WO2011122311A1 - 高周波回路基板 - Google Patents

高周波回路基板 Download PDF

Info

Publication number
WO2011122311A1
WO2011122311A1 PCT/JP2011/055835 JP2011055835W WO2011122311A1 WO 2011122311 A1 WO2011122311 A1 WO 2011122311A1 JP 2011055835 W JP2011055835 W JP 2011055835W WO 2011122311 A1 WO2011122311 A1 WO 2011122311A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency circuit
frequency
circuit board
outer layer
resonance
Prior art date
Application number
PCT/JP2011/055835
Other languages
English (en)
French (fr)
Inventor
祥之 石田
禎央 松嶋
福地 稔栄
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to CN201180014827.2A priority Critical patent/CN102804365B/zh
Priority to EP11762551.7A priority patent/EP2555236B1/en
Publication of WO2011122311A1 publication Critical patent/WO2011122311A1/ja
Priority to US13/616,174 priority patent/US9082785B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0251Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance related to vias or transitions between vias and transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6616Vertical connections, e.g. vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0187Dielectric layers with regions of different dielectrics in the same layer, e.g. in a printed capacitor for locally changing the dielectric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/093Layout of power planes, ground planes or power supply conductors, e.g. having special clearance holes therein
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09718Clearance holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09854Hole or via having special cross-section, e.g. elliptical
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Definitions

  • the present invention relates to a high-frequency circuit board configured using a multilayer substrate, and more particularly to a high-frequency circuit board in which a bias line is formed so as not to deteriorate high-frequency characteristics.
  • Patent Document 1 In-vehicle high-frequency pulse radars and the like are strongly required to reduce the size of the substrate, so that the size of the substrate can be reduced by mounting the high-frequency circuit on one surface of the substrate and mounting the antenna on the other surface.
  • a technique for reducing the influence of radio waves from an antenna by incorporating a bias line in a substrate is known.
  • a multilayer substrate of three or more layers is used, and the bias line is provided in the inner layer of the multilayer substrate.
  • a microstrip line or a through hole is formed in the multilayer substrate as a transmission line for electrically connecting the bias line and the high frequency circuit.
  • the through hole is formed by forming a hole penetrating in the thickness direction of the substrate and plating a predetermined metal on the inner surface thereof. The length of such a through hole is approximately equal to the thickness of the substrate.
  • a high-frequency signal radiated from the antenna may cause resonance in a bias line formed by a through-hole or a bias line. is there.
  • resonance occurs in the bias line, this causes a problem that it propagates through the bias line and degrades the characteristics of the high-frequency circuit.
  • the line length of the bias line should be changed.
  • the resonance frequency can be changed by changing the line length.
  • the line length of the bias line so that the resonance frequency is sufficiently away from the use frequency, resonance that affects the high-frequency characteristics can be prevented.
  • the length of the through-hole is determined by the thickness of the substrate, in order to change this, the thickness of the substrate must be changed, and it is extremely difficult to sufficiently separate the resonance frequency from the operating frequency. is there.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a high-frequency circuit board capable of easily forming a bias line whose resonance frequency is sufficiently away from the use frequency.
  • a first aspect of the high-frequency circuit board includes a high-frequency circuit disposed on one outer layer of a multilayer substrate of three or more layers having two outer layers and one or more inner layers, A bias layer for forming a bias line pattern of the high-frequency circuit on a surface different from the surface of the inner layer on which the ground layer is provided, wherein a ground layer is provided between one outer layer and the inner layer Provided with a transmission line that penetrates at least the one outer layer to the inner layer having the bias layer and is electrically connected to the bias line, and at least the transmission line Predetermined determination for determining that the resonance frequency at the bias line including the bias line and the end on one outer layer side is sufficiently away from the use frequency of the high-frequency circuit Wherein the transmission line is formed so as to satisfy the criteria.
  • the transmission line is a blind via hole that electrically connects the end portion on the one outer layer side and the bias line.
  • the transmission line is a blind via hole that electrically connects the end on the one outer layer side and the bias line, or from the one outer layer to the other outer layer.
  • a position of any one of the bias lines that connect the bias line with the end of the one outer layer side of the blind via hole or the through through hole, using a through through hole that penetrates and is electrically connected to the bias line is characterized in that a stub is connected.
  • the stub is formed by a microstrip line so as to be a short-circuited end at a resonance frequency satisfying the determination criterion.
  • the stub is formed of a predetermined capacitor so as to be a short-circuited end at a resonance frequency satisfying the determination criterion.
  • Another aspect of the high-frequency circuit board of the present invention uses, as the transmission line, a through-through hole that penetrates from the one outer layer to the other outer layer and is electrically connected to the bias line.
  • a metal pin having a predetermined length is connected to an end of the other outer layer.
  • Another aspect of the high-frequency circuit board of the present invention uses, as the transmission line, a through-through hole that penetrates from the one outer layer to the other outer layer and is electrically connected to the bias line.
  • a dielectric having a dielectric constant different from the dielectric constant of the two outer layers and the inner layer is disposed in the periphery of the first and second layers.
  • the determination criterion is: f ⁇ fa ⁇ 0.8 or f> fa ⁇ 1.2 It is given by.
  • Another aspect of the high-frequency circuit board of the present invention is characterized in that an antenna is disposed on the other outer layer.
  • FIG. 7 is a cross-sectional configuration diagram of a conventional high-frequency circuit board 900 when vertically cut at a position where the high-frequency circuit is mounted.
  • the high-frequency circuit board 900 is a multi-layer board having three layers in which one inner layer 903 is disposed between two outer layers 901 and 902.
  • the two outer layers are referred to as one outer layer 901 and the other outer layer 902, respectively.
  • a ground layer 904 in which a ground is formed is provided between one outer layer 901 and the inner layer 903.
  • a predetermined high-frequency circuit 10 is mounted on the high-frequency circuit board 900.
  • the high-frequency circuit 10 is mounted on the surface of one outer layer 901.
  • a bias layer 905 in which a bias line pattern of the high-frequency circuit 10 is formed is provided between the inner layer 903 and the other outer layer 902.
  • through-through holes 906 and 907 that penetrate the high-frequency circuit substrate 900 have been provided.
  • the through-holes 906 and 907 are formed by metal plating the inner surface of the through-hole that penetrates one outer layer 901, the inner layer 903, and the other outer layer 902, and is electrically connected to the high-frequency circuit 10 and the bias layer 905. Has been.
  • one end of the through-through hole 906 on the outer layer 901 side is designated as 906a, and the other end on the outer layer 902 side is designated as 906b.
  • one end of the through-hole 907 on the outer layer 901 side is designated as 907a, and the other end on the outer layer 902 side is designated as 907b.
  • connection points between the through-holes 906 and 907 and the bias layer 905 are denoted as 905c and 905d, respectively.
  • the thickness between the surface of one outer layer 901 and the surface of the other outer layer 902 is A
  • the thickness from the surface of one outer layer 901 to the bias layer 905 is A ′
  • the through-through holes 906 and 907 Let B be the interval between them.
  • the thicknesses A and A ′ include the thicknesses of the conductor layers 908 and 909 formed on the surfaces of the outer layers 901 and 902 (the same applies hereinafter).
  • the end portions 906b and 907b on the other outer layer 902 side are both open ends, but the end portions 906a and 907a on the one outer layer 901 side are open at high frequencies.
  • the high frequency circuit 10 determines whether it becomes an end (open) or a short circuit end (short). For this reason, depending on the configuration of the high-frequency circuit 10, resonance may occur in any of paths connecting the end portions of the bias line including the bias layer 905 and the through-holes 906 and 907. That is, if there is a path whose resonance frequency is close to the use frequency among the paths connecting the ends, resonance occurs in the path. Such resonance causes an unnecessary high frequency signal to be superimposed on the bias line formed in the bias layer 905, which adversely affects the characteristics of the high frequency circuit 10.
  • the use frequency is 26.5 GHz
  • the thicknesses A and A ′ are 1.5 mm and 0.5 mm, respectively, and the interval B is 1.2 mm, as described below, the frequency is close to the use frequency.
  • a path in which resonance occurs is formed.
  • ⁇ eff is an effective relative dielectric constant of the dielectric forming the outer layers 901 and 902 and the inner layer 903.
  • the resonance frequencies of the six paths are shown in the resonance frequency column of Table 1 when the end portions 906a and 907a on one outer layer 901 side of the through-through holes 906 and 907 are short-circuited ends and open ends.
  • the end portion 906a is a short-circuit end and the end portion 907a is an open end
  • the end portion 906a is an open end and the end portion 907a is a short-circuit end
  • Table 1 shows only the case where the end 906a is a short-circuited end and the end 907a is an open end.
  • FIG. 1 is a cross-sectional configuration diagram of a high-frequency circuit board 100 of the present embodiment when cut vertically at a position where the high-frequency circuit 10 is mounted.
  • the high-frequency circuit board 100 according to the present embodiment is a multi-layer board having three layers in which one inner layer 103 is disposed between two outer layers 101 and 102. Between one outer layer 101 and the inner layer 103, a ground layer 104 in which a ground is formed is provided.
  • a three-layer structure substrate having only one inner layer 103 is used, but the present invention is not limited to this, and a multilayer substrate having four or more layers including two or more inner layers may be used. .
  • the high frequency circuit 10 is mounted on the surface of one outer layer 101.
  • a bias layer 105 in which the pattern of the bias line 11 of the high-frequency circuit 10 is formed is provided between the inner layer 103 and the other outer layer 102.
  • An antenna is disposed on the other outer layer 102.
  • blind via holes 106 and 107 are provided between one outer layer 101 and the bias layer 105 in order to electrically connect the bias layer 105 to the high-frequency circuit 10.
  • the blind via holes 106 and 107 penetrate the one outer layer 101 and the inner layer 103 and are electrically connected to the bias line 11, and do not penetrate the other outer layer 102. Further, the blind via holes 106 and 107 are separated from the ground layer 104 so as not to be connected to a line other than the bias line 11 of the bias layer 105.
  • the end portions of the bias line formed by the blind via holes 106 and 107 and the bias line 11 are only the end portions 106a and 107a on the one outer layer 101 side of the blind via holes 106 and 107. Therefore, the path where resonance may occur is only the path formed by the blind via holes 106 and 107 and the bias line 11 between the end portions 106a and 107a.
  • the operating frequency is 26.5 GHz
  • the thickness A between the surface of one outer layer 101 and the surface of the other outer layer 102 is 1.5 mm
  • the surface of one outer layer 101 When the thickness A ′ to the bias layer 105 is 0.5 mm and the distance B between the blind via holes 106 and 107 is 1.2 mm, the end 106a of the blind via hole 106 and the end 107a of the blind via hole 107 are Table 2 shows resonance frequencies generated in the path between the two. As shown in Table 2, in this embodiment, the resonance frequency of the path between the end portions 106a and 107a where resonance may occur is the same regardless of whether the end portions 106a and 107a are short-circuited ends or open ends. It is far away from the used frequency of 26.5 GHz.
  • resonance may occur because the bias line 11 is electrically connected to the high-frequency circuit 10 using the blind via holes 106 and 107.
  • a certain path can be limited to only the bias line connecting the end portions 106 a and 107 a of the blind via holes 106 and 107 and the bias line 11.
  • the high-frequency circuit board 100 of the present embodiment has a structure that prevents the occurrence of resonance near the operating frequency as described above and reduces the influence of radio waves from the periphery.
  • other blind via holes 111 and 112 are provided from the other outer layer 102 side to the ground layer 104.
  • a ground layer 113 is also formed on a part of the surface of the other outer layer 102.
  • the ground layers 104 and 113 are electrically connected by the blind via holes 111 and 112, and the bias line 11 is surrounded by the ground layers 104 and 113 and the blind via holes 111 and 112.
  • the bias line formed by the bias line 11 and the blind via holes 106 and 107 is surrounded by the ground layers 104 and 113 and the blind via holes 111 and 112 when viewed from the other outer layer 102 side.
  • FIG. 2 is a cross-sectional configuration diagram of the high-frequency circuit board 200 of the present embodiment when vertically cut at a position where the high-frequency circuit 10 is mounted.
  • the high-frequency circuit board 200 of this embodiment has the same structure as that of the conventional high-frequency circuit board 900 shown in FIG. It is comprised with the multilayer substrate which consists of.
  • a ground layer 204 is provided between one outer layer 201 and the inner layer 203, and a bias layer 205 is provided between the inner layer 203 and the other outer layer 202.
  • through-through holes 206 and 207 that penetrate the two outer layers 201 and 202 and the inner layer 203 are provided. Is provided. One end of the through-hole 206 on the outer layer 201 side is designated 206a, and the other end on the outer layer 202 side is designated 206b. Similarly, one end of the through-through hole 207 on the outer layer 201 side is designated as 207a, and the other end on the outer layer 202 side is designated as 207b. Further, connection points between the through-holes 206 and 207 and the bias layer 205 are 205c and 205d, respectively.
  • metal pins 211 and 212 are provided at the end portions 206b and 207b on the other outer layer 202 side of the through-through holes 206 and 207, respectively. It is connected. By connecting such metal pins 211 and 212 to the end portions 206b and 207b of the through-holes, the electrical length of the path where resonance occurs via the through-through holes 206 and 207 can be changed.
  • the open ends of the metal pins 211 and 212 are referred to as 211b and 212b, respectively.
  • the end portion of the six resonance paths shown in Table 1 is 906b or 907b.
  • the physical length of the resonance path is increased by the length of the metal pins 211 and 212.
  • the resonance frequency of the resonance path changes.
  • the lengths of the metal pins 211 and 212 are each 2.5 mm, the physical lengths and resonance frequencies of the six resonance paths in the high-frequency circuit board 200 have values as shown in Table 3.
  • the resonance frequency close to the use frequency of 26.5 GHz can be obtained in any of the six resonance paths. There is no resonance path, and all satisfy the condition of the equation (4). As a result, resonance can be prevented from occurring in the vicinity of the operating frequency.
  • FIG. 3 is a cross-sectional configuration diagram of the high-frequency circuit board 300 of the present embodiment when cut vertically at a position where the high-frequency circuit 10 is mounted.
  • the high-frequency circuit board 300 of this embodiment also has a structure similar to that of the conventional high-frequency circuit board 900 shown in FIG. It is comprised with the multilayer substrate which consists of.
  • a ground layer 304 is provided between one outer layer 301 and the inner layer 303, and a bias layer 305 is provided between the inner layer 303 and the other outer layer 302. Further, in order to electrically connect the bias layer 305 to the high-frequency circuit 10, through-through holes 306 and 307 that penetrate the two outer layers 301 and 302 and the inner layer 303 are provided.
  • a stub 311 is provided instead of the metal pins 211 and 212 used in the second embodiment.
  • the stub 311 is connected in the middle of the resonance path so that the connection point 311c of the stub 311 is a short-circuited end at the resonance frequency.
  • the stub 311 is provided on any one of the paths from the end portion 306 a to the end portion 307 a via the through through hole 306, the bias layer 305, and the through through hole 307.
  • the connection point 311 c of the stub 311 is provided at the connection point 305 c where the through through hole 306 and the bias layer 305 are connected.
  • the length of the microstrip line is 1 ⁇ 4 of the electrical length Li calculated by the equation (1).
  • the stub 311 is formed using a capacitor, the stub 311 is formed using a capacitor having the resonance frequency fi calculated by the equation (2) or (3).
  • connection point 311c of the stub 311 becomes a short-circuited end.
  • one end of the resonance path becomes the connection point 311c
  • the other end becomes one of the both end portions 306a and 306b of the through-through hole 306 and the both end portions 307a and 307b of the through-through hole 307.
  • Table 4 shows the physical length and resonance frequency of each resonance path.
  • the electrical length of the microstrip line forming the stub or the resonance frequency of the capacitor is set so that the connection point 311c of the stub 311 becomes a short-circuited end. The frequency is calculated.
  • the high-frequency circuit board 300 of the present embodiment can also prevent resonance that adversely affects the high-frequency circuit 10.
  • the through-holes 306 and 307 are used to electrically connect the high-frequency circuit 10 and the bias layer 305, but instead of this, blind via holes are formed as in the first embodiment. It may be used.
  • FIG. 4 is a cross-sectional configuration diagram of the high-frequency circuit board 400 of the present embodiment when cut vertically at a position where the high-frequency circuit 10 is mounted.
  • the high-frequency circuit board 400 of this embodiment also has a structure similar to that of the conventional high-frequency circuit board 900 shown in FIG. 7, and is a three-layer structure in which one inner layer 403 is disposed between two outer layers 401 and 402. It is comprised with the multilayer substrate which consists of.
  • a ground layer 404 is provided between one outer layer 401 and the inner layer 403, and a bias layer 405 is provided between the inner layer 403 and the other outer layer 402. Further, in order to electrically connect the bias layer 405 to the high frequency circuit 10, two through layers 406 and 407 penetrating the two outer layers 401 and 402 and the inner layer 403 are provided.
  • other through holes 411 and 412 are provided around the through through holes 406 and 407, and a dielectric having a different dielectric constant from that of the outer layers 401 and 402 and the inner layer 403 is filled therein.
  • the electrical lengths of the through-through holes 406 and 407 can be changed by bringing dielectrics having different dielectric constants around the through-holes 406 and 407.
  • the electrical length of the bias layer 405 is calculated using the equation (1).
  • the electrical length of each path is calculated from the electrical length of the bias layer 405 and the electrical length of the through-through holes 406 and 407 calculated using Expression (5).
  • the frequency of resonance generated in the path passing through the through-holes 406 and 407 can be changed to different values by bringing dielectrics having different dielectric constants around the through-holes 406 and 407. .
  • Table 5 shows resonance frequencies when dielectrics having a high relative dielectric constant such as titanium oxide (effective relative dielectric constant ⁇ eff′ ⁇ 30) are used.
  • the high-frequency circuit board 400 of this embodiment can also prevent resonance that adversely affects the high-frequency circuit 10.
  • FIGS. 5 and 6 are cross-sectional configuration diagrams of high-frequency circuit boards 500 and 600 according to another embodiment when cut vertically at a position where the high-frequency circuit 10 is mounted.
  • Each of the high-frequency circuit boards 500 and 600 has a structure similar to that of the conventional high-frequency circuit board 900 shown in FIG. 7, and includes two outer layers 501, 502 and 601, 602, an inner layer 503 and 603, a ground Layers 504 and 604 and bias layers 505 and 605, respectively.
  • through-through holes 506 and 507 for electrically connecting the bias layer 505 to the high-frequency circuit 10 are formed by through holes formed in screw holes.
  • the through-through holes 506 and 507 formed in this way have a physical length longer than the substrate thickness A, and the resonance frequency can be changed by changing the electrical length. As a result, it is possible to prevent a resonance that has a bad influence on the high-frequency circuit 10 by sufficiently separating the resonance frequency from the operating frequency.
  • through-through holes 606 and 607 for electrically connecting the bias layer 505 to the high-frequency circuit 10 are formed by through holes formed in a meander shape.
  • the through-holes 606 and 607 formed in this way have a physical length longer than the substrate thickness A, and the resonance frequency can be changed by changing the electrical length. As a result, it is possible to prevent a resonance that has a bad influence on the high-frequency circuit 10 by sufficiently separating the resonance frequency from the operating frequency.
  • the resonance frequency is sufficiently separated from the use frequency, and the resonance that adversely affects the high-frequency circuit 10 can be prevented. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Waveguide Aerials (AREA)
  • Structure Of Printed Boards (AREA)
  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Abstract

 共振周波数が使用周波数から十分離れたバイアス線路を容易に形成することができる高周波回路基板を提供する。高周波回路基板100では、ブラインドビアホール106、107を用いてバイアス線路11を高周波回路10に電気的に接続するようにすることにより、共振が発生する可能性がある経路を、ブラインドビアホール106、107の端部106a、107aとバイアス線路11を結ぶバイアスラインのみに限定することができる。端部106aから107aまでの経路長を調整することで、使用周波数近傍で共振が発生するのを防止することが可能となる。

Description

高周波回路基板
 本発明は、多層基板を用いて構成された高周波回路基板に関し、特に高周波特性を劣化させないようにバイアス線路を形成する高周波回路基板に関するものである。
 従来より、高周波回路を搭載する高周波回路基板では、高周波回路への電源供給などのために、バイアス線路が基板側に設けられる(特許文献1)。車載用の高周波パルスレーダ等では、基板の小型化が強く要求されるため、高周波回路を基板の一方の面に搭載し、他方の面にアンテナを搭載することで、基板の小型化が図られる。
 上記のように、1つの基板に高周波回路とアンテナをともに搭載する場合には、高周波回路のバイアス線路がアンテナからの電波の影響をできるだけ受けないようにする必要がある。そこで、バイアス線路を基板に内蔵させることで、アンテナからの電波の影響を低減させるようにする技術が知られている。バイアス線路を基板に内蔵させるために3層以上の多層基板を用い、バイアス線路を多層基板の内層に設けている。バイアス線路を内層に設けることで、基板に必要となる面積を小さくして小型化を図ることが可能となる。
 バイアス線路を多層基板の内層に形成した場合には、バイアス線路と高周波回路とを電気的に接続する伝送線路として、マイクロストリップラインやスルーホール等が多層基板に形成される。スルーホールは、基板の厚さ方向に貫通した孔を形成し、その内面に所定の金属をメッキして形成される。このような貫通スルーホールは、その長さが基板の厚さにほぼ等しくなる。
特開2002-184900号公報
 しかしながら、高周波回路とバイアス線路とを電気的に接続するのに貫通スルーホールを用いた場合には、貫通スルーホールの端部が開放端あるいは短絡端となり、貫通スルーホール及びそれに接続される線路で共振を発生させてしまうおそれがある。共振周波数が高周波回路の使用周波数に近い場合には、共振が発生すると高周波回路の特性に好ましくない影響を与えてしまう。
 とくに、高周波回路とアンテナとを基板に一体化した高周波パルスレーダ等では、アンテナから放射される高周波信号が、貫通スルーホールやバイアス線路等で形成されるバイアスラインで共振を発生させてしまうおそれがある。バイアスラインで共振が発生すると、これがバイアスラインを伝播して高周波回路の特性を劣化させてしまうといった問題が生じる。
 このような共振を回避するためには、バイアスラインの線路長を変えるのがよい。線路長を変えることで、共振周波数を変化させることができる。共振周波数が使用周波数から十分に離れるようにバイアスラインの線路長を変えることで、高周波特性に影響を与えるような共振を防止することができる。しかしながら、貫通スルーホールの長さは基板の厚さで決まることから、これを変えるには基板の厚さを変えなければならなくなり、共振周波数を使用周波数から十分に離すのが極めて難しいといった問題がある。
 本発明は、上記課題に鑑みてなされたものであり、共振周波数が使用周波数から十分離れたバイアス線路を容易に形成することができる高周波回路基板を提供することを目的とする。
 上記課題を解決するため、本発明の高周波回路基板の第1の態様は、2つの外層と1つ以上の内層を有する3層以上の多層基板の一方の前記外層に高周波回路が配置され、前記一方の外層と前記内層との間にグランド層が設けられ、さらに前記内層の前記グランド層が設けられている面とは別の面に前記高周波回路のバイアス線路のパターンを形成するためのバイアス層が設けられている高周波回路基板であって、少なくとも前記一方の外層から前記バイアス層を有する内層までを貫通して前記バイアス線路に電気的に接続される伝送線路を備え、少なくとも前記伝送線路の前記一方の外層側の端部と前記バイアス線路を含むバイアスラインでの共振周波数が前記高周波回路の使用周波数から十分に離れていると判定するための所定の判定基準を満たすように前記伝送線路が形成されていることを特徴とする。
 本発明の高周波回路基板の他の態様は、前記伝送線路は、前記一方の外層側の端部と前記バイアス線路とを電気的に接続するブラインドビアホールであることを特徴とする。
 本発明の高周波回路基板の他の態様は、前記伝送線路として、前記一方の外層側の端部と前記バイアス線路とを電気的に接続するブラインドビアホール、または前記一方の外層から前記他方の外層まで貫通させて前記バイアス線路と電気的に接続される貫通スルーホールを用い、前記ブラインドビアホールまたは前記貫通スルーホールの前記一方の外層側の端部と前記バイアス線路とを結ぶバイアスラインのいずれかの位置にスタブが接続されていることを特徴とする。
 本発明の高周波回路基板の他の態様は、前記スタブは、前記判定基準を満たす共振周波数で短絡端となるようにマイクロストリップラインで形成されていることを特徴とする。
 本発明の高周波回路基板の他の態様は、前記スタブは、前記判定基準を満たす共振周波数で短絡端となるように所定のコンデンサで形成されていることを特徴とする。
 本発明の高周波回路基板の他の態様は、前記伝送線路として、前記一方の外層から前記他方の外層まで貫通させて前記バイアス線路と電気的に接続される貫通スルーホールを用い、前記貫通スルーホールの前記他方の外層側の端部に所定長さの金属ピンが接続されていることを特徴とする。
 本発明の高周波回路基板の他の態様は、前記伝送線路として、前記一方の外層から前記他方の外層まで貫通させて前記バイアス線路と電気的に接続される貫通スルーホールを用い、前記貫通スルーホールの周辺に前記2つの外層及び前記内層の誘電率とは異なる誘電率を有する誘電体を配置していることを特徴とする。
 本発明の高周波回路基板の他の態様は、前記使用周波数をfaとし、前記共振周波数をfとするとき、前記判定基準は、
f<fa×0.8、またはf>fa×1.2
で与えられることを特徴とする。
 本発明の高周波回路基板の他の態様は、前記他方の外層にはアンテナが配置されていることを特徴とする。
 本発明によれば、共振周波数が使用周波数から十分離れたバイアス線路を容易に形成することができる高周波回路基板を提供することが可能となる。
本発明の第1実施形態に係る高周波回路基板の断面構成図である。 本発明の第2実施形態に係る高周波回路基板の断面構成図である。 本発明の第3実施形態に係る高周波回路基板の断面構成図である。 本発明の第4実施形態に係る高周波回路基板の断面構成図である。 本発明の別の実施形態に係る高周波回路基板の断面構成図である。 本発明のさらに別の実施形態に係る高周波回路基板の断面構成図である。 従来の高周波回路基板の断面構成図である。
 本発明の好ましい実施の形態における高周波回路基板について、図面を参照して詳細に説明する。同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。
 本発明の高周波回路基板との比較のために、まず従来の高周波回路基板の構成を、図7を用いて説明する。図7は、高周波回路を搭載する位置で垂直に切断したときの従来の高周波回路基板900の断面構成図である。高周波回路基板900は、2つの外層901、902の間に1つの内層903が配置された3層からなる多層基板である。以下では、2つの外層をそれぞれ一方の外層901及び他方の外層902とする。一方の外層901と内層903との間には、グランドが形成されたグランド層904が設けられている。
 高周波回路基板900には、所定の高周波回路10が搭載される。ここでは、高周波回路10が一方の外層901の表面に搭載されるとする。そして、高周波回路10のバイアス線路のパターンが形成されたバイアス層905が、内層903と他方の外層902との間に設けられている。バイアス層905を高周波回路10に電気的に接続するために、従来は、高周波回路基板900を貫通する貫通スルーホール906、907が設けられていた。貫通スルーホール906、907は、一方の外層901、内層903、および他方の外層902を貫通する貫通孔の内面を金属メッキして形成されており、高周波回路10及びバイアス層905と電気的に接続されている。
 図7において、貫通スルーホール906の一方の外層901側の端部を906aとし、他方の外層902側の端部を906bとする。同様に、貫通スルーホール907の一方の外層901側の端部を907aとし、他方の外層902側の端部を907bとする。また、貫通スルーホール906、907とバイアス層905との接続点を、それぞれ905c、905dとする。さらに、一方の外層901の表面と他方の外層902の表面との間の厚さをA、一方の外層901の表面からバイアス層905までの厚さをA'、貫通スルーホール906と907との間の間隔をBとする。ここで、厚さA、A'は、外層901、902の表面に形成されている導体層908、909の厚さを含むものとする(以下でも、同様とする)。
 上記のような従来の高周波回路基板900では、他方の外層902側の端部906b、907bがともに開放端となっているが、一方の外層901側の端部906a、907aは、高周波的に開放端(オープン)となるか短絡端(ショート)となるかが高周波回路10によって決まる。そのため、高周波回路10の構成によっては、バイアス層905と貫通スルーホール906、907で構成されるバイアスラインの各端部を結ぶ経路のうち、いずれかで共振が発生するおそれがある。すなわち、各端部を結ぶ経路のうち、共振周波数が使用周波数に近いものがあると、その経路で共振が発生してしまう。このような共振により、バイアス層905に形成されているバイアス線路に不要な高周波信号が重畳してしまい、高周波回路10の特性に悪影響を及ぼす。
 一例として、使用周波数を26.5GHzとし、厚さA、A'をそれぞれ1.5mm、0.5mm、間隔Bを1.2mmとするとき、以下に説明するように、使用周波数に近い周波数で共振が発生する経路が形成されてしまう。
 バイアス層905と貫通スルーホール906、907で構成されるバイアスラインでは、共振が発生する可能性のある各端部間の経路として、表1の共振経路の欄に示す6つの経路がある。すなわち、貫通スルーホール906の両端部906a-906bを結ぶ経路、貫通スルーホール907の両端部907a-907bを結ぶ経路、端部906aから接続点905c、905dを経由して端部907aまでの経路、端部906aから接続点905c、905dを経由して端部907bまでの経路、端部907aから接続点905d、905cを経由して端部906bまでの経路、及び端部906bから接続点905c、905dを経由して端部907bまでの経路、の6つの経路で共振が発生する可能性がある。各経路の物理長Si(i=1~6)を、表1の物理長の欄に示す。
Figure JPOXMLDOC01-appb-T000001
 まず、各経路の物理長Si(i=1~6)を用いて、それぞれの電気長Li(i=1~6)を、次式を用いて計算することができる。
Figure JPOXMLDOC01-appb-I000002
 ここで、εeffは、外層901、902、及び内層903を形成する誘電体の実効比誘電率である。式(1)の電気長Li(i=1~6)を用いて、各経路の共振周波数fi(i=1~6)を以下のように計算する。各経路の共振周波数は、両端部のそれぞれが開放端か、短絡端かによって以下のいずれかの計算式で計算される。
 まず、経路の一方の端部が短絡端で他方が開放端のときの共振周波数fiは、
fi=c/(4×Li)                  (2)
で計算される。また、経路の両端部がともに短絡端またはともに開放端のときは、
fi=c/(2×Li)                  (3)
で計算される。なお、上式でcは光速を表す。
 貫通スルーホール906、907の一方の外層901側の端部906a、907aが短絡端の場合と開放端の場合について、6つの経路の共振周波数を表1の共振周波数の欄に示す。但し、端部906aが短絡端で端部907aが開放端の場合と、端部906aが開放端で端部907aが短絡端の場合とでは、経路が異なるものの同じ共振周波数が得られることから、表1では端部906aが短絡端で端部907aが開放端の場合のみを示している。
 表1より、端部906a、907aがともに短絡端、あるいは一方が短絡端で他方が開放端のとき、使用周波数26.5GHzに近い周波数26.1GHzで共振する経路があることがわかる。その結果、26.1GHzでの共振により、高周波回路10に好ましくない影響を与えてしまう。本発明の高周波回路基板は、上記のような使用周波数近傍での共振の発生を防止するように構成されている。
 (第1実施形態)
 本発明の第1の実施の形態に係る高周波回路基板を、図1を用いて以下に説明する。図1は、高周波回路10を搭載する位置で垂直に切断したときの本実施形態の高周波回路基板100の断面構成図である。本実施形態の高周波回路基板100は、2つの外層101、102の間に1つの内層103が配置された3層からなる多層基板である。一方の外層101と内層103との間には、グランドが形成されたグランド層104が設けられている。なお、本実施形態の高周波回路基板100では、内層103を1つだけ有する3層構造の基板としているが、これに限定されず、内層を2以上備える4層以上の多層基板であってもよい。
 本実施形態では、一方の外層101の表面に高周波回路10が搭載されている。そして、高周波回路10のバイアス線路11のパターンが形成されたバイアス層105が、内層103と他方の外層102との間に設けられている。他方の外層102には、アンテナが配置される。
 本実施形態では、バイアス層105を高周波回路10に電気的に接続するために、一方の外層101とバイアス層105との間にブラインドビアホール106、107を設けている。ブラインドビアホール106、107は、一方の外層101と内層103とを貫通してバイアス線路11に電気的に接続されており、他方の外層102を貫通していない。また、ブラインドビアホール106、107は、バイアス層105のバイアス線路11以外の線路と接続されないようにするために、グランド層104と切り離されている。これにより、ブラインドビアホール106、107とバイアス線路11で形成されるバイアスラインの端部は、ブラインドビアホール106、107の一方の外層101側の端部106a、107aのみとなる。従って、共振が発生する可能性のある経路は、端部106aと107aとの間のブラインドビアホール106、107とバイアス線路11で形成される経路のみである。
 図7に示した従来例と同様に、使用周波数を26.5GHzとし、一方の外層101の表面と他方の外層102の表面との間の厚さAを1.5mm、一方の外層101の表面からバイアス層105までの厚さA'を0.5mm、及びブラインドビアホール106、107間の間隔Bを1.2mmとしたとき、ブラインドビアホール106の端部106aとブラインドビアホール107の端部107aとの間の経路で発生する共振周波数は、表2のようになる。表2に示すように、本実施形態では、共振が発生する可能性のある端部106aと107aとの間の経路の共振周波数が、端部106a、107aが短絡端か開放端かによらず、使用周波数26.5GHzから十分に離れている。
Figure JPOXMLDOC01-appb-T000003
 使用周波数をfaとするとき、式(2)または(3)で算出される共振周波数fiが使用周波数faから十分に離れていると判断する基準として、
fi<fa×0.8、またはfi>fa×1.2        (4)
を用いることができる。すなわち、共振周波数が使用周波数より20%以上離れているとき、共振周波数が使用周波数から十分に離れていると判断する。この場合には、使用周波数の電波により共振が発生するおそれはなく、仮に共振が発生しても高周波回路10に好ましくない影響を与えるおそれがない。
 上記説明のように、本実施形態の高周波回路基板100では、ブラインドビアホール106、107を用いてバイアス線路11を高周波回路10に電気的に接続するようにしたことにより、共振が発生する可能性がある経路を、ブラインドビアホール106、107の端部106a、107aとバイアス線路11を結ぶバイアスラインのみに限定することができる。端部106aから107aまでの経路長を調整することで、使用周波数近傍で共振が発生するのを防止することが可能となる。
 本実施形態の高周波回路基板100では、上記のように使用周波数近傍で共振が発生するのを防止するとともに、周辺からの電波の影響を低減する構造を備えている。本実施形態では、ブラインドビアホール106、107とは別に、他方の外層102側からグランド層104まで別のブラインドビアホール111、112が設けられている。そして、他方の外層102の表面の一部にもグランド層113が形成されている。これにより、グランド層104と113とがブラインドビアホール111、112で電気的に接続され、グランド層104、113、及びブラインドビアホール111、112でバイアス線路11を取り囲む構造となっている。
 上記のように、他方の外層102側から見て、バイアス線路11とブラインドビアホール106、107で形成されるバイアスラインが、グランド層104、113、及びブラインドビアホール111、112で取り囲まれるように構成することで、他方の外層102の表面の一部に配置されるアンテナからの電波を遮蔽して高周波回路への影響を低減することが可能となっている。
 (第2実施形態)
 本発明の第2の実施の形態に係る高周波回路基板を、図2を用いて以下に説明する。図2は、高周波回路10を搭載する位置で垂直に切断したときの本実施形態の高周波回路基板200の断面構成図である。本実施形態の高周波回路基板200は、図7に示した従来の高周波回路基板900と同様の構造を有しており、2つの外層201、202の間に1つの内層203が配置された3層からなる多層基板で構成されている。一方の外層201と内層203との間には、グランド層204が設けられ、内層203と他方の外層202との間には、バイアス層205が設けられている。
 本実施形態では、バイアス層205を高周波回路10に電気的に接続するために、従来の高周波回路基板900と同様に、2つの外層201、202と内層203を貫通する貫通スルーホール206、207が設けられている。貫通スルーホール206の一方の外層201側の端部を206aとし、他方の外層202側の端部を206bとする。同様に、貫通スルーホール207の一方の外層201側の端部を207aとし、他方の外層202側の端部を207bとする。また、貫通スルーホール206、207とバイアス層205との接続点を、それぞれ205c、205dとする。
 本実施形態の高周波回路基板200では、従来の高周波回路基板900と同様の構成に加えて、貫通スルーホール206、207の他方の外層202側の端部206b、207bに、金属ピン211、212が接続されている。このような金属ピン211、212を貫通スルーホールの端部206b、207bに接続することで、貫通スルーホール206、207を経由して共振が発生する経路の電気長を変えることができる。以下では、金属ピン211、212の開放端を、それぞれ211b、212bとする。
 上記のように、貫通スルーホール206、207の端部206b、207bに金属ピン211、212を接続した場合には、表1に示した6つの共振経路のうち端部が906bまたは907bとなっているものを、それぞれ開放端211b、212bに置き換えたものとなる。これにより、当該共振経路の物理長が、金属ピン211、212の長さ分だけ長くなる。その結果、当該共振経路の共振周波数が変化する。金属ピン211、212の長さをそれぞれ2.5mmとしたとき、高周波回路基板200における6つの共振経路の物理長及び共振周波数は、表3に示すような値となる。
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、貫通スルーホール206、207の端部206b、207bに金属ピン211、212を接続することで、6つの共振経路のいずれにおいても、使用周波数26.5GHzに近い共振周波数を有する共振経路はなく、いずれも式(4)の条件を満たしている。その結果、使用周波数近傍で共振が発生するのを防止することができる。
 (第3実施形態)
 本発明の第3の実施の形態に係る高周波回路基板を、図3を用いて以下に説明する。図3は、高周波回路10を搭載する位置で垂直に切断したときの本実施形態の高周波回路基板300の断面構成図である。本実施形態の高周波回路基板300も、図7に示した従来の高周波回路基板900と同様の構造を有しており、2つの外層301、302の間に1つの内層303が配置された3層からなる多層基板で構成されている。一方の外層301と内層303との間には、グランド層304が設けられ、内層303と他方の外層302との間には、バイアス層305が設けられている。また、バイアス層305を高周波回路10に電気的に接続するために、2つの外層301、302と内層303を貫通する貫通スルーホール306、307が設けられている。
 本実施形態では、第2実施形態で用いた金属ピン211、212に変えて、スタブ311を設けている。スタブ311は、使用周波数に近い共振周波数を有する共振経路がある場合に、その共振経路の途中に接続し、スタブ311の接続点311cが共振周波数において短絡端となるように形成する。本実施形態では、スタブ311を端部306aから貫通スルーホール306、バイアス層305、及び貫通スルーホール307を経由して端部307aに至る経路のいずれかに設ける。図3では、スタブ311の接続点311cを、貫通スルーホール306とバイアス層305とが接続される接続点305cに設けている。
 スタブ311をマイクロストリップラインで形成した場合、マイクロストリップラインの長さは、式(1)で算出される電気長Liの1/4とする。また、スタブ311をコンデンサを用いて形成した場合、式(2)または(3)で算出される共振周波数fiを有するコンデンサを用いてスタブ311を形成する。
 上記のようなスタブ311を設けることで、スタブ311の接続点311cが短絡端となる。その結果、共振経路の一端が接続点311cとなり、他端が貫通スルーホール306の両端部306a、306b、及び貫通スルーホール307の両端部307a、307bのいずれかとなる。各共振経路の物理長及び共振周波数を表4に示す。ここでは、3つの共振経路のそれぞれで、スタブ311の接続点311cが短絡端となるように、スタブを形成するマイクロストリップラインの電気長、あるいはコンデンサの共振周波数が設定されているものとして、共振周波数を算出している。
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、いずれの共振経路の共振周波数も、式(4)の条件を満たしており、各共振周波数が使用周波数から十分に離れていると判断することができる。これより、本実施形態の高周波回路基板300でも、高周波回路10に悪影響を与えるような共振を防止することが可能となる。なお、本実施形態では、高周波回路10とバイアス層305とを電気的に接続するのに貫通スルーホール306、307を用いていたが、これに代えて、第1実施形態と同様にブラインドビアホールを用いてもよい。
 (第4実施形態)
 本発明の第4の実施の形態に係る高周波回路基板を、図4を用いて以下に説明する。図4は、高周波回路10を搭載する位置で垂直に切断したときの本実施形態の高周波回路基板400の断面構成図である。本実施形態の高周波回路基板400も、図7に示した従来の高周波回路基板900と同様の構造を有しており、2つの外層401、402の間に1つの内層403が配置された3層からなる多層基板で構成されている。一方の外層401と内層403との間には、グランド層404が設けられ、内層403と他方の外層402との間には、バイアス層405が設けられている。また、バイアス層405を高周波回路10に電気的に接続するために、2つの外層401、402と内層403を貫通する貫通スルーホール406、407が設けられている。
 本実施形態では、貫通スルーホール406、407の周囲に別の貫通孔411、412を設け、その中に外層401、402及び内層403とは異なる誘電率の誘電体を充填させている。このように、貫通スルーホール406、407の周囲に誘電率の異なる誘電体を近接させることで、貫通スルーホール406、407の電気長を変えることができる。別の貫通孔411、412に充填する誘電体の実効比誘電率をεeff'とするとき、各共振経路の電気長Li(i=1~6)は、各経路の物理長Si(i=1~6)を用いて次式で計算される。
Figure JPOXMLDOC01-appb-I000006
 なお、バイアス層405の周辺には外層401、402及び内層403の誘電体のみが配置されているときは、バイアス層405の電気長は式(1)を用いて算出される。バイアス層405の電気長と式(5)用いて算出された貫通スルーホール406、407の電気長から、各経路の電気長を算出する。上記のように、貫通スルーホール406、407の周囲に誘電率の異なる誘電体を近接させることで、貫通スルーホール406、407を経由する経路で発生する共振の周波数を異なる値に変えることができる。
 誘電率の異なる誘電体の一例として、酸化チタンなどの高い比誘電率を持つ誘電体(実効比誘電率εeff'≒30)を用いた時の共振周波数を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、いずれの共振経路の共振周波数も、式(4)の条件を満たしており、各共振周波数が使用周波数から十分に離れていると判断することができる。これより、本実施形態の高周波回路基板400でも、高周波回路10に悪影響を与えるような共振を防止することが可能となる。
 本発明の高周波回路基板のさらに別の実施形態を、図5、6に示す。図5、6は、いずれも高周波回路10を搭載する位置で垂直に切断したときの別の実施形態の高周波回路基板500、600の断面構成図である。高周波回路基板500及び600は、いずれも図7に示した従来の高周波回路基板900と同様の構造を有しており、2つの外層501、502及び601、602と、内層503及び603と、グランド層504及び604と、バイアス層505及び605とをそれぞれ有している。
 図5に示す高周波回路基板500では、バイアス層505を高周波回路10に電気的に接続するための貫通スルーホール506、507を、ネジ穴状に形成された貫通孔で形成している。このように形成された貫通スルーホール506、507は、基板厚さAより長い物理長を有しており、電気長を変えて共振周波数を変えることができる。その結果、共振周波数を使用周波数から十分に離して高周波回路10に悪影響を与えるような共振を防止することが可能となる。
 また、図6に示す高周波回路基板600では、バイアス層505を高周波回路10に電気的に接続するための貫通スルーホール606、607を、ミアンダ状に形成された貫通孔で形成している。このように形成された貫通スルーホール606、607は、基板厚さAより長い物理長を有しており、電気長を変えて共振周波数を変えることができる。その結果、共振周波数を使用周波数から十分に離して高周波回路10に悪影響を与えるような共振を防止することが可能となる。
 上記説明の本発明の高周波回路基板によれば、いずれの実施形態でも共振周波数を使用周波数から十分に離して高周波回路10に悪影響を与えるような共振を防止することが可能な構成となっている。これにより、高周波回路が搭載された面と反対側の基板面にアンテナを搭載してアンテナと高周波回路基板を一体化した場合でも、アンテナからの高周波信号がバイアスラインへ重畳するのを防止することができる。
 なお、本実施の形態における記述は、本発明に係る高周波回路基板の一例を示すものであり、これに限定されるものではない。本実施の形態における高周波回路基板の細部構成及び詳細な動作などに関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
10   高周波回路
11   バイアス線路
100、200、300、400、500、600  高周波回路基板
101、102、201、202、301、302、401、402、501、502、
601、602 外層
103、203、303、403、503、603  内層
104、113、204、304、404、504、604  グランド層
105、205、305、405、505、605  バイアス層
106、107、111、112  ブラインドビアホール
206、207、306、307、406、407、506、507、606、607 
 貫通スルーホール
211、212  金属ピン
311  スタブ
411、412  別の貫通孔

Claims (9)

  1.  2つの外層と1つ以上の内層を有する3層以上の多層基板の一方の前記外層に高周波回路が配置され、前記一方の外層と前記内層との間にグランド層が設けられ、さらに前記内層の前記グランド層が設けられている面とは別の面に前記高周波回路のバイアス線路のパターンを形成するためのバイアス層が設けられている高周波回路基板であって、
     少なくとも前記一方の外層から前記バイアス層を有する内層までを貫通して前記バイアス線路に電気的に接続される伝送線路を備え、
     少なくとも前記伝送線路の前記一方の外層側の端部と前記バイアス線路を含むバイアスラインでの共振周波数が前記高周波回路の使用周波数から十分に離れていると判定するための所定の判定基準を満たすように前記伝送線路が形成されている
    ことを特徴とする高周波回路基板。
  2.  前記伝送線路は、前記一方の外層側の端部と前記バイアス線路とを電気的に接続するブラインドビアホールである
    ことを特徴とする請求項1に記載の高周波回路基板。
  3.  前記伝送線路として、前記一方の外層側の端部と前記バイアス線路とを電気的に接続するブラインドビアホール、または前記一方の外層から前記他方の外層まで貫通させて前記バイアス線路と電気的に接続された貫通スルーホールを用い、
     前記ブラインドビアホールまたは前記貫通スルーホールの前記一方の外層側の端部と前記バイアス線路とを結ぶバイアスラインのいずれかの位置にスタブが接続されている
    ことを特徴とする請求項1に記載の高周波回路基板。
  4.  前記スタブは、前記判定基準を満たす共振周波数で短絡端となるようにマイクロストリップラインで形成されている
    ことを特徴とする請求項3に記載の高周波回路基板。
  5.  前記スタブは、前記判定基準を満たす共振周波数で短絡端となるように所定のコンデンサで形成されている
    ことを特徴とする請求項3に記載の高周波回路基板。
  6.  前記伝送線路として、前記一方の外層から前記他方の外層まで貫通させて前記バイアス線路と電気的に接続された貫通スルーホールを用い、
     前記貫通スルーホールの前記他方の外層側の端部に所定長さの金属ピンが接続されている
    ことを特徴とする請求項1に記載の高周波回路基板。
  7.  前記伝送線路として、前記一方の外層から前記他方の外層まで貫通させて前記バイアス線路と電気的に接続された貫通スルーホールを用い、
     前記貫通スルーホールの周辺に前記2つの外層及び前記内層の誘電率とは異なる誘電率を有する誘電体を配置している
    ことを特徴とする請求項1に記載の高周波回路基板。
  8.  前記使用周波数をfaとし、前記共振周波数をfとするとき、前記判定基準は、
    f<fa×0.8、またはf>fa×1.2
    で与えられる
    ことを特徴とする請求項1乃至7のいずれか1項に記載の高周波回路基板。
  9.  前記他方の外層にはアンテナが配置されている
    ことを特徴とする請求項1乃至8のいずれか1項に記載の高周波回路基板。
PCT/JP2011/055835 2010-03-31 2011-03-11 高周波回路基板 WO2011122311A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180014827.2A CN102804365B (zh) 2010-03-31 2011-03-11 高频电路基板
EP11762551.7A EP2555236B1 (en) 2010-03-31 2011-03-11 High-frequency circuit board
US13/616,174 US9082785B2 (en) 2010-03-31 2012-09-14 High-frequency circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010080463A JP2011216957A (ja) 2010-03-31 2010-03-31 高周波回路基板
JP2010-080463 2010-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/616,174 Continuation US9082785B2 (en) 2010-03-31 2012-09-14 High-frequency circuit board

Publications (1)

Publication Number Publication Date
WO2011122311A1 true WO2011122311A1 (ja) 2011-10-06

Family

ID=44712033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055835 WO2011122311A1 (ja) 2010-03-31 2011-03-11 高周波回路基板

Country Status (5)

Country Link
US (1) US9082785B2 (ja)
EP (1) EP2555236B1 (ja)
JP (1) JP2011216957A (ja)
CN (1) CN102804365B (ja)
WO (1) WO2011122311A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385075B2 (ja) * 2013-04-15 2018-09-05 キヤノン株式会社 プリント配線板、プリント回路板及び電子機器
US9768872B2 (en) * 2014-11-20 2017-09-19 Sumitomo Electric Industries, Ltd. Optical transceiver outputting wavelength multiplexed signal and receiving another wavelength multiplexed signal
CN111540994A (zh) * 2019-12-20 2020-08-14 瑞声科技(新加坡)有限公司 传输线以及电子设备
CN111540995B (zh) * 2019-12-20 2022-04-08 瑞声科技(新加坡)有限公司 传输线、电子设备及传输线的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184900A (ja) 2000-12-19 2002-06-28 Mitsubishi Electric Corp 多層高周波パッケージ基板
JP2002325004A (ja) * 2001-04-26 2002-11-08 Kyocera Corp 高周波用配線基板
JP2005019730A (ja) * 2003-06-26 2005-01-20 Kyocera Corp 配線基板およびそれを用いた電子装置
JP2010272585A (ja) * 2009-05-19 2010-12-02 Mitsubishi Electric Corp フリップチップ実装構造

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778043B2 (en) * 2001-12-19 2004-08-17 Maxxan Systems, Inc. Method and apparatus for adding inductance to printed circuits
CN1292625C (zh) * 2002-09-30 2006-12-27 松下电器产业株式会社 印刷电路板、组合衬底、印刷电路板制造方法和电子装置
JP2004146810A (ja) * 2002-09-30 2004-05-20 Matsushita Electric Ind Co Ltd プリント配線基板、ビルドアップ基板、プリント配線基板の製造方法、電子機器
JP2005086603A (ja) * 2003-09-10 2005-03-31 Tdk Corp 電子部品モジュールおよびその製造方法
US7579925B2 (en) * 2005-11-10 2009-08-25 Teradata Us, Inc. Adjusting a characteristic of a conductive via stub in a circuit board
US7375290B1 (en) * 2006-10-11 2008-05-20 Young Hoon Kwark Printed circuit board via with radio frequency absorber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184900A (ja) 2000-12-19 2002-06-28 Mitsubishi Electric Corp 多層高周波パッケージ基板
JP2002325004A (ja) * 2001-04-26 2002-11-08 Kyocera Corp 高周波用配線基板
JP2005019730A (ja) * 2003-06-26 2005-01-20 Kyocera Corp 配線基板およびそれを用いた電子装置
JP2010272585A (ja) * 2009-05-19 2010-12-02 Mitsubishi Electric Corp フリップチップ実装構造

Also Published As

Publication number Publication date
EP2555236A4 (en) 2013-12-25
EP2555236B1 (en) 2019-05-08
US20130000956A1 (en) 2013-01-03
EP2555236A1 (en) 2013-02-06
US9082785B2 (en) 2015-07-14
JP2011216957A (ja) 2011-10-27
CN102804365A (zh) 2012-11-28
CN102804365B (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
SE512166C2 (sv) Mikrostripanordning
JP5881400B2 (ja) 高周波伝送線路
US8952266B2 (en) Structural body and interconnect substrate
US9054404B2 (en) Multi-layer circuit board with waveguide to microstrip transition structure
WO2011111297A1 (ja) 構造体、配線基板および配線基板の製造方法
US9059493B2 (en) High-frequency signal line and electronic device
JP2004320109A (ja) 高周波伝送線路及び高周波基板
WO2011122311A1 (ja) 高周波回路基板
TW201503482A (zh) 電子電路及電子機器
JP2007250818A (ja) 回路基板
JP2018157500A (ja) 回路基板
JP2013074256A (ja) 多層配線基板及びその多層配線基板に実装された高周波回路
WO2014003089A1 (ja) フラットケーブルおよび電子機器
JP6020409B2 (ja) 高周波信号線路及びこれを備えた電子機器
JP5082250B2 (ja) 高周波回路基板
WO2014136595A1 (ja) 構造体、配線基板及び電子装置
JP5542231B1 (ja) 多層回路基板
JP2015035468A (ja) プリント回路基板
JP4913875B2 (ja) コプレーナ線路
WO2024084786A1 (ja) 多層基板
WO2024147257A1 (ja) 多層基板及び配線基板
US20230319980A1 (en) Circuit board and method of manufacturing circuit board
JP6333048B2 (ja) 多層回路基板
JPH05327230A (ja) 多層配線基板
JP2006080239A (ja) 積層型高周波回路基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014827.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011762551

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE