WO2011121690A1 - 通信装置、通信システム、通信方法、集積回路 - Google Patents

通信装置、通信システム、通信方法、集積回路 Download PDF

Info

Publication number
WO2011121690A1
WO2011121690A1 PCT/JP2010/007130 JP2010007130W WO2011121690A1 WO 2011121690 A1 WO2011121690 A1 WO 2011121690A1 JP 2010007130 W JP2010007130 W JP 2010007130W WO 2011121690 A1 WO2011121690 A1 WO 2011121690A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
data communication
frequency channel
unit
Prior art date
Application number
PCT/JP2010/007130
Other languages
English (en)
French (fr)
Inventor
亨宗 白方
小林 大祐
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011535338A priority Critical patent/JP5576872B2/ja
Priority to US13/322,608 priority patent/US9065698B2/en
Priority to CN201080023503.0A priority patent/CN102484498B/zh
Priority to EP10848872.7A priority patent/EP2555438B1/en
Publication of WO2011121690A1 publication Critical patent/WO2011121690A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0262Arrangements for detecting the data rate of an incoming signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems

Definitions

  • the present invention relates to a wireless communication method and apparatus for selecting a channel to be used for communication from a plurality of frequency channels and transmitting a wakeup signal for activating a communication partner.
  • wireless communication systems such as RFID (Radio Frequency Identification) and wireless sensor networks that communicate small volumes of data with low frequency (several hundred msec to several hours) have attracted attention.
  • the wireless communication device itself is small and driven by a battery, but a long life (several months to several years) is required. Since most of the startup time is the reception standby time, a wireless communication device with ultra-low power consumption is required.
  • a technique for combining a power-saving start-up (wake-up) radio device with a power-saving radio device for data communication as a technology for reducing power consumption during reception standby.
  • a wake-up frequency Fa and a data communication frequency Fg are used, and a filter that divides them is provided.
  • a wake-up signal of the frequency Fa is detected, a technology for starting a radio unit for data communication Is described.
  • Patent Document 2 discloses a technique for notifying a frequency channel used for data communication using an OOK (On Off Keying) modulation signal with low power consumption for transmission and reception.
  • OOK On Off Keying
  • a wake-up signal is subjected to OOK modulation, and simultaneously transmitted at each of a plurality of different frequencies, and the reception side performs demodulation for each frequency and successfully receives the wake-up signal.
  • the technology for performing data communication is described.
  • a wireless communication system in which a plurality of frequency channels can be used, in order to notify each other of frequency channels used for data communication, it is necessary to perform channel search and negotiation, and it takes time and power consumption to synchronize these. Further, in a wireless communication system in which the frequency of data communication is very low, power consumption is imposed on the overhead for synchronizing the activation time with the communication partner. Even when the wakeup radio apparatus described in the prior art that can reduce power consumption during reception standby is used, a frequency channel dedicated to wakeup is provided, so that frequency use efficiency is reduced. In addition, a narrowband filter means and a frequency converter for detecting a dedicated frequency channel are necessary, and it is difficult to reduce circuit cost and power consumption. In other words, if detection is performed in a narrow band, a super heterodyne configuration is required, and a relatively low power, narrow band filter, mixer, oscillator, etc. are required, resulting in high circuit cost, The power consumption will increase.
  • the present invention solves the above-described conventional problems, and without providing a dedicated wakeup frequency channel, notifies a frequency channel used for data communication from a plurality of frequency channels, communicates a wakeup signal, and consumes it.
  • An object of the present invention is to provide a wireless communication method and a wireless communication apparatus that can reduce power.
  • a first communication device includes a data communication unit that performs data communication, and a signal in which signals of a plurality of frequency channels are simultaneously received (signal 11c in FIGS. 11 to 14).
  • a signal in which signals of a plurality of frequency channels are simultaneously received signal 11c in FIGS. 11 to 14
  • the data communication unit includes a frequency detection unit that causes the data communication to be performed using the detected frequency channel.
  • a band of a signal in which signals of a plurality of frequency channels are simultaneously received is 1 such as the band of one frequency channel described above in which a wakeup signal is transmitted. It is a wider band than the band of one frequency channel (see band 42). For this reason, reception is performed in a narrow band (see band 42), and it is necessary to use a superheterodyne, so that power consumption in reception increases or a configuration for reception becomes complicated. Is avoided, power consumption can be reduced, and the configuration can be simplified.
  • the second communication device includes a data communication unit that performs data communication with a first communication device different from the second communication device using a frequency channel selected from a plurality of frequency channels, and the two pulses.
  • An interval between the time points is a communication device including an interval control unit that causes the first communication device to transmit a wakeup signal including two pulses indicating the selected frequency channel.
  • the operation in the first communication device can be surely performed appropriately.
  • the frequency channel by transmitting the difference between the frequency channels by replacing the code and the pulse interval, even if the signal is superimposed on the signal of another frequency channel at the time of reception, the frequency channel It is possible to detect whether it has been transmitted. As a result, a frequency channel corresponding to the surrounding radio wave condition can be selected without channel search or negotiation between the transmitting side and the receiving side, and a wakeup signal can be communicated.
  • a characteristic in the pulse interval it is possible to allow overlapping of a plurality of channels and increase the number of sections where there is no signal. Therefore, it is possible to provide a wireless communication apparatus that can reduce power consumption for transmission. .
  • the reception band (see band 41 and band 42 in FIG. 4) is a relatively wide band (band 41).
  • a signal including a large amount of noise, a signal including a large amount of noise, etc. is not generated, and an appropriate signal can be generated. That is, an appropriate operation based on an appropriate signal can be maintained.
  • the pulse interval is simply used, the configuration can be simplified. That is, it is possible to achieve both low power consumption, proper operation, and a simple configuration.
  • FIG. 1 is a block diagram illustrating a configuration of a communication device according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a wakeup packet.
  • FIG. 3 is a diagram illustrating another example of the wakeup packet.
  • FIG. 4 is a diagram illustrating an example of a frequency channel.
  • FIG. 5 is a diagram illustrating an example of a pulse interval modulation signal.
  • FIG. 6 is a diagram illustrating an example of a pulse interval code.
  • FIG. 7 is a block diagram illustrating an example of the configuration of the wireless device.
  • FIG. 8 is a block diagram illustrating an example of a configuration of the wireless device.
  • FIG. 9 is a block diagram illustrating an example of a pulse interval demodulation unit.
