WO2011122118A1 - 作業車の油圧システム - Google Patents

作業車の油圧システム Download PDF

Info

Publication number
WO2011122118A1
WO2011122118A1 PCT/JP2011/052642 JP2011052642W WO2011122118A1 WO 2011122118 A1 WO2011122118 A1 WO 2011122118A1 JP 2011052642 W JP2011052642 W JP 2011052642W WO 2011122118 A1 WO2011122118 A1 WO 2011122118A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
hydraulic
oil
valve
flow rate
Prior art date
Application number
PCT/JP2011/052642
Other languages
English (en)
French (fr)
Inventor
福本俊也
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to US13/389,570 priority Critical patent/US9353770B2/en
Priority to EP11762359.5A priority patent/EP2554853B1/en
Publication of WO2011122118A1 publication Critical patent/WO2011122118A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/162Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for giving priority to particular servomotors or users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/024Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40523Flow control characterised by the type of flow control means or valve with flow dividers
    • F15B2211/4053Flow control characterised by the type of flow control means or valve with flow dividers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/781Control of multiple output members one or more output members having priority

Definitions

  • the present invention relates to a hydraulic system for a work vehicle that supplies oil from a hydraulic pump operated by power from an engine to a plurality of hydraulic devices.
  • Patent Document 1 As a hydraulic system for a working vehicle as described above, for example, in Japanese Unexamined Patent Publication No. 2000-85597 (Patent Document 1), the total amount of oil from a fixed displacement hydraulic pump that is operated by power from an engine during steering operation. Is preferentially supplied to the hydraulic power steering device, and during non-steering operation, oil from the hydraulic pump drives the working device to move up and down (elevating control valve and lift cylinder), and the working device Is supplied preferentially to a rolling drive device via a priority diversion valve to a hydraulic rolling drive device (rolling control valve and rolling cylinder) that performs a rolling drive.
  • a hydraulic rolling drive device rolling control valve and rolling cylinder
  • a fixed displacement hydraulic pump is employed as the hydraulic pump, so that even when the engine speed is low, the flow rate of oil necessary for the operation of the power steering device, the lift drive device and the rolling In order to ensure the flow rate of oil necessary for the operation of the drive means, the discharge amount when the hydraulic pump is operated at a low rotational speed is set to a large value. For this reason, when the engine speed increases, more oil than necessary is supplied to the power steering device, etc., which wastes energy and increases the oil temperature. There is room for improvement from the viewpoint.
  • the elevating drive cannot be operated during the steering operation, for example, when headland turning is performed during tillage work in which a rotary tiller device is connected to the rear part of the work vehicle, the turning operation for starting the steering operation is started.
  • the steering operation such as raising the work device at times or lowering the work device at the end of turning, and the raising and lowering operation of the work device. .
  • a hydraulic system for a work vehicle includes a variable displacement pump that is operated by power from an engine, An actuator for adjusting the discharge amount of the variable displacement pump; a priority branching valve that preferentially supplies a predetermined amount of oil discharged by the variable displacement pump to the priority hydraulic section and supplies the surplus flow to the non-priority hydraulic section;
  • the non-priority hydraulic section includes a plurality of electromagnetic proportional control valves that control the flow of oil to the plurality of hydraulic devices included in the non-priority hydraulic section, and a high priority electromagnetic among the plurality of electromagnetic proportional control valves.
  • a priority flow dividing valve that supplies a priority flow to the proportional control valve and supplies a surplus flow to a low-priority electromagnetic proportional control valve; a priority flow rate of the priority flow dividing valve supplied to the priority hydraulic section; and the non-priority hydraulic pressure
  • the required flow rate of oil in the priority hydraulic section and the non-priority hydraulic section based on the amount of current flowing through the plurality of electromagnetic proportional control valves of the section
  • a required flow rate calculation module to be calculated; correlation data indicating the relationship between the discharge amount of the variable displacement pump, the engine speed and the operating amount of the actuator; the required flow rate of oil determined by the required flow rate calculation module;
  • the target operation amount setting module for deriving the control target operation amount of the actuator for obtaining the required oil flow rate calculated by the required flow rate calculation module based on the output of the rotation sensor for detecting the number and the correlation data
  • an operation control module for controlling the actuator based on the control target operation amount.
  • the discharge volume of the variable displacement pump is only a fixed amount (required flow rate in the priority hydraulic section) supplied to the priority hydraulic section. Discharge can be prevented.
  • the discharge volume of the variable displacement pump is required to operate the hydraulic equipment to be operated at a certain amount supplied to the priority hydraulic section. Therefore, it is possible to prevent wasteful discharge. Then, each of the hydraulic devices operated in the priority hydraulic section and the non-priority hydraulic section can be supplied with the required flow rate of oil by the action of each priority diversion valve.
  • the target operation amount setting module is based on an output of an oil temperature sensor that detects an oil temperature and an output of a pressure sensor that detects a discharge pressure of the variable displacement pump. Then, the volumetric efficiency of the variable displacement pump is obtained, and the control target operation amount of the actuator is corrected based on the obtained volumetric efficiency. According to this configuration, the required flow rate of oil is reliably supplied to each of the hydraulic equipment operated in the priority hydraulic section and the non-priority hydraulic section, regardless of fluctuations in the volumetric efficiency of the variable displacement pump due to the oil temperature. Can do.
  • an oil pressure detection module for detecting the pressure of oil supplied to the most downstream electromagnetic proportional control valve
  • the target operation amount setting module is provided in the oil pressure detection module. Based on the output, the control target operation amount of the actuator is corrected so that the pressure of oil supplied to the most downstream electromagnetic proportional control valve reaches a predetermined pressure set in advance. According to this configuration, it is possible to adjust the discharge amount of the variable displacement pump so that the oil pressure always reaches a predetermined pressure set in advance, so that the hydraulic equipment operated in the priority hydraulic section and the non-priority hydraulic section can be adjusted. It is possible to reliably supply the required flow rate of oil to each.
  • the priority branching valve of the non-priority hydraulic section is a variable priority branching valve
  • the non-priority hydraulic section includes a plurality of high-priority electromagnetic proportional control valves.
  • each high-priority electromagnetic proportional control valve is a closed center type, and the hydraulic unit composed of each high-priority electromagnetic proportional control valve adjusts the priority flow rate of the variable priority shunt valve by load sensing pressure This is a closed load sensing method.
  • the priority flow rate of the variable priority shunt valve can be appropriately adjusted to the flow rate required for the operation of the corresponding hydraulic device.
  • the tractor exemplified in this embodiment is equipped with a pair of left and right front wheels 1 so as to be steerable and drivable, and a pair of left and right rear wheels 2 are drivably equipped to form a four-wheel drive type. is doing.
  • a water-cooled diesel engine (hereinafter referred to as an engine) 3 is provided in the first half of the tractor.
  • a front wheel steering wheel 4 and a driver's seat 5 are provided to form a boarding operation unit 6, and a cabin 7 that covers the boarding operation unit 6 is provided.
  • the tractor is provided with a fully hydraulic power steering device 8. That is, the steering hole 4 is linked to the left and right front wheels 1 via the power steering device 8 or the like. Further, this tractor is equipped with a suspension device 9 for a front wheel constructed hydraulically.
  • the power output from the engine 3 is supplied to the inside of a transmission case (hereinafter referred to as a T / M case) 10.
  • the T / M case 10 is divided into traveling power and working power by a double shaft structure.
  • the driving power is transmitted to the forward / reverse switching device 11, the main transmission device 12, and the auxiliary transmission device 13 that also serve as a driving clutch.
  • the power output from the auxiliary transmission 13 is divided into power for driving the front wheels and power for driving the rear wheels.
  • Power for driving the front wheels is transmitted to the left and right front wheels 1 via the front wheel transmission 14 and the front wheel differential 15.
  • the power for driving the rear wheels is transmitted to the left and right rear wheels 2 via the rear wheel differential unit 16 and the like.
  • the working power is transmitted to the working power take-out (PTO) PTO shaft 19 via the working clutch 17 and the working transmission (PTO transmission) 18 and the like.
  • PTO working power take-out
  • the forward / reverse switching device 11 is operated by a hydraulic unit provided in the forward / reverse switching device 11 to cut off the transmission from the engine 1 to the main transmission 12 and the power from the engine 1.
  • the hydraulic transmission is configured to switch between a forward transmission state where power is transmitted to the main transmission 12 as forward power and a reverse transmission state where power from the engine 1 is transmitted to the main transmission 12 as reverse power.
  • the hydraulic unit of the forward / reverse switching device 11 includes two hydraulic clutches for forward power intermittent and reverse power intermittent, two pilot operated switching valves for switching the oil flow to the corresponding hydraulic clutch, and the corresponding switching valve. Two electromagnetic on / off valves for controlling the parrot pressure, an electromagnetic proportional pressure reducing valve for controlling the clutch pressure of each hydraulic clutch, and the like are provided.
  • the main transmission 12 is hydraulically switched to an eight-speed shift state by a combination of a four-speed shift state and a high-low two-speed shift state by the operation of a main shift hydraulic unit provided in the main transmission 12. It is composed.
  • the main transmission hydraulic unit includes four hydraulic clutches for four speeds, two hydraulic clutches for high and low speeds, and four pilot-operated switches that switch the flow of oil to the corresponding four-speed hydraulic clutches. And four electromagnetic on / off valves for controlling the parrot pressure for the corresponding switching valve, and two electromagnetic proportional pressure reducing valves for controlling the clutch pressure of the corresponding hydraulic clutch for high and low speed shift.
  • the sub-transmission device 13 is configured in a synchromesh type that is switched to a high / low two-stage by sliding of a sleeve provided in the sub-transmission device 13.
  • the sleeve is linked to a traveling shift lever provided in the boarding operation unit 6 via a mechanical linkage mechanism for sub-shifting.
  • the traveling shift lever is configured to be capable of switching the position between three positions: a low speed position, a neutral position, and a high speed position.
  • the front-wheel transmission device 14 is operated by a front-wheel transmission hydraulic unit provided in the front-wheel transmission device 14 to shut off transmission to the left and right front wheels 1 and to change the peripheral speed of the left and right front wheels 1 to the left and right rear.
  • Hydraulic pressure that switches between a constant speed driving state that is the same as the peripheral speed of the wheel 2 and a speed increasing driving state that increases the peripheral speed of the left and right front wheels 1 to about 1.6 times the peripheral speed of the left and right rear wheels 2.
  • the formula is configured.
  • the hydraulic unit for shifting the front wheel includes two hydraulic clutches for constant speed power intermittent and speed increasing power intermittent, two pilot operated switching valves for switching the oil flow to the corresponding hydraulic clutch, and corresponding switching Two electromagnetic on / off valves for controlling the parrot pressure for the valve are provided.
  • the front wheel differential 15 is equipped with a hydraulic differential lock mechanism.
  • the differential lock mechanism controls the hydraulic clutch that switches the differential device 15 for the front wheel between the differential allowing state and the differential blocking state, the pilot operated switching valve that switches the oil flow to the hydraulic clutch, and the parrot pressure for the switching valve.
  • An electromagnetic on / off valve is provided.
  • the rear wheel differential 16 is equipped with a hydraulic differential lock mechanism.
  • the differential lock mechanism includes a hydraulic clutch that switches the differential device 16 for the rear wheel between a differential allowing state and a differential blocking state, a pilot operated switching valve that switches the flow of oil to the hydraulic clutch, and a parrot pressure for the switching valve.
  • An electromagnetic on / off valve to be controlled is provided.
  • the work clutch 17 is configured to intermittently transmit power from the engine 1 to the work transmission 18 by operating a switching valve or the like that switches an oil flow to the work clutch 17.
  • the switching valve is linked to a clutch lever provided in the boarding operation unit 6 via a mechanical linkage mechanism for a work clutch.
  • the clutch lever is configured so as to be able to switch and hold between two positions, a cut position and an enter position.
  • the work transmission 18 is configured in a synchromesh type that is switched to a two-step high / low by sliding of a sleeve provided in the work transmission 18.
  • the sleeve is linked to a work speed change lever provided in the boarding operation unit 6 via a work speed change mechanical linkage mechanism.
  • the shift lever for work is configured to be capable of switching between two positions, a low speed position and a high speed position.
  • this tractor is equipped with an electronic control unit (hereinafter abbreviated as ECU or controller) 20.
  • the ECU 20 is configured using a microcomputer including a CPU and an EEPROM.
  • the ECU 20 includes a travel control unit 20A that controls the operation of the forward / reverse switching device 11, the main transmission 12, the front wheel transmission 14, the front wheel differential 15, the rear wheel differential 16, and the like as a control program. Has been implemented.
  • the traveling control unit 20A performs forward / reverse switching control for switching the operating state of the forward / reverse switching device 11 based on the output of the FR sensor 22 that detects the operation position of the forward / backward switching FR lever 21.
  • the forward / reverse switching control when the FR sensor 22 detects the operation of the FR lever 21 to the forward position, the two electromagnetic switches provided in the forward / reverse switching device 11 so that the forward transmission state of the forward / backward switching device 11 is obtained. Controls the operation of the on / off valve and the electromagnetic proportional pressure reducing valve.
  • the two electromagnetic on / off valves and the electromagnetic proportional pressure reducing valve provided in the forward / reverse switching device 11 are provided so that the reverse transmission state of the forward / reverse switching device 11 is obtained. Control the operation. While the FR sensor 22 does not detect the operation of the FR lever 21 to the forward position and the reverse position, the two electromagnetic on / off valves provided in the forward / reverse switching device 11 so that the shut-off state of the forward / reverse switching device 11 is obtained. And controls the operation of the electromagnetic proportional pressure reducing valve.
  • the FR lever 21 is arranged in the boarding operation unit 6 so that the position can be switched and held between two positions, a forward position and a reverse position.
  • the FR sensor 22 includes a micro switch for detecting a forward position and a micro switch for detecting a forward position.
  • the travel control unit 20A determines the clutch pressure of each hydraulic clutch for forward power intermittent and reverse power intermittent provided in the forward / reverse switching device 11. Control the clutch to be controlled. In the clutch control, the operation of the electromagnetic proportional pressure reducing valve provided in the forward / reverse switching device 11 is controlled so as to obtain an appropriate clutch pressure corresponding to the depression amount of the clutch pedal 23 detected by the clutch sensor 24.
