用于从所述M个第一向量选择所述N个第一向量的选择信息;
    所述处理模块具体用于:根据所述第一信道信息、所述第二信道信息和所述第四信道信息生成所述预编码矩阵;
    所述第二信道信息,仅包括:对所述第四信道信息所指示的所述N个第一向量进行加权合并的加权合并因子的信息。
  14. 如权利要求9至13任一项所述第二设备,其特征在于,
    所述接收模块,还用于从所述第一设备处接收第七信道信息,所述第七信道信息是所述第一设备对所述参考信号进行测量得到的;
    所述第七信道信息,包括用于从所述H个参考信号资源端口组中选择Y个参考信号资源端口组的标识信息;
    所述处理模块,还用于:根据所述第一信道信息、所述第二信道信息和所述第七信道信息生成所述预编码矩阵。
  15. 如权利要求9至14任一项所述第二设备,其特征在于,
    所述第一信道信息,包括:所述M个第一向量构成的X个向量组中的每一个向量组在K个向量组中的组编号,所述K个向量组中的所有第一向量构成所述第一向量的全集,所述K为正整数,X为不大于K的正整数。
  16. 如权利要求9至15任一项所述第二设备,其特征在于,所述第一信道信息的反馈方式为带宽反馈,所述第二信道信息的反馈方式为子带反馈。
  17. 一种第一设备,其特征在于,包括:
    接收模块,用于接收第二设备发送的参考信号,
    处理模块,用于对所述参考信号进行测量,得到第一信道信息和第二信道信息;
    发送模块,用于将所述第一信道信息和所述第二信道信息发送给第二设备;
    所述第一信道信息,包括所述参考信号的M个天线端口中的N个天线端口的标识信息,M为不小于2的整数,N为不大于M的正整数;
    所述第二信道信息,包括对所述N个天线端口进行加权合并的加权合并因子的信息;
    所述加权合并因子包括:第一因子和/或第二因子;
    所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
    所述第一信道信息和所述第二信道信息用于构成预编码矩阵。
  18. 如权利要求17所述第一设备,其特征在于,
    所述处理模块,还用于对所述参考信号进行测量,得到第三信道信息;
    所述发送模块,还用于将所述第三信道信息发送给所述第二设备;
    所述第三信道信息,包括:所述M个天线端口分成的两组天线端口间的相位差;
    所述第三信道信息也用于构成所述预编码矩阵。
  19. 如权利要求18所述的第一设备,其特征在于,所述第一信道信息、所述第二信道信息、所述第三信道信息基于如下方式构成秩为1的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100005
    ck=[ck,0 … ck,m … ck,N-1]T,Bi=[bi,0 bi,m … bi,M-1]
    其中,
    Figure PCTCN2017083978-appb-100006
    对应于第一信道信息,ck为对所述N/2个端口进行加权合并的加权合并因子,其中,ck,0用于对第m0以及m0+N/2个端口进行加权,ck,m用于对第mm个以及第mm+N/2端口进行加权,ck,N-1用于对第mN-1以及第mN-1+N/2个端口进行加权;m为整数,且0≤m≤M-1;
    Figure PCTCN2017083978-appb-100007
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;
    Figure PCTCN2017083978-appb-100008
    的行数为M,||q||为归一化因子。
  20. 如权利要求18所述的第一设备,其特征在于,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为2的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100009
    Figure PCTCN2017083978-appb-100010
    Figure PCTCN2017083978-appb-100011
    R、S为正整数,R≤M,且S≤M,
    ck和cy为所述加权合并因子,其中,ck,0用于对第i0和第i0+N/2个端口进行加权,ck,m用于对第im以及第im+N/2个端口进行加权,ck,R-1用于对第iR-1以及第iR-1+N/2个端口进行加权,cy,0用于对第j0以及第j0+N/2个端口进行加权,cy,n用于对第jn以及第jn+N/2个端口进行加权,cy,S-1用于对第jS-1以及第jS-1+N/2个端口进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
    Figure PCTCN2017083978-appb-100012
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
  21. 如权利要求17至20任一项所述的第一设备,其特征在于,所述第二信道信息为时间延迟因子;
    所述第一信道信息和所述第二信道信息构成的所述预编码矩阵在时域的形式如下:
    Figure PCTCN2017083978-appb-100013
    其中,τm为所述N个第一向量中的第m个向量对应的所述时间延迟因子。
  22. 如权利要求17至21任一项所述第一设备,其特征在于,所述第一信道信息的反馈方式为带宽反馈,所述第二信道信息的反馈方式为子带反馈。
  23. 一种第二设备,其特征在于,包括:
    发送模块,用于向第一设备发送参考信号;
    接收模块,用于从所述第一设备处接收第一信道信息和第二信道信息,所述第一信道信息和所述第二信道信息是所述第一设备对接收的所述参考信号进行测量得到的;
    所述第一信道信息,包括所述参考信号的M个天线端口中的N个天线端口的标识信息,M为不小于2的整数,N为不大于M的正整数;
    所述第二信道信息,包括对所述N个天线端口进行加权合并的加权合并因子的信息;
    所述加权合并因子包括:第一因子和/或第二因子;
    所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
    处理模块,用于根据所述第一信道信息和所述第二信道信息生成预编码矩阵;
    所述发送模块,还用于按照所述处理模块生成的所述预编码矩阵向所述第一设备发送数据。
  24. 如权利要求23所述第二设备,其特征在于,
    所述接收模块,还用于从所述第一设备处接收第三信道信息,所述第三信道信息是所述第一设备对所述参考信号进行测量得到的;
    所述第三信道信息,包括:所述M个天线端口分成的两组天线端口间的相位差;
    所述处理模块,具体用于根据所述第一信道信息、所述第二信道信息和所述第三信道信息生成所述预编码矩阵。
  25. 如权利要求24所述的第二设备,其特征在于,所述处理模块,具体用于基于如下方式生成秩为1的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100014
    ck=[ck,0 … ck,m … ck,N-1]T,Bi=[bi,0 bi,m … bi,M-1]
    其中,
    Figure PCTCN2017083978-appb-100015
    对应于第一信道信息,ck为对所述N/2个端口进行加权合并的加权合并因子,其中,ck,0用于对第m0以及m0+N/2个端口进行加权,ck,m用于对第mm个以及第mm+N/2端口进行加权,ck,N-1用于对第mN-1以及第mN-1+N/2个端口进行加权;m为整数,且0≤m≤M-1;
    Figure PCTCN2017083978-appb-100016
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;
    Figure PCTCN2017083978-appb-100017
    的行数为M,||q||为归一化因子。
  26. 如权利要求24所述的第二设备,其特征在于,所述处理模块,具体用于基于如下方式生成秩为2的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100018
    Figure PCTCN2017083978-appb-100019
    Figure PCTCN2017083978-appb-100020
    R、S为正整数,R≤M,且S≤M,
    ck和cy为所述加权合并因子,其中,ck,0用于对第i0和第i0+N/2个端口进行加权,ck,m用于对第im以及第im+N/2个端口进行加权,ck,R-1用于对第iR-1以及第iR-1+N/2个端口进行加权,cy,0用于对第j0以及第j0+N/2个端口进行加权,cy,n用于对第jn以及第jn+N/2个端口进行加权,cy,S-1用于对第jS-1以及第jS-1+N/2个端口进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
    Figure PCTCN2017083978-appb-100021
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
  27. 如权利要求23至26任一项所述第二设备,其特征在于,所述第二信道信息为时间延迟因子;
    所述处理模块,具体用于按照如下方式生成时域形式的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100022
    其中,τm为所述N个第一向量中的第m个向量对应的所述时间延迟因子。
  28. 如权利要求23至27任一项所述第二设备,其特征在于,所述第一信道信息的反馈方式为带宽反馈,所述第二信道信息的反馈方式为子带反馈。
  29. 一种信道信息的发送方法,其特征在于,包括:
    第一设备接收第二设备发送的参考信号,所述参考信号在S个天线端口发送,所述S个天线端口属于H个参考信号资源端口组,S、H为大于等于1的整数;
    所述第一设备对接收的所述参考信号进行测量,得到第一信道信息和第二信道信息;
    所述第一设备将所述第一信道信息和所述第二信道信息发送给第二设备;
    所述第一信道信息,包括M个第一向量的标识信息,M为不小于2的整数;
    所述第二信道信息,包括对所述M个第一向量中的N个第一向量进行加权合并的加权合并因子的信息,N为不大于M的正整数;
    所述加权合并因子包括:第一因子和/或第二因子;
    所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
    所述第一信道信息和所述第二信道信息用于构成预编码矩阵;
    所述第一向量的维度是每个参考信号资源端口组内的天线端口数,或者所述第一向量的维度是每个参考信号资源端口组内的天线端口数的一半。
  30. 如权利要求29所述方法,其特征在于,还包括:
    所述第一设备对所述参考信号进行测量,得到第三信道信息;
    所述第一设备将所述第三信道信息发送给所述第二设备;
    所述第三信道信息,用于指示所述参考信号的两组天线端口间的相位差;
    所述第三信道信息也用于构成所述预编码矩阵。
  31. 如权利要求30所述的方法,其特征在于,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为2的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100023
    ck=[ck,0 ck,m … ck,R-1]T,Bi=[bi,0 bi,m … bi,R-1],
    cy=[cy,0 cy,n … cy,S-1]T,Bj=[bj,0 bj,n … bj,S-1],
    R、S为正整数,R≤M,且S≤M,Bi和Bj共同构成所述M个第一向量;
    ck和cy为所述加权合并因子,其中,ck,0用于对bi,0进行加权,ck,m用于对bi,m进行加权,ck,R-1用于对bi,R-1进行加权,cy,0用于对bj,0进行加权,cy,n用于对bj,n进行加权,cy,S-1用于对bj,S-1进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
    Figure PCTCN2017083978-appb-100024
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
  32. 如权利要求31所述的方法,其特征在于,Bi和Bj相同,ck和cm不同;或者
    Bi和Bj不同,ck和cm不同。
  33. 如权利要求29或30所述方法,其特征在于,
    所述第一设备对所述参考信号进行测量,得到第四信道信息;
    所述第一设备将所述第四信道信息发送给所述第二设备;
    所述第四信道信息,包括用于从所述M个第一向量选择所述N个第一向量的选择信息;
    所述第四信道信息也用于构成所述预编码矩阵;
    所述第二信道信息,仅包括:对所述第四信道信息所指示的所述N个第一向量进行加权合并的加权合并因子的信息。
  34. 如权利要求29至33任一项所述方法,其特征在于,
    所述第一设备对所述参考信号进行测量,得到第七信道信息;
    所述第一设备将所述第七信道信息发送给所述第二设备;
    所述第七信道信息,包括用于从所述H个参考信号资源端口组中选择Y个参考信号资源端口组的标识信息。
  35. 如权利要求29至34任一项所述方法,其特征在于,
    所述第一信道信息,包括:所述M个第一向量构成的X个向量组中的每一个向量组在K个向量组中的组编号,所述K个向量组中的所有第一向量构成所述第一向量的全集,所述K为正整数,X为不大于K的正整数。
  36. 如权利要求29至35任一项所述方法,其特征在于,所述第一信道信息的反馈方式为带宽反馈,所述第二信道信息的反馈方式为子带反馈。
  37. 一种数据发送方法,其特征在于,包括:
    第二设备向第一设备发送参考信号;所述参考信号在S个天线端口发送,所述S个天线端口属于H个参考信号资源端口组,S、H为大于等于1的整数;
    所述第二设备从所述第一设备处接收第一信道信息和第二信道信息,所述第一信道信息和所述第二信道信息是所述第一设备对接收的所述参考信号进行测量得到的;
    所述第一信道信息,包括M个第一向量的标识信息,M为不小于2的整数;
    所述第二信道信息,包括对所述M个第一向量中的N个第一向量进行加权合并的加权合并因子的信息,N为不大于M的正整数;
    所述加权合并因子包括:第一因子和/或第二因子;
    所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
    所述第一向量的维度是每个参考信号资源端口组内的天线端口数,或者所述第一向量的维度是每个参考信号资源端口组内的天线端口数的一半;
    所述第二设备根据所述第一信道信息和所述第二信道信息生成所述预编码矩阵;
    所述第二设备按照生成的所述预编码矩阵向所述第一设备发送数据。
  38. 如权利要求37所述方法,其特征在于,还包括:
    所述第二设备从所述第一设备处接收第三信道信息,所述第三信道信息是所述第一设备对所述参考信号进行测量得到的;
    所述第三信道信息,用于指示所述参考信号的两组天线端口间的相位差;
    所述第二设备根据所述第一信道信息和所述第二信道信息生成所述预编码矩阵,包括:所述第二设备根据所述第一信道信息、所述第二信道信息和所述第三信道信息生成所述预编码矩阵。
  39. 如权利要求38所述的方法,其特征在于,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为2的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100025
    ck=[ck,0 ck,m … ck,R-1]T,Bi=[bi,0 bi,m … bi,R-1],
    cy=[cy,0 cy,n … cy,S-1]T,Bj=[bj,0 bj,n … bj,S-1],
    R、S为正整数,R≤M,且S≤M,Bi和Bj共同构成所述M个第一向量;
    ck和cy为所述加权合并因子,其中,ck,0用于对bi,0进行加权,ck,m用于对bi,m进行加权,ck,R-1用于对bi,R-1进行加权,cy,0用于对bj,0进行加权,cy,n用于对bj,n进行加权,cy,S-1用于对bj,S-1进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
    Figure PCTCN2017083978-appb-100026
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
  40. 如权利要求39所述的方法,其特征在于,Bi和Bj相同,ck和cm不同;或者
    Bi和Bj不同,ck和cm不同。
  41. 如权利要求37或38所述方法,其特征在于,
    所述第二设备从所述第一设备处接收第四信道信息,所述第四信道信息是所述第一设备对所述参考信号进行测量得到的;
    所述第四信道信息,包括用于从所述M个第一向量选择所述N个第一向量的选择信息;
    所述第二设备根据所述第一信道信息和所述第二信道信息生成所述预编码矩阵,包括:所述第二设备根据所述第一信道信息、所述第二信道信息和所述第四信道信息生成所述预编码矩阵;
    所述第二信道信息,仅包括:对所述第四信道信息所指示的所述N个第一向量进行加权合并的加权合并因子的信息。
  42. 如权利要求37至41任一项所述方法,其特征在于,
    所述第二设备从所述第一设备处接收第七信道信息,所述第七信道信息是所述第一设备对所述参考信号进行测量得到的;
    所述第七信道信息,包括用于从所述H个参考信号资源端口组中选择Y个参考信号资源端口组的标识信息;
    所述第二设备根据所述第一信道信息和所述第二信道信息生成所述预编码矩阵,包括:所述第二设备根据所述第一信道信息、所述第二信道信息和所述第七信道信息生成所述预编码矩阵。
  43. 如权利要求37至42任一项所述方法,其特征在于,
    所述第一信道信息,包括:所述M个第一向量构成的X个向量组中的每一个向量组在K个向量组中的组编号,所述K个向量组中的所有第一向量构成所述第一向量的全集,所述K为正整数,X为不大于K的正整数。
  44. 如权利要求37至43任一项所述方法,其特征在于,所述第一信道信息的反馈方式为带宽反馈,所述第二信道信息的反馈方式为子带反馈。
  45. 一种信道信息的发送方法,其特征在于,包括:
    第一设备接收第二设备发送的参考信号,
    所述第一设备对接收的所述参考信号进行测量,得到第一信道信息和第二信道信息;
    所述第一设备将所述第一信道信息和所述第二信道信息发送给第二设备;
    所述第一信道信息,包括所述参考信号的M个天线端口中的N个天线端口的标识信息,M为不小于2的整数,N为不大于M的正整数;
    所述第二信道信息,包括对所述N个天线端口进行加权合并的加权合并因子的信息;
    所述加权合并因子包括:第一因子和/或第二因子;
    所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
    所述第一信道信息和所述第二信道信息用于构成预编码矩阵。
  46. 如权利要求45所述方法,其特征在于,还包括:
    所述第一设备对所述参考信号进行测量,得到第三信道信息;
    所述第一设备将所述第三信道信息发送给所述第二设备;
    所述第三信道信息,包括:所述M个天线端口分成的两组天线端口间的相位差;
    所述第三信道信息也用于构成所述预编码矩阵。
  47. 如权利要求46所述的方法,其特征在于,所述第一信道信息、所述第二信道信息、所述第三信道信息基于如下方式构成秩为1的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100027
    ck=[ck,0 … ck,m … ck,N-1]T,Bi=[bi,0 bi,m … bi,M-1]
    其中,
    Figure PCTCN2017083978-appb-100028
    对应于第一信道信息,ck为对所述N/2个端口进行加权合并的加权合并因子,其中,ck,0用于对第m0以及m0+N/2个端口进行加 权,ck,m用于对第mm个以及第mm+N/2端口进行加权,ck,N-1用于对第mN-1以及第mN-1+N/2个端口进行加权;m为整数,且0≤m≤M-1;
    Figure PCTCN2017083978-appb-100029
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;
    Figure PCTCN2017083978-appb-100030
    的行数为M,||q||为归一化因子。
  48. 如权利要求46所述的方法,其特征在于,所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式构成秩为2的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100031
    Figure PCTCN2017083978-appb-100032
    Figure PCTCN2017083978-appb-100033
    R、S为正整数,R≤M,且S≤M,
    ck和cy为所述加权合并因子,其中,ck,0用于对第i0和第i0+N/2个端口进行加权,ck,m用于对第im以及第im+N/2个端口进行加权,ck,R-1用于对第iR-1以及第iR-1+N/2个端口进行加权,cy,0用于对第j0以及第j0+N/2个端口进行加权,cy,n用于对第jn以及第jn+N/2个端口进行加权,cy,S-1用于对第jS-1以及第jS-1+N/2个端口进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
    Figure PCTCN2017083978-appb-100034
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
  49. 如权利要求45至48任一项所述的方法,其特征在于,所述第二信道信息为时间延迟因子;
    所述第一信道信息和所述第二信道信息构成的所述预编码矩阵在时域的形式如下:
    Figure PCTCN2017083978-appb-100035
    其中,τm为所述N个第一向量中的第m个向量对应的所述时间延迟因子。
  50. 如权利要求45至49任一项所述方法,其特征在于,所述第一信道信息的反馈方式为带宽反馈,所述第二信道信息的反馈方式为子带反馈。
  51. 一种数据发送方法,其特征在于,包括:
    第二设备向第一设备发送参考信号;
    所述第二设备从所述第一设备处接收第一信道信息和第二信道信息,所述第一信道信息和所述第二信道信息是所述第一设备对接收的所述参考信号进行测量得到的;
    所述第一信道信息,包括所述参考信号的M个天线端口中的N个天线端口的标识信息,M为不小于2的整数,N为不大于M的正整数;
    所述第二信道信息,包括对所述N个天线端口进行加权合并的加权合并因子的信息;
    所述加权合并因子包括:第一因子和/或第二因子;
    所述第一因子为幅度因子,所述第二因子为相位因子或时间延迟因子;
    所述第二设备根据所述第一信道信息和所述第二信道信息生成预编码矩阵;
    所述第二设备按照生成的所述预编码矩阵向所述第一设备发送数据。
  52. 如权利要求51所述方法,其特征在于,还包括:
    所述第二设备从所述第一设备处接收第三信道信息,所述第三信道信息是所述第一设备对所述参考信号进行测量得到的;
    所述第三信道信息,包括:所述M个天线端口分成的两组天线端口间的相位差;
    所述第二设备根据所述第一信道信息和所述第二信道信息生成所述预编码矩阵,包括:所述第二设备根据所述第一信道信息、所述第二信道信息和所述第三信道信息生成所述预编码矩阵。
  53. 如权利要求52所述的方法,其特征在于,所述第二设备根据所述第一信道信息、所述第二信道信息和所述第三信道信息,基于如下方式生成秩为1的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100036
    ck=[ck,0 … ck,m … ck,N-1]T,Bi=[bi,0 bi,m … bi,M-1]
    其中,
    Figure PCTCN2017083978-appb-100037
    对应于第一信道信息,ck为对所述N/2个端口进行加权合并的加权合并因子,其中,ck,0用于对第m0以及m0+N/2个端口进行加权,ck,m用于对第mm个以及第mm+N/2端口进行加权,ck,N-1用于对第mN-1以及第mN-1+N/2个端口进行加权;m为整数,且0≤m≤M-1;
    Figure PCTCN2017083978-appb-100038
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;
    Figure PCTCN2017083978-appb-100039
    的行数为M,||q||为归一化因子。
  54. 如权利要求52所述的方法,其特征在于,所述第二设备根据所述第一信道信息、所述第二信道信息和所述第三信道信息基于如下方式生成秩为2的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100040
    Figure PCTCN2017083978-appb-100041
    Figure PCTCN2017083978-appb-100042
    R、S为正整数,R≤M,且S≤M,
    ck和cy为所述加权合并因子,其中,ck,0用于对第i0和第i0+N/2个端口进行加权,ck,m用于对第im以及第im+N/2个端口进行加权,ck,R-1用于对第iR-1以及第iR-1+N/2个端口进行加权,cy,0用于对第j0以及第j0+N/2个端口进行加权,cy,n用于对第jn以及第jn+N/2个端口进行加权,cy,S-1用于对第jS-1以及第jS-1+N/2个端口进行加权;m为整数,且0≤m≤R-1,n为整数,且0≤n≤S-1;
    Figure PCTCN2017083978-appb-100043
    为所述第三信道信息指示的所述参考信号的两组天线端口间的相位差;||q||为归一化因子。
  55. 如权利要求51至54任一项所述的方法,其特征在于,所述第二信道信息为时间延迟因子;
    所述第二设备根据所述第一信道信息、所述第二信道信息和所述第三信道信息按照如下方式生成时域形式的所述预编码矩阵:
    Figure PCTCN2017083978-appb-100044
    其中,τm为所述N个第一向量中的第m个向量对应的所述时间延迟因子。
  56. 如权利要求51至55任一项所述方法,其特征在于,所述第一信道信息的反馈方式为带宽反馈,所述第二信道信息的反馈方式为子带反馈。
PCT/CN2017/083978 2016-05-13 2017-05-11 一种信道信息发送方法、数据发送方法和设备 WO2017193961A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112018072357-6A BR112018072357A2 (pt) 2016-05-13 2017-05-11 método de envio de informações de canal, método de envio de dados, e dispositivo
CN201780029430.8A CN109417441B (zh) 2016-05-13 2017-05-11 一种信道信息发送方法、数据发送方法和设备
JP2018554576A JP6687290B2 (ja) 2016-05-13 2017-05-11 チャネル情報送信方法、データ送信方法、およびデバイス
EP22211295.5A EP4213425A1 (en) 2016-05-13 2017-05-11 Channel information sending method, data sending method, and device
CA3023971A CA3023971C (en) 2016-05-13 2017-05-11 Channel information sending method, data sending method, and device
KR1020187032702A KR102156208B1 (ko) 2016-05-13 2017-05-11 채널 정보 전송 방법, 데이터 전송 방법, 및 장치
EP17795579.6A EP3447952B1 (en) 2016-05-13 2017-05-11 Channel information transmission method, data transmission method, and apparatus
ES17795579T ES2954669T3 (es) 2016-05-13 2017-05-11 Método de transmisión de información del canal, método de transmisión de datos y aparato
US16/188,911 US10727916B2 (en) 2016-05-13 2018-11-13 Channel information sending method, data sending method, and device
US16/940,201 US11251845B2 (en) 2016-05-13 2020-07-27 Channel information sending method, data sending method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610319166.9 2016-05-13
CN201610319166.9A CN107370558B (zh) 2016-05-13 2016-05-13 一种信道信息发送方法、数据发送方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/188,911 Continuation US10727916B2 (en) 2016-05-13 2018-11-13 Channel information sending method, data sending method, and device

Publications (1)

Publication Number Publication Date
WO2017193961A1 true WO2017193961A1 (zh) 2017-11-16

Family

ID=60266370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083978 WO2017193961A1 (zh) 2016-05-13 2017-05-11 一种信道信息发送方法、数据发送方法和设备

Country Status (9)

Country Link
US (2) US10727916B2 (zh)
EP (2) EP3447952B1 (zh)
JP (1) JP6687290B2 (zh)
KR (1) KR102156208B1 (zh)
CN (4) CN107370558B (zh)
BR (1) BR112018072357A2 (zh)
CA (1) CA3023971C (zh)
ES (1) ES2954669T3 (zh)
WO (1) WO2017193961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883135A4 (en) * 2018-12-18 2022-01-12 Huawei Technologies Co., Ltd. CHANNEL MEASUREMENT METHOD AND COMMUNICATION DEVICE

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370558B (zh) * 2016-05-13 2020-09-18 北京华为数字技术有限公司 一种信道信息发送方法、数据发送方法和设备
CN108288987B (zh) 2017-01-07 2021-10-01 华为技术有限公司 一种发射分集的方法、终端和基站
EP3697128B1 (en) * 2017-11-17 2024-04-03 Huawei Technologies Co., Ltd. Channel state information feedback method, communication device, and system
CN114024582A (zh) 2018-04-08 2022-02-08 华为技术有限公司 通信的方法和通信装置
CN113271130B (zh) 2018-05-11 2024-04-09 华为技术有限公司 信道估计方法和装置
CN111342873B (zh) 2018-12-18 2021-11-30 华为技术有限公司 一种信道测量方法和通信装置
CN112311431B (zh) * 2019-07-31 2021-10-26 华为技术有限公司 一种空频合并系数的指示方法及装置
KR102644451B1 (ko) * 2019-08-01 2024-03-06 후아웨이 테크놀러지 컴퍼니 리미티드 다중 안테나 네트워크 엔티티 및 무선 통신 장치를 위한 적응형 크로네커 곱 mimo 프리코딩 및 해당 방법
WO2021062806A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 信道测量的方法和通信装置
CN114600384B (zh) * 2019-10-30 2023-09-12 华为技术有限公司 一种信道测量方法和通信装置
CN115315906B (zh) * 2020-04-09 2023-08-22 华为技术有限公司 一种信道测量方法和通信装置
WO2022052030A1 (en) * 2020-09-11 2022-03-17 Qualcomm Incorporated Quantization scheme for channel state information reports

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103621000A (zh) * 2012-06-14 2014-03-05 华为技术有限公司 确定预编码矩阵指示的方法、用户设备、基站演进节点
CN103684657A (zh) * 2012-09-03 2014-03-26 夏普株式会社 预编码矩阵构造和索引值反馈方法及相关通信设备
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN104956617A (zh) * 2013-04-28 2015-09-30 富士通株式会社 确定码本的方法、信息反馈方法及其装置

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238746A (en) * 1978-03-20 1980-12-09 The United States Of America As Represented By The Secretary Of The Navy Adaptive line enhancer
US6665308B1 (en) * 1995-08-25 2003-12-16 Terayon Communication Systems, Inc. Apparatus and method for equalization in distributed digital data transmission systems
EP1821480B1 (en) * 2000-08-24 2009-10-21 Sony Deutschland Gmbh Communication device for receiving and transmitting OFDM signals in a wireless communication system
US6807588B2 (en) * 2002-02-27 2004-10-19 International Business Machines Corporation Method and apparatus for maintaining order in a queue by combining entry weights and queue weights
JP4676140B2 (ja) * 2002-09-04 2011-04-27 マイクロソフト コーポレーション オーディオの量子化および逆量子化
US7483675B2 (en) * 2004-10-06 2009-01-27 Broadcom Corporation Method and system for weight determination in a spatial multiplexing MIMO system for WCDMA/HSDPA
US7394856B2 (en) * 2003-09-19 2008-07-01 Seiko Epson Corporation Adaptive video prefilter
US8340139B2 (en) * 2004-10-06 2012-12-25 Broadcom Corporation Method and system for weight determination in a single channel (SC) multiple-input multiple-output (MIMO) system for WCDMA/HSDPA
US7593493B2 (en) * 2004-10-06 2009-09-22 Broadcom Corporation Method and system for pre-equalization in a single weight (SW) single channel (SC) multiple-input multiple-output (MIMO) system
US8098776B2 (en) * 2004-10-06 2012-01-17 Broadcom Corporation Method and system for pre-equalization in a single weight spatial multiplexing MIMO system
KR100909539B1 (ko) * 2004-11-09 2009-07-27 삼성전자주식회사 다중 안테나를 사용하는 광대역 무선 접속 시스템에서 다양한 다중안테나 기술을 지원하기 위한 장치 및 방법
WO2008003354A1 (en) * 2006-07-06 2008-01-10 Telefonaktiebolaget Lm Ericsson (Publ) A device for improved isolation characteristics in a telecommunications system
US8396158B2 (en) * 2006-07-14 2013-03-12 Nokia Corporation Data processing method, data transmission method, data reception method, apparatus, codebook, computer program product, computer program distribution medium
EP2070213B1 (en) * 2006-09-22 2018-07-04 Telecom Italia S.p.A. Method and system for syntesizing array antennas
US9435893B2 (en) * 2007-05-21 2016-09-06 Spatial Digital Systems, Inc. Digital beam-forming apparatus and technique for a multi-beam global positioning system (GPS) receiver
US8928459B2 (en) * 2007-06-15 2015-01-06 Worcester Polytechnic Institute Precision location methods and systems
EP2141825A1 (en) * 2008-06-30 2010-01-06 Alcatel, Lucent Method of reducing intra-cell spatial interference in a mobile cellular network
ATE548811T1 (de) * 2008-06-30 2012-03-15 Alcatel Lucent Verfahren zur zuweisung von vorkodierungsvektoren in einem mobilen zellularen netzwerk
EP2351246B1 (en) * 2008-11-03 2017-02-22 Telefonaktiebolaget LM Ericsson (publ) Method for transmission of reference signals and determination of precoding matrices for multi-antenna transmission
KR101582685B1 (ko) * 2008-12-03 2016-01-06 엘지전자 주식회사 다중안테나를 이용한 데이터 전송장치 및 방법
WO2010148401A1 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Transparent relay using dual-layer beam forming association procedures
CN102006145B (zh) * 2009-09-02 2014-08-13 华为技术有限公司 一种多输入多输出系统中的预编码方法和装置
WO2011041492A2 (en) * 2009-09-30 2011-04-07 Interdigital Patent Holdings, Inc. Method and apparatus for multi-antenna transmission in uplink
US9667378B2 (en) * 2009-10-01 2017-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Multi-granular feedback reporting and feedback processing for precoding in telecommunications
US8526413B2 (en) * 2009-10-02 2013-09-03 Mediatek Inc. Concatenating precoder selection for OFDMA-based multi-BS MIMO
WO2011054143A1 (zh) * 2009-11-04 2011-05-12 上海贝尔股份有限公司 处理下行通信的方法和装置以及相应的辅助方法和装置
US8862175B2 (en) * 2009-12-29 2014-10-14 Telefonaktiebolaget L M Ericsson (Publ) Correction of estimated SIR used for transmit power control
US8509338B2 (en) * 2010-05-05 2013-08-13 Motorola Mobility Llc Method and precoder information feedback in multi-antenna wireless communication systems
US9203489B2 (en) * 2010-05-05 2015-12-01 Google Technology Holdings LLC Method and precoder information feedback in multi-antenna wireless communication systems
US8639198B2 (en) * 2010-06-30 2014-01-28 Samsung Electronics Co., Ltd. Systems and methods for 8-TX codebook and feedback signaling in 3GPP wireless networks
CN102340463B (zh) 2010-07-26 2014-07-30 华为技术有限公司 一种信道估计方法、装置和系统
US9332528B2 (en) * 2010-11-02 2016-05-03 Lg Electronics Inc. Method and device for feeding back precoding matrix indicator using interpolation
CN102546123A (zh) * 2010-12-15 2012-07-04 株式会社Ntt都科摩 一种上行预编码方法及基站
ES2444119T3 (es) * 2011-04-29 2014-02-24 Ntt Docomo, Inc. Procedimiento y aparato para determinar una matriz de precodificación para precodificar símbolos a transmitir a una pluralidad de dispositivos inalámbricos
US20120300864A1 (en) * 2011-05-26 2012-11-29 Qualcomm Incorporated Channel estimation based on combined calibration coefficients
US20120328031A1 (en) * 2011-06-24 2012-12-27 Nokia Siemens Networks Oy Codebooks for Mobile Communications
EP2541243A1 (en) * 2011-07-01 2013-01-02 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Non destructive testing apparatus and method using ultrasound imaging
US9019849B2 (en) * 2011-11-07 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Dynamic space division duplex (SDD) wireless communications with multiple antennas using self-interference cancellation
WO2013133645A1 (ko) * 2012-03-07 2013-09-12 엘지전자 주식회사 무선 접속 시스템에서 계층적 빔 포밍 방법 및 이를 위한 장치
US9198071B2 (en) * 2012-03-19 2015-11-24 Qualcomm Incorporated Channel state information reference signal configuring and reporting for a coordinated multi-point transmission scheme
DE102012206493B3 (de) * 2012-04-19 2013-09-19 Bruker Biospin Mri Gmbh Magnetresonanz-Bildgebungsverfahren mit optimierter Hintergrundphasenverteilung
KR20150035545A (ko) * 2012-06-24 2015-04-06 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
CN103687010B (zh) * 2012-08-30 2017-07-04 电信科学技术研究院 一种传输参考信号的方法、装置及系统
TWI617148B (zh) * 2012-09-28 2018-03-01 內數位專利控股公司 用於報告回饋的無線發射/接收單元及方法
EP2913939B1 (en) * 2012-11-15 2018-04-18 Huawei Technologies Co., Ltd. Method, base station and user equipment for transmitting information
US8942302B2 (en) * 2012-12-20 2015-01-27 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US8971437B2 (en) * 2012-12-20 2015-03-03 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
CN104025470B (zh) 2012-12-31 2018-09-07 华为技术有限公司 报告信道状态信息csi的方法、用户设备和基站
JP5850872B2 (ja) * 2013-03-07 2016-02-03 株式会社Nttドコモ ユーザ装置及び基地局
US9866303B2 (en) * 2013-03-11 2018-01-09 Lg Electronics Inc. Method and device for reporting channel state information in wireless communication system
CN104488210B (zh) 2013-04-28 2017-11-17 华为技术有限公司 预编码矩阵指示的反馈方法、接收端和发射端
CN104184537B (zh) * 2013-05-21 2019-05-31 上海朗帛通信技术有限公司 一种移动通信系统中的信道信息反馈方法和装置
WO2014198068A1 (en) * 2013-06-14 2014-12-18 Qualcomm Incorporated Methods and apparatus for linear precoding in full-dimensional mimo systems
US10455590B2 (en) * 2013-08-22 2019-10-22 Huawei Technologies Co., Ltd. System and method for boundaryless service in wireless networks with cooperative transmission points
CN103475401B (zh) * 2013-09-18 2017-02-01 北京北方烽火科技有限公司 一种下行波束赋形方法与装置
JP6503348B2 (ja) 2013-10-24 2019-04-17 エルジー エレクトロニクス インコーポレイティド クラウドran環境でrrhを介して下りリンク送信電力を設定する方法
US10004030B2 (en) * 2014-01-31 2018-06-19 Futurewei Technologies, Inc. Device, network, and method for network adaptation and utilizing a downlink discovery reference signal
CN106105065B (zh) * 2014-03-26 2019-09-06 诺基亚技术有限公司 无线电频率波束成形基函数反馈
US10003486B2 (en) * 2014-04-28 2018-06-19 Intel IP Corporation Non-orthogonal multiple access (NOMA) wireless systems and methods
US10666338B2 (en) 2014-05-30 2020-05-26 Lg Electronics Inc. Channel quality measurement method in multiple antenna wireless communication system and device for same
WO2015180178A1 (zh) * 2014-05-30 2015-12-03 华为技术有限公司 一种报告信道状态信息csi的方法、装置和基站天线
CN105323032B (zh) * 2014-06-18 2019-02-05 中国移动通信集团公司 一种三维预编码矩阵的生成方法、基站及终端
CN105450332B (zh) * 2014-08-18 2019-02-05 电信科学技术研究院 一种三维信道状态信息确定方法及装置
KR102357524B1 (ko) * 2014-11-03 2022-02-04 삼성전자주식회사 풀-디멘젼 다중 입력 다중 출력 방식을 지원하는 통신 시스템에서 기준 신호 송/수신 장치 및 방법
US9654195B2 (en) * 2014-11-17 2017-05-16 Samsung Electronics Co., Ltd. Methods to calculate linear combination pre-coders for MIMO wireless communication systems
US9397736B2 (en) * 2014-11-21 2016-07-19 Intel IP Corporation Quantized eigen beams for controlling antenna array elements in a wireless network
WO2016134537A1 (zh) * 2015-02-28 2016-09-01 华为技术有限公司 一种信道质量测量方法、装置及系统
WO2016153287A1 (ko) * 2015-03-25 2016-09-29 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 채널 상태 정보 피드백 방법 및 이를 위한 장치
EP3327945B1 (en) * 2015-07-23 2021-03-31 LG Electronics Inc. Codebook-based signal transmission and reception method in multi-antenna wireless communication system and apparatus therefor
WO2017014612A1 (ko) * 2015-07-23 2017-01-26 엘지전자(주) 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
KR102018848B1 (ko) * 2015-07-23 2019-09-05 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
CN106559807B (zh) * 2015-09-25 2021-08-20 华为技术有限公司 一种数据传输方法以及相关设备
CA3000200C (en) * 2015-10-06 2020-10-20 Kodiak Networks, Inc. Ptt network with radio condition aware media packet aggregation scheme
CN107222244B (zh) * 2016-03-16 2020-10-23 华为技术有限公司 一种信道信息上报方法、装置及系统
US10009088B2 (en) * 2016-03-28 2018-06-26 Samsung Electronics Co., Ltd. Linear combination PMI codebook based CSI reporting in advanced wireless communication systems
CN107306177B (zh) * 2016-04-22 2023-11-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
CN107370588B (zh) * 2016-05-13 2021-04-20 华为技术有限公司 参考信号的发送方法及设备
CN107370558B (zh) * 2016-05-13 2020-09-18 北京华为数字技术有限公司 一种信道信息发送方法、数据发送方法和设备
CN108023699B (zh) * 2016-11-04 2020-12-15 华为技术有限公司 信号传输方法和装置
WO2020192790A1 (en) * 2019-03-28 2020-10-01 Huawei Technologies Co., Ltd. System and method for reduced csi feedback and reporting using tensors and tensor decomposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103621000A (zh) * 2012-06-14 2014-03-05 华为技术有限公司 确定预编码矩阵指示的方法、用户设备、基站演进节点
CN103684657A (zh) * 2012-09-03 2014-03-26 夏普株式会社 预编码矩阵构造和索引值反馈方法及相关通信设备
CN104956617A (zh) * 2013-04-28 2015-09-30 富士通株式会社 确定码本的方法、信息反馈方法及其装置
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883135A4 (en) * 2018-12-18 2022-01-12 Huawei Technologies Co., Ltd. CHANNEL MEASUREMENT METHOD AND COMMUNICATION DEVICE
US11689256B2 (en) 2018-12-18 2023-06-27 Huawei Technologies Co., Ltd. Channel measurement method and communications apparatus
US11811471B2 (en) 2018-12-18 2023-11-07 Huawei Technologies Co., Ltd. Channel measurement method and communications apparatus

Also Published As

Publication number Publication date
EP3447952B1 (en) 2023-07-05
CA3023971A1 (en) 2017-11-16
JP6687290B2 (ja) 2020-04-22
CA3023971C (en) 2023-10-10
US20200358497A1 (en) 2020-11-12
CN107370558A (zh) 2017-11-21
CN109302222B (zh) 2019-11-19
BR112018072357A2 (pt) 2019-02-19
CN109302222A (zh) 2019-02-01
ES2954669T3 (es) 2023-11-23
KR20180132865A (ko) 2018-12-12
KR102156208B1 (ko) 2020-09-15
US10727916B2 (en) 2020-07-28
EP4213425A1 (en) 2023-07-19
CN107370558B (zh) 2020-09-18
CN109417441A (zh) 2019-03-01
US11251845B2 (en) 2022-02-15
EP3447952A1 (en) 2019-02-27
US20190081670A1 (en) 2019-03-14
CN109450505A (zh) 2019-03-08
EP3447952A4 (en) 2019-04-24
CN109450505B (zh) 2019-11-15
CN109417441B (zh) 2020-09-08
JP2019515540A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2017193961A1 (zh) 一种信道信息发送方法、数据发送方法和设备
CN108631847B (zh) 传输信道状态信息的方法、终端设备和网络设备
JP7187676B2 (ja) プリコーディングベクトル指示方法、プリコーディングベクトル決定方法及び通信装置
JP6052468B2 (ja) プリコーディング行列インジケータを決定するための方法、ユーザ機器、及び、基地局
US20150341097A1 (en) CSI Feedback with Elevation Beamforming
EP2439859A2 (en) Codebook subsampling for PUCCH feedback
JP2019537874A (ja) プリコーディング行列指示方法、装置、及びシステム
EP4152653A1 (en) Channel measurement method and apparatus
KR102495785B1 (ko) 프리코딩 벡터를 지시하는 방법, 프리코딩 벡터를 결정하는 방법 및 통신 장치
WO2017157282A1 (zh) 一种信道信息上报方法、装置及系统
CN106452538B (zh) 用于多输入多输出通信的短期反馈的方法和装置
CN109478948B (zh) 一种信道信息传输装置、方法和系统
CN111106857B (zh) 指示和确定预编码向量的方法以及通信装置
KR102640520B1 (ko) 프리코딩 행렬 표시 및 결정 방법 및 통신 장치
CN111788785B (zh) 一种预编码矩阵索引上报方法、通信装置及介质
EP4325731A1 (en) Communication method and communication device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018554576

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032702

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3023971

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018072357

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795579

Country of ref document: EP

Effective date: 20181123

ENP Entry into the national phase

Ref document number: 112018072357

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181030