WO2011124065A1 - 一种信道状态信息反馈方法和系统 - Google Patents

一种信道状态信息反馈方法和系统 Download PDF

Info

Publication number
WO2011124065A1
WO2011124065A1 PCT/CN2010/078469 CN2010078469W WO2011124065A1 WO 2011124065 A1 WO2011124065 A1 WO 2011124065A1 CN 2010078469 W CN2010078469 W CN 2010078469W WO 2011124065 A1 WO2011124065 A1 WO 2011124065A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
codewords
matrix
channel
codeword
Prior art date
Application number
PCT/CN2010/078469
Other languages
English (en)
French (fr)
Inventor
陈艺戬
郁光辉
张峻峰
李书鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42805522&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011124065(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10849301.6A priority Critical patent/EP2536057B1/en
Priority to US13/634,578 priority patent/US8831067B2/en
Priority to KR1020127023743A priority patent/KR101392396B1/ko
Priority to RU2012136918/08A priority patent/RU2528153C2/ru
Priority to JP2012557379A priority patent/JP5620521B2/ja
Priority to ES10849301T priority patent/ES2886354T3/es
Priority to BR112012022726-2A priority patent/BR112012022726B1/pt
Priority to MX2012010580A priority patent/MX2012010580A/es
Publication of WO2011124065A1 publication Critical patent/WO2011124065A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3084Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method
    • H03M7/3088Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method employing the use of a dictionary, e.g. LZ78
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present invention relates to a multi-input multi-output (MIMO) system in the field of communications, and more particularly to a channel state information (CSI) feedback method when a channel matrix is a low rank ( Rank) system.
  • MIMO multi-input multi-output
  • CSI channel state information
  • spatial multiplexing can be used to obtain a higher rate.
  • an enhanced technology is that the receiving end feeds back channel state information to the transmitting end, and the transmitting end uses some transmitting precoding techniques according to the obtained channel state information, which greatly improves the transmission performance.
  • the simple utilization method directly uses channel feature vector information for precoding, and is mainly used in single-user MIMO. There are other better but more sophisticated methods that are primarily used in multi-user MIMO.
  • the concept of layers is defined at the transmitting end. On the same time-frequency resource, each layer can transmit different data symbols, and the number of layers is equal to the rank of the channel matrix (Rank).
  • the acquired CSI can be used to perform linear or non-linear precoding on the layer data, so that the signal-to-noise ratio of the user receiving data reaches the receiving end at the maximum, between layers Interference and interference between users is minimal. If the channel state information can be accurately obtained, optimal precoding can be achieved.
  • channel state information can only be obtained directly and accurately at the receiving end. In the case of the transmitting end, the CSI can only obtain CSI feedback from the receiving end to the transmitting end. An important issue is how to effectively quantify the feedback CSI information. In the current mainstream standards, the feedback capacity of the system to provide CSI is relatively limited, because the feedback amount of feedback on the entire channel state information is very large. Therefore, the mainstream feedback methods are based on the quantification of codebooks.
  • 9 can be further divided into codebooks corresponding to multiple ranks, and each rank corresponding to multiple codewords is used to quantize the precoding matrix formed by the feature vectors of the channel matrix under the rank. Since the number of ranks and non-zero feature vectors of the channel are equal, in general, the codeword with the rank N will have N columns. Therefore, the codebook 91 can be divided into a plurality of subcodebooks according to the Rank, as shown in Table 1. In the case of fully accurate acquisition of CSI, the performance of precoding according to CSI is the best. Due to the limitation of feedback overhead, the channel state based channel state information is used to quantify feedback.
  • the codewords to be stored in the Rank>l are in the form of a matrix.
  • the codebook in the Long Term Evolution (LTE) protocol is a feedback method for the codebook quantization, as shown in Table 2. .
  • the vector can also be viewed as a matrix with a dimension of one.
  • the LTE downlink 4Tx codebook is shown in Table 2.
  • the precoding codebook and the channel state information quantization codebook in LTE have the same meaning.
  • W n I lu n lu n
  • I is a unit matrix, indicating the column vector of the matrix ⁇ .
  • a matrix consisting of the l , ⁇ , ..., J n columns of the matrix W k .
  • an 8Tx codebook needs to be designed to perform quantitative feedback of channel state information.
  • the main application form of the 8 antenna is a dual-polarized antenna. Therefore, it is necessary to design a codebook suitable for the dual-polarized channel, and use the codebook to perform quantitative feedback of the channel state information.
  • Precoding performance is best when CSI is fully and accurately acquired. Due to the limitation of feedback overhead (channel capacity for feedback), only codebook-based CSI feedback and transmit data can be used. Precoding of symbols.
  • the design of the codebook is very important. An important goal of the codebook design is to ensure that the quantization error is as small as possible, and the codebook is simple to implement, reasonable in overhead, and small in storage.
  • the codebook design should also meet the following characteristics:
  • Modeling can make the power allocated to each antenna equal after precoding, avoiding the increase of Peak to Average Power Ratio (PAPR) index, which can make each power amplifier (PA)
  • PAPR Peak to Average Power Ratio
  • PA power amplifier
  • Orthogonal characteristics After the Singular Value Decomposition (SVD) decomposition of the channel matrix, the obtained right feature vectors must be orthogonal.
  • the codebook is designed to match the right eigenvector direction of the channel matrix, so the designed codeword should also conform to this feature. In a precoded codeword of Rank > 1, each column vector should be orthogonal. Orthogonality is an important principle. No matter how the codebook is designed, this feature must be met to ensure the accuracy of the codebook.
  • 8PSK characteristics Considering the complexity of implementing the precoding processing at the transceiver end, it is necessary to limit the value of each element only from the point corresponding to Phase Shift Keying (PSK), called 8PSK. characteristic.
  • the qualified codebook has an 8PSK characteristic, that is, before the codebook is normalized, the value of each element can only be from the 8PSK alphabet:
  • the LTE 4 codebook can better meet these criteria.
  • the existing codebook for channel state information quantization feedback mainly considers the channel applied by the single-polarized antenna at the transmitting end. In this antenna configuration, the channel is distinguished by correlation, and the strong correlation channel and the independent channel feature are used. Codeword.
  • the method of designing the uncorrelated channel codewords in the codebook of ⁇ is: Finding a matrix of multiple queues (when ⁇ is 1, it is degraded to Vector), so that the multiple matrices (ie, subspaces) are evenly distributed in the whole space.
  • the main method is to find multiple codeword matrices uniformly distributed in the whole space by using Grassmannian line compression or subspace compression.
  • the other direction is a single-polarized array antenna scenario considering a smaller antenna spacing.
  • the channel has a strong correlation.
  • the channel is not independent and irrelevant, and its eigenvectors exhibit a fixed model, such as 8 antennas.
  • the eigenvectors of the strongly correlated channel of a single-polarized antenna are [1 e ⁇ " e ⁇ 3 ⁇ ⁇ ⁇ ⁇ ⁇ 7 ⁇ ] , where ⁇ represents different phase values.
  • This model is related to the Discrete Fourier Transform (DFT) matrix.
  • the column vectors have the same model, therefore, the columns of the DFT matrix are selected as the codewords of the relevant channels.
  • DFT Discrete Fourier Transform
  • the existing codebook design for channel state information quantization feedback is mainly for the related situation and irrelevant consideration of the single-polarized antenna channel. 8
  • the dual-polarized antenna is due to the antenna spacing. In practical applications, it has a wider application prospect, especially when the number of antennas is greater than or equal to 4, so the dual-polarized antenna is gradually becoming the mainstream application.
  • Some of the features that are shown are often very complex, such as dual-polarized correlated channels, which exhibit strong correlation only in the same polarization direction, but do not have strong correlation between polarization directions, dual polarization.
  • the uncorrelated channels exhibit independent properties in the same polarization direction, and the relationship between the polarization directions is not independent.
  • the single-polarized antennas are related channels and
  • the codebook design method of the uncorrelated channel cannot match the channel characteristics well in the channel of the dual-polarized antenna, and the performance in the dual-polarized channel is poor.
  • the existing codebook construction techniques are directed to the single When considering polarized antennas, there is no good method for channel state information feedback for dual-polarized channels.
  • the present invention provides a channel state information feedback method and system that solves the problem of not being bipolar The problem of the channel state information feedback method of the channel.
  • the present invention provides a channel state information feedback method, including: configuring the same codebook space at a data transmitting end and a data receiving end; and selecting, by the data receiving end, a channel from the codebook space Matching the codeword, and sending the sequence number corresponding to the codeword to the data sending end; and the data sending end extracts the corresponding codeword from the locally configured codebook space according to the sequence number, and obtains channel state information.
  • the steps of configuring the same codebook space on the data transmitting end and the data receiving end include:
  • O represents an all-zero matrix
  • Matrix ⁇ ⁇ ⁇ « ⁇ and matrix... are orthogonal matrices.
  • the matrix ⁇ ... ⁇ and the matrix satisfy the 8 psK characteristic, that is, all the elements in the above matrix are 8PSK alphabet set elements; any column of any matrix in the matrix ⁇ ⁇ ⁇ « ⁇ is from the LTE Rank4 precoding codebook Extracted from the same codeword or different codewords;
  • any column of any of the matrices in the matrix is extracted from the same codeword or different codeword of the LTE Rank4 precoded codebook. Since the LTE Rank4 precoding codebooks are all 4 lines, ⁇ ⁇ ⁇ « ⁇ and ... ⁇ are all matrixes of 4 lines. , Wherein, M "... ⁇ ⁇ matrix either in a matrix,” as in ... M »and nesting relationship exists, i.e., M" component of the composition in the column or column portion ⁇ "a matrix.
  • codeword nested in an LTE Rank4 precoding codebook a codeword nested in another identical or different LTE Rank 4 precoding codebook, where M "is any matrix in the matrix,” For any matrix in...
  • the steps of constructing the codewords in the codebook space include:
  • the M-dimensional vector w ⁇ ⁇ is an arbitrary vector extracted from the LTE Rank 4 pre-encoded codebook
  • the M-dimensional vector w ⁇ ⁇ is an arbitrary vector extracted from the LTE Rank1 pre-encoded codebook
  • the present invention further provides a channel state information feedback system, including a data transmitting end and a data receiving end; the data sending end is configured to: configure the same codebook space as the data receiving end, and receive a sequence number of the codeword sent by the data receiving end, and extracting a corresponding codeword from the locally configured codebook space according to the sequence number, to obtain channel state information; the data receiving end is configured to: configure and the data The same codebook space is sent by the sender, and a codeword matching the channel is selected from the codebook space, and the sequence number corresponding to the codeword is sent to the data sending end.