  • the clutch pedal 23 is arranged in the boarding operation unit 6 so as to automatically return to the depression release position.
  • the clutch sensor 24 employs a rotary potentiometer.
  • the traveling control unit 20A performs shift control for switching the gear position of the main transmission 12 based on a shift command output from the shift up switch 25 and the shift down switch 26 provided in the shift lever for traveling.
  • the shift control when receiving a shift-up command from the shift-up switch 25, the four electromagnetic on / off valves and two electromagnetic switches provided in the main transmission 12 are switched so that the shift stage of the main transmission 12 is switched to the high speed side. Controls the operation of the proportional pressure reducing valve.
  • the four electromagnetic on / off valves and the two electromagnetic proportional pressure reducing valves provided in the main transmission 12 are operated so that the gear position of the main transmission 12 is switched to the low speed side. Control.
  • Momentary switches are employed for the shift up switch 25 and the shift down switch 26.
  • the travel control unit 20A performs the first front wheel shift control on the front wheel transmission 14 and the second front wheel shift based on the switching command output from the travel control selection switch 27 provided in the boarding operation unit 6.
  • the state is switched between a state where control is performed and a state where third front wheel shift control is performed.
  • the operation of the two electromagnetic on / off valves provided in the front wheel transmission 14 is controlled to switch the tractor drive state to the two-wheel drive state so that the shut-off state of the front wheel transmission 14 is obtained.
  • the operation of the two electromagnetic on / off valves provided in the front wheel transmission 14 is controlled so that the constant speed transmission state of the front wheel transmission 14 is obtained, and the tractor driving state is changed to the four-wheel driving state. Switch to.
  • the rudder angle of the front wheel 1 inside the turn is determined based on the output of the rudder angle sensor 28. If the rudder angle of the front wheel 1 on the inside of the turn is less than the set angle, the operation of the two electromagnetic on / off valves provided in the front wheel transmission 14 is controlled so that the constant speed transmission state of the front wheel transmission 14 is obtained. Then, the driving state of the tractor is switched to the four-wheel driving state. In addition, if the rudder angle of the front wheel 1 on the inside of the turn is equal to or greater than the set angle, the operation of the two electromagnetic on / off valves provided in the front wheel transmission 14 is controlled so that the speed-up transmission state of the front wheel transmission 14 can be obtained. Then, the driving state of the tractor is switched to the front wheel acceleration state.
  • the rudder angle sensor 28 employs a rotary potentiometer that detects the swing angle of a pitman arm (not shown) in the left-right direction as the rudder angle of the front wheel 1 inside the turn.
  • the traveling control unit 20A performs front-wheel differential switching control for switching the operating state of the front-wheel differential device 15 based on the output of the differential lock switch 29 provided in the boarding operation unit 6.
  • the front wheel differential switching control if the output of the differential lock switch 29 is OFF, the operation of the electromagnetic on / off valve provided in the front wheel differential device 15 is obtained so that the differential allowable state of the front wheel differential device 15 is obtained.
  • the output of the differential lock switch 29 is on, the operation of the electromagnetic on / off valve provided in the front wheel differential 15 is controlled so that the differential blocking state of the front wheel differential 15 is obtained.
  • the differential lock switch 29 a momentary switch is employed.
  • the traveling control unit 20 ⁇ / b> A performs rear wheel differential switching control for switching the operating state of the rear wheel differential device 16 based on the output of the differential lock switch 31 that detects the operation position of the differential lock pedal 30.
  • the rear wheel differential switching control if the output of the differential lock switch 31 is OFF, the electromagnetic ON / OFF provided in the rear wheel differential device 16 so that the differential allowable state of the rear wheel differential device 16 is obtained. Control the operation of the valve. If the output of the differential lock switch 31 is on, the operation of the electromagnetic on / off valve provided in the rear wheel differential 16 is controlled so that the differential blocking state of the rear wheel differential 16 is obtained.
  • the diff lock pedal 30 can be switched and held between a depression release position and a depression position, and is disposed in the boarding operation unit 6.
  • the differential lock switch 31 is a momentary switch.
  • a link mechanism 32 for connecting a working device is provided at the rear part of the T / M case 10.
  • the link mechanism 32 includes an upper link 33 and a left and right lower links 34 connected to the rear portion of the T / M case 10 so as to be swingable up and down.
  • this tractor is driven up and down by a working device (not shown) such as a rotary tiller or plow connected to the rear portion of the tractor via a link mechanism 32.
  • Elevating drive device 40 is provided.
  • the raising / lowering drive device 40 includes left and right lift arms 41 for raising and lowering the working device disposed in the rear part of the T / M case 10 so as to be vertically swingable, and left and right lift cylinders (for hydraulic equipment) An example) 42 and a control valve unit 43 for raising and lowering that controls the flow of oil to the left and right raising and lowering cylinders 42 are configured hydraulically.
  • a single-acting hydraulic cylinder is adopted for the left and right lifting cylinders 42.
  • the control valve unit 43 for raising and lowering includes an electromagnetic proportional control valve 44 for raising and lowering, a drop adjusting valve 45 for adjusting the lowering speed of the left and right lift arms 41 (working device), and a relief valve. 46 etc. are provided.
  • the raising / lowering electromagnetic proportional control valve 44 includes an ascending proportional valve 47 for controlling the ascending oil flow rate, an ascending electromagnetic pilot valve 48 for controlling the pilot pressure with respect to the ascending proportional valve 47, and a descending oil flow rate.
  • a lowering proportional valve 49 for controlling the lowering a lowering electromagnetic pilot valve 50 for controlling the pilot pressure for the lowering proportional valve 49, a shuttle valve 51 for switching the flow of oil used for operating the lowering proportional valve 49, A check valve 52 for preventing a back flow from the right and left lifting cylinders 42 to the proportional valve 47 for lifting and a compensator 53 for controlling hydraulic pressure are configured in a pilot operated manner.
  • an elevation control unit 20 ⁇ / b> B that controls the operation of the elevation drive device 40 is installed in the ECU 20 as a control program.
  • the elevation control unit 20B sets the work device to a height corresponding to the operation position of the height setting lever 54 based on the output of the lever sensor 55 that detects the operation position of the height setting lever 54 as the control target height of the work device. Control the height to be positioned. Also, when the operation of the lift command lever 56 to the raised position is detected based on the output of the lever sensor 57 that detects the operation of the lift command lever 56 from the neutral position to the raised position or the lowered position, priority is given to the height control. Then, ascending control for automatically raising the work device to the set upper limit position is performed.
  • the elevation control unit 20B lifts the lift control unit 20B based on the output of the lever sensor 55 for the height setting lever and the output of the arm sensor 58 that detects the swing angle of the lift arm 41 as the height of the work device.
  • the operation of the electromagnetic proportional control valve 44 for raising / lowering provided in the raising / lowering driving device 40 is controlled so that the swing angle of the arm 41 corresponds to the operation position of the height setting lever 54.
  • the elevation control unit 20B is based on the output of the upper limit setter 59 that outputs the rotation operation amount from the reference position as the control target upper limit position of the work device, and the output of the arm sensor 58 for the lift arm.
  • the operation of the electromagnetic proportional control valve 44 for raising and lowering provided in the raising and lowering drive device 40 is controlled so that the swing angle of the lift arm 41 corresponds to the amount of rotation operation from the reference position of the upper limit setter 59. Then, when an operation to the lowered position of the lift command lever 56 is detected based on the output of the lift sensor lever lever 57, the priority of the lift control is canceled and the height control is performed.
  • the height of the working device can be changed to an arbitrary height according to the operation position of the height setting lever 54. Further, the height of the working device can be changed to the upper limit position set by the upper limit setting unit 59 by swinging the elevation command lever 56 to the raised position. Then, the height of the working device can be returned to an arbitrary height corresponding to the operation position of the height setting lever 54 by swinging the elevation command lever 56 to the lowered position.
  • the height setting lever 54 is arranged in the boarding operation unit 6 in a swingable forward and backward manner that can hold the position.
  • the raising / lowering command lever 56 is configured as a neutral return type up-and-down swing type and is provided in the boarding operation unit 6.
  • a rotary potentiometer is employed as the lever sensor 55 for the height setting lever and the arm sensor 58 for the lift arm.
  • the lever sensor 57 for the elevation command lever is constituted by a micro switch for detecting the raising operation and a micro switch for detecting the lowering operation.
  • the upper limit setter 59 is configured as a dial operation type by a rotary potentiometer and is provided in the boarding operation unit 6.
  • this tractor is driven to swing in the rolling direction a working device such as a rotary tiller or a skimmer connected to the rear portion of the tractor via a link mechanism 32.
  • a rolling drive 60 is provided.
  • the rolling drive device 60 connects the left lower link 34 of the link mechanism 32 to the left lift arm 41, and connects the right lower link 34 of the link mechanism 32 to the right lift arm 41.
  • a hydraulic type includes a rolling cylinder (an example of a hydraulic device) 62 and a control valve unit 63 for rolling that controls the flow of oil to the rolling cylinder 62 to change the length of the rolling cylinder 62 with respect to the linkage rod 61. It is configured.
  • a double-acting hydraulic cylinder is adopted as the rolling cylinder 62.
  • the control valve unit 63 for rolling includes a pilot-operated priority branching valve 64, an electromagnetic proportional control valve 65 for rolling, a double check valve 66 constituting a counter balance circuit, and the like. Is provided.
  • the priority diversion valve 64 is adjusted in opening to an appropriate diversion ratio based on the pilot pressure in the rolling control valve unit 63 during the rolling drive of the working device, so that the required flow rate of oil is controlled by the rolling control valve.
  • the unit 63 is supplied with priority over the control valve unit 43 for raising and lowering.
  • the electromagnetic proportional control valve 65 for rolling a direct acting type is adopted.
  • the ECU 20 is mounted with a rolling control means 20C for controlling the operation of the rolling drive device 60 as a control program.
  • the rolling control means 20 ⁇ / b> C performs rolling control for horizontal ground that maintains the work device at an arbitrary roll angle in a horizontal field based on a switching command output by the selection switch 67 for rolling control provided in the boarding operation unit 6.
  • the state is switched between a state to be performed and a state in which the rolling control for the inclined land is performed to maintain the work device at an arbitrary roll angle during the work traveling along the contour line in the inclined farm field.
  • the ground roll angle of the work device is set to the roll angle based on the output of the roll angle setting device 68 provided in the boarding operation unit 6 and the output of the rolling sensor 69 that detects the roll angle of the tractor.
  • the control target roll angle of the working device with respect to the tractor necessary to maintain the control target roll angle set by the device 68 is calculated.
  • the calculated control target roll angle, the output of the stroke sensor 70 that detects the length of the rolling cylinder 62, and the control target roll angle of the working device with respect to the tractor and the length of the rolling cylinder 62 are associated with each other.
  • the operation of the electromagnetic proportional control valve 65 for rolling provided in the rolling drive device 60 is controlled so that the length of the rolling cylinder 62 corresponds to the control target roll angle of the working device with respect to the tractor.
  • a momentary switch is adopted as the selection switch 67 for rolling control.
  • the roll angle setting device 68 is configured as a dial operation type by a rotary potentiometer.
  • the rolling sensor 69 includes a capacitance type tilt sensor and a vibration type angular velocity sensor.
  • the stroke sensor 70 is a sliding potentiometer.
  • this tractor uses hydraulic equipment (reversible cylinder in the case of a reversible plow) provided in a working device such as a reversible plow connected to the rear portion of the tractor via a link mechanism 32.
  • An auxiliary hydraulic unit 71 is provided to enable this.
  • the auxiliary hydraulic unit 71 is a variable priority diversion valve of a bleed-off circuit type that supplies oil of a necessary flow rate to the auxiliary hydraulic unit 71 preferentially over the control valve unit 63 for rolling when the hydraulic equipment provided in the working device is operated.
  • the control valve units 73 and 74 are closed center type pilot operated electromagnetic proportional control valves 76 and 77, pressure compensation valves 78 and 79, check valves 80 and 81, and load sensing shuttle valves 82 and 83, And a closed load sensing system that appropriately adjusts the priority flow rate of the variable priority diversion valve 72 by the load sensing pressures of the control valve units 73 and 74.
  • an auxiliary hydraulic control unit 20 ⁇ / b> D that controls the operation of the auxiliary hydraulic unit 71 is installed in the ECU 20 as a control program.
  • the auxiliary hydraulic control unit 20D has a hydraulic device of the working device connected to the first control valve unit 73 based on the output of the lever sensor 85 that detects the operation position of the first auxiliary lever 84 provided in the boarding operation unit 6.
  • 1st auxiliary control which operates the electromagnetic proportional control valve 76 with which the 1st control valve unit 73 was equipped so that operation corresponding to the operation position of 1 auxiliary lever 84 may be performed.
  • the hydraulic device of the working device connected to the second control valve unit 74 is connected to the second auxiliary lever 86.
  • Second auxiliary control is performed to operate the electromagnetic proportional control valve 77 provided in the second control valve unit 74 so as to perform an operation corresponding to the operation position.
  • the 1st auxiliary lever 84 and the 2nd auxiliary lever 86 are comprised so that position switching can be carried out to three positions.
  • the lever sensors 85 and 84 for the first auxiliary lever and the second auxiliary lever are constituted by two micro switches that detect two positions other than the neutral position.
  • the differential lock mechanism of the differential device 15, the differential lock mechanism of the differential device 16 for the rear wheel, the work clutch 17, the lift drive device 40, the rolling drive device 60, and the auxiliary hydraulic unit 71 include an axial plunger type variable displacement pump 88. It is configured to supply oil from.
  • the variable displacement pump 88 is pumped by the oil stored in the T / M case 10 by operating with power from the engine 3.
  • the oil from the variable displacement pump 88 is supplied to the priority hydraulic section A and the non-priority hydraulic section B via the priority diversion valve 89.
  • the priority hydraulic section A includes a power steering device 8, a suspension device 9 for front wheels, a hydraulic unit for forward / reverse switching device 11, a hydraulic unit for main transmission 12, a hydraulic unit for front wheel transmission 14, and a differential for front wheels. 15, a differential lock mechanism for the rear wheel differential 16, and a work clutch 17.
  • the auxiliary hydraulic unit 71 includes an elevating drive device 40, a rolling drive device 60, and an auxiliary hydraulic unit 71.
  • the priority diversion valve 89 preferentially assigns a certain amount of oil required in the priority hydraulic section A to the priority hydraulic section A.
  • the priority diversion valve 89 assigns the surplus flow to the non-priority hydraulic section B.
  • the set amount of oil supplied to the priority hydraulic section A is distributed to two systems.
  • a set amount of oil is preferentially supplied to the power steering device 8 via the pressure regulating valve 90 and the priority diversion valve 91, and surplus flow is supplied to the hydraulic clutches of the forward / reverse switching device 11 and the main transmission 12.
  • Supply for lubrication On the other hand, the suspension device 9 for the front wheels, the hydraulic unit of the forward / reverse switching device 11, the hydraulic unit of the main transmission 12, the hydraulic unit of the transmission 14 for the front wheels, and the differential unit 15 for the front wheels are connected via the pressure reducing valve 92.
  • the differential lock mechanism, the differential lock mechanism of the rear wheel differential device 16, and the work clutch 17 are supplied.
  • the variable flow priority is adjusted so that the surplus flow from the priority diversion valve 89 is adjusted to an appropriate diversion ratio based on the load sensing pressures in the control valve units 73 and 74 of the auxiliary hydraulic unit 71.
  • the auxiliary flow unit 72 is preferentially supplied to the auxiliary hydraulic unit 71 by the action of the diversion valve 72, and the surplus flow from the variable preferential diversion valve 72 is preferentially supplied to the control valve unit 63 for rolling by the action of the preferential diversion valve 64.
  • the surplus flow from the valve 64 is supplied to the control valve unit 43 for raising and lowering.
  • the ECU 20 is equipped with a discharge amount control unit 20 ⁇ / b> E that adjusts the discharge amount of the variable displacement pump 88 by changing the swash plate angle of the variable displacement pump 88 as a control program.
  • the discharge amount control unit 20E includes a required flow rate calculation module 20Ea that calculates the required flow rate of oil in the hydraulic system, and an electric motor that adjusts the discharge amount of the variable displacement pump 88 by changing the swash plate angle of the variable displacement pump 88.
  • a target operation amount setting module 20Eb that sets a control target operation amount of a cylinder (an example of an actuator) 93 and an operation control module 20Ec that controls the operation of the electric cylinder 93 are included.
  • the required flow rate calculation module 20Ea is based on the priority flow rate of the priority diversion valve 89 supplied to the priority hydraulic section A and the amount of current supplied to each of the electromagnetic proportional control valves 44, 65, 76, 77 of the non-priority hydraulic section B. Calculate the required oil flow rate in this hydraulic system.
  • the target operation amount setting module 20Eb has a correlation table as correlation data indicating the relationship among the discharge amount of the variable displacement pump 88, the engine speed, and the operation amount of the electric cylinder 93. As shown in FIG. 8, this correlation table registers a plurality of graphs showing the relationship between the discharge amount of the variable displacement pump 88 and the operation amount of the electric cylinder 93 using the engine speed as a parameter. That is, it is a function table having the engine speed and the discharge amount as input values and the operation amount as an output value. Accordingly, the target operating amount setting module 20Eb uses the above table to calculate the required flow rate calculation module 20Ea from the output of the rotation sensor 94 that detects the required flow rate of the oil calculated by the required flow rate calculation module 20Ea and the engine speed.
  • the control target operation amount of the electric cylinder 93 for obtaining the required flow rate of oil can be derived.
  • the derived control target operation amount is set as a control target for the electric cylinder 93.
  • the target operation amount setting module 20Eb performs first correction control and second correction control for correcting the control target operation amount of the electric cylinder 93.
  • the first correction control based on the output of the oil temperature sensor 95 that detects the temperature of the oil stored in the T / M case 10 and the output of the first pressure sensor 96 that detects the discharge pressure of the variable displacement pump 88, The volumetric efficiency of the variable displacement pump 88 is obtained, and the control target operation amount of the electric cylinder 93 is corrected based on the obtained volumetric efficiency.
  • the pressure of the oil supplied to the lifting / lowering driving device 40 is set in advance based on the output of a second pressure sensor (an example of oil pressure detecting means) 97 that detects the pressure of the oil supplied to the lifting / lowering driving device 40.
  • the control target operation amount of the electric cylinder 93 is corrected so as to reach the predetermined pressure.
  • the operation control module 20Ec reaches the control target operation amount of the electric cylinder 93 set by the target operation amount setting module 20Eb (the swash plate angle of the variable displacement pump 88 is suitable for obtaining the necessary flow rate).
  • the operation of the electric cylinder 93 is controlled so that the swash plate angle is obtained.
  • variable displacement pump 88 mechanically limits the minimum swash plate angle so that a set amount of oil to be supplied to the priority hydraulic section A can be secured even when the engine speed decreases to the idling speed. Yes.
  • the discharge amount control unit 20E when none of the lifting drive device 40, the rolling drive device 60, and the auxiliary hydraulic unit 71 are operated, 2
  • the swash plate angle of the variable displacement pump 88 is changed so that the amount of oil required for the output of the pressure sensor 97 to reach a predetermined pressure is obtained.
  • the swash plate angle of the variable displacement pump 88 is obtained so that a set amount of oil supplied to the priority hydraulic section A and an oil amount required for the operation of the lifting / lowering drive unit 40 are obtained.
  • the set amount of oil supplied to the priority hydraulic section A, the amount of oil required for the operation of the rolling drive 60, and the output of the second pressure sensor 97 reach a predetermined pressure.
  • the angle of the swash plate of the variable displacement pump 88 is changed so that the amount of oil required for the operation is obtained.
  • the set amount of oil supplied to the priority hydraulic section A, the amount of oil required to operate the auxiliary hydraulic unit 71, and the output of the second pressure sensor 97 reach a predetermined pressure.
  • the angle of the swash plate of the variable displacement pump 88 is changed so that the amount of oil required for the operation is obtained.
  • the set amount of oil supplied to the priority hydraulic section A, the amount of oil required for the operation of the lifting drive unit 40, the rolling drive unit 60 The swash plate angle of the variable displacement pump 88 is changed so that the amount of oil required for the operation and the amount of oil required for the operation of the auxiliary hydraulic unit 71 are obtained.
  • the excess flow of the preferential diversion valve 89 supplies the required amount of oil to each of the elevating drive device 40, the rolling drive device 60, and the auxiliary hydraulic unit 71. Can be distributed properly.
  • first control valve unit 73 and the second control valve unit 74 of the auxiliary hydraulic unit 71 are operated simultaneously, the first priority control valve unit 73 and the second control valve unit are operated by the action of the variable priority diversion valve 72. It is possible to appropriately distribute and supply the required flow rate of oil to each of the 74 from the surplus flow of the priority diversion valve 89.
  • the priority after the set amount of oil is supplied to the priority hydraulic section A
  • the surplus flow from the diversion valve 89 is commensurate with what is operated by the action of the priority diversion valve 64 and the variable preferential diversion valve 72 to be operated among the lifting drive device 40, the rolling drive device 60, and the auxiliary hydraulic unit 71.
  • it can be distributed and supplied at an appropriate diversion ratio.
  • the set amount of oil required in the priority hydraulic section A can be reliably ensured, whereby the power steering device 8, the forward / reverse switching device 11 and the main transmission device 12 can be secured.
  • the required amount of oil can be reliably supplied to the transmission system such as the steering system, and as a result, the amount of oil supplied to the power steering device 8 becomes insufficient, making the steering operation difficult, or the forward / reverse switching device 11 and the main switch. It is possible to avoid inconveniences such as unexpected power loss due to a shortage of oil supplied to the transmission system such as the transmission 12.
  • the required amount of oil can be supplied to each of the elevating drive device 40, the rolling drive device 60, and the auxiliary hydraulic unit 71 without excess or deficiency, thereby saving energy.
  • the lifting / lowering drive of the working device, the rolling drive of the working device, and the driving of the hydraulic equipment provided in the working device can be appropriately performed.
  • the lift drive device 40 when the engine speed is significantly reduced and it becomes impossible to secure the required flow rate of oil for each of the lift drive device 40, the rolling drive device 60, and the auxiliary hydraulic unit 71, the lift drive device 40
  • the surplus flow from the priority diversion valve 89 can be distributed and supplied to the operating one of the rolling drive device 60 and the auxiliary hydraulic unit 71 at an appropriate diversion ratio commensurate with the one to be operated. Even if it becomes impossible to ensure the above, the elevating drive device 40, the rolling drive device 60, and the auxiliary hydraulic unit 71 can be operated simultaneously.
  • a front loader (not shown), which is an example of a work device, can be connected to the front of the tractor.
  • the front loader auxiliary hydraulic unit (an example of a hydraulic unit) 98 (see FIG. 2) for enabling the front loader to be hydraulically driven is installed in the existing auxiliary hydraulic unit 71. Additional equipment can be provided at the connection end.
  • the auxiliary hydraulic unit 98 for the front loader includes a control valve unit 99 for boom operation and a control valve unit 100 for bucket operation having a load sensing function.
  • the boom operation control valve unit 99 includes a closed center type pilot operated electromagnetic proportional control valve 101, a pressure compensation valve 102, a check valve 103, a load sensing shuttle valve 104, and the like.
  • the control valve unit 100 for operation includes a closed center type pilot-operated electromagnetic proportional control valve 105, a pressure compensation valve 106, a check valve 107, and the like, and the load sensing pressure of each control valve unit 99, 100 is used.
  • a closed load sensing system that appropriately adjusts the priority flow rate of the variable priority shunt valve 72 is configured.
  • auxiliary hydraulic unit 98 for the front loader When the auxiliary hydraulic unit 98 for the front loader is connected to the connection end of the auxiliary hydraulic unit 71, the corresponding pump oil passage, pilot oil passage, load sensing oil passage, and tank in the auxiliary hydraulic units 71 and 98 are connected. An oil passage can be connected.
  • the front loader auxiliary hydraulic unit 98 When the front loader auxiliary hydraulic unit 98 is disposed on the front side of the vehicle body close to the front loader, the auxiliary hydraulic unit 71 and the front loader auxiliary hydraulic unit 98 are connected via a hydraulic hose or the like. be able to.
  • the ECU 20 can be additionally equipped with a front loader auxiliary hydraulic control unit 20F for controlling the operation of the front loader auxiliary hydraulic unit 98 as a control program.
  • the auxiliary hydraulic control unit 20F for the front loader is connected to the boom control valve unit 99 based on the output of the lever sensor 109 that detects the operation position of the boom operation lever 108 additionally provided in the boarding operation unit 6.
  • Boom drive control is performed to operate the electromagnetic proportional control valve 101 provided in the control valve unit 99 for the boom so that the boom cylinder (an example of hydraulic equipment) 110 performs an expansion / contraction operation corresponding to the operation of the operation lever 108 for the boom. .
  • a bucket cylinder (an example of hydraulic equipment) 113 connected to the bucket control valve unit 100 based on the output of the lever sensor 112 that detects the operation position of the bucket operation lever 111 additionally provided in the boarding operation unit 6. Performs bucket drive control to actuate the electromagnetic proportional control valve 105 provided in the bucket control valve unit 100 so as to perform an expansion and contraction operation corresponding to the operation of the bucket operation lever 111.
  • the operation levers 108 and 111 for the boom and bucket are configured to be a neutral return type that swings back and forth.
  • a rotary potentiometer is adopted for each of the boom and bucket lever sensors 109 and 112.
  • the priority flow rate of the priority diversion valve 89 supplied to the priority hydraulic section A is calculated based on the amount of current energized to each electromagnetic proportional control valve 44, 65, 76, 77, 101, 102 in the non-priority hydraulic section B. Then, the target operation amount setting module 20Eb and the operation control module 20Ec perform the control operation described above.
  • the set amount of oil required in the priority hydraulic section A can be reliably ensured regardless of the engine speed, and the power steering.
  • the required amount of oil can be reliably supplied to the transmission system such as the device 8 and the forward / reverse switching device 11 and the main transmission 12.
  • the required flow rate of oil can be supplied to each of the elevating drive device 40, the rolling drive device 60, the auxiliary hydraulic unit 71, and the auxiliary hydraulic unit 98 for the front loader without excess or deficiency.
  • the engine speed has greatly decreased, and it has become impossible to secure the required flow rate of oil for each of the elevating drive device 40, the rolling drive device 60, the auxiliary hydraulic unit 71, and the auxiliary hydraulic unit 98 for the front loader.
  • the priority diverter valve 89 is operated at an appropriate diversion ratio commensurate with the one to be operated among the lifting / lowering drive unit 40, the rolling drive unit 60, the auxiliary hydraulic unit 71, and the auxiliary hydraulic unit 98 for the front loader.
  • the lifting drive device 40, the rolling drive device 60, the auxiliary hydraulic unit 71, and the auxiliary hydraulic pressure for the front loader It is also possible to operate the unit 98 simultaneously.
  • the control for the boom is performed by the action of the variable priority diversion valve 72.
  • the required amount of oil can be appropriately distributed and supplied from the surplus flow of the priority diversion valve 89 to each of the valve unit 99 and the control valve unit 100 for the bucket.
  • variable displacement pump 88 an unbalanced vane pump, a variable displacement vane pump, or the like may be employed.
  • the hydraulic equipment provided in the priority hydraulic section A may be a hydrostatic continuously variable transmission, an integral type power steering device, or the like.
  • the hydraulic equipment provided in the non-priority hydraulic section B may be a hydraulic motor that rotationally drives a rotating body such as a hydraulically driven rotary blade provided in a working device such as a mower.
  • Priorities of oil supply are set for all electromagnetic proportional control valves 44, 65, 76, 77, 101, 105 provided in the non-priority hydraulic section B, so that a high priority electromagnetic proportional control valve and a low priority are set. You may comprise so that the priority shunt valves 64 and 72 may be arrange
  • the electromagnetic proportional control valves 44, 65, 76, 77, 101, 105 are either the closed center type or the open center type. But it can be adopted.
  • an electric motor, a hydraulic cylinder, or the like can be employed as the actuator 93 for changing the swash plate angle of the variable displacement pump 88.
  • a pressure switch may be adopted as the oil pressure detecting means 97.
  • the configuration of the priority diversion valves 64, 72, and 89 can be variously modified, and is not limited to a structure that secures a predetermined preferential flow rate by a throttle valve. You may make it employ
  • variable priority diversion valve 72 Various changes can be made to the configuration of the variable priority diversion valve 72, and the preferential flow rate is determined by the differential pressure between the upstream pressure of the variable priority diversion valve 72 and the load sensing pressure of the hydraulic units 73, 74, 98.
  • the adjustment for example, a configuration in which the priority flow rate is adjusted by pilot-operating the variable throttle may be adopted.
  • the work vehicle hydraulic system according to the present invention can be applied to a work vehicle such as a backhoe or a wheel loader having a plurality of hydraulic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Abstract

 作業車の油圧システムは、 可変容量ポンプが吐出したオイルの一定量を優先油圧セクションに優先的に供給し、その余剰流を非優先油圧セクションに供給する優先分流弁と、 前記非優先油圧セクションに、前記非優先油圧セクションに含まれる複数の油圧機器に対するオイルの流れを制御する複数の電磁比例制御弁と、 前記優先油圧セクションに供給する前記優先分流弁の優先流量、及び、前記非優先油圧セクションの前記複数の電磁比例制御弁に通電する電流量に基づいて、前記優先油圧セクション及び前記非優先油圧セクションでのオイルの必要流量を演算する必要流量演算モジュールと、 前記必要流量演算モジュールが求めたオイルの必要流量、エンジン回転数を検出する回転センサの出力、前記可変容量ポンプの吐出量とエンジン回転数との関係を示す相関関係データとに基づいて、前記可変容量ポンプの吐出量を調節するアクチュエータの作動量を導出する目標作動量設定モジュールと、 からなる。

Description

作業車の油圧システム
 本発明は、エンジンからの動力で作動する油圧ポンプからのオイルを複数の油圧機器に供給する作業車の油圧システムに関する。
 上記のような作業車の油圧システムとして、例えば日本国特開2000-85597号公報(特許文献1)では、ステアリング操作時には、エンジンからの動力で作動する固定容量形の油圧ポンプからのオイルの全量が油圧式のパワーステアリング装置に優先的に供給され、非ステアリング操作時には、油圧ポンプからのオイルが、作業装置を昇降駆動する油圧式の昇降駆動装置(昇降制御弁及びリフトシリンダ)と、作業装置をローリング駆動する油圧式のローリング駆動装置(ローリング制御弁及びローリングシリンダ)とに、優先分流弁を介してローリング駆動装置に優先的に供給される。
 この従来の油圧システムでは、油圧ポンプに固定容量式の油圧ポンプが採用されていることから、エンジン回転数が低い場合でも、パワーステアリング装置の作動に必要なオイルの流量や、昇降駆動装置及びローリング駆動手段の作動に必要なオイルの流量を確保できるようにするために、油圧ポンプの低回転数作動時での吐出量を大きい値に設定している。そのため、エンジン回転数が上昇した場合には、必要以上のオイルをパワーステアリング装置などに供給することになり、これにより、エネルギーを無駄に消費するとともに油温が上昇することになり、省エネルギー化の観点から改善の余地がある。
 又、ステアリング操作中は昇降駆動装置を作動させることができないことから、例えば、作業車の後部にロータリ耕耘装置を連結した耕耘作業中に枕地旋回を行う場合には、ステアリング操作を行う旋回開始時に作業装置を上昇させる、あるいは、旋回終了時に作業装置を下降させる、といったステアリング操作と作業装置の昇降操作とを同時に行うことができないようになっており、操作性の面から改善の余地がある。
 更に、昇降駆動装置とローリング駆動装置とを同時に作動させた場合には、優先分流弁の作用でローリング駆動装置に優先的にオイルを供給することから、昇降駆動装置の動作が遅くなる不都合を招く虞がある。そして、この不都合を回避するためには油圧ポンプの吐出量を多くする必要があり、省エネルギー化を図ることが更に難しくなる。
特開2000-85597号公報
 従って、省エネルギー化を図りながら、操作性の向上とともに複数の油圧機器の同時作動が良好に実行される湯あるシステムが要望されている。
 本発明による、作業車の油圧システムは、エンジンからの動力で作動する可変容量ポンプと、
 前記可変容量ポンプの吐出量を調節するアクチュエータと、前記可変容量ポンプが吐出したオイルの一定量を優先油圧セクションに優先的に供給し、その余剰流を非優先油圧セクションに供給する優先分流弁と、前記非優先油圧セクションに、前記非優先油圧セクションに含まれる複数の油圧機器に対するオイルの流れを制御する複数の電磁比例制御弁と、前記複数の電磁比例制御弁のうち、優先度の高い電磁比例制御弁に優先流を供給し、優先度の低い電磁比例制御弁に余剰流を供給する優先分流弁と、前記優先油圧セクションに供給する前記優先分流弁の優先流量、及び、前記非優先油圧セクションの前記複数の電磁比例制御弁に通電する電流量に基づいて、前記優先油圧セクション及び前記非優先油圧セクションでのオイルの必要流量を演算する必要流量演算モジュールと、前記可変容量ポンプの吐出量とエンジン回転数と前記アクチュエータの作動量との関係を示す相関関係データと、前記必要流量演算モジュールが求めたオイルの必要流量、エンジン回転数を検出する回転センサの出力、及び、前記相関関係データに基づいて、前記必要流量演算モジュールが演算したオイルの必要流量を得るための前記アクチュエータの制御目標作動量を導出する目標作動量設定モジュールと、前記制御目標作動量に基づいて、前記アクチュエータを制御する作動制御モジュールとからなる。
 この構成では、非優先油圧セクションに備えた複数の油圧機器を作動させない場合は、可変容量ポンプの吐出量は優先油圧セクションに供給する一定量(優先油圧セクションでの必要流量)だけとなり、無駄な吐出を防止することができる。
 又、非優先油圧セクションに備えた複数の油圧機器のうちのいずれかを作動させる場合は、可変容量ポンプの吐出量は、優先油圧セクションに供給する一定量に、作動させる油圧機器の作動に必要な流量を加えた量になり、無駄な吐出を防止することができる。
 そして、優先油圧セクションと非優先油圧セクションにおいて作動させる油圧機器とのそれぞれには、各優先分流弁の作用により、必要流量のオイルを分配供給することができる。これにより、優先油圧セクションに備える油圧機器と非優先油圧セクションに備える油圧機器との同時作動、及び、非優先油圧セクションに備える複数の油圧機器の同時作動が可能となる。
 従って、省エネルギー化を図りながら、操作性の向上とともに複数の油圧機器の同時作動を良好に行うことができる。
 本発明の好適な実施形態の一つでは、前記目標作動量設定モジュールが、オイルの温度を検出する油温センサの出力、及び、前記可変容量ポンプの吐出圧を検出する圧力センサの出力に基づいて、前記可変容量ポンプの容積効率を求め、求めた容積効率に基づいて前記アクチュエータの制御目標作動量を補正する。
 この構成によると、オイルの温度に起因した可変容量ポンプの容積効率の変動にかかわらず、優先油圧セクションと非優先油圧セクションにおいて作動させる油圧機器とのそれぞれに必要流量のオイルを確実に供給することができる。
 本発明の好適な実施形態の一つでは、最下流の電磁比例制御弁に供給するオイルの圧力を検出するオイル圧検出モジュールが備えられ、前記目標作動量設定モジュールが、前記オイル圧検出モジュールの出力に基づいて前記最下流の電磁比例制御弁に供給するオイルの圧力が予め設定した所定圧に達するように前記アクチュエータの制御目標作動量を補正する。
 この構成によると、オイルの圧力が常に予め設定した所定圧に達するように可変容量ポンプの吐出量を調節することができ、これにより、優先油圧セクションと非優先油圧セクションにおいて作動させる油圧機器とのそれぞれに必要流量のオイルを確実に供給することができる。
 本発明の好適な実施形態の一つでは、前記非優先油圧セクションの前記優先分流弁が可変優先分流弁であり、前記非優先油圧セクションに、前記優先度の高い電磁比例制御弁が複数備えられるとともに前記優先度の高い各電磁比例制御弁がクローズドセンタ形であり、前記優先度の高い各電磁比例制御弁で構成される油圧ユニットは、ロードセンシング圧により前記可変優先分流弁の優先流量を調節するクローズド・ロードセンシング方式である。
 この構成によると、非優先油圧セクションに備えた優先度の高い複数の電磁比例制御弁のうちのいずれか1つ又は複数を操作して対応する油圧機器を作動させる場合には、そのときのロードセンシング圧により、可変優先分流弁の優先流量を対応する油圧機器の作動に必要な流量に適正に調節することができる。
トラクタの全体左側面図である。 トラクタの油圧システムを示すブロック図である。 トラクタの油圧回路の概略図である。 トラクタの伝動系を示すブロック図である。 トラクタの制御システムの一部を示すブロック図である。 トラクタの制御システムの一部を示すブロック図である。 トラクタの制御システムの一部を示すブロック図である。 トラクタの制御システムの一部を示すブロック図である。 昇降用の制御弁ユニットの構成を示す油圧回路図である。 ローリング用の制御弁ユニットの構成を示す油圧回路図である。 フロントローダ用の補助油圧ユニットの構成を示す油圧回路図である。
 以下、本発明を実施するための形態の一例として、本発明に係る作業車の油圧ユニットを、作業車の一例であるトラクタに適用した実施形態を図面に基づいて説明する。
 図1に示すように、この実施形態で例示するトラクタは、左右一対の前輪1を操舵可能かつ駆動可能に装備し、左右一対の後輪2を駆動可能に装備して4輪駆動形式に構成している。トラクタの前半部には、水冷式のディーゼルエンジン(以下、エンジンと称する)3など配備している。トラクタの後半部には、前輪操舵用のステアリングホイール4及び運転座席5などを配備して搭乗運転部6を形成し、搭乗運転部6を覆うキャビン7を配備している。
 図2及び図3に示すように、このトラクタには全油圧型のパワーステアリング装置8を備えている。つまり、左右の前輪1にはパワーステアリング装置8などを介してステアリングホール4を連係している。又、このトラクタには油圧式に構成した前輪用のサスペンション装置9を装備している。
 図4に示すように、エンジン3が出力する動力はトランスミッションケース(以下、T/Mケースと称する)10の内部に供給する。そして、T/Mケース10の内部において二重軸構造により走行用の動力と作業用の動力とに分ける。走行用の動力は、走行用のクラッチを兼ねる前後進切換装置11、主変速装置12、及び副変速装置13に伝達する。そして、副変速装置13が出力する動力を前輪駆動用の動力と後輪駆動用の動力とに分ける。前輪駆動用の動力は、前輪用変速装置14及び前輪用差動装置15などを介して左右の前輪1に伝達する。後輪駆動用の動力は、後輪用差動装置16などを介して左右の後輪2に伝達する。作業用の動力は、作業クラッチ17及び作業用変速装置(PTO変速装置)18などを介して作業動力取り出し(PTO)用のPTO軸19に伝達する。
 図示は省略するが、前後進切換装置11は、前後進切換装置11に備えた油圧ユニットの作動で、エンジン1から主変速装置12への伝動を遮断する遮断状態と、エンジン1からの動力を前進用の動力として主変速装置12に伝達する前進伝動状態と、エンジン1からの動力を後進用の動力として主変速装置12に伝達する後進伝動状態とに切り換わる油圧式に構成している。前後進切換装置11の油圧ユニットには、前進動力断続用と後進動力断続用の2つの油圧クラッチ、対応する油圧クラッチに対するオイルの流れを切り換えるパイロット操作式の2つの切換弁、対応する切換弁に対するパロット圧を制御する2つの電磁オンオフ弁、及び、各油圧クラッチのクラッチ圧を制御する電磁比例減圧弁、などを備えている。
 主変速装置12は、主変速装置12に備えた主変速用の油圧ユニットの作動で、4段の変速状態と高低2段の変速状態との組み合わせによる8段の変速状態に切り換わる油圧式に構成している。主変速用の油圧ユニットには、4段変速用の4つの油圧クラッチ、高低変速用の2つの油圧クラッチ、対応する4段変速用の油圧クラッチに対するオイルの流れを切り換えるパイロット操作式の4つの切換弁、対応する切換弁に対するパロット圧を制御する4つの電磁オンオフ弁、及び、対応する高低変速用の油圧クラッチのクラッチ圧を制御する2つの電磁比例減圧弁、などを備えている。
 副変速装置13は、副変速装置13に備えたスリーブの摺動で高低2段に切り換わるシンクロメッシュ式に構成している。スリーブには、搭乗運転部6に備えた走行用の変速レバーに副変速用の機械式連係機構を介して連係している。走行用の変速レバーは、低速位置と中立位置と高速位置の3位置に位置切り換え保持可能に構成している。
 前輪用変速装置14は、前輪用変速装置14に備えた前輪変速用の油圧ユニットの作動で、左右の前輪1への伝動を遮断する遮断状態と、左右の前輪1の周速を左右の後輪2の周速と同じにする等速駆動状態と、左右の前輪1の周速を左右の後輪2の周速の約1.6倍に増速する増速駆動状態とに切り換わる油圧式に構成している。前輪変速用の油圧ユニットには、等速動力断続用と増速動力断続用の2つの油圧クラッチ、対応する油圧クラッチに対するオイルの流れを切り換えるパイロット操作式の2つの切換弁、及び、対応する切換弁に対するパロット圧を制御する2つの電磁オンオフ弁、などを備えている。
 前輪用差動装置15には油圧式のデフロック機構を装備している。デフロック機構は、前輪用差動装置15を差動許容状態と差動阻止状態とに切り換える油圧クラッチ、油圧クラッチに対するオイルの流れを切り換えるパイロット操作式の切換弁、及び、切換弁に対するパロット圧を制御する電磁オンオフ弁、などを備えている。
 後輪用差動装置16には油圧式のデフロック機構を装備している。デフロック機構は、後輪用差動装置16を差動許容状態と差動阻止状態とに切り換える油圧クラッチ、油圧クラッチに対するオイルの流れを切り換えるパイロット操作式の切換弁、及び、切換弁に対するパロット圧を制御する電磁オンオフ弁、などを備えている。
 作業クラッチ17には油圧クラッチが採用されている。作業クラッチ17は、作業クラッチ17に対するオイルの流れを切り換える切換弁などの作動でエンジン1から作業用変速装置18への伝動を断続するように構成している。切換弁は、搭乗運転部6に備えたクラッチレバーに作業クラッチ用の機械式連係機構を介して連係している。クラッチレバーは、切り位置と入り位置の2位置に位置切り換え保持可能に構成している。
 作業用変速装置18は、作業用変速装置18に備えたスリーブの摺動で高低2段に切り換わるシンクロメッシュ式に構成している。スリーブは、搭乗運転部6に備えた作業用の変速レバーに作業変速用の機械式連係機構を介して連係している。作業用の変速レバーは、低速位置と高速位置の2位置に位置切り換え保持可能に構成している。
 図5から図8に示すように、このトラクタには電子制御ユニット(以下、ECU又はコントローラと略称する)20を搭載している。ECU20は、CPU及びEEPROMなどを備えたマイクロコンピュータを利用して構成している。
 ECU20には、前後進切換装置11、主変速装置12、前輪用変速装置14、前輪用差動装置15、及び後輪用差動装置16などの作動を制御する走行制御ユニット20Aが制御プログラムとして実装されている。
 走行制御ユニット20Aは、前後進切り換え用のFRレバー21の操作位置を検出するFRセンサ22の出力に基づいて、前後進切換装置11の作動状態を切り換える前後進切り換え制御を行う。そして、前後進切り換え制御では、FRセンサ22がFRレバー21の前進位置への操作を検出すると、前後進切換装置11の前進伝動状態が得られるように前後進切換装置11に備えた2つの電磁オンオフ弁及び電磁比例減圧弁の作動を制御する。FRセンサ22がFRレバー21の後進位置への操作を検出すると、前後進切換装置11の後進伝動状態が得られるように前後進切換装置11に備えた2つの電磁オンオフ弁及び電磁比例減圧弁の作動を制御する。FRセンサ22がFRレバー21の前進位置及び後進位置への操作を検出していない間は、前後進切換装置11の遮断状態が得られるように前後進切換装置11に備えた2つの電磁オンオフ弁及び電磁比例減圧弁の作動を制御する。
 FRレバー21は、前進位置と後進位置の2位置に位置切り換え保持可能に構成して搭乗運転部6に配備している。FRセンサ22は、前進位置検出用のマイクロスイッチ及び前進位置検出用のマイクロスイッチにより構成している。
 走行制御ユニット20Aは、クラッチペダル23の踏み込み操作量を検出するクラッチセンサ24の出力に基づいて、前後進切換装置11に備えた前進動力断続用と後進動力断続用の各油圧クラッチのクラッチ圧を制御するクラッチ制御を行う。そして、クラッチ制御では、クラッチセンサ24が検出するクラッチペダル23の踏み込み操作量に応じた適正なクラッチ圧が得られるように前後進切換装置11に備えた電磁比例減圧弁の作動を制御する。
 クラッチペダル23は、踏み込み解除位置に自動復帰するように構成して搭乗運転部6に配備している。クラッチセンサ24には回転式のポテンショメータが採用されている。
 走行制御ユニット20Aは、走行用の変速レバーに備えたシフトアップスイッチ25及びシフトダウンスイッチ26が出力する変速指令に基づいて、主変速装置12の変速段を切り換える変速制御を行う。そして、変速制御では、シフトアップスイッチ25からのシフトアップ指令を受けると、主変速装置12の変速段が高速側に切り換わるように主変速装置12に備えた4つの電磁オンオフ弁及び2つの電磁比例減圧弁の作動を制御する。シフトダウンスイッチ26からのシフトダウン指令を受けると、主変速装置12の変速段が低速側に切り換わるように主変速装置12に備えた4つの電磁オンオフ弁及び2つの電磁比例減圧弁の作動を制御する。シフトアップスイッチ25及びシフトダウンスイッチ26にはモーメンタリスイッチが採用されている。
 走行制御ユニット20Aは、搭乗運転部6に備えた走行制御用の選択スイッチ27が出力する切り換え指令に基づいて、前輪用変速装置14に対して第1前輪変速制御を行う状態と第2前輪変速制御を行う状態と第3前輪変速制御を行う状態とに切り換わる。
 第1前輪変速制御では、前輪用変速装置14の遮断状態が得られるように前輪用変速装置14に備えた2つの電磁オンオフ弁の作動を制御してトラクタの駆動状態を2輪駆動状態に切り換える。
 第2前輪変速制御では、前輪用変速装置14の等速伝動状態が得られるように前輪用変速装置14に備えた2つの電磁オンオフ弁の作動を制御してトラクタの駆動状態を4輪駆動状態に切り換える。
 第3前輪変速制御では、舵角センサ28の出力に基づいて旋回内側の前輪1の舵角を判別する。そして、旋回内側の前輪1の舵角が設定角度未満であれば、前輪用変速装置14の等速伝動状態が得られるように前輪用変速装置14に備えた2つの電磁オンオフ弁の作動を制御してトラクタの駆動状態を4輪駆動状態に切り換える。又、旋回内側の前輪1の舵角が設定角度以上であれば、前輪用変速装置14の増速伝動状態が得られるように前輪用変速装置14に備えた2つの電磁オンオフ弁の作動を制御してトラクタの駆動状態を前輪増速状態に切り換える。
 選択スイッチ27にはモーメンタリスイッチが採用されている。舵角センサ28には、ピットマンアーム(図示せず)の左右方向への揺動角度を旋回内側の前輪1の舵角として検出する回転式のポテンショメータが採用されている。
 走行制御ユニット20Aは、搭乗運転部6に備えたデフロックスイッチ29の出力に基づいて、前輪用差動装置15の作動状態を切り換える前輪差動切り換え制御を行う。そして、前輪差動切り換え制御では、デフロックスイッチ29の出力がオフであれば、前輪用差動装置15の差動許容状態が得られるように前輪用差動装置15に備えた電磁オンオフ弁の作動を制御する。デフロックスイッチ29の出力がオンであれば、前輪用差動装置15の差動阻止状態が得られるように前輪用差動装置15に備えた電磁オンオフ弁の作動を制御する。デフロックスイッチ29にはモーメンタリスイッチが採用されている。
 走行制御ユニット20Aは、デフロックペダル30の操作位置を検出するデフロックスイッチ31の出力に基づいて、後輪用差動装置16の作動状態を切り換える後輪差動切り換え制御を行う。そして、後輪差動切り換え制御では、デフロックスイッチ31の出力がオフであれば、後輪用差動装置16の差動許容状態が得られるように後輪用差動装置16に備えた電磁オンオフ弁の作動を制御する。デフロックスイッチ31の出力がオンであれば、後輪用差動装置16の差動阻止状態が得られるように後輪用差動装置16に備えた電磁オンオフ弁の作動を制御する。
 デフロックペダル30は、踏み込み解除位置と踏み込み位置の2位置に切り換え保持可能であり、搭乗運転部6に配置されている。デフロックスイッチ31はモーメンタリスイッチである。
 図1及び図5から図8に示すように、T/Mケース10の後部には作業装置連結用のリンク機構32を配備している。リンク機構32は、T/Mケース10の後部に上下揺動可能に連結した上部リンク33及び左右の下部リンク34などから構成している。
 図1~3及び図5から図8に示すように、このトラクタには、トラクタの後部にリンク機構32を介して連結したロータリ耕耘装置やプラウなどの作業装置(図示せず)を昇降駆動する昇降駆動装置40を装備している。昇降駆動装置40は、T/Mケース10の後部に上下揺動可能に配備した作業装置昇降用の左右のリフトアーム41、左右のリフトアーム41を揺動駆動する左右の昇降シリンダ(油圧機器の一例)42、及び、左右の昇降シリンダ42に対するオイルの流れを制御する昇降用の制御弁ユニット43、などを備えて油圧式に構成している。左右の昇降シリンダ42には単動型の油圧シリンダが採用されている。
 図9に示すように、昇降用の制御弁ユニット43には、昇降用の電磁比例制御弁44、左右のリフトアーム41(作業装置)の下降速度を調整する落下調整弁45、及び、リリーフ弁46などを備えてある。昇降用の電磁比例制御弁44は、上昇側のオイル流量を制御する上昇用の比例弁47、上昇用の比例弁47に対するパイロット圧を制御する上昇用の電磁パイロット弁48、下降側のオイル流量を制御する下降用の比例弁49、下降用の比例弁49に対するパイロット圧を制御する下降用の電磁パイロット弁50、下降用の比例弁49の操作に使用するオイルの流れを切り換えるシャトル弁51、左右の昇降シリンダ42から上昇用の比例弁47への逆流を防止するチェック弁52、及び、油圧を制御するコンペンセータ53、などによりパイロット操作式に構成している。
 図5から図8に示すように、ECU20には、昇降駆動装置40の作動を制御する昇降制御ユニット20Bが制御プログラムとして実装されている。昇降制御ユニット20Bは、高さ設定レバー54の操作位置を作業装置の制御目標高さとして検出するレバーセンサ55の出力に基づいて、作業装置を高さ設定レバー54の操作位置に対応する高さ位置に位置させる高さ制御を行う。又、昇降指令レバー56の中立位置から上昇位置又は下降位置への操作を検出するレバーセンサ57の出力に基づいて昇降指令レバー56の上昇位置への操作を検知した場合に、高さ制御に優先して作業装置を設定上限位置まで自動上昇させる上昇制御を行う。
 高さ制御では、昇降制御ユニット20Bは、高さ設定レバー用のレバーセンサ55の出力と、リフトアーム41の揺動角を作業装置の高さとして検出するアームセンサ58の出力に基づいて、リフトアーム41の揺動角が高さ設定レバー54の操作位置に対応するように昇降駆動装置40に備えた昇降用の電磁比例制御弁44の作動を制御する。
 上昇制御では、昇降制御ユニット20Bは、基準位置からの回動操作量を作業装置の制御目標上限位置として出力する上限設定器59の出力と、リフトアーム用のアームセンサ58の出力に基づいて、リフトアーム41の揺動角が上限設定器59の基準位置からの回動操作量に対応するように昇降駆動装置40に備えた昇降用の電磁比例制御弁44の作動を制御する。そして、昇降指令レバー用のレバーセンサ57の出力に基づいて昇降指令レバー56の下降位置への操作を検知した場合に、上昇制御の優先を解除して高さ制御を行う。
 つまり、高さ設定レバー54を操作することで、作業装置の高さを高さ設定レバー54の操作位置に応じた任意の高さに変更することができる。又、昇降指令レバー56を上昇位置に揺動操作することで、作業装置の高さを上限設定器59により設定した上限位置に変更することができる。そして、昇降指令レバー56を下降位置に揺動操作することで、作業装置の高さを高さ設定レバー54の操作位置に応じた任意の高さに戻すことができる。
 高さ設定レバー54は、位置保持可能な前後揺動式に構成して搭乗運転部6に配備している。昇降指令レバー56は、中立復帰型の上下揺動式に構成して搭乗運転部6に配備している。高さ設定レバー用のレバーセンサ55及びリフトアーム用のアームセンサ58には回転式のポテンショメータが採用されている。昇降指令レバー用のレバーセンサ57は、上昇操作検出用のマイクロスイッチ及び下降操作検出用のマイクロスイッチにより構成している。上限設定器59は、回転式のポテンショメータによりダイヤル操作式に構成して搭乗運転部6に配備している。
 図1~3及び図5から図8に示すように、このトラクタには、トラクタの後部にリンク機構32を介して連結したロータリ耕耘装置や代掻き装置などの作業装置をローリング方向に揺動駆動するローリング駆動装置60を装備している。ローリング駆動装置60は、リンク機構32の左側の下部リンク34を左側のリフトアーム41に連結するターンバックル式の連係ロッド61、リンク機構32の右側の下部リンク34を右側のリフトアーム41に連結するローリングシリンダ(油圧機器の一例)62、及び、ローリングシリンダ62に対するオイルの流れを制御して連係ロッド61に対するローリングシリンダ62の長さを変更するローリング用の制御弁ユニット63、などを備えて油圧式に構成している。ローリングシリンダ62には複動型の油圧シリンダが採用されている。
 図10に示すように、ローリング用の制御弁ユニット63には、パイロット操作式の優先分流弁64、ローリング用の電磁比例制御弁65、及び、カウンタバランス回路を構成するダブルチェック弁66、などが備えられている。優先分流弁64は、作業装置のローリング駆動時に、ローリング用の制御弁ユニット63でのパイロット圧に基づいて適正な分流比に開度調節されることで、必要流量のオイルをローリング用の制御弁ユニット63に昇降用の制御弁ユニット43よりも優先的に供給する。ローリング用の電磁比例制御弁65には直動式のものが採用されている。
