WO2021160122A1 - 信道状态信息反馈方法、装置、终端、网络侧和存储介质 - Google Patents

信道状态信息反馈方法、装置、终端、网络侧和存储介质 Download PDF

Info

Publication number
WO2021160122A1
WO2021160122A1 PCT/CN2021/076244 CN2021076244W WO2021160122A1 WO 2021160122 A1 WO2021160122 A1 WO 2021160122A1 CN 2021076244 W CN2021076244 W CN 2021076244W WO 2021160122 A1 WO2021160122 A1 WO 2021160122A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain basis
frequency
csi
basis vector
indication information
Prior art date
Application number
PCT/CN2021/076244
Other languages
English (en)
French (fr)
Inventor
刘正宣
高秋彬
李辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to JP2022548763A priority Critical patent/JP2023513713A/ja
Priority to MX2022009173A priority patent/MX2022009173A/es
Priority to EP21754654.8A priority patent/EP4106221A4/en
Priority to KR1020227029814A priority patent/KR20220131993A/ko
Priority to US17/794,253 priority patent/US20230075037A1/en
Priority to BR112022015632A priority patent/BR112022015632A2/pt
Publication of WO2021160122A1 publication Critical patent/WO2021160122A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a method, device, terminal, network side, and storage medium for channel state information feedback.
  • channel state information (Channel State Information, CSI) feedback is a key technology to achieve high-performance precoding.
  • the terminal needs to perform SVD (Singular Value Decomposition) calculations for each PMI (Precoding Matrix Indicator) subband, and the terminal has a high computational complexity.
  • the terminal needs to calculate the downlink delay information and report the downlink delay information to the network side, which brings a large feedback overhead.
  • the embodiments of the present application provide a channel state information feedback method, device, terminal, network side, and storage medium to solve the problem that the high calculation amount and feedback overhead of the terminal limit system performance when the channel state information is fed back in the prior art.
  • an embodiment of the present application provides a channel state information feedback method, including:
  • the beam used in the beamforming is based on the space domain basis vector or based on the space domain
  • a basis vector and a frequency-domain basis vector are determined, and the spatial-domain basis vector and the frequency-domain basis vector are determined based on an uplink channel;
  • the port indication information and the port combination coefficient are fed back to the network side, so that the network side determines the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • the determination of port indication information and port combination coefficients for data transmission based on the beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information specifically includes:
  • port indication information and port combination coefficients used for data transmission are determined.
  • the receiving network side sends the beamformed CSI-RS or the beamformed CSI-RS and frequency domain basis vector indication information sent by the antenna port, specifically including:
  • the first beam used for beamforming of the first CSI-RS is determined based on all spatial base vectors and all frequency domain base vectors.
  • the number of the space-domain basis vectors is 2L
  • the number of the frequency-domain basis vectors is M
  • both L and M are positive integers
  • the number of the first beams is not less than 2L+M-1;
  • At least 2L first beams are determined based on 2L spatial base vectors
  • at least M-1 first beams are determined based on preset spatial base vectors and M-1 frequency domain base vectors; the preset spatial domains
  • the basis vector is one of 2L spatial basis vectors.
  • the determining multiple effective channel information based on the beamformed CSI-RS or the beamformed CSI-RS and frequency domain basis vector indication information specifically includes:
  • At least 2L+M-1 pieces of first effective channel information and at least (2L-1)(M-1) pieces of second effective channel information are used as the effective channel information.
  • the first effective channel information corresponding to at least 2L-1 preset beamforming CSI-RS and M-1 frequency domain basis vectors are determined based on the at least 2L first effective channel information At least (2L-1)(M-1) second effective channel information, specifically including:
  • the receiving network side sends the beamformed CSI-RS or the beamformed CSI-RS and frequency domain basis vector indication information sent by the antenna port, specifically including:
  • the second beam used for beamforming the second CSI-RS is determined based on all the space-domain basis vectors and a part of the frequency-domain basis vectors, and the frequency-domain basis vector indication information is used to indicate another part of the frequency domain. Basis vector.
  • the number of the space-domain basis vectors is 2L
  • the number of the frequency-domain basis vectors is M
  • both L and M are positive integers
  • the number of the second beams is not less than 2LM′, where M′ is a positive integer less than M;
  • At least 2LM′ second beams are determined based on 2L space-domain basis vectors and any M′ frequency-domain basis vectors; the arbitrary M′ frequency-domain basis vectors contain the first frequency-domain basis vectors, and the first The elements of the frequency domain basis vector are all 1;
  • the indication information of the frequency domain basis vector includes Bit indication information to indicate MM′ frequency-domain basis vectors, where N 3 is the number of PMI subbands;
  • the frequency domain basis vector indication information includes Bits are used to indicate the starting point of MM' frequency-domain basis vectors, and Bit indication information to indicate MM′ frequency domain basis vectors;
  • the frequency domain basis vector indication information includes Bits are used to indicate consecutive M frequency-domain basis vectors.
  • the determining multiple effective channel information based on the beamformed CSI-RS or the beamformed CSI-RS and frequency domain basis vector indication information specifically includes:
  • the first effective channel information corresponding to the at least 2L second beams determined based on the first frequency domain basis vector, and the MM′ frequency domain basis vectors, it is determined that at least 2L(MM ′) second effective channel information;
  • At least 2LM' pieces of first effective channel information and at least 2L(M-M') pieces of second effective channel information are used as the effective channel information.
  • the determining the port indication information and the port combination coefficient for data transmission based on the multiple effective channel information specifically includes:
  • the selecting no more than a preset number of ports and non-zero elements with the largest amplitude in the feature vector corresponding to any downlink transmission layer to obtain the port combination coefficient of the any downlink transmission layer specifically includes:
  • the receiving network side sends the beamformed CSI-RS, or the beamformed CSI-RS and frequency domain basis vector indication information sent by the antenna port, before further including:
  • the SRS is sent to the network side, so that the network side determines, based on the SRS, a space-domain basis vector and a frequency-domain basis vector corresponding to the uplink channel.
  • an embodiment of the present application provides a channel state information feedback method, including:
  • the beam used for beamforming is based on the space basis vector or the space basis vector
  • the frequency domain basis vector, the spatial domain basis vector and the frequency domain basis vector are determined based on the uplink channel
  • Receive port indication information and port combination coefficients for data transmission fed back by the terminal are the CSI-RS of the terminal based on the beamforming, or the CSI-RS of the beamforming. RS and frequency domain basis vector indication information are determined;
  • the precoding of the downlink transmission data is determined.
  • the transmission of beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information to the terminal through the antenna port specifically includes:
  • the first beam used for beamforming of the first CSI-RS is determined based on all spatial base vectors and all frequency domain base vectors.
  • the number of the space-domain basis vectors is 2L
  • the number of the frequency-domain basis vectors is M
  • both L and M are positive integers
  • the number of the first beams is not less than 2L+M-1;
  • At least 2L first beams are determined based on 2L spatial base vectors
  • at least M-1 first beams are determined based on preset spatial base vectors and M-1 frequency domain base vectors; the preset spatial domains
  • the basis vector is one of 2L spatial basis vectors.
  • the transmission of beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information to the terminal through the antenna port specifically includes:
  • the second beam used for beamforming the second CSI-RS is determined based on all the space-domain basis vectors and a part of the frequency-domain basis vectors, and the frequency-domain basis vector indication information is used to indicate another part of the frequency domain. Basis vector.
  • the number of the space-domain basis vectors is 2L
  • the number of the frequency-domain basis vectors is M
  • both L and M are positive integers
  • the number of the second beams is not less than 2LM′, where M′ is a positive integer less than M;
  • At least 2LM′ second beams are determined based on 2L space-domain basis vectors and any M′ frequency-domain basis vectors; the arbitrary M′ frequency-domain basis vectors contain the first frequency-domain basis vectors, and the first The elements of the frequency domain basis vector are all 1;
  • the indication information of the frequency domain basis vector includes Bit indication information to indicate MM′ frequency-domain basis vectors, where N 3 is the number of PMI subbands;
  • the frequency domain basis vector indication information includes Bits are used to indicate the starting point of MM' frequency-domain basis vectors, and Bit indication information to indicate MM′ frequency domain basis vectors;
  • the frequency domain basis vector indication information includes Bits are used to indicate consecutive M frequency-domain basis vectors.
  • the beam used in the beamforming is obtained by calculating the Kronecker product of the space-domain basis vector and the frequency-domain basis vector.
  • the transmission of beamformed CSI-RS, or beamformed CSI-RS and frequency-domain basis vector indication information to the terminal through the antenna port further includes:
  • a space-domain basis vector and a frequency-domain basis vector corresponding to the uplink channel are determined.
  • an embodiment of the present application provides a channel state information feedback device, including:
  • the receiving unit is used to receive the beamforming CSI-RS or the indication information of the beamforming CSI-RS and the frequency domain basis vector sent by the network side through the antenna port; wherein, the beam used in the beamforming is based on the space domain basis.
  • Vector, or determined based on a space-domain basis vector and a frequency-domain basis vector, the space-domain basis vector and the frequency-domain basis vector are determined based on an uplink channel;
  • a port determining unit configured to determine port indication information and port combination coefficients for data transmission based on the beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information;
  • the feedback unit is configured to feed back the port indication information and the port combination coefficient to the network side, so that the network side determines the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • an embodiment of the present application provides a channel state information feedback device, including:
  • the sending unit is used to send beamformed CSI-RS or beamformed CSI-RS and frequency domain basis vector indication information to the terminal through the antenna port; wherein, the beam used in beamforming is based on the space domain basis vector, Or determined based on a space-domain basis vector and a frequency-domain basis vector, the space-domain basis vector and the frequency-domain basis vector are determined based on an uplink channel;
  • the port receiving unit is configured to receive port indication information and port combination coefficients for data transmission fed back by the terminal; the port indication information and port combination coefficients are the CSI-RS of the terminal based on the beamforming, or The beamforming CSI-RS and frequency domain basis vector indication information are determined;
  • the precoding unit is configured to determine the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • an embodiment of the present application provides a terminal including a memory, a processor, and a program stored in the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • the beam used in the beamforming is based on the space domain basis vector or based on the space domain
  • a basis vector and a frequency-domain basis vector are determined, and the spatial-domain basis vector and the frequency-domain basis vector are determined based on an uplink channel;
  • the port indication information and the port combination coefficient are fed back to the network side, so that the network side determines the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • an embodiment of the present application provides a network side, including a memory, a processor, and a program stored on the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • the beam used for beamforming is based on the space basis vector or the space basis vector
  • the frequency domain basis vector, the spatial domain basis vector and the frequency domain basis vector are determined based on the uplink channel
  • Receive port indication information and port combination coefficients for data transmission fed back by the terminal are the CSI-RS of the terminal based on the beamforming, or the CSI-RS of the beamforming. RS and frequency domain basis vector indication information are determined;
  • the precoding of the downlink transmission data is determined.
  • an embodiment of the present application provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method provided in the first aspect or the second aspect are implemented .
  • the channel state information feedback method, device, terminal, network side, and storage medium provided by the embodiments of this application apply the reciprocity of the angle information and delay information of the uplink and downlink channels, so that the terminal can be based on beamforming CSI- RS, or beamformed CSI-RS and frequency domain basis vector indication information, determine the port indication information and port combination coefficients used for data transmission, without additional calculation of the delay information of the downlink channel, reducing the calculation complexity of the terminal, The feedback overhead of the terminal is reduced, and the system performance can be further improved.
  • FIG. 1 is a schematic flowchart of a channel state information feedback method provided by an embodiment of the application
  • FIG. 2 is a schematic flowchart of a channel state information feedback method provided by another embodiment of this application.
  • FIG. 3 is a schematic flowchart of a channel state information feedback method provided by another embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a channel state information feedback device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a channel state information feedback device provided by another embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of the network side provided by an embodiment of the application.
  • Each CSI-RS (Channel State Information Reference Signal, channel state information reference signal) port undergoes beamforming, and its shaped beam can be determined by the reciprocity of uplink and downlink channel angle information.
  • W 1 in the port selection codebook is as follows:
  • X is the number of CSI-RS ports, and its value is the same as the antenna configuration supported by the Rel-16 enhanced Type II codebook.
  • the parameter L ⁇ 2,4 ⁇ can be configured.
  • Each port selection block is represented as:
  • the parameter m is used to select L consecutive ports, and its value is Use broadband feedback.
  • the parameter d ⁇ 1,2,3,4 ⁇ is configurable and needs to meet the condition d ⁇ L, which is used to adjust the sampling interval of each L beam and affect the feedback overhead.
  • d ⁇ L is used to adjust the sampling interval of each L beam and affect the feedback overhead.
  • it is equivalent to dividing X/2 ports into X/2d group, thereby reducing the feedback overhead of indicating m.
  • the choice of d needs to consider avoiding the selection of beams with similar directions for linear combination.
  • W is an X ⁇ N 3 precoding matrix, where N 3 represents the number of PMI (Precoding Matrix Indicator) subbands.
  • W f represents the frequency domain basis vector used to compress the frequency domain combination coefficients, which is composed of M DFT (Discrete Fourier Transform) vectors, Indicates the linear combination coefficient after compressing the N 3 PMI subband coefficients by using W f.
  • the terminal needs to perform SVD calculation for each PMI subband, and the terminal has a high computational complexity.
  • the terminal needs to calculate the downlink delay information and report the downlink delay information to the network side, which brings a large feedback overhead.
  • the embodiment of the present application provides a channel state information feedback method to solve the above-mentioned problem.
  • Fig. 1 is a schematic flow chart of a channel state information feedback method provided by an embodiment of the application.
  • the execution subject of the method may be a terminal, and the method includes:
  • Step 110 Receive the beamforming CSI-RS or the indication information of the beamforming CSI-RS and the frequency domain basis vector sent by the network side through the antenna port; wherein the beam used in the beamforming is based on the space domain basis vector, Or it is determined based on the space-domain basis vector and the frequency-domain basis vector, and the space-domain basis vector and the frequency-domain basis vector are determined based on the uplink channel.
  • the network side estimates the uplink channel in advance, and sends beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information to the terminal, so that the terminal can learn the information of the uplink channel. .
  • the beam used for beamforming can be determined based on the spatial basis vector and frequency domain basis vector corresponding to the uplink channel; if the network side is directed to the terminal Send beamforming CSI-RS, and also send frequency domain basis vector indication information to the terminal, the beam used for beamforming can be determined based only on the spatial basis vector corresponding to the uplink channel, or it can be based on the uplink channel correspondence. Where the space-domain basis vector and the frequency-domain basis vector information are determined, the frequency-domain basis vector indication information is used to indicate the frequency-domain basis vector that is not used to determine the beam used for beamforming.
  • the frequency domain basis vector indication information can be sent to the terminal using any one of RRC (Radio Resource Control), MAC-CE (Media Access Control-Control element), and DCI (Downlink Control Information) signaling.
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control element
  • DCI Downlink Control Information
  • the beam used in beamforming can be determined based on the angle information of the uplink channel, or the angle information and delay information of the uplink channel; the angle information is determined based on the spatial basis vector, and the delay information is determined based on the frequency domain basis.
  • the vector is determined.
  • the network side estimates the angle information and time delay information of the uplink channel in advance, and sends beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information to the terminal, so that The terminal can learn the angle information and time delay information of the uplink channel.
  • the beam used for beamforming is determined based on the angle information and delay information of the uplink channel; if the network side sends beamforming to the terminal CSI-RS, and also send frequency-domain basis vector indication information to the terminal, the beam used for beamforming can be determined based on the angle information of the uplink channel only, or it can be determined based on the angle information and delay information of the uplink channel Yes, the frequency domain basis vector indication information is used to indicate the frequency domain basis vector that is not used to determine the beam used for beamforming.
  • the spatial basis vector used to determine the angle information of the uplink channel can be expressed as eigenvectors, DFT, DCT (Discrete Cosine Transform), polynomial coefficients, or KLT (Karhunen-Loeve Transform), etc., which are used to determine the uplink channel
  • the frequency domain basis vector of the time delay information can be expressed as DFT, DCT, or polynomial coefficients.
  • the specific number of space-domain basis vectors and the specific number of frequency-domain basis vectors may be pre-appointed by the network side and the terminal, or configured by the network side to the terminal through signaling, which is not specifically limited in the embodiment of the present application.
  • Step 120 Determine port indication information and port combination coefficients for data transmission based on the beamformed CSI-RS, or the beamformed CSI-RS and frequency domain basis vector indication information.
  • the uplink and downlink channels correspond to the same spatial and frequency domain basis vectors.
  • the terminal After receiving the beamformed CSI-RS, or the beamformed CSI-RS and the frequency domain basis vector indication information, the terminal does not need to calculate the angle information and delay information of the downlink channel, and can directly use the beamformed CSI -RS, or beamformed CSI-RS and frequency domain basis vector indication information, to obtain the space domain basis vector and frequency domain basis vector that can be used to determine the angle information and delay information of the downlink channel, and then select the port for data transmission , Generate port indication information, and port combination coefficients corresponding to each port indicated by the port indication information.
  • Step 130 Feed back the port indication information and the port combination coefficient to the network side, so that the network side determines the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • the method provided by the embodiment of the application uses the reciprocity of the angle information and the delay information of the uplink and downlink channels, so that the terminal can be based on beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication Information, determine the port indication information and port combination coefficients used for data transmission, without additional calculation of the delay information of the downlink channel, reduce the calculation complexity of the terminal, reduce the feedback overhead of the terminal, and further improve the system performance.
  • step 120 specifically includes:
  • Step 121 Determine multiple effective channel information based on beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication information.
  • the terminal can estimate the effective channel information of the corresponding port based on the beamformed CSI-RS.
  • the terminal can also use the frequency domain basis vector contained in the frequency domain basis vector indication information, combined with the estimated effective channel information, to obtain a beam based on each space domain basis vector and each frequency domain basis vector.
  • the corresponding effective channel information during transmission.
  • the number of effective channel information is not less than the product of the number of space-domain basis vectors and the number of frequency-domain basis vectors.
  • Step 122 Determine port indication information and port combination coefficients for data transmission based on multiple effective channel information.
  • the terminal can select effective channel information for data transmission based on the multiple effective channel information, and generate port indication information based on the port used corresponding to the selected effective channel information And the port combination coefficient, and reported to the network side for the network side to calculate the downlink precoding.
  • the number of ports selected by the terminal may be configured by the network side, may also be reported by the terminal, or may be pre-appointed by the network side and the terminal.
  • step 110 specifically includes: receiving the first beamforming CSI-RS transmitted by the network side through the antenna port; wherein the first beam used for beamforming the first CSI-RS is based on All space-domain basis vectors and all frequency-domain basis vectors are determined.
  • the network side can implicitly send the frequency domain basis vector to the terminal by sending the first beamformed CSI-RS to the terminal.
  • the first CSI-RS is the CSI-RS when the network side implicitly transmits the frequency domain basis vector
  • the first beam is the beam used for beamforming the first CSI-RS
  • all the beams corresponding to the first CSI-RS It needs to be calculated based on all the space-domain basis vectors used to determine the angle information of the uplink channel and all the frequency-domain basis vectors used to determine the time delay information of the uplink channel. Therefore, on the terminal side, all the space-domain basis vectors and all the frequency-domain basis vectors can be obtained by only relying on each first CSI-RS.
  • the number of spatial basis vectors is 2L
  • the number of frequency domain basis vectors is M
  • both L and M are positive integers
  • the number of first beams is not less than 2L+M-1; among them, at least 2L first beams are determined based on 2L spatial basis vectors, and at least M-1 first beams are determined based on preset spatial basis vectors and M- 1 frequency domain basis vector is determined; the preset spatial domain basis vector is one of 2L spatial basis vectors.
  • L and M are both codebook parameters, and L and M may be configured by the network side to the terminal through signaling, or may be pre-appointed by the network side and the terminal.
  • M frequency-domain basis vectors there is a frequency-domain basis vector that is all 1s, that is, the first frequency-domain basis vector.
  • At least 2L first beams are obtained by calculating Kronecker product of 2L spatial basis vectors and first frequency domain basis vectors respectively, because the first frequency domain
  • the basis vectors are all 1, and the above-mentioned at least 2L first beams can also be recorded as being determined based on 2L spatial basis vectors respectively.
  • At least the M-1 first beams are obtained by calculating the Kronecker product of the preset space-domain basis vectors and the M-1 frequency-domain basis vectors, respectively.
  • the M-1 frequency-domain base vectors that is, each of the M frequency-domain base vectors, except for the first frequency-domain base vector.
  • the preset airspace basis vector is a preselected airspace basis vector among the 2L airspace basis vectors.
  • the preset airspace basis vector can be preset and agreed on by the network side and the terminal, or configured by the network side to the terminal through signaling. The embodiments of the present application do not specifically limit this.
  • the first CSI-RS for beamforming through the 2L+M-1 first beams implicitly realizes the transmission of the frequency domain basis vector, which reduces the computational complexity of the terminal while saving This reduces the downlink signaling overhead.
  • step 121 when the network side sends the beamformed first CSI-RS to the terminal, step 121 specifically includes:
  • Step 1211 Determine at least 2L first effective channel information based on the first CSI-RS beamforming through at least 2L first beams.
  • Step 1212 Determine M-1 frequency domain basis vectors and at least M-1 first effective channel information based on the first CSI-RS beamforming through at least M-1 first beams.
  • the effective channel information corresponding to the first CSI-RS can be obtained.
  • the effective channel information directly determined based on the CSI-RS is recorded as the first effective channel. information.
  • the quantity of the first effective channel information is consistent with the quantity of the first CSI-RS received by the terminal. Therefore, the quantity of the first effective channel information is at least 2L+M-1.
  • Step 1213 Based on at least 2L first effective channel information, 2L-1 preset beamforming CSI-RS corresponding to the first effective channel information, and M-1 frequency domain basis vectors, determine at least (2L -1) (M-1) second effective channel information.
  • the corresponding CSI-RS is a preset beamforming CSI-RS.
  • the preset beamforming CSI-RS may be pre-appointed by the network side and the terminal, or configured by the network side to the terminal through downlink signaling.
  • Step 1214 Use at least 2L+M-1 pieces of first effective channel information and at least (2L-1)(M-1) pieces of second effective channel information as effective channel information.
  • At least 2L+M-1 pieces of first effective channel information directly determined based on CSI-RS are combined with at least (2L-1)(M-1) pieces obtained based on the first effective channel information and frequency domain basis vectors.
  • the second effective channel information is used as effective channel information.
  • step 1213 specifically includes: respectively calculating each of the first effective channel information and each of the M-1 frequency domain base vectors corresponding to at least 2L-1 preset beamforming CSI-RSs
  • the Hadamard product of the frequency-domain basis vectors obtains at least (2L-1)(M-1) second effective channel information.
  • any first effective channel information corresponding to at least 2L-1 preset beamforming CSI-RS, and any one of the M-1 frequency domain basis vectors calculate two
  • the Hadamard product of the person is the second effective channel information corresponding to the Hadamard product of the two.
  • the terminal uses 1 antenna to send an uplink signal, N r roots receive a downlink signal, and downlink transmits a layer of data.
  • the network side is equipped with a dual-polarized two-dimensional planar antenna array.
  • the antenna array is mapped into 2N 1 N 2 transmit antenna ports, where N 1 and N 2 represent the number of antenna ports in the horizontal and vertical dimensions, and the number of PMI subbands.
  • the number is N 3
  • the size of each subband is 1 PRB.
  • the network side sends a layer of data to the terminal:
  • H n represents the channel of the nth subband.
  • the network side and the terminal predefine the space-domain basis vector (i.e. v 0 ) used by the first port used by the remaining M-1 port beams, and the network side selects M-1 frequencies other than the first frequency-domain basis vector.
  • the domain basis vector is calculated by the Kronecker product, that is, the k-th port beam f m represents the m-th frequency domain basis vector.
  • the effective channel of the k-th port estimated by the terminal is:
  • k m represents the index corresponding to the m-th frequency-domain basis vector in the N 3 basis vectors.
  • the m-th frequency domain basis vector used by the network side can be determined.
  • the terminal can determine at least M-1 frequency domain basis vectors used by the network side.
  • step 110 specifically includes: receiving the second CSI-RS and frequency domain basis vector indication information of the beamforming sent by the network side through the antenna port; wherein, performing beamforming on the second CSI-RS
  • the second beam used is determined based on all the space-domain basis vectors and a part of the frequency-domain basis vectors, and the frequency-domain basis vector indication information is used to indicate another part of the frequency-domain basis vectors.
  • the network side may also explicitly send the frequency domain basis vector to the terminal by sending the beamformed second CSI-RS and frequency domain basis vector indication information to the terminal.
  • the second CSI-RS is the CSI-RS when the frequency domain base vector is explicitly sent by the network side, and the second beam is the beam used for beamforming the second CSI-RS.
  • the frequency domain basis vector used to determine the delay information of the uplink channel is divided into two parts, one of which is used to cooperate with all the space domain basis vectors to determine the second beam corresponding to the second CSI-RS.
  • the formula is sent to the terminal, and the other part constitutes the frequency-domain basis vector indication information, which is explicitly sent to the terminal. Therefore, on the terminal side, with each second CSI-RS, all of the space-domain basis vectors and a part of the frequency-domain basis vectors can be obtained, and another part of the frequency-domain basis vectors can be obtained with the frequency-domain basis vector indication information. Thus, all the spatial basis vectors and all the frequency domain basis vectors are obtained.
  • the frequency domain basis vector used to determine the second beam may be one or multiple, and the number may be preset and agreed by the network side and the terminal. It can also be configured by the network side to the terminal through signaling.
  • the number of spatial basis vectors is 2L, and the number of frequency domain basis vectors is M, L And M are both positive integers;
  • the number of second beams is not less than 2LM′, where M′ is a positive integer less than M; at least 2LM′ second beams are based on 2L spatial basis vectors and arbitrary M′ frequency domains
  • the basis vector is determined; any M′ frequency-domain basis vectors contain the first frequency-domain basis vector, and the elements of the first frequency-domain basis vector are all ones.
  • L, M, and M′ are all codebook parameters, and L, M, and M′ may be configured by the network side to the terminal through signaling, or may be pre-appointed by the network side and the terminal.
  • the M frequency domain basis vectors are divided into two parts, namely M′ frequency domain basis vectors and M-M′ frequency domain basis vectors.
  • At least 2LM' second beams are obtained by calculating the Kronecker product of 2L spatial base vectors and M'frequency domain base vectors respectively. Since M′ frequency domain basis vectors have a first frequency domain basis vector of all 1s, among the above at least 2LM′ second beams, at least 2L first beams can also be recorded as determined based on 2L spatial basis vectors. .
  • the frequency domain basis vector indication information when the network side sends the beamformed second CSI-RS and frequency domain basis vector indication information to the terminal, includes Bit indication information to indicate MM′ frequency domain basis vectors, where N 3 is the number of PMI subbands; or, the frequency domain basis vector indication information includes Bits are used to indicate the starting point of MM' frequency-domain basis vectors, and Bit indication information to indicate MM′ frequency-domain basis vectors; or, the frequency-domain basis vector indication information includes Bits are used to indicate consecutive M frequency-domain basis vectors.
  • step 121 when the network side sends the beamformed second CSI-RS and frequency domain basis vector indication information to the terminal, step 121 specifically includes:
  • the effective channel information corresponding to the second CSI-RS can be obtained.
  • the effective channel information directly determined based on the CSI-RS is recorded as the first effective channel. information.
  • the quantity of the first effective channel information is consistent with the quantity of the second CSI-RS received by the terminal. Therefore, the quantity of the first effective channel information is at least 2LM′.
  • the second CSI-RS for beamforming of at least 2LM′ second beams From the second CSI-RS for beamforming of at least 2LM′ second beams, the second CSI-RS for beamforming of at least 2L second beams determined based on the first frequency domain basis vector can be obtained, and then the second CSI-RS for beamforming is determined Based on the first effective channel information corresponding to the at least 2L second beams determined by the first frequency domain basis vector, calculate the difference between the first effective channel information corresponding to the at least 2L second beams and the MM′ frequency domain basis vectors. Hadamard product to obtain at least 2L(MM′) second effective channel information.
  • the effective channel information obtained based on the first effective channel information and the remaining frequency domain basis vectors is recorded as the second effective channel information.
  • At least 2LM' first effective channel information directly determined based on CSI-RS and at least 2L (MM') second effective channel information obtained based on the first effective channel information and the remaining frequency domain basis vectors are used as effective channel information .
  • the at least 2L second beams which are determined based on at least 2L space-domain basis vectors and a first frequency-domain basis vector with all ones.
  • the at least 2L first effective channel information can be directly calculated with the frequency domain base.
  • the vector indicates the Hadamard product of the M-1 frequency-domain basis vectors included in the information, thereby obtaining at least 2L(M-1) second effective channel information.
  • the bit indication information indicates the remaining M-1 frequency domain basis vectors.
  • the network side sends The bits indicate the starting points M init and M init of ⁇ M continuous frequency domain basis vectors
  • the bits indicate the remaining M-1 frequency-domain basis vectors.
  • the terminal determines the remaining M-1 frequency domain basis vectors selected by the network side according to the frequency domain basis vector indication information sent by the network side.
  • the 2L ports can be determined according to the pre-definition of the network side and the terminal. Let the effective channel estimated through the l-th port in the p-polarization direction be expressed as:
  • H p,1 represents the channel of the nth subband in the p-polarization direction.
  • 2L (M-1) effective channel information can be calculated. If the index of the m-th frequency-domain basis vector after phase rotation is k m , the beam generated by using the l-th spatial basis vector v l and the m-th frequency-domain basis vector f m in the p-polarization direction is When the beam is used for transmission, the corresponding effective channel is
  • the bit indication information indicates the remaining MM′ frequency domain basis vectors.
  • the network side sends Bits determine the starting points M init and M init of ⁇ M continuous frequency domain basis vectors The bits indicate the remaining MM' frequency-domain basis vectors.
  • the terminal first estimates the effective channel information of each port according to the second CSI-RS of the received 8 ports, and then determines the 2L ports according to the network side and the terminal pre-definition, for example, the first to the fourth of the first frequency domain basis vector are used. Ports.
  • the terminal can calculate 2L (M-M') effective channel information according to the effective channel estimated by the second CSI-RS of the predefined 2L ports, and combined with M-M' frequency domain basis vectors.
  • the effective channel of the lth port is l ⁇ 0,...,2L-1 ⁇ .
  • the effective channel of the k ⁇ 0,1,...,2L(M-M′)-1 ⁇ th port estimated by the terminal is:
  • k m represents the index corresponding to the m-th frequency-domain basis vector among the MM′ frequency-domain basis vectors in the N 3 basis vectors.
  • the network side sends a layer of data to the terminal.
  • step 122 specifically includes:
  • Step 1221 Perform eigenvalue decomposition on the covariance matrices of multiple effective channel information to obtain eigenvectors corresponding to the largest eigenvalues of the downlink transmission layers.
  • I the effective channel information corresponding to the transmission of the k-th beam in the p-polarization direction
  • the k-th beam in the p-polarization direction is generated by using the l-th spatial basis vector v l and the m-th frequency-domain basis vector f m Beam.
  • Pair covariance matrix Perform eigenvalue decomposition to obtain the eigenvectors corresponding to the largest eigenvalues of the downlink transmission layers. For example, when the number of downlink transmission layers is 1, the eigenvector corresponding to the largest eigenvalue As the eigenvector corresponding to the downlink transmission layer; when the number of downlink transmission layers is 2, the eigenvector corresponding to the largest eigenvalue As the feature vector corresponding to the first layer, the feature vector corresponding to the second largest feature value As the feature vector corresponding to the second layer.
  • Step 1222 Select the non-zero elements with the largest amplitude not greater than the preset number of ports in the feature vector corresponding to any downlink transmission layer to obtain the port combination coefficient of the downlink transmission layer.
  • the preset number of ports K 0 is a preset number of ports used for data transmission in each downlink transmission layer.
  • at most K 0 non-zero elements with the largest amplitude can be selected from the feature vector corresponding to the downlink transmission layer, and the above-mentioned at most K 0 non-zero elements with the largest amplitude can be used as the downlink transmission layer
  • the port combination coefficient For any downlink transmission layer, at most K 0 non-zero elements with the largest amplitude can be selected from the feature vector corresponding to the downlink transmission layer, and the above-mentioned at most K 0 non-zero elements with the largest amplitude can be used as the downlink transmission layer The port combination coefficient.
  • Step 1223 Determine the port indication information used by the downlink transmission layer for data transmission based on the port to which the effective channel corresponding to the port combination coefficient of the downlink transmission layer is applied.
  • the port indication information of any downlink transmission layer for data transmission can be through bitmap or combination coefficient Report to the network side.
  • Port indication information uses bitmap indication as shown in Table 1:
  • the effective channel corresponding to the port indicated by the first layer port indication information is The effective channel corresponding to the port indicated by the second-level port indication information is The port indication information of the first layer and the second layer adopts bitmap indication as shown in Table 2 and Table 3:
  • step 1222 specifically includes: selecting no more than a preset number of ports and a maximum amplitude non-zero element in the feature vector corresponding to any downlink transmission layer; The largest non-zero element is normalized and quantized to obtain the port combination coefficient of the downlink transmission layer.
  • the method further includes: sending an SRS to the network side, so that the network side can determine the spatial basis vector and the frequency domain basis vector corresponding to the uplink channel based on the SRS.
  • the terminal sends SRS (Sounding Reference Signal, sounding reference signal) to the network side.
  • SRS Sounding Reference Signal
  • the network side can estimate the uplink channel based on the SRS, and determine its corresponding spatial basis vector and frequency domain basis vector based on the uplink channel, based on the spatial basis vector, or based on the spatial basis vector sum
  • the frequency domain basis vector determines the beam used for beamforming.
  • the uplink channel can be estimated based on SRS Reuse Calculate the angle and delay information of the uplink channel, where the angle information and the delay information can be respectively composed of a set of space-domain compression basis vectors and a set of frequency-domain basis vector pairs It is obtained by inverse Fourier transform, that is, the angle information and time delay information of the uplink channel can be determined by a set of space-domain base vectors and a set of frequency-domain base vectors.
  • FIG. 2 is a schematic flowchart of a channel state information feedback method provided by another embodiment of this application.
  • the execution body of the method is the network side, such as a base station, and the method includes:
  • Step 210 Send beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication information to the terminal through the antenna port; wherein, the beam used for beamforming is based on the space domain basis vector or based on The space-domain basis vector and the frequency-domain basis vector are determined, and the space-domain basis vector and the frequency-domain basis vector are determined based on the uplink channel.
  • the network side estimates the uplink channel in advance, and sends beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information to the terminal, so that the terminal can learn the information of the uplink channel. .
  • the beam used for beamforming is determined based on the spatial basis vector and frequency domain basis vector corresponding to the uplink channel; if the network side transmits to the terminal
  • the beamforming CSI-RS also sends frequency-domain basis vector indication information to the terminal.
  • the beams used in beamforming can be determined based only on the spatial basis vector corresponding to the uplink channel, or based on the spatial domain corresponding to the uplink channel.
  • the basis vector and the frequency domain basis vector information are determined, and the frequency domain basis vector indication information is used to indicate the frequency domain basis vector that is not used to determine the beam used for beamforming.
  • the frequency domain basis vector indication information can be sent to the terminal using any one of RRC (Radio Resource Control), MAC-CE (Media Access Control-Control element), and DCI (Downlink Control Information) signaling.
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control element
  • DCI Downlink Control Information
  • the beam used in beamforming can be determined based on the angle information of the uplink channel, or the angle information and delay information of the uplink channel; the angle information is determined based on the spatial basis vector, and the delay information is determined based on the frequency domain basis.
  • the vector is determined.
  • the network side estimates the angle information and time delay information of the uplink channel in advance, and sends beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information to the terminal, so that The terminal can learn the angle information and time delay information of the uplink channel.
  • the beam used for beamforming is determined based on the angle information and delay information of the uplink channel; if the network side sends beamforming to the terminal CSI-RS, and also send frequency-domain basis vector indication information to the terminal, the beam used for beamforming can be determined based on the angle information of the uplink channel only, or it can be determined based on the angle information and delay information of the uplink channel Yes, the frequency domain basis vector indication information is used to indicate the frequency domain basis vector that is not used to determine the beam used for beamforming.
  • the spatial basis vector used to determine the angle information of the uplink channel can be expressed as eigenvector, DFT, DCT, polynomial coefficient or KLT, etc.
  • the frequency domain basis vector used to determine the delay information of the uplink channel can be expressed as DFT, DCT or polynomial coefficients, etc.
  • the specific number of space-domain basis vectors and the specific number of frequency-domain basis vectors may be pre-appointed by the network side and the terminal, or configured by the network side to the terminal through signaling, which is not specifically limited in the embodiment of the present application.
  • Step 220 Receive port indication information and port combination coefficients for data transmission fed back by the terminal; the port indication information and port combination coefficients are based on beamforming CSI-RS of the terminal, or beamforming CSI-RS and frequency domain basis.
  • the vector indicates that the information is determined.
  • the uplink and downlink channels correspond to the same spatial and frequency domain basis vectors.
  • the terminal After the terminal receives the beamformed CSI-RS, or the beamformed CSI-RS and the frequency domain basis vector indication information, the terminal does not need to calculate the angle information and delay information of the downlink channel, and can directly use the beamformed CSI -RS, or beamformed CSI-RS and frequency domain basis vector indication information, to obtain the space domain basis vector and frequency domain basis vector that can be used to determine the angle information and delay information of the downlink channel, and then select the port for data transmission , Generate port indication information, and port combination coefficients corresponding to each port indicated by the port indication information. Immediately, the terminal feeds back the port indication information and the port combination coefficient to the network side, and the network side receives the port indication information and the port combination coefficient fed back by the terminal.
  • Step 230 Determine the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • the method provided by the embodiment of the application uses the reciprocity of the angle information and the delay information of the uplink and downlink channels, so that the terminal can be based on beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication Information, determine the port indication information and port combination coefficients used for data transmission, without additional calculation of the delay information of the downlink channel, reduce the calculation complexity of the terminal, reduce the feedback overhead of the terminal, and further improve the system performance.
  • step 210 specifically includes: transmitting the first beamforming CSI-RS to the terminal through the antenna port; wherein, the first beam used for beamforming the first CSI-RS is based on the entire space.
  • the basis vector and all frequency domain basis vectors are determined.
  • the network side can implicitly send the frequency domain basis vector to the terminal by sending the first beamformed CSI-RS to the terminal.
  • the first CSI-RS is the CSI-RS when the network side implicitly transmits the frequency domain basis vector
  • the first beam is the beam used for beamforming the first CSI-RS, and all the beams corresponding to the first CSI-RS , It needs to be calculated based on all the space-domain basis vectors used to determine the angle information of the uplink channel and all the frequency-domain basis vectors used to determine the time delay information of the uplink channel. Therefore, on the network side, only by sending the first beamformed CSI-RS to the terminal, the terminal can obtain all the space-domain basis vectors and all the frequency-domain basis vectors.
  • the number of spatial basis vectors is 2L
  • the number of frequency domain basis vectors is M
  • both L and M are positive integers
  • the number of first beams is not less than 2L+M-1; among them, at least 2L first beams are determined based on 2L spatial basis vectors, and at least M-1 first beams are determined based on preset spatial basis vectors and M- 1 frequency domain basis vector is determined; the preset spatial domain basis vector is one of 2L spatial basis vectors.
  • L and M are both codebook parameters, and L and M may be configured by the network side to the terminal through signaling, or may be pre-appointed by the network side and the terminal.
  • M frequency-domain basis vectors there is a frequency-domain basis vector that is all 1s, that is, the first frequency-domain basis vector.
  • At least 2L first beams are obtained by calculating Kronecker product of 2L spatial basis vectors and first frequency domain basis vectors respectively, because the first frequency domain
  • the basis vectors are all 1, and the above-mentioned at least 2L first beams can also be recorded as being determined based on 2L spatial basis vectors respectively.
  • At least the M-1 first beams are obtained by calculating the Kronecker product of the preset space-domain basis vectors and the M-1 frequency-domain basis vectors, respectively.
  • the M-1 frequency-domain base vectors that is, each of the M frequency-domain base vectors, except for the first frequency-domain base vector.
  • the preset airspace basis vector is a preselected airspace basis vector among the 2L airspace basis vectors.
  • the preset airspace basis vector can be preset and agreed on by the network side and the terminal, or configured by the network side to the terminal through signaling. The embodiments of the present application do not specifically limit this.
  • the first CSI-RS for beamforming through the 2L+M-1 first beams implicitly realizes the transmission of the frequency domain basis vector, which reduces the computational complexity of the terminal while saving This reduces the downlink signaling overhead.
  • step 210 specifically includes: sending beamforming second CSI-RS and frequency domain basis vector indication information to the terminal through the antenna port; wherein, the second CSI-RS beamforming is used for beamforming The second beam is determined based on all the space-domain basis vectors and a part of the frequency-domain basis vectors, and the frequency-domain basis vector indication information is used to indicate another part of the frequency-domain basis vectors.
  • the network side may also explicitly send the frequency domain basis vector to the terminal by sending the beamformed second CSI-RS and frequency domain basis vector indication information to the terminal.
  • the second CSI-RS is the CSI-RS when the frequency domain base vector is explicitly sent by the network side, and the second beam is the beam used for beamforming the second CSI-RS.
  • the frequency domain basis vector used to determine the delay information of the uplink channel is divided into two parts, one of which is used to cooperate with all the space domain basis vectors to determine the second beam corresponding to the second CSI-RS.
  • the formula is sent to the terminal, and the other part constitutes the frequency-domain basis vector indication information, which is explicitly sent to the terminal. Therefore, on the network side, by sending the beamformed second CSI-RS and frequency domain basis vector indication information to the terminal, the terminal can obtain all the space domain basis vectors and part of the frequency domain basis vector by virtue of each second CSI-RS.
  • the base vector in the frequency domain by virtue of the indication information of the base vector in the frequency domain, obtains another part of the base vector in the frequency domain, thereby obtaining all the base vectors in the space domain and all the base vectors in the frequency domain.
  • the frequency domain basis vector used to determine the second beam may be one or multiple, and the number may be preset and agreed by the network side and the terminal. It can also be configured by the network side to the terminal through signaling.
  • the number of spatial basis vectors is 2L, and the number of frequency domain basis vectors is M, L And M are both positive integers;
  • the number of second beams is not less than 2LM′, where M′ is a positive integer less than M; at least 2LM′ second beams are based on 2L spatial basis vectors and arbitrary M′ frequency domains
  • the basis vector is determined; any M′ frequency-domain basis vectors contain the first frequency-domain basis vector, and the elements of the first frequency-domain basis vector are all ones.
  • L, M, and M′ are all codebook parameters, and L, M, and M′ may be configured by the network side to the terminal through signaling, or may be pre-appointed by the network side and the terminal.
  • At least M frequency domain basis vectors are divided into two parts, namely M′ frequency domain basis vectors and M-M′ frequency domain basis vectors.
  • At least 2LM' second beams are obtained by calculating the Kronecker product of 2L spatial base vectors and M'frequency domain base vectors respectively. Since M′ frequency domain basis vectors have a first frequency domain basis vector of all 1s, among the above at least 2LM′ second beams, at least 2L first beams can also be recorded as determined based on 2L spatial basis vectors. .
  • the frequency domain basis vector indication information when the network side sends the beamformed second CSI-RS and frequency domain basis vector indication information to the terminal, includes Bit indication information to indicate MM′ frequency domain basis vectors, where N 3 is the number of PMI subbands; or, the frequency domain basis vector indication information includes Bits are used to indicate the starting point of MM' frequency-domain basis vectors, and Bit indication information to indicate MM′ frequency-domain basis vectors; or, the frequency-domain basis vector indication information includes Bits are used to indicate consecutive M frequency-domain basis vectors.
  • the beam used for beamforming is obtained by performing Kronecker product calculation on the space-domain basis vector and the frequency-domain basis vector.
  • the Kronecker product of the two can be used as the beam corresponding to the space-domain basis vector and the frequency-domain basis vector.
  • the method further includes: receiving the SRS sent by the terminal; and determining the space-domain basis vector and the frequency-domain basis vector corresponding to the uplink channel based on the SRS.
  • the network side can estimate the uplink channel based on the SRS, and determine its corresponding spatial basis vector and frequency domain basis vector based on the uplink channel, based on the spatial basis vector, or based on the spatial basis vector
  • the basis vector and the frequency domain basis vector determine the beam used for beamforming.
  • the uplink channel can be estimated based on SRS Reuse Calculate the angle and delay information of the uplink channel, where the angle information and the delay information can be respectively composed of a set of space-domain compression basis vectors and a set of frequency-domain basis vector pairs It is obtained by inverse Fourier transform, that is, the angle information and time delay information of the uplink channel can be determined by a set of space-domain base vectors and a set of frequency-domain base vectors.
  • FIG. 3 is a schematic flowchart of a channel state information feedback method provided by another embodiment of this application.
  • a terminal uses one antenna to transmit an uplink signal, and N r roots receive a downlink signal.
  • One layer of data is transmitted downstream.
  • the network side is equipped with a dual-polarized two-dimensional planar antenna array.
  • the antenna array is mapped into 2N 1 N 2 transmit antenna ports, where N 1 and N 2 represent the number of antenna ports in the horizontal and vertical dimensions, and the number of PMI subbands.
  • the number is N 3
  • the size of each subband is 1 PRB.
  • the channel state information feedback method includes the following steps:
  • Step 301 The terminal sends an SRS to the network side.
  • the comb structure of SRS is 4.
  • Step 302 The network side estimates the uplink channel, and calculates the space-domain basis vector and the frequency-domain basis vector corresponding to the uplink channel:
  • the network side selects 2L spatial basis vectors with the highest power and orthogonality, so that the two polarization directions select the same spatial basis vector, then the network side selects the matrix composed of 2L spatial basis vectors as
  • nth subband channel Indicates the channel containing the SRS subcarrier in the jth subband in the nth subband. Assuming that the combing structure of the SRS is 4, there are 3 subcarriers in each PRB that contain the SRS. The combination coefficient of this subband can be calculated as Similarly, the combination coefficients of N 3 subbands can be obtained, and the combination coefficients of all subbands are expressed as
  • phase rotation can be performed on the frequency domain basis vector corresponding to the minimum index by the phase rotation method, so that the index corresponding to the frequency domain basis vector is always 0, and other frequency domain basis vectors
  • the index corresponding to other frequency domain base vectors is the corresponding index value before the phase rotation minus the minimum index value of the frequency domain base vector before the phase rotation.
  • the index M frequency-domain basis vectors is 0, ..., k m -k 0 , ..., k M-1 -k 0.
  • the frequency-domain basis vector corresponding to the index 0 in the above is a vector with all 1 elements and a length of N 3 .
  • Step 303 The network side sends beamformed CSI-RS, or beamformed CSI-RS and frequency domain basis vector indication information to the terminal through the antenna port:
  • the network side can send the CSI-RS after beamforming through 2L ports.
  • the network side constructs frequency domain basis vector indication information including M-1 frequency domain basis vectors in addition to the first frequency domain basis vector, and sends the frequency domain basis vector indication information to the terminal.
  • Step 304 The terminal calculates effective channel information, and determines port indication information and port combination coefficients of each downlink transmission layer:
  • H p,1 represents the channel of the nth subband in the p-polarization direction.
  • 2L (M-1) effective channel information can be calculated. If the index of the m-th frequency-domain basis vector after phase rotation is k m , the beam generated by using the l-th spatial basis vector v l and the m-th frequency-domain basis vector f m in the p-polarization direction is When the beam is used for transmission, the corresponding effective channel is
  • Pair covariance matrix Do eigenvalue decomposition to get the eigenvector corresponding to the largest eigenvalue Then the ⁇ 1 of each element according to the magnitude of the size of the sorting selecting K 0 th maximum amplitude element as port combination coefficient, and the port is used to calculate the layer data downlink transmission K 0 ports combining coefficients corresponding to the effective channel used Precoding.
  • Step 305 The terminal reports the port indication information and the port combination coefficient:
  • Step 306 The network side calculates the downlink transmission precoding of each downlink transmission layer based on the port indication information and the port combination coefficient:
  • the network side receives the port indication information and port combination coefficient reported by the terminal Then, calculate the precoding of the downlink transmission data:
  • Represents the k-th beam selected by the terminal in the polarization direction p, k lM+m, p ⁇ 0,1 ⁇ . It is determined based on the port indication information.
  • FIG. 4 is a schematic structural diagram of a channel state information feedback device provided by an embodiment of this application.
  • a channel state information feedback device includes a receiving unit 410, a port determining unit 420, and a feedback unit.
  • the receiving unit 410 is configured to receive beamforming CSI-RS or beamforming CSI-RS and frequency domain basis vector indication information sent by the network side through the antenna port; wherein, the beam used for beamforming is based on A space-domain basis vector, or determined based on a space-domain basis vector and a frequency-domain basis vector, the space-domain basis vector and the frequency-domain basis vector are determined based on an uplink channel;
  • the port determining unit 420 is configured to determine port indication information and port combination coefficients for data transmission based on the beamformed CSI-RS, or the beamformed CSI-RS and frequency domain basis vector indication information;
  • the feedback unit 430 is configured to feed back the port indication information and the port combination coefficient to the network side, so that the network side determines the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • the device provided by the embodiment of the present application uses the reciprocity of the angle information and the delay information of the uplink and downlink channels, so that the terminal can be based on beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication Information, determine the port indication information and port combination coefficients used for data transmission, without additional calculation of the delay information of the downlink channel, reduce the calculation complexity of the terminal, reduce the feedback overhead of the terminal, and further improve the system performance.
  • the port determining unit 420 includes:
  • the channel determination subunit is configured to determine multiple effective channel information based on the beamformed CSI-RS, or the beamformed CSI-RS and frequency domain basis vector indication information;
  • the port determination subunit is configured to determine port indication information and port combination coefficients for data transmission based on the multiple effective channel information.
  • the receiving unit 410 is specifically configured to:
  • the first beam used for beamforming of the first CSI-RS is determined based on all spatial base vectors and all frequency domain base vectors.
  • the number of the spatial basis vectors is 2L
  • the number of the frequency domain basis vectors is M
  • both L and M are positive integers
  • the number of the first beams is not less than 2L+M-1;
  • At least 2L first beams are determined based on 2L spatial base vectors
  • at least M-1 first beams are determined based on preset spatial base vectors and M-1 frequency domain base vectors; the preset spatial domains
  • the basis vector is one of 2L spatial basis vectors.
  • the channel determination subunit is specifically configured to:
  • At least 2L+M-1 pieces of first effective channel information and at least (2L-1)(M-1) pieces of second effective channel information are used as the effective channel information.
  • the first effective channel information corresponding to at least 2L-1 preset beamforming CSI-RSs, and M-1 frequency domains based on at least 2L first effective channel information The basis vector determines at least (2L-1)(M-1) second effective channel information, which specifically includes:
  • the receiving unit 410 is specifically configured to:
  • the second beam used for beamforming the second CSI-RS is determined based on all the space-domain basis vectors and a part of the frequency-domain basis vectors, and the frequency-domain basis vector indication information is used to indicate another part of the frequency domain. Basis vector.
  • the number of the spatial basis vectors is 2L
  • the number of the frequency domain basis vectors is M
  • both L and M are positive integers
  • the number of the second beams is not less than 2LM′, where M′ is a positive integer less than M;
  • At least 2LM′ second beams are determined based on 2L space-domain basis vectors and any M′ frequency-domain basis vectors; the arbitrary M′ frequency-domain basis vectors contain the first frequency-domain basis vectors, and the first The elements of the frequency domain basis vector are all 1;
  • the indication information of the frequency domain basis vector includes Bit indication information to indicate MM′ frequency-domain basis vectors, where N 3 is the number of PMI subbands;
  • the frequency domain basis vector indication information includes Bits are used to indicate the starting point of MM' frequency-domain basis vectors, and Bit indication information to indicate MM′ frequency domain basis vectors;
  • the frequency domain basis vector indication information includes Bits are used to indicate consecutive M frequency-domain basis vectors.
  • the channel determination subunit is specifically configured to:
  • the first effective channel information corresponding to the at least 2L second beams determined based on the first frequency domain basis vector, and the MM′ frequency domain basis vectors, it is determined that at least 2L(MM ′) second effective channel information;
  • At least 2LM' pieces of first effective channel information and at least 2L(M-M') pieces of second effective channel information are used as the effective channel information.
  • the port determination subunit is specifically configured to:
  • the selection of the non-zero elements with the largest amplitude not greater than the preset number of ports in the feature vector corresponding to any downlink transmission layer is selected to obtain the port combination coefficient of the any downlink transmission layer, Specifically:
  • the device further includes an SRS sending unit, configured to:
  • the SRS is sent to the network side, so that the network side determines, based on the SRS, a space-domain basis vector and a frequency-domain basis vector corresponding to the uplink channel.
  • FIG. 5 is a schematic structural diagram of a channel state information feedback device provided by another embodiment of this application.
  • a channel state information feedback device includes a sending unit 510 and a port receiving unit 520. And precoding unit 530;
  • the sending unit 510 is configured to send beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication information to the terminal through an antenna port; wherein, the beam used in beamforming is based on the space domain basis.
  • Vector, or determined based on a space-domain basis vector and a frequency-domain basis vector, the space-domain basis vector and the frequency-domain basis vector are determined based on an uplink channel;
  • the port receiving unit 520 is configured to receive port indication information and port combination coefficients for data transmission fed back by the terminal; the port indication information and port combination coefficients are the CSI-RS of the terminal based on the beamforming, or The beamforming CSI-RS and frequency domain basis vector indication information are determined;
  • the precoding unit 530 is configured to determine the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • the device provided by the embodiment of the present application uses the reciprocity of the angle information and the delay information of the uplink and downlink channels, so that the terminal can be based on beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication Information, determine the port indication information and port combination coefficients used for data transmission, without additional calculation of the delay information of the downlink channel, reduce the calculation complexity of the terminal, reduce the feedback overhead of the terminal, and further improve the system performance.
  • the sending unit 510 is specifically configured to:
  • the first beam used for beamforming of the first CSI-RS is determined based on all spatial base vectors and all frequency domain base vectors.
  • the number of the spatial basis vectors is 2L
  • the number of the frequency domain basis vectors is M
  • both L and M are positive integers
  • the number of the first beams is not less than 2L+M-1;
  • At least 2L first beams are determined based on 2L spatial base vectors
  • at least M-1 first beams are determined based on preset spatial base vectors and M-1 frequency domain base vectors; the preset spatial domains
  • the basis vector is one of 2L spatial basis vectors.
  • the sending unit 510 is specifically configured to:
  • the second beam used for beamforming the second CSI-RS is determined based on all the space-domain basis vectors and a part of the frequency-domain basis vectors, and the frequency-domain basis vector indication information is used to indicate another part of the frequency domain. Basis vector.
  • the number of the spatial basis vectors is 2L
  • the number of the frequency domain basis vectors is M
  • both L and M are positive integers
  • the number of the second beams is not less than 2LM′, where M′ is a positive integer less than M;
  • At least 2LM′ second beams are determined based on 2L space-domain basis vectors and any M′ frequency-domain basis vectors; the arbitrary M′ frequency-domain basis vectors contain the first frequency-domain basis vectors, and the first The elements of the frequency domain basis vector are all 1;
  • the indication information of the frequency domain basis vector includes Bit indication information to indicate MM′ frequency-domain basis vectors, where N 3 is the number of PMI subbands;
  • the frequency domain basis vector indication information includes Bits are used to indicate the starting point of MM' frequency-domain basis vectors, and Bit indication information to indicate MM′ frequency domain basis vectors;
  • the frequency domain basis vector indication information includes Bits are used to indicate consecutive M frequency-domain basis vectors.
  • the beam used in the beamforming is obtained by calculating the Kronecker product of the space-domain basis vector and the frequency-domain basis vector.
  • the device further includes an SRS receiving unit, configured to:
  • a space-domain basis vector and a frequency-domain basis vector corresponding to the uplink channel are determined.
  • FIG. 6 is a schematic diagram of the physical structure of a terminal provided by an embodiment of the application.
  • the terminal may include: a processor (processor) 601, a communication interface (Communications Interface) 602, a memory (memory) 603, and a communication bus 604 Among them, the processor 601, the communication interface 602, and the memory 603 communicate with each other through the communication bus 604.
  • processor processor
  • Communication interface Communication interface
  • memory memory
  • FIG. 6 is a schematic diagram of the physical structure of a terminal provided by an embodiment of the application.
  • the terminal may include: a processor (processor) 601, a communication interface (Communications Interface) 602, a memory (memory) 603, and a communication bus 604 Among them, the processor 601, the communication interface 602, and the memory 603 communicate with each other through the communication bus 604.
  • memory memory
  • the processor 601 can call a computer program stored in the memory 603 and run on the processor 601 to perform the following steps: receiving the beam-shaped CSI-RS or the beam-shaped CSI sent by the network side through the antenna port -RS and frequency domain basis vector indication information; wherein the beam used for beamforming is determined based on the space domain basis vector, or based on the space domain basis vector and the frequency domain basis vector, the space domain basis vector and the frequency domain basis vector It is determined based on the uplink channel; based on the beamforming CSI-RS, or the beamforming CSI-RS and the frequency domain basis vector indication information, the port indication information and port combination coefficients used for data transmission are determined; The port indication information and the port combination coefficient are fed back to the network side, so that the network side determines the precoding of the downlink transmission data based on the port indication information and the port combination coefficient.
  • the terminal in this embodiment can implement all the method steps in the above method embodiment, and can achieve the same technical effect.
  • the same parts and the same parts in this embodiment as in the method embodiment and The same technical effect will be repeated.
  • the above-mentioned logic instructions in the memory 603 can be implemented in the form of software functional units and when sold or used as independent products, they can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art or the part of the technical solutions can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • Including several instructions to make a computer device (which may be a personal computer, a server, or a terminal, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • FIG. 7 is a schematic diagram of the entity structure of the network side provided by an embodiment of the application.
  • the network side may include: a processor 701, a communication interface 702, a memory (memory) 703, and communication The bus 704, wherein the processor 701, the communication interface 702, and the memory 703 communicate with each other through the communication bus 704.
  • the processor 701 can call a computer program stored in the memory 703 and run on the processor 701 to perform the following steps: send beam-shaped CSI-RS or beam-shaped CSI-RS to the terminal through the antenna port And frequency domain basis vector indication information; wherein, the beam used in beamforming is determined based on the spatial basis vector, or based on the spatial basis vector and the frequency domain basis vector, and the spatial basis vector and the frequency domain basis vector are determined based on The uplink channel is determined; receiving port indication information and port combination coefficients for data transmission fed back by the terminal; the port indication information and port combination coefficients are the CSI-RS of the terminal based on the beamforming, or beam The shaped CSI-RS and the frequency domain basis vector indication information are determined; based on the port indication information and the port combination coefficient, the precoding of the downlink transmission data is determined.
  • the network side in this embodiment can implement all the method steps in the above method embodiment, and can achieve the same technical effect.
  • the same parts in this embodiment and the method embodiment are not described here. And the same technical effect will be repeated.
  • the above-mentioned logical instructions in the memory 703 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art or the part of the technical solutions can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium on which a computer program is stored.
  • the method for channel state information feedback provided by the foregoing embodiments is implemented, for example, including: receiving network The beamforming CSI-RS, or the beamforming CSI-RS and the frequency domain basis vector indication information sent by the antenna port; among them, the beam used in the beamforming is based on the angle information of the uplink channel, or the uplink channel
  • the angle information and the time delay information are determined; the angle information is determined based on the spatial basis vector, and the time delay information is determined based on the frequency domain basis vector; the CSI-RS based on the beamforming, or beamforming Shape CSI-RS and frequency-domain basis vector indication information, determine port indication information and port combination coefficients for data transmission; feed back the port indication information and port combination coefficients to the network side for the network side Based on the port indication information and the port combination coefficient, the precoding of the downlink transmission data is determined.
  • An embodiment of the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the method for channel state information feedback provided in the foregoing embodiments is implemented, for example, including:
  • the port sends beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication information to the terminal; among them, the beam used in beamforming is based on the space domain basis vector, or based on the space domain basis vector and frequency.
  • Domain basis vector is determined, the space domain basis vector and the frequency domain basis vector are determined based on the uplink channel; receiving port indication information and port combination coefficients for data transmission fed back by the terminal; the port indication information and The port combination coefficient is determined by the terminal based on the beamforming CSI-RS, or beamforming CSI-RS and frequency domain basis vector indication information; based on the port indication information and the port combination coefficient, the downlink transmission is determined Precoding of data.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement it without creative work.
  • each implementation manner can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic A disc, an optical disc, etc., include several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供一种信道状态信息反馈方法、装置、终端、网络侧和存储介质,方法包括:接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,空域基向量和频域基向量是基于上行信道确定的;基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;将端口指示信息和端口组合系数反馈网络侧,以供网络侧确定下行传输数据的预编码。本申请实施例提供的方法、装置、终端、网络侧和存储介质,降低了计算复杂度,减少了反馈开销,提升了系统性能。

Description

信道状态信息反馈方法、装置、终端、网络侧和存储介质
相关申请的交叉引用
本申请要求于2020年02月10日提交的申请号为2020100852929,发明名称为“信道状态信息反馈方法、装置、终端、网络侧和存储介质”以及2021年02月03日提交的申请号为2021101523980,发明名称为“信道状态信息反馈方法、装置、终端、网络侧和存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信道状态信息反馈方法、装置、终端、网络侧和存储介质。
背景技术
在5G NR(5 Generation New RAT)系统中,信道状态信息(Channel State Information,CSI)反馈是实现高性能预编码的关键技术。
目前,对于Rel-16增强端口选择码本,终端需要对每个PMI(Precoding Matrix Indicator,预编码矩阵指示)子带进行SVD(Singular Value Decomposition,奇异值分解)计算,终端计算复杂度高。且终端需要计算下行时延信息,并将下行时延信息上报给网络侧,带来了较大反馈开销。
而在进行信道状态信息反馈时,终端的高计算量和反馈开销,均会限制系统性能的提升。
发明内容
本申请实施例提供一种信道状态信息反馈方法、装置、终端、网络侧和存储介质,用以解决现有的信道状态信息反馈时,终端的高计算量和反馈开销的限制系统性能的问题。
第一方面,本申请实施例提供一种信道状态信息反馈方法,包括:
接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;
将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
优选地,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数,具体包括:
基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息;
基于所述多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数。
优选地,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
接收所述网络侧通过天线端口发送的波束赋形的第一CSI-RS;
其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
优选地,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
所述第一波束的数量不少于2L+M-1;
其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域基向量为2L个空域基向量中的一个。
优选地,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频 域基向量指示信息,确定多个有效信道信息,具体包括:
基于通过至少2L个第一波束进行波束赋形的第一CSI-RS,确定至少2L个第一有效信道信息;
基于通过至少M-1个第一波束进行波束赋形的第一CSI-RS,确定M-1个频域基向量和至少M-1个第一有效信道信息;
基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息;
将至少2L+M-1个第一有效信道信息和至少(2L-1)(M-1)个第二有效信道信息,作为所述有效信道信息。
优选地,所述基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息,具体包括:
分别计算至少2L-1个预设波束赋形的CSI-RS所对应的每一第一有效信道信息与M-1个频域基向量中每一频域基向量的哈达玛积,得到至少(2L-1)(M-1)个第二有效信道信息。
优选地,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
接收所述网络侧通过天线端口发送的波束赋形的第二CSI-RS与频域基向量指示信息;
其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
优选地,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基 向量的元素全为1;
所述频域基向量指示信息表示包括
Figure PCTCN2021076244-appb-000001
比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
或,所述频域基向量指示信息包括
Figure PCTCN2021076244-appb-000002
比特用于指示M-M′个频域基向量的起始点,以及
Figure PCTCN2021076244-appb-000003
比特指示信息以指示M-M′个频域基向量;
或,所述频域基向量指示信息包括
Figure PCTCN2021076244-appb-000004
比特用于指示连续M个频域基向量。
优选地,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息,具体包括:
基于通过至少2LM′个第二波束进行波束赋形的第二CSI-RS,确定至少2LM′个第一有效信道信息;
基于所述频域基向量指示信息,确定M-M′个频域基向量;
基于至少2LM′个第二波束中,基于所述第一频域基向量确定的至少2L个第二波束所对应的第一有效信道信息,以及M-M′个频域基向量,确定至少2L(M-M′)个第二有效信道信息;
将至少2LM′个第一有效信道信息和至少2L(M-M′)个第二有效信道信息,作为所述有效信道信息。
优选地,所述基于所述多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数,具体包括:
对所述多个有效信道信息的协方差矩阵进行特征值分解,得到下行传输层数个最大特征值对应的特征向量;
选取任一下行传输层对应的特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数;
基于所述任一下行传输层的端口组合系数对应的有效信道所应用的端口,确定所述任一下行传输层用于数据传输的端口指示信息。
优选地,所述选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数, 具体包括:
选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素;
将所述不大于预设端口数量个幅值最大的非零元素进行归一化和量化,得到所述任一下行传输层的端口组合系数。
优选地,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,之前还包括:
向所述网络侧发送SRS,以供所述网络侧基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
第二方面,本申请实施例提供一种信道状态信息反馈方法,包括:
通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;
基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
优选地,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
通过天线端口向终端发送波束赋形的第一CSI-RS;
其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
优选地,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
所述第一波束的数量不少于2L+M-1;
其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域 基向量为2L个空域基向量中的一个。
优选地,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
通过天线端口向终端发送波束赋形的第二CSI-RS与频域基向量指示信息;
其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
优选地,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基向量的元素全为1;
所述频域基向量指示信息表示包括
Figure PCTCN2021076244-appb-000005
比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
或,所述频域基向量指示信息包括
Figure PCTCN2021076244-appb-000006
比特用于指示M-M′个频域基向量的起始点,以及
Figure PCTCN2021076244-appb-000007
比特指示信息以指示M-M′个频域基向量;
或,所述频域基向量指示信息包括
Figure PCTCN2021076244-appb-000008
比特用于指示连续M个频域基向量。
优选地,所述波束赋形所采用的波束是对空域基向量和频域基向量进行克罗内克乘积计算得到的。
优选地,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,之前还包括:
接收所述终端发送的SRS;
基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
第三方面,本申请实施例提供一种信道状态信息反馈装置,包括:
接收单元,用于接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
端口确定单元,用于基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;
反馈单元,用于将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
第四方面,本申请实施例提供一种信道状态信息反馈装置,包括:
发送单元,用于通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
端口接收单元,用于接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;
预编码单元,用于基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
第五方面,本申请实施例提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;
将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
第六方面,本申请实施例提供一种网络侧,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;
基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
第七方面,本申请实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面或第二方面所提供的方法的步骤。
本申请实施例提供的一种信道状态信息反馈方法、装置、终端、网络侧和存储介质,应用上下行信道的角度信息和时延信息的互易性,使得终端可以基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数,无需额外计算下行信道的时延信息,降低了终端的计算复杂度,减少了终端的反馈开销,能够进一步提升系统性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的信道状态信息反馈方法的流程示意图;
图2为本申请另一实施例提供的信道状态信息反馈方法的流程示意图;
图3为本申请又一实施例提供的信道状态信息反馈方法的流程示意图;
图4为本申请实施例提供的信道状态信息反馈装置的结构示意图;
图5为本申请另一实施例提供的信道状态信息反馈装置的结构示意图;
图6为本申请实施例提供的终端的结构示意图;
图7为本申请实施例提供的网络侧的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着移动通信业务需求的发展变化,新的无线通信系统5G NR(5 Generation New RAT)应运而生。Rel-16中,定义了一种增强的Type II端口选择码本,可支持Rank=1~4,其通过W 1实现端口选择,并采用与Rel-16 TypeII码本相同的方式实现端口间的线性合并。每个CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)端口均经过波束赋形,其赋形波束可以通过上下行信道角度信息的互易性确定。端口选择码本的W 1表示如下:
Figure PCTCN2021076244-appb-000009
其中,X为CSI-RS端口数,其取值与Rel-16增强Type II码本所支持的天线配置相同。参数L∈{2,4}可配。每个端口选择块表示为:
Figure PCTCN2021076244-appb-000010
其中,
Figure PCTCN2021076244-appb-000011
表示长度为
Figure PCTCN2021076244-appb-000012
的向量,其第i个元素为1,其余元素为0。参数m 用于选择L个连续的端口,其取值为
Figure PCTCN2021076244-appb-000013
采用宽带反馈。参数d∈{1,2,3,4}可配,且需要满足条件d≤L,用于调整每L个波束的采样间隔,并影响反馈开销,此处相当于将X/2个端口分成X/2d组,从而降低指示m的反馈开销。同时d的选择需要考虑避免选择方向类似的波束用于线性合并。
对于选择的L个端口,采用Rel-16的Type II码本结构计算得到端口选择码本。以Rank=1为例,Rel-16的Type II码本结构可写为:
Figure PCTCN2021076244-appb-000014
W为X×N 3的预编码矩阵,其中,N 3表示PMI(Precoding Matrix Indicator,预编码矩阵指示)子带个数。W f表示用于压缩频域组合系数的频域基向量,由M个DFT(Discrete Fourier Transform)向量组成,
Figure PCTCN2021076244-appb-000015
表示采用W f对N 3个PMI子带系数进行压缩后的线性合并系数。
目前,对于Rel-16增强端口选择码本,终端需要对每个PMI子带进行SVD计算,终端计算复杂度高。且终端需要计算下行时延信息,并将下行时延信息上报给网络侧,带来了较大反馈开销。对此,本申请实施例提供了一种信道状态信息反馈方法,以解决上述问题。
图1为本申请实施例提供的信道状态信息反馈方法的流程示意图,如图1所示,该方法的执行主体可以是终端,该方法包括:
步骤110,接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,空域基向量和频域基向量是基于上行信道确定的。
具体地,网络侧预先估计得到上行信道,并通过向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息的方式,使得终端能够获知上行信道的信息。
此处,若网络侧仅向终端发送波束赋形的CSI-RS,则波束赋形所采用的波束可以是基于上行信道对应的空域基向量和频域基向量确定的;若网络侧既向终端发送波束赋形的CSI-RS,还向终端发送频域基向量指示信息,则波束赋形所采用的波束可以是仅基于上行信道对应的空域基向量确定的,也可 以是基于上行信道对应的空域基向量和频域基向量信息确定的,频域基向量指示信息用于指示未用于确定波束赋形所采用波束的频域基向量。频域基向量指示信息可采用RRC(Radio Resource Control)、MAC-CE(Media Access Control-Control element)和DCI(Downlink Control Information)信令中的任意一种发送到终端。
进一步地,波束赋形所采用的波束可以是基于上行信道的角度信息,或上行信道的角度信息和时延信息确定的;角度信息是基于空域基向量确定的,时延信息是基于频域基向量确定的。
相应地,网络侧预先估计得到上行信道的角度信息和时延信息,并通过向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息的方式,使得终端能够获知上行信道的角度信息和时延信息。
此处,若网络侧仅向终端发送波束赋形的CSI-RS,则波束赋形所采用的波束是基于上行信道的角度信息和时延信息确定的;若网络侧既向终端发送波束赋形的CSI-RS,还向终端发送频域基向量指示信息,则波束赋形所采用的波束可以是仅基于上行信道的角度信息确定的,也可以是基于上行信道的角度信息和时延信息确定的,频域基向量指示信息用于指示未用于确定波束赋形所采用波束的频域基向量。
需要说明的是,用于确定上行信道的角度信息的空域基向量可表示为特征向量、DFT、DCT(Discrete Cosine Transform)、多项式系数或KLT(Karhunen-Loeve Transform)等,用于确定上行信道的时延信息的频域基向量可表示为DFT、DCT或多项式系数等。空域基向量的具体数量,以及频域基向量的具体数量,既可以是网络侧和终端预先约定的,也可以是网络侧通过信令配置给终端的,本申请实施例对此不作具体限定。
步骤120,基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数。
具体地,由于上下行信道的角度信息和时延信息的互易性,即上下行信道的角度信息和时延信息相等,上下行信道对应于相同的空域基向量和频域基向量。在接收到波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量 指示信息之后,终端无需再计算下行信道的角度信息和时延信息,可以直接利用波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,得到可用于确定下行信道的角度信息和时延信息的空域基向量和频域基向量,进而选择用于数据传输的端口,生成端口指示信息,以及端口指示信息所指示的每一端口相对应的端口组合系数。
步骤130,将端口指示信息和端口组合系数反馈至网络侧,以供网络侧基于端口指示信息和端口组合系数,确定下行传输数据的预编码。
本申请实施例提供的方法,应用上下行信道的角度信息和时延信息的互易性,使得终端可以基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数,无需额外计算下行信道的时延信息,降低了终端的计算复杂度,减少了终端的反馈开销,能够进一步提升系统性能。
基于上述实施例,步骤120具体包括:
步骤121,基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息。
具体地,终端在接收到波束赋形的CSI-RS后,可以基于波束赋形的CSI-RS,估计出对应端口的有效信道信息。在此基础上,终端还可以根据频域基向量指示信息中包含的频域基向量,结合已估计出的有效信道信息,得到采用基于每一空域基向量和每一频域基向量生成的波束传输时其对应的有效信道信息,此处,有效信道信息的数量不少于空域基向量的数量与频域基向量的数量乘积。
步骤122,基于多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数。
具体地,在得到多个有效信道信息后,终端即可基于多个有效信道信息,从中选取用于数据传输的有效信道信息,并基于选取得到的有效信道信息所对应使用的端口生成端口指示信息和端口组合系数,并上报至网络侧,以供网络侧进行下行预编码的计算。此处,终端选取的端口数量可以是网络侧配置的,也可以是终端上报的,还可以是网络侧和终端预先约定的。
基于上述任一实施例,步骤110具体包括:接收网络侧通过天线端口发送的波束赋形的第一CSI-RS;其中,对第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
具体地,网络侧为了保证下行信令或CSI-RS资源开销,可以通过向终端发送波束赋形的第一CSI-RS的方式,隐式地将频域基向量发送给终端。
第一CSI-RS即网络侧隐式发送频域基向量时的CSI-RS,第一波束为对第一CSI-RS进行波束赋形所采用的波束,所有第一CSI-RS所对应的波束,需要基于用于确定上行信道的角度信息的全部空域基向量,以及用于确定上行信道的时延信息的全部频域基向量计算得到。因此,在终端侧,仅凭借每一第一CSI-RS,即可得到全部的空域基向量和全部的频域基向量。
基于上述任一实施例,网络侧向终端发送波束赋形的第一CSI-RS的情况下,空域基向量的数量为2L,频域基向量的数量为M,L和M均为正整数;第一波束的数量不少于2L+M-1;其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;预设空域基向量为2L个空域基向量中的一个。
此处,L和M均为码本参数,L和M可以是网络侧通过信令配置给终端的,也可以是网络侧和终端预先约定的。M个频域基向量中,存在一个全为1的频域基向量,即第一频域基向量。
在至少2L+M-1个第一波束中,至少2L个第一波束是将2L个空域基向量分别与第一频域基向量进行克罗内克积的计算得到的,由于第一频域基向量全为1,上述至少2L个第一波束亦可记为分别基于2L个空域基向量确定。
至少M-1个第一波束是将预设空域基向量分别与M-1个频域基向量进行克罗内克积的计算得到的。此处,M-1个频域基向量即M个频域基向量中,除第一频域基向量以外的其余每个频域基向量。预设空域基向量为2L个空域基向量中预先选定的一个空域基向量,预设空域基向量可以是网络侧和终端预设约定的,也可以是网络侧通过信令配置给终端的,本申请实施例对此不作具体限定。
本申请实施例提供的方法,通过2L+M-1个第一波束进行波束赋形的 第一CSI-RS,隐式地实现频域基向量的传输,在降低终端计算复杂度的同时,节约了下行信令开销。
基于上述任一实施例,网络侧向终端发送波束赋形的第一CSI-RS的情况下,步骤121具体包括:
步骤1211,基于通过至少2L个第一波束进行波束赋形的第一CSI-RS,确定至少2L个第一有效信道信息。
步骤1212,基于通过至少M-1个第一波束进行波束赋形的第一CSI-RS,确定M-1个频域基向量和至少M-1个第一有效信道信息。
具体地,基于任一第一CSI-RS,可以得到该第一CSI-RS所对应的有效信道信息,为便于区分,此处将基于CSI-RS直接确定的有效信道信息记为第一有效信道信息。第一有效信道信息的数量与终端接收到的第一CSI-RS的数量一致,因此,第一有效信道信息的数量至少为2L+M-1。
步骤1213,基于至少2L个第一有效信道信息中,2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息。
具体地,至少2L个第一有效信道信息中,存在2L-1个第一有效信道信息,其对应的CSI-RS是预设波束赋形的CSI-RS。此处,预设波束赋形的CSI-RS可以是网络侧与终端预先约定的,也可以网络侧通过下行信令配置给终端的。
计算上述2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息分别与M-1个频域基向量的哈达玛积,从而得到至少(2L-1)(M-1)个第二有效信道信息。此处,将基于第一有效信道信息和频域基向量得到的有效信道信息记为第二有效信道信息。
步骤1214,将至少2L+M-1个第一有效信道信息和至少(2L-1)(M-1)个第二有效信道信息,作为有效信道信息。
具体地,将基于CSI-RS直接确定的至少2L+M-1个第一有效信道信息,与基于第一有效信道信息和频域基向量得到的至少(2L-1)(M-1)个第二有效信道信息,作为有效信道信息。
基于上述任一实施例,步骤1213具体包括:分别计算至少2L-1个预设波束赋形的CSI-RS所对应的每一第一有效信道信息与M-1个频域基向量中每一频域基向量的哈达玛积,得到至少(2L-1)(M-1)个第二有效信道信息。
具体地,针对于至少2L-1个预设波束赋形的CSI-RS所对应的任一第一有效信道信息,与M-1个频域基向量中的任一频域基向量,计算两者的哈达玛积,将两者的哈达玛积作为两者对应的第二有效信道信息。对至少2L-1个预设波束赋形的CSI-RS所对应的每一第一有效信道信息与M-1个频域基向量中每一频域基向量进行两两组合,即可得到至少(2L-1)(M-1)个第二有效信道信息。
基于上述任一实施例,假设网络侧给终端配置的码本参数L=2,M=4。终端用1根天线发送上行信号,N r根接收下行信号,下行传输一层数据。网络侧配置了双极化的二维平面天线阵列,天线阵列映射成2N 1N 2个发送天线端口,其中N 1和N 2分别表示水平维和垂直维方向的天线端口数,PMI子带的个数为N 3,每个子带大小为1PRB。网络侧向终端发送一层数据:
网络侧通过2L+M-1=7个端口向终端发送波束赋形之后的第一CSI-RS,其中前2L个端口的波束采用2L个不同的空域基向量和第一频域基向量(即全为1长度为N 3的频域基向量)通过克罗内克乘积计算得到,即第k个端口波束
Figure PCTCN2021076244-appb-000016
其中v l表示第l个空域基向量。则终端估计的第l个端口的有效信道为:
Figure PCTCN2021076244-appb-000017
其中,H n表示第n个子带的信道。
假设网络侧与终端预定义其余M-1个端口波束采用的第1个端口使用的空域基向量(即v 0)与网络侧选择除第一个频域基向量之外的M-1个频域基向量通过克罗内克乘积计算得到,即第k个端口波束
Figure PCTCN2021076244-appb-000018
Figure PCTCN2021076244-appb-000019
f m表示第m个频域基向量。则终端估计的第k个端口的有效信道 为:
Figure PCTCN2021076244-appb-000020
其中k m表示第m个频域基向量在N 3个基向量中所对应的索引。
由此,根据
Figure PCTCN2021076244-appb-000021
Figure PCTCN2021076244-appb-000022
可确定网络侧采用的第m个频域基向量。
类似地,终端可确定网络侧采用的至少M-1个频域基向量。
最后,终端根据
Figure PCTCN2021076244-appb-000023
以及确定的M-1个频域基向量,通过
Figure PCTCN2021076244-appb-000024
计算出剩余的(2L-1)(M-1)=9个有效信道信息,可得K=2LM=16个有效信道信息,记为
Figure PCTCN2021076244-appb-000025
基于上述任一实施例,步骤110具体包括:接收网络侧通过天线端口发送的波束赋形的第二CSI-RS与频域基向量指示信息;其中,对第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,频域基向量指示信息用于指示另一部分频域基向量。
具体地,网络侧还可以通过向终端发送波束赋形的第二CSI-RS与频域基向量指示信息的方式,显式地将频域基向量发送给终端。
第二CSI-RS即网络侧显式发送频域基向量时的CSI-RS,第二波束为对第二CSI-RS进行波束赋形所采用的波束。用于确定上行信道的时延信息的频域基向量分为两个部分,其中一部分用于与全部空域基向量配合,以确定第二CSI-RS所对应的第二波束,通过波束赋形隐式发送给终端,另一部分构成频域基向量指示信息,显式发送给终端。因此,在终端侧,凭借每一第二CSI-RS,即可得到全部的空域基向量和一部分的频域基向量,凭借频域基向量指示信息,即可得到另一部分的频域基向量,由此得到全部的空域基向量和全部的频域基向量。
需要说明的是,在对频域基向量进行划分时,用于确定第二波束的频域基向量可以是1个,也可以是多个,其数量可以是网络侧和终端预设约定的, 也可以是网络侧通过信令配置给终端的。
基于上述任一实施例,网络侧向终端发送波束赋形的第二CSI-RS和频域基向量指示信息的情况下,空域基向量的数量为2L,频域基向量的数量为M,L和M均为正整数;第二波束的数量不少于2LM′,其中M′为小于M的正整数;至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;任意M′个频域基向量中包含第一频域基向量,第一频域基向量的元素全为1。
此处,L、M和M′均为码本参数,L、M和M′可以是网络侧通过信令配置给终端的,也可以是网络侧和终端预先约定的。M个频域基向量被分为两部分,即M′个频域基向量和M-M′个频域基向量。
至少2LM′个第二波束是将2L个空域基向量分别与M′个频域基向量进行克罗内克积的计算得到的。由于M′个频域基向量存在一个全为1的第一频域基向量,上述至少2LM′个第二波束中,至少存在2L个第一波束亦可记为分别基于2L个空域基向量确定。
基于上述任一实施例,网络侧向终端发送波束赋形的第二CSI-RS和频域基向量指示信息的情况下,频域基向量指示信息表示包括
Figure PCTCN2021076244-appb-000026
比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;或,频域基向量指示信息包括
Figure PCTCN2021076244-appb-000027
比特用于指示M-M′个频域基向量的起始点,以及
Figure PCTCN2021076244-appb-000028
比特指示信息以指示M-M′个频域基向量;或,频域基向量指示信息包括
Figure PCTCN2021076244-appb-000029
比特用于指示连续M个频域基向量。
基于上述任一实施例,网络侧向终端发送波束赋形的第二CSI-RS和频域基向量指示信息的情况下,步骤121具体包括:
基于通过至少2LM′个第二波束进行波束赋形的第二CSI-RS,确定至少2LM′个第一有效信道信息;基于频域基向量指示信息,确定M-M′个频域基向量;基于至少2LM′个第二波束中,基于第一频域基向量确定的至少2L个第二波束所对应的第一有效信道信息,以及M-M′个频域基向量,确定至少2L(M-M′)个第二有效信道信息;将至少2LM′个第一有效信道信息和至少2L(M-M′)个第二有效信道信息,作为有效信道信息。
具体地,基于任一第二CSI-RS,可以得到该第二CSI-RS所对应的有效信道信息,为便于区分,此处将基于CSI-RS直接确定的有效信道信息记为第一有效信道信息。第一有效信道信息的数量与终端接收到的第二CSI-RS的数量一致,因此,第一有效信道信息的数量至少为2LM′个。
由于至少2LM′个第二波束中,存在至少2L个第二波束是基于2L个空域基向量和一个全为1的第一频域基向量确定的。可以从至少2LM′个第二波束进行波束赋形的第二CSI-RS中,得到基于第一频域基向量确定的至少2L个第二波束进行波束赋形的第二CSI-RS,进而确定基于第一频域基向量确定的至少2L个第二波束所对应的第一有效信道信息,计算上述至少2L个第二波束所对应的第一有效信道信息分别与M-M′个频域基向量的哈达玛积,从而得到至少2L(M-M′)个第二有效信道信息。此处,将基于第一有效信道信息和其余频域基向量得到的有效信道信息记为第二有效信道信息。
将基于CSI-RS直接确定的至少2LM′个第一有效信道信息,与基于第一有效信道信息和其余频域基向量得到的至少2L(M-M′)个第二有效信道信息,作为有效信道信息。
需要说明的是,当M′=1时,存在至少2L个第二波束,是基于至少2L个空域基向量和一个全为1的第一频域基向量确定的。在基于通过至少2L个第二波束进行波束赋形的第二CSI-RS,确定至少2L个第一有效信道信息后,可以直接计算此处的至少2L个第一有效信道信息分别与频域基向量指示信息中包含的M-1个频域基向量的哈达玛积,从而得到至少2L(M-1)个第二有效信道信息。
基于上述任一实施例,假设网络侧给终端配置的码本参数L=2,M=4,α=2。PMI子带的个数N 3=13。网络侧向终端发送一层数据:
网络侧通过2L=4个端口发送经过波束赋形之后的第二CSI-RS,其中前L=2个端口发送第二CSI-RS采用的是第一极化方向上的天线,每个端口所采用的波束为
Figure PCTCN2021076244-appb-000030
l=0,…,L-1,后L=2个端口发送第二CSI-RS采用的是第二极化方向上的天线,每个端口所采用的波束为
Figure PCTCN2021076244-appb-000031
l=0,…,L-1。
网络侧发送
Figure PCTCN2021076244-appb-000032
比特指示信息指示剩余的M-1个频域基向量。或者,网络侧发送
Figure PCTCN2021076244-appb-000033
比特指示αM个连续频域基向量的起始点M init
Figure PCTCN2021076244-appb-000034
比特指示剩余的M-1个频域基向量。
终端根据网络侧发送的频域基向量指示信息确定网络侧选择的剩余的M-1个频域基向量。终端再根据接收到的2L个端口上经过波束赋形的第二CSI-RS,估计出各端口的有效信道为
Figure PCTCN2021076244-appb-000035
p=0,1,l=0,L-1。其中,2L个端口可根据网络侧与终端的预定义确定。令通过p极化方向的第l个端口所估计的有效信道表示为:
Figure PCTCN2021076244-appb-000036
其中H p,1表示p极化方向的第n个子带的信道。再根据网络侧发送的包含M-1个频域基向量的频域基向量指示信息,可计算出2L(M-1)个有效信道信息。如采用相位旋转后第m个频域基向量的索引为k m,则p极化方向的仍采用第l个空间基向量v l和第m个频域基向量f m所生成的波束为
Figure PCTCN2021076244-appb-000037
在采用该波束传输时其对应的有效信道为
Figure PCTCN2021076244-appb-000038
类似地,可计算出2L(M-1)个有效信道信息,则总共K=2LM个有效信道信息记为
Figure PCTCN2021076244-appb-000039
基于上述任一实施例,假设网络侧给终端配置的码本参数L=2,M=4,M′=2,α=2,X=16。PMI子带的个数N 3=13。网络侧向终端发送一层数据:
网络侧通过2LM′=8个端口发送经过波束赋形之后的第二CSI-RS。
网络侧发送
Figure PCTCN2021076244-appb-000040
比特指示信息指示剩余的 M-M′个频域基向量。或者,网络侧发送
Figure PCTCN2021076244-appb-000041
比特确定αM个连续频域基向量的起始点M init
Figure PCTCN2021076244-appb-000042
比特指示剩余M-M′个频域基向量。
终端首先根据接收8个端口的第二CSI-RS估计各端口的有效信道信息,然后再根据网络侧与终端预定义确定2L个端口,例如采用了第一个频域基向量的第1~4个端口。
终端根据预定义的2L个端口的第二CSI-RS所估计的有效信道,再结合M-M′个频域基向量,可计算出2L(M-M′)个有效信道信息。
例如,第l个端口的有效信道为
Figure PCTCN2021076244-appb-000043
l∈{0,…,2L-1}。
终端估计的第k∈{0,1,…,2L(M-M′)-1}个端口的有效信道为:
Figure PCTCN2021076244-appb-000044
其中k m表示M-M′个频域基向量中的第m个频域基向量在N 3个基向量中所对应的索引。类似地,终端可计算2L(M-M′)个有效信道。再根据接收2LM′个端口的第二CSI-RS估计的信道,可得K=2LM=16个有效信道信息,记作
Figure PCTCN2021076244-appb-000045
基于上述任一实施例,假设网络侧给终端配置的码本参数L=2,M=4,端口数X=16,对应的索引为0,1,…,15,第一极化方向对应的端口索引为0~7,第二极化方向对应的端口索引为8~15。网络侧向终端发送一层数据。
终端根据网络侧与终端的预定义,2L=4个端口中的第一端口对应的索引为0,则索引为0~3的端口作为M个连续端口,索引为0+M=4,0+X/2=8,4+X/2=13的端口分别作为2L中剩下的2L-1个端口。
基于上述任一实施例,步骤122具体包括:
步骤1221,对多个有效信道信息的协方差矩阵进行特征值分解,得到下行传输层数个最大特征值对应的特征向量。
假设多个有效信道信息表示为如下形式:
Figure PCTCN2021076244-appb-000046
式中,
Figure PCTCN2021076244-appb-000047
为p极化方向上第k个波束传输时对应的有效信道信息,p极化方向上第k个波束即采用第l个空域基向量v l和第m个频域基向量f m所生成的波束。N r为终端的下行信号接收天线数量,K=2LM。
对协方差矩阵
Figure PCTCN2021076244-appb-000048
做特征值分解,可得到下行传输层数个最大特征值对应的特征向量。例如,下行传输层数为1时,将最大特征值对应的特征向量
Figure PCTCN2021076244-appb-000049
作为下行传输层对应的特征向量;下行传输层数为2时,将最大特征值对应的特征向量
Figure PCTCN2021076244-appb-000050
作为第一层对应的特征向量,将第二最大特征值对应的特征向量
Figure PCTCN2021076244-appb-000051
作为第二层对应的特征向量。
步骤1222,选取任一下行传输层对应的特征向量中不大于预设端口数量个幅值最大的非零元素,得到该下行传输层的端口组合系数。
此处,预设端口数量K 0为预先设定的每一下行传输层用于数据传输的端口数量。针对于任一下行传输层,可以从该下行传输层对应的特征向量中选取最多K 0个幅值最大的非零元素,将上述最多K 0个幅值最大的非零元素作为该下行传输层的端口组合系数。
步骤1223,基于该下行传输层的端口组合系数对应的有效信道所应用的端口,确定该下行传输层用于数据传输的端口指示信息。
此处,任一下行传输层用于数据传输的端口指示信息可以通过bitmap或组合系数
Figure PCTCN2021076244-appb-000052
上报给网络侧。
例如,下行传输层数为1,码本参数L=2,M=2,K 0=4时,端口指示信息所指示的端口对应的有效信道为
Figure PCTCN2021076244-appb-000053
端口指示信息采用bitmap指示如表1所示:
表1:第一层的端口指示信息
1 0
0 1
0 1
1 0
表1中,1表示所选中的端口用于计算下行预编码,0表示没被选中的端口。
又例如,下行传输层数为2,码本参数L=2,M=2,K 0=4时,第一层端口指示信息所指示的端口对应的有效信道为
Figure PCTCN2021076244-appb-000054
第二层端口指示信息所指示的端口对应的有效信道为
Figure PCTCN2021076244-appb-000055
第一层和第二层的端口指示信息采用bitmap指示分别如表2、表3所示:
表2:第一层的端口指示信息
1 0
0 1
0 1
1 0
表3:第二层的端口指示信息
0 1
1 0
0 1
0 1
表2、表3中,1表示所选中的端口用于计算下行预编码,0表示没被选中的端口。
基于上述任一实施例,步骤1222具体包括:选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素;将不大于预设端口数量个幅值最大的非零元素进行归一化和量化,得到该下行传输层的端口组合系数。
基于上述任一实施例,步骤110之前还包括:向网络侧发送SRS,以供网络侧基于SRS确定上行信道对应的空域基向量和频域基向量。
具体地,终端向网络侧发送SRS(Sounding Reference Signal,探测参考信号)。网络侧在接收到终端发送的SRS后,可以基于SRS估计上行信道,并基于上行信道确定其对应的空域基向量和频域基向量,在此基础上基于空域基向量,或者基于空域基向量和频域基向量确定波束赋形所采用的波束。
进一步地,可以基于SRS估计上行信道
Figure PCTCN2021076244-appb-000056
再利用
Figure PCTCN2021076244-appb-000057
计算上行信道的角度和时延信息,其中角度信息和时延信息可分别由一组空域压缩基向量和一组频域基向量对
Figure PCTCN2021076244-appb-000058
做傅里叶反变换得到,即上行信道的角度信息和时延信息可通过一组空域基向量和一组频域基向量来确定。
基于上述任一实施例,图2为本申请另一实施例提供的信道状态信息反馈方法的流程示意图,如图2所示,该方法的执行主体为网络侧,例如基站,该方法包括:
步骤210,通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的。
具体地,网络侧预先估计得到上行信道,并通过向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息的方式,使得终端能够获知上行信道的信息。
此处,若网络侧仅向终端发送波束赋形的CSI-RS,则波束赋形所采用的波束是基于上行信道对应的空域基向量和频域基向量确定的;若网络侧既向终端发送波束赋形的CSI-RS,还向终端发送频域基向量指示信息,则波束赋形所采用的波束可以是仅基于上行信道对应的空域基向量确定的,也可以是基于上行信道对应的空域基向量和频域基向量信息确定的,频域基向量指示信息用于指示未用于确定波束赋形所采用波束的频域基向量。频域基向量指示信息可采用RRC(Radio Resource Control)、MAC-CE(Media Access Control-Control element)和DCI(Downlink Control Information)信令中的任意一种发送到终端。
进一步地,波束赋形所采用的波束可以是基于上行信道的角度信息,或上行信道的角度信息和时延信息确定的;角度信息是基于空域基向量确定的,时延信息是基于频域基向量确定的。
相应地,网络侧预先估计得到上行信道的角度信息和时延信息,并通过向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信 息的方式,使得终端能够获知上行信道的角度信息和时延信息。
此处,若网络侧仅向终端发送波束赋形的CSI-RS,则波束赋形所采用的波束是基于上行信道的角度信息和时延信息确定的;若网络侧既向终端发送波束赋形的CSI-RS,还向终端发送频域基向量指示信息,则波束赋形所采用的波束可以是仅基于上行信道的角度信息确定的,也可以是基于上行信道的角度信息和时延信息确定的,频域基向量指示信息用于指示未用于确定波束赋形所采用波束的频域基向量。
需要说明的是,用于确定上行信道的角度信息的空域基向量可表示为特征向量、DFT、DCT、多项式系数或KLT等,用于确定上行信道的时延信息的频域基向量可表示为DFT、DCT或多项式系数等。空域基向量的具体数量,以及频域基向量的具体数量,既可以是网络侧和终端预先约定的,也可以是网络侧通过信令配置给终端的,本申请实施例对此不作具体限定。
步骤220,接收终端反馈的用于数据传输的端口指示信息和端口组合系数;端口指示信息和端口组合系数是终端基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的。
具体地,由于上下行信道的角度信息和时延信息的互易性,即上下行信道的角度信息和时延信息相等,上下行信道对应于相同的空域基向量和频域基向量。终端在接收到波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息之后,无需再计算下行信道的角度信息和时延信息,可以直接利用波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,得到可用于确定下行信道的角度信息和时延信息的空域基向量和频域基向量,进而选择用于数据传输的端口,生成端口指示信息,以及端口指示信息所指示的每一端口相对应的端口组合系数。随即,终端将端口指示信息和端口组合系数反馈至网络侧,网络侧接收终端反馈的端口指示信息和端口组合系数。
步骤230,基于端口指示信息和端口组合系数,确定下行传输数据的预编码。
本申请实施例提供的方法,应用上下行信道的角度信息和时延信息的互易性,使得终端可以基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域 基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数,无需额外计算下行信道的时延信息,降低了终端的计算复杂度,减少了终端的反馈开销,能够进一步提升系统性能。
基于上述任一实施例,步骤210具体包括:通过天线端口向终端发送波束赋形的第一CSI-RS;其中,对第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
具体地,网络侧为了保证下行信令或CSI-RS资源开销,可以通过向终端发送波束赋形的第一CSI-RS的方式,隐式地将频域基向量发送给终端。
第一CSI-RS即网络侧隐式发送频域基向量时的CSI-RS,第一波束为对第一CSI-RS进行波束赋形所采用的波束,所有第一CSI-RS所对应的波束,需要基于用于确定上行信道的角度信息的全部空域基向量,以及用于确定上行信道的时延信息的全部频域基向量计算得到。因此,在网络侧,仅通过向终端发送波束赋形的第一CSI-RS,即可使得终端得到全部的空域基向量和全部的频域基向量。
基于上述任一实施例,网络侧向终端发送波束赋形的第一CSI-RS的情况下,空域基向量的数量为2L,频域基向量的数量为M,L和M均为正整数;第一波束的数量不少于2L+M-1;其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;预设空域基向量为2L个空域基向量中的一个。
此处,L和M均为码本参数,L和M可以是网络侧通过信令配置给终端的,也可以是网络侧和终端预先约定的。M个频域基向量中,存在一个全为1的频域基向量,即第一频域基向量。
在至少2L+M-1个第一波束中,至少2L个第一波束是将2L个空域基向量分别与第一频域基向量进行克罗内克积的计算得到的,由于第一频域基向量全为1,上述至少2L个第一波束亦可记为分别基于2L个空域基向量确定。
至少M-1个第一波束是将预设空域基向量分别与M-1个频域基向量进行克罗内克积的计算得到的。此处,M-1个频域基向量即M个频域基向量中,除第一频域基向量以外的其余每个频域基向量。预设空域基向量为2L个 空域基向量中预先选定的一个空域基向量,预设空域基向量可以是网络侧和终端预设约定的,也可以是网络侧通过信令配置给终端的,本申请实施例对此不作具体限定。
本申请实施例提供的方法,通过2L+M-1个第一波束进行波束赋形的第一CSI-RS,隐式地实现频域基向量的传输,在降低终端计算复杂度的同时,节约了下行信令开销。
基于上述任一实施例,步骤210具体包括:通过天线端口向终端发送波束赋形的第二CSI-RS与频域基向量指示信息;其中,对第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,频域基向量指示信息用于指示另一部分频域基向量。
具体地,网络侧还可以通过向终端发送波束赋形的第二CSI-RS与频域基向量指示信息的方式,显式地将频域基向量发送给终端。
第二CSI-RS即网络侧显式发送频域基向量时的CSI-RS,第二波束为对第二CSI-RS进行波束赋形所采用的波束。用于确定上行信道的时延信息的频域基向量分为两个部分,其中一部分用于与全部空域基向量配合,以确定第二CSI-RS所对应的第二波束,通过波束赋形隐式发送给终端,另一部分构成频域基向量指示信息,显式发送给终端。因此,在网络侧,通过向终端发送波束赋形的第二CSI-RS和频域基向量指示信息,即可使得终端凭借每一第二CSI-RS,得到全部的空域基向量和一部分的频域基向量,凭借频域基向量指示信息,得到另一部分的频域基向量,从而得到全部的空域基向量和全部的频域基向量。
需要说明的是,在对频域基向量进行划分时,用于确定第二波束的频域基向量可以是1个,也可以是多个,其数量可以是网络侧和终端预设约定的,也可以是网络侧通过信令配置给终端的。
基于上述任一实施例,网络侧向终端发送波束赋形的第二CSI-RS和频域基向量指示信息的情况下,空域基向量的数量为2L,频域基向量的数量为M,L和M均为正整数;第二波束的数量不少于2LM′,其中M′为小于M的正整数;至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定 的;任意M′个频域基向量中包含第一频域基向量,第一频域基向量的元素全为1。
此处,L、M和M′均为码本参数,L、M和M′可以是网络侧通过信令配置给终端的,也可以是网络侧和终端预先约定的。至少M个频域基向量被分为两部分,即M′个频域基向量和M-M′个频域基向量。
至少2LM′个第二波束是将2L个空域基向量分别与M′个频域基向量进行克罗内克积的计算得到的。由于M′个频域基向量存在一个全为1的第一频域基向量,上述至少2LM′个第二波束中,至少存在2L个第一波束亦可记为分别基于2L个空域基向量确定。
基于上述任一实施例,网络侧向终端发送波束赋形的第二CSI-RS和频域基向量指示信息的情况下,频域基向量指示信息表示包括
Figure PCTCN2021076244-appb-000059
比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;或,频域基向量指示信息包括
Figure PCTCN2021076244-appb-000060
比特用于指示M-M′个频域基向量的起始点,以及
Figure PCTCN2021076244-appb-000061
比特指示信息以指示M-M′个频域基向量;或,频域基向量指示信息包括
Figure PCTCN2021076244-appb-000062
比特用于指示连续M个频域基向量。
基于上述任一实施例,步骤210中,波束赋形所采用的波束是对空域基向量和频域基向量进行克罗内克乘积计算得到的。
具体地,针对于任一空域基向量和任一频域基向量,可将两者的克罗内克积作为该空域基向量和该频域基向量所对应的波束。
基于上述任一实施例,步骤210之前还包括:接收终端发送的SRS;基于SRS确定上行信道对应的空域基向量和频域基向量。
具体地,网络侧在接收到终端发送的SRS后,可以基于SRS估计上行信道,并基于上行信道确定其对应的空域基向量和频域基向量,在此基础上基于空域基向量,或基于空域基向量和频域基向量确定波束赋形所采用的波束。
进一步地,可以基于SRS估计上行信道
Figure PCTCN2021076244-appb-000063
再利用
Figure PCTCN2021076244-appb-000064
计算上行信道的角度和时延信息,其中角度信息和时延信息可分别由一组空域压缩基向量和一组频域基向量对
Figure PCTCN2021076244-appb-000065
做傅里叶反变换得到,即上行信道的角度信息和时延信息可通过一组空域基向量和一组频域基向量来确定。
基于上述任一实施例,图3为本申请又一实施例提供的信道状态信息反馈方法的流程示意图,如图3所示,假设终端用1根天线发送上行信号,N r根接收下行信号,下行传输一层数据。网络侧配置了双极化的二维平面天线阵列,天线阵列映射成2N 1N 2个发送天线端口,其中N 1和N 2分别表示水平维和垂直维方向的天线端口数,PMI子带的个数为N 3,每个子带大小为1PRB。
信道状态信息反馈方法包括如下步骤:
步骤301,终端向网络侧发送SRS。此处,SRS的梳状结构为4。
步骤302,网络侧估计上行信道,计算上行信道对应的空域基向量和频域基向量:
网络侧在得到SRS后,根据SRS估计上行含有SRS子载波上的信道
Figure PCTCN2021076244-appb-000066
Figure PCTCN2021076244-appb-000067
分别表示相应载波上的第一极化和第二极化方向的信道,再以遍历方式通过
Figure PCTCN2021076244-appb-000068
i=0,…,N 1N 2-1,计算N 1N 2个功率值,
Figure PCTCN2021076244-appb-000069
表示含有SRS各子载波在两个极化方向上的信道平均值,v′ i表示第i个空域基向量。网络侧选择2L个功率最大且正交的空域基向量,令两个极化方向选择相同的空域基向量,则网络侧选择2L个空域基向量构成的矩阵为
Figure PCTCN2021076244-appb-000070
对于第n个子带信道
Figure PCTCN2021076244-appb-000071
表示第n个子带中第j个含有SRS子载波的信道,假设SRS的梳装结构是4,每个PRB中有3个子载波包含SRS。该子带的组合系数可计算为
Figure PCTCN2021076244-appb-000072
类似地,可得N 3个子带的组合系数,所有子带组合系数表示为
Figure PCTCN2021076244-appb-000073
网络侧应用遍历方式通过
Figure PCTCN2021076244-appb-000074
j=0,…,N 3-1,计算对各子带系数压缩后的功率,其中f j表示采用了第j个频域基向量对W 2中的各子带组合系数进行压缩。从候选的N 3个频域压缩基向量中选择M个对各子带系数压缩后的功率最大对应的频域基向量,然后把所选M个频域基向量对应的索引按照从小到大排序。
如果各频域基向量对应的最小索引不为0,可通过相位旋转方法对最小索引所对应频域基向量进行相位旋转,使得该频域基向量对应的索引总为0,其它频域基向量也均做相同的相位旋转,即其它频域基向量对应的索引为相 位旋转之前对应的索引值减去相位旋转之前频域基向量的最小索引值。例如各频域基向量构成的矩阵为W f,在做相位旋转前M个频域基向量对应的索引分别为k 0,…,k m,…,k M-1,其中,k 0表示各频域基向量中对应的最小索引。令相位旋转矩阵为:
Figure PCTCN2021076244-appb-000075
则经过相位旋转后的各频域基向量为
Figure PCTCN2021076244-appb-000076
此时M个频域基向量的索引为0,…,k m-k 0,…,k M-1-k 0。注意上述中的索引为0对应的频域基向量是元素全为1且长度为N 3的向量。
步骤303,网络侧通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS和频域基向量指示信息:
网络侧可通过
Figure PCTCN2021076244-appb-000077
l=0,…,L-1,m=0,…,M-1,p=0,1,k=lM+m,计算出K=2LM个候选波束,其中f m表示通过SRS得到用于确定上行信道的时延信息的M个频域基向量。
网络侧可以通过2L个端口发送经过波束赋形之后的CSI-RS,其中前L个端口发送CSI-RS采用的是第一极化方向上的天线,每个端口所采用的波束为
Figure PCTCN2021076244-appb-000078
l=0,…,L-1,后L个端口发送CSI-RS采用的是第二极化方向上的天线,每个端口所采用的波束为
Figure PCTCN2021076244-appb-000079
Figure PCTCN2021076244-appb-000080
l=0,…,L-1。其中,
Figure PCTCN2021076244-appb-000081
为M个频域基向量中的第一频域基向量。
此外,网络侧通过构建包含有除第一频域基向量以外的M-1个频域基向量的频域基向量指示信息,并将频域基向量指示信息也发送到终端。
步骤304,终端计算有效信道信息,确定各下行传输层的端口指示信息和端口组合系数:
终端接收2L个端口上经过波束赋形的CSI-RS,可估计出各端口的有效信道为
Figure PCTCN2021076244-appb-000082
p=0,1,l=0,L-1。令通过p极化方向的第l个端口所估计的有效信道表示为
Figure PCTCN2021076244-appb-000083
其中H p,1表示p极化方向的第n个子带的信道。再根据网络侧发送的包含M-1个频域基向量的频域基向量指示信息,可计算出2L(M-1)个有效信道信息。如采用相位旋转后第m个频域基向量的索引为k m,则p极化方向的仍采用第l个空间基向量v l和第m个频域基向量f m所生成的波束为
Figure PCTCN2021076244-appb-000084
在采用该波束传输时其对应的有效信道为
Figure PCTCN2021076244-appb-000085
类似地,可计算出2L(M-1)个有效信道信息,则总共K=2LM个有效信道信息可写为
Figure PCTCN2021076244-appb-000086
对协方差矩阵
Figure PCTCN2021076244-appb-000087
做特征值分解可得最大特征值对应的特征向量
Figure PCTCN2021076244-appb-000088
然后对β 1中各元素按照幅度大小排序后选择K 0个幅度最大的元素作为端口组合系数,并把K 0个端口组合系数对应的有效信道所使用的端口用于计算该层数据下行传输的预编码。
步骤305,终端上报端口指示信息和端口组合系数:
通过bitmap或组合系数
Figure PCTCN2021076244-appb-000089
把选择的端口指示信息,以及端口组合系数上报给网络侧。
步骤306,网络侧基于端口指示信息和端口组合系数,计算各下行传输层的下行传输预编码:
网络侧接收到终端上报的端口指示信息和端口组合系数
Figure PCTCN2021076244-appb-000090
后,计算下行传输数据的预编码:
Figure PCTCN2021076244-appb-000091
其中,
Figure PCTCN2021076244-appb-000092
表示终端在极化方向p上选择的第k个波束,k=lM+m,p∈{0,1}。
Figure PCTCN2021076244-appb-000093
是基于端口指示信息确定的。
基于上述任一实施例,图4为本申请实施例提供的信道状态信息反馈装置的结构示意图,如图4所示,一种信道状态信息反馈装置,包括接收单元410、端口确定单元420和反馈单元430;
其中,接收单元410用于接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
端口确定单元420用于基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;
反馈单元430用于将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
本申请实施例提供的装置,应用上下行信道的角度信息和时延信息的互易性,使得终端可以基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数,无需额外计算下行信道的时延信息,降低了终端的计算复杂度,减少了终端的反馈开销,能够进一步提升系统性能。
基于上述任一实施例,端口确定单元420包括:
信道确定子单元,用于基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息;
端口确定子单元,用于基于所述多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数。
基于上述任一实施例,接收单元410具体用于:
接收所述网络侧通过天线端口发送的波束赋形的第一CSI-RS;
其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
基于上述任一实施例,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
所述第一波束的数量不少于2L+M-1;
其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域基向量为2L个空域基向量中的一个。
基于上述任一实施例,信道确定子单元具体用于:
基于通过至少2L个第一波束进行波束赋形的第一CSI-RS,确定至少2L个第一有效信道信息;
基于通过至少M-1个第一波束进行波束赋形的第一CSI-RS,确定M-1个频域基向量和至少M-1个第一有效信道信息;
基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息;
将至少2L+M-1个第一有效信道信息和至少(2L-1)(M-1)个第二有效信道信息,作为所述有效信道信息。
基于上述任一实施例,所述基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息,具体包括:
分别计算至少2L-1个预设波束赋形的CSI-RS所对应的每一第一有效信道信息与M-1个频域基向量中每一频域基向量的哈达玛积,得到至少(2L-1)(M-1)个第二有效信道信息。
基于上述任一实施例,接收单元410具体用于:
接收所述网络侧通过天线端口发送的波束赋形的第二CSI-RS与频域基向量指示信息;
其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
基于上述任一实施例,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基向量的元素全为1;
所述频域基向量指示信息表示包括
Figure PCTCN2021076244-appb-000094
比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
或,所述频域基向量指示信息包括
Figure PCTCN2021076244-appb-000095
比特用于指示M-M′个频域基向量的起始点,以及
Figure PCTCN2021076244-appb-000096
比特指示信息以指示M-M′个频域基向量;
或,所述频域基向量指示信息包括
Figure PCTCN2021076244-appb-000097
比特用于指示连续M个频域基向量。
基于上述任一实施例,信道确定子单元具体用于:
基于通过至少2LM′个第二波束进行波束赋形的第二CSI-RS,确定至少2LM′个第一有效信道信息;
基于所述频域基向量指示信息,确定M-M′个频域基向量;
基于至少2LM′个第二波束中,基于所述第一频域基向量确定的至少2L个第二波束所对应的第一有效信道信息,以及M-M′个频域基向量,确定至少2L(M-M′)个第二有效信道信息;
将至少2LM′个第一有效信道信息和至少2L(M-M′)个第二有效信道信息,作为所述有效信道信息。
基于上述任一实施例,端口确定子单元具体用于:
对所述多个有效信道信息的协方差矩阵进行特征值分解,得到下行传输层数个最大特征值对应的特征向量;
选取任一下行传输层对应的特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数;
基于所述任一下行传输层的端口组合系数对应的有效信道所应用的端口,确定所述任一下行传输层用于数据传输的端口指示信息。
基于上述任一实施例,所述选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数,具体包括:
选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素;
将所述不大于预设端口数量个幅值最大的非零元素进行归一化和量化,得到所述任一下行传输层的端口组合系数。
基于上述任一实施例,该装置还包括SRS发送单元,用于:
向所述网络侧发送SRS,以供所述网络侧基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
基于上述任一实施例,图5为本申请另一实施例提供的信道状态信息反馈装置的结构示意图,如图5所示,一种信道状态信息反馈装置,包括发送单元510、端口接收单元520和预编码单元530;
其中,发送单元510用于通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
端口接收单元520用于接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;
预编码单元530用于基于所述端口指示信息和端口组合系数,确定下行 传输数据的预编码。
本申请实施例提供的装置,应用上下行信道的角度信息和时延信息的互易性,使得终端可以基于波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数,无需额外计算下行信道的时延信息,降低了终端的计算复杂度,减少了终端的反馈开销,能够进一步提升系统性能。
基于上述任一实施例,发送单元510具体用于:
通过天线端口向终端发送波束赋形的第一CSI-RS;
其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
基于上述任一实施例,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
所述第一波束的数量不少于2L+M-1;
其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域基向量为2L个空域基向量中的一个。
基于上述任一实施例,发送单元510具体用于:
通过天线端口向终端发送波束赋形的第二CSI-RS与频域基向量指示信息;
其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
基于上述任一实施例,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基向量的元素全为1;
所述频域基向量指示信息表示包括
Figure PCTCN2021076244-appb-000098
比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
或,所述频域基向量指示信息包括
Figure PCTCN2021076244-appb-000099
比特用于指示M-M′个频域基向量的起始点,以及
Figure PCTCN2021076244-appb-000100
比特指示信息以指示M-M′个频域基向量;
或,所述频域基向量指示信息包括
Figure PCTCN2021076244-appb-000101
比特用于指示连续M个频域基向量。
基于上述任一实施例,所述波束赋形所采用的波束是对空域基向量和频域基向量进行克罗内克乘积计算得到的。
基于上述任一实施例,该装置还包括SRS接收单元,用于:
接收所述终端发送的SRS;
基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
图6为本申请实施例提供的终端的实体结构示意图,如图6所示,该终端可以包括:处理器(processor)601、通信接口(Communications Interface)602、存储器(memory)603和通信总线604,其中,处理器601,通信接口602,存储器603通过通信总线604完成相互间的通信。处理器601可以调用存储在存储器603上并可在处理器601上运行的计算机程序,以执行下述步骤:接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
在此需要说明的是,本实施例中的终端能够实现上述方法实施例中的所有方法步骤,并能够达到相同的技术效果,在此不再对本实施例中与方法实施例中的相同部分以及相同技术效果进行赘述。
此外,上述的存储器603中的逻辑指令可以通过软件功能单元的形式实 现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者终端等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
图7为本申请实施例提供的网络侧的实体结构示意图,如图7所示,该网络侧可以包括:处理器(processor)701、通信接口(Communications Interface)702、存储器(memory)703和通信总线704,其中,处理器701,通信接口702,存储器703通过通信总线704完成相互间的通信。处理器701可以调用存储在存储器703上并可在处理器701上运行的计算机程序,以执行下述步骤:通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
在此需要说明的是,本实施例中的网络侧能够实现上述方法实施例中的所有方法步骤,并能够达到相同的技术效果,在此不再对本实施例中与方法实施例中的相同部分以及相同技术效果进行赘述。
此外,上述的存储器703中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设 备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例提供的信道状态信息反馈方法,例如包括:接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于上行信道的角度信息,或上行信道的角度信息和时延信息确定的;所述角度信息是基于空域基向量确定的,所述时延信息是基于频域基向量确定的;基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例提供的信道状态信息反馈方法,例如包括:通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例 方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (58)

  1. 一种信道状态信息反馈方法,其特征在于,包括:
    接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于所述空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
    基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;
    将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
  2. 根据权利要求1所述的信道状态信息反馈方法,其特征在于,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数,具体包括:
    基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息;
    基于所述多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数。
  3. 根据权利要求2所述的信道状态信息反馈方法,其特征在于,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
    接收所述网络侧通过天线端口发送的波束赋形的第一CSI-RS;
    其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
  4. 根据权利要求3所述的信道状态信息反馈方法,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第一波束的数量不少于2L+M-1;
    其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域 基向量为2L个空域基向量中的一个。
  5. 根据权利要求4所述的信道状态信息反馈方法,其特征在于,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息,具体包括:
    基于通过至少2L个第一波束进行波束赋形的第一CSI-RS,确定至少2L个第一有效信道信息;
    基于通过至少M-1个第一波束进行波束赋形的第一CSI-RS,确定M-1个频域基向量和至少M-1个第一有效信道信息;
    基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息;
    将至少2L+M-1个第一有效信道信息和至少(2L-1)(M-1)个第二有效信道信息,作为所述有效信道信息。
  6. 根据权利要求5所述的信道状态信息反馈方法,其特征在于,所述基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息,具体包括:
    分别计算至少2L-1个预设波束赋形的CSI-RS所对应的每一第一有效信道信息与M-1个频域基向量中每一频域基向量的哈达玛积,得到至少(2L-1)(M-1)个第二有效信道信息。
  7. 根据权利要求2所述的信道状态信息反馈方法,其特征在于,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
    接收所述网络侧通过天线端口发送的波束赋形的第二CSI-RS与频域基向量指示信息;
    其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
  8. 根据权利要求7所述的信道状态信息反馈方法,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
    至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基向量的元素全为1;
    所述频域基向量指示信息表示包括
    Figure PCTCN2021076244-appb-100001
    比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100002
    比特用于指示M-M′个频域基向量的起始点,以及
    Figure PCTCN2021076244-appb-100003
    比特指示信息以指示M-M′个频域基向量;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100004
    比特用于指示连续M个频域基向量。
  9. 根据权利要求8所述的信道状态信息反馈方法,其特征在于,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息,具体包括:
    基于通过至少2LM′个第二波束进行波束赋形的第二CSI-RS,确定至少2LM′个第一有效信道信息;
    基于所述频域基向量指示信息,确定M-M′个频域基向量;
    基于至少2LM′个第二波束中,基于所述第一频域基向量确定的至少2L个第二波束所对应的第一有效信道信息,以及M-M′个频域基向量,确定至少2L(M-M′)个第二有效信道信息;
    将至少2LM′个第一有效信道信息和至少2L(M-M′)个第二有效信道信息,作为所述有效信道信息。
  10. 根据权利要求2所述的信道状态信息反馈方法,其特征在于,所述基于所述多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数,具体包括:
    对所述多个有效信道信息的协方差矩阵进行特征值分解,得到下行传输 层数个最大特征值对应的特征向量;
    选取任一下行传输层对应的特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数;
    基于所述任一下行传输层的端口组合系数对应的有效信道所应用的端口,确定所述任一下行传输层用于数据传输的端口指示信息。
  11. 根据权利要求10所述的信道状态信息反馈方法,其特征在于,所述选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数,具体包括:
    选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素;
    将所述不大于预设端口数量个幅值最大的非零元素进行归一化和量化,得到所述任一下行传输层的端口组合系数。
  12. 根据权利要求1至11中任一项所述的信道状态信息反馈方法,其特征在于,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,之前还包括:
    向所述网络侧发送SRS,以供所述网络侧基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
  13. 一种信道状态信息反馈方法,其特征在于,包括:
    通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于所述空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
    接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;
    基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
  14. 根据权利要求13所述的信道状态信息反馈方法,其特征在于,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域 基向量指示信息,具体包括:
    通过天线端口向终端发送波束赋形的第一CSI-RS;
    其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
  15. 根据权利要求14所述的信道状态信息反馈方法,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第一波束的数量不少于2L+M-1;
    其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域基向量为2L个空域基向量中的一个。
  16. 根据权利要求13所述的信道状态信息反馈方法,其特征在于,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
    通过天线端口向终端发送波束赋形的第二CSI-RS与频域基向量指示信息;
    其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
  17. 根据权利要求16所述的信道状态信息反馈方法,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
    至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基向量的元素全为1;
    所述频域基向量指示信息表示包括
    Figure PCTCN2021076244-appb-100005
    比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100006
    比特用于指示M-M′个频域基向量的起始点,以及
    Figure PCTCN2021076244-appb-100007
    比特指示信息以指示M-M′个频域 基向量;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100008
    比特用于指示连续M个频域基向量。
  18. 根据权利要求13至17中任一项所述的信道状态信息反馈方法,其特征在于,所述波束赋形所采用的波束是对空域基向量和频域基向量进行克罗内克乘积计算得到的。
  19. 根据权利要求13至17中任一项所述的信道状态信息反馈方法,其特征在于,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,之前还包括:
    接收所述终端发送的SRS;
    基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
  20. 一种信道状态信息反馈装置,其特征在于,包括:
    接收单元,用于接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
    端口确定单元,用于基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;
    反馈单元,用于将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
  21. 根据权利要求20所述的信道状态信息反馈装置,其特征在于,端口确定单元包括:
    信道确定子单元,用于基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息;
    端口确定子单元,用于基于所述多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数。
  22. 根据权利要求21所述的信道状态信息反馈装置,其特征在于,所述 接收单元具体用于:
    接收所述网络侧通过天线端口发送的波束赋形的第一CSI-RS;
    其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
  23. 根据权利要求22所述的信道状态信息反馈装置,其特征在于,
    所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第一波束的数量不少于2L+M-1;
    其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域基向量为2L个空域基向量中的一个。
  24. 根据权利要求23所述的信道状态信息反馈装置,其特征在于,所述信道确定子单元具体用于:
    基于通过至少2L个第一波束进行波束赋形的第一CSI-RS,确定至少2L个第一有效信道信息;
    基于通过至少M-1个第一波束进行波束赋形的第一CSI-RS,确定M-1个频域基向量和至少M-1个第一有效信道信息;
    基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息;
    将至少2L+M-1个第一有效信道信息和至少(2L-1)(M-1)个第二有效信道信息,作为所述有效信道信息。
  25. 根据权利要求24所述的信道状态信息反馈装置,其特征在于,所述基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息,具体包括:
    分别计算至少2L-1个预设波束赋形的CSI-RS所对应的每一第一有效信道信息与M-1个频域基向量中每一频域基向量的哈达玛积,得到至少 (2L-1)(M-1)个第二有效信道信息。
  26. 根据权利要求21所述的信道状态信息反馈装置,其特征在于,所述接收单元具体用于:
    接收所述网络侧通过天线端口发送的波束赋形的第二CSI-RS与频域基向量指示信息;
    其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
  27. 根据权利要求26所述的信道状态信息反馈装置,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
    至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基向量的元素全为1;
    所述频域基向量指示信息表示包括
    Figure PCTCN2021076244-appb-100009
    比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100010
    比特用于指示M-M′个频域基向量的起始点,以及
    Figure PCTCN2021076244-appb-100011
    比特指示信息以指示M-M′个频域基向量;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100012
    比特用于指示连续M个频域基向量。
  28. 根据权利要求27所述的信道状态信息反馈装置,其特征在于,所述信道确定子单元具体用于:
    基于通过至少2LM′个第二波束进行波束赋形的第二CSI-RS,确定至少2LM′个第一有效信道信息;
    基于所述频域基向量指示信息,确定M-M′个频域基向量;
    基于至少2LM′个第二波束中,基于所述第一频域基向量确定的至少2L个 第二波束所对应的第一有效信道信息,以及M-M′个频域基向量,确定至少2L(M-M′)个第二有效信道信息;
    将至少2LM′个第一有效信道信息和至少2L(M-M′)个第二有效信道信息,作为所述有效信道信息。
  29. 根据权利要求21所述的信道状态信息反馈装置,其特征在于,所述端口确定子单元具体用于:
    对所述多个有效信道信息的协方差矩阵进行特征值分解,得到下行传输层数个最大特征值对应的特征向量;
    选取任一下行传输层对应的特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数;
    基于所述任一下行传输层的端口组合系数对应的有效信道所应用的端口,确定所述任一下行传输层用于数据传输的端口指示信息。
  30. 根据权利要求29所述的信道状态信息反馈装置,其特征在于,所述选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数,具体包括:
    选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素;
    将所述不大于预设端口数量个幅值最大的非零元素进行归一化和量化,得到所述任一下行传输层的端口组合系数。
  31. 根据权利要求20至30中任一项所述的信道状态信息反馈装置,其特征在于,还包括SRS发送单元,用于:
    向所述网络侧发送SRS,以供所述网络侧基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
  32. 一种信道状态信息反馈装置,其特征在于,包括:
    发送单元,用于通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
    端口接收单元,用于接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;
    预编码单元,用于基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
  33. 根据权利要求32所述的信道状态信息反馈装置,其特征在于,所述发送单元具体用于:
    通过天线端口向终端发送波束赋形的第一CSI-RS;
    其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
  34. 根据权利要求33所述的信道状态信息反馈装置,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第一波束的数量不少于2L+M-1;
    其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域基向量为2L个空域基向量中的一个。
  35. 根据权利要求32所述的信道状态信息反馈装置,其特征在于,所述发送单元具体用于:
    通过天线端口向终端发送波束赋形的第二CSI-RS与频域基向量指示信息;
    其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
  36. 根据权利要求35所述的信道状态信息反馈装置,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
    至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基 向量的元素全为1;
    所述频域基向量指示信息表示包括
    Figure PCTCN2021076244-appb-100013
    比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100014
    比特用于指示M-M′个频域基向量的起始点,以及
    Figure PCTCN2021076244-appb-100015
    比特指示信息以指示M-M′个频域基向量;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100016
    比特用于指示连续M个频域基向量。
  37. 根据权利要求32至36中任一项所述的信道状态信息反馈装置,其特征在于,所述波束赋形所采用的波束是对空域基向量和频域基向量进行克罗内克乘积计算得到的。
  38. 根据权利要求32至36中任一项所述的信道状态信息反馈装置,其特征在于,还包括SRS接收单元,用于:
    接收所述终端发送的SRS;
    基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
  39. 一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的;
    基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数;
    将所述端口指示信息和端口组合系数反馈至所述网络侧,以供所述网络侧基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
  40. 根据权利要求39所述的终端,其特征在于,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定用于数据传输的端口指示信息和端口组合系数,具体包括:
    基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息;
    基于所述多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数。
  41. 根据权利要求40所述的终端,其特征在于,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
    接收所述网络侧通过天线端口发送的波束赋形的第一CSI-RS;
    其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
  42. 根据权利要求41所述的终端,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第一波束的数量不少于2L+M-1;
    其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域基向量为2L个空域基向量中的一个。
  43. 根据权利要求42所述的终端,其特征在于,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息,具体包括:
    基于通过至少2L个第一波束进行波束赋形的第一CSI-RS,确定至少2L个第一有效信道信息;
    基于通过至少M-1个第一波束进行波束赋形的第一CSI-RS,确定M-1个频域基向量和至少M-1个第一有效信道信息;
    基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息;
    将至少2L+M-1个第一有效信道信息和至少(2L-1)(M-1)个第二有效信道信息,作为所述有效信道信息。
  44. 根据权利要求43所述的终端,其特征在于,所述基于至少2L个第一有效信道信息中,至少2L-1个预设波束赋形的CSI-RS所对应的第一有效信道信息,以及M-1个频域基向量,确定至少(2L-1)(M-1)个第二有效信道信息,具体包括:
    分别计算至少2L-1个预设波束赋形的CSI-RS所对应的每一第一有效信道信息与M-1个频域基向量中每一频域基向量的哈达玛积,得到至少(2L-1)(M-1)个第二有效信道信息。
  45. 根据权利要求40所述的终端,其特征在于,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
    接收所述网络侧通过天线端口发送的波束赋形的第二CSI-RS与频域基向量指示信息;
    其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
  46. 根据权利要求45所述的终端,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
    至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基向量的元素全为1;
    所述频域基向量指示信息表示包括
    Figure PCTCN2021076244-appb-100017
    比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100018
    比特用于指示M-M′个频域基向量的起始点,以及
    Figure PCTCN2021076244-appb-100019
    比特指示信息以指示M-M′个频域基向量;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100020
    比特用于指示连续M个频域基向量。
  47. 根据权利要求46所述的终端,其特征在于,所述基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,确定多个有效信道信息,具体包括:
    基于通过至少2LM′个第二波束进行波束赋形的第二CSI-RS,确定至少2LM′个第一有效信道信息;
    基于所述频域基向量指示信息,确定M-M′个频域基向量;
    基于至少2LM′个第二波束中,基于所述第一频域基向量确定的至少2L个第二波束所对应的第一有效信道信息,以及M-M′个频域基向量,确定至少2L(M-M′)个第二有效信道信息;
    将至少2LM′个第一有效信道信息和至少2L(M-M′)个第二有效信道信息,作为所述有效信道信息。
  48. 根据权利要求40所述的终端,其特征在于,所述基于所述多个有效信道信息,确定用于数据传输的端口指示信息和端口组合系数,具体包括:
    对所述多个有效信道信息的协方差矩阵进行特征值分解,得到下行传输层数个最大特征值对应的特征向量;
    选取任一下行传输层对应的特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数;
    基于所述任一下行传输层的端口组合系数对应的有效信道所应用的端口,确定所述任一下行传输层用于数据传输的端口指示信息。
  49. 根据权利要求48所述的终端,其特征在于,所述选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素,得到所述任一下行传输层的端口组合系数,具体包括:
    选取任一下行传输层对应的所述特征向量中不大于预设端口数量个幅值最大的非零元素;
    将所述不大于预设端口数量个幅值最大的非零元素进行归一化和量化,得到所述任一下行传输层的端口组合系数。
  50. 根据权利要求39至49中任一项所述的终端,其特征在于,所述接收网络侧通过天线端口发送的波束赋形的CSI-RS,或波束赋形的CSI-RS与 频域基向量指示信息,之前还包括:
    向所述网络侧发送SRS,以供所述网络侧基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
  51. 一种网络侧,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息;其中,波束赋形所采用的波束是基于空域基向量,或基于空域基向量和频域基向量确定的,所述空域基向量和所述频域基向量是基于上行信道确定的的;
    接收所述终端反馈的用于数据传输的端口指示信息和端口组合系数;所述端口指示信息和端口组合系数是所述终端基于所述波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息确定的;
    基于所述端口指示信息和端口组合系数,确定下行传输数据的预编码。
  52. 根据权利要求51所述的网络侧,其特征在于,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
    通过天线端口向终端发送波束赋形的第一CSI-RS;
    其中,对所述第一CSI-RS进行波束赋形所采用的第一波束是基于全部空域基向量和全部频域基向量确定的。
  53. 根据权利要求52所述的网络侧,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第一波束的数量不少于2L+M-1;
    其中,至少2L个第一波束是基于2L个空域基向量确定的,至少M-1个第一波束是基于预设空域基向量与M-1个频域基向量确定的;所述预设空域基向量为2L个空域基向量中的一个。
  54. 根据权利要求51所述的网络侧,其特征在于,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,具体包括:
    通过天线端口向终端发送波束赋形的第二CSI-RS与频域基向量指示信息;
    其中,对所述第二CSI-RS进行波束赋形所采用的第二波束是基于全部空域基向量和一部分频域基向量确定的,所述频域基向量指示信息用于指示另一部分频域基向量。
  55. 根据权利要求54所述的网络侧,其特征在于,所述空域基向量的数量为2L,所述频域基向量的数量为M,L和M均为正整数;
    所述第二波束的数量不少于2LM′,其中M′为小于M的正整数;
    至少有2LM′个第二波束是基于2L个空域基向量和任意M′个频域基向量确定的;所述任意M′个频域基向量中包含第一频域基向量,所述第一频域基向量的元素全为1;
    所述频域基向量指示信息表示包括
    Figure PCTCN2021076244-appb-100021
    比特指示信息,以指示M-M′个频域基向量,其中N 3为PMI子带数;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100022
    比特用于指示M-M′个频域基向量的起始点,以及
    Figure PCTCN2021076244-appb-100023
    比特指示信息以指示M-M′个频域基向量;
    或,所述频域基向量指示信息包括
    Figure PCTCN2021076244-appb-100024
    比特用于指示连续M个频域基向量。
  56. 根据权利要求51至55中任一项所述的网络侧,其特征在于,所述波束赋形所采用的波束是对空域基向量和频域基向量进行克罗内克乘积计算得到的。
  57. 根据权利要求51至55中任一项所述的网络侧,其特征在于,所述通过天线端口向终端发送波束赋形的CSI-RS,或波束赋形的CSI-RS与频域基向量指示信息,之前还包括:
    接收所述终端发送的SRS;
    基于所述SRS确定所述上行信道对应的空域基向量和频域基向量。
  58. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至19中任一项所述的信道状态信息反馈方法的步骤。
PCT/CN2021/076244 2020-02-10 2021-02-09 信道状态信息反馈方法、装置、终端、网络侧和存储介质 WO2021160122A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022548763A JP2023513713A (ja) 2020-02-10 2021-02-09 チャネル状態情報フィードバック方法、装置、端末、ネットワーク側及び記憶媒体
MX2022009173A MX2022009173A (es) 2020-02-10 2021-02-09 Metodo de retroalimentacion de informacion de estado de canal, dispositivo, terminal y lado de la red y medio de almacenamiento.
EP21754654.8A EP4106221A4 (en) 2020-02-10 2021-02-09 CHANNEL STATE INFORMATION FEEDBACK METHOD, DEVICE, TERMINAL, NETWORK SIDE, AND STORAGE MEDIUM
KR1020227029814A KR20220131993A (ko) 2020-02-10 2021-02-09 채널 상태 정보 피드백 방법, 장치, 단말, 네트워크 측 및 저장 매체
US17/794,253 US20230075037A1 (en) 2020-02-10 2021-02-09 Channel state information feedback method, device, terminal, and network side, and storage medium
BR112022015632A BR112022015632A2 (pt) 2020-02-10 2021-02-09 Método de retroalimentação de informações de estado de canal, dispositivo, terminal e lado de rede, e mídia de armazenamento.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010085292 2020-02-10
CN202010085292.9 2020-02-10
CN202110152398.0 2021-02-03
CN202110152398.0A CN113258974B (zh) 2020-02-10 2021-02-03 信道状态信息反馈方法、装置、终端、网络侧和存储介质

Publications (1)

Publication Number Publication Date
WO2021160122A1 true WO2021160122A1 (zh) 2021-08-19

Family

ID=77180875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076244 WO2021160122A1 (zh) 2020-02-10 2021-02-09 信道状态信息反馈方法、装置、终端、网络侧和存储介质

Country Status (8)

Country Link
US (1) US20230075037A1 (zh)
EP (1) EP4106221A4 (zh)
JP (1) JP2023513713A (zh)
KR (1) KR20220131993A (zh)
CN (1) CN113258974B (zh)
BR (1) BR112022015632A2 (zh)
MX (1) MX2022009173A (zh)
WO (1) WO2021160122A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710188A (zh) * 2022-02-28 2022-07-05 华为技术有限公司 一种传输方法及装置
WO2023206170A1 (zh) * 2022-04-27 2023-11-02 北京小米移动软件有限公司 Csi的上报方法、预编码矩阵的确定方法、装置及设备
CN115606302A (zh) * 2022-07-22 2023-01-13 北京小米移动软件有限公司(Cn) Sd-fd基对的指示信息的发送接收方法、装置及系统
WO2024065832A1 (zh) * 2022-09-30 2024-04-04 北京小米移动软件有限公司 信息发送、接收方法和装置、通信装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113039A (zh) * 2014-12-23 2017-08-29 三星电子株式会社 用于全维度多输入多输出的信道状态信息反馈方案
CN107980209A (zh) * 2017-02-16 2018-05-01 香港应用科技研究院有限公司 大规模mimo通信系统中报告信道状态信息(csi)的方法和装置
US20190280750A1 (en) * 2018-03-09 2019-09-12 Samsung Electronics Co., Ltd. Method and apparatus to enable csi reporting based on space-frequency compression
EP3576312A1 (en) * 2018-05-30 2019-12-04 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Doppler-delay codebook-based precoding and csi reporting for wireless communications systems
CN110768700A (zh) * 2018-07-26 2020-02-07 华为技术有限公司 信道估计方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102335741B1 (ko) * 2015-08-13 2021-12-06 삼성전자주식회사 이동 통신 시스템에서 빔포밍된 csi-rs를 이용하는 통신 기법
CN106941367A (zh) * 2016-01-04 2017-07-11 中兴通讯股份有限公司 多输入多输出mimo的处理方法及装置
CN107294644A (zh) * 2016-03-31 2017-10-24 株式会社Ntt都科摩 参考信号发送方法、信道状态信息反馈方法、基站和移动台
CN109565479B (zh) * 2016-09-30 2020-11-03 华为技术有限公司 一种波束赋形传输的方法及装置
CN108155922A (zh) * 2016-12-05 2018-06-12 中国电信股份有限公司 基于波束赋形的csi反馈方法及装置
CN108540190A (zh) * 2017-03-06 2018-09-14 北京信威通信技术股份有限公司 波束赋形方法和装置
CN113131978B (zh) * 2019-12-30 2022-04-19 大唐移动通信设备有限公司 一种基于信道互易性的预编码矩阵配置方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113039A (zh) * 2014-12-23 2017-08-29 三星电子株式会社 用于全维度多输入多输出的信道状态信息反馈方案
CN107980209A (zh) * 2017-02-16 2018-05-01 香港应用科技研究院有限公司 大规模mimo通信系统中报告信道状态信息(csi)的方法和装置
US20190280750A1 (en) * 2018-03-09 2019-09-12 Samsung Electronics Co., Ltd. Method and apparatus to enable csi reporting based on space-frequency compression
EP3576312A1 (en) * 2018-05-30 2019-12-04 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Doppler-delay codebook-based precoding and csi reporting for wireless communications systems
CN110768700A (zh) * 2018-07-26 2020-02-07 华为技术有限公司 信道估计方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4106221A4 *
ZTE, ZTE MICROELECTRONICS: "Hybrid CSI feedback for NR MIMO", 3GPP DRAFT; R1-1701808 HYBRID CSI FEEDBACK FOR NR MIMO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens; 20170116 - 20170120, 7 February 2017 (2017-02-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051220874 *

Also Published As

Publication number Publication date
EP4106221A1 (en) 2022-12-21
BR112022015632A2 (pt) 2022-09-27
US20230075037A1 (en) 2023-03-09
EP4106221A4 (en) 2024-03-06
MX2022009173A (es) 2022-08-17
KR20220131993A (ko) 2022-09-29
CN113258974B (zh) 2022-12-30
JP2023513713A (ja) 2023-04-03
CN113258974A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2021160122A1 (zh) 信道状态信息反馈方法、装置、终端、网络侧和存储介质
JP7450625B2 (ja) 無線通信ネットワークにおけるフィードバック報告のための方法および装置
WO2018127044A1 (zh) 通信方法、基站和终端设备
US10205495B2 (en) Methods and devices for determining precoder parameters in a wireless communication network
TWI782367B (zh) 一種基於通道互易性的預編碼矩陣配置方法、網路側裝置、終端、存儲介質
US10205499B2 (en) Systems and methods for adapting a codebook for use with multiple antenna configurations
WO2018059072A1 (zh) 一种信道状态信息的传输方法和设备
WO2018228308A1 (zh) 一种信道状态信息反馈的方法、装置和存储介质
CN112470412B (zh) 频域时域信道硬化和开销减少
CN108111211B (zh) 信道状态信息的反馈方法、装置及管理设备
WO2018127126A1 (zh) 一种信道状态信息上报方法、基站和用户设备
JP6556244B2 (ja) コードブック確定方法及び装置
CN112042245A (zh) 基于互易性的csi报告配置
US20210234584A1 (en) Precoding matrix index reporting method, communications apparatus, and medium
CN111865377A (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2021155610A1 (zh) 一种信息传输方法及装置
EP2557719A1 (en) Feedback method and system of correlation matrix for antenna array
CN107222249B (zh) 一种信道状态信息获取方法及装置
CN112119617B (zh) 基于特征值的信道硬化和显式反馈
WO2020047774A1 (zh) 信道信息处理方法和装置
EP3876430A1 (en) Method and device for reporting antenna port weighting vector, method and device for acquiring antenna port weighting vector, processing apparatus, and storage medium
WO2024012256A1 (zh) 信道反馈方法及装置
WO2021074822A1 (en) Differential and quantized side information transmission for type ii csi
CN114499608A (zh) 用信号发送端口信息

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548763

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022015632

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227029814

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021754654

Country of ref document: EP

Effective date: 20220912

ENP Entry into the national phase

Ref document number: 112022015632

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220808