  • the data transmitting end is configured to configure the same codebook as the data receiving end as follows
  • M '' M r has a dimension of 4x1
  • K has a dimension of 4xJ
  • I+J r
  • FIG. 1 is a flowchart of a channel state information feedback method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for implementing step 101 in FIG. 1
  • FIG. 3 is a step 101 in FIG. The implementation method flow chart.
  • Embodiment 1 of the present invention provides a channel state information feedback method, where the same codebook space is configured at a data transmitting end and a data receiving end, and the codebook space is a universal codebook space suitable for a multi-rank case.
  • the specific process of the embodiment of the present invention is as shown in FIG. 1 , including: Step 101: Configuring the same codebook space on the data sending end and the data receiving end; In this step, configuring the same code on the data sending end and the data receiving end This space has the same configuration principle. As shown in Figure 2, it includes:
  • the above codewords may also be used as part of a codebook used in an application scenario, according to the probability of occurrence of the application scenario, Adding a suitable number of some other codewords based on the above K codewords.
  • the matrix... is an orthogonal matrix.
  • the matrix ⁇ ⁇ ⁇ ⁇ ... satisfies the 8PSK characteristic, that is: all of the above matrix
  • the elements are all 8PSK alphabet set elements.
  • any column in the matrix is extracted from the LTE Rank4 precoding codebook. And each column in ⁇ can be the Rank4 codeword from the same LTE Rank4 precoding codebook.
  • Step 102 Construct a codeword using a model; the model used is as follows:
  • the code words constructed by the above model can form a codebook space.
  • a variant model obtained by performing an equivalent method such as column exchange and row exchange on a codeword constructed according to the above model also belongs to the protection scope of the embodiment of the present invention, and the purpose of obtaining the variant model is only to adapt to different antenna numbers.
  • multiplying the columns in the above model by the constant coefficient also belongs to the protection scope of the embodiment of the present invention, and the purpose thereof is only for controlling the power.
  • the codeword is constructed using the above model. When the horizontal double polarization is applied at the transmitting end, the channel matrix has ⁇ ⁇ ⁇ 2 ⁇ X 2 ⁇ block diagonal matrix
  • the 2 ⁇ r matrix composed of the first two eigenvectors of the block diagonal matrix has a typical block structure, so the codebook of the eigenvectors of the quantized channel matrix H should have a similar form to the eigenvector of H FF H.
  • H H H is 2M X 2M block symmetric matrix
  • the 2M xr matrix composed of the first two eigenvectors of the block symmetry matrix has a typical block structure, so the codebook of the eigenvector of the quantized channel matrix H should have a similar form to the eigenvector of H H H .
  • the process of constructing the codebook space by using the method shown in FIG. 2 is as follows: Select an M-dimensional vector 1 ⁇ ... and an M-dimensional vector ⁇ , where ⁇ is part or all of the code that needs to be generated in the codebook. The number of words. Generally, the number of transmitting antennas is even. If the number of transmitting antennas at the data transmitting end is 2,, it is necessary to construct a codebook of 2 antennas.
  • the selected vector ⁇ •• ⁇ , ⁇ should be the vector of the dimension.
  • W C is an arbitrary vector extracted from the LTE Rank 4 precoding codebook in Table 2
  • ⁇ ⁇ is an arbitrary vector extracted from the LTE Rank 4 precoding codebook in Table 2. Then, construct the codeword using the following model:
  • H FF H is a 2 ⁇ 2 ⁇ block diagonal matrix L ” form.
  • the 2Mx2 matrix composed of the first two feature vectors of the block diagonal matrix is a block diagonal matrix, so the codebook of the feature vector of the quantized channel matrix H should have a similar form to the feature vector of H H H .
  • H H is the 2M 2M block symmetric matrix BA form.
  • the 2M 2 matrix composed of the first two eigenvectors of the block symmetry matrix is a block symmetry matrix, so the codebook of the eigenvectors of the quantized channel matrix H should have a similar form to the eigenvectors of H H H .
  • the process of constructing the codebook space using the method shown in Figure 2 is as follows: Select an M-dimensional vector w '' and a ⁇ -dimensional vector ⁇ , a ⁇ -dimensional vector where w is the LTE Rank 4 from Table 2. Any vector extracted from the precoding codebook, ⁇ is any vector extracted from the LTE Rank 4 precoding codebook in Table 2, ⁇ ⁇ ... is the vector extracted from the LTE Rank 4 precoding codebook in Table 2, and 2 ' It is orthogonal to at least one of v ' or 1 ⁇ .
  • is not equal to ' Extracted from the column, since it is an orthogonal matrix, z ' is orthogonal to ⁇ '; or ⁇ ' is extracted from a column that is not equal to ⁇ , since ⁇ is an orthogonal matrix, so ⁇ is orthogonal to 1 ⁇ . Then , construct the codeword using the following model:
  • ⁇ ⁇ is a vector extracted from the LTE Rank 4 precoding codebook in Table 2, and ⁇ ' and ⁇ or one of the orthogonal
  • ⁇ ⁇ is extracted from the codeword of the LTE Rank 4 precoding codebook
  • ⁇ ' is extracted from the column not equal to ⁇ ', because it is orthogonal matrix, and 1 ⁇ ⁇ orthogonal, from 1 ⁇ ⁇ not equal to the extraction column, since ⁇ is an orthogonal matrix, and orthogonal; or from ⁇ ⁇ ⁇ 1 is not equal to the column extraction, since ⁇ is an orthogonal matrix, so ⁇ 'and orthogonal, is extracted from a column that is not equal to 1 ⁇ . Since it is an orthogonal matrix, it is orthogonal to ⁇ Then, construct the codeword using the following model:
  • M “and” may be the codeword of the LTE Rank3 precoding codebook from the same Index and the codeword of the LTE Rank2 precoding codebook, or may be from different indexes, n is an integer of 1 to 1 (including 1 And); if from the same Index, 1 ⁇ "can be equal to” or there is a nested relationship, that is, 1 ⁇ "in the partial column can be composed", or "in the middle part of the column can be composed”; can also be M “nested in A codeword of the LTERank4 precoded codebook, "separated by another identical or different codeword, ie from a different Index. Then, construct the codeword using the following model:
  • the M columns can be derived from the codewords in the LTE Rank4 precoding codebook corresponding to different Indexes (n is 1 to between to an integer (including 1 and ⁇ ) ) , such as the first column from ⁇ , the i-th column of ⁇ ; "The columns in the column can be derived from the codewords in the LTE Rank4 pre-encoded codebook corresponding to different indexes, such as the first column from ⁇ , ⁇ Column 1 and column 1 of ⁇ . Then, construct the codeword using the following model:
  • Step 301 Selecting an M-dimensional vector ⁇ ... 17 In this step, it is required to be generated in the codebook. The number of some or all codewords. Generally, the number of transmitting antennas is even. When the transmitting antenna data of the data transmitting end is 2M, it is necessary to construct a codebook space of 2M antennas.
  • the selected vector ⁇ ... 1 ⁇ should be the vector of the dimension.
  • the model used in this step is determined based on the main occurrence scenario of Rank1.
  • the transmitting antenna is vertically horizontally dual-polarized and the receiving end is single-polarized, there is often a receiving end that does not receive a certain polarization direction M antenna signal. Therefore, the feature vector is M elements.
  • the codebook space can be constructed using the codeword.
  • the codebook constructed in this step includes the following 8 pallets:
  • the codebook space constructed in this step includes the following 16 codewords:
  • Step 102 The data receiving end selects a codeword that matches the channel from the codebook space, and sends a sequence number corresponding to the codeword to the data sending end.
  • Step 103 The data sending end is according to the No. The corresponding codeword is extracted from the locally configured codebook space to obtain channel state information.
  • An embodiment of the present invention provides a channel state information feedback method, where the same codebook space is configured at a data transmitting end and a data receiving end, and the data receiving end selects a codeword matching the channel from the codebook space.
  • Sending the sequence number corresponding to the codeword to the data sending end, and the data sending end extracts the corresponding codeword from the locally configured codebook space according to the sequence number, obtains channel state information, and configures the codebook.
  • the embodiment of the present invention further provides a channel state information feedback system, including a data sending end and a data receiving end.
  • the data sending end is configured to: configure the same codebook space as the data receiving end, and receive the data. a sequence number of the codeword sent by the receiving end, and extracting a corresponding codeword from the locally configured codebook space according to the sequence number, to obtain channel state information;
  • the data receiving end is configured to: configure the same as the data sending end a codebook space, selecting a codeword matching the channel from the codebook space, and transmitting a sequence number corresponding to the codeword to the data transmitting end.
  • the data sending end is configured to configure the same codebook space as the data receiving end as follows:
  • the data receiving end is configured to be configured with the data sending end as follows The same codebook space:
  • the channel state information feedback system may be combined with a channel state information feedback method provided by an embodiment of the present invention, where the same codebook space is configured at the data sending end and the data receiving end, and the data receiving end is from the code
  • the codeword matching the channel is selected in the space, and the sequence number corresponding to the codeword is sent to the data sending end, and the data sending end extracts the corresponding codeword from the locally configured codebook space according to the sequence number.
  • the inter-codewords construct a multi-rank general-purpose codebook space, which solves the problem of no channel state information feedback method for dual-polarized channels. Further, for a channel with a rank of 1, a ⁇ " vector vector ⁇ ⁇ ⁇ ⁇ 1 ⁇ can also be selected, where is the number of part codewords required in the codebook, and ⁇ is the number of transmit antennas. One, then constructing a codeword in the codebook space using a model, where, n
  • each functional unit in each embodiment of the present invention may be implemented in the form of hardware, or may be implemented in the form of a software functional module.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the present invention provides a channel state information feedback method and system that solves the problem of no channel state information feedback method for a bipolar channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种信道状态信息反馈方法和系统
技术领域 本发明涉及通信领域多输入多输出 ( Multi-Input Multi-Output , ΜΙΜΟ ) 系统,尤其涉及一种信道矩阵为低秩( Rank )时的信道状态信息( Channel State Information, CSI )反馈方法和系统。
背景技术
无线通信中, 如果发送端和接收端都使用多根天线, 可以釆取空间复用 的方式来获取更高的速率。 相对于一般的空间复用方法, 一种增强的技术是 接收端反馈给发送端信道状态信息, 发送端根据获得的信道状态信息使用一 些发射预编码技术, 极大的提高传输性能。 简单的利用方法即直接使用信道 特征矢量信息进行预编码, 主要用于单用户 MIMO中。 也有其它一些更优但 更复杂的方法, 主要用于多用户 MIMO中。 在发射端定义了层的概念, 在同一时频资源上, 每层可以传输不同的数 据符号, 层数等于信道矩阵的秩(Rank ) 。 如果在发射端能够准确的知道完 整的信道状态信息, 那么可以利用获取的 CSI, 对层上数据进行线性或非线 性的预编码, 使得到达接收端时用户接收数据的信噪比最大, 层间干扰和用 户间干扰最小。 如果能够准确的获取该信道状态信息, 那么就可以做到最优的预编码。 然而, 信道状态信息 (CSI )往往只有在接收端才能直接准确的获取, 而在 发射端想要获取 CSI一般只能通过接收端向发送端进行 CSI的反馈。 一个重 要的问题是如何有效的量化反馈 CSI的信息。 在目前主流的标准中, 系统提 供给 CSI的反馈容量都是比较有限的, 由于反馈整个信道状态信息的反馈量 是十分大的。 因此主流的反馈方法都是基于码本的量化方式。
基于码本的信道状态信息量化反馈的基本原理是: 假设有限反馈信道容 量为 B bps/Hz,那么可用的码字的个数为 = 2^个。信道矩阵的特征矢量空间 经过量化构成码本空间 = ·^, 7 . · }。发射端与接收端共同保存或实时产生 此码本空间(收发端相同)。对每次信道实现 H,接收端根据一定准则从 9t中 选择一个与信道最匹配的码字 并将码字序号 i反馈回发射端。 发射端根 据此序号找到预编码码字 获得信道状态信息, 主要为信道的特征矢量信 息。
一般来说 9 可以进一步的被划分为多个 Rank对应的码本, 每个 Rank 下会对应多个码字来量化该 Rank下的信道矩阵的特征矢量构成的预编码矩 阵。 由于信道的 Rank和非零特征矢量个数是相等的, 因此, 一般来说 Rank 为 N时的码字都会有 N列。 所以可以把码本 91按 Rank分为多个子码本, 如 表 1所示。 在能够完全准确获取 CSI的情况下, 根据 CSI进行预编码的性能是最好 的, 由于反馈开销的限制, 往往釆用基于码本的信道状态信息量化反馈。
表 1
Figure imgf000004_0001
其中,在 Rank>l时需要存储的码字都为矩阵形式,例如长期演进(Long Term Evolution, LTE )协议中的码本就是釆用的这种码本量化的反馈方法, 如表 2所示。 在下文中, 为了统一起见, 矢量也可以看成一个有一个维度为 1的矩阵。
LTE下行 4Tx码本如表 2所示, 实际上 LTE中预编码码本和信道状态 信息量化码本含义是一样的。
表 2 码
本 «„ 总层数 υ
Figure imgf000005_0001
其中, Wn=I lun l un , I 为单位阵, 表示矩阵 ^的第 ·列矢量。
表示矩阵 Wk的第 l , Λ , ... , Jn列构成的矩阵。
随着通信技术的发展, 高级长期演进( LTE- Advance )对谱效率有了更 高的需求, 因此天线也增加到了 8根天线。 对此需要设计 8Tx码本以进行信 道状态信息的量化反馈。 8 天线的主要应用形式为双极化天线, 因此需要设 计适合双极化信道的码本, 并使用码本进行信道状态信息的量化反馈。 在能够完全准确地获取 CSI时, 预编码的性能是最好的。 由于反馈开销 (用于反馈的信道容量 ) 的限制, 只能釆用基于码本的 CSI反馈和发射数据 符号的预编码。 在实际的 MIMO系统中, 码本的设计非常重要, 码本设计的 一个重要目标就是保证量化误差尽量小, 且码本实现简单, 开销合理, 存储 量小。 除此之外, 考虑到一些具体的应用, 码本设计还应该满足以下的特性:
模特性, 可以使得经过预编码后, 各天线上分配的功率是相等的, 避免了峰 均比( Peak to Average Power Ratio , PAPR )指标的增加, 可以使得各功率放 大器(Power Amplifier, PA )之间的功率放大平衡。 因此, 恒模特性的基本 要求是预编码矩阵的每一行具有相同的模值, 在 Rank=l 时, 恒模特性要求 每个元素的模值都相等。
2、正交特性:对信道矩阵进行奇异值分解( Singular Value Decomposition, SVD )分解后, 得到的各个右特征矢量一定是正交的。 码本的设计是为了匹 配信道矩阵的右特征矢量方向, 因此, 设计的码字也应该符合这一特征。 在 Rank>l的预编码码字中,各列矢量都应该是正交的。正交特性是一个重要的 原则, 无论如何设计码本, 这个特性是一定需要满足的, 这样才能保证码本 的量化精度。
3、 8PSK特性: 考虑到实现收发端预编码处理的复杂度, 因此需要限定 每个元素的取值只能从 8相移键控 ( Phase Shift Keying, PSK )对应的点上 选择, 称为 8PSK特性。 限定码本具有 8PSK特性, 即对码本进行归一化处 理 前 , 每 个 元 素 的 取 值 就 只 能 从 8PSK 的 字 母 集 :
{ — + ~ + J ~J - ~Λ中选
1, V2 ' 72 ' 72 ' V2 J °
LTE 4Τχ码本就能够较好的满足这些准则。 现有的用于信道状态信息量化反馈的码本主要是考虑发送端单极化天线 应用的信道, 在这种天线配置情况下再以相关性来区别信道, 使用适应强相 关信道和独立信道特征的码字。
现有码本设计的一个方向是其中一些码字考虑完全独立不相关的信道, 即信道中每个元素 (每一个收发天线对之间的信道被表示为一个信道矩阵中 的信道元素)都是独立不相关 (i.i,d ) 的, 此时 Rank为 υ的码本中不相关信 道码字的设计的方法为: 寻找多个 υ列的矩阵( υ为 1时退化到矢量), 使得这多个矩阵(即子空 间)在全空间内均匀分布, 主要的手段是通过 Grassmannian线压缩或子空间 压缩的方法, 来找到全空间内均匀分布的多个码字矩阵。 另外一个方向是考虑较小天线间距的单极化阵列天线场景, 信道具有较 强的相关性, 此时信道不是独立不相关的, 其特征矢量表现出一种固定的模 型,如 8天线时,单极化天线强相关信道的特征矢量为 [1 e}" e ^ · · · ^ ] , 其中 θ表示不同的相位值。 这种模型与离散傅立叶变换 (Discrete Fourier Transform , DFT )矩阵的列矢量有相同的模型, 因此, 选取 DFT矩阵的列作 为相关信道的码字。 现有的反馈装置和码本构造思想被应用在各种主流标准中, 如 3GPP和 LTE就釆用了该装置和方法。 但是现有的用于信道状态信息量化反馈的码本设计主要是针对单极化天 线信道的相关情况和不相关考虑的。 8 天线时, 双极化天线由于天线间距的 原因, 在实际应用中具有更广泛的应用前景, 尤其是天线数大于等于 4时, 因此双极化天线逐渐成为主流的应用。 而双极化信道表现出的一些特征往往 是非常复杂的, 例如双极化的相关信道, 仅仅在同一个极化方向上表现出强 相关性, 而在极化方向之间则不具备强相关性, 双极化的不相关信道, 在同 一个极化方向上, 表现出独立的性质, 在极化方向之间表现出的关系却并不 是独立的。 因此, 现有技术中, 单极化天线时相关信道和非相关信道的码本 设计方法不能在双极化天线的信道中很好的匹配信道特性, 在双极化信道中 表现出的性能较差。 目前, 现有的码本构造技术都是针对单极化天线时的考虑, 没有一种很 好的针对双极化信道的信道状态信息反馈的方法。
发明内容 本发明提供了一种信道状态信息反馈方法和系统, 解决了没有针对双极 化信道的信道状态信息反馈方法的问题。 为了解决上述技术问题, 本发明提供了一种信道状态信息反馈方法, 包 括: 在数据发送端和数据接收端配置相同的码本空间; 所述数据接收端从所述码本空间中选择与信道匹配的码字, 并将该码字 对应的序号发送给所述数据发送端; 以及 所述数据发送端根据所述序号, 从本地配置的码本空间中提取相应的码 字, 获得信道状态信息。 在数据发送端和数据接收端配置相同的码本空间的步骤包括:
选取 个矩阵 M 和 个矩阵 … ,其中, M 的维度为 4 x 1, … 的维度为 4 x J, I+J =r, r为所述信道的秩, I和 J为非零整数, 当 r为 偶数时 I = J, 当 r为奇数 I=J+1或 I = J - 1 ; 使用模型
Figure imgf000008_0002
Figure imgf000008_0001
构造码本空间中的码字
O表示全零矩阵。
矩阵 Μ ··Μ«·及矩阵 … 均为正交矩阵。 矩阵 ^…^^和矩阵 满足 8psK特性, 即上述矩阵中的所有元素均 为 8PSK字母集元素; 矩阵 Μι Μ«·中的任一矩阵的任意列都是从 LTE Rank4预编码码本的同 一码字或不同码字中抽取的;
矩阵 … 中的任一矩阵的任意列都是从 LTE Rank4预编码码本的同一 码字或不同码字中抽取的。 由于 LTE Rank4预编码码本都是 4行, 因此, μ ··μ«·和 …^都是 4行 的矩阵。 M»与 存在嵌套关系, 即 M "中部分列组成 或 中的部分列组成 Μ" , 其中, M "为矩阵 ^…^^中的任一矩阵, "为 … 中的任一矩阵。
M "嵌套于一个 LTE Rank4预编码码本中的码字, "嵌套于另外一个相 同或不同的 LTERank4预编码码本中的码字, 其中, M "为矩阵 中的 任一矩阵, "为 … 中的任一矩阵。 构造码本空间中的码字的步骤包括: 对模型
Figure imgf000009_0005
Figure imgf000009_0001
进行列交换、 行交换和乘以常系 数中的一种或多种变换, 以获取模型 或
Figure imgf000009_0006
Mx -Vx_
Figure imgf000009_0002
的变型模型, 使用模型 4xJ
4χΙ νλ
— Μ2
Figure imgf000009_0003
的变型模型 ν2 ― 。 νκ
构造码字 当所述信道的秩为 1时, 在数据发送端和数据接收端配置相同的码本空 间的步骤包括: 选取 个 Μ维矢量 ^ι···1^, 其中, 为码本中需要产生的部分或全部 码字个数, Μ为发射天 数量的二分之一; 以及 使用模型 构造所述码本空间中的码字, 其中, n= l,
Figure imgf000009_0004
2. 所述 M维矢量 w · · 为从 LTE Rank4预编码码本中抽取的任意矢量 ( 所述 M维矢量 w · · 为从 LTE Rankl预编码码本中抽取的任意矢量 ( 为了解决上述技术问题, 本发明还提供了一种信道状态信息反馈系统, 包括数据发送端和数据接收端; 所述数据发送端设置为: 配置与所述数据接收端相同的码本空间, 接收 所述数据接收端发送的码字的序号, 并根据所述序号, 从本地配置的码本空 间中提取相应的码字, 获得信道状态信息; 所述数据接收端设置为: 配置与所述数据发送端相同的码本空间, 从所 述码本空间中选择与信道匹配的码字, 并将该码字对应的序号发送给所述数 据发送端。 述数据发送端是设置为按如下方式配置与所述数据接收端相同的码本
选取 个矩阵 M ''Mr和 个矩阵 … ,其中, M ''Mr的维度为 4x1, K的维度为 4xJ, I+J =r, r为所述信道的秩, 当 r为偶数时 I =J, 当 r 为奇数 I=J+1 或 I = J- 1, 使用模型
Figure imgf000010_0001
Figure imgf000010_0005
Figure imgf000010_0002
构造码本空间中的码字; 或, 在所述信道的秩为 1时, 选取 个 M维矢量 ^ι · · · 1^ , 其中, 为码本 中 产生 或全部码字个数, Μ为发射天线数量的二分之一, 使用模 构造所述码本空间中的码字, 其中, n= l, 2...... κ
Figure imgf000010_0003
所述数据接收端是设置为按如下方式配置与所述数据发送端相同的码本
选取 个矩阵 μ ··μ«·和 个矩阵 其中, μΓ··^ 的维度为 4: … 的维度为 4x J, I+J =r, r为所述信道的秩, 当 r为偶数时 I =J, r为奇数 I=J+1或 I = J- 1, 使用模型
Figure imgf000010_0006
Figure imgf000010_0004
构造码本空间中的码字; 或, 在所述信道的秩为 1时, 选取 个 M维矢量 ^ι · · · 1^ , 其中, 为码本 中 产生 或全部码字个数, M为发射天线数量的二分之一, 使用模 构造所述码本空间中的码字, 其中, n=l, 2...... κ
Figure imgf000011_0001
本发明提供了一种信道状态信息反馈方法和系统, 在数据发送端和数据 接收端配置相同的码本空间, 所述数据接收端从所述码本空间中选择与信道 匹配的码字, 并将该码字对应的序号发送给所述数据发送端, 所述数据发送 端根据所述序号, 从本地配置的码本空间中提取相应的码字, 获得信道状态 信息, 并在配置码本空间时, 选取 个矩阵 μ ··Μ<^Ο 个矩阵 … , 其 中, μ ··μ 々维度为 4x1, … 的维度为 4xJ, I+J=r, r为所述信道当前 的秩, L和 J为非零整数, 当 r为偶数时 I = J, 当 r为奇数 I=J+1或 I = J- 1,
M、 然后使用模型
Figure imgf000011_0002
Figure imgf000011_0005
Figure imgf000011_0003
构造码本空间中的码字, 构造了多秩通用的码本空 间,解决了没有针对双极化信道的信道状态信息反馈方法的问题。进一步的, 对于秩为 1的信道, 还可以选取^ "个 M维矢量 ^ι · · · 1^ , 其中, 为码本中 需要产生的部分或全部码字个数, Μ为发射天线数量的二分之一, 然后使用 模型 构造所述码本空间中的码字, 其中, n= l, 2...... κ ,
Figure imgf000011_0004
构造码本空间, 使得码本空间的构造生成更为灵活,
附图概述 图 1为本发明的实施例提供的一种信道状态信息反馈方法的流程图; 图 2为图 1中步骤 101的实现方法流程图; 图 3为 Rank为 1时图 1中步骤 101的实现方法流程图。
本发明的较佳实施方式 为了解决没有针对双极化信道的信道状态信息反馈方法的问题, 本发明 的实施例提供了一种信道状态信息反馈方法, 下面结合具体实施例对该方法 进行详细说明。 下面结合附图, 对本发明的实施例一进行说明。 本发明的实施例一提供了一种信道状态信息反馈方法, 该方法在数据发 送端和数据接收端配置相同的码本空间, 且该码本空间为一适用于多秩情况 的通用码本空间, 本发明实施例的具体流程如图 1所示, 包括: 步骤 101、 在数据发送端和数据接收端配置相同的码本空间; 本步骤中, 在数据发送端和数据接收端配置相同的码本空间, 配置原理 相同, 具体如图 2所示, 包括:
步骤 201、 选取 个矩阵 M ' 'Mr和 个矩阵 … ; 其中, 的维度为 4 χ Ι, … 的维度为 4 x J,需要构造的为 Rank 等于 r的码本, 其中 I+J =r, I和 J为两个非零整数, 当 r为偶数时, I = J; 当 r为奇数时, I=J+1或 I = J - 1。 可以根据系统需要而定。 考虑到有可能 需要构建一个适用于多种应用场景的码本,故还可以将上述^"个码字作为某 一应用场景下所使用的码本的一部分, 根据该应用场景出现的概率, 在上述 K个码字的基础上再添加合适个数的一些其他码字。 进一步的, 矩阵 … 是正交矩阵。 进一步的, 矩阵 Μ ··Μ^ … 满足 8PSK特性, 即: 上述矩阵中的所 有元素都是 8PSK字母集元素。 进一步的, 矩阵 中的任意列都是从 LTE Rank4预编码码本中抽 取的。 且^中各列可以是来自同一个 LTE Rank4预编码码本中的 Rank4码 字,也可以来自不同的 LTE Rank4预编码码本中的 Rank4码字, M "为 Μι · · 中的任一矩阵。 … 中任意列都是从 LTE Rank4预编码码本中抽取的,且 " 中各列可以是来自 LTE Rank4预编码码本中的同一个码字,也可以来自不同 的码字。 由于 LTE Rank4预编码码本都是 4行, 因此, M ' 'Mr和^… 都是 4行 的矩阵。 进一步的, M "可以等于 "或存在嵌套关系, 即M "中的部分列可以组成 v" , 或 "中的部分列可以组成 M"。 此外, M "还可以嵌套于 LTE Rank4预编码码本中的一个码字, "嵌套 于另外一个相同或不同的码字。 步骤 102、 使用模型构造码字; 使用的模型具体如下:
Figure imgf000013_0004
或者疋
Figure imgf000013_0001
上述模型构造的码字即可组成码本空间。 需要说明的是, 对依照上述模型所构造的码字进行列交换和行交换等等 效方法得到的变型模型也属于本发明实施例的保护范围, 获取变型模型的目 的只是为了适应不同的天线编号。 此外, 对上述模型中的列乘以常系数, 也 属于本发明实施例的保护范围, 其目的只是为了控制功率。 从信道矩阵特性分析, 使用上述模型构造码字, 在发射端垂直水平双极 化时, 对于信道矩阵 Η有 ΗΗΗ为 2Μ X 2Μ分块对角矩阵
Figure imgf000013_0002
分块对角矩阵的前 2个特征矢量组成的 2Μ r矩阵具有较典型的分块结构, 因此量化信道矩阵 H 的特征矢量的码本应该与 HFFH的特征矢量有相似的形 式 ' 在发射端 + / - 45度双极化时, 对于信道矩阵 H, HHH为 2M X 2M分块 对称矩阵
Figure imgf000013_0003
式, 分块对称矩阵的前 2个特征矢量组成的 2M x r矩阵具 有较典型的分块结构 ,因此量化信道矩阵 H的特征矢量的码本应该与 HHH的 特征矢量有相似的形式。 在秩为 2时, 使用图 2所示方法构造码本空间的过程具体如下: 选取 个 M维矢量1^… 和 个 M维矢量 ·· , 其中 Κ为码本中需 要产生的部分或全部码字个数。 一般来说, 发射天线数都是偶数, 若数据发 射端的发射天线数量为 2Μ, 则需要构造 2Μ根天线的码本。 选取的矢量 ^••· , ·· 应该为 Μ维的矢量。 WC为从表 2中 LTERank4预编码码 本中抽取的任意矢量, ν ·· 为从表 2中 LTE Rank4预编码码本中抽取的任 意矢量。 然后, 使用以下模型构造码字:
Figure imgf000014_0001
因为从信道矩阵特性分析, 在发射端垂直水平双极化时, 对于信道矩阵
A α
H, HFFH为 2Μχ2Μ分块对角矩阵 L 」形式。 分块对角矩阵的前 2个 特征矢量组成的 2Mx2矩阵为分块对角矩阵, 因此量化信道矩阵 H的特征 矢量的码本应该与 HHH的特征矢量有相似的形式。 或者使用以下模型
Figure imgf000014_0002
因为从信道矩阵特性分析, 在发射端 /-45 度双极化时, 对于信道矩 阵 H, HH为 2M 2M分块对称矩阵 B A 形式。分块对称矩阵的前 2个特 征矢量组成的 2M 2矩阵为分块对称矩阵, 因此量化信道矩阵 H的特征矢 量的码本应该与 HHH的特征矢量有相似的形式。
在秩为 3时, 使用图 2所示方法构造码本空间的过程具体如下: 选取 个 M 维矢量 w '' 和 个 Μ 维矢量 ·· , 个 Μ 维矢量 其中, w 为从表 2中 LTERank4预编码码本中抽取的任意矢量, ·· 为从表 2中 LTERank4预编码码本中抽取的任意矢量, ζι… 为从表 2 中 LTE Rank4预编码码本中抽取的矢量, 且2 '与 v '或1 ^中至少一个正交。 例 如, 是从 LTERank4预编码码本的码字 "中抽取, v '是从 LTE Rank4预编 码码本的码字 中抽取(m和 n可以相等, 也可以不等), ^是从 中不等 于 '的列中抽取, 由于 是正交矩阵, 因此 z '与 ν'正交; 或者 ζ '是从 ^中不 等于 的列中抽取, 由于 ^是正交矩阵, 因此 ^与1^正交。 然后, 使用以下 模型构造码字:
4x1 4x1
— O4xl V\ 。4x1 o 4x1 v2 O' 4x1 o4xl vK 4x1 或 使用以下模型:
Figure imgf000015_0001
或使用上述模型进行列交换, 与行交换的等效变换后获取的变型模型。
在秩为 4时, 使用图 2所示方法构造码本空间的过程具体如下: 选取^ "个 M维矢量 WC和 个 M维矢量 ·· , Κ个 Μ维矢量 Ζ Ά 和 个 Μ维矢量 ·· 。其中, WC为从表 2中 LTERank4预编码码本中 抽取的任意矢量, ·· 为从表 2中 LTE Rank4预编码码本中抽取的任意矢 量, ζι… 为从表 2中 LTERank4预编码码本中抽取的矢量,且 ^与1^或1^中 至少一个正交; … 为从表 2中 LTERank4预编码码本中抽取的矢量,且 χ' 与 ·或 中一个正交。例如, 是从 LTERank4预编码码本的码字 ^中抽取, ν·是从 LTE Rank4预编码码本的码字 中抽取, ζ'是从 中不等于 ν '的列中 抽取, 由于 是正交矩阵, 因此 ^与1^正交, 从 ^中不等于1^的列中抽取, 由于 ^是正交矩阵, 因此 与 正交;或者 ^是从 ^中不等于1^的列中抽取, 由于 ^是正交矩阵, 因此 ζ '与 正交, 是从 中不等于1^的列中抽取, 由 于 是正交矩阵, 因此 与 ^正交。 然后, 使用以下模型构造码字:
Wj Vj Zj j w2 v2 z2 x2 wK vK zK xK
― +vl ± +xl ±w2 +v2 ±z2 +¾ ±1 ^ q= q= xK 或者使用以下模型:
Figure imgf000016_0001
或使用上述模型进行列交换与行交换的等效变换后获取的变型模型。
在秩为 5时, 使用图 2所示方法构造码本空间的过程具体如下: 选取 个矩阵 M 和 个矩阵 … ,其中, 的维度为 4 x 3, … 的维度为 4 x 2, 需要构造的为 Rank 5码本(3+2 =5 ) ; 都是 从 LTE Rank3预编码码本的码字中抽取的, ^… 都是从 LTE Rank2预编码 码本的码字中抽取的。 M "和 "可以是来自同一个 Index的 LTE Rank3预编码 码本的码字和 LTE Rank2预编码码本的码字, 也可以来自不同的 Index, n 为 1至 间的至一整数(含 1和 ); 如果来自同一个 Index, 则 1^ "可以等 于 "或存在嵌套关系, 即 1^ "中部分列可以组成 ", 或 "中部分列可以组成 "; 也可以是 M "嵌套于 LTERank4预编码码本的一个码字, "嵌套于另外 一个相同或不同的码字, 即来自不同的 Index。 然后, 使用以下模型构造码 字:
Figure imgf000016_0003
或者是以下模型:
Figure imgf000016_0002
在秩为 5时, 使用图 2所示方法构造码本空间的还有另一种情况, 其过 程具体如下:
选取 个矩阵 M 和 个矩阵 … ,其中, 的维度为 4 x2, … 的维度为 4 x 3, 需要构造的为 Rank 5码本(2+3 =5 ) , 中任 意列都是从 LTE Rankl预编码码本的码字中抽取的, … 中任意列都是从 LTE Rankl预编码码本的码字中抽取的。 M«中各列可以来自于不同的 Index 对应的 LTE Rank4预编码码本中的码字( n为 1至 间的至一整数(含 1和 ^ ) ) , 比如来自^的第 1列, ^的第 i列; "中各列可以来自于不同的 Index对应的 LTE Rank4预编码码本中的码字, 比如来自 ^的第 1列, ^的 第 1列和^的第 1列。 然后, 使用以下模型构造码字:
— M 4xJ~ — Μ2
·> 。
。 v2 ― 。 vK ― 或者是使用以下模型:
Figure imgf000017_0001
此外, 对于 Rank为 1的情况, 还有一种码本空间构造方法, 其过程如 图 3所示, 包括: 步骤 301、 选取 个 M维矢量 ^…17 本步骤中, 为码本中需要产生的部分或全部码字个数。 一般来说, 发 射天线数都是偶数, 当数据发射端的发射天线数据为 2M时, 需要构造 2M 根天线的码本空间。 选取的矢量 ^…1^ , 应该为 Μ维的矢量。
WC的构造方法为从表 2中 LTE Rank4 预编码码本中抽取的任意矢 量£ 还可以从表 2中 LTE Rankl码本抽取任意矢量作为 wi… 步骤 302、 使用模型构造码字; 使用如下模型: 其中, n = l , 2 κ
Figure imgf000017_0002
本步骤所使用的模型是基于 Rankl的主要发生场景确定的, 发射端天线 垂直水平双极化且接收端单极化时, 经常会有接收端收不到某个极化方向 M 根天线信号, 因此特征矢量为出现 M个 0元素。 根据上述模型生成码字, 即可使用码字构成码本空间。 本步骤构造的码本 间包括以下 8个码芋:
Figure imgf000018_0006
或是包括以下 8个码字:
Figure imgf000018_0007
或者, 本步骤构造的码本空间包括以下 16个码字:
Figure imgf000018_0008
或是包括以下 16个码字:
Figure imgf000018_0009
或是包括以下 16个码字:
Figure imgf000018_0010
Figure imgf000018_0001
为表 2中 LTE Rankl码字, 另外, 在秩为 1 时, 还有一种适应发射端 + 45度双极化的情况, 此 码本空间中可以包括以下 24个码字:
Figure imgf000018_0002
Figure imgf000018_0005
包括以 48个
Figure imgf000018_0003
Figure imgf000018_0004
或是包括以下 32个码字:
Figure imgf000019_0001
Figure imgf000019_0006
或是包括以下 64个码字:
Figure imgf000019_0002
Figure imgf000019_0004
对于 Rank值为 6、 7和 8的情况, 其实现原理与上述实施方式无异, 均 可通过图 2所示的方法实现, 在此不再——说明。 步骤 102、 所述数据接收端从所述码本空间中选择与信道匹配的码字, 并将该码字对应的序号发送给所述数据发送端; 步骤 103、 所述数据发送端根据所述序号, 从本地配置的码本空间中提 取相应的码字, 获得信道状态信息。
本发明的实施例提供了一种信道状态信息反馈方法, 在数据发送端和数 据接收端配置相同的码本空间, 所述数据接收端从所述码本空间中选择与信 道匹配的码字, 并将该码字对应的序号发送给所述数据发送端, 所述数据发 送端根据所述序号, 从本地配置的码本空间中提取相应的码字, 获得信道状 态信息, 并在配置码本空间时, 选取 个矩阵 M ' 'M和 个矩阵 … , 其中, ΜΓ··^ 的维度为 4 χ Ι, … 的维度为 4 x J, I+J =r, r为所述信道当 前的秩, I和 J为非零整数, 当 r为偶数时1^ = 当 r为奇数 I=J+1或 I = J - 1 , 然后使用模型
Figure imgf000019_0005
Figure imgf000019_0003
构造码本空间中的码字, 构造了多秩通用的码本空 间, 解决了没有针对双极化信道的信道状态信息反馈方法的问题, 且适应不 同 Rank值对应的情况, 并使用 LTE Rank4中的码字作为构造码本空间中码 字的基础, 系统兼容性好。 进一步的, 对于秩为 1的信道, 还可以选取^ "个 M 维矢量 ^…1^, 其中, ^"为码本中需要产生的部分或全部码字个数, Μ 为发射天线数量的二分之一, 然后使用模型
Figure imgf000020_0003
构造所述码本空 间中的码字, 其中, n= l, 2...... κ , 构造码本空间, 例得码本空间的构造生 成更为灵活。
本发明的实施例还提供了一种信道状态信息反馈系统, 包括数据发送端 和数据接收端; 所述数据发送端设置为: 配置与所述数据接收端相同的码本空间, 接收 所述数据接收端发送的码字的序号, 并根据所述序号, 从本地配置的码本空 间中提取相应的码字, 获得信道状态信息; 所述数据接收端设置为: 配置与所述数据发送端相同的码本空间, 从所 述码本空间中选择与信道匹配的码字, 并将该码字对应的序号发送给所述数 据发送端。 进一步的, 所述数据发送端, 是设置为按如下方式配置与所述数据接收 端相同的码本空间:
选取 个矩阵 M 和 个矩阵 … ,其中, M 的维度为 4 x1, … 的维度为 4 xJ, I+J=r, r为所述信道当前的秩, 当 r为偶数时 I =J, 当 r为奇数 I=J+1或 I = J- 1, 使用模型
Figure imgf000020_0004
Figure imgf000020_0001
构造码本空间中的码字; 或, 在所述信道的秩为 1时, 选取 个 M维矢量 ^ι···1^, 其中, 为码本 中 产生 或全部码字个数, Μ为发射天线数量的二分之一, 使用模 构造所述码本空间中的码字, 其中, n= l, 2...... κ
Figure imgf000020_0002
进一步的, 所述数据接收端是设置为按如下方式配置与所述数据发送端 相同的码本空间:
选取 个矩阵 M ''Mr和 个矩阵 … ,其中, M ''Mr的维度为 4x1 … 的维度为 4xJ, I+J=r, r为所述信道当前的秩, 当 r为偶数时 I =J, 当 r为奇数 I=J+1或 I = J- 1, 使用模型
Figure imgf000021_0005
Figure imgf000021_0001
构造码本空间中的码字; 或, 在所述信道的秩为 1时, 选取 个 Μ维矢量 ^ι · · · 1^ , 其中, 为码本 中 产生 或全部码字个数, Μ为发射天线数量的二分之一, 使用模 构造所述码本空间中的码字, 其中, n= l, 2...... κ
Figure imgf000021_0002
上述信道状态信息反馈系统, 可以与本发明的实施例提供的一种信道状 态信息反馈方法相结合, 在数据发送端和数据接收端配置相同的码本空间, 所述数据接收端从所述码本空间中选择与信道匹配的码字, 并将该码字对应 的序号发送给所述数据发送端, 所述数据发送端根据所述序号, 从本地配置 的码本空间中提取相应的码字, 获得信道状态信息, 并在配置码本空间时, 选取 个矩阵 μ ··μ«·和 个矩阵 其中, μΓ··^ 的维度为 4x1, … 的维度为 4x J, I+J=r, r为所述信道当前的秩, I和 J为非零整数, 当
0 r为偶数时 I = J, 当 r为奇数 I=J+1 或 I = J- 1, 然后使用模型 4,xJ
— M2
Figure imgf000021_0003
·> 构造码本 。 工 v2 ― 。 vK
间中的码字, 构造了多秩通用的码本空间, 解决了没有针对双极化信道的信 道状态信息反馈方法的问题。 进一步的, 对于秩为 1的信道, 还可以选取^ "个 Μ维矢量 ^ι · · · 1^ , 其 中, 为码本中需要 的部 部码字个数, Μ为发射天线数量的二分 之一, 然后使用模型 构造所述码本空间中的码字, 其中, n
Figure imgf000021_0004
κ, 构造码本空间, 使得码本空间的构造生成更为灵活, 本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步 骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算 机可读存储介质中,该程序在执行时, 包括方法实施例的步骤之一或其组合。
另外, 在本发明各个实施例中的各功能单元可以釆用硬件的形式实现, 也可以釆用软件功能模块的形式实现。 所述集成的模块如果以软件功能模块 的形式实现并作为独立的产品销售或使用时, 也可以存储在一个计算机可读 取存储介质中。 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求所述的保护范围为准。
工业实用性 本发明提供的一种信道状态信息反馈方法和系统, 解决了没有针对双极 化信道的信道状态信息反馈方法的问题。

Claims

权 利 要 求 书
1、 一种信道状态信息反馈方法, 其包括: 在数据发送端和数据接收端配置相同的码本空间; 所述数据接收端从所述码本空间中选择与信道匹配的码字, 并将该码字 对应的序号发送给所述数据发送端; 以及 所述数据发送端根据所述序号, 从本地配置的码本空间中提取相应的码 字, 获得信道状态信息。
2、根据权利要求 1所述的方法, 其中, 在数据发送端和数据接收端配置 相同的码本空间的步骤包括:
选取 个矩阵 M ''Mr和 个矩阵 … ,其中, M ''Mr的维度为 4 x1, … 的维度为 4 xJ, I+J=r, r为所述信道的秩, I和 J为非零整数, 当 r为 偶数时 I = J, 当 r为奇数 I=J+1或 I = J- 1; 使用模型
Figure imgf000023_0002
Figure imgf000023_0001
构造码本空间中的码字。
3、 根据权利要求 2所述的方法, 其中:
矩阵 Μ ··Μ«·及矩阵 … 均为正交矩阵。
4、 根据权利要求 2所述的方法, 其中:
矩阵 ^—1 和矩阵 满足 8相移键控(8PSK)特性, 即上述矩阵中 的所有元素均为 8PSK字母集元素; 矩阵 Μι—Μ«·中的任一矩阵的任意列都是从长期演进秩 4 ( LTE Rank4 ) 预编码码本的同一码字或不同码字中抽取的;
矩阵 … 中的任一矩阵的任意列都是从 LTE Rank4预编码码本的同一 码字或不同码字中抽取的。
5、 根据权利要求 2所述的方法, 其中: »与 v"存在嵌套关系, 即 M "中部分列组成 "或 "中的部分列组成 其中, M "为矩阵 …^^中的任一矩阵, "为 … 中的任一矩阵。
6、 根据权利要求 2所述的方法, 其中:
M "嵌套于一个长期演进秩 4 ( LTE Rank4 )预编码码本中的码字, 套于另外一个相同或不同的 LTE Rank4预编码码本中的码字, 其中, 矩阵 M · 中的任一矩阵, "为 … 中的任一矩阵。
7、根据权利要求 2所述的方法, 其中, 构造码本空间中的码字的步骤包 括:
对模型
Figure imgf000024_0001
Figure imgf000024_0003
MK VK
进行列交换,行交换和乘以常系数中的一种或多种变换,以获取模
κ_
Figure imgf000024_0004
Figure imgf000024_0002
的变型模型构造码字
8、 根据权利要求 1所述的方法, 其中, 当所述信道的秩为 1时, 在数据 发送端和数据接收端配置相同的码本空间的步骤包括: 选取 个 Μ维矢量^…1^ , 其中, 为码本中需要产生的部分或全部 码字个数, Μ为发射天线数量的二分之一; 以及 使用模型 和 /或 4>/ 构造所述码本空间中的码字, 其中, n=l,
4x7 w.
2. κ
9、 根据权利要求 8所述的方法, 其中: 所述 M维矢量 WC为从长期演进秩 4 (LTE Rank4)预编码码本中抽 取的任意矢量。
10、 根据权利要求 8所述的方法, 其中:
所述 M维矢量 WC为从长期演进秩 1 (LTE Rankl )预编码码本中抽 取的任意矢量。
11、 根据权利要求 9所述的方法, 其中, 所述码本空间包括以下 8个码 字:
Figure imgf000025_0002
或包括以下 8个码字:
Figure imgf000025_0003
或所述码本空间包括以下 16个码字:
Figure imgf000025_0001
Figure imgf000025_0004
包括以下 16个码字:
Figure imgf000025_0005
或是包括以下 16个码字:
Figure imgf000025_0006
其中 ...... 为 LTE Rankl预编码码本中的码字。
12、 根据权利要求 9所述的方法, 其中, 在发射端呈 + / - 45度双极化 时, 所述码本空间包括以下 24个码字:
Figure imgf000026_0001
Figure imgf000026_0006
, 或
包括以下 48个码字:
Figure imgf000026_0002
Figure imgf000026_0005
包括以下 32个码字:
Figure imgf000026_0003
Figure imgf000026_0007
以 64个码字
Figure imgf000026_0004
Figure imgf000026_0008
其中 ^ ... ... 为 LTE Rankl预编码码本中的码字。
13、 一种信道状态信息反馈系统, 其包括数据发送端和数据接收端; 所述数据发送端设置为: 配置与所述数据接收端相同的码本空间, 接收 所述数据接收端发送的码字的序号, 并根据所述序号, 从本地配置的码本空 间中提取相应的码字, 获得信道信息;
所述数据接收端设置为: 配置与所述数据发送端相同的码本空间, 从所 述码本空间中选择与信道匹配的码字, 并将该码字对应的序号发送给所述数 据发送端。
14、根据权利要求 13所述的系统, 其中, 所述数据发送端是设置为按如 下方式配置与所述数据接收端相同的码本空间:
选取 个矩阵 M ''Mr和 个矩阵 … ,其中, M ''Mr的维度为 4x1, … 的维度为 4xJ, I+J =r, r为所述信道的秩, 当 r为偶数时 I =J, 当 r 为奇数 I=J+1 或 I = J- 1, 使用模型
Figure imgf000027_0001
Figure imgf000027_0007
Figure imgf000027_0002
构造码本空间中的码字; 或, 在所述信道的秩为 1时, 选取 个 M维矢量 ^ι · · · 1^ , 其中, 为码本 中需要产生的部分或全部码字个数, Μ为发射天线数量的二分之一, 使用模 构造所述码本空间中的码字, 其中, n=l, 2...... κ
Figure imgf000027_0003
15、根据权利要求 13所述的系统, 其中, 所述数据接收端是设置为按如 下方式配置与所述数据发送端相同的码本空间:
选取 个矩阵 μ ··μ«·和 个矩阵 其中, μ ··μ«·的维度为 4x1, … 的维度为 4x J, I+J =r, r为所述信道的秩, 当 r为偶数时 I =J, 当 r 为奇数 I=J+1 或 I = J- 1, 使用模型
Figure imgf000027_0004
Figure imgf000027_0008
Figure imgf000027_0005
构造码本空间中的码字; 或, 在所述信道的秩为 1时, 选取 个 M维矢量 ^ι · · · 1^ , 其中, 为码本 中 产生 或全部码字个数, Μ为发射天线数量的二分之一, 使用模 型 构造所述码本空间中的码字, 其中, n=l, 2...... κ
Figure imgf000027_0006
PCT/CN2010/078469 2010-04-05 2010-11-05 一种信道状态信息反馈方法和系统 WO2011124065A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP10849301.6A EP2536057B1 (en) 2010-04-05 2010-11-05 Method and system for channel state information feedback
US13/634,578 US8831067B2 (en) 2010-04-05 2010-11-05 Method and system for channel state information feedback
KR1020127023743A KR101392396B1 (ko) 2010-04-05 2010-11-05 채널 상태 정보의 피드백 방법 및 시스템
RU2012136918/08A RU2528153C2 (ru) 2010-04-05 2010-11-05 Способ и система возвращения информации о состоянии канала
JP2012557379A JP5620521B2 (ja) 2010-04-05 2010-11-05 チャネル状態情報フィードバック方法とシステム
ES10849301T ES2886354T3 (es) 2010-04-05 2010-11-05 Método y sistema para retroalimentación de información de estado de canal
BR112012022726-2A BR112012022726B1 (pt) 2010-04-05 2010-11-05 Método para receber informação do estado de canal, método para a retroaliemntação de informação do estado de canal, ponta de transmissão de dados, ponta de recebimento de dados, e sistema para retroalimentação de informações do estado de canal
MX2012010580A MX2012010580A (es) 2010-04-05 2010-11-05 Metdo y sistema para realimentar informacion de estado de canal.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010162569.X 2010-04-05
CN201010162569.XA CN101854236B (zh) 2010-04-05 2010-04-05 一种信道信息反馈方法和系统

Publications (1)

Publication Number Publication Date
WO2011124065A1 true WO2011124065A1 (zh) 2011-10-13

Family

ID=42805522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078469 WO2011124065A1 (zh) 2010-04-05 2010-11-05 一种信道状态信息反馈方法和系统

Country Status (10)

Country Link
US (1) US8831067B2 (zh)
EP (1) EP2536057B1 (zh)
JP (1) JP5620521B2 (zh)
KR (1) KR101392396B1 (zh)
CN (1) CN101854236B (zh)
BR (1) BR112012022726B1 (zh)
ES (1) ES2886354T3 (zh)
MX (1) MX2012010580A (zh)
RU (1) RU2528153C2 (zh)
WO (1) WO2011124065A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684700A (zh) * 2013-12-31 2014-03-26 重庆邮电大学 一种基于正交联合码本集的3d mu-mimo预编码方法
US9647738B2 (en) 2013-03-21 2017-05-09 Lg Electronics Inc. Method and device for transmitting channel state information in wireless communication system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854236B (zh) 2010-04-05 2015-04-01 中兴通讯股份有限公司 一种信道信息反馈方法和系统
CN102075304B (zh) * 2010-12-22 2012-11-28 华中科技大学 发射端信道空间相关性消除方法
CN102904694A (zh) * 2011-07-27 2013-01-30 北京新岸线无线技术有限公司 码本反馈方法及装置
CN102573079B (zh) * 2012-02-07 2015-01-21 华为技术有限公司 时隙图案确定方法和设备
WO2014179902A1 (zh) * 2013-05-10 2014-11-13 上海贝尔股份有限公司 Mimo系统中的多天线信道抽取码本反馈方法及装置
CN107733476B (zh) * 2016-08-12 2021-06-22 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
CN108288981B (zh) * 2017-01-07 2021-06-01 华为技术有限公司 一种信道信息反馈及确定方法、接收端和发射端设备
CN109347488B (zh) * 2017-04-01 2019-11-01 华为技术有限公司 极化码编码和译码的方法、发送设备和接收设备
US20210112371A1 (en) * 2020-12-21 2021-04-15 Intel Corporation Proximity detection using wi-fi channel state information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330479A (zh) * 2007-06-20 2008-12-24 中兴通讯股份有限公司 一种预编码多输入多输出传输及码本编码的方法
CN101631004A (zh) * 2009-08-10 2010-01-20 中兴通讯股份有限公司 一种预编码方法、系统及预编码码本的构造方法
CN101635612A (zh) * 2009-08-18 2010-01-27 中兴通讯股份有限公司 多输入多输出系统的预编码码本构造方法和装置
CN101667895A (zh) * 2009-10-10 2010-03-10 中兴通讯股份有限公司 多天线系统中信道信息量化码本的构造方法及装置
CN101854236A (zh) * 2010-04-05 2010-10-06 中兴通讯股份有限公司 一种信道信息反馈方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2252170A1 (en) 1998-10-27 2000-04-27 Bruno Bessette A method and device for high quality coding of wideband speech and audio signals
US8526412B2 (en) * 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US7672387B2 (en) * 2005-12-05 2010-03-02 Intel Corporation Multiple input, multiple output wireless communication system, associated methods and data structures
KR100659725B1 (ko) * 2005-12-09 2006-12-19 한국전자통신연구원 다중 안테나 시스템의 송신 장치 및 방법과, 수신 장치 및방법
US8396158B2 (en) 2006-07-14 2013-03-12 Nokia Corporation Data processing method, data transmission method, data reception method, apparatus, codebook, computer program product, computer program distribution medium
EP3174221B1 (en) * 2007-01-12 2018-09-26 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement in a wireless communications system
KR20080073624A (ko) * 2007-02-06 2008-08-11 삼성전자주식회사 다중 편파 다중 입출력 시스템을 위한 코드북 생성 방법 및그 장치
US20080268785A1 (en) * 2007-04-30 2008-10-30 Mccoy James W UE-autonomous CFI reporting
WO2010045365A1 (en) 2008-10-14 2010-04-22 Futurewei Technologies, Inc. System and method for employing a six-bit rank 1 codebook for four transmit antennas
WO2011087933A1 (en) * 2010-01-12 2011-07-21 Zte Usa Inc. Method and system for spatial channel state information feedback based on a kronecker product
CN101944985B (zh) * 2010-09-20 2015-03-25 中兴通讯股份有限公司 一种信道状态信息反馈方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330479A (zh) * 2007-06-20 2008-12-24 中兴通讯股份有限公司 一种预编码多输入多输出传输及码本编码的方法
CN101631004A (zh) * 2009-08-10 2010-01-20 中兴通讯股份有限公司 一种预编码方法、系统及预编码码本的构造方法
CN101635612A (zh) * 2009-08-18 2010-01-27 中兴通讯股份有限公司 多输入多输出系统的预编码码本构造方法和装置
CN101667895A (zh) * 2009-10-10 2010-03-10 中兴通讯股份有限公司 多天线系统中信道信息量化码本的构造方法及装置
CN101854236A (zh) * 2010-04-05 2010-10-06 中兴通讯股份有限公司 一种信道信息反馈方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2536057A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647738B2 (en) 2013-03-21 2017-05-09 Lg Electronics Inc. Method and device for transmitting channel state information in wireless communication system
CN103684700A (zh) * 2013-12-31 2014-03-26 重庆邮电大学 一种基于正交联合码本集的3d mu-mimo预编码方法
CN103684700B (zh) * 2013-12-31 2017-05-24 重庆邮电大学 一种基于正交联合码本集的3d mu‑mimo预编码方法

Also Published As

Publication number Publication date
RU2012136918A (ru) 2014-05-20
EP2536057A1 (en) 2012-12-19
JP2013522981A (ja) 2013-06-13
ES2886354T3 (es) 2021-12-17
BR112012022726B1 (pt) 2021-06-01
EP2536057B1 (en) 2021-09-01
KR20120117932A (ko) 2012-10-24
US8831067B2 (en) 2014-09-09
RU2528153C2 (ru) 2014-09-10
US20130208819A1 (en) 2013-08-15
CN101854236A (zh) 2010-10-06
BR112012022726A2 (pt) 2017-12-12
EP2536057A4 (en) 2017-05-03
JP5620521B2 (ja) 2014-11-05
CN101854236B (zh) 2015-04-01
MX2012010580A (es) 2012-10-09
KR101392396B1 (ko) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2011124065A1 (zh) 一种信道状态信息反馈方法和系统
WO2019096071A1 (zh) 通信方法、通信装置和系统
KR101363969B1 (ko) 다중 안테나 시스템, 및 다중 안테나 시스템에서 정보를 송수신하기 위한 방법 및 장치
CN102130752B (zh) 获取预编码矩阵指示以及预编码矩阵的方法和装置
US10594372B2 (en) Codebook construction
CN101944985B (zh) 一种信道状态信息反馈方法
WO2011020383A1 (zh) 多输入多输出系统的预编码码本构造方法和装置
WO2011017991A1 (zh) 一种预编码方法、系统及预编码码本的构造方法
US9020061B2 (en) Codebook construction
JP5479615B2 (ja) 閉ループマルチアンテナシステムの情報送受信方法および装置
JP2018201205A (ja) コードブック構造
CN106817720B (zh) 一种获取信道信息的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127023743

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/010580

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13634578

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012557379

Country of ref document: JP

Ref document number: 2010849301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012136918

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022726

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012022726

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022726

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120910