 図5から図8に示すように、ECU20には、ローリング駆動装置60の作動を制御するローリング用制御手段20Cが制御プログラムとして実装されている。ローリング用制御手段20Cは、搭乗運転部6に備えたローリング制御用の選択スイッチ67が出力する切り換え指令に基づいて、水平圃場において作業装置を任意のロール角度に維持する水平地用のローリング制御を行う状態と、傾斜圃場での等高線に沿った作業走行時において作業装置を任意のロール角度に維持する傾斜地用のローリング制御を行う状態とに切り換わる。
 水平地用のローリング制御では、搭乗運転部6に備えたロール角度設定器68の出力と、トラクタのロール角度を検出するローリングセンサ69の出力に基づいて、作業装置の対地ロール角度をロール角度設定器68で設定した制御目標ロール角度に維持するのに必要なトラクタに対する作業装置の制御目標ロール角度を演算する。そして、演算した制御目標ロール角度と、ローリングシリンダ62の長さを検出するストロークセンサ70の出力と、トラクタに対する作業装置の制御目標ロール角度とローリングシリンダ62の長さとを対応させたローリング制御用の相関関係データに基づいて、ローリングシリンダ62の長さがトラクタに対する作業装置の制御目標ロール角度に対応するようにローリング駆動装置60に備えたローリング用の電磁比例制御弁65の作動を制御する。
 これにより、水平圃場での作業走行時には、トラクタのローリングにかかわらず、作業装置の対地ロール角度をロール角度設定器68により設定した制御目標ロール角度に維持することができる。
 傾斜地用のローリング制御では、水平地用のローリング制御の場合と同様の制御作動を行ないながら、谷側に位置する前輪1と後輪2の沈下量や凹み量などを考慮して設定した補正値に基づいて、ロール角度設定器68が出力する作業装置の制御目標ロール角度を補正する。
 これにより、傾斜圃場において等高線に沿ってトラクタを走行させる作業走行時には、谷側車輪1,2の沈下量や凹み量などを考慮した好適なローリング制御を行なうことができる。その結果、傾斜圃場での作業走行時においても、トラクタのローリングにかかわらず作業装置の対地ロール角度をロール角度設定器68により設定した制御目標ロール角度に維持することができる。
 ローリング制御用の選択スイッチ67にはモーメンタリスイッチが採用されている。ロール角度設定器68は、回転式のポテンショメータによりダイヤル操作式に構成している。ローリングセンサ69は、静電容量型の傾斜センサ及び振動型の角速度センサにより構成している。ストロークセンサ70には摺動式のポテンショメータが採用されている。
 図2及び図3に示すように、このトラクタには、トラクタの後部にリンク機構32を介して連結したリバーシブルプラウなどの作業装置に備えた油圧機器(リバーシブルプラウの場合は反転シリンダ)の使用を可能にするための補助油圧ユニット71を装備している。補助油圧ユニット71には、作業装置に備えた油圧機器の作動時に必要流量のオイルを補助油圧ユニット71にローリング用の制御弁ユニット63よりも優先的に供給するブリードオフ回路形の可変優先分流弁72、ロードセンシング機能を備えた第1制御弁ユニット(油圧ユニットの一例)73と第2制御弁ユニット(油圧ユニットの一例)74、及びリリーフ弁75、などを備えている。各制御弁ユニット73,74は、クローズドセンタ形でパイロット操作式の電磁比例制御弁76,77、圧力補償弁78,79、チェック弁80,81、及び、ロードセンシング用のシャトル弁82,83、など備えて、各制御弁ユニット73,74のロードセンシング圧により可変優先分流弁72の優先流量を適正に調節するクローズド・ロードセンシング方式に構成されている。
 図5から図8に示すように、ECU20には、補助油圧ユニット71の作動を制御する補助油圧制御ユニット20Dが制御プログラムとして実装されている。補助油圧制御ユニット20Dは、搭乗運転部6に備えた第1補助レバー84の操作位置を検出するレバーセンサ85の出力に基づいて、第1制御弁ユニット73に接続した作業装置の油圧機器が第1補助レバー84の操作位置に対応した動作を行うように第1制御弁ユニット73に備えた電磁比例制御弁76を作動させる第1補助制御を行う。又、搭乗運転部6に備えた第2補助レバー86の操作位置を検出するレバーセンサ87の出力に基づいて、第2制御弁ユニット74に接続した作業装置の油圧機器が第2補助レバー86の操作位置に対応した動作を行うように第2制御弁ユニット74に備えた電磁比例制御弁77を作動させる第2補助制御を行う。
 第1補助レバー84及び第2補助レバー86は3位置に位置切り換え保持可能に構成している。第1補助レバー用と第2補助レバー用の各レバーセンサ85,84は中立位置以外の2位置を検出する2つのマイクロスイッチにより構成している。
 図2及び図3に示すように、パワーステアリング装置8、前輪用のサスペンション装置9、前後進切換装置11の油圧ユニット、主変速装置12の油圧ユニット、前輪用変速装置14の油圧ユニット、前輪用差動装置15のデフロック機構、後輪用差動装置16のデフロック機構、作業クラッチ17、昇降駆動装置40、ローリング駆動装置60、及び補助油圧ユニット71には、アキシャルプランジャー型の可変容量ポンプ88からのオイルを供給するように構成している。可変容量ポンプ88は、エンジン3からの動力で作動することによりT/Mケース10に貯留したオイルを圧送する。
 可変容量ポンプ88からのオイルは、優先分流弁89を介して優先油圧セクションAと非優先油圧セクションBに供給される。優先油圧セクションAには、パワーステアリング装置8、前輪用のサスペンション装置9、前後進切換装置11の油圧ユニット、主変速装置12の油圧ユニット、前輪用変速装置14の油圧ユニット、前輪用差動装置15のデフロック機構、後輪用差動装置16のデフロック機構、及び作業クラッチ17が含まれる。補助油圧ユニット71には昇降駆動装置40、ローリング駆動装置60、及び補助油圧ユニット71が含まれる。優先分流弁89は、優先油圧セクションAに、優先油圧セクションAにおいて必要な一定量のオイルを優先的に割り当てる。優先分流弁89は、その余剰流を非優先油圧セクションBに割り当てる。
 優先油圧セクションAにおいては、優先油圧セクションAに供給した設定量のオイルが2系統に分配される。そして一方では、圧力調整弁90及び優先分流弁91を介して設定量のオイルをパワーステアリング装置8に優先的に供給し、余剰流を前後進切換装置11及び主変速装置12の各油圧クラッチに潤滑用として供給する。他方では、減圧弁92を介して、前輪用のサスペンション装置9、前後進切換装置11の油圧ユニット、主変速装置12の油圧ユニット、前輪用変速装置14の油圧ユニット、前輪用差動装置15のデフロック機構、後輪用差動装置16のデフロック機構、及び作業クラッチ17に供給する。
 非優先油圧セクションBにおいては、優先分流弁89からの余剰流が、補助油圧ユニット71の各制御弁ユニット73,74でのロードセンシング圧に基づいて適正な分流比に開度調節される可変優先分流弁72の作用によって補助油圧ユニット71に優先的に供給され、可変優先分流弁72からの余剰流が優先分流弁64の作用によってローリング用の制御弁ユニット63に優先的に供給し、優先分流弁64からの余剰流を昇降用の制御弁ユニット43に供給される。
 図5から図8に示すように、ECU20には、可変容量ポンプ88の斜板角を変更して可変容量ポンプ88の吐出量を調節する吐出量制御ユニット20Eが制御プログラムとして実装されている。吐出量制御ユニット20Eには、この油圧システムでのオイルの必要流量を演算する必要流量演算モジュール20Ea、可変容量ポンプ88の斜板角を変更することで可変容量ポンプ88の吐出量を調節する電動シリンダ(アクチュエータの一例)93の制御目標作動量を設定する目標作動量設定モジュール20Eb、及び、電動シリンダ93の作動を制御する作動制御モジュール20Ecが含まれている。
 必要流量演算モジュール20Eaは、優先油圧セクションAに供給する優先分流弁89の優先流量、及び、非優先油圧セクションBの各電磁比例制御弁44,65,76,77に通電する電流量に基づいて、この油圧システムでのオイルの必要流量を演算する。
 目標作動量設定モジュール20Ebは、可変容量ポンプ88の吐出量とエンジン回転数と電動シリンダ93の作動量との関係を示す相関関係データとして相関関係テーブルを有する。この相関関係テーブルは、図8に示すように、エンジン回転数をパラメータとして可変容量ポンプ88の吐出量と電動シリンダ93の作動量との間の関係を示すグラフを複数登録している。つまり、エンジン回転数と吐出量を入力値として作動量を出力値とする関数テーブルである。従って、目標作動量設定モジュール20Ebは、上記テーブルを用いて、必要流量演算モジュール20Eaが演算したオイルの必要流量、エンジン回転数を検出する回転センサ94の出力から、必要流量演算モジュール20Eaが演算したオイルの必要流量を得るための電動シリンダ93の制御目標作動量を導出することができる。導出した制御目標作動量は、電動シリンダ93の制御目標として設定される。又、目標作動量設定モジュール20Ebは、電動シリンダ93の制御目標作動量を補正する第1補正制御及び第2補正制御を行う。第1補正制御では、T/Mケース10に貯留したオイルの温度を検出する油温センサ95の出力、及び、可変容量ポンプ88の吐出圧を検出する第1圧力センサ96の出力に基づいて、可変容量ポンプ88の容積効率を求め、求めた容積効率に基づいて電動シリンダ93の制御目標作動量を補正する。第2補正制御では、昇降駆動装置40に供給するオイルの圧力を検出する第2圧力センサ(オイル圧検出手段の一例)97の出力に基づいて昇降駆動装置40に供給するオイルの圧力が予め設定した所定圧に達するように電動シリンダ93の制御目標作動量を補正する。
 作動制御モジュール20Ecは、目標作動量設定モジュール20Ebが設定した電動シリンダ93の制御目標作動量に電動シリンダ93の作動量が達する(可変容量ポンプ88の斜板角が必要流量を得るのに適した斜板角になる)ように電動シリンダ93の作動を制御する。
 可変容量ポンプ88は、エンジン回転数がアイドリング回転数まで低下した場合であっても、優先油圧セクションAに供給する設定量のオイル量を確保できるように最低斜板角を機械的に制限している。
 以上の構成から、吐出量制御ユニット20Eは、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71のいずれも作動させない場合は、優先油圧セクションAに供給する設定量のオイル量、及び、第2圧力センサ97の出力が所定圧に達するのに要するオイル量、が得られるように可変容量ポンプ88の斜板角を変更する。
 昇降駆動装置40のみを作動させる場合は、優先油圧セクションAに供給する設定量のオイル量、及び、昇降駆動装置40の作動に要するオイル量、が得られるように可変容量ポンプ88の斜板角を変更する。
 ローリング駆動装置60のみを作動させる場合は、優先油圧セクションAに供給する設定量のオイル量、ローリング駆動装置60の作動に要するオイル量、及び、第2圧力センサ97の出力が所定圧に達するのに要するオイル量、が得られるように可変容量ポンプ88の斜板角を変更する。
 補助油圧ユニット71のみを作動させる場合は、優先油圧セクションAに供給する設定量のオイル量、補助油圧ユニット71の作動に要するオイル量、及び、第2圧力センサ97の出力が所定圧に達するのに要するオイル量、が得られるように可変容量ポンプ88の斜板角を変更する。
 昇降駆動装置40とローリング駆動装置60とを作動させる場合は、優先油圧セクションAに供給する設定量のオイル量、昇降駆動装置40の作動に要するオイル量、及び、ローリング駆動装置60の作動に要するオイル量、が得られるように可変容量ポンプ88の斜板角を変更する。そして、この場合には、優先分流弁64及び可変優先分流弁72の作用により、昇降駆動装置40とローリング駆動装置60のそれぞれに必要流量のオイルを優先分流弁89の余剰流から適正に分配供給することができる。
 昇降駆動装置40と補助油圧ユニット71とを作動させる場合は、優先油圧セクションAに供給する設定量のオイル量、昇降駆動装置40の作動に要するオイル量、及び、補助油圧ユニット71の作動に要するオイル量、が得られるように可変容量ポンプ88の斜板角を変更する。そして、この場合には、優先分流弁64及び可変優先分流弁72の作用により、昇降駆動装置40と補助油圧ユニット71のそれぞれに必要流量のオイルを優先分流弁89の余剰流から適正に分配供給することができる。
 ローリング駆動装置60と補助油圧ユニット71とを作動させる場合は、優先油圧セクションAに供給する設定量のオイル量、ローリング駆動装置60の作動に要するオイル量、補助油圧ユニット71の作動に要するオイル量、及び、第2圧力センサ97の出力が所定圧に達するのに要するオイル量、が得られるように可変容量ポンプ88の斜板角を変更する。そして、この場合には、優先分流弁64及び可変優先分流弁72の作用により、ローリング駆動装置60と補助油圧ユニット71のそれぞれに必要流量のオイルを優先分流弁89の余剰流から適正に分配供給することができる。
 昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71とを作動させる場合は、優先油圧セクションAに供給する設定量のオイル量、昇降駆動装置40の作動に要するオイル量、ローリング駆動装置60の作動に要するオイル量、及び、補助油圧ユニット71の作動に要するオイル量、が得られるように可変容量ポンプ88の斜板角を変更する。そして、この場合には、優先分流弁64及び可変優先分流弁72の作用により、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71のそれぞれに必要流量のオイルを優先分流弁89の余剰流から適正に分配供給することができる。
 又、補助油圧ユニット71の第1制御弁ユニット73と第2制御弁ユニット74とを同時に作動させる場合には、可変優先分流弁72の作用により、第1制御弁ユニット73と第2制御弁ユニット74のそれぞれに必要流量のオイルを適正に優先分流弁89の余剰流から分配供給することができる。
 更に、エンジン回転数の大幅な低下で可変容量ポンプ88の斜板制御ではオイルの必要流量を確保することができなくなった場合には、優先油圧セクションAに設定量のオイルを供給した後の優先分流弁89からの余剰流を、優先分流弁64及び可変優先分流弁72の作用により、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71のうちの作動させるものに、作動させるものに見合った適正な分流比で分配供給することができる。
 つまり、エンジン回転数にかかわらず、優先油圧セクションAにおいて必要となる設定量のオイルを確実に確保することができ、これにより、パワーステアリング装置8、及び、前後進切換装置11や主変速装置12などの伝動系に必要流量のオイルを確実に供給することができ、結果、パワーステアリング装置8に供給するオイル量が不足することによりステアリング操作が困難になる、又は、前後進切換装置11や主変速装置12などの伝動系に供給するオイル量が不足することにより不測に動力切れが発生する、などの不都合の発生を未然に回避することができる。
 又、エンジン回転数が大幅に低下しない限り、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71のそれぞれに必要流量のオイルを過不足なく供給することができ、これにより、省エネルギー化を図りながら、作業装置の昇降駆動、作業装置のローリング駆動、及び、作業装置に備えた油圧機器の駆動を適切に行うことができる。
 しかも、エンジン回転数が大幅に低下して、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71のそれぞれに対する必要流量のオイルを確保することができなくなった場合には、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71のうちの作動するものに、作動するものに見合った適正な分流比で優先分流弁89からの余剰流を分配供給することができ、結果、必要流量のオイルを確保することができなくなった場合でも、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71とを同時に作動させることができる。
 そして、可変容量ポンプ88の最低斜板角を機械的に制限することにより、電気的に制限する場合に招く虞のある断線などによって可変容量ポンプ88の最低斜板角を確保することができなくなる不都合の発生を防止することができる。
 このトラクタの前部には作業装置の一例であるフロントローダ(図示せず)を連結装備することができる。そして、フロントローダを連結装備する場合には、フロントローダの油圧駆動を可能にするためのフロントローダ用の補助油圧ユニット(油圧ユニットの一例)98〔図2参照〕を既設の補助油圧ユニット71の接続端に追加装備することができる。
 図11に示すように、フロントローダ用の補助油圧ユニット98には、ロードセンシング機能を備えたブーム操作用の制御弁ユニット99とバケット操作用の制御弁ユニット100とを備えている。そして、ブーム操作用の制御弁ユニット99には、クローズドセンタ形でパイロット操作式の電磁比例制御弁101、圧力補償弁102、チェック弁103、及び、ロードセンシング用のシャトル弁104、など備え、バケット操作用の制御弁ユニット100には、クローズドセンタ形でパイロット操作式の電磁比例制御弁105、圧力補償弁106、及びチェック弁107、など備えて、各制御弁ユニット99,100のロードセンシング圧により可変優先分流弁72の優先流量を適正に調節するクローズド・ロードセンシング方式に構成している。
 そして、補助油圧ユニット71の接続端にフロントローダ用の補助油圧ユニット98を接続した状態では、それらの補助油圧ユニット71,98において対応するポンプ油路、パイロット油路、ロードセンシング油路、及びタンク油路を接続することができる。尚、フロントローダ用の補助油圧ユニット98をフロントローダに近い車体の前部側に配備する場合には、補助油圧ユニット71とフロントローダ用の補助油圧ユニット98とを油圧ホースなどを介して接続することができる。
 図5から図8に示すように、ECU20には、フロントローダ用の補助油圧ユニット98の作動を制御するフロントローダ用の補助油圧制御ユニット20Fを制御プログラムとして追加装備することができる。フロントローダ用の補助油圧制御ユニット20Fは、搭乗運転部6に追加装備したブーム用の操作レバー108の操作位置を検出するレバーセンサ109の出力に基づいて、ブーム用の制御弁ユニット99に接続したブームシリンダ(油圧機器の一例)110がブーム用の操作レバー108の操作に対応した伸縮動作を行うようにブーム用の制御弁ユニット99に備えた電磁比例制御弁101を作動させるブーム駆動制御を行う。又、搭乗運転部6に追加装備したバケット用の操作レバー111の操作位置を検出するレバーセンサ112の出力に基づいて、バケット用の制御弁ユニット100に接続したバケットシリンダ(油圧機器の一例)113がバケット用の操作レバー111の操作に対応した伸縮動作を行うようにバケット用の制御弁ユニット100に備えた電磁比例制御弁105を作動させるバケット駆動制御を行う。
 ブーム用とバケット用の各操作レバー108,111は前後揺動式の中立復帰型に構成している。ブーム用とバケット用の各レバーセンサ109,112には回転式のポテンショメータが採用されている。
 必要流量演算モジュール20Eaは、フロントローダを連結装備した場合には、フロントローダ用の補助油圧ユニット98が非優先油圧セクションBに属することから、優先油圧セクションAに供給する優先分流弁89の優先流量、及び、非優先油圧セクションBの各電磁比例制御弁44,65,76,77,101,102に通電する電流量に基づいて、この油圧システムでのオイルの必要流量を演算する。そして、目標作動量設定モジュール20Eb及び作動制御モジュール20Ecは前述した制御作動を行う。
 上記の構成から、フロントローダ用の補助油圧ユニット98を作動させる場合においても、エンジン回転数にかかわらず、優先油圧セクションAにおいて必要となる設定量のオイルを確実に確保することができ、パワーステアリング装置8、及び、前後進切換装置11や主変速装置12などの伝動系に必要流量のオイルを確実に供給することができる。
 又、エンジン回転数が大幅に低下しない限り、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71とフロントローダ用の補助油圧ユニット98のそれぞれに必要流量のオイルを過不足なく供給することが可能であり、これにより、省エネルギー化を図りながら、トラクタの後部に連結した作業装置の昇降駆動、トラクタの後部に連結した作業装置のローリング駆動、トラクタの後部に連結した作業装置に備えた油圧機器の駆動、及び、フロントローダの作動を適切に行うことができる。
 しかも、エンジン回転数が大幅に低下して、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71とフロントローダ用の補助油圧ユニット98のそれぞれに対する必要流量のオイルを確保することができなくなった場合には、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71とフロントローダ用の補助油圧ユニット98のうちの作動するものに、作動するものに見合った適正な分流比で優先分流弁89からの余剰流を分配供給することができ、結果、必要流量のオイルを確保することができなくなった場合でも、昇降駆動装置40とローリング駆動装置60と補助油圧ユニット71とフロントローダ用の補助油圧ユニット98とを同時に作動させることも可能である。
 そして、フロントローダ用の補助油圧ユニット98に備えたブーム用の制御弁ユニット99とバケット用の制御弁ユニット100とを同時に作動させる場合には、可変優先分流弁72の作用により、ブーム用の制御弁ユニット99とバケット用の制御弁ユニット100のそれぞれに必要流量のオイルを適正に優先分流弁89の余剰流から分配供給することができる。
  〔別実施形態〕
〔1〕可変容量ポンプ88として、非平衡形ベーンポンプや可変容量ベーンポンプなどを採用するようにしてもよい。
〔2〕優先油圧セクションAに備える油圧機器及び非優先油圧セクションBに備える油圧機器として種々の変更が可能である。例えば、優先油圧セクションAに備える油圧機器としては静油圧式の無段変速装置及びインテグラル形のパワーステアリング装置などであってもよい。又、非優先油圧セクションBに備える油圧機器としては、モーアなどの作業装置に備えた油圧駆動式の回転刃などの回転体を回転駆動する油圧モータなどであってもよい。
〔3〕非優先油圧セクションBに備える全電磁比例制御弁44,65,76,77,101,105にオイル供給の優先順位を設定して、優先度の高い電磁比例制御弁と優先度の低い電磁比例制御弁との間のそれぞれに優先分流弁64,72を配備するように構成してもよい。
〔4〕クローズド・ロードセンシング方式の油圧ユニット73,74,98を構成しない場合には、電磁比例制御弁44,65,76,77,101,105としてクローズドセンタ形とオープンセンタ形のどちらのものでも採用することができる。
〔5〕可変容量ポンプ88の斜板角を変更するアクチュエータ93としては電動モータや油圧シリンダなどを採用することができる。
〔6〕オイル圧検出手段97として圧力スイッチを採用してもよい。
〔7〕優先分流弁64,72,89の構成としては種々の変更が可能であり、絞り弁により所定の優先分流量を確保する構造のものに限らず、例えば、リリーフ弁などによって所定の優先分流量を確保する構造のものや、差圧により所定の優先分流量を確保する構造のものなどを採用するようにしてもよい。
〔8〕可変優先分流弁72の構成としては種々の変更が可能であり、可変優先分流弁72の上流側の圧力と油圧ユニット73,74,98のロードセンシング圧との差圧で優先流量を調節するものに代えて、例えば、可変絞りをパイロット操作することで優先流量を調節するように構成したものなどを採用するようにしてもよい。
 本発明に係る作業車の油圧システムは、複数の油圧機器を備えるバックホーやホイールローダなどの作業車などに適用することができる。
 3    エンジン
 20   コントローラ
 20Ea 必要流量演算モジュール
 20Eb 目標作動量設定モジュール
 20Ec 作動制御モジュール
 42   油圧機器
 44   電磁比例制御弁
 62   油圧機器
 65   電磁比例制御弁
 72   優先分流弁(可変優先分流弁)
 73   油圧ユニット
 74   油圧ユニット
 76   電磁比例制御弁
 77   電磁比例制御弁
 88   可変容量ポンプ
 89   優先分流弁
 93   アクチュエータ
 94   回転センサ
 95   油温センサ
 96   圧力センサ
 97   オイル圧検出モジュール
 98   油圧ユニット
 101  電磁比例制御弁
 105  電磁比例制御弁
 110  油圧機器
 113  油圧機器
 A    優先油圧セクション
 B    非優先油圧セクション

Claims (4)

  1.  エンジンからの動力で作動する可変容量ポンプと、
     前記可変容量ポンプの吐出量を調節するアクチュエータと、
     前記可変容量ポンプが吐出したオイルの一定量を優先油圧セクションに優先的に供給し、その余剰流を非優先油圧セクションに供給する優先分流弁と、
     前記非優先油圧セクションに、前記非優先油圧セクションに含まれる複数の油圧機器に対するオイルの流れを制御する複数の電磁比例制御弁と、
     前記複数の電磁比例制御弁のうち、優先度の高い電磁比例制御弁に優先流を供給し、優先度の低い電磁比例制御弁に余剰流を供給する優先分流弁と、
     前記優先油圧セクションに供給する前記優先分流弁の優先流量、及び、前記非優先油圧セクションの前記複数の電磁比例制御弁に通電する電流量に基づいて、前記優先油圧セクション及び前記非優先油圧セクションでのオイルの必要流量を演算する必要流量演算モジュールと、
     前記可変容量ポンプの吐出量とエンジン回転数と前記アクチュエータの作動量との関係を示す相関関係データと、
     前記必要流量演算モジュールが求めたオイルの必要流量、エンジン回転数を検出する回転センサの出力、及び、前記相関関係データに基づいて、前記必要流量演算モジュールが演算したオイルの必要流量を得るための前記アクチュエータの制御目標作動量を導出する目標作動量設定モジュールと、
     前記制御目標作動量に基づいて、前記アクチュエータを制御する作動制御モジュールと、
    からなる作業車の油圧システム。
  2.  前記目標作動量設定モジュールが、オイルの温度を検出する油温センサの出力、及び、前記可変容量ポンプの吐出圧を検出する圧力センサの出力に基づいて、前記可変容量ポンプの容積効率を求め、求めた容積効率に基づいて前記アクチュエータの制御目標作動量を補正する請求項1に記載の作業車の油圧システム。
  3.  最下流の電磁比例制御弁に供給するオイルの圧力を検出するオイル圧検出モジュールが備えられ、
     前記目標作動量設定モジュールが、前記オイル圧検出モジュールの出力に基づいて前記最下流の電磁比例制御弁に供給するオイルの圧力が予め設定した所定圧に達するように前記アクチュエータの制御目標作動量を補正する請求項1又は2に記載の作業車の油圧システム。
  4.  前記非優先油圧セクションの前記優先分流弁が可変優先分流弁であり、
     前記非優先油圧セクションに、前記優先度の高い電磁比例制御弁が複数備えられるとともに前記優先度の高い各電磁比例制御弁がクローズドセンタ形であり、前記優先度の高い各電磁比例制御弁で構成される油圧ユニットは、ロードセンシング圧により前記可変優先分流弁の優先流量を調節するクローズド・ロードセンシング方式である請求項1~3のいずれか一つに記載の作業車の油圧システム。
     
PCT/JP2011/052642 2010-03-31 2011-02-08 作業車の油圧システム WO2011122118A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/389,570 US9353770B2 (en) 2010-03-31 2011-02-08 Hydraulic system for a work vehicle
EP11762359.5A EP2554853B1 (en) 2010-03-31 2011-02-08 Hydraulic system for service vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-083086 2010-03-31
JP2010083086A JP5351813B2 (ja) 2010-03-31 2010-03-31 作業車の油圧システム

Publications (1)

Publication Number Publication Date
WO2011122118A1 true WO2011122118A1 (ja) 2011-10-06

Family

ID=44711860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052642 WO2011122118A1 (ja) 2010-03-31 2011-02-08 作業車の油圧システム

Country Status (4)

Country Link
US (1) US9353770B2 (ja)
EP (1) EP2554853B1 (ja)
JP (1) JP5351813B2 (ja)
WO (1) WO2011122118A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131226A (zh) * 2019-06-11 2019-08-16 徐州海伦哲特种车辆有限公司 一种履带式液压行走系统的行走控制阀及行走系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781696B2 (en) * 2012-06-01 2014-07-15 Caterpillar Inc. Variable transmission and method
WO2014143795A1 (en) * 2013-03-15 2014-09-18 Eaton Corporation Hydraulic power system
KR102152148B1 (ko) 2013-05-31 2020-09-04 이턴 코포레이션 카운터-밸런스 보호로 붐 바운스를 감소시키기 위한 유압 시스템 및 방법
CN105637232B (zh) 2013-08-30 2018-06-19 伊顿公司 使用一对独立液压计量阀降低动臂振荡的控制方法和系统
WO2015073329A1 (en) 2013-11-14 2015-05-21 Eaton Corporation Pilot control mechanism for boom bounce reduction
CN105940241B (zh) 2013-11-14 2018-11-20 伊顿公司 降低动臂振荡的控制策略
CA2879269C (en) 2014-01-20 2021-11-09 Posi-Plus Technologies Inc. Hydraulic system for extreme climates
CN106661894B (zh) 2014-07-15 2019-12-10 伊顿公司 实现悬臂弹跳减少以及防止液压系统中的非指令运动的方法和设备
CN104632735B (zh) * 2014-12-09 2017-02-01 长沙中联消防机械有限公司 支腿油缸的伸缩控制系统、方法和机械设备
US9759212B2 (en) 2015-01-05 2017-09-12 Danfoss Power Solutions Inc. Electronic load sense control with electronic variable load sense relief, variable working margin, and electronic torque limiting
US10323458B2 (en) * 2016-10-21 2019-06-18 Caterpillar Inc. Dual pressure logic for a track drill circuit
CN111542702B (zh) 2017-04-28 2022-09-23 丹佛斯动力系统Ii技术有限公司 用于抑制具有液压控制的吊杆或细长构件的机器中的质量感应振动的系统
EP3615813A4 (en) 2017-04-28 2021-01-27 Eaton Intelligent Power Limited MOTION SENSOR SYSTEM FOR DAMPING MASS-INDUCED VIBRATIONS IN MACHINES
US10641297B2 (en) * 2018-08-17 2020-05-05 Robert Bosch Gmbh Hydraulic control valve
IT202100010577A1 (it) * 2021-04-27 2022-10-27 Cnh Ind Italia Spa Circuito idraulico per un veicolo agricolo provvisto di un sistema antisaturazione e metodo di controllo di antisaturazione
IT202100010601A1 (it) * 2021-04-27 2022-10-27 Cnh Ind Italia Spa Circuito idraulico per un veicolo agricolo provvisto di un sistema antisaturazione e metodo di controllo di antisaturazione
DE102022206568A1 (de) 2022-06-29 2024-01-04 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Steuerung eines hydraulischen Antriebs einer Arbeitsmaschine und elektronische Steuereinheit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106203A (ja) * 1981-12-17 1983-06-24 Japan Steel Works Ltd:The 油圧制御装置
JPS5982004A (ja) * 1982-11-02 1984-05-11 株式会社クボタ 農用トラクタの油圧装置
JPS6226587U (ja) * 1985-08-01 1987-02-18
JPH01165766U (ja) * 1988-05-16 1989-11-20
JPH02256902A (ja) * 1989-03-30 1990-10-17 Hitachi Constr Mach Co Ltd 土木・建設機械の油圧駆動装置
JPH02261912A (ja) * 1989-03-31 1990-10-24 Mitsubishi Agricult Mach Co Ltd 作業用走行車の油圧装置
JPH05248404A (ja) * 1992-03-05 1993-09-24 Sumitomo Constr Mach Co Ltd 建設機械の油圧回路
JP2000085597A (ja) 1998-09-11 2000-03-28 Kubota Corp 作業車
JP2001193701A (ja) * 1999-12-28 2001-07-17 Kayaba Ind Co Ltd 油圧制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952509A (en) * 1975-04-10 1976-04-27 Allis-Chalmers Corporation Hydraulic system combining open center and closed center hydraulic circuits
DE3546336A1 (de) * 1985-12-30 1987-07-02 Rexroth Mannesmann Gmbh Steueranordnung fuer mindestens zwei von mindestens einer pumpe gespeiste hydraulische verbraucher
DE3821416A1 (de) * 1988-06-24 1989-12-28 Rexroth Mannesmann Gmbh Hydraulik-steuerschaltung fuer ein anhaenger-bremsventil
US4977928A (en) * 1990-05-07 1990-12-18 Caterpillar Inc. Load sensing hydraulic system
US5050379A (en) * 1990-08-23 1991-09-24 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Displacement of a variable displacemet hydraulic pump and speed of an engine driving the pump controlled based on demand
US5758499A (en) * 1995-03-03 1998-06-02 Hitachi Construction Machinery Co., Ltd. Hydraulic control system
JPH0942212A (ja) * 1995-05-24 1997-02-10 Kobe Steel Ltd 油圧制御装置
DE69738461D1 (de) * 1996-02-28 2008-02-21 Komatsu Mfg Co Ltd Steuervorrichtung einer Hydraulikantriebsmaschine
DE19742187A1 (de) * 1997-09-24 1999-03-25 Linde Ag Hydrostatisches Antriebssystem
JPH11115780A (ja) * 1997-10-15 1999-04-27 Komatsu Ltd 作業車両用ステアリングポンプの容量制御方法および装置
US5918558A (en) * 1997-12-01 1999-07-06 Case Corporation Dual-pump, flow-isolated hydraulic circuit for an agricultural tractor
US6422121B1 (en) * 2000-05-25 2002-07-23 Finn Corporation Hydraulic system
JP4098955B2 (ja) * 2000-12-18 2008-06-11 日立建機株式会社 建設機械の制御装置
US7048515B2 (en) * 2001-06-21 2006-05-23 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system and method using a fuel injection control unit
KR100739419B1 (ko) * 2003-08-11 2007-07-13 가부시키가이샤 고마쓰 세이사쿠쇼 유압구동 제어장치 및 그것을 구비하는 유압셔블
US7143579B2 (en) * 2005-04-18 2006-12-05 Cnh America Llc Velocity control of agricultural machinery
ES2322490T3 (es) * 2005-05-17 2009-06-22 Nissan Motor Co., Ltd. Maquina dobladora, en especial maquina dobladora de cables.
US7222484B1 (en) * 2006-03-03 2007-05-29 Husco International, Inc. Hydraulic system with multiple pressure relief levels

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106203A (ja) * 1981-12-17 1983-06-24 Japan Steel Works Ltd:The 油圧制御装置
JPS5982004A (ja) * 1982-11-02 1984-05-11 株式会社クボタ 農用トラクタの油圧装置
JPS6226587U (ja) * 1985-08-01 1987-02-18
JPH01165766U (ja) * 1988-05-16 1989-11-20
JPH02256902A (ja) * 1989-03-30 1990-10-17 Hitachi Constr Mach Co Ltd 土木・建設機械の油圧駆動装置
JPH02261912A (ja) * 1989-03-31 1990-10-24 Mitsubishi Agricult Mach Co Ltd 作業用走行車の油圧装置
JPH05248404A (ja) * 1992-03-05 1993-09-24 Sumitomo Constr Mach Co Ltd 建設機械の油圧回路
JP2000085597A (ja) 1998-09-11 2000-03-28 Kubota Corp 作業車
JP2001193701A (ja) * 1999-12-28 2001-07-17 Kayaba Ind Co Ltd 油圧制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554853A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131226A (zh) * 2019-06-11 2019-08-16 徐州海伦哲特种车辆有限公司 一种履带式液压行走系统的行走控制阀及行走系统
CN110131226B (zh) * 2019-06-11 2024-03-01 徐州海伦哲特种车辆有限公司 一种履带式液压行走系统的行走控制阀及行走系统

Also Published As

Publication number Publication date
EP2554853A4 (en) 2014-04-02
EP2554853B1 (en) 2015-12-09
JP5351813B2 (ja) 2013-11-27
US20120198832A1 (en) 2012-08-09
US9353770B2 (en) 2016-05-31
JP2011214657A (ja) 2011-10-27
EP2554853A1 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5351813B2 (ja) 作業車の油圧システム
KR101562089B1 (ko) 작업차의 차속 제어 구조, 작업차의 정보 표시 구조 및 작업차의 변속 조작 구조
KR101908547B1 (ko) 유압구동 작업기계를 작동시키는 시스템 및 구동제어 방법
EP2910795B1 (en) Work machine
US9334629B2 (en) Open-center hydraulic system with machine information-based flow control
KR20070007174A (ko) 작업기계의 유압구동장치
EP2568181B1 (en) Work vehicle
US20080154466A1 (en) System and method for controlling a machine
US10633827B2 (en) Temperature responsive hydraulic derate
US20240060271A1 (en) Hydraulic system for working machine
EP2610408B1 (en) Work vehicle
US20140069092A1 (en) Traction Control System for a Hydrostatic Drive
EP3795755B1 (en) Cargo handling work vehicle
US7607245B2 (en) Construction machine
US10900199B2 (en) Drive system of construction machine
JP2009167659A (ja) 作業機械の油圧制御回路
CN107614307B (zh) 布置有用于驱动和控制液压泵的装置的工程机械
US8734291B2 (en) Hydraulic fluid supply systems
JP2011158040A (ja) 作業車の変速操作構造
US11905681B2 (en) Prime mover speed control for hydrostatic working machine
JP2015216907A (ja) トラクタ
JP5107583B2 (ja) 作業車両の走行装置
JP2009167658A (ja) 作業機械の油圧制御回路
US20230287654A1 (en) Working machine
JP4585495B2 (ja) 作業車の負荷制御構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011762359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13389570

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE