WO2011122403A1 - 超電導マグネット装置 - Google Patents

超電導マグネット装置 Download PDF

Info

Publication number
WO2011122403A1
WO2011122403A1 PCT/JP2011/056884 JP2011056884W WO2011122403A1 WO 2011122403 A1 WO2011122403 A1 WO 2011122403A1 JP 2011056884 W JP2011056884 W JP 2011056884W WO 2011122403 A1 WO2011122403 A1 WO 2011122403A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting magnet
former
shield
main
magnet device
Prior art date
Application number
PCT/JP2011/056884
Other languages
English (en)
French (fr)
Inventor
雅詳 竹田
聡 伊藤
一功 斉藤
いつか 南
斉 宮田
Original Assignee
ジャパンスーパーコンダクタテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010076689A external-priority patent/JP5398618B2/ja
Priority claimed from JP2010096657A external-priority patent/JP5443249B2/ja
Priority claimed from JP2010110202A external-priority patent/JP5438590B2/ja
Priority claimed from JP2010132858A external-priority patent/JP5443276B2/ja
Application filed by ジャパンスーパーコンダクタテクノロジー株式会社 filed Critical ジャパンスーパーコンダクタテクノロジー株式会社
Priority to CN201180016943.8A priority Critical patent/CN102870174B/zh
Publication of WO2011122403A1 publication Critical patent/WO2011122403A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching

Definitions

  • the present invention relates to a superconducting magnet device having a cooling chamber in which a cooling medium is accommodated.
  • a superconducting magnet device in general, includes a main coil wound around a main former that mainly generates a magnetic field in a magnetic field space, and a shield that prevents the magnetic field generated by the main coil from leaking outside the device. It consists of a shield coil wound around a former. Such a superconducting magnet is provided and cooled in a cooling chamber in which a cooling medium is accommodated.
  • Patent Document 1 discloses a main coil and a shield coil that are wound around a main former and a shield former, respectively, and are arranged concentrically so that the axial direction is substantially horizontal, and a support member that supports these winding frames. Discloses a superconducting magnet device arranged in a cooling chamber.
  • the magnetic field uniformity is extremely high (several ppm or less) in the measurement space (near the center of the magnetic field generating space) formed in the internal region of the superconducting magnet. That is, it is required that the magnetic flux density is uniform, has no gradient, and the spatial variation of the magnetic flux density is extremely small.
  • the coil shape and current density of the superconducting magnet that generates the main magnetic field in the design process are devised.
  • a magnetic piece for magnetic field correction having a high magnetic permeability such as a nickel piece or an iron piece, is arranged in an appropriate amount in an appropriate position in the internal region of the superconducting magnet, and the magnetic piece
  • a method of correcting the magnetic field uniformity of the main magnetic field by the superconducting magnet by the magnetic field generated by the magnetization is employed.
  • This magnetic piece is called a magnetic shim.
  • a method of correcting the magnetic field uniformity of the main magnetic field by the superconducting magnet using the magnetic material shim is called a magnetic material shim method (passive shim method).
  • a magnetic field correction mechanism is fixed to the inner peripheral wall of the housing, and the magnetic piece can be easily arranged by this magnetic field correction mechanism. And a magnetic piece can be fixed at a required position of the magnetic field correction mechanism.
  • a magnetic field intensity correction device (magnetic field correction mechanism) is fixed to the inner peripheral wall of a cylindrical container (housing).
  • a pair of protrusions are formed on both sides of a holder that holds a magnetic piece via a leaf spring, and the holder is fixed at a required position of the holding member by using the protrusions. The position can be changed.
  • a magnetic shim mechanism (magnetic field correction mechanism) that stores a magnetic piece is fixed to the inner peripheral wall of the housing.
  • This magnetic shim mechanism includes a combination shim tray in which a plurality of magnetic body pieces, a plurality of divided shim trays for storing the pieces, a shim tray spacer inserted between the divided shim trays are linearly coupled, and a shim pocket of the divided shim tray. It is composed of a shim spacer for fixing the magnetic shim therein and a fitting lid that covers the shim pocket.
  • the arrangement position and the amount of the magnetic material pieces in the inner peripheral wall of the housing are adjusted.
  • the side of the split shim tray has a groove so that the inset lid can be fixed. After storing the magnetic piece in the shim pocket, the shim spacer is filled, and the inset lid is closed. The magnetic piece can be fixed inside the pocket.
  • a heat insulating structure such as a vacuum chamber is generally provided outside the cooling chamber. Since the size of the heat insulating structure is designed based on the size of the cooling chamber, it is expected that the superconducting magnet device including the heat insulating structure can be downsized by downsizing the cooling chamber.
  • the cooling chamber can be downsized. There was a limit.
  • the spatial freedom of the arrangement of the magnetic pieces arranged in the internal region of the superconducting magnet (the arrangement position and amount of the magnetic pieces) (Degree of freedom) is desirable. That is, in the magnetic material correction mechanism fixed to the inner peripheral wall of the housing, it is desirable that the degree of spatial freedom of arrangement of the magnetic material pieces provided in the magnetic material correction mechanism is high.
  • the measurement space (magnetic field) formed in the internal region of the superconducting magnet This magnetic field correction mechanism cannot be increased without an upper limit.
  • the magnetic material correcting mechanism is provided by reducing the proportion (size) of the means (hereinafter referred to as magnetic material arranging means) for fixing (arranging) the magnetic piece to the required position of the magnetic field correcting mechanism in the magnetic field correcting mechanism.
  • the magnetic material arranging means is a holder and a holding member.
  • the magnetic material arranging means is a curtain rail-like rail, a bolt, and the like.
  • the magnetic material arranging means is a divided shim tray, a shim spacer, and a fitting type lid. It is difficult to say that the degree of spatial freedom of the arrangement of the magnetic piece provided is sufficiently high.
  • an object of the present invention is to downsize the cooling chamber, downsize the superconducting magnet device, and reduce the degree of spatial freedom in arranging the magnetic pieces without reducing the measurement space formed in the internal region of the superconducting magnet. It is an object of the present invention to provide a superconducting magnet device capable of increasing the height.
  • the present invention is a superconducting magnet device having a cooling chamber in which a cooling medium is accommodated, in which a cylindrical main former around which a main coil is wound and a shield coil is wound.
  • a cylindrical shield former provided concentrically with the main former so as to cover the radially outer side of the main former; and a cylindrical outer shape provided concentrically with the main former so as to cover the shield former.
  • the cooling chamber is formed by sealing both axial ends of the cylinder, the main former, and the outer cylinder, and the axes of the main former, the shield former, and the outer cylinder are formed. And a pair of end plates having concentric annular positioning mechanisms that contact both ends in the direction.
  • the cooling chamber in which the cooling medium is accommodated is formed by sealing the gap between the main former and the outer cylinder by the pair of end plates at both ends in the axial direction.
  • the main former for winding the main coil also serves as the radially inner wall surface of the cooling chamber. Therefore, it is not necessary to provide a wall structure on the radially inner side of the cooling chamber separately from the main former, and a support structure for the main former is unnecessary.
  • the end plate that seals the cooling chamber is positioned in contact with both axial ends of the main former, shield former, and outer cylinder. Therefore, a structure for supporting the main former, the shield former, and the outer cylinder in the axial direction is unnecessary.
  • the pair of end plates includes an annular positioning mechanism concentrically, and the main former, the shield former, and the outer cylinder are brought into contact with each positioning mechanism. Thereby, it can position easily about arrangement
  • the sealing may be performed by welding.
  • the cooling chamber is sealed by welding, a screwing structure or the like is unnecessary. As a result, space can be saved and the superconducting magnet device can be reduced in size.
  • At least one of the end plates is formed with a projecting portion protruding from a part of a contact surface that contacts both axial end portions of the shield former.
  • a concave portion that fits into the convex portion may be formed.
  • the shield former is supported in a state where the concave portion is fitted to the convex portion formed on at least one of the end plates. This can prevent the shield former from rotating in the circumferential direction with respect to the cooling chamber.
  • the main former, the shield former, the end plate, and the outer cylinder may be stainless steel.
  • the main former, shield former, end plate, and outer cylinder constituting the cooling chamber are formed of stainless steel.
  • the thermal contraction rate of these members is made the same, and it is possible to prevent the positional relationship between the members from being shifted due to thermal contraction due to cooling or the like. As a result, the occurrence of misalignment between the main coil and the shield coil can be reduced.
  • the superconducting magnet device of the present invention may further include a protective resistor for the superconducting magnet disposed along a cross-sectional shape between the main former and the shield former.
  • the protective resistor protects the superconducting magnet by absorbing energy stored in the superconducting magnet when quenching occurs.
  • the shield coil is provided in order to cancel the magnetic field generated outside the main coil in the radial direction, and it is necessary to provide a space between the main former and the shield former.
  • the protective resistor for the superconducting magnet is provided along the cross-sectional shape of the space between the main former and the shield former.
  • the protective resistor includes a plate, and at least one resistance element formed of a wire attached along the plate surface of the plate, and the resistance element
  • the cooling medium may be immersion-cooled.
  • the thickness of a protection resistor can be made thin by comprising a protection resistor with the resistance element which was attached along the plate surface and the plate surface, and was formed with the wire.
  • a protective resistor can be installed in a narrower area.
  • a plurality of the resistance elements formed by bending a wire may be attached to the plate surface in a state of being connected in series with each other.
  • the size of the protective resistor in the direction perpendicular to the thickness direction of the plate can be reduced.
  • a plurality of W-shaped resistance elements may be attached to the plate surface in a state of being connected in series with each other via a crimp terminal.
  • the size of the protective resistor in the direction orthogonal to the thickness direction of the plate can be reduced.
  • the protective resistor may be immersed and cooled by the cooling medium.
  • the clearance gap between a main coil and a shield coil can be made small (or a protection resistor can be installed in the slight clearance between a main coil and a shield coil), and a superconducting magnet apparatus Can be miniaturized.
  • the outer cylinder is provided for introducing a cooling medium provided in the shield former and a current lead for supplying an excitation current to the main coil and the shield coil from the outside.
  • the introduction member may have an insertion port through which the introduction member is inserted in the loose insertion state.
  • the introduction member can be loosely inserted into the insertion port.
  • the length of the introduction member can be reduced in the radial direction of the cooling chamber, the size of the cooling chamber can be further reduced, and the superconducting magnet device can be downsized.
  • the cooling chamber is disposed above the interface between the liquid phase state and the gas phase state of the cooling medium in the refrigerant container formed inside, and the cooling in the gas phase state is performed.
  • a refrigerant passage hole for allowing a medium to flow out from the shield former to the outside of the shield former, a current socket disposed above the refrigerant passage hole, to which the current lead is detachably connected, and the shield former and the current socket An insulating spacer for fixing the current socket to the shield former, and a superconducting lead wire connected to the current socket, the main coil, and the shield coil, and from the coolant passage hole
  • the cooling medium in the gas phase that flows out is configured to contact the outer peripheral wall of the current socket. Good.
  • the gaseous-phase state cooling medium which flows out out of a refrigerant passage hole contacts the outer peripheral wall of an electric current socket.
  • the current socket is cooled by the gas phase cooling medium, so that the heat of the normal temperature part transmitted through the current lead and the Joule heat of the current lead are transferred to the shield former and the liquid phase cooling medium (the cryogenic part). ) Can be reduced.
  • the evaporation amount of the cooling medium in the liquid phase can be reduced.
  • a current insulation layer is not provided between the current socket and the shield former as in the prior art, and the current socket and the shield former are interposed via an insulating spacer. Can be fixed directly.
  • the superconducting magnet device can be made smaller than the conventional device by the amount not provided with the space heat insulation layer.
  • the insulating spacer may be made of a heat insulating material.
  • the superconducting magnet device further includes a neck tube that extends upward from the top wall of the refrigerant container and through which the current lead is inserted, and a part or all of the current socket is the neck. You may arrange
  • a part or all of the current socket is disposed in the neck tube, so that the superconducting device can be further downsized.
  • the flow area of the cooling medium in the vapor phase flowing along the outer peripheral wall of the current socket is reduced by this neck tube, the flow velocity of the cooling medium in the vapor phase flowing along the outer peripheral wall of the current socket is increased. .
  • the current socket can be further cooled, so that it is possible to further reduce the penetration of the heat of the normal temperature part transmitted through the current lead and the Joule heat of the current lead into the cryogenic part, The evaporation amount of the cooling medium in the liquid phase can be further reduced.
  • the current socket may include a protrusion that increases the surface area of the outer peripheral wall.
  • the current socket is provided with the protruding portion that increases the surface area of the outer peripheral wall, so that the current socket can be further cooled.
  • the superconducting magnet device of the present invention includes a superconducting magnet that generates a main magnetic field in a measurement space formed in an inner region, a cylindrical housing that houses the superconducting magnet between an inner peripheral wall and an outer peripheral wall, A magnetic field correction mechanism that corrects the magnetic field uniformity of the main magnetic field, and the magnetic field correction mechanism is provided on a cylindrical frame disposed on the inner side of the inner peripheral wall of the housing and on an outer peripheral surface of the frame body. A plurality of recesses that are formed and form a plurality of storage spaces surrounded by the inner peripheral wall of the housing, and a magnetic material piece for magnetic field correction stored in the plurality of storage spaces. And
  • amendment is accommodated in the storage space enclosed by the internal peripheral wall of a housing, and the recessed part formed in the outer peripheral surface of a frame.
  • the inner peripheral wall of the housing is used as one component of the magnetic body arranging means for fixing (arranging) the magnetic piece to the required position of the magnetic field correcting mechanism, the size of the magnetic body arranging means in the magnetic field correcting mechanism is large. Can be made smaller than that of the conventional apparatus. Therefore, even when the size of the magnetic field correction mechanism is the same, it is possible to increase the spatial freedom of the arrangement of the magnetic material pieces provided in the magnetic material correction mechanism as compared with the conventional device. The uniformity of the magnetic field in the space can be improved.
  • the magnetic field correction mechanism further includes a spacer that can be stored in the storage space, and the storage space is filled with at least one of the magnetic piece or the spacer. May be.
  • the magnetic piece can be fixed in the storage space, and the magnetic piece can be fixed at a required position of the magnetic field correction mechanism.
  • the magnetic field of the main magnetic field of the superconducting magnet is obtained.
  • the uniformity can be corrected with high accuracy, and the magnetic field uniformity in the measurement space can be further improved.
  • the magnetic piece may be formed in a U-shaped cross section and may be stored in the required storage space against elasticity.
  • the magnetic piece is firmly fixed in the required storage space by its own elasticity. As a result, it is possible to accurately correct the magnetic field uniformity of the main magnetic field of the superconducting magnet. It is possible to improve the magnetic field uniformity of the measurement space.
  • the spacer may be a non-magnetic material.
  • the magnetic piece may be formed in a size that allows a plurality of pieces to be stored in the storage space.
  • a plurality of the concave portions may be formed across the circumferential direction and the axial direction of the outer peripheral surface of the frame body.
  • a plurality of storage spaces surrounded by the recess and the inner peripheral wall of the housing are formed in the circumferential direction and the axial direction of the frame body.
  • the spatial freedom of arrangement of the body pieces is increased, and as a result, the magnetic field uniformity of the main magnetic field of the superconducting magnet can be corrected with high accuracy, and the magnetic field uniformity of the measurement space can be further improved.
  • the frame body may include a flange portion that is diametrically outer than the inner peripheral wall of the housing and is detachably fixed to a cylindrical end portion of the housing. Good.
  • the frame can be fixed to the housing, the magnetic piece accommodated in the storage space can be fixed at a required position in the internal region of the superconducting magnet.
  • the magnetic field uniformity of the main magnetic field of the superconducting magnet can be accurately corrected, and the magnetic field uniformity of the measurement space can be further improved.
  • the superconducting magnet device can be downsized by downsizing the cooling chamber. Moreover, the spatial freedom degree of arrangement
  • FIG. 4 is a schematic diagram showing a partial cross section of the shield former and end plate taken along line IV-IV in FIG. 3.
  • FIG. 5 is a schematic diagram showing a cross section taken along line VV in FIG. It is a sectional side view of the superconducting magnet apparatus which concerns on 2nd Embodiment of this invention.
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG. 6.
  • FIG. 8 is a detailed view of the protective resistor shown in FIG. 7.
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG. 6.
  • FIG. 8 is a superconducting circuit diagram of the superconducting magnet device shown in FIGS. It is a figure which shows the modification of the resistance element shown in FIG. It is a figure which shows the modification of the protective resistor shown in FIG. It is a figure which shows the modification of the protective resistor shown in FIG. It is a schematic diagram which shows the cross section of the superconducting magnet apparatus which concerns on 3rd Embodiment of this invention.
  • FIG. 14 is a sectional view taken along line AA in FIG. 13. It is explanatory drawing of the electric current socket vicinity in the state in which the current lead of the superconducting magnet apparatus which concerns on 3rd Embodiment of this invention is not attached. It is explanatory drawing which shows the modification of the insulating spacer in FIG.
  • FIG. 10 is a schematic configuration explanatory view showing a configuration of a superconducting magnet device according to a fourth embodiment of the present invention, and is a view in which a quarter part of the whole is cut out to show the inside of the device. It is explanatory drawing which shows the cross-sectional state of the superconducting magnet apparatus shown in FIG. It is explanatory drawing which shows the cross-sectional state of the AA line of FIG. It is explanatory drawing which shows the cross-sectional state of the AA line of FIG. 21 which shows the modification of a superconducting magnet apparatus.
  • FIG. 1 is a schematic view showing the entire superconducting magnet apparatus 1 according to the first embodiment of the present invention.
  • the superconducting magnet device 1 of the present embodiment includes a housing 1a, an introduction part 1b, and an exhaust part 1c.
  • the housing 1a is formed in a cylindrical shape whose outer shape has a through hole 1d.
  • the through hole 1d is formed concentrically in the housing 1a. That is, the housing 1a and the through hole 1d have a common central axis Z (two-dot chain line in FIG. 1).
  • the superconducting magnet device 1 is installed such that the central axis Z is parallel to the horizontal direction via a support mechanism (not shown) that supports the lower surface of the housing 1a.
  • the housing 1a is hollow and forms a vacuum chamber 3 in which the hollow space is evacuated.
  • the vacuum chamber 3 of the housing 1a is provided with a cooling container 12 that forms a cooling chamber 2 that accommodates a cooling medium (not shown), and a shielding plate 4 that reduces heat penetration from the housing 1a to the cooling container 12. Is done.
  • the cooling container 12 is disposed in the vacuum chamber 3 formed by the housing 1a, whereby the heat insulating property of the cooling container 12 is improved and the cooling efficiency of the superconducting magnet in the cooling container 12 is improved. .
  • the introduction part 1b and the exhaust part 1c have a columnar outer shape and are formed in parallel so as to protrude vertically upward from the housing 1a. That is, the introduction part 1b and the exhaust part 1c are formed on the upper surface of the housing 1a so as to face each other in the axial direction of the housing 1a.
  • the introduction unit 1b has a communication mechanism that communicates with the cooling chamber 2 inside, and can introduce into the cooling chamber 2 current leads and the like for supplying current to the cooling medium and the superconducting magnet.
  • the exhaust unit 1c includes a communication mechanism that communicates with the vacuum chamber 3 in the housing 1a, and a vacuum exhaust device that evacuates the vacuum chamber 3 through the communication mechanism and maintains the vacuum state of the vacuum chamber 3. (Not shown).
  • the superconducting magnet apparatus 1 in which the central axis Z of the housing 1a is parallel to the horizontal direction and the axial directions of the introduction part 1b and the exhaust part 1c are parallel to the vertical direction will be described.
  • the superconducting magnet apparatus 1 may be installed with the central axis Z inclined with respect to the horizontal direction.
  • the shielding plate 4 disposed in the housing 1a has a concentric double tube structure, and has a substantially cylindrical shape in which a gap formed by the double tube structure is sealed in the axial direction.
  • the shielding plate 4 is installed concentrically with the central axis Z inside the housing 1a radially outside the through hole 1d.
  • the shielding plate 4 accommodates the cooling container 12 so as to cover the entire cooling container 12 in the gap of the double tube structure.
  • the shielding board 4 reduces the heat
  • the cooling container 12 forms a cooling chamber 2 in which a cooling medium is accommodated.
  • the cooling container 12 has a concentric double tube structure, and has a substantially cylindrical shape in which a gap formed by the double tube structure is sealed in the axial direction.
  • the cooling container 12 is installed concentrically with the central axis Z in the vacuum chamber 3 radially outward from the inner diameter of the shielding plate 4.
  • At least a part of the superconducting magnet (main coil 5 and shield coil 6) wound concentrically with the cooling container 12 is immersed in the cooling medium accommodated in the cooling container 12 and cooled.
  • liquid helium is used as the cooling medium.
  • the cooling container 12 has a main former 13, an outer cylinder 18, and a pair of end plates 14a and 14b. Further, in the cooling container 12, a shield former 15, a service plate 7 which is a protective resistor for the superconducting magnet, and a current lead (not shown) for supplying current to the cooling medium and the superconducting magnet are externally provided. A cone (introducing member) 17 for introduction into the cooling container 12 is provided. Such a cooling container 12 and each structure in the cooling container 12 are demonstrated concretely.
  • the main former 13 has a cylindrical shape, and a main coil 5 that generates a magnetic field is wound around a radially inner magnetic field space.
  • the main former 13 includes a cylindrical portion 13a, flange portions 13b and 13c, and main coil support portions 13d and 13e.
  • the cylindrical portion 13a has a cylindrical shape.
  • the cylindrical portion 13a constitutes a wall surface on the inner diameter side of the cooling container 12 having a double tube structure. In other words, the cylindrical portion 13a forms a through hole that penetrates the cooling container 12 in the axial direction.
  • the flange portions 13b and 13c are formed in an annular shape protruding outward in the radial direction at both axial end portions of the cylindrical portion 13a.
  • the flange portions 13b and 13c are formed thin in the axial direction.
  • the flange portions 13b and 13c are joined to the end plates 14a and 14b.
  • flange part 13b * 13c forms the axial direction end surface of the cooling vessel 12 with end plate 14a * 14b.
  • the main former 13 is thinned in the axial direction to such an extent that the flange portions 13b and 13c project radially outward at both axial end portions and at least buckle against the vacuum pressure of the vacuum chamber 3. At least a part of both axial end surfaces of the chamber 2 is formed.
  • the degree of buckling against vacuum pressure means that the cooling container 12 is formed by the main former 13, the outer cylinder 18, and the end plates 14a and 14b, and the cooling chamber 2 is brought to atmospheric pressure.
  • the main former 13 of the cooling container 12 is formed with a strength that does not buckle against the vacuum pressure in a state where 12 is accommodated in the housing 1a and a vacuum pressure is applied from the outside.
  • the vacuum pressure of the vacuum chamber 3 is set to a pressure range of medium vacuum or high vacuum, but is not limited thereto, and may be low vacuum or high vacuum or higher depending on the requirements of a specific application. Also good.
  • the main coil support portions 13d and 13e are disposed to face the center in the axial direction of the cylindrical portion 13a.
  • the main coil support portions 13d and 13e are formed in an annular shape protruding outward in the radial direction.
  • the flange portions 13b and 13c and the main coil support portions 13d and 13e are formed concentrically with the cylindrical portion 13a.
  • the main former 13 is not limited to a cylindrical shape, and may have a cylindrical portion in part.
  • the main coil 5 is radially outside of the cylindrical portion 13a and is between the flange portion 13b and the main coil support portion 13d facing in the axial direction and between the main coil support portion 13d and the main coil support portion 13e facing in the axial direction. And between the main coil support portion 13e and the flange portion 13c facing each other in the axial direction are wound in the circumferential direction of the cylindrical portion 13a. That is, the main coil 5 is positioned by the cylindrical portion 13a, the flange portions 13b and 13c, and the main coil support portions 13d and 13e.
  • the shield former 15 has a cylindrical shape and is wound with a shield coil 6 that suppresses leakage of the magnetic field generated by the main coil 5 to the outside of the superconducting magnet device 1 in the radial direction.
  • the shield former 15 is provided concentrically with the main former 13 so as to cover the radially outer side of the main former 13.
  • the shield former 15 includes a cylindrical portion 15a, flange portions 15b and 15c, and shield coil support portions 15d and 15e.
  • the cylindrical portion 15 a has a cylindrical shape and is disposed so as to cover the radially outer side of the main former 13.
  • the cylindrical portion 15a has a diameter larger than the outer diameters of the flange portions 13b and 13c and the main coil support portions 13d and 13e of the main former 13 and is disposed on the outer side in the radial direction. .
  • the cylindrical portion 15a is formed shorter than the main former 13 in the axial direction.
  • the flange portions 15b and 15c are formed in an annular shape projecting radially outward at both axial end portions of the cylindrical portion 15a.
  • the shield coil support portions 15d and 15e are formed in an annular shape projecting outward in the radial direction so as to face the center in the axial direction of the cylindrical portion 15a.
  • the flange portions 15b and 15c and the shield coil support portions 15d and 15e are formed concentrically with the cylindrical portion 15a.
  • the shield former 15 is not limited to a cylindrical shape, and may have a cylindrical portion in part.
  • the shield coil 6 is outside the cylindrical portion 15a in the radial direction, between the flange portion 15b and the shield coil support portion 15d facing in the axial direction, and between the shield coil support portion 15e and the flange portion 15c facing in the axial direction. Are wound in the circumferential direction of the cylindrical portion 15a. That is, the shield coil 6 is positioned by the cylindrical portion 15a, the flange portions 15b and 15c, and the shield coil support portions 15d and 15e.
  • a plate-shaped cone support 19 for supporting the cone 17 is installed in the axial direction on the top of the flange 15b and the shield coil support 15d adjacent in the axial direction of the cylindrical portion 15a.
  • the cone 17 has a cylindrical shape, and is disposed on the top of the cone support 19 so that the axial direction is the vertical direction.
  • the outer cylinder 18 has a cylindrical shape.
  • the outer cylinder 18 is provided concentrically with the main former 13 so as to cover the shield former 15.
  • the outer cylinder 18 has a diameter larger than the outer diameters of the flange portions 15b and 15c of the shield former 15 and the shield coil support portions 15d and 15e, and is disposed on the radially outer side thereof. Is done.
  • the outer cylinder 18 is longer than the shield former 15 in the axial direction.
  • the outer cylinder 18 is shorter than the main former 13 in the axial direction.
  • the outer cylinder 18 constitutes a wall surface on the outer diameter side of the cooling container 12 having a double tube structure.
  • the outer cylinder 18 is formed with an insertion port 18a through which the cone 17 is inserted in a loosely inserted state.
  • the outer cylinder 18 has the insertion port 18a through which the cone 17 for introducing the cooling medium and the current lead provided in the shield former 15 from the outside is inserted in the loosely inserted state.
  • the insertion port 18a communicates with the introduction part 1b.
  • the cone 17 can be loosely inserted into the insertion port 18a.
  • the length for 17 minutes of cones can be reduced, the size of the cooling chamber 2 can be further reduced, and the superconducting magnet apparatus 1 can be reduced in size.
  • End plates 14a and 14b form the cooling chamber 2 by sealing both axial ends of the main former 13 and the outer cylinder 18 in a liquid-tight state.
  • the end plates 14a and 14b are formed in an annular shape in which an inner diameter and an outer diameter are concentric.
  • the end plates 14a and 14b are arranged to face each other in the axial direction so as to sandwich the main former 13 and the shield former 15. Since the main former 13 is longer in the axial direction than the shield former 15, the end plates 14a and 14b are formed to be bent in the axial direction. That is, the end plates 14a and 14b are bent so that the radially inner portion with which the main former 13 abuts protrudes into the axial vacuum chamber 3 more than the radially outer portion with which the shield former 15 abuts. ing.
  • the end plates 14a and 14b are joined at their inner diameter side end portions to the outer diameter side end portions of the flange portions 13b and 13c of the main former 13 by welding to seal the joint portions in a liquid-tight state. . Further, the end portions of the end plates 14a and 14b are joined to the end portions in the axial direction of the outer cylinder 18 by welding, and the joint portions are sealed in a liquid-tight state. Thereby, the cooling chamber 2 is formed by the main former 13, the outer cylinder 18, and the end plates 14a and 14b, and the cooling medium can be accommodated.
  • the cooling chamber 2 in which the cooling medium is accommodated is formed by sealing the gap between the main former 13 and the outer cylinder 18 with a pair of end plates 14a and 14b in a liquid-tight state at both axial ends. Is formed.
  • the main former 13 for winding the main coil 5 also serves as a radially inner wall surface of the cooling chamber 2. Accordingly, it is not necessary to provide a wall structure on the radially inner side of the cooling chamber 2 separately from the main former 13, and a structure for supporting the main former 13 in the radial direction is not necessary.
  • the end plates 14 a and 14 b for sealing the cooling chamber 2 are positioned in contact with the main former 13, the shield former 15, and the outer cylinder 18. Therefore, a structure for supporting the main former 13, the shield former 15, and the outer cylinder 18 in the axial direction is unnecessary. As a result, the cooling chamber 2 can be downsized, and the superconducting magnet device 1 can be downsized.
  • the pair of end plates 14a and 14b are provided with an annular positioning mechanism concentrically, and the main former 13, the shield former 15 and the outer cylinder 18 are brought into contact with each positioning mechanism. Thereby, it can position easily about arrangement
  • the main former 13, the shield former 15, the end plates 14a and 14b, and the outer cylinder 18 are made of stainless steel.
  • regulated to JIS is used as stainless steel.
  • SUS308L is used as a filler material at the time of welding. Thereby, the thermal contraction rate of these members is made the same, and it is possible to prevent the positional relationship between the members from being shifted due to thermal contraction due to cooling or the like. As a result, the occurrence of misalignment between the main coil 5 and the shield coil 6 can be reduced.
  • the cooling chamber 2 is sealed in a liquid-tight state by welding. Therefore, a screwing structure or the like for sealing is not necessary. Thereby, space can be saved and the superconducting magnet device 1 can be miniaturized.
  • the pair of flange portions 13b and 13c of the main former 13 are thinned to such an extent that the main former 13 does not buckle against the vacuum pressure.
  • flange part 13b * 13c becomes small in heat transfer cross-sectional area, and can reduce the thermal conductivity of the flange part with respect to the heat from the radial direction outer side edge part of a flange part.
  • heat transmitted to the main coil 5 by welding when the main former 13 is sealed with the end plates 14a and 14b can be reduced.
  • FIG. 3 is a schematic diagram showing a partial cross section showing a contact portion between the main former 13, the shield former 15, the outer cylinder 18, and the end plate 14b. Since the end plate 14a is the same as the end plate 14b, description thereof is omitted.
  • the end plates 14a and 14b are provided with concentric annular positioning mechanisms that come into contact with both axial ends of the main former 13, the shield former 15, and the outer cylinder 18, respectively.
  • Each of the positioning mechanisms for positioning the main former 13, the shield former 15, and the outer cylinder 18 will be specifically described.
  • the positioning of the main former 13 will be described. As shown in FIG. 3, the axial positioning of both ends of the main former 13 is brought into contact with the inner diameter side end of the end plate 14b.
  • the end plate 14 b has a cut-out end portion 141.
  • the notch end 141 is an end on the inner diameter side of the annular end plate 14b, and has an annular notch concentric with the end plate 14b on the cooling chamber 2 side.
  • An end portion on the outer diameter side of the flange portion 13c comes into contact with the notch of the notch end portion 141 in a fitted state.
  • the main former 13 and the end plate 14b are fixed concentrically.
  • the axial relationship between the end plates 14a and 14b and the main former 13 is fixed by joining the main former 13 by the pair of end plates 14a and 14b. Yes.
  • positioning is performed by the outer peripheral surface 142 of the end plate 14 b coming into contact with both axial ends of the outer cylinder 18.
  • the outer peripheral surface 142 is an end surface on the radially outer side of the end plate 14 b and is formed so that the diameter substantially matches the inner diameter of the outer cylinder 18. Accordingly, the end plate 14 b is fitted to the outer cylinder 18, and the outer peripheral surface 142 is in contact with the end surface on the radially inner side of the outer cylinder 18. Thereby, the end plate 14b and the outer cylinder 18 are concentric.
  • the end plate 14 b has a bent surface 143.
  • the bent surface 143 is an end surface on the axial direction cooling chamber 2 side of the end plate 14b, and is bent in the axial direction.
  • the flange portion 15c has an abutting surface 151 whose end surface on the vacuum chamber 3 side in the axial direction protrudes in a radially outer region to form an annular shape.
  • the bent surface 143 is formed so as to be fitted to the contact surface 151. Accordingly, the bent surface 143 comes into contact with the contact surface 151 in a fitted state. Thereby, the end plate 14b and the shield former 15 are concentric.
  • the end plates 14a and 14b are formed with the notch end portion 141, the outer peripheral surface 142, and the bent surface 143 in an annular concentric manner. These abut on the main former 13, the outer cylinder 18, and the shield former 15 as positioning mechanisms, respectively, so that the positional relationship can be positioned concentrically.
  • the end plates 14a and 14b are a part of the bent surface 143 that comes into contact with both ends of the shield former 15 in the axial direction.
  • the shield former 15 is formed with a concave portion 152 that fits into the convex portion 144.
  • the end plate 14 b has a convex portion 144 that protrudes toward the axial cooling chamber 2 and extends in the radial direction on the bent surface 143 that contacts the shield former 15.
  • the shield former 15 has a concave portion 152 that fits into the convex portion 144 on the contact surface 151 that contacts the bent surface 143.
  • the shield former 15 is supported in a state where the concave portion 152 is fitted to the convex portion 144 formed on the end plate 14b. Thereby, the rotation of the shield former 15 in the circumferential direction with respect to the cooling chamber 2 is prevented by the convex portion 144.
  • the service plate 7 is a protective resistor for the superconducting magnet.
  • the service plate 7 includes a protection circuit for the main coil 5 and the shield coil 6. As shown in FIG. 5, the service plate 7 is disposed along the cross-sectional shape between the main former 13 and the shield former 15.
  • the lower surface of the service plate 7 is supported by a main coil support portion 13d / 13e of the main former 13 via a rod disposed in the radial direction.
  • the service plate 7 is fixed to the main former 13 by screwing the support portion from above with a nut.
  • the service plate 7 has a radial cross section formed in a shape along a circular locus centering on the axis of the cooling container 12, and between the main former 13 and the shield former 15. Is arranged.
  • the shield coil 6 is provided in order to cancel the magnetic field generated on the radially outer side of the main coil 5, and it is necessary to provide a space between the main former 13 and the shield former 15.
  • the service plate 7 serving as a protective resistor for the superconducting magnet is provided between the main former 13 and the shield former 15 along the sectional shape of the necessary space.
  • a superconducting magnet is wound around each of the main former 13 and the shield former 15 as shown in FIG.
  • the main coil 5 is between the flange portion 13b and the main coil support portion 13d of the main former 13, between the main coil support portion 13d and the main coil support portion 13e, and between the main coil support portion 13e and the flange portion 13c. Wound in the circumferential direction, respectively.
  • the shield coil 6 is wound in the circumferential direction between the flange portion 15b and the shield coil support portion 15d of the shield former 15 and between the shield coil support portion 15e and the flange portion 15c.
  • the service plate 7 is fixed to the main former 13, and the cone support base 19 provided with the cone 17 is fixed to the shield former 15.
  • the main former 13, the shield former 15, and the outer cylinder 18 are positioned in contact with the positioning mechanism of the end plate 14b (see FIG. 3).
  • the main former 13, the shield former 15, and the outer cylinder 18 are concentric with each other.
  • the shield former 15 is positioned in the circumferential direction by the convex portion 144 (see FIGS. 3 and 4) of the end plate 14b.
  • both ends of the wire constituting the main coil 5 are inserted radially outward of the shield former 15 through through holes (not shown) that penetrate the shield former 15 in the radial direction.
  • the main coil 5 and the shield coil 6 are connected to the service plate 7 at both ends of the wire.
  • the end plate 14a is brought into contact with the main former 13, the shield former 15 and the outer cylinder 18, and the main former 13 and the shield former. 15, the entire outer cylinder 18 and end plates 14a and 14b are positioned. Finally, the main former 13 and the outer cylinder 18 are welded to the end plates 14a and 14b.
  • the operation of the superconducting magnet apparatus 1 in which the cooling container 12 assembled in this way is incorporated will be described.
  • the superconducting magnet of the superconducting magnet device 1 is cooled by liquid helium accommodated in the cooling chamber 2 of the cooling vessel 12 and is prevented from being heated by being excited.
  • the main former 13, the outer cylinder 18, and the end plate 14a also serve as the wall surface of the cooling chamber 2, the size of the cooling chamber can be reduced as compared with the case where the cooling chamber is formed with a different configuration. Has been. Therefore, even if the amount of liquid helium is the same, the liquid level of the liquid helium in the cooling chamber 2 with respect to the superconducting magnet can be increased. Thereby, since such a cooling chamber 2 increases the surface area which a superconducting magnet contacts with liquid helium, it can cool a superconducting magnet efficiently.
  • the liquid helium to be used is reduced because the cooling chamber 2 is downsized. Thereby, cost can be reduced.
  • the service plate 7 has a cross section formed in a shape along a circular locus, but is not limited thereto.
  • the cross section of the service plate may be formed in a shape that bends along the cross-sectional shape between the main former and the shield former.
  • the convex portion 144 that restricts the rotation of the shield former 15 formed in the end plate 14b in the circumferential direction protrudes in the axial direction of the end plate 14b and extends in the radial direction, but is not limited thereto.
  • the structure of the end plate 14b that restricts the rotation of the shield former 15 in the circumferential direction may protrude in the radial direction.
  • the superconducting magnet device 201 of the present embodiment is arranged on the outer side of the main coil 202, the shield coil 203 that is coaxial with the main coil 202 and arranged on the outside thereof. And a helium container 204 for storing liquid helium 211.
  • a protective resistor 205 according to the present invention is disposed in a gap between the main coil 202 and the shield coil 203.
  • the main coil 202 is a coil for generating a predetermined magnetic field in the bore space S.
  • the shield coil 203 is a coil for generating a magnetic field for reducing a leakage magnetic field leaking from the superconducting magnet device 201 to the outside.
  • the main coil 202 has five superconducting coils 208 a to 208 e and a winding frame 209. Each of the superconducting coils 208a to 208e is formed by winding a superconducting wire around a winding frame 209 in a solenoid shape.
  • the shield coil 203 has four superconducting coils 208 f to 208 i and a winding frame 210. Each of the superconducting coils 208f to 208i is obtained by winding a superconducting wire around the winding frame 210 in a solenoid shape.
  • the superconducting wire is, for example, an NbTi superconducting wire or an Nb 3 Sn superconducting wire.
  • the reels 209 and 210 are made of a nonmagnetic material such as an aluminum material or a stainless steel material.
  • FIG. 8 is a detailed view of the protective resistor 205.
  • FIG. 8A is a BB development view of the protective resistor 205 shown in FIG. 8B is an enlarged view of the resistance element 207 (207a) shown in FIG. 8A
  • FIG. 8C is a view taken along the line CC in FIG. 8B.
  • the protective resistor 205 of this embodiment includes a plate 206 having a curved shape (and an arc shape), and a total of nine resistors attached along the plate surface of the plate 206.
  • Element 207 (207a to 207i).
  • the plate 206 is formed by bending a nonmagnetic rectangular metal plate such as SUS304 into an arc shape.
  • the plate 206 is formed by bending in an arc shape along the outer periphery of the flange portion of the winding frame 209 of the main coil 202 (see FIG. 6).
  • a hole 217 provided in the plate 206 is a hole for attaching the resistance element 207.
  • a hole 218 provided in the plate 206 is a hole for attaching the plate 206 to the flange portion of the winding frame 209.
  • the plate 206 may be made of a resin material such as GFRP.
  • the resistance elements 207 are formed by bending a stainless steel wire of ⁇ 1.6 mm into a W-shape. It is a thing.
  • the resistance elements 207 (207a to 207i) are connected to each other in series via the crimp terminals 213.
  • the resistance elements 207 (207a to 207i) connected in series with each other are attached to the plate 206 by bolts and nuts 212.
  • the bolt / nut 212 is a double nut, but may be a single nut.
  • the attachment of the resistance element 207 (207a to 207i) to the plate 206 is not limited to the bolt / nut 212.
  • a thin nail-like member that is not threaded and a retaining washer having a burr is used to Elements 207 (207a-207i) may be attached to plate 206.
  • the size of the protective resistor 205 in the direction perpendicular to the thickness direction of the plate 206 can be reduced by using a W-shaped resistance element.
  • the overall size can be reduced.
  • the resistance elements 207 (207a to 207i) to each other via the crimp terminals 213, the adjacent resistance elements 207 (207a to 207i) can be easily connected. Furthermore, by fixing the resistance element 207 (207a to 207i) to the plate 206 with the bolt and nut 212, the resistance element 207 (207a to 207i) and the plate 206 can be easily fixed.
  • the resistance value can be arbitrarily selected by changing the length dimension of the resistance element 207 made of a wire.
  • the length dimension of the resistance element 207 is changed, for example, the interval between the bolts and nuts 212 (or the holes 217) facing each other in the direction orthogonal to the longitudinal direction of the plate 206 may be changed ( The length dimension of the resistance element 207 may be changed by changing the number of times of bending per one piece without changing the distance between the bolts and nuts 212 (or the holes 217).
  • Examples of the stainless steel wire constituting the resistance element 207 include non-magnetic stainless steel wires such as SUS304 and SUS308. However, the wire constituting the resistance element 207 is not limited to the stainless steel wire. Further, the diameter of the resistance element 207 is not limited to ⁇ 1.6 mm.
  • an insulating sheet 220 is attached to the plate surface of the plate 206 on the resistance element 207 side.
  • the insulating sheet 220 is for ensuring insulation between the plate 206 and the resistance element 207.
  • the material of the insulating sheet 220 is, for example, polyamide.
  • a cylindrical insulating member 221 having a flange is sandwiched between the bolt head of the bolt / nut 212 and the plate 206 in order to ensure insulation.
  • a cylindrical nut 215 made of GFRP is inserted between the insulating sheet 220 and the resistance element 207 (or the crimp terminal 213). The cylindrical nut 215 is for ensuring reliable insulation even when the insulating sheet 220 is peeled off for some reason.
  • the other end of the conducting wire 214 whose one end is connected to the resistance element 207a shown in FIG. 8B is connected to the superconducting coil 208a, for example.
  • illustration of the conducting wire 214 is omitted.
  • a protective diode 219 can be attached to the plate 206 together with the resistance element 207 (207a to 207i).
  • the resistance element 207 207a to 207i
  • other components such as a permanent current switch can be attached to the plate 206.
  • the protective resistor 205 includes the plate 206 having a curved shape along the main coil 202 and the resistance elements 207 (207a to 207i) attached along the plate surface and formed of a wire as main members. Since it has it, the thickness can be made thin as a whole. As a result, the protective resistor 205 can be installed in a slight gap between the main coil 202 and the shield coil 203, and the superconducting magnet device 201 can be downsized.
  • FIG. 9 is a superconducting circuit diagram of the superconducting magnet device 201.
  • the superconducting circuit shown in FIG. 9 is a circuit (protection circuit) for passing a current through the main coil 202 and the shield coil 203 and protecting the coils 202 and 203 from quenching and the like.
  • the same symbols are used for the superconducting coils 208 a to 208 i shown in FIG. 6 and the resistance elements 207 a to 207 i shown in FIG.
  • the order of the superconducting coils and the order of the resistance elements are merely examples, and are not limited to those shown in FIG.
  • resistance elements 207a to 207i are connected in parallel to both ends of each superconducting coil 208a to 208i.
  • a DC power supply 222 is connected to both ends of the superconducting coils 208a to 208i connected in series to form a closed circuit.
  • the current flowing in the superconducting circuit flows from the DC power supply 222 to the superconducting coils 208a to 208i and returns to the DC power supply 222.
  • the current flowing from the DC power supply 222 to the superconducting coil 208a passes through the resistance element 207a, flows to the superconducting coils 208b to 208i, and returns to the DC power supply 222.
  • the current flowing through the superconducting coil 208a rapidly decreases, and damage to the superconducting coil 208a is prevented.
  • the protective resistor 205 including the resistance element 207 (207a to 207i) is sufficiently cooled because it is immersed in the liquid helium 211 as shown in FIG. Since the resistance element 207 (207a to 207i) uses a stainless steel wire of ⁇ 1.6 mm, the resistance element 207 (207a to 207i) is easily cooled. Therefore, even if a current flows through the resistance element 207a to generate heat, the temperature rise of the resistance element 207a is small, in other words, the evaporation amount of the liquid helium 211 is also small. That is, the protective resistor 205 sufficiently plays a role of protecting the superconducting coils 208a to 208i.
  • FIG. 10 is a diagram showing a modification of the resistance element 207 (207a) shown in FIG.
  • a resistance element 207a shown in FIG. 10A is a resistance element formed by bending a wire into a V shape.
  • a resistance element 207a shown in FIG. 10 (b) is formed by bending a wire into a W-shape like the resistance element shown in FIG. 9 (b), but the central bending position is changed.
  • FIG. 11 is a diagram showing a modification of the protective resistor 205 shown in FIG.
  • the plate 206 constituting the protective resistor 225 may be a flat plate 206.
  • support members 216 are attached to both ends of the plate 206, and the plate 206 is fixed to the main coil 202 via the support member 216.
  • a plate as shown in FIG. 12 may be used.
  • the notation of the resistance element 207 and the bolt / nut 212 is omitted.
  • the plate 206 constituting the protective resistor 235 shown in FIG. 12A is a flat plate bent. In addition, it is good also as a plate which has two or more bending locations.
  • the plate 206 constituting the protective resistor 245 shown in FIG. 12B has two curved surfaces. In addition, it is good also as a plate which has three or more curved curved surfaces.
  • FIG. 13 is a schematic diagram showing a cross section of a superconducting magnet device 301 according to an embodiment of the present invention.
  • 14 is a cross-sectional view taken along line AA in FIG.
  • FIG. 15 is an explanatory view of the vicinity of the current socket in a state where the current lead is not attached.
  • the superconducting magnet device 301 of this embodiment includes a double-cylinder vacuum container 302, a double-cylinder refrigerant container 303 housed in the vacuum container 302, and a double-cylinder.
  • a radiation shield 340 having a structure and a hollow cylindrical winding frame 304 accommodated in the refrigerant container 303 are provided.
  • the vacuum container 302, the refrigerant container 303, the radiation shield 340, and the winding frame 304 are concentric.
  • the vacuum container 302, the refrigerant container 303, and the winding frame 304 are each made of a non-magnetic material, and the specific material thereof is not particularly limited, but stainless steel or the like is preferable.
  • the vacuum container 302 is a horizontal cylindrical sealed container in which both ends of the outer cylinder 302a and the inner cylinder 302b are sealed.
  • the vacuum container 302 is formed so as to cover the radiation shield 340.
  • the vacuum chamber 302 forms a vacuum chamber 320 that is a space decompressed to a vacuum state by a vacuum pump. Since this vacuum chamber 320 has a heat insulating action, it is possible to reduce the amount of heat entering from the normal temperature portion into the refrigerant container 303.
  • a neck tube 302c extends upward on the top wall (upper part) of the outer tube 302a of the vacuum vessel 302.
  • the upper end portion of the neck tube 302c and the upper end portion of the neck tube 303c in the refrigerant container 303 to be described later are joined in an airtight manner, whereby the neck tube 303c of the refrigerant container 303 is suspended from the neck tube 302c.
  • a refrigerator 350 described later is provided on the outer peripheral wall of the outer cylinder 302 a of the vacuum vessel 302.
  • the radiation shield 340 is a horizontal cylindrical shield in which both ends of the outer cylinder 340 a and the inner cylinder 340 b are sealed, and is formed so as to cover the refrigerant container 303.
  • the radiation shield 340 suppresses intrusion of radiant heat into the refrigerant container 303.
  • a neck tube 340 c extends upward on the top wall (upper part) of the radiation shield 340.
  • the neck tube 340c of the radiation shield 340 is set to have a smaller diameter than the neck tube 302c, with the axial center of the neck tube 302c of the vacuum vessel 302 matching each other.
  • the upper end portion of the neck tube 340c and the upper end portion of the neck tube 303c in the refrigerant container 303 to be described later are joined in an airtight manner, so that the neck tube 340c of the radiation shield 340 is separated from the neck tube 303c of the refrigerant container 303. It is in a suspended state.
  • the refrigerant container 303 is a horizontal cylindrical sealed container in which both ends of the outer cylinder 303a and the inner cylinder 303b are sealed. Inside the refrigerant container 303 is formed a cooling chamber 330 in which a refrigerant (cooling medium) is accommodated.
  • the refrigerant is helium
  • liquid helium 307 that is a liquid phase refrigerant and helium gas (not shown) that is a gas phase refrigerant are accommodated in the cooling chamber 330. That is, the refrigerant container 303 stores helium, which is a refrigerant, in a liquid phase state (liquid helium 307) and a gas phase state (helium gas). At least a part of the superconducting coil 306 is immersed in the liquid helium 307 and cooled to an extremely low temperature not higher than the superconducting critical temperature.
  • the cooling chamber 330 includes a reel inner cooling chamber 330a inside the reel (region inside the inner peripheral surface 304a of the reel 304) and a reel outer portion (diameter than the outer peripheral surface 304b of the reel 304). And the outer reel cooling chamber 330b in the outer region).
  • a neck tube 303c extends upward on the top wall (upper part) of the outer cylinder 303a of the refrigerant container 303.
  • the neck tube 303 c of the refrigerant container 303 has the same axial center as the neck tube 302 c of the vacuum container 302, and has a smaller diameter than the neck tube 340 c of the radiation shield 340.
  • An insertion hole into which a later-described current lead 315 can be inserted is formed in the upper plate of the neck tube 303c with its center positioned on the axis of the neck tube 302c. This insertion hole also has a function of letting helium gas escape from the inside of the refrigerant container 303 to the outside.
  • the winding frame 304 has a hollow, substantially cylindrical shape having a cylindrical body portion 311 and a plurality of flange portions 312 extending radially outward from the body portion 311.
  • the reel 304 is arranged so that the interface 307a between the liquid phase and the gas phase of the refrigerant (interface between the liquid phase and the gas phase) is located in the reel internal cooling chamber 330a.
  • liquid helium 307 and helium gas are accommodated in the refrigerant container 303 so that the interface 307a between the liquid phase state and the gas phase state of the refrigerant is positioned in the reel internal cooling chamber 330a.
  • the liquid helium 307 contains at least an amount necessary for maintaining the superconducting state of the superconducting coil 306.
  • the body portion 311 partitioned by the flange portion 312 of the winding frame 304 is provided with a superconducting coil 306 formed by winding a superconducting wire.
  • the superconducting coil 306 generates a magnetic field in the radially inner magnetic field space when supplied with current.
  • through holes 305 are formed to connect the reel internal cooling chamber 330a and the reel internal cooling chamber 330a, and the reel inner cooling chamber 330a and the reel inner The refrigerant can be transferred to and from the cooling chamber 330a.
  • this through hole 305 there is a refrigerant passage hole 305a disposed above the interface 307a between the liquid phase and the gas phase of the refrigerant.
  • a current socket for detachably connecting a current lead 315 connected to an excitation power source installed outside the vacuum vessel 302 is directly above the refrigerant passage hole 305a (opening on the outer peripheral surface 304b side of the refrigerant passage hole 305a). 310 is arranged.
  • the refrigerant passage hole 305a has a function of causing the helium gas evaporated from the liquid helium 307 in the reel inner cooling chamber 330a to flow from the reel inner cooling chamber 330a to the reel outer cooling chamber 330b.
  • the helium gas circulated from the reel inner cooling chamber 330a to the reel outer cooling chamber 330b circulates in the flow path secured in the reel outer cooling chamber 330b, and the outer peripheral wall of the main body 308, which will be described later, of the current socket 310.
  • Contact 308a is causing the helium gas evaporated from the liquid helium 307 in the reel inner cooling chamber 330a to flow from the reel inner cooling chamber 330a to the reel outer cooling chamber 330b.
  • an insulating spacer 317 for fixing the current socket 310 to the outer peripheral surface 304b of the winding frame 304 is provided between the outer peripheral surface 304b of the winding frame 304 and the current socket 310.
  • the current socket 310 includes a cylindrical main body portion 308 and a flange portion 309 formed to expand in the radially outward direction at the lower end of the main body portion 308.
  • the current socket 310 is arranged coaxially with the neck tube 303 c of the refrigerant container 303.
  • the inner diameter of the main body 308 is substantially the same as the outer diameter of the terminal 315a of the current lead 315.
  • the terminal 315a of the current lead 315 can be attached to the current socket 310 by passing the current lead 315 through the insertion hole of the neck tube 303c of the refrigerant container 303 and vertically passing through the neck tube 303c. .
  • the current lead is removed from the current socket in order to reduce the amount of heat penetration from the normal temperature part to the cryogenic part.
  • a part of the main body 308 of the current socket 310 is disposed in the neck tube 303c.
  • the inner diameter of the outer cylinder 303a of the refrigerant container 303 can be reduced by the amount of the current socket 310 disposed in the neck tube 303c, so that the size of the refrigerant container 303 can be reduced.
  • the superconducting magnet device 301 can be reduced in size.
  • a part of the main body 308 of the current socket 310 is disposed in the neck tube 303c.
  • the present invention is not limited to this, and the entire current socket 310 is disposed in the neck tube 303c. It may be arranged.
  • a superconducting lead wire 335 electrically connected to the superconducting coil 306 is connected to the flange portion 309 of the current socket 310.
  • the current socket 310 needs to be made of an electrically conductive material in order to pass the current from the current lead 315 to the superconducting lead wire 335, and is preferably made of an electrically conductive metal.
  • the insulating spacer 317 is formed in a cylindrical shape with both ends opened.
  • the inner diameter of the insulating spacer 317 is larger than the opening diameter of the opening on the outer peripheral surface 304b side of the refrigerant passage hole 305a.
  • the outer diameter of the insulating spacer 317 is the same as the outer shape of the flange portion 309 of the current socket 310.
  • the opening diameter of the opening of the refrigerant passage hole 305a indicates the maximum length (maximum diameter) of the inner diameter of the opening. For example, when the opening has a rectangular cross section, the diagonal length of the rectangle is the opening diameter, and when the opening has an elliptical cross section, the length of the ellipse is the opening diameter.
  • the insulating spacer 317 is fixed to the outer peripheral surface 304b of the winding frame 304 with a bolt or the like so that the side wall surrounds the periphery of the opening on the outer peripheral surface 304b side of the refrigerant passage hole 305a.
  • the other end of the insulating spacer 317 is fixed to the lower surface of the flange portion 309 of the current socket 310.
  • the insulating spacer 317 forms a space 331 with the flange portion 309 of the current socket 310 and the outer peripheral surface 304b of the winding frame 304.
  • a plurality of passage holes 317a (two on the diagonal line in the present embodiment) through which helium gas flows from inside the space 331 to outside the space 331 are formed on the side wall of the insulating spacer 317.
  • the insulating spacer 317 needs to be an electrically insulating material that electrically insulates the current socket 310 and the reel 304 from each other. Further, since the heat from the current socket 310 directly enters the winding frame 304, the superconducting wire of the superconducting coil 306 may exceed the superconducting critical temperature and may be quenched, so that the insulating spacer 317 is made of a heat insulating material (heat For example, the insulating spacer 317 may be made of GFRP, nylon, phenol resin, or the like.
  • the refrigerator 350 is a two-stage refrigerator having a radiation shield cooling unit 350 a that is in thermal contact with the radiation shield 340 and a condensing rod 350 b that is inserted into the refrigerant container 303.
  • the radiation shield cooling unit 350 a is configured to suppress the radiation heat into the refrigerant container 303 by cooling the radiation shield 340 to about 40K.
  • the condensing rod 350b is positioned above the interface 307a between the liquid phase and the gas phase of the refrigerant, and is kept at a temperature lower than the temperature at which the helium gas is condensed. Accordingly, the helium gas is condensed by contacting with the condensing rod 350b and re-liquefied into liquid helium 307.
  • liquid helium 307 evaporates in the reel internal cooling chamber 330a, and low-temperature helium gas is generated.
  • This helium gas flows out from the reel inner cooling chamber 330a to the space 331 in the reel outer cooling chamber 330b through the refrigerant passage hole 305a.
  • helium gas cools by contacting the flange portion 309 of the current socket 310 and the terminal 315a of the current lead 315. Thereafter, the helium gas flows out of the space 331 through the passage hole 317 a of the insulating spacer 317.
  • the helium gas flowing out of the space 331 flows into the space 332 between the outer peripheral wall 308a of the main body 308 of the current socket 310 and the neck tube 303c of the refrigerant container 303. As the helium gas passes through the space 332, the helium gas contacts the outer peripheral wall 308a of the main body 308 of the current socket 310 and cools.
  • the helium gas flowing out from the refrigerant passage hole 305 a contacts the outer peripheral wall 308 a of the current socket 310.
  • the current socket 310 is cooled by the helium gas, so that the heat of the normal temperature part transmitted through the current lead 315 and the Joule heat of the current lead 315 enter the reel 304 and the liquid helium (cryogenic part). Can be reduced.
  • the evaporation amount of helium gas can be reduced.
  • the resistance of the current lead 315 is reduced. Joule heat generated from the lead 315 can be reduced, and as a result, the evaporation amount of the liquid helium 307 can be reduced.
  • the current socket 310 is cooled by helium gas, a current insulating layer is not provided between the current socket 310 and the winding frame 304 as in the prior art, and the current socket 310 and the winding frame 304 are insulated spacers. It can be fixed directly via 317. As a result, the superconducting magnet device 301 can be made smaller than the conventional device by the amount that the space heat insulation layer is not provided.
  • the flow area of the helium gas flowing along the outer peripheral wall 308a of the main body 308 of the current socket 310 (flowing through the space 332) is reduced by the neck tube 303c of the refrigerant container 303. As a result, the current socket 310 can be further cooled.
  • FIG. 16 is an explanatory diagram illustrating an insulating spacer 470 according to a modification of the present embodiment.
  • the insulating spacer 470 of the present modification differs from the insulating spacer 317 of the present embodiment in that the insulating spacer 317 is formed in a cylindrical shape with both ends opened, and an opening on the outer peripheral surface 304b side of the refrigerant passage hole 305a.
  • a pair of circles sandwiching the refrigerant passage hole 305a are arranged on a line passing through the center of the opening on the outer peripheral surface 304b side of the refrigerant passage hole 305a.
  • the column-shaped insulating spacer 470 is disposed.
  • about another structure it is the same as that of the said embodiment.
  • the helium gas flowing out from the refrigerant passage hole 305a passes between the pair of insulating spacers 470, and the outer peripheral wall 308a of the main body 308 of the current socket 310 and the neck pipe 303c of the refrigerant container 303. It will pass through the space 332 between.
  • the flow area of the helium gas can be increased as compared with the passage hole 317a of the insulating spacer 317 of the above-described embodiment. Therefore, the outer peripheral wall of the main body 308 of the current socket 310 The amount of helium gas brought into contact with 308a can be increased, and as a result, the current socket 310 can be further cooled.
  • the present invention is not limited to this, and three or more insulating spacers 470 may be arranged. In this case, it is preferable that the insulating spacers 470 be disposed so as to surround the periphery of the opening on the outer peripheral surface 304b side of the refrigerant passage hole 305a at equal intervals.
  • FIGS. 17 to 19 are explanatory diagrams illustrating current sockets 400 to 402 according to modifications of the present embodiment, respectively.
  • the current sockets 400 to 402 of the present modification are different from the current socket 310 of the above-described embodiment.
  • the surface area of the outer peripheral walls 380a to 382a is increased in the main body portions 380 to 382 of the current sockets 400 to 402.
  • the projections 390 to 392 are provided.
  • it is the same as that of the said embodiment.
  • FIG. 17 shows a current socket 400 that extends radially outward along the axial direction of the main body 380 and includes a plurality of protrusions 390 at equal intervals along the circumferential direction of the main body 380.
  • FIG. 18 shows a current socket 401 that extends radially outward along the circumferential direction of the main body 381 and includes a plurality of protrusions 391 at equal intervals along the axial direction of the main body 381.
  • FIG. 19 shows a current socket 402 having a plurality of protrusions 392 at equal intervals along the circumferential direction of the main body 382 and the axial direction.
  • the contact area with the helium gas is increased. 402 can be further cooled. As a result, it is possible to further reduce the penetration of the heat of the normal temperature portion transmitted through the current lead 315 and the Joule heat of the current lead 315 into the extremely low temperature portion, and as a result, the evaporation amount of the liquid helium 307 is further reduced. can do.
  • helium is used as the refrigerant accommodated in the refrigerant container 303, but is not limited thereto, and may be nitrogen, for example.
  • the liquid phase refrigerant is liquid nitrogen
  • the gas phase refrigerant is nitrogen gas.
  • a passage hole 317a is formed in the insulating spacer 317, and the helium gas flowing out from the refrigerant passage hole 305a is caused to flow out of the space 331 through the passage hole 317a.
  • a passage hole is formed in the current socket 310, and helium gas flowing out from the refrigerant passage hole 305 a may flow out of the space 331 through the passage hole.
  • the helium gas flowing out from the refrigerant passage hole 305 a may be configured to contact the outer peripheral wall 308 a of the main body 308 of the current socket 310.
  • a wind direction plate that rectifies the flow direction of the helium gas flowing out from the space 331 so as to be directed toward the outer peripheral wall 308 a of the main body 308 of the current socket 310 may be provided.
  • the current socket 310 is disposed directly above the refrigerant passage hole 305a (the opening on the outer peripheral surface 304b side of the refrigerant passage hole 305a), but is not limited thereto. If the helium gas flowing out from the passage hole 305a is configured to come into contact with the outer peripheral wall 308a of the main body 308 of the current socket 310, the refrigerant passage hole 305a (the opening on the outer peripheral surface 304b side of the refrigerant passage hole 305a) ) Need not be arranged directly above, and only need to be arranged above.
  • FIG. 20 is a schematic configuration explanatory view showing the configuration of the superconducting magnet device according to one embodiment of the present invention, and is a diagram in which a quarter part of the whole is cut out to show the inside of the device.
  • FIG. 21 is an explanatory diagram showing a cross-sectional state of the superconducting magnet device shown in FIG.
  • FIG. 22 is an explanatory diagram showing a cross-sectional state taken along line AA of FIG.
  • FIG. 23 is an explanatory view showing a cross-sectional state taken along line AA of FIG. 21 showing a modification of the superconducting magnet device.
  • the superconducting magnet device 501 of this embodiment includes a superconducting magnet 502, a housing 503, and a magnetic field correction mechanism 510.
  • the superconducting magnet 502 includes a plurality of superconducting coils (not shown) and a helium container (not shown) filled with liquid helium, which is a refrigerant necessary to house the superconducting coils and keep the superconducting coils in superconductivity. ) And mainly consists of.
  • the superconducting magnet 502 has a cylindrical shape and generates a main magnetic field in the measurement space T formed in the internal region.
  • the housing 503 has a cylindrical shape and is a container that accommodates the superconducting magnet 502 between the inner peripheral wall 503a and the outer peripheral wall 503b.
  • the inner diameter of the housing 503 is about 250 mm to 400 mm.
  • the axial length of the housing 503 is about 500 mm.
  • the cylindrical end portion 503c of the housing 503 is provided with a plurality of female screw holes 503d extending in the axial direction and screwed into fixing bolts 517 described later.
  • the magnetic field correction mechanism 510 is for correcting the magnetic field homogeneity of the main magnetic field of the superconducting magnet 502, and includes a frame 511 and a plurality of recesses formed on an outer peripheral surface 512a of a main body 512 described later of the frame 511. 514, a magnetic piece 515 for magnetic field correction, and a spacer 516.
  • the frame body 511 includes a cylindrical main body portion 512, and a flange portion 513 formed at one end of the main body portion 512 in a radially outward direction, and is made of a nonmagnetic material.
  • the main body portion 512 has an outer diameter that is substantially the same as the inner diameter of the housing 503.
  • a plurality of recesses 514 are formed on the outer peripheral surface 512a of the main body 512 at equal intervals over the circumferential direction and the axial direction of the frame 511.
  • the concave and convex portions 514 are several cm square in length and width and about 2 mm in depth.
  • the bottom surface of the recess 514 is curved along the circumference of the main body 512.
  • a plurality of through-holes 513a corresponding to the female screw holes 503d of the housing 503 and extending in the axial direction are formed in the flange portion 513 of the frame body 511 so as to be spaced apart from the outer peripheral surface 512a of the main body portion 512 in the radially outward direction by a predetermined distance. ing.
  • the fixing bolt 517 is inserted into the through hole of the flange portion 513.
  • the frame body 511 is placed in a predetermined position of the housing 503, that is, the magnetic field correction mechanism 510 is placed in a predetermined position in the internal region of the superconducting magnet 502 by being inserted into the 513a and screwed into the female screw hole 503d in the cylindrical end portion of the housing 503.
  • the magnetic field uniformity of the main magnetic field of the superconducting magnet can be accurately corrected, and the magnetic field uniformity of the measurement space can be further improved.
  • the frame body 511 is detachably fixed at a predetermined position of the housing 503 by the female screw hole 503d of the housing 503, the through hole 513a of the flange portion 513 of the frame body 511, and the fixing bolt 517.
  • the present invention is not limited to this, and the magnetic field correction mechanism 510 is moved to a predetermined position in the inner region of the superconducting magnet 502 without narrowing the space of the measurement space T that is on the inner side of the inner peripheral surface of the frame 511. Any material can be used as long as it can be detachably fixed to the head.
  • a plurality of enclosed storage spaces 518 are formed at equal intervals in the circumferential direction and the axial direction.
  • a plurality of storage spaces 518 are formed at equal intervals in the circumferential direction and the axial direction of the frame body 511, so that the spatial freedom of the arrangement of the magnetic pieces 515 stored in the storage space 518 is reduced.
  • the magnetic field uniformity of the main magnetic field of the superconducting magnet 502 can be accurately corrected, and the magnetic field uniformity of the measurement space can be improved.
  • the magnetic piece 515 is a thin plate made of a magnetic material having a high magnetic permeability such as a nickel piece or an iron piece.
  • the magnetic body piece 515 is stored in a required storage space (hereinafter also referred to as a magnetic body storage space 518a) among the plurality of storage spaces 518 based on the layout design of the magnetic body in the magnetic field correction method described later. It will be.
  • the required storage space is the storage space 518 selected as the storage space for storing the magnetic material pieces 515 in the magnetic material layout design in the magnetic field correction method described later. is there.
  • the magnetic piece 515 is prepared in a plurality of types having dimensions that can be accommodated in the storage space 518 and having different vertical and / or horizontal dimensions and / or thickness dimensions. Specifically, with respect to the thickness of the magnetic piece 515, a plurality of types are prepared between 0.05 mm and 2 mm. Since the depth of the recess 514 is about 2 mm as described above, for example, when the thickness of the magnetic piece 515 is 0.05 mm, a plurality of the magnetic pieces 515 are stored in the storage space 518. Can do.
  • the amount of the magnetic body in the magnetic storage space 518a is set to the length, width, and thickness of the magnetic piece 515 to be stored.
  • the vertical and horizontal directions of the magnetic piece 515 for example, a plurality of types having substantially the same size and half the size as the vertical and horizontal directions of the recess 514 are prepared.
  • the magnetic piece may be a magnetic piece 650 having a U-shaped cross section formed by bending a plate member.
  • the magnetic piece 650 can be firmly fixed in the magnetic storage space 518a.
  • one side portion 650a of the U-shape of the magnetic piece 650 faces the bottom surface of the recess 514, and the other side portion 650b faces the inner peripheral wall 503a of the housing 503.
  • the magnetic piece 650 is accommodated in the magnetic substance accommodating space 518a, whereby the one side part 650a is The bottom surface of the recess 514 of the frame body 511 and the other side portion 650b press the inner peripheral wall 503a of the housing 503 by the elasticity (restoring force) of the magnetic body piece 650, respectively. Due to the reaction force of the pressing, the magnetic piece 650 can be firmly fixed in the magnetic body storage space 518a.
  • the magnetic piece 650 is fixed firmly in the magnetic storage space 518a by its own elasticity, even if a strong electromagnetic force acts, the magnetic piece 515 is placed in the magnetic storage space 518a. Since the movement can be eliminated, as a result, the magnetic field uniformity of the main magnetic field of the superconducting magnet 502 can be accurately corrected, and the magnetic field uniformity of the measurement space can be further improved.
  • the arrangement direction of the magnetic material pieces 650 stored in the magnetic material storage space 518a is not particularly limited as long as it is stored in the magnetic material storage space 518a against elasticity.
  • the one side portion 650a and the other side portion 650b are respectively directed to the opposing side surfaces of the recess 514, and the magnetic piece 650 is accommodated in the magnetic substance storage space 518a against elasticity, and the one side portion 650a and the other side
  • the part 650b may be configured to fix the magnetic piece 650 in the magnetic substance storage space 518a by pressing the opposite side surfaces of the recess 514 of the frame 511.
  • the spacer 516 is a thin plate made of non-magnetic resin or non-magnetic metal having elasticity (elasticity) such as silicon rubber, viton resin, aluminum or lead, and has a size that can be accommodated in the storage space 518 like the magnetic piece 515. A plurality of types having different vertical and horizontal dimensions and / or thickness dimensions are prepared.
  • the spacer 516 is for fixing the magnetic piece 515 at a required arrangement position in the magnetic substance storage space 518a. Specifically, the remaining space other than the space occupied by the magnetic piece 515 arranged in the magnetic material storage space 518a is filled with the spacer 516, so that the magnetic material piece 515 is disposed in the magnetic material storage space 518a as required. Fix in position.
  • the magnetic piece 515 fills the entire magnetic material storage space 518a, that is, when there is no remaining space in the magnetic material storage space 518a, it is necessary to store the spacer 516 in the magnetic material storage space 518a. There is no. That is, the magnetic material storage space 518a is filled with only the magnetic material piece 515 or the magnetic material piece 515 and the spacer 516 (by at least one of the magnetic material piece 515 or the spacer 516).
  • the storage space 518 other than the required storage space is a storage space that is not selected as a storage space for storing the magnetic material pieces 515 in the layout design of the magnetic material in the magnetic field correction method described later.
  • 518 may be in an empty state in which the magnetic piece 515 and the spacer 516 are not accommodated, or only the spacer 516 may be accommodated.
  • the magnetic piece 515 is stored in the magnetic storage space 518a surrounded by the inner peripheral wall 503a of the housing 503 and the recess 514 formed on the outer peripheral surface 512a of the main body 512 of the frame 511. .
  • the inner peripheral wall 503a of the housing 503 is used as one component of the magnetic body arranging means for fixing the magnetic piece 515 at a required position of the magnetic field correcting mechanism 510, the magnetic body arranging means in the magnetic field correcting mechanism 510 is used. Can be made smaller than that of the conventional apparatus.
  • the spatial freedom of the arrangement of the magnetic piece 515 provided in the magnetic field correction mechanism 510 can be increased as compared with the conventional apparatus, so that the measurement space The magnetic field uniformity of T can be improved. Further, since the magnetic material storage space 518a is filled with at least one of the magnetic material piece 515 and the spacer 516, the magnetic material piece 515 can be fixed in the magnetic material storage space 518a.
  • the magnetic material storage space 518a does not necessarily need to be densely filled with the magnetic material pieces 515 and the spacers 516, as long as it does not hinder the correction of the magnetic field uniformity of the main magnetic field. That is, even when the magnetic piece 515 is subjected to the action of electromagnetic force, if the magnetic piece 515 is fixed so as not to move in the magnetic storage space 518a, the magnetic piece 515a is magnetically coupled to the magnetic storage space 518a. There may be some space that is not buried in the body piece 515 or the spacer 516.
  • the frame body 511 and the spacer 516 of the magnetic field correction mechanism 510 are made of a non-magnetic material. Therefore, a magnetic field is not generated from the frame body 511 and the spacer 516 even in the magnetic field generation space. Thereby, since the frame 511 and the spacer 516 do not disturb the magnetic field in the measurement space T, the magnetic field uniformity of the main magnetic field can be accurately corrected, and the magnetic field uniformity of the measurement space T is further improved. be able to.
  • the magnetic piece 515 and the spacer 516 are curved along the circumference of the frame 511. That is, the magnetic piece 515 and the spacer 516 are curved along the bottom surface of the recess 514.
  • the magnetic piece 515 and the spacer 516 are curved along the bottom surface of the recess 514.
  • the spacer 516 that is slightly larger than the size of the remaining space in the remaining space of the magnetic material storage space 518a. This is because when the spacer 516 is slightly larger than the size of the remaining space, the spacer 516 is deformed and stored in the magnetic material storage space 518a. This is because the magnetic material storage space 518a is more firmly fixed by the restoring force. Furthermore, since the spacer 516 elastically presses the inner peripheral wall 503a of the housing 503 and the bottom surface of the recess 514 of the frame 511, the magnetic field correction mechanism 510 can be firmly fixed to the housing 503. There is.
  • the arrangement of the magnetic material in the internal region of the superconducting magnet 502 is designed. Specifically, the storage space 518 (magnetic material storage space 518a) for storing the magnetic material piece 515 is selected so that the error magnetic field component becomes small based on the measured magnetic fields at many points, and the selected magnetic field is selected. The size, number and number of magnetic pieces 515 to be stored in each of the body storage spaces 518a, and the arrangement position in the magnetic body storage space 518a are selected by calculation.
  • the main body portion 512 of the frame body 511 is arranged on the inner side of the inner peripheral wall 503a of the housing 503 (the main body portion 512 is inserted into the inner region of the superconducting magnet 502), and the fixing bolt 517 is inserted into the flange portion 513 of the frame body 511.
  • the magnetic field correction mechanism 510 is fixed at a predetermined position in the housing 503 (the internal region of the superconducting magnet 502) by being inserted into the through hole 513a and screwed into the female screw hole 503d of the housing 503 (see FIG. 21). At this time, the magnetic piece 515 is fixed in the magnetic body storage space 518a formed by the concave portion 514 of the frame 511 and the inner peripheral wall 503a of the housing 503. Thus, the magnetic field correction mechanism 510 is thus placed in the housing 503. As a result, the magnetic piece 515 can be fixed at a required position in the inner region of the superconducting magnet 502.
  • the magnetic field correction mechanism 510 In a state where the magnetic field correction mechanism 510 is fixed to the housing 503, the superconducting magnet 502 is excited, the magnetic field in the measurement space T is again measured at many points, and the magnetic field uniformity is evaluated.
  • the magnetic material is placed in the magnetic material storage space 518a based on the above-described magnetic material layout design. A series of operations of storing the body piece 515 and evaluating the magnetic field uniformity of the measurement space T are repeated, and the magnetic field uniformity of the measurement space T is gradually improved.

Abstract

 冷却室を小型化し、超電導マグネット装置を小型化することが可能な超電導マグネット装置を提供する。 メインコイル5が巻回された円筒形状のメインフォーマ13と、シールドコイル6が巻回され、メインフォーマの径方向外側を覆うようにメインフォーマ13と同芯に設けられた円筒形状のシールドフォーマ15と、シールドフォーマ15を覆うようにメインフォーマ13と同芯に設けられた円筒形状の外筒18と、メインフォーマ13と外筒18との夫々の軸方向両端部を封止することにより冷却室2を形成していると共に、メインフォーマ13とシールドフォーマ15と外筒との夫々の軸方向両端部に当接する環状の位置決め機構を同芯に備えた一対のエンドプレート14a・14bとを有している。

Description

超電導マグネット装置
 本発明は、冷却媒体が収容される冷却室を有する超電導マグネット装置に関する。
 一般的に、超電導マグネット装置は、超電導マグネットが、主に磁場空間に磁場を生成するメインフォーマに巻回されたメインコイルと、メインコイルが発生する磁場が装置外へ漏洩することを抑制するシールドフォーマに巻回されたシールドコイルから成る。このような超電導マグネットは、冷却媒体が収容される冷却室に設けられて冷却される。
 このような超電導マグネット装置として、例えば、特許文献1のようなものが知られている。特許文献1には、メインフォーマ及びシールドフォーマに夫々巻回され軸方向が実質的に水平となるように同心状に配置されたメインコイル及びシールドコイルと、これらの巻枠を支持する支持部材とが冷却室に配置された超電導マグネット装置が開示されている。
 また、磁気共鳴画像装置(MRI)用の超電導マグネット装置では、超電導磁石の内部領域に形成される測定空間(磁場発生空間の中心付近)において磁場均一度が極めて高い(数ppm以下である)こと、つまり磁束密度が一様で勾配がなく、磁束密度の空間的変化が極めて小さいことが要求される。このような磁場の高均一化を実現するために、設計過程において主磁場を発生する超電導磁石のコイル形状や電流密度等に工夫が施されている。しかし、製造過程における寸法誤差等により設計通りの製造精度が得られ難いことや、装置設置場所の周辺にある磁性体(例えば、鉄筋コンクリート建屋の鉄筋など)の影響により誤差磁場成分が生じ、所望の磁場均一度が得られないことがある。このため、超電導マグネット装置では、ニッケル片や鉄片などの高い透磁率を持つ磁場補正用の磁性体片を超電導磁石の内部領域の適切な位置に適切な量だけ配置して、この磁性体片の磁化により発生する磁場により、超電導磁石による主磁場の磁場均一度を補正する方法が採用されている。この磁性体片は磁性体シムと称されている。また、磁性体シムを用いて超電導磁石による主磁場の磁場均一度を補正する方法は磁性体シム法(パッシブシム法)と称されている。
 この磁場発生空間においては、磁性体片は強力な電磁力の作用を受けるため、磁性体片を超電導磁石の内部領域に何らかの方法で固定する必要がある。磁性体片を超電導磁石の内部領域に固定する一つの方法として、超電導体磁石を収容する円筒状のハウジング(ボア)の内周壁に磁性体片を接着材等で直接貼り付ける方法が従来から知られている。しかしながら、この方法では、補正過程においてハウジングの内周壁に一度貼り付けた磁性体片の位置を変更する場合、その都度、磁性体をハウジングからはがして貼り付け直す必要があるため、多大な労力を要するという問題があった。この問題を解決するための技術として、例えば、以下の特許文献2~4に記載にあるように、磁場補正機構をハウジングの内周壁に固定し、この磁場補正機構により磁性体片の配置を容易に変更可能にすると共に、磁性体片をこの磁場補正機構の所要位置において固定可能にしたものがある。
 特許文献2に記載された技術では、磁場強度補正装置(磁場補正機構)を円筒状容器(ハウジング)の内周壁に固定している。この磁場強度補正装置は、磁性体片を保持するホルダの両側に、板ばねを介して一対の突起部を形成し、この突起部を使用して、ホルダを保持部材の所要位置での固定及びその位置の変更を可能にしている。
 また、特許文献3に記載された技術では、円筒(ハウジング)の内周壁にカーテンレール状のリングレールと直線レールとを取り付けて、磁性体片をこれらのレールに嵌め込み、レール内を滑らせることで磁性体片の位置の変更を可能にすると共に、磁性体をレールにボルト等で固定することでレールの所要位置に磁性体片を固定可能にしている。
 また、特許文献4に記載された技術では、磁性体片を収納する磁性体シム機構(磁場補正機構)をハウジングの内周壁に固定している。この磁性体シム機構は、複数の磁性体片と、それを収納する複数の分割シムトレイ、この分割シムトレイ間に挿入されるシムトレイスペーサとを直線状に結合した組合せシムトレイ、分割シムトレイのシムポケットの中で磁性体シムを固定するシムスペーサ、及びシムポケットを覆うはめ込み式の蓋から構成されている。そして、分割シムトレイとシムトレイスペーサの組み合せ方、及び分割シムトレイに収納する磁性体片の量を変更することで、ハウジングの内周壁内における磁性体片の配置位置及び量を調整している。なお、分割シムトレイの側部には、はめ込み式の蓋を固定できるように溝が切ってあり、シムポケットに磁性体片を収納後、シムスペーサを充填し、はめ込み式用の蓋を閉めることによりシムポケット内部で磁性体片を固定することが可能にされている。
特開2007-053241号公報 特開昭63-122441号公報 特開平1-254154号公報 特開2008-289703号公報
 ところで、冷却室内で超電導マグネットを効率良く冷却するため、冷却室の外側には真空室等の断熱構造が設けられることが一般的である。この断熱構造の大きさは冷却室の大きさを基準に設計されるため、冷却室の小型化によって断熱構造を含む超電導マグネット装置を小型化することに期待が寄せられている。
 しかしながら、特許文献1に記載のようなメインコイル及びシールドコイルを夫々巻回するメインフォーマ及びシールドフォーマとこれらの巻枠を支持する支持構造とを冷却室に設ける構造では、冷却室の小型化に限界が生じていた。
 また、超電導マグネット装置において、測定空間の磁場均一度を向上させるためには、超電導磁石の内部領域に配置される磁性体片の配置の空間的な自由度(磁性体片の配置位置、及び量の自由度)が高いことが望ましい。つまり、ハウジングの内周壁に固定される磁性体補正機構においては、この磁性体補正機構が備える磁性体片の配置の空間的な自由度が高いことが望ましい。しかし、磁性体補正機構が備える磁性体片の配置の空間的な自由度を高くするために、ただ単に磁場補正機構の大きさを大きくすると、超電導磁石の内部領域に形成される測定空間(磁場発生空間)を狭めることになるため、この磁場補正機構は上限なく大きくすることはできない。特に四肢や頭部専用の小型のMRI用の超電導マグネット装置においては、超電導磁石の内部領域が小さいため、測定空間を所要の大きさ確保するために磁場補正機構の大きさはかなり制限されたものになっている。このため、磁性体片を磁場補正機構の所要位置に固定(配置)させる手段(以下、磁性体配置手段)の磁場補正機構において占める割合(大きさ)を小さくして、磁性体補正機構が備える磁性体片の配置の空間的な自由度を高くすることが可能な超電導マグネット装置が望まれている。
 上記特許文献2に記載された技術では磁性体配置手段はホルダ及び保持部材であり、特許文献3に記載された技術で磁性体配置手段はカーテンレール状のレール及びボルト等であり、特許文献4に記載された技術では磁性体配置手段は分割シムトレイ、シムスペーサ、及びはめこみ式の蓋であり、何れの技術においても磁性体配置手段の磁場補正機構において占める大きさが大きいため、磁性体補正機構が備える磁性体片の配置の空間的な自由度が充分に高いとは云い難いものである。
 そこで、本発明の目的は、冷却室を小型化し、超電導マグネット装置を小型化するとともに、超電導磁石の内部領域に形成される測定空間を狭めることなく、磁性体片の配置の空間的な自由度を高くすることが可能な超電導マグネット装置を提供することである。
 上記の課題を解決するために、本発明は、冷却媒体が収容される冷却室を有する超電導マグネット装置であって、メインコイルが巻回された円筒形状のメインフォーマと、シールドコイルが巻回され、前記メインフォーマの径方向外側を覆うように前記メインフォーマと同芯に設けられた円筒形状のシールドフォーマと、前記シールドフォーマを覆うように前記メインフォーマと同芯に設けられた円筒形状の外筒と、前記メインフォーマと前記外筒との夫々の軸方向両端部を封止することにより前記冷却室を形成していると共に、前記メインフォーマと前記シールドフォーマと前記外筒との夫々の軸方向両端部に当接する環状の位置決め機構を同芯に備えた一対のエンドプレートとを有していることを特徴とする
 上記の構成によれば、冷却媒体が収容される冷却室は、メインフォーマと外筒との隙間を一対のエンドプレートが夫々の軸方向両端部を封止することにより形成されている。これにより、メインコイルを巻回するためのメインフォーマが冷却室の径方向内側の壁面を兼ねている。従って、メインフォーマとは別に冷却室の径方向内側の壁面構造を設ける必要がなく、また、メインフォーマの支持構造が不要である。また、冷却室を封止するエンドプレートがメインフォーマ、シールドフォーマ、及び、外筒の夫々の軸方向両端部に当接して位置決めしている。従って、メインフォーマ、シールドフォーマ、及び、外筒を軸方向に支持する構造が不要である。この結果、冷却室を小型化し、超電導マグネット装置を小型化することが可能である。また、一対のエンドプレートは、円環状の位置決め機構を同芯に備え、各位置決め機構にメインフォーマとシールドフォーマと外筒とが当接される。これにより、メインフォーマとシールドフォーマと外筒との配設について容易に位置決めし、同芯とすることができる。
 また、本発明の超電導マグネット装置において、前記封止が溶接加工によって行われてもよい。
 上記の構成によれば、冷却室が溶接加工により封止されるため、ネジ止め構造等が不要である。これにより、省スペース化することができ、超電導マグネット装置を小型化することが可能である。
 また、本発明の超電導マグネット装置において、前記エンドプレートの少なくとも一方は、前記シールドフォーマの軸方向両端部と当接する当接面の一部に突出する凸部が形成され、前記シールドフォーマは、前記凸部に嵌合する凹部が形成されていてもよい。
 上記の構成によれば、シールドフォーマは、エンドプレートの少なくとも何れか一方に形成された凸部に凹部が嵌合された状態で支持される。これにより、シールドフォーマが冷却室に対して周方向に回転することを防止することができる。
 また、本発明の超電導マグネット装置において、前記メインフォーマと、前記シールドフォーマと、前記エンドプレートと、前記外筒とがステンレス鋼であってもよい。
 上記の構成によれば、冷却室を構成するメインフォーマ、シールドフォーマ、エンドプレート、及び、外筒、がステンレス鋼で形成されている。これにより、これらの部材の熱収縮率を同じとし、冷却等による熱収縮によって各部材間の位置関係にずれが発生することを防止することができる。その結果、メインコイル及びシールドコイルの位置ずれの発生を軽減することができる。
 また、本発明の超電導マグネット装置においては、前記メインフォーマと前記シールドフォーマとの間の断面形状に沿って配設された前記超電導マグネットの保護抵抗体をさらに有していてもよい。保護抵抗体は、クエンチが起きたときに超電導マグネットで蓄えられていたエネルギーを吸収することで当該超電導マグネットを保護している。
 一般的に、シールドコイルは、メインコイルの径方向外側に発生する磁場を打ち消すために設けられ、メインフォーマとシールドフォーマとの間に空間を設ける必要がある。上記の構成によれば、メインフォーマとシールドフォーマとの間の空間の断面形状に沿って、超電導マグネットの保護抵抗体が設けられている。これにより、省スペース化して冷却室の大きさをさらに縮小することができ、超電導マグネット装置を小型化することができる。
 また、本発明の超電導マグネット装置において、前記保護抵抗体は、プレートと、前記プレートのプレート面に沿って取り付けられ、線材で形成された少なくとも1本の抵抗要素と、を備え、前記抵抗要素が前記冷却媒体で浸漬冷却されていてもよい。
 上記の構成によれば、プレート(板状体)、およびそのプレート面に沿って取り付けられ線材で形成された抵抗要素で保護抵抗体を構成することにより、保護抵抗体の厚みを薄くでき、従来よりも狭い場所に保護抵抗体を設置できる。
 また、本発明の超電導マグネット装置においては、線材が折り曲げられて形成された複数本の前記抵抗要素が、相互に直列に接続されされた状態で前記プレート面に取り付けられていてもよい。
 上記の構成によれば、多数本の抵抗要素を設ける場合であっても、プレートの厚み方向に直交する方向の保護抵抗体のサイズを小さくすることができる。
 また、本発明の超電導マグネット装置においては、W字型形状の複数本の前記抵抗要素が、圧着端子を介して相互に直列に接続された状態で前記プレート面に取り付けられていてもよい。
 上記の構成によれば、プレートの厚み方向に直交する方向の保護抵抗体のサイズを小さくすることができる。また、隣り合う抵抗要素同士の接続なども容易に行なえる。
 また、本発明の超電導マグネット装置において、前記保護抵抗体が前記冷却媒体で浸漬冷却されてもよい。
 上記の構成によれば、メインコイルとシールドコイルとの間の隙間を小さくすることができ(または、メインコイルとシールドコイルとの間のわずかな隙間に保護抵抗体を設置でき)、超電導マグネット装置の小型化を図ることができる。
 また、本発明の超電導マグネット装置において、前記外筒は、前記シールドフォーマに設けられた、冷却媒体と、前記メインコイルおよび前記シールドコイルに励磁電流を供給する電流リードとを外部から導入するための導入部材が遊挿状態で挿通される挿通口を有していてもよい。
 上記の構成によれば、導入部材を挿通口に遊挿させることができる。これにより、冷却室の径方向について、導入部材分の長さを軽減させ冷却室の大きさをさらに縮小することができ、超電導マグネット装置を小型化することができる。
 また、本発明の超電導マグネット装置においては、前記冷却室が内部に形成された冷媒容器における前記冷却媒体の液相状態と気相状態の界面よりも上方に配置され、前記気相状態の前記冷却媒体を前記シールドフォーマ内部から前記シールドフォーマ外部に流出させる冷媒通路孔と、前記冷媒通路孔の上方に配置され、前記電流リードが着脱可能に接続される電流ソケットと、前記シールドフォーマと前記電流ソケットとの間に設けられ、前記電流ソケットを前記シールドフォーマに固定する絶縁スペーサと、前記電流ソケットと前記メインコイルおよび前記シールドコイルとに接続された超電導リード線とを有し、前記冷媒通路孔から流出する前記気相状態の前記冷却媒体を前記電流ソケットの外周壁に接触させるよう構成されていてもよい。
 上記の構成によれば、冷媒通路孔から流出する気相状態の冷却媒体は、電流ソケットの外周壁に接触する。これにより、電流ソケットはこの気相状態の冷却媒体により冷却されるので、電流リードを介して伝わる常温部の熱や電流リードのジュール熱が、シールドフォーマ及び液相状態の冷却媒体(極低温部)に侵入することを低減することができる。その結果、液相状態の冷却媒体の蒸発量を低減することができる。
 また、気相状態の冷却媒体により電流ソケットを冷却させているので、従来のように電流ソケットとシールドフォーマとの間に空間断熱層を設けないで、電流ソケットとシールドフォーマとを絶縁スペーサを介して直接固定させることができる。その結果、従来の装置よりも、この空間断熱層を設けない分だけ、超電導マグネット装置を小型化することができる。
 また、本発明の超電導マグネット装置において、前記絶縁スペーサが断熱材料からなっていてもよい。
 上記の構成によれば、電流リードを介して伝わる常温部の熱や電流リードのジュール熱が、極低温部に侵入することを低減することができ、その結果、液相状態の冷却媒体の蒸発量をより低減することができる。
 また、本発明の超電導マグネット装置においては、前記冷媒容器の天壁から上方に向かって延設され、前記電流リードが挿通する首管を更に有し、前記電流ソケットの一部又は全部が前記首管内に配置されていてもよい。
 上記の構成によれば、上記の構成によれば、電流ソケットの一部又は全部が首管内に配置されているので、超電導装置をさらに小型化することができる。また、この首管により電流ソケットの外周壁沿いを流れる気相状態の冷却媒体の流路面積が小さくされているので、電流ソケットの外周壁沿いを流れる気相状態の冷却媒体の流速は速くなる。これにより、電流ソケットをより冷却させることができるので、電流リードを介して伝わる常温部の熱や電流リードのジュール熱が、極低温部に侵入することをより低減することができ、その結果、液相状態の冷却媒体の蒸発量をさらに低減することができる。
 また、本発明の超電導マグネット装置において、前記電流ソケットは、外周壁の表面積を大きくする突起部を備えていてもよい。
 上記の構成によれば、電流ソケットは、外周壁の表面積を大きくする突起部を備えているので、電流ソケットをより冷却させることができる。これにより、電流リードを介して伝わる常温部の熱や電流リードのジュール熱が、極低温部に侵入することをより低減することができ、その結果、液相状態の冷却媒体の蒸発量をさらに低減することができる。
 また、本発明の超電導マグネット装置は、内側領域に形成される測定空間に主磁場を発生する超電導磁石と、内周壁と外周壁との間に前記超電導磁石を収容する円筒状のハウジングと、前記主磁場の磁場均一度を補正する磁場補正機構とを備え、前記磁場補正機構は、前記ハウジングの前記内周壁よりも径内側に配された円筒状の枠体と、前記枠体の外周面に形成され、前記ハウジングの前記内周壁とで囲繞された複数の収納空間を形成する複数の凹部と、前記複数の収納空間に収納される磁場補正用の磁性体片とを備えていることを特徴とする。
 上記の構成によれば、磁場補正用の磁性体片は、ハウジングの内周壁と、枠体の外周面に形成された凹部とで囲繞された収納空間に収納される。
 このように、磁性体片を磁場補正機構の所要位置に固定(配置)させる磁性体配置手段の一構成要素としてハウジングの内周壁を用いているので、磁場補正機構における磁性体配置手段の大きさを、従来装置に比べて小さくすることができる。従って、磁場補正機構の大きさが同じである場合においても、従来装置に比べて磁性体補正機構が備える磁性体片の配置の空間的な自由度を高くすることができるので、その結果、測定空間の磁場均一度を向上させることができる。
 また、本発明の超電導マグネット装置において、前記磁場補正機構は、前記収納空間に収納可能なスペーサを更に備え、前記収納空間は、前記磁性体片又は前記スペーサの少なくとも一方によりその空間が埋められていてもよい。
 上記の構成によれば、磁性体片をこの収納空間内において固定させることができ、磁性体片を磁場補正機構の所要位置により固定させることができるので、その結果、超電導磁石の主磁場の磁場均一度の補正を精度よく行うことができ、測定空間の磁場均一度をより向上させることができる。
 また、本発明の超電導マグネット装置において、前記磁性体片は断面U字状に形成されており、前記所要の収納空間に弾性に抗して収納されていてもよい。
 上記の構成によれば、磁性体片は自らの弾性により所要の収納空間において強固に固定されることになるので、その結果、超電導磁石の主磁場の磁場均一度の補正を精度よく行うことができ、測定空間の磁場均一度をより向上させることができる。
 また、本発明の超電導マグネット装置において、前記スペーサが非磁性体であってもよい。
 上記の構成によれば、磁場発生空間においてもスペーサから磁場は発生しない。従って、このスペーサは、測定空間の磁場を乱す要因とはならないので、その結果、超電導磁石の主磁場の磁場均一度を精度よく補正することができ、測定空間の磁場均一度をより向上させることができる。
 また、本発明の超電導マグネット装置において、前記磁性体片は、前記収納空間に複数収納可能な大きさに形成されていてもよい。
 上記の構成によれば、所要の収納空間に収納させる磁性体片の数を変更するだけで、所要の収納空間内の磁性体の量を調整することができるので、主磁場の磁場均一度の補正を容易に行うことができる。
 また、本発明の超電導マグネット装置において、前記凹部は、前記枠体の外周面の周方向及び軸方向に亘って複数形成されていてもよい。
 上記の構成によれば、凹部とハウジングの内周壁とで囲繞された収納空間は、枠体の周方向及び軸方向に亘って複数形成されることになるので、この収納空間に収納される磁性体片の配置の空間的な自由度は高くなり、その結果、超電導磁石の主磁場の磁場均一度を精度よく補正することができ、測定空間の磁場均一度をより向上させることができる。
 また、本発明の超電導マグネット装置において、前記枠体は、前記ハウジングの前記内周壁よりも径外側に拡径され、前記ハウジングの円筒端部に着脱可能に固定されたフランジ部を備えていてもよい。
 上記の構成によれば、枠体をハウジングに対して固定させることができるので、収納空間に収容された磁性体片を超電導磁石の内部領域の所要位置に固定させることができる。その結果、超電導磁石の主磁場の磁場均一度を精度よく補正することができ、測定空間の磁場均一度をより向上させることができる。
 本発明は、冷却室を小型化することにより、超電導マグネット装置を小型化することが可能である。また、超電導磁石の内部領域に形成される測定空間を狭めることなく、磁場補正機構が備える磁性体片の配置の空間的な自由度を高くすることができる。
超電導マグネット装置の全体を示す概略図である。 冷却容器の断面を示す模式図である。 冷却容器の部分断面を示す模式図である。 シールドフォーマ及びエンドプレートの図3におけるIV-IV線の部分断面を示す模式図である。 冷却容器の図2におけるV-V線断面を示す模式図である。 本発明の第2実施形態に係る超電導マグネット装置の側断面図である。 図6のA-A断面図である。 図7に示す保護抵抗体の詳細図である。 図6、7に示す超電導マグネット装置の超電導回路図である。 図8に示した抵抗要素の変形例を示す図である。 図7に示した保護抵抗体の変形例を示す図である。 図11に示した保護抵抗体の変形例を示す図である。 本発明の第3実施形態に係る超電導マグネット装置の断面を示す模式図である。 図13のA-A線断面図である。 本発明の第3実施形態に係る超電導マグネット装置の電流リードが取り付けられていない状態における、電流ソケット近傍の説明図である。 図15における絶縁スペーサの変形例を示す説明図である。 電流ソケットの変形例を示す説明図であり、(a)は電流ソケットのフランジ部を省略した平面図、(b)は電流ソケットのフランジ部を省略した斜視図である。 電流ソケットの変形例を示す説明図であり、(a)は電流ソケットのフランジ部を省略した平面図、(b)は電流ソケットのフランジ部を省略した斜視図である。 電流ソケットの変形例を示す説明図であり、(a)は電流ソケットのフランジ部を省略した平面図、(b)は電流ソケットのフランジ部を省略した斜視図である。 本発明の第4実施形態に係る超電導マグネット装置の構成を示す模式的構成説明図で、全体の1/4部分を切り取って装置内部を示すようにした図である。 図20に示す超電導マグネット装置の断面状態を示す説明図である。 図21のA―A線の断面状態を示す説明図である。 超電導マグネット装置の変形例を示す図21のA―A線の断面状態を示す説明図である。
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
[第1実施形態]
(超電導マグネット装置)
 図1は、本発明の第1実施形態に係る超電導マグネット装置1の全体を示す概略図である。図1に示すように、本実施形態の超電導マグネット装置1は、ハウジング1aと、導入部1bと、排気部1cとを有している。
 ハウジング1aは、外形が貫通孔1dを有した円筒形状に形成されている。貫通孔1dは、ハウジング1aにおいて同芯に形成されている。即ち、ハウジング1aと貫通孔1dとは共通の中心軸Z(図1の二点鎖線)を有している。本実施形態では、超電導マグネット装置1は、ハウジング1a下面を支持する支持機構(図示せず)を介して、中心軸Zが水平方向と平行となるように設置される。ハウジング1aは、中空にされ、該中空空間が真空にされた真空室3を形成している。ハウジング1aの真空室3には、冷却媒体(図示せず)を収容する冷却室2を形成する冷却容器12と、ハウジング1aから冷却容器12への熱浸入を軽減する遮へい板4とが配設される。このように、冷却容器12は、ハウジング1aが形成する真空室3に配設されることで、冷却容器12の断熱性が向上され、冷却容器12内における超電導マグネットの冷却効率が向上されている。
 導入部1bと排気部1cとは、外形が円柱形状を有し、ハウジング1aから鉛直上方向に突出するように並列して形成されている。即ち、導入部1bと排気部1cとは、ハウジング1aの上面においてハウジング1aの軸方向に対向するように形成されている。
 導入部1bは、内部に冷却室2と連通する連通機構を有しており、冷却媒体及び超電導マグネットへ電流を供給するための電流リード等を冷却室2に導入することを可能としている。排気部1cは、ハウジング1a内の真空室3と連通する連通機構と、該連通機構を介して真空室3を真空排気すると共に真空室3の真空状態を維持する真空排気装置とを有している(図示せず)。
 尚、以降、特記しない場合、ハウジング1aの中心軸Zが水平方向と平行、且つ、導入部1b及び排気部1cの軸方向が鉛直方向と平行に設置された超電導マグネット装置1について説明する。尚、このような設置態様に限定されず、例えば、超電導マグネット装置1は、中心軸Zが水平方向に対して傾きを有して設置されるものであってもよい。
(遮へい板4)
 ハウジング1a内に配設される遮へい板4は、同芯の二重管構造を有し、二重管構造が形成する隙間が軸方向に封止された略円筒形状を有している。遮へい板4は、貫通孔1dの径方向外側のハウジング1a内部に、中心軸Zと同芯に設置される。遮へい板4は、二重管構造の隙間に冷却容器12全体を覆うように冷却容器12を収容する。これにより、遮へい板4は、ハウジング1aの外部から冷却容器12へ侵入する熱を軽減し、冷却容器12内における超電導マグネットの冷却効率を向上させる。
(冷却容器12)
 冷却容器12は、冷却媒体が収容される冷却室2を形成する。冷却容器12は、同芯の二重管構造を有し、二重管構造が形成する隙間が軸方向に封止された略円筒形状を有している。冷却容器12は、遮へい板4の内径から径方向外側の真空室3に、中心軸Zと同芯に設置される。冷却容器12に収容される冷却媒体には、冷却容器12と同芯に巻回される超電導マグネット(メインコイル5、及び、シールドコイル6)の少なくとも一部が浸漬され、冷却される。本実施形態では、冷却媒体に液体ヘリウムを用いる。
 図2に示すように、超電導マグネット装置1は、冷却容器12がメインフォーマ13と、外筒18と、一対のエンドプレート14a・14bとを有している。また、冷却容器12内には、シールドフォーマ15と、超電導マグネットの保護抵抗体であるサービスプレート7、及び、冷却媒体及び超電導マグネットへ電流を供給するための電流リード(図示せず)を外部から冷却容器12内へ導入するためのコーン(導入部材)17とが設けられている。このような冷却容器12及び冷却容器12内の各構成について具体的に説明する。
(メインフォーマ13)
 メインフォーマ13は、円筒形状を有し、径方向内側の磁場空間に磁場を生成するメインコイル5が巻回されるようになっている。具体的に、メインフォーマ13は、円筒部13aと、フランジ部13b・13cと、メインコイル支持部13d・13eとを有している。円筒部13aは、円筒形状を有している。円筒部13aは、二重管構造を有する冷却容器12の内径側の壁面を構成する。換言すれば、円筒部13aは、冷却容器12に軸方向に貫通する貫通孔を形成する。
 フランジ部13b・13cは、円筒部13aの軸方向両端部の径方向外側に張出した円環状に形成されている。フランジ部13b・13cは、軸方向に薄肉に形成されている。フランジ部13b・13cは、エンドプレート14a・14bに接合される。これにより、フランジ部13b・13cは、エンドプレート14a・14bとで冷却容器12の軸方向端面を形成する。換言すれば、メインフォーマ13は、フランジ部13b・13cが、軸方向両端部に径方向外側に張出し、少なくとも真空室3の真空圧に対して座屈しない程度に軸方向に薄肉化され、冷却室2の軸方向両端面の少なくとも一部を形成する。
 尚、「真空圧に対して座屈しない程度」とは、メインフォーマ13、外筒18、及び、エンドプレート14a・14bによって冷却容器12が形成され、冷却室2が大気圧にされた冷却容器12がハウジング1aに収容されて真空圧が外部から付加された状態において、冷却容器12のメインフォーマ13が真空圧に対して座屈しない強度に形成されていることを意味する。また、真空室3の真空圧は、中真空又は高真空の圧力範囲にされるものであるが、これに限定されず、特定の用途の要件に応じて、低真空又は高真空以上であってもよい。
 メインコイル支持部13d・13eは、円筒部13aの軸方向中央に対向して配設される。メインコイル支持部13d・13eは、径方向外側に張出した円環状に形成されている。フランジ部13b・13c、及び、メインコイル支持部13d・13eは、円筒部13aと同芯に形成されている。
 このように、メインフォーマ13は、円筒形状であることに限定されず、一部に円筒形状部を有していればよい。
 メインコイル5は、円筒部13aの径方向外側であって、軸方向に対向するフランジ部13b及びメインコイル支持部13dの間と、軸方向に対向するメインコイル支持部13d及びメインコイル支持部13eの間と、軸方向に対向するメインコイル支持部13e及びフランジ部13cの間との夫々に、円筒部13aの周方向に巻回される。即ち、メインコイル5は、円筒部13a、フランジ部13b・13c、及び、メインコイル支持部13d・13eによって位置決めされる。
(シールドフォーマ15)
 シールドフォーマ15は、円筒形状を有し、メインコイル5が発生する磁場が超電導マグネット装置1の径方向外側へ漏洩することを抑制するシールドコイル6が巻回されるようになっている。シールドフォーマ15は、メインフォーマ13の径方向外側を覆うようにメインフォーマ13と同芯に設けられている。具体的に、シールドフォーマ15は、円筒部15aと、フランジ部15b・15cと、シールドコイル支持部15d・15eとを有している。円筒部15aは、円筒形状を有し、メインフォーマ13の径方向外側を覆うように配設される。即ち、円筒部15aは、メインフォーマ13のフランジ部13b・13c、及び、メインコイル支持部13d・13eの外径よりも大きい径を有していると共に、これらの径方向外側に配設される。円筒部15aは、メインフォーマ13よりも軸方向に短く形成されている。
 フランジ部15b・15cは、円筒部15aの軸方向両端部の径方向外側に張出した円環状に形成されている。シールドコイル支持部15d・15eは、円筒部15aの軸方向中央に対向して、径方向外側に張出した円環状に形成されている。フランジ部15b・15c、及び、シールドコイル支持部15d・15eは、円筒部15aと同芯に形成されている。
 このように、シールドフォーマ15は、円筒形状であることに限定されず、一部に円筒形状部を有していればよい。
 シールドコイル6は、円筒部15aの径方向外側であって、軸方向に対向するフランジ部15b及びシールドコイル支持部15dの間と、軸方向に対向するシールドコイル支持部15e及びフランジ部15cの間との夫々に、円筒部15aの周方向に巻回される。即ち、シールドコイル6は、円筒部15a、フランジ部15b・15c、及び、シールドコイル支持部15d・15eによって位置決めされる。
 円筒部15aの軸方向へ隣り合うフランジ部15b及びシールドコイル支持部15dの頭頂部には、コーン17を支持するための板状のコーン支持台19が軸方向に設置されている。コーン17は、円筒形状を有し、軸方向が鉛直方向となるようにコーン支持台19の上部に配設される。
(外筒18)
 外筒18は、円筒形状を有している。外筒18は、シールドフォーマ15を覆うようにメインフォーマ13と同芯に設けられている。具体的に、外筒18は、シールドフォーマ15のフランジ部15b・15c、及び、シールドコイル支持部15d・15eの外径よりも大きい径を有していると共に、これらの径方向外側に配設される。外筒18は、シールドフォーマ15よりも軸方向に長く形成されている。また、外筒18は、メインフォーマ13よりも軸方向に短く形成されている。外筒18は、二重管構造を有する冷却容器12の外径側の壁面を構成する。
 また、外筒18には、コーン17が遊挿状態で挿通される挿通口18aが上部に形成されている。換言すれば、外筒18は、シールドフォーマ15に設けられた冷却媒体及び電流リードを外部から導入するためのコーン17が遊挿状態で挿通される挿通口18aを有している。挿通口18aは、導入部1bに連通される。
 このように、コーン17を挿通口18aに遊挿させることができる。これにより、冷却室2の径方向について、コーン17分の長さを軽減させ冷却室2の大きさをさらに縮小することができ、超電導マグネット装置1を小型化することができる。
(エンドプレート14a・14b)
 エンドプレート14a・14bは、メインフォーマ13と外筒18との夫々の軸方向両端部を液密状態で封止することにより冷却室2を形成している。具体的に、エンドプレート14a・14bは、内径と外径とが同芯の円環形状に形成されている。エンドプレート14a・14bは、メインフォーマ13とシールドフォーマ15とを挟持するように、軸方向に対向して配置される。メインフォーマ13は、シールドフォーマ15よりも軸方向に長いため、エンドプレート14a・14bは、軸方向に屈曲して形成されている。即ち、エンドプレート14a・14bは、メインフォーマ13が当接される径方向内側部分が、シールドフォーマ15が当接される径方向外側部分よりも、軸方向真空室3に突出するように屈曲されている。
 エンドプレート14a・14bは、内径側の端部がメインフォーマ13のフランジ部13b・13cの外径側の端部と溶接により接合され、接合箇所を液密状態で封止するようになっている。また、エンドプレート14a・14bは、外径側の端部が外筒18の軸方向端部と溶接により接合され、接合箇所を液密状態で封止するようになっている。これにより、メインフォーマ13と外筒18とエンドプレート14a・14bとで冷却室2を形成し、冷却媒体を収容可能にしている。
 このように、冷却媒体が収容される冷却室2は、メインフォーマ13と外筒18との隙間を一対のエンドプレート14a・14bが夫々の軸方向両端部を液密状態に封止することにより形成されている。これにより、メインコイル5を巻回するためのメインフォーマ13が冷却室2の径方向内側の壁面を兼ねている。従って、メインフォーマ13とは別に冷却室2の径方向内側の壁面構造を設ける必要がなく、また、メインフォーマ13を径方向に支持する構造が不要である。また、冷却室2を封止するエンドプレート14a・14bがメインフォーマ13、シールドフォーマ15、及び、外筒18に当接して位置決めしている。従って、メインフォーマ13、シールドフォーマ15、及び、外筒18を軸方向に支持する構造が不要である。この結果、冷却室2を小型化し、超電導マグネット装置1を小型化することが可能である。
 また、一対のエンドプレート14a・14bは、円環状の位置決め機構を同芯に備え、各位置決め機構にメインフォーマ13とシールドフォーマ15と外筒18とが当接される。これにより、メインフォーマ13とシールドフォーマ15と外筒18との配設について容易に位置決めし、同芯とすることができる。
 尚、メインフォーマ13と、シールドフォーマ15と、エンドプレート14a・14bと、外筒18とはステンレス鋼で形成されている。本実施形態では、ステンレス鋼として、JISに規定されるSUS304Lを用いる。また、溶接時の溶加材としては、SUS308Lを用いる。これにより、これらの部材の熱収縮率を同じとし、冷却等による熱収縮によって各部材間の位置関係にずれが発生することを防止することができる。その結果、メインコイル5及びシールドコイル6の位置ずれの発生を軽減することができる。
 このように、冷却室2が溶接加工により液密状態で封止されている。従って、封止するためのネジ止め構造等が不要となっている。これにより、省スペース化することができ、超電導マグネット装置1を小型化することが可能である。
 また、上述のように、メインフォーマ13の一対のフランジ部13b・13cは、メインフォーマ13が真空圧に対して座屈しない程度に薄肉化されている。これにより、フランジ部13b・13cは、伝熱断面積が小さくなり、フランジ部の径方向外側端部からの熱に対するフランジ部の熱伝導率を小さくすることができる。この結果、メインフォーマ13をエンドプレート14a・14bで封止する際の溶接によってメインコイル5へ伝達される熱を軽減することができる。
(位置決め機構)
 ここで、エンドプレート14a・14bが有する位置決め機構について説明する。図3は、メインフォーマ13、シールドフォーマ15、及び、外筒18と、エンドプレート14bとの当接箇所を示す部分断面を示す模式図である。尚、エンドプレート14aについては、エンドプレート14bと同様であるため説明を省略する。
 エンドプレート14a・14bは、メインフォーマ13とシールドフォーマ15と外筒18との夫々の軸方向両端部に当接する環状の位置決め機構を同芯に備えている。メインフォーマ13とシールドフォーマ15と外筒18とを位置決めする位置決め機構の夫々について具体的に説明する。
 先ず、メインフォーマ13の位置決めについて説明する。図3に示すように、メインフォーマ13の軸方向両端部がエンドプレート14bの内径側端部に当接することにより、位置決めが行われるようになっている。具体的に、エンドプレート14bは、切欠端部141を有している。切欠端部141は、円環形状のエンドプレート14bの内径側の端部であり、冷却室2側にエンドプレート14bと同芯の円環状の切欠を有している。フランジ部13cの外径側の端部は、切欠端部141の切欠に嵌合状態で当接するようになっている。これにより、メインフォーマ13とエンドプレート14bとが同芯に固定されるようになっている。さらに、一対のエンドプレート14a・14bによって、メインフォーマ13が挟持されるように接合されることにより、エンドプレート14a・14bとメインフォーマ13との軸方向の位置関係が固定されるようになっている。
 次に、外筒18の位置決めについて説明する。図3に示すように、外筒18の軸方向両端部にエンドプレート14bの外周面142が当接することにより、位置決めが行われるようになっている。外周面142は、エンドプレート14bの径方向外側の端面であり、径が外筒18の内径に略一致して形成される。従って、エンドプレート14bが外筒18に嵌合され、外周面142が外筒18の径方向内側の端面に当接するようになっている。これにより、エンドプレート14bと外筒18とが同芯とされる。
 次に、シールドフォーマ15の位置決めについて説明する。図3に示すように、シールドフォーマ15の軸方向両端部に、エンドプレート14bの軸方向冷却室2側の端面が当接することにより、位置決めが行われるようになっている。具体的に、エンドプレート14bは、屈曲面143を有している。屈曲面143は、エンドプレート14bの軸方向冷却室2側端面であり、軸方向に屈曲されている。フランジ部15cは、軸方向の真空室3側の端面が、径方向外側の領域において突出して円環形状を形成する当接面151を有している。屈曲面143は、この当接面151に嵌合するように形成されている。従って、屈曲面143は、当接面151に嵌合状態で当接するようになっている。これにより、エンドプレート14bとシールドフォーマ15とが同芯とされる。
 このように、エンドプレート14a・14bには、切欠端部141、外周面142、及び、屈曲面143が円環状に同芯に形成されている。これらが、位置決め機構として夫々メインフォーマ13、外筒18、及び、シールドフォーマ15に当接することにより、位置関係を同芯に位置決めすることができるようになっている。
 また、図3及び図4に示すように、エンドプレート14a・14bの少なくとも一方(本実施形態では、エンドプレート14bのみ)は、シールドフォーマ15の軸方向両端部と当接する屈曲面143の一部に突出する凸部144が形成され、シールドフォーマ15は、凸部144に嵌合する凹部152が形成されている。具体的に、エンドプレート14bは、シールドフォーマ15と当接する屈曲面143において、軸方向冷却室2側に突出し、径方向に延在する凸部144を有している。また、シールドフォーマ15は、屈曲面143に当接する当接面151において、凸部144に嵌合する凹部152を有している。
 このように、シールドフォーマ15は、エンドプレート14bに形成された凸部144に凹部152が嵌合された状態で支持される。これにより、シールドフォーマ15は、冷却室2に対する周方向への回転が、凸部144によって防止される。
(サービスプレート7)
 次に、サービスプレート7について説明する。サービスプレート7は、超電導マグネットの保護抵抗体である。このサービスプレート7は、メインコイル5及びシールドコイル6の保護回路等を有している。図5に示すように、サービスプレート7は、メインフォーマ13とシールドフォーマ15との間の断面形状に沿って配設されている。
 具体的に、サービスプレート7は、メインフォーマ13のメインコイル支持部13d・13eに径方向に配設されたロッドを介して下面が支持されている。そして、サービスプレート7は、該支持箇所が上面からナットで螺合されることによりメインフォーマ13に固定されている。図5に示すように、サービスプレート7は、径方向の断面が、冷却容器12の軸を中心とした円軌跡に沿った形状に形成されると共に、メインフォーマ13とシールドフォーマ15との間に配置されている。
 シールドコイル6は、メインコイル5の径方向外側に発生する磁場を打ち消すために設けられ、メインフォーマ13とシールドフォーマ15との間に空間を設ける必要がある。このように、メインフォーマ13とシールドフォーマ15との間に必要な空間の断面形状に沿って、超電導マグネットの保護抵抗体であるサービスプレート7が設けられている。この結果、省スペース化して冷却室2の大きさをさらに縮小することができ、超電導マグネット装置1を小型化することができる。
(組み立て)
 次に、超電導マグネット装置1における冷却容器12の組み立て方法について説明する。先ず、メインフォーマ13とシールドフォーマ15との夫々に対して、図2に示すように超電導マグネットが巻回される。具体的には、メインコイル5がメインフォーマ13のフランジ部13b及びメインコイル支持部13dの間と、メインコイル支持部13d及びメインコイル支持部13eの間と、メインコイル支持部13e及びフランジ部13cの間との夫々に、周方向に巻回される。また、シールドコイル6がシールドフォーマ15のフランジ部15b及びシールドコイル支持部15dの間と、シールドコイル支持部15e及びフランジ部15cの間との夫々に、周方向に巻回される。
 次に、メインフォーマ13にサービスプレート7が固定され、シールドフォーマ15にコーン17を設けたコーン支持台19が固定される。そして、メインフォーマ13、シールドフォーマ15、及び、外筒18が、エンドプレート14bの位置決め機構に当接されて位置決めされる(図3参照)。これにより、メインフォーマ13、シールドフォーマ15、及び、外筒18が、互いに同芯となる。このとき、シールドフォーマ15は、エンドプレート14bの凸部144(図3及び図4参照)によって周方向の位置決めがなされる。尚、メインコイル5を構成する線材の両端部は、シールドフォーマ15に径方向に貫通された貫通孔(図示せず)を介して、シールドフォーマ15の径方向外側に挿通される。そして、メインコイル5、及び、シールドコイル6は、線材の両端部がサービスプレート7に結線される。
 そして、メインフォーマ13及び外筒18とエンドプレート14bとの仮溶接が行われた後、エンドプレート14aがメインフォーマ13、シールドフォーマ15及び外筒18に当接されて、メインフォーマ13、シールドフォーマ15、外筒18及びエンドプレート14a・14bの全体の位置決めが行われる。そして最終的にメインフォーマ13及び外筒18とエンドプレート14a・14bとの溶接が行われる。
 このように、メインフォーマ13、及び、シールドフォーマ15を支持するエンドプレート14a・14bが冷却容器12の外壁を兼ねているため、冷却容器12を構成する部材が減少される。これにより、組み立ての工数が軽減されコストを軽減することができる。
(動作)
 このように組み立てられた冷却容器12が組み込まれた超電導マグネット装置1の動作について説明する。超電導マグネット装置1の超電導マグネットは、冷却容器12の冷却室2に収容された液体ヘリウムにより冷却され、励磁されることによる温度上昇が防止される。上述のように、メインフォーマ13、外筒18、及び、エンドプレート14aが、冷却室2の壁面を兼ねているため、冷却室をこれらとは別の構成により形成する場合と比較して小型化されている。従って、同じ液体ヘリウムの量であっても冷却室2内の液体ヘリウムの超電導マグネットに対する液面高さを上昇させることができる。これにより、このような冷却室2は、超電導マグネットが液体ヘリウムに接触する表面積を増加させるため、超電導マグネットを効率良く冷却することができる。
 一方、超電導マグネットに対する液面高さが定められている場合、冷却室2が小型化されているため、使用する液体ヘリウムが減少される。これにより、コストを軽減することができる。
(変形例)
 以上、本発明の実施例を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施形態に記載されたものに限定されるものではない。
 例えば、本実施形態において、サービスプレート7は、断面が円軌跡に沿った形状に形成されているものであるが、これに限定されない。例えば、サービスプレートの断面が、メインフォーマとシールドフォーマとの間の断面形状に沿って屈曲する形状に形成されているものであってもよい。
 また、エンドプレート14bに形成されたシールドフォーマ15の周方向への回転を規制する凸部144は、エンドプレート14bの軸方向に突出して径方向に延在するものであるが、これに限定されない。例えば、シールドフォーマ15の周方向への回転を規制するエンドプレート14bの構造は、径方向に突出するものであってもよい。
[第2実施形態]
 次に、本発明の第2実施形態について図面を参照しつつ説明する。
(超電導マグネット装置の構成)
 図6および図7に示すように、本実施形態の超電導マグネット装置201は、メインコイル202と、メインコイル202と同軸でその外側に配置されたシールドコイル203と、シールドコイル203の外側に配置され液体ヘリウム211を収容するヘリウム容器204と、を具備してなる。メインコイル202とシールドコイル203との間の隙間には、本発明に係る保護抵抗体205が配置されている。
 メインコイル202は、ボア空間Sに所定の磁場を発生させるためのコイルである。また、シールドコイル203は、超電導マグネット装置201から外部へ漏れる漏れ磁場を低減させるための磁場を発生させるためのコイルである。
 メインコイル202は、5つの超電導コイル208a~208eと、巻枠209とを有する。超電導コイル208a~208eは、それぞれ、超電導線材が巻枠209にソレノイド状に巻かれてなるものである。シールドコイル203は、4つの超電導コイル208f~208iと、巻枠210とを有する。超電導コイル208f~208iは、それぞれ、超電導線材が巻枠210にソレノイド状に巻かれてなるものである。超電導線材は、例えばNbTi超電導線材やNb3Sn超電導線材などである。なお、巻枠209・210は、非磁性材であるアルミニウム材、ステンレス材などからなる。
(保護抵抗体)
 図8は、保護抵抗体205の詳細図である。このうち、図8(a)は、図7に示す保護抵抗体205のB-B展開図である。図8(b)は、図8(a)に示した抵抗要素207(207a)の拡大図であり、図8(c)は、図8(b)のC-C矢視図である。
 図7および図8に示すように、本実施形態の保護抵抗体205は、湾曲した形状(さらには円弧状)のプレート206と、プレート206のプレート面に沿って取り付けられた計9本の抵抗要素207(207a~207i)とを具備してなる。
(プレート)
 プレート206は、例えばSUS304などの非磁性の長方形の金属板を円弧状に曲げて形成されたものである。プレート206は、メインコイル202の巻枠209のフランジ部外周に沿うように円弧状に曲げて形成されている(図6参照)。プレート206に設けられた孔217は、抵抗要素207を取り付けるための孔である。また、プレート206に設けられた孔218は、巻枠209のフランジ部にプレート206を取り付けるための孔である。なお、プレート206は、GFRPなどの樹脂材料からなるものであってもよい。
(抵抗要素)
 図8(a)に全体を、図8(b)に詳細を示したように、抵抗要素207(207a~207i)は、それぞれ、φ1.6mmのステンレス製線材をW字型形状に折り曲げて形成したものである。抵抗要素207(207a~207i)は、圧着端子213を介して相互に直列に接続されている。そして、相互に直列に接続された抵抗要素207(207a~207i)は、ボルト・ナット212により、プレート206に取り付けられている。なお、ボルト・ナット212は、ダブルナットとされているが、シングルナットでもよい。
 また、プレート206への抵抗要素207(207a~207i)の取り付けは、ボルト・ナット212に限定されるものではない。例えば、プレート206と抵抗要素207(207a~207i)との間の絶縁を確保した上で、ネジが切られていない細い釘状部材と、かえりを有する抜け止め用のワッシャーとを用いて、抵抗要素207(207a~207i)をプレート206に取り付けてもよい。
 本実施形態のように、多数本の抵抗要素が必要なときであっても、W字型形状の抵抗要素とすることで、プレート206の厚み方向に直交する方向の保護抵抗体205のサイズを全体として小さくすることができる。
 また、抵抗要素207(207a~207i)を、圧着端子213を介して相互に接続することにより、隣り合う抵抗要素207(207a~207i)の接続が容易となる。さらには、抵抗要素207(207a~207i)をボルト・ナット212により、プレート206に取り付けることで、抵抗要素207(207a~207i)とプレート206との固定も容易となっている。
 また、線材からなる抵抗要素207の長さ寸法を変更することにより、その抵抗値を任意に選定できる。ここで、抵抗要素207の長さ寸法を変更する場合、例えば、プレート206の長手方向に直交する方向の相互に対向するボルト・ナット212(または孔217)の間隔を変更してもよいし(縮めたり広げたりする)、ボルト・ナット212(または孔217)の間隔はそのままで、1本当たりの折り曲げ回数を変更することにより、抵抗要素207の長さ寸法を変更してもよい。
 抵抗要素207を構成するステンレス製線材としては、SUS304、SUS308などの非磁性のステンレス製線材が挙げられる。ただし、抵抗要素207を構成する線材は、ステンレス製線材に限られることはない。また、抵抗要素207の径もφ1.6mmのものに限られるものではない。
 図8(c)に示すように、プレート206の抵抗要素207側のプレート面には絶縁シート220が貼り付けられている。絶縁シート220は、プレート206と抵抗要素207との間の絶縁を確保するためのものである。絶縁シート220の材料は、例えばポリアミドである。また、ボルト・ナット212のボルトの頭部とプレート206との間には、鍔を有する筒状の絶縁部材221が絶縁を確保するために挟み込まれている。さらに、本実施形態では、絶縁シート220と抵抗要素207(または圧着端子213)との間にGFRP製の筒状ナット215が挿入されている。筒状ナット215は、絶縁シート220が何らかの原因で剥がれた場合においても確実な絶縁を確保するためのものである。
 なお、図8(b)に示した、一端が抵抗要素207aに接続された導線214の他端は、例えば、超電導コイル208aに接続される。図8(c)においては、導線214の図示を省略している。
 図8(a)に、二点鎖線で示したように、プレート206には、抵抗要素207(207a~207i)とともに保護用のダイオード219を取り付けることもできる。また、図示を省略するが、永久電流スイッチなどの他の部品をプレート206に取り付けることもできる。
 以上説明したように、保護抵抗体205は、メインコイル202に沿う湾曲した形状のプレート206、およびそのプレート面に沿って取り付けられ線材で形成された抵抗要素207(207a~207i)を主たる部材として有するものであるため、全体としてその厚みを薄くできている。その結果、メインコイル202とシールドコイル203との間のわずかな隙間に保護抵抗体205を設置できており、超電導マグネット装置201の小型化を実現できている。
 次に、図9は、超電導マグネット装置201の超電導回路図である。図9に示した超電導回路は、メインコイル202およびシールドコイル203に電流を流すとともに、これらコイル202・203をクエンチなどから保護するための回路(保護回路)である。なお、図9中のコイル表示、抵抗要素表示において、図6に示した超電導コイル208a~208i、および図8(a)に示した抵抗要素207a~207iと符号を合わせている。なお、超電導コイルの順序および抵抗要素の順序は、あくまで一例であり、図9に示したものに限られることはない。
 図9に示したように、各超電導コイル208a~208iの両端には、それぞれ抵抗要素207a~207iが並列に接続されている。そして、直列に接続された超電導コイル208a~208iの両端には、直流電源222が接続され閉回路が形成されている。
 励磁され定常状態となったコイル202・203においては、その超電導回路内を流れる電流は、直流電源222から超電導コイル208a~208iへ流れ直流電源222へと戻る。この定常状態において、例えば、超電導コイル208aにクエンチが発生した場合、直流電源222から超電導コイル208aへ流れていた電流は抵抗要素207aを通り、超電導コイル208b~208iへ流れ直流電源222へと戻る。超電導コイル208aを流れていた電流は急激に減少し、超電導コイル208aの損傷は防止される。
 ここで、本実施形態では、抵抗要素207(207a~207i)を含む保護抵抗体205は、図7に示したように、液体ヘリウム211に浸漬しているため十分に冷却されており、かつ、抵抗要素207(207a~207i)には、φ1.6mmのステンレス製線材を使用しているため当該抵抗要素207(207a~207i)は冷却されやすい。したがって、抵抗要素207aに電流が流れ発熱したとしても、抵抗要素207aの温度上昇は少なく、換言すれば、液体ヘリウム211の蒸発量も少ない。すなわち、保護抵抗体205は、超電導コイル208a~208iを保護する役割を十分に果たす。
(抵抗要素の変形例)
 図10は、図8に示した抵抗要素207(207a)の変形例を示す図である。図10(a)に示す抵抗要素207aは、V型形状に線材が折り曲げられてなる抵抗要素である。図10(b)に示す抵抗要素207aは、図9(b)に示した抵抗要素と同じくW字型形状に線材が折り曲げられてなるものであるが、中央の折り曲げ位置が変更されている。
(保護抵抗体の変形例)
 図11は、図7に示した保護抵抗体205の変形例を示す図である。図11に示したように、メインコイル202とシールドコイル203との間にある程度の間隔がある場合には、保護抵抗体225を構成するプレート206を、平板形状のプレート206としてもよい。この場合、例えば、プレート206の両端に支持部材216を取り付け、この支持部材216を介して、プレート206をメインコイル202に固定する。
 また、図12に示したようなプレートであってもよい。なお、図12においては、抵抗要素207、ボルト・ナット212の表記を省略している。図12(a)に示した保護抵抗体235を構成するプレート206は、平板を折り曲げたものである。なお、2つ以上の折り曲げ箇所を有するプレートとしてもよい。また、図12(b)に示した保護抵抗体245を構成するプレート206は、湾曲した曲面を2つ有するものである。なお、3つ以上の湾曲した曲面を有するプレートとしてもよい。
 以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。
[第3実施形態]
 次に、本発明の第3実施形態について、図面を参照しつつ説明する。
 図13は、本発明の一実施形態に係る超電導マグネット装置301の断面を示す模式図である。図14は、図13のA-A線断面図である。図15は、電流リードが取り付けられていない状態における、電流ソケット近傍の説明図である。
 (超電導マグネット装置301)
 図13、及び図14に示すように、本実施形態の超電導マグネット装置301は、二重筒構造の真空容器302、真空容器302内に収容された二重筒構造の冷媒容器303及び二重筒構造の輻射シールド340、並びに冷媒容器303内に収容された中空状の円筒形状の巻枠304を有する。なお、真空容器302と冷媒容器303と輻射シールド340と巻枠304とは同心である。また、真空容器302、冷媒容器303、及び巻枠304は、それぞれ非磁性体材料により構成されており、その具体的な材質は特に問わないが、ステンレス鋼等が好ましい。
 (真空容器302)
 真空容器302は、外筒302a、及び内筒302bの両端が封止された横置き円筒形状の密閉容器である。この真空容器302は、輻射シールド340を覆うように形成されている。また、真空容器302は、内部に、真空ポンプにより真空状態に減圧された空間である真空室320を形成する。この真空室320は断熱作用を有するため、冷媒容器303内への常温部からの熱進入量を低減することができる。
 また、真空容器302の外筒302aの天壁(上部)には、首管302cが上方に向かって延設されている。この首管302cの上端部と、後述の冷媒容器303における首管303cの上端部とは気密に接合されており、これにより、冷媒容器303の首管303cがこの首管302cから吊り下がった状態にされている。真空容器302の外筒302aの外周壁には、後述の冷凍機350が設けられている。
 (輻射シールド340)
 輻射シールド340は、外筒340a、及び内筒340bの両端が封止された横置き円筒形状のシールドであり、冷媒容器303を覆うように形成されている。この輻射シールド340は、冷媒容器303への輻射熱の侵入を抑制する。また、この輻射シールド340の天壁(上部)には、首管340cが上方に向かって延設されている。この輻射シールド340の首管340cは、真空容器302の首管302cと互いに軸心が一致し、首管302cよりも管径が小さく設定されている。この首管340cの上端部と、後述の冷媒容器303における首管303cの上端部とは気密に接合されており、これにより、輻射シールド340の首管340cが、冷媒容器303の首管303cから吊り下がった状態にされている。
 (冷媒容器303)
 冷媒容器303は、外筒303a、及び内筒303bの両端が封止された横置き円筒形状の密閉容器である。この冷媒容器303の内部には、冷媒(冷却媒体)が収容される冷却室330が形成されている。本実施形態においては、冷媒はヘリウムであり、液相状態の冷媒である液体ヘリウム307と気相状態の冷媒であるヘリウムガス(図示せず)とがこの冷却室330に収容される。即ち、冷媒容器303は、冷媒であるヘリウムを液相状態(液体ヘリウム307)と気相状態(ヘリウムガス)とで収容する。液体ヘリウム307には、超電導コイル306の少なくとも一部が浸漬されており、超電導臨界温度以下の極低温に冷却されている。
 なお、冷却室330は、巻枠内部(巻枠304の内周面304aよりも径内側にある領域)の巻枠内部冷却室330aと、巻枠外部(巻枠304の外周面304bよりも径外側にある領域)の巻枠外部冷却室330bとからなる。
 また、冷媒容器303の外筒303aの天壁(上部)には、首管303cが上方に向かって延設されている。この冷媒容器303の首管303cは、真空容器302の首管302cと互いに軸心が一致し、輻射シールド340の首管340cよりも管径が小さく設定されている。この首管303cの上板には、後述の電流リード315を挿入可能な挿入孔が、その中心を首管302cの軸心上に位置されて形成されている。なお、この挿入孔はヘリウムガスを冷媒容器303内部から外部へと逃がす機能も有している。
 (巻枠304)
 巻枠304は、円筒形状の胴部311と該胴部311から径外方向に延設された複数のフランジ部312とを有した中空状の略円筒形状をなしている。また、巻枠304は冷媒の液相状態と気相状態の界面307a(液相と気相との境界面)が、巻枠内部冷却室330aに位置するように配置されている。換言すれば、冷媒の液相状態と気相状態の界面307aが、巻枠内部冷却室330aに位置するように、冷媒容器303内に液体ヘリウム307とヘリウムガスとが収容されている。なお、冷媒容器303内において、液体ヘリウム307は、超電導コイル306の超電導状態を維持するのに必要とする量が少なくとも収容されている。
 巻枠304のフランジ部312により仕切られた胴部311には、超電導線材が巻回されることによって形成された超電導コイル306が設けられている。この超電導コイル306は電流が供給されることで、径方向内側の磁場空間に磁場を発生する。
 また、巻枠304のフランジ部312のいくつかには、巻枠内部冷却室330aと巻枠内部冷却室330aとを結ぶ貫通孔305が形成されており、巻枠内部冷却室330aと巻枠内部冷却室330aとの間の冷媒の行き来を可能にしている。
 この貫通孔305の中には、冷媒の液相状態と気相状態の界面307aよりも上方に配置された冷媒通路孔305aがある。この冷媒通路孔305a(冷媒通路孔305aの外周面304b側の開口部)の真上には、真空容器302外部に設置された励磁電源に接続された電流リード315を着脱可能に接続する電流ソケット310が配置されている。
 冷媒通路孔305aは、巻枠内部冷却室330aにおいて液体ヘリウム307が蒸発したヘリウムガスを、巻枠内部冷却室330aから巻枠外部冷却室330bへと流通させる機能を有している。巻枠内部冷却室330aから巻枠外部冷却室330bへと流通されたヘリウムガスは、巻枠外部冷却室330bに確保された流路を流通し、電流ソケット310の後述する本体部308の外周壁308aに接触する。
 また、この巻枠304の外周面304bと電流ソケット310との間には、電流ソケット310を巻枠304の外周面304bに固定する絶縁スペーサ317が設けられている。
 (電流ソケット310)
 電流ソケット310は、図15に示すように、円筒状の本体部308と、本体部308の下端において径外方向に拡径して形成されたフランジ部309とを有する。また、電流ソケット310は、冷媒容器303の首管303cと同軸上に配置されている。また、本体部308の内径は、電流リード315の端子315aの外径と略同一寸法にされている。これにより、電流リード315を、冷媒容器303の首管303cの挿通孔に通して、上下方向に首管303c内を挿通させれば、電流リード315の端子315aを電流ソケット310に取り付けることができる。なお、励磁・消磁時においては、常温部からの極低温部への熱侵入量を低減するために、電流リードは電流ソケットから取り外されている。
 また、電流ソケット310の本体部308の一部は、首管303c内に配置されている。これにより、首管303c内に配置した電流ソケット310の分だけ冷媒容器303の外筒303aの内径を小さくすることができるので、冷媒容器303の大きさを小型化することができ、その結果、超電導マグネット装置301を小型化することができる。なお、本実施形態においては、電流ソケット310の本体部308の一部を首管303c内に配置させているが、これに限定されるものではなく、電流ソケット310全部が、首管303c内に配置されていてもよい。
 電流ソケット310のフランジ部309には、超電導コイル306と電気的に接続された超電導リード線335が接続されている。また、電流ソケット310は、電流リード315からの電流を超電導リード線335に流すために、電気的導通性材料であることが必要であり、電気良導性金属からなるものであることが好ましい。
 (絶縁スペーサ317)
 絶縁スペーサ317は両端が開口された円筒状に形成されている。絶縁スペーサ317の内径は冷媒通路孔305aの外周面304b側の開口部の開口径よりも大きくされている。また、絶縁スペーサ317の外径は電流ソケット310のフランジ部309の外形と同じ寸法にされている。なお、冷媒通路孔305aの開口部の開口径とは、開口部の内径の最大長さ(最大径)を示している。例えば、開口部が断面長方形状をなす場合には、長方形の対角線の長さを開口径とし、開口部が断面楕円形状をなす場合には、楕円の長径の長さを開口径とする。
 また、絶縁スペーサ317は、冷媒通路孔305aの外周面304b側の開口部の周囲をその側壁で囲むようにして、その一端が巻枠304の外周面304bにボルト等で固定されている。また、絶縁スペーサ317の他端は、電流ソケット310のフランジ部309の下面と固定されている。
 この絶縁スペーサ317は、電流ソケット310のフランジ部309、及び巻枠304の外周面304bとで空間331を形成する。また、絶縁スペーサ317の側壁には、空間331内から空間331外へとヘリウムガスを流通させる通路孔317aが複数(本実施形態では、対角線上に二つ)形成されている。
 絶縁スペーサ317は、電流ソケット310と巻枠304とを電気的に絶縁させる電気絶縁材料であることが必要である。また、電流ソケット310からの熱が巻枠304に直接侵入することで、超電導コイル306の超電導線材が超電導臨界温度を超えてクエンチが発生する可能性があるので、絶縁スペーサ317は断熱材料(熱伝導性が低い材料)であることが好ましく、例えば、この絶縁スペーサ317の材料として、GFRP、ナイロン、フェノール樹脂などが挙げられる。
 (超電導リード線335)
 超電導リード線335は、冷媒容器303内に設けられているので、この冷媒容器303内に収容された液体ヘリウム307、及び/又はヘリウムガスにより超電導臨界温度以下に冷却されている。従って、超電導リード線335の抵抗が小さく、発生するジュール熱は小さいので、この超電導リード線335のジュール熱による液体ヘリウム307の蒸発量は小さい。
 (冷凍機350)
 冷凍機350は、輻射シールド340と熱的に接触された輻射シールド冷却部350aと、冷媒容器303内に臨ませて挿入された凝縮棒350bとを有する二段式冷凍機である。輻射シールド冷却部350aは、輻射シールド340を約40Kまで冷却することで、冷媒容器303内への輻射熱を抑制する構成になっている。凝縮棒350bは、冷媒の液相状態と気相状態の界面307aよりも上方に位置されており、ヘリウムガスが凝縮する温度よりも低い温度に保たれている。従って、ヘリウムガスは、この凝縮棒350bに接触することで、凝縮されて液体ヘリウム307に再液化される。
 (ヘリウムガスの流れ)
 次に、冷媒容器303内におけるヘリウムガスの流れについて説明する。
 図14に示すように、まず、巻枠内部冷却室330aにおいて、液体ヘリウム307が蒸発して、低温のヘリウムガスが生成される。このヘリウムガスは、冷媒通路孔305aを介して、巻枠内部冷却室330aから巻枠外部冷却室330bにおける空間331に流出する。この空間331において、ヘリウムガスは、電流ソケット310のフランジ部309や電流リード315の端子315aに接触して冷却する。その後、ヘリウムガスは、絶縁スペーサ317の通路孔317aを通って、空間331外に流出する。空間331外に流出したヘリウムガスは、電流ソケット310の本体部308の外周壁308aと冷媒容器303の首管303cとの間の空間332に流入する。ヘリウムガスがこの空間332を通る際、ヘリウムガスは電流ソケット310の本体部308の外周壁308aに接触して冷却する。
 以上のように、冷媒通路孔305aから流出するヘリウムガスは、電流ソケット310の外周壁308aに接触する。これにより、電流ソケット310はヘリウムガスにより冷却されるので、電流リード315を介して伝わる常温部の熱や電流リード315のジュール熱が、巻枠304及び液体ヘリウム(極低温部)に侵入することを低減することができる。その結果、ヘリウムガスの蒸発量を低減することができる。また、電流リード315が、ヘリウムガスと接触することにより直接的に、及び冷却される電流ソケット310を介して間接的に冷却されることで、この電流リード315の抵抗が小さくなるので、この電流リード315から発生するジュール熱を小さくすることができ、その結果、液体ヘリウム307の蒸発量を低減することができる。
 またさらに、ヘリウムガスにより電流ソケット310を冷却させているので、従来のように電流ソケット310と巻枠304との間に空間断熱層を設けないで、電流ソケット310と巻枠304とを絶縁スペーサ317を介して直接固定させることができる。その結果、従来の装置よりも、この空間断熱層を設けない分だけ、超電導マグネット装置301を小型化することができる。
 また、電流ソケット310の本体部308の外周壁308aに沿って流れる(空間332を流れる)ヘリウムガスは、冷媒容器303の首管303cによりその流路面積が小さくされているので、ヘリウムガスの流速を速くすることができ、その結果、電流ソケット310をより冷却させることができる。
 (絶縁スペーサの変形例)
 次に、超電導マグネット装置301の絶縁スペーサの変形例について説明する。
 図16は、本実施形態の変形例に係る絶縁スペーサ470について説明する説明図である。
 本変形例の絶縁スペーサ470が上記本実施形態の絶縁スペーサ317と異なるところは、上記絶縁スペーサ317は、両端が開口された円筒状に形成され、冷媒通路孔305aの外周面304b側の開口部の周囲をその側壁で囲むようにして配置されているのに対し、本変形例では、冷媒通路孔305aの外周面304b側の開口部の中心を通る線上に、該冷媒通路孔305aを挟む一対の円柱状の絶縁スペーサ470が配置されている点である。なお、その他の構成については、上記実施形態と同様である。
 本変形例によれば、冷媒通路孔305aから流出するヘリウムガスは、対となる絶縁スペーサ470の間を通り、電流ソケット310の本体部308の外周壁308aと、冷媒容器303の首管303cとの間の空間332を通ることになる。この対となる絶縁スペーサ470の間は、上記実施形態の絶縁スペーサ317の通路孔317aと比べて、ヘリウムガスの流路面積を大きくすることができるため、電流ソケット310の本体部308の外周壁308aと接触させるヘリウムガスの量を多くすることができ、その結果、電流ソケット310をより冷却することができる。
 なお、本変形例では、絶縁スペーサ470が一対だけ配置されているが、これに限定されるものではなく、3つ以上の絶縁スペーサ470が配置されていてもよい。この場合、絶縁スペーサ470が、冷媒通路孔305aの外周面304b側の開口部の周囲を等間隔に囲んで配置されていることが好ましい。
 (電流ソケットの変形例)
 次に、超電導マグネット装置301の電流ソケットの変形例について説明する。
 図17~19は、本実施形態の変形例に係る電流ソケット400~402についてそれぞれ説明する説明図である。本変形例の各電流ソケット400~402が上記実施形態の電流ソケット310と異なるところは、本変形例では、電流ソケット400~402の本体部380~382に、外周壁380a~382aの表面積を大きくする突起部390~392を備えている点である。なお、その他の構成については、上記実施形態と同様である。
 図17は、本体部380の軸方向に沿って径外方向に延び、本体部380の周方向に沿って等間隔に複数の突起部390を備えた電流ソケット400を示している。図18は、本体部381の周方向に沿って径外方向に延び、本体部381の軸方向に沿って等間隔に複数の突起部391を備えた電流ソケット401を示している。図19は、本体部382の周方向、及び軸方向に沿って等間隔に複数の突起部392を備えた電流ソケット402を示している。
 このように、電流ソケット400~402の本体部380~382に外周壁380a~382aの表面積を大きくする突起部390~392を備えると、ヘリウムガスとの接触面積が大きくなるので、電流ソケット400~402はより冷却させることができる。これにより、電流リード315を介して伝わる常温部の熱や電流リード315のジュール熱が、極低温部に侵入することをより低減することができ、その結果、液体ヘリウム307の蒸発量をさらに低減することができる。
 以上、本発明の実施形態について説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施形態に記載されたものに限定されるものではない。
 例えば、本実施形態において、冷媒容器303に収容される冷媒として、ヘリウムを用いているが、これに限定されるものではなく、例えば、窒素でもよい。この場合、液相状態の冷媒は液体窒素となり、気相状態の冷媒は窒素ガスとなる。
 また、本実施形態において、絶縁スペーサ317に通路孔317aが形成されており、この通路孔317aを介して、冷媒通路孔305aから流出するヘリウムガスを空間331外へ流出させているが、これに限定されるものではなく、電流ソケット310に通路孔が形成されており、この通路孔を介して、冷媒通路孔305aから流出するヘリウムガスを空間331外へ流出させてもよい。即ち、冷媒通路孔305aから流出するヘリウムガスを電流ソケット310の本体部308の外周壁308aに接触させるよう構成されていればよい。また、空間331から流出したヘリウムガスの流動方向を、電流ソケット310の本体部308の外周壁308aに向かうように整流する風向板を備えていてもよい。
 また、本実施形態において、電流ソケット310は、冷媒通路孔305a(冷媒通路孔305aの外周面304b側の開口部)の真上に配置されているが、これに限定されるものではなく、冷媒通路孔305aから流出するヘリウムガスを電流ソケット310の本体部308の外周壁308aに接触させるよう構成されているものであれば、冷媒通路孔305a(冷媒通路孔305aの外周面304b側の開口部)の真上に配置されていなくてもよく、上方に配置さえされていればよい。
[第4実施形態]
 次に、本発明の第4実施形態を、四肢専用の小型のMRI用超電導マグネット装置に適用して図面を参照しつつ説明する。図20は、本発明の一実施形態に係る超電導マグネット装置の構成を示す模式的構成説明図で、全体の1/4部分を切り取って装置内部を示すようにした図である。図21は、図20に示す超電導マグネット装置の断面状態を示す説明図である。図22は、図21のA―A線の断面状態を示す説明図である。図23は、超電導マグネット装置の変形例を示す図21のA―A線の断面状態を示す説明図である。
 図20~図22に示すように、本実施形態の超電導マグネット装置501は、超電導磁石502と、ハウジング503と、磁場補正機構510とを備えている。
(超電導磁石)
 超電導磁石502は、複数の超電導コイル(図示せず)と、この超電導コイルを内部に収容し、超電導コイルを超電導に保つために必要な冷媒である液体ヘリウムが充填されたヘリウム容器(図示せず)とから主に構成されている。この超電導磁石502は円筒状をなしており、内部領域に形成される測定空間Tに主磁場を発生する。
(ハウジング)
 ハウジング503は円筒状をなし、内周壁503aと外周壁503bとの間に超電導磁石502を収容する容器である。ハウジング503の内径は250mm~400mm程度である。またハウジング503の軸方向長さは500mm程度である。ハウジング503の円筒端部503cには、図21に示すように、軸方向に延び、後述する固定ボルト517と螺合される雌ネジ穴503dが複数穿設されている。
(磁場補正機構)
 磁場補正機構510は、超電導磁石502の主磁場の磁場均一度を補正するためのものであり、枠体511と、枠体511の後述する本体部512の外周面512aに形成された複数の凹部514と、磁場補正用の磁性体片515と、スペーサ516とを備えている。
(枠体)
 枠体511は、円筒状の本体部512と、本体部512の一端に径外方向に拡径して形成されたフランジ部513とを備えており、非磁性体材料からなる。この本体部512は、その外径がハウジング503の内径と略同一寸法にされている。これにより、枠体511の本体部512をハウジング503の内周壁503aよりも径内側に配した際に、フランジ部513の外径はハウジングの内周壁503aの同一面上よりも径外側に配されることになる。
 本体部512の外周面512aには、枠体511の周方向及び軸方向に亘って等間隔に凹部514が複数形成されている。この凹部514の縦横は数cm角、深さは2mm程度である。また凹部514の底面は、本体部512の円周に沿って湾曲されている。
 枠体511のフランジ部513には、ハウジング503の雌ネジ穴503dに対応し、軸方向に延びる貫通孔513aが、本体部512の外周面512aから径外方向に所定間隔離反して複数形成されている。枠体511の本体部512をハウジング503の内周壁503aよりも径内側に配した(本体部512を超電導磁石502の内部領域に挿入した)際に、固定ボルト517をこのフランジ部513の貫通孔513aに挿通させ、ハウジング503の円筒端部の雌ネジ穴503dと螺合させることで、枠体511をハウジング503の所定位置に、すなわち、磁場補正機構510を超電導磁石502の内部領域の所定位置に着脱可能に固定させることができる。その結果、超電導磁石の主磁場の磁場均一度を精度よく補正することができ、測定空間の磁場均一度をより向上させることができる。
 上記のように本実施形態では、ハウジング503の雌ネジ穴503d、枠体511のフランジ部513の貫通孔513a、及び固定ボルト517により、枠体511をハウジング503の所定位置に着脱可能に固定させているが、これに限定されることはなく、枠体511の内周面よりも径内側にある測定空間Tの空間を狭めることなく、磁場補正機構510を超電導磁石502の内部領域の所定位置に着脱可能に固定させることができるものであればよい。
 枠体511の本体部512をハウジング503の内周壁503aよりも径内側に配した際には、図21及び図22に示すように、ハウジング503の内周壁503aと枠体511の凹部514とで囲繞された収納空間518が周方向及び軸方向に亘って等間隔に複数形成される。このように、収納空間518は、枠体511の周方向及び軸方向に亘って等間隔に複数形成されているため、この収納空間518に収納される磁性体片515の配置の空間的な自由度は高く、その結果、超電導磁石502の主磁場の磁場均一度を精度よく補正することができ、測定空間の磁場均一度を向上させることができる。
(磁性体片及びスペーサ)
 磁性体片515は、ニッケル片や鉄片などの高い透磁率を持つ磁性体材料からなる薄板である。この磁性体片515は、後述する磁場補正方法における磁性体の配置設計に基づいて、複数の収納空間518のうちの所要の収納空間(以下、磁性体収納空間518aとも称す。)に収納されることになる。換言すれば、所要の収納空間(磁性体収納空間518a)とは、後述の磁場補正方法における磁性体の配置設計において、磁性体片515を収納させる収納空間として選定された収納空間518のことである。
 この磁性体片515は、収納空間518に収まる寸法で、縦横の寸法及び/又は厚さの寸法が異なる複数種類のものが用意されている。具体的には、磁性体片515の厚さについては、0.05mm~2mmの間で複数種類用意されている。凹部514の深さは上記したように2mm程度であるため、例えば、磁性体片515の厚さが0.05mmである場合には、この磁性体片515を収納空間518に複数枚収納させることができる。このように、磁性体片515が収納空間518に複数枚収納可能な大きさに形成されていた場合、磁性体収納空間518a内における磁性体の量を、収納させる磁性体片515の縦横及び厚さの寸法並びに枚数により調整することができるので、その結果、主磁場の磁場均一度の補正(調整)を容易に行うことができる。磁性体片515の縦横については、例えば、凹部514の縦横と略同一寸法や半分の寸法等のものが複数種類用意されている。
 なお、磁性体片は、図23に示すように、板部材を曲げたような断面U字状に形成された磁性体片650でもよい。この磁性体片650を、その弾性に抗して磁性体収納空間518aに収納させることで、磁性体片650を磁性体収納空間518a内において強固に固定させることができる。具体的には、図23に示すように、磁性体片650のU字の一側部650aを凹部514の底面に向け、他側部650bをハウジング503の内周壁503aに向けて、この磁性体片650をU字が狭まるように(一側部650aと他側部650bとを近づけるように)変形させて、磁性体片650を磁性体収納空間518aに収納させることで、一側部650aは枠体511の凹部514の底面を、他側部650bはハウジング503の内周壁503aを、この磁性体片650の弾性(復元力)によりそれぞれ押圧することになる。この押圧の反力により、磁性体片650を磁性体収納空間518a内に強固に固定させることができる。このように、磁性体片650を自らの弾性により磁性体収納空間518a内に強固に固定させることで、強い電磁力の作用が働いたとしても、磁性体片515を磁性体収納空間518a内において動くことをなくすことができるので、その結果、超電導磁石502の主磁場の磁場均一度の補正を精度よく行うことができ、測定空間の磁場均一度をより向上させることができる。なお、磁性体収納空間518aに収納される磁性体片650の配置向きは特に限定されるものではなく、弾性に抗して磁性体収納空間518aに収納されていればよい。例えば、一側部650a及び他側部650bを凹部514の対向する側面にそれぞれ向けて、磁性体片650を弾性に抗して磁性体収納空間518aに収納させて、一側部650a及び他側部650bが枠体511の凹部514の対向する側面を押圧させることで、磁性体片650を磁性体収納空間518a内に固定させるようにされていてもよい。
 スペーサ516は、シリコンゴムやバイトン樹脂あるいはアルミニウムや鉛などの弾性(弾力性)のある非磁性樹脂、非磁性金属からなる薄板であり、磁性体片515と同様に、収納空間518に収まる寸法で、縦横の寸法及び/又は厚さの寸法が異なる複数種類のものが用意されている。このスペーサ516は、磁性体片515を磁性体収納空間518a内の所要の配置位置に固定させるためのものである。具体的には、磁性体収納空間518a内に配置された磁性体片515が占める空間以外の残余空間をこのスペーサ516により埋めることで、磁性体片515を磁性体収納空間518a内の所要の配置位置に固定させる。なお、磁性体片515が磁性体収納空間518a全体を埋めている場合、すなわち、磁性体収納空間518a内に残余空間が存在しない場合には、このスペーサ516を磁性体収納空間518aに収納させる必要はない。つまり、磁性体収納空間518aは、磁性体片515のみ、又は磁性体片515及びスペーサ516により(磁性体片515又はスペーサ516の少なくとも一方により)、その空間が埋められている。
 なお、所要の収納空間(磁性体収納空間518a)以外の収納空間518は、即ち後述の磁場補正方法における磁性体の配置設計において、磁性体片515を収納させる収納空間として選定されていない収納空間518は、磁性体片515及びスペーサ516が収納されていない空の状態にされていてもよく、また、スペーサ516のみが収納されていてもよい。
 以上のように、磁性体片515は、ハウジング503の内周壁503aと、枠体511の本体部512の外周面512aに形成された凹部514とで囲繞された磁性体収納空間518aに収納される。このように、磁性体片515を磁場補正機構510の所要位置に固定させる磁性体配置手段の一構成要素として、ハウジング503の内周壁503aを用いているので、磁場補正機構510における磁性体配置手段の大きさを、従来装置に比べて小さくすることができる。従って、磁場補正機構510の大きさが同じである場合においても、従来装置に比べて磁場補正機構510が備える磁性体片515の配置の空間的な自由度を高くすることができるので、測定空間Tの磁場均一度を向上させることができる。また、磁性体収納空間518aは、磁性体片515又はスペーサ516の少なくとも一方によりその空間が埋められているので、磁性体片515を磁性体収納空間518a内において固定させることができる。
 なお、磁性体収納空間518aは、磁性体片515やスペーサ516によりその空間全体が密に埋められている必要は必ずしもなく、主磁場の磁場均一度の補正に支障をきたさない程度であれば、すなわち、磁性体片515が電磁力の作用を受けた際においても、この磁性体片515が磁性体収納空間518a内に動かないように固定されているのであれば、磁性体収納空間518aに磁性体片515やスペーサ516に埋められていない若干の空間があってもよい。
 また、上記したように、磁場補正機構510の枠体511及びスペーサ516は非磁性体材料からなる。従って、磁場発生空間においても枠体511及びスペーサ516から磁場は発生しない。これにより、枠体511及びスペーサ516は、測定空間Tの磁場を乱す要因とはならないので、主磁場の磁場均一度を精度よく補正することができ、測定空間Tの磁場均一度をより向上させることができる。
 また、磁性体片515及びスペーサ516は、枠体511の円周に沿って湾曲されている。すなわち、磁性体片515及びスペーサ516は凹部514の底面に沿って湾曲されている。このように磁性体片515及びスペーサ516を湾曲させることで、磁性体片515を磁性体収納空間518aに収納した際に凹部514と磁性体片515との間、及びスペーサ516と磁性体片515との間に生じる隙間を減らすことができるため、磁性体片515に強い電磁力の作用が働いた場合においても、磁性体片515を磁性体収納空間518a内において動かないように固定させることができると共に、磁性体収納空間518aに収納される磁性体収納空間518aの配置の自由度を高くすることができる。
 また、磁性体収納空間518aの残余空間には、この残余空間の大きさよりも若干大きいスペーサ516を収納することが好ましい。この理由は、スペーサ516が残余空間の大きさよりも若干大きい場合、スペーサ516は磁性体収納空間518a内に変形されて収納されることになるので、磁性体片515は、このスペーサ516の弾性(復元力)により磁性体収納空間518a内により強固に固定されることになるからである。またさらに、このスペーサ516は、ハウジング503の内周壁503aと枠体511の凹部514の底面とを弾性により押圧することになるので、磁場補正機構510をハウジング503に強固に固定させることができる場合がある。
 [磁場補正方法]
 次に、超電導マグネット装置501の磁場補正方法ついて説明する。まず、磁場補正機構510における枠体511の本体部512をハウジング503の内周壁503aよりも径内側に配さない状態(磁性体片515を超電導磁石502の内部領域に配さない状態)で、超電導磁石502を励磁し、測定空間Tの磁場を多数点測定し、超電導磁石502が発生する主磁場のみの磁場均一度を評価する。次に超電導磁石502の主磁場の磁場均一度を補正するために、超電導磁石502の内部領域における磁性体の配置設計をする。具体的には、測定された多数点の磁場を基に、誤差磁場成分が小さくなるように、磁性体片515を収納させる収納空間518(磁性体収納空間518a)の選定、並びに選定された磁性体収納空間518a各々に収納させる磁性体片515の縦横・厚さの寸法、枚数、及び磁性体収納空間518a内の配置位置の選定を計算により行う。
 次に、上記の配置設計に基づいて、図20に示すように、磁性体収納空間518aに対応する凹部514に、磁性体片515のみ、又は磁性体片515及びスペーサ516を入れる。その後、枠体511の本体部512をハウジング503の内周壁503aよりも径内側に配し(本体部512を超電導磁石502の内部領域に挿入し)、固定ボルト517を枠体511のフランジ部513の貫通孔513aに挿通させ、ハウジング503の雌ネジ穴503dと螺合させることで、磁場補正機構510をハウジング503(超電導磁石502の内部領域)の所定位置に固定させる(図21参照)。この時、磁性体片515は、枠体511の凹部514とハウジング503の内周壁503aとで形成された磁性体収納空間518a内に固定されているので、このように磁場補正機構510をハウジング503の所定位置に固定させることで、結果として磁性体片515を超電導磁石502の内部領域の所要位置に固定させることができる。
 磁場補正機構510をハウジング503に固定した状態で、超電導磁石502を励磁し、再度測定空間Tの磁場を多数点測定し、磁場均一度を評価する。通常、一回の補正では測定空間Tの磁場均一度を目標範囲(数ppm以下)にすることは難しいので、上記した磁性体の配置設計、配置設計に基づいた磁性体収納空間518aへの磁性体片515の収納、測定空間Tの磁場均一度の評価の一連の作業を繰り返して、徐々に測定空間Tの磁場均一度を向上させていく。
 以上、本発明の一実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。
1  超電導マグネット装置
 1a  ハウジング
 1b  導入部
 1c  排気部
 1d  貫通孔
 2  冷却室
 3  真空室
 4  遮へい板
 5  メインコイル
 6  シールドコイル
 7  サービスプレート
 12  冷却容器
 13  メインフォーマ
 13a  円筒部
 13b・13c  フランジ部
 13d・13e  メインコイル支持部
 14a・14b  エンドプレート
 15  シールドフォーマ
 15a  円筒部
 15b・15c  フランジ部
 15d・15e  シールドコイル支持部
 17  コーン
 18  外筒
 18a  挿通口
 19  コーン支持台
 141  切欠端部(位置決め機構)
 142  外周面(位置決め機構)
 143  屈曲面(位置決め機構)
 144  凸部
 151  当接面
 152  凹部
 201  超電導マグネット装置
 202  メインコイル
 203  シールドコイル
 204  ヘリウム容器
 205  保護抵抗体
 206  プレート
 207  抵抗要素
 211  液体ヘリウム
 301  超電導マグネット装置
 302  真空容器
 303  冷媒容器
 304  巻枠
 305a  冷媒通路孔
 306  超電導コイル
 307  液体ヘリウム(液相状態の冷媒)
 307a  冷媒の液相状態と気相状態の界面
 308a  外周壁(電流ソケットの外周壁)
 310  電流ソケット
 315  電流リード
 317  絶縁スペーサ
 335  超電導リード線
 380a~382a  外周壁(電流ソケットの外周壁)
 390~392  突起部
 400~402  電流ソケット
 501  超電導マグネット装置
 502  超電導磁石
 503  ハウジング
 503a  内周壁
 503b  外周壁
 510  磁場補正機構
 511  枠体
 512  本体部
 512a  外周面
 514  凹部
 515  磁性体片
 516  スペーサ
 518  収納空間
 518a  所要の収納空間(磁性体収納空間)
 650  磁性体片

Claims (21)

  1.  冷却媒体が収容される冷却室を有する超電導マグネット装置であって、
     メインコイルが巻回された円筒形状のメインフォーマと、
     シールドコイルが巻回され、前記メインフォーマの径方向外側を覆うように前記メインフォーマと同芯に設けられた円筒形状のシールドフォーマと、
     前記シールドフォーマを覆うように前記メインフォーマと同芯に設けられた円筒形状の外筒と、
     前記メインフォーマと前記外筒との夫々の軸方向両端部を封止することにより前記冷却室を形成していると共に、前記メインフォーマと前記シールドフォーマと前記外筒との夫々の軸方向両端部に当接する環状の位置決め機構を同芯に備えた一対のエンドプレートと
    を有していることを特徴とする超電導マグネット装置。
  2.  前記封止が溶接加工によって行われることを特徴とする請求項1に記載の超電導マグネット装置。
  3.  前記エンドプレートの少なくとも一方は、前記シールドフォーマの軸方向両端部と当接する当接面の一部に突出する凸部が形成され、
     前記シールドフォーマは、前記凸部に嵌合する凹部が形成されていることを特徴とする請求項1又は2に記載の超電導マグネット装置。
  4.  前記メインフォーマと、前記シールドフォーマと、前記エンドプレートと、前記外筒とがステンレスであることを特徴とする請求項1~3の何れか1項に記載の超電導マグネット装置。
  5.  前記メインフォーマと前記シールドフォーマとの間の断面形状に沿って配設された前記超電導マグネットの保護抵抗体をさらに有していることを特徴とする請求項1~4の何れか1項に記載の超電導マグネット装置。
  6.  前記保護抵抗体は、
     プレートと、
     前記プレートのプレート面に沿って取り付けられ、線材で形成された少なくとも1本の抵抗要素と、
     を備え、
     前記抵抗要素が前記冷却媒体で浸漬冷却されることを特徴とする請求項5に記載の超電導マグネット装置。
  7.  線材が折り曲げられて形成された複数本の前記抵抗要素が、相互に直列に接続された状態で前記プレート面に取り付けられていることを特徴とする請求項6に記載の超電導マグネット装置。
  8.  W字型形状の複数本の前記抵抗要素が、圧着端子を介して相互に直列に接続された状態で前記プレート面に取り付けられていることを特徴とする請求項6又は7に記載の超電導マグネット装置。
  9.  前記保護抵抗体が前記冷却媒体で浸漬冷却されることを特徴とする請求項6~8の何れか1項に記載の超電導マグネット装置。
  10.  前記外筒は、前記シールドフォーマに設けられた、冷却媒体と、前記メインコイルおよび前記シールドコイルに励磁電流を供給する電流リードとを外部から導入するための導入部材が遊挿状態で挿通される挿通口を有していることを特徴とする請求項1~9の何れか1項に記載の超電導マグネット装置。
  11.  前記冷却室が内部に形成された冷媒容器における前記冷却媒体の液相状態と気相状態の界面よりも上方に配置され、前記気相状態の前記冷却媒体を前記シールドフォーマ内部から前記シールドフォーマ外部に流出させる冷媒通路孔と、
     前記冷媒通路孔の上方に配置され、前記電流リードが着脱可能に接続される電流ソケットと、
     前記シールドフォーマと前記電流ソケットとの間に設けられ、前記電流ソケットを前記シールドフォーマに固定する絶縁スペーサと、
     前記電流ソケットと前記メインコイルおよび前記シールドコイルとに接続された超電導リード線とを有し、
     前記冷媒通路孔から流出する前記気相状態の前記冷却媒体を前記電流ソケットの外周壁に接触させるよう構成されていることを特徴とする請求項10に記載の超電導マグネット装置。
  12.  前記絶縁スペーサが断熱材料からなることを特徴とする請求項11に記載の超電導マグネット装置。
  13.  前記冷媒容器の天壁から上方に向かって延設され、前記電流リードが挿通する首管を更に有し、
     前記電流ソケットの一部又は全部が前記首管内に配置されていることを特徴とする請求項11又は12に記載の超電導マグネット装置。
  14.  前記電流ソケットは、外周壁の表面積を大きくする突起部を備えていることを特徴とする請求項11乃至13の何れか1項に記載の超電導マグネット装置。
  15.  内側領域に形成される測定空間に主磁場を発生する超電導磁石と、
     内周壁と外周壁との間に前記超電導磁石を収容する円筒状のハウジングと、
     前記主磁場の磁場均一度を補正する磁場補正機構と
    を備え、
     前記磁場補正機構は、
     前記ハウジングの前記内周壁よりも径内側に配された円筒状の枠体と、
     前記枠体の外周面に形成され、前記ハウジングの前記内周壁とで囲繞された複数の収納空間を形成する複数の凹部と、
     前記複数の収納空間に収納される磁場補正用の磁性体片と、
    を備えていることを特徴とする超電導マグネット装置。
  16.  前記磁場補正機構は、
     前記収納空間に収納可能なスペーサを更に備え、
     前記収納空間は、前記磁性体片又は前記スペーサの少なくとも一方によりその空間が埋められていることを特徴とする請求項15に記載の超電導マグネット装置。
  17.  前記磁性体片は断面U字状に形成されており、前記所要の収納空間に弾性に抗して収納されていることを特徴とする請求項15又は16に記載の超電導マグネット装置。
  18.  前記スペーサが非磁性体であることを特徴とする請求項に16又は17に記載の超電導マグネット装置。
  19.  前記磁性体片は、前記収納空間に複数収納可能な大きさに形成されていることを特徴とする請求項15乃至18のいずれか一項に記載の超電導マグネット装置。
  20.  前記凹部は、前記枠体の周方向及び軸方向に亘って複数形成されていることを特徴とする請求項15乃至19のいずれか一項に記載の超電導マグネット装置。
  21.  前記枠体は、前記ハウジングの前記内周壁よりも径外側に拡径され、前記ハウジングの円筒端部に着脱可能に固定されたフランジ部を備えていることを特徴とする請求項15乃至20のいずれか一項に記載の超電導マグネット装置。
PCT/JP2011/056884 2010-03-30 2011-03-23 超電導マグネット装置 WO2011122403A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180016943.8A CN102870174B (zh) 2010-03-30 2011-03-23 超导磁体装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010076689A JP5398618B2 (ja) 2010-03-30 2010-03-30 超電導マグネットの保護抵抗体、およびそれを備えた超電導マグネット装置
JP2010-076689 2010-03-30
JP2010-096657 2010-04-20
JP2010096657A JP5443249B2 (ja) 2010-04-20 2010-04-20 超電導マグネット装置
JP2010-110202 2010-05-12
JP2010110202A JP5438590B2 (ja) 2010-05-12 2010-05-12 超電導磁石装置
JP2010132858A JP5443276B2 (ja) 2010-06-10 2010-06-10 超電導磁石装置
JP2010-132858 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011122403A1 true WO2011122403A1 (ja) 2011-10-06

Family

ID=44712113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056884 WO2011122403A1 (ja) 2010-03-30 2011-03-23 超電導マグネット装置

Country Status (2)

Country Link
CN (1) CN102870174B (ja)
WO (1) WO2011122403A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118390A2 (en) * 2013-02-04 2014-08-07 Siemens Plc Superconducting magnet coil arrangement
EP2840410A1 (de) * 2013-08-20 2015-02-25 Krohne AG Homogenisierungsvorrichtung zur Homogenisierung eines Magnetfelds
GB2560777A (en) * 2017-03-24 2018-09-26 Siemens Healthcare Ltd Electromagnetic assembly
US20230111502A1 (en) * 2020-04-20 2023-04-13 Mitsubishi Electric Corporation Superconducting electromagnet device
US20230326641A1 (en) * 2022-04-06 2023-10-12 GE Precision Healthcare LLC Superconducting magnet systems and methods for making superconducting magnet systems having two-stage quenching

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206664B3 (de) * 2015-04-14 2016-07-28 Schaeffler Technologies AG & Co. KG Hohles Maschinenelement und Anordnung zum Messen einer Kraft oder eines Momentes
CN105761873B (zh) * 2016-05-17 2017-09-26 广东电网有限责任公司电力科学研究院 一种饱和铁芯型超导限流器以及杜瓦
US10983186B2 (en) * 2016-12-14 2021-04-20 Koninklijke Philips N.V. Supporting structure for a gradient coil assembly of a MRI
CN108183013A (zh) * 2018-02-13 2018-06-19 特变电工股份有限公司 一种直流超导限流器用冷却结构及其装配方法
CN110517841B (zh) * 2019-07-05 2020-12-22 河南城建学院 一种核磁共振超导磁体用安置防护设备
CN115132445B (zh) * 2021-03-29 2024-02-06 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 用于动态超导磁体线圈的冷却骨架及动态超导磁体
CN113284691A (zh) * 2021-05-08 2021-08-20 中国科学院合肥物质科学研究院 一种节省液氦的零蒸发超导磁体系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254154A (ja) * 1988-04-01 1989-10-11 Toshiba Corp 磁界補正装置
JPH0442511A (ja) * 1990-06-08 1992-02-13 Toshiba Corp 超電導マグネット
JPH04237105A (ja) * 1991-01-22 1992-08-25 Fuji Electric Co Ltd 超電導電磁石
JPH06349347A (ja) * 1993-06-04 1994-12-22 Abb Res Ltd 高温超伝導体及び該高温超伝導体の使用法
JPH07161520A (ja) * 1993-12-06 1995-06-23 Mitsubishi Electric Corp 超電導マグネット装置
JPH1126820A (ja) * 1997-07-01 1999-01-29 Hitachi Ltd 抵抗器及びクエンチ保護装置
JPH11233840A (ja) * 1998-02-18 1999-08-27 Toshiba Corp クライオスタットおよびその昇温方法
JP2004229853A (ja) * 2003-01-30 2004-08-19 Hitachi Ltd 超電導磁石
JP2005118559A (ja) * 2003-10-10 2005-05-12 General Electric Co <Ge> 磁性材料、パッシブ・シム及び磁気共鳴イメージング・システム
JP2007053241A (ja) * 2005-08-18 2007-03-01 Kobe Steel Ltd 超電導マグネット装置
JP2008289703A (ja) * 2007-05-25 2008-12-04 Mitsubishi Electric Corp 超電導マグネットの磁場調整装置及び磁場調整方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439655B2 (ja) * 1998-05-08 2003-08-25 住友重機械工業株式会社 超電導コイル荷重支持体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254154A (ja) * 1988-04-01 1989-10-11 Toshiba Corp 磁界補正装置
JPH0442511A (ja) * 1990-06-08 1992-02-13 Toshiba Corp 超電導マグネット
JPH04237105A (ja) * 1991-01-22 1992-08-25 Fuji Electric Co Ltd 超電導電磁石
JPH06349347A (ja) * 1993-06-04 1994-12-22 Abb Res Ltd 高温超伝導体及び該高温超伝導体の使用法
JPH07161520A (ja) * 1993-12-06 1995-06-23 Mitsubishi Electric Corp 超電導マグネット装置
JPH1126820A (ja) * 1997-07-01 1999-01-29 Hitachi Ltd 抵抗器及びクエンチ保護装置
JPH11233840A (ja) * 1998-02-18 1999-08-27 Toshiba Corp クライオスタットおよびその昇温方法
JP2004229853A (ja) * 2003-01-30 2004-08-19 Hitachi Ltd 超電導磁石
JP2005118559A (ja) * 2003-10-10 2005-05-12 General Electric Co <Ge> 磁性材料、パッシブ・シム及び磁気共鳴イメージング・システム
JP2007053241A (ja) * 2005-08-18 2007-03-01 Kobe Steel Ltd 超電導マグネット装置
JP2008289703A (ja) * 2007-05-25 2008-12-04 Mitsubishi Electric Corp 超電導マグネットの磁場調整装置及び磁場調整方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118390A2 (en) * 2013-02-04 2014-08-07 Siemens Plc Superconducting magnet coil arrangement
WO2014118390A3 (en) * 2013-02-04 2014-10-23 Siemens Plc Superconducting magnet coil arrangement
US10365337B2 (en) 2013-02-04 2019-07-30 Siemens Healthcare Limited Superconducting magnet coil arrangement
EP2840410A1 (de) * 2013-08-20 2015-02-25 Krohne AG Homogenisierungsvorrichtung zur Homogenisierung eines Magnetfelds
US9846209B2 (en) 2013-08-20 2017-12-19 Krohne Ag Homogenization device for homogenization of a magnetic field
GB2560777A (en) * 2017-03-24 2018-09-26 Siemens Healthcare Ltd Electromagnetic assembly
GB2560777B (en) * 2017-03-24 2020-06-03 Siemens Healthcare Ltd Electromagnet assembly
US10878983B2 (en) 2017-03-24 2020-12-29 Siemens Healthcare Limited Electromagnetic assembly
US20230111502A1 (en) * 2020-04-20 2023-04-13 Mitsubishi Electric Corporation Superconducting electromagnet device
US20230326641A1 (en) * 2022-04-06 2023-10-12 GE Precision Healthcare LLC Superconducting magnet systems and methods for making superconducting magnet systems having two-stage quenching
US11948736B2 (en) * 2022-04-06 2024-04-02 GE Precision Healthcare LLC Superconducting magnet systems and methods for making superconducting magnet systems having two-stage quenching

Also Published As

Publication number Publication date
CN102870174A (zh) 2013-01-09
CN102870174B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2011122403A1 (ja) 超電導マグネット装置
KR101238516B1 (ko) 초전도 코일 장치
US20100295640A1 (en) Superconductive magnet
JP3940454B2 (ja) マグネット・アセンブリ
JP2000294399A (ja) 超電導高周波加速空胴及び粒子加速器
US10770211B2 (en) Superconducting magnet system with cooling assembly
US9859045B2 (en) Superconducting magnet
US11810711B2 (en) Cryostat assembly having a resilient, heat-conducting connection element
US20170176554A1 (en) Easily accessible deep-frozen nmr shim arrangement
CN211698154U (zh) 一种超导磁体结构及磁共振设备
US7049913B2 (en) Superconductivity magnet apparatus
US20160180996A1 (en) Superconducting magnet system
US20120124798A1 (en) Method for adjusting mri superconducting magnet
JP4550375B2 (ja) ビーム電流計
Tanabe et al. X‐25 Cryo‐ready In‐vacuum Undulator at the NSLS
CN109239429B (zh) 超导磁体的屏蔽结构、真空容器及其磁共振成像系统
Muratore et al. Magnetic field measurements of an HTS retrofit synchrotron dipole
Fuerst et al. Review OF NEW developments IN superconducting UNDULATOR technology at THE aps
JP7114881B2 (ja) 超電導磁場発生装置及び核磁気共鳴装置
JPH119572A (ja) 磁気共鳴イメージング装置
JP4384220B2 (ja) 超電導磁石装置
JPH03116907A (ja) 超電導電磁石
GB2608409A (en) Magnet system
JP4585389B2 (ja) 超電導マグネット装置およびその運転方法
JPH10172800A (ja) 超電導ウィグラ用マグネット構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016943.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762635

Country of ref document: EP

Kind code of ref document: A1