  • FIG. 1 is a block diagram illustrating a configuration of a communication device according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a wakeup packet.
  • FIG. 3 is a diagram illustrating another example of the wakeup
  • FIG. 10 is a block diagram illustrating another example of the pulse interval demodulation unit.
  • FIG. 11 is a diagram illustrating an example of the envelope detection output.
  • FIG. 12 is a diagram illustrating a master unit and a slave unit.
  • FIG. 13 is a diagram illustrating the slave unit.
  • FIG. 14 is a diagram showing the slave unit.
  • FIG. 15 is a diagram illustrating the master unit.
  • FIG. 16 is a flowchart of the system.
  • FIG. 17 is a diagram illustrating the system.
  • the first communication device of the embodiment (the child device 102 in FIG. 12, FIG. 1 and the like) simultaneously receives a data communication unit (data communication unit 114) that performs data communication and signals of a plurality of frequency channels (FIG. 4).
  • a communication device including a frequency detection unit (pulse interval demodulation unit 111) that detects a frequency channel (frequency channel information 112I: FIG. 13) and causes the data communication unit to perform the data communication using the detected frequency channel. is there.
  • the second communication device (master device 101) is different from the second communication device (slave device 102) by the frequency channel selected by the control unit 103 from a plurality of frequency channels. ) And a data communication unit (data communication unit 108) that performs data communication, and an interval between the times of these two pulses is a wake-up signal including two pulses indicating the selected frequency channel (in FIG. 11).
  • a signal control unit (pulse interval modulation unit 105) that transmits the signal 11a and the like to the first communication device.
  • a signal in which signals of a plurality of frequency channels are received at the same time is an input signal (see input signal 110A in FIG. 13) including a high-frequency signal of a plurality of frequency channels to a frequency converter 110 (FIG. 13 or the like).
  • 11 is a low-frequency signal (signal 11c in FIG. 11) that includes the low-frequency signal of each frequency channel generated by.
  • the pulse interval demodulator 111 detects whether or not a wakeup signal including two pulses having the above-mentioned interval is transmitted from the generated low frequency signal through one frequency channel. Data communication is performed when it is detected that the transmission has been performed.
  • FIG. 1 is a block diagram of a communication device (system 1).
  • 101 is a wireless device (master device) that performs wake-up transmission
  • 102 is a wireless device (slave device) that performs wake-up reception.
  • 103 is a control unit
  • 104 is an encoding unit
  • 105 is a pulse interval modulation unit
  • 106 is a frequency conversion unit
  • 107 is an antenna
  • 108 is a data communication unit.
  • 109 is an antenna
  • 110 is a frequency conversion unit
  • 111 is a pulse interval demodulation unit
  • 112 is a decoding unit
  • 113 is a control unit
  • 114 is a data communication unit.
  • the radio 102 is always in a reception standby state, receives and demodulates the wakeup signal 1R transmitted from the radio 101, and the demodulated wakeup signal 1R is a signal addressed to the own station (the radio 102). If there is, the data communication unit 114 is activated to perform data communication. Then, after the data communication is completed, the data communication unit 114 is put to sleep to return to the reception standby state where the reception of the wakeup signal 1R is awaited while reducing power consumption. The radio device 102 repeats these operations.
  • FIG. 4 is a diagram illustrating an example of a frequency channel used by the communication apparatus.
  • the horizontal axis represents the frequency
  • the vertical arrow indicates the center frequency of the frequency channel.
  • three channels (frequency channels) CH1, CH2, and CH3 are determined in advance.
  • Each channel has a predetermined channel bandwidth, and in communication in each channel, wireless communication is performed within the channel bandwidth of the channel.
  • channels with a channel bandwidth of 200 kHz can be used for 24 channels.
  • the communication apparatus selects a frequency channel used for its own communication from among the plurality of frequency channels, and performs communication by matching the set frequency channels with each other in both transmission and reception.
  • transmission / reception of a wakeup signal and a data communication signal is performed using these frequency channels.
  • the wakeup signal and the data communication signal are transmitted and received in units called packets.
  • FIG. 4 schematically illustrates a case where there are three frequency channels.
  • FIG. 2 is a diagram illustrating an example of the wake-up packet 2 according to the communication apparatus.
  • the wake-up packet 2 includes a preamble part 21 for synchronizing the transceiver and wake-up information (wake-up information part) 22.
  • the preamble part 21 is a signal for synchronizing the frequency and time between the transmitter and the receiver, and is, for example, a part using a waveform repeating 1 and 0 and a unique word for detecting a packet (see FIG. (See 5).
  • Wake-up information 22 is a part on which information for a wireless device (child device 102) to be woken up is placed, and includes a control parameter 221, a destination ID 222, and an FCS (Frame Check Sequence) 223.
  • FCS Frae Check Sequence
  • the control parameter 221 includes information indicating the modulation / demodulation and type of the wakeup packet 2, such as the length of the wakeup information 22, the modulation method, and the control command type.
  • the destination ID 222 includes information indicating the destination of the wakeup packet 2.
  • the destination ID 222 may include the ID of the device to wake up.
  • the group constituted by the two or more wireless devices is specified.
  • a group ID may be included.
  • a broadcast ID may be included.
  • the destination ID 222 may include a plurality of IDs, or may include the ID of the transmission source (master device 101).
  • FCS 223 is a bit string for detecting whether or not there is an error in the demodulation result of wakeup information 22, and for example, an error detection code such as a CRC code can be used.
  • the receiving side On the receiving side (slave unit 102), if such a wakeup packet 2 is received and demodulated, and it can be detected by FCS 223 that there is no demodulation error, then the receiving side (slave unit 102) is based on the wakeup information 22. Control the operation.
  • the control unit 103 When determining that the wireless device 101 performs data communication with the wireless device 102, the control unit 103 generates a bit string of the wakeup information 22 and inputs the generated bit string to the encoding unit 104.
  • control unit 103 determines which frequency channel is used for communication, and inputs frequency channel information 103I indicating the determined frequency channel to the encoding unit 104 and the frequency conversion unit 106, respectively.
  • the encoding unit 104 indicates the bit string (wake-up information 104Ia) of the wake-up information 22 input from the control unit 103 based on the frequency channel information 103I input by the control unit 103. It encodes with the code
  • the codes corresponding to the frequency channels are as follows.
  • FIG. 6 is a diagram showing an example of a table used for encoding (table 6).
  • FIG. 6 shows an example of encoding so that information bit 0 is represented by symbol (2, 19) and information bit 1 is represented by symbol (12, 3) in communication on frequency channel CH1.
  • information bit 0 is encoded as symbol (16, 4), and information bit 1 is encoded as symbol (5, 11) (second scheme).
  • information bit 0 is encoded as symbol (6, 13), and information bit 1 is encoded as symbol (7, 10) (third scheme).
  • the wakeup information 22 encoded in this way is input to the pulse interval modulation unit 105.
  • the encoding unit 104 is a code (symbol 61) corresponding to a frequency channel (for example, CH1) determined by the control unit 103 among a plurality of system codes (symbol 61 to 63).
  • the bit string of the wakeup information 22 generated by the control unit 103 is encoded.
  • the decoding unit 112 of the child device 102 may specify a frequency channel corresponding to the code from the code as a frequency channel for data communication.
  • FIG. 5 is a diagram illustrating an example (signal 51s) of a pulse interval modulation signal by the pulse interval modulation unit 105.
  • the horizontal axis indicates time, and 501 indicates a pulse.
  • modulation is performed by associating the interval between each pulse with an information bit.
  • the pulse interval modulation unit 105 When the input from the encoding unit 104 is started, the pulse interval modulation unit 105 first outputs a preamble unit (see “preamble” in FIG. 5).
  • the preamble portion is generated by repeating the pulse a predetermined number of times at a predetermined interval, for example, an interval having the same width as the pulse 501 in the example of FIG.
  • pulse interval modulation of the wakeup information 22 is performed.
  • the information encoded by the encoding unit 104 is replaced with a pulse interval to generate a pulse.
  • FIG. 5 shows a case where communication is performed on the frequency channel CH1, and when the bit string 0, 1, 0 is transmitted, the encoding unit 104 uses this bit string based on the encoding table (code table) in FIG. Is encoded into (2,19), (12,3), (2,19).
  • the pulse interval modulation unit 105 generates pulses at intervals based on this, and indicates bit 0 in a pulse train of three pulses arranged at intervals 2 and 19 with respect to the reference interval 1 generated by the preamble unit. Bit 1 is indicated by a pulse train of three pulses arranged at 12 and interval 3.
  • the bit string of the wakeup information 22 is encoded into a pulse interval (interval 51sa or the like) corresponding to the frequency channel to generate a pulse interval modulation signal (signal 51s).
  • the pulse interval rules (codes corresponding to the frequency channel (code 61 to code 63) in the coding table) are changed for each frequency channel, so that pulses on multiple frequency channels are detected by overlapping on the receiving side.
  • pulse interval demodulation is performed based on this encoding table, the frequency channel can be separated and the information bits can be reproduced.
  • the symbol length of the symbol (code) representing each bit may be the same for each bit or may be different.
  • bit 0 is represented by (2, 19)
  • bit 1 is represented by (12, 3)
  • the packet length is shortened by assigning a shorter symbol length to the bit string having the higher appearance probability. You can also.
  • a frequency channel state for example, in a frequency channel with a large number of accommodating stations, it is possible to improve time utilization efficiency by assigning a code with a short symbol length. Further, when the symbol lengths representing the respective bits are the same, a modulation / demodulation process similar to the pulse position modulation can be performed.
  • Various codes can be used as a code for determining the pulse interval. For example, a pseudo random sequence such as a PN sequence or an M sequence may be used. Alternatively, a code based on a Walsh code, a Gold code, or the like having low cross-correlation between codes may be used. More preferably, by using a code with low cross-correlation between codes and high discriminability with respect to an arbitrary time shift, symbol separation and frequency channel can be achieved even when pulses are detected overlapping on the receiving side. Can be separated more accurately.
  • the pulse train (signal 51s) output from the pulse interval modulation unit 105 is input to the frequency conversion unit 106, converted into a high-frequency radio signal, and transmitted from the antenna 107.
  • FIG. 7 is a diagram illustrating an example of a block configuration of the frequency conversion unit 106.
  • 703 is an oscillator
  • 704 is a switch
  • 705 is an amplifier
  • 706 is a band pass filter
  • the other components are the same as those in FIG.
  • the oscillator 703 Based on the frequency channel information 103I from the control unit 103, the oscillator 703 generates a high frequency carrier signal of the frequency channel indicated by the frequency channel information 103I.
  • the high frequency carrier signal generated by the oscillator 703 is input to the switch 704.
  • the switch 704 performs OOK modulation by turning on and off the switch according to the pulse train output by the pulse interval modulation unit 105, and generates a high-frequency signal.
  • the OOK-modulated high-frequency signal is amplified by an amplifier 705, an unnecessary signal other than the channel band is removed by a band pass filter 706, and transmitted from the antenna 107.
  • the configuration in which the output of the oscillator 703 is OOK modulated by the switch 704 is shown, but other configurations can also be used.
  • the oscillator 703 itself may be turned on or off, or it may be realized by changing the amplifier 705 to a variable amplifier and changing the amplification factor according to the pulse train.
  • OOK modulation not only OOK modulation but also other modulation methods such as FSK modulation and PSK modulation can be used.
  • the signal received by the antenna 109 is converted by the frequency converter 110 from a high-frequency signal to a signal in a frequency band suitable for subsequent signal processing. This conversion will be described in detail with reference to FIG.
  • an envelope detection of an OOK-modulated high-frequency signal is performed to convert it into a received pulse train in the baseband.
  • the received pulse train is converted into a received symbol train indicated by the pulse interval by the pulse interval demodulation unit 111 performing pulse interval demodulation.
  • the received symbol sequence is decoded by the decoding unit 112 based on the encoding table, and converted into an information bit sequence and frequency channel information 112I (frequency channel information 103I).
  • the converted frequency channel information 112I indicates the same frequency channel as the frequency channel of the frequency channel information 103I of the parent device 101.
  • the decrypted information bit string is input to the control unit 113.
  • the control unit 113 determines whether the wakeup information 22 of the input information bit string is the wakeup information 22 addressed to the own station.
  • the control unit 113 converts the frequency conversion unit 106 to the frequency channel indicated by the frequency channel information 112I based on the frequency channel information 112I from the decoding unit 112. And the data communication unit 114 is activated.
  • the data communication unit 114 starts data communication with the wireless device 101 via the frequency conversion unit 110 and the antenna 109 using the frequency channel set by the control unit 113.
  • FIG. 8 is a diagram illustrating an example of a block configuration of the frequency conversion unit 110.
  • 801 is a band-pass filter
  • 802 is an amplifier
  • 803 is an envelope detector
  • the other components are the same as those in FIG.
  • the radio (receiver) 102 does not know which frequency channel is used to transmit the wakeup signal (the high frequency signal of the signal 51s) addressed to itself. Therefore, the frequency conversion unit 110 is set so that a plurality of frequency channels can be received simultaneously.
  • the bandpass filter 801 has a pass bandwidth that is three times the channel bandwidth (band 42 in FIG. 4) (band 41) so that all the frequency channels CH1, CH2, and CH3 shown in FIG. 4 can be received. Set to do.
  • the filtering band 41 in the wireless device 102 is a relatively wide band that is three times the relatively narrow band 42 of one channel in the conventional example.
  • the high-frequency signals for three channels that have passed through the bandpass filter 801 are amplified by the amplifier 802 and envelope-detected by the envelope detector 803. That is, the OOK-modulated received signal is frequency-converted into a baseband signal (signal 11c in FIG. 11) by envelope detection and converted into a pulse train.
  • high-frequency signals for three channels are superimposed on the baseband band and converted by the frequency characteristics of envelope detection.
  • the input signal 110A (FIG. 13) to the frequency converter 110 including the high frequency signals of CH1 to CH3 includes all the low frequency signals transmitted by the respective high frequency signals, and the plurality of low frequency signals are included. Is converted into a signal 11c (FIGS. 13 and 11) including
  • FIG. 11 is a diagram illustrating an example of the envelope detection output.
  • the horizontal axis indicates time
  • the vertical axis indicates amplitude
  • the square schematically indicates a pulse.
  • the signal in FIG. 11A is a signal (signal 11a) transmitted on the channel CH1
  • the signal in the column (b) in FIG. 11 is a signal transmitted on the channel CH2 (signal 11b).
  • these two signals high-frequency signals including the respective high-frequency signals
  • the output is as shown in (c) of FIG. )
  • Column and reception pulse trains having different amplitudes are superimposed (signal 11c).
  • the output (signal 11c) of the envelope detector 803 is input to the pulse interval demodulation unit 111, and the pulse interval between each pulse is detected.
  • FIG. 9 is a diagram illustrating an example of a block configuration of the pulse interval demodulation unit 111.
  • reference numeral 901 denotes a pulse detection unit
  • 902 denotes a timer
  • 903 denotes an interval determination unit.
  • the pulse detector 901 detects an amplitude change of the input pulse train (signal 11c) and outputs amplitude information and edge information.
  • amplitude information for example, the peak amplitude of the pulse can be used.
  • edge information timing information when the amplitude value exceeds a predetermined threshold (rising edge) or timing information when the amplitude value falls below the predetermined threshold (falling edge) can be used.
  • the pulse edge information detected by the pulse detector 901 is input to the timer 902.
  • Timer 902 measures the time between two edges. For example, the time from the rising edge to the next rising edge is measured as a pulse interval. Alternatively, the time from the rising edge to the next falling edge may be measured as a pulse interval. The time from the rising edge to the immediately following falling edge is measured as the pulse width. The time between the two edges measured by the timer 902 is input to the interval determination unit 903.
  • the interval determination unit 903 determines the pulse interval. That is, the preamble is detected from the interval between the edges of the pulse measured by the timer 902, and the reference interval is obtained.
  • the time from the rising edge to the immediately following falling edge is It can be detected that the time to the rising edge is half. If such a timing relationship occurs continuously, it can be considered that a preamble has been detected.
  • the pulse interval obtained at this time is stored as a reference interval.
  • the reference interval can be obtained with higher accuracy by averaging the pulse width and the pulse interval detected during the preamble period.
  • the pulse interval modulated pulse train continues, so the interval of the input received pulse train is determined based on the reference interval. For example, when the pulse train shown in FIG. 5 is input, a numerical sequence (2, 19, 12, 3, 2, 19) indicating the pulse interval is output.
  • the interval between pulses that can be regarded as substantially the same amplitude may be determined. For example, when a pulse train as shown in the column (c) of FIG. 11 is input to the pulse detector 901, a numerical sequence (2, 19, 12, 3) that determines the interval between pulses having a large amplitude, A numerical sequence (16, 4, 5, 11) that determines the interval between small pulses is output.
  • the numerical sequence indicating the pulse interval detected (output) by the pulse interval demodulation unit 111 is decoded by the decoding unit 112. That is, for example, the information bits and the frequency channel information 112I are obtained (calculated) by performing reverse lookup on the coding table of FIG. 6 used in the coding unit 104. For example, when a pulse interval numerical value sequence (2, 19, 12, 3, 2, 19) is input, it is divided into symbols (2, 19) (12, 3) (2, 19) each consisting of two sets. . Then, referring to the encoding table of FIG. 6, it can be seen that the symbol is for the frequency channel CH1, and consequently, the information bits are 0, 1, 0, respectively. By performing such decoding, the frequency channel information 112I and information bits are reproduced from the pulse interval numerical sequence.
  • FIG. 10 is a diagram showing another configuration example (pulse interval demodulation unit 111a) of the pulse interval demodulation unit (pulse interval detection unit) 111.
  • 1001 is a comparator
  • 1002 is a matched filter
  • the comparator 1001 determines that a signal exceeding a predetermined threshold is a pulse, and inputs it to the matched filter 1002.
  • the matched filter 1002 can detect a pulse interval highly correlated with the received pulse train, that is, an information symbol, by setting to detect a pulse interval based on the code table of FIG.
  • the matched filter 1002 detects a portion corresponding to a pattern of a code (symbol 61 to 63) indicating a frequency channel or the like from each part of the signal 11c in FIG. You may detect that it is the code
  • the signal (signal 11c) output from the envelope detector 803 is temporarily stored in a memory or the like, and then the pulse width of the entire pulse train and the average of the pulse interval are obtained, and this is used as a reference between each pulse. It is also possible to reproduce the information symbol by determining the relative interval of the information with reference to the code table. When performing such demodulation, the preamble part transmitting the reference interval can be shortened or deleted, and communication overhead can be further reduced.
  • the information bit sequence and the frequency channel information 112I decoded by the decoding unit 112 in this way are input to the control unit 113, respectively.
  • the control unit 113 determines whether the input information bit string is the wake-up information 22, and determines whether the destination ID 222 included therein can be regarded as addressed to the own station.
  • destination ID 222 matches the ID of the own station, matches the group ID including the own station, matches the broadcast ID, and the like.
  • the control unit 113 or the like activates the data communication unit 114.
  • the frequency channel indicated by the frequency channel information 112I detected by the decoding unit 112 is set in the frequency conversion unit 110.
  • the bandwidth of the bandpass filter 801 is switched according to the modulation method at the time of data communication so that only the set frequency channel is received.
  • the frequency converter is switched to a frequency converter using an oscillator and a mixer (not shown) without using the envelope detector 803. You can do that.
  • the activated data communication unit 114 performs data communication with the wireless device 101 via the frequency conversion unit 110 and the antenna 109.
  • the wakeup information 22 and the frequency channel information 112I indicated by the code type of the wakeup information 22 can be transmitted at a time.
  • the radio (receiver) 102 can perform an appropriate operation without directly knowing which frequency channel is used to transmit the wakeup signal 1R addressed to itself. That is, by demodulating the pulse interval based on the encoding table, it is possible to detect which frequency channel the wakeup signal 1R is transmitted based on the type of code specified by the demodulation. Thereby, a frequency channel is specified indirectly from the kind of code.
  • by performing data communication using the frequency channel thus detected it is possible to avoid channel negotiation for matching both channels during data communication, and it is possible to reduce overhead due to channel negotiation.
  • the wake-up information may include frequency channel information (data channel number 322 in FIG. 3) used for data communication.
  • the frequency channel used for data communication can be designated as a frequency channel different from the frequency channel to which the wakeup signal 1R is transmitted.
  • data communication can be performed by a wider band modulation scheme using a plurality of frequency channels or by an operation such as channel hopping for designating a frequency channel with less interference.
  • a communication method and communication apparatus that can reduce the power consumption of wake-up communication for notifying the frequency channel used for data communication. That is, a communication method for performing communication by selecting a frequency channel to be used for data communication from a plurality of frequency channels, in which the transmission side (master unit 101) includes at least a destination (destination ID 222) of a communication partner.
  • the wake-up signal (wake-up signal 1R) obtained by modulating the up information (wake-up information 22) by pulse interval modulation based on the code (for example, code 61) assigned to the frequency channel to be transmitted is transmitted in the frequency channel (
  • the reception side (slave unit 102) simultaneously receives the signals of the plurality of frequency channels (signal 11c), performs pulse interval demodulation based on the code, and wakes up the signal. Up information is reproduced, and if the destination is addressed to the own station, based on the code (symbol 61) used for pulse interval demodulation Detecting said transmitted frequency channels (CH1), the data communication method using the detected frequency channel is used.
  • the following operation may be performed.
  • the system 1 including the parent device 101 and the child device 102 is constructed (FIGS. 1, 12, 17, etc.).
  • the slave unit 102 may sense environmental information (for example, temperature, humidity, etc.). And the sensed information may be communicated by data communication between the child device 102 and the parent device 101. That is, the system 1 may be a sensor network system. Specifically, for example, one or both of the parent device 101 and the child device 102 may be an RFID.
  • the system 1 includes a plurality of slave units 102 (slave units 102a to 102c) and a plurality of master units 101 (master units 101a to 101b). May be included.
  • each parent device 101 may perform data communication with each child device 102.
  • a plurality of slave units 102 are provided at different positions in a building, and each slave unit 102 senses information (such as temperature) at the location where the slave unit 102 is provided, and the sensed information is Data communication may be performed with each parent device 101.
  • each of the slave units 102 is a radio device for which power consumption is desired to be sufficiently small.
  • the slave unit 102 is a wireless device that is driven by a battery and is desired to have a longer driving time driven by the electric power stored in the battery.
  • the slave unit 102 for example, it is detected whether or not the wakeup signal 1R for starting the data communication is transmitted by the master unit 101.
  • the functional blocks for example, the control unit 113 and the data communication unit 114
  • the functional blocks for example, the frequency conversion unit 110, the pulse interval demodulation unit 111, the decoding unit 112, etc.
  • the power consumption may not be consumed by other functional blocks.
  • a baseband signal (low frequency signal) of one frequency channel is generated from an input signal including high frequency signals of a plurality of frequency channels received by the antenna 109.
  • the conventional example in order to avoid an unstable signal being generated and improper operation occurring, the conventional example etc.
  • the superheterodyne configuration is used. If the superheterodyne configuration is not used, for example, an inappropriate signal including a lot of noise is generated, or an inappropriate signal including a large noise is generated. Inappropriate behavior occurs.
  • one frequency channel in which the low-frequency signal is generated is, for example, the above-described frequency channel dedicated to wakeup (frequency Fa). Further, as described above, for example, for each of a plurality of frequency channels, a low frequency signal of the frequency channel is generated, and it may be detected whether or not transmission is performed on the frequency channel.
  • a relatively narrow band (band 42 in FIG. 4) filter in one frequency channel is used, or a mixer and an oscillator are used.
  • a large amount of power is consumed.
  • a narrow-band (band 42 in FIG. 4) filter consumes a relatively large amount of power by including, for example, a relatively large number of operational amplifiers.
  • the first communication device (slave unit 102, FIG. 12, FIG. 13, etc.) of the system 1 may perform the following operation, for example.
  • the first communication device includes the above-described frequency conversion unit (frequency conversion unit 110 (FIG. 13)).
  • the frequency conversion unit receives each high frequency from the input signal (input signal 110A in FIGS. 13 and 14) that is received by the antenna (antenna 109 in FIG. 1) and includes each of the high frequency signals of a plurality of frequency channels.
  • a low-frequency signal (signal 11c) including both low-frequency signals (signals 11a and 11b in FIG. 11) transmitted as a signal may be generated (Sb1 in FIG. 16).
  • the generated low-frequency signal is, for example, as described above, a low-frequency signal (a signal 11a, a signal 11b) of a plurality of frequency channels superimposed, and a plurality of the low-frequency signals overlapped ( Signal 11c).
  • the frequency detector (pulse interval demodulator 111) generates one of the frequency channels (for example, CH1 (FIG. 11 (a)) from the generated low frequency signal (signal 11c). ))))), It may be detected whether or not the wakeup signal (wakeup signal 1R in FIG. 12) has been transmitted (Sb1).
  • the second communication device (master unit 101) and data communication are performed. (Sb2), and if it is not detected, the data communication may not be performed.
  • the data communication unit 114 consumes a relatively large amount of power only when transmission is detected (Sb2), and when transmission is not detected, for example, 0 is relatively small. Only power consumption may be consumed. Moreover, when not detected, a sleep state may be maintained.
  • the low frequency signal (signal 11c) generated by the frequency conversion unit (frequency conversion unit 110) is a signal generated without using the superheterodyne method, and is generated when the superheterodyne method is used. It is a signal generated by consuming only less power than the consumed power.
  • a frequency conversion unit filters the input signal (input signal 110A) to the plurality of frequency channels (band 41 in FIG. 4) (FIG. 4).
  • envelope detector envelope detector 803 that generates a low frequency signal (signal 11c) obtained by the envelope detection as the low frequency signal (signal 11c).
  • one of the plurality of frequency channels includes a large number of frequency channels (for example, 24) included in the plurality of frequency channels (FIG. 4) to which the wakeup signal 1R is transmitted, Only one low frequency signal (signal 11c) in which low frequency signals of a plurality of frequency channels are superimposed is generated, and many signals are not generated. For this reason, even if the number of frequency channels is large, the low power consumption is maintained, and the power consumption can be surely reduced.
  • the pulse interval demodulation unit 111 may detect that the transmission has been performed when the wakeup signal 1R is transmitted through any one of the plurality of frequency channels.
  • the wakeup signal 1R is transmitted on an appropriate frequency channel such as a frequency channel with high communication quality selected by the base unit 101 or the like from among a plurality of frequency channels, and the appropriate frequency channel is surely transmitted. Can be sent.
  • a frequency channel in which communication other than the transmission of the wakeup signal 1R is not performed may be selected as a high-quality frequency channel.
  • the wakeup signal 1R can be transmitted easily and reliably on an appropriate frequency channel.
  • the data communication unit when the data communication unit (data communication unit 114) detects that the wakeup signal has been transmitted, the interval of the detected wakeup signal (see FIG.
  • the data communication may be performed on the frequency channel indicated by 12 intervals 1Ra, 1Rb (interval 1Rx)).
  • interval between two pulses included in the wakeup signal is any frequency other than the frequency channel (eg, CH1) of the wakeup signal. It may also be different from the interval between two pulses in the wake-up signal on the channel (CH2, CH3) (interval at 62 and 63, eg 11 at (5, 11)). Note that only the interval between two pulses in the code is as described above, and the interval between the two pulses in the preamble portion described above may not be as described above.
  • the following operation may be performed in the second communication device (master device 101).
  • the interval control unit may cause the slave unit 102 to transmit the wakeup signal 1R on one frequency channel of the plurality of frequency channels (FIG. 4) described above. (Sa1).
  • the data communication unit (data communication unit 108) performs data communication with the transmitted child device 102 (Sa2).
  • the second communication apparatus selects one frequency channel for transmitting the wakeup signal 1R from the plurality of frequency channels, and the selected one frequency channel You may provide the control part (control part 103) which transmits the said wakeup signal 1R.
  • control unit determines that the third communication device (the second communication device (for example, the parent device 101a in FIG. 17) is different from another communication device (for example, the parent device 101b). )), A frequency channel other than the frequency channel indicated by the wake-up signal transmitted by the third communication device may be selected.
  • the same frequency channel as the frequency channel determined to be appropriate by the third communication device indicated by the wake-up signal of the third communication device may be selected.
  • the frequency channel specified from the wakeup signal of the other parent device 101b may be selected.
  • a low frequency signal (signal 11c) generated by the frequency conversion unit 110 of the slave unit 102, on which low frequency signals (signals 11a and 11b) of a plurality of frequency channels are superimposed From the low-frequency signal (signal 11c), the above-described low-frequency signals (signal 11a and signal 11b) of the respective frequency channels are specified.
  • the low frequency signal of each frequency channel is specified, for example, the preamble portion 21 of the low frequency signal, the destination ID 222, the type of code in which they are encoded (reference numeral 61, etc.) ) And the like.
  • the low frequency signal (signal 11a) of the frequency channel (for example, CH1) included in the superimposed low frequency signal (signal 11c) to which the wakeup signal 1R is transmitted is the low frequency signal of any other frequency channel included.
  • the amplitude may be different from the amplitude of the frequency signal (such as the signal 11b) (see the amplitude of CH1 in the signal 11c in FIG. 11).
  • the amplitude of the low-frequency signal (signal 11a) of the frequency channel (for example, CH1) to which the wakeup signal 1R is transmitted corresponds to, for example, the power transmitted by the base unit 101 among a plurality of amplitudes. It may be amplitude.
  • a portion of a predetermined amplitude, such as an amplitude corresponding to the power, of the superimposed low frequency signal (signal 11c) is used as a low frequency signal (signal 11a) of the wakeup signal 1R, and a pulse interval demodulation unit 111 may be detected.
  • the frequency channel through which data communication is performed may be indicated by the wakeup signal 1R.
  • the frequency channel may be indicated by the type of code (symbol 61 to 63) in which the wakeup signal 1R is encoded, or by the data channel number 322 (FIG. 3) included in the wakeup signal 1R. May be indicated.
  • the data communication unit 114 of the handset 102 uses the frequency conversion unit 110 in which the frequency channel (CH1) indicated by the transmitted wakeup signal 1R is used, for example, to perform data communication on the frequency channel. May be.
  • slave unit 102 may be a radio unit provided in a remote controller driven by battery power.
  • Master device 101 may be a wireless device provided in a device whose operation is controlled by a remote controller such as a television.
  • a remote controller such as a television.
  • a plurality of components such as the pulse interval modulation unit 105 are combined.
  • the synergistic effect by combination arises.
  • a plurality of components such as the pulse interval demodulation unit 111 are combined to produce a synergistic effect.
  • Each of the master unit 101 and the slave unit 102 is different from the conventional example in the configuration, operation, and effect.
  • Each configuration according to the embodiment may be realized as an LSI that is an integrated circuit. These configurations may be integrated into one chip. That is, for example, it may be made into one chip so as to include a part or all of it.
  • LSI depending on the degree of integration, it may be referred to as IC, system LSI, super LSI, or ultra LSI.
  • the method of circuit integration is not limited to the LSI method, and circuit integration may be performed using a dedicated circuit or a general-purpose processor.
  • an FPGA Field Programmable GateArray
  • a reconfigurable processor in which connection and setting of circuit cells in the LSI can be reconfigured may be used.
  • the calculation of these functional blocks can be performed using, for example, a DSP or a CPU.
  • the processing of these processing steps can be recorded as a program on a recording medium, and the recorded program can be executed to execute the processing.
  • a method including each of the above steps may be constructed, a computer program for realizing each of the above functions may be constructed, or a storage medium storing the computer program may be constructed.
  • an integrated circuit having each function may be constructed.
  • This technology uses a plurality of frequency channels, communication frequency is low, reception standby time is very long, but communication equipment that performs communication requiring low power consumption (for example, RFID, wireless sensor network, wireless remote control, etc.) In general, it can be widely applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Dc Digital Transmission (AREA)
  • Communication Control (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 センサネットワーク等における、消費電力を消費する無線機(102)が、データ通信を行うデータ通信部(114)と、複数の周波数チャネルの信号が同時に受信された信号(11c)から、1の周波数チャネルにおけるウエイクアップ信号(1R)の2つのパルスの時刻の間の間隔により示される周波数チャネルを検出し、前記データ通信部(114)に、検出された前記周波数チャネルでデータ通信をさせるパルス間隔復調部(111)とを備える。

Description

通信装置、通信システム、通信方法、集積回路
 本発明は、複数の周波数チャネルから、通信に用いるチャネルを選択し、通信相手を起動するウエイクアップ信号を送信する無線通信方法およびその装置に関する。
 近年、RFID(Radio Frequency Identification)や無線センサネットワークなど、小容量のデータを、少ない頻度(数百msec~数時間間隔)で通信する無線通信システムが注目されている。これらの無線通信システムでは、無線通信装置自体が小型であり、電池で駆動されるが、長寿命(数ヶ月~数年)が求められる。起動時間のうちのほとんどが、受信待ち受け時間であるため、超低消費電力な無線通信装置が求められる。
 受信待ち受け時の消費電力を低減する技術として、省電力の、起動(ウエイクアップ)用無線装置と、省電力の、データ通信用の無線装置とを組み合わせるものがある。例えば特許文献1では、ウエイクアップ用の周波数Faと、データ通信用の周波数Fgを用い、これを分けるフィルタを備え、周波数Faのウエイクアップ信号を検出したら、データ通信用の無線部を起動する技術が記載されている。
 また、送受信にかかる消費電力が少ないOOK(On Off Keying)変調信号を用いて、データ通信に使用する周波数チャネルを通知する技術として、特許文献2があった。特許文献2では、ウエイクアップ信号をOOK変調して、互いに異なる複数の周波数のうちのそれぞれで、同時に送信し、受信側ではそれぞれの周波数毎に復調を行い、ウエイクアップ信号の受信に成功した周波数で、データ通信を行う技術が記載されている。
米国特許第6920342号明細書 特開2007-173904号公報
 複数の周波数チャネルが利用できる無線通信システムにおいて、データ通信に用いる周波数チャネルを相互に通知するには、チャネルサーチやネゴシエーションを行う必要があり、これらの同期に、時間と消費電力がかかっていた。また、データ通信の頻度が、非常に少ない無線通信システムにおいては、通信相手と、起動時間を同期するためのオーバーヘッドに、消費電力がかかっていた。前記先行技術に記載されている、受信待ち受け時の消費電力を削減できるウエイクアップ用無線装置を用いても、ウエイクアップ専用の周波数チャネルを設けるため、周波数の利用効率が低減する。また、専用周波数チャネル検出のための、狭帯域フィルタ手段や、周波数変換器が必要であり、回路コストや消費電力を低減することが難しいという課題を有していた。つまり、狭帯域での検出がされると、スーパーヘテロダインの構成が必要になり、比較的省電力である、狭帯域のフィルタ、ミキサ、および発振器などが必要になり、回路コストが高くなったり、消費電力が大きくなってしまったりする。
 本発明は、前記従来の課題を解決するもので、ウエイクアップ専用の周波数チャネルを設けることなく、複数の周波数チャネルから、データ通信に用いる周波数チャネルを通知して、ウエイクアップ信号を通信し、消費電力を低減できる無線通信方法および無線通信装置を提供することを目的とする。
 前記従来の課題を解決するために、本発明の第1の通信装置は、データ通信を行うデータ通信部と、複数の周波数チャネルの信号が同時に受信された信号(図11~図14の信号11c等を参照)から、1の前記周波数チャネルにおけるウエイクアップ信号の2つのパルスの時刻の間の間隔(図12の間隔1Rx、図6等参照)により示される周波数チャネル(図1、図12~図13の周波数チャネル情報112I等を参照)を検出し、前記データ通信部に、検出された前記周波数チャネルで前記データ通信をさせる周波数検出部とを備える通信装置である。
 なお、例えば、複数の周波数チャネルの信号が同時に受信された信号の帯域(図4の帯域41を参照)は、ウエイクアップ信号が送信される、上述された1の周波数チャネルの帯域などの、1つの周波数チャネルでの帯域(帯域42を参照)よりも広い帯域である。このため、狭い帯域(帯域42を参照)での受信がされて、スーパーヘテロダインを用いる必要が生じ、受信における消費電力が、大きくなってしまったり、受信のための構成が複雑になってしまったりすることが回避され、消費電力が小さくでき、また、構成が簡単にできる。
 また、第2の通信装置は、複数の周波数チャネルから選択された周波数チャネルにより、当該第2の通信装置とは異なる第1の通信装置とデータ通信を行うデータ通信部と、それら2つのパルスの時刻の間の間隔が、選択された前記周波数チャネルを示す2つのパルスが含まれるウエイクアップ信号を前記第1の通信装置に送信させる間隔制御部とを備える通信装置である。
 これにより、第1の通信装置において、消費電力が小さくされたり、構成が簡単にされたりするにも関わらず、消費電力が小さくされるなどした第1の通信装置に適する、適切な信号が送信され、第1の通信装置における動作が、確実に、適切な動作にできる。
 本発明によれば、周波数チャネルの違いを、符号とパルス間隔に置き換えて送信することで、受信時に、他の周波数チャネルの信号と重畳されても、パルス間隔と符号とから、どの周波数チャネルで送信されたかを検出することができる。これにより、周囲の電波状況に応じた周波数チャネルについて、送信側および受信側の間で、チャネルサーチやネゴシエーションすることなく選択し、ウエイクアップ信号を通信することができる。また、パルス間隔に特徴を持たせることで、複数チャネルの重なりを許容でき、無信号となる区間が増えることから、送信にかかる消費電力も削減することができる無線通信装置を提供することができる。
 すなわち、スーパーヘテロダインが用いられず、消費電力が少なくできる。しかも、スーパーヘテロダインが用いられないにも関わらず、受信の帯域(図4の帯域41、帯域42参照)が、比較的広い帯域(帯域41)のため、不適切な信号(例えば、多くのノイズが含まれる信号、大きなノイズが含まれる信号等)が生成されてしまわず、適切な信号が生成できる。つまり、適切な信号に基づいた、適切な動作が維持できる。しかも、単なる、パルスの間隔が用いられるだけのため、構成が簡単にできる。つまり、小さな消費電力と、適切な動作と、簡単な構成とが両立できる。
図1は、実施の形態にかかる通信装置の構成を示すブロック図である。 図2は、ウエイクアップパケットの一例を示す図である。 図3は、ウエイクアップパケットの他の一例を示す図である。 図4は、周波数チャネルの一例を示す図である。 図5は、パルス間隔変調信号の一例を示す図である。 図6は、パルス間隔符号の一例を示す図である。 図7は、無線機の構成の一例を示すブロック図である。 図8は、無線機の構成の一例を示すブロック図である。 図9は、パルス間隔復調部の一例を示すブロック図である。 図10は、パルス間隔復調部の他の一例を示すブロック図である。 図11は、包絡線検波出力の一例を示す図である。 図12は、親機および子機を示す図である。 図13は、子機を示す図である。 図14は、子機を示す図である。 図15は、親機を示す図である。 図16は、システムのフローチャートである。 図17は、システムを示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 実施形態の第1の通信装置(図12、図1等の子機102)は、データ通信を行うデータ通信部(データ通信部114)と、複数の周波数チャネル(図4)の信号が同時に受信された信号(図13、図11等の入力信号110A)から、1の前記周波数チャネルにおけるウエイクアップ信号(ウエイクアップ信号1R、図5の信号51s)の2つのパルスの時刻の間の間隔により示される周波数チャネル(周波数チャネル情報112I:図13)を検出し、前記データ通信部に、検出された前記周波数チャネルで前記データ通信をさせる周波数検出部(パルス間隔復調部111)とを備える通信装置である。
 また、第2の通信装置(親機101)は、複数の周波数チャネルから(制御部103により)選択された周波数チャネルにより、当該第2の通信装置とは異なる第1の通信装置(子機102)とデータ通信を行うデータ通信部(データ通信部108)と、それら2つのパルスの時刻の間の間隔が、選択された前記周波数チャネルを示す2つのパルスが含まれるウエイクアップ信号(図11の信号11a等)を前記第1の通信装置に送信させる間隔制御部(パルス間隔変調部105)とを備える通信装置である。
 つまり、例えば、複数の周波数チャネルの信号が同時に受信された信号とは、複数の周波数チャネルの高周波信号が含まれる入力信号(図13の入力信号110A参照)から周波数変換部110(図13等)により生成された、それぞれの周波数チャネルの低周波信号が含まれる低周波信号(図11の信号11c)である。そして、生成された、この低周波信号から、1の周波数チャネルで、上記間隔の2つのパルスが含まれるウエイクアップ信号が送信されたか否かがパルス間隔復調部111により検出される。そして、送信されたことが検出される場合にデータ通信がされる。
 このため、比較的狭い狭帯域(図4の帯域42)での受信がされず、スーパーヘテロダインの構成が不要になるなどして、消費電力が小さくできる。そして、単に、適切な周波数チャネルを示す間隔を有する2つのパルスが含まれるウエイクアップ信号1Rの送信だけで、簡単な構成により、適切な周波数チャネルでのデータ通信ができる。このため、消費電力の低減と、簡単な構成とが両立できる。
 以下、詳しく説明される。
 図1は、通信装置(システム1)のブロック図である。
 図1において、101は、ウエイクアップ送信を行う無線機(親機)、102は、ウエイクアップ受信を行う無線機(子機)である。
 無線機101において、103は制御部、104は符号化部、105はパルス間隔変調部、106は周波数変換部、107はアンテナ、108はデータ通信部である。
 また、無線機102において、109はアンテナ、110は周波数変換部、111はパルス間隔復調部、112は復号化部、113は制御部、114はデータ通信部である。
 無線機102は、常時、受信待ち受け状態にあり、無線機101から送信されるウエイクアップ信号1Rを受信、復調し、復調されたウエイクアップ信号1Rが、自局(無線機102)宛の信号であれば、データ通信部114を起動して、データ通信を行う。そして、データ通信が終了した後、データ通信部114をスリープさせて、消費電力を削減しつつ、ウエイクアップ信号1Rの受信を待つ受信待ち受け状態に戻る。無線機102は、これらの動作を繰り返す。
 図4は、通信装置が利用する周波数チャネルの一例を示す図である。
 図4において、横軸は周波数を表し、縦向きの矢印は、周波数チャネルの中心周波数を示す。ここでは、3つのチャネル(周波数チャネル)CH1、CH2、CH3が予め決められているものとする。各チャネルは、それぞれ、予め決められたチャネル帯域幅を持ち、それぞれのチャネルでの通信では、そのチャネルのチャネル帯域幅内で無線通信を行う。
 なお、例えば、日本の950MHz帯などでは、チャネル帯域幅200kHzのチャネルを24チャネル分利用することができる。
 つまり、通信装置は、これらの複数の周波数チャネルの中から、自通信に利用する周波数チャネルを選択し、送受信の双方で、設定される周波数チャネルを互いに一致させて、通信を行う。本通信装置では、ウエイクアップ信号およびデータ通信信号の送受信を、これらの周波数チャネルを用いて行う。なお、ウエイクアップ信号およびデータ通信信号は、パケットとよばれる単位で送受信される。
 なお、利用される複数の周波数チャネルのうちに含まれる周波数チャネルの個数は、上述のように、例えば、24個でもよいし、図4に表されるCH1~CH3のように、3個でもよいし、他の個数であってもよい。図4では、模式的に、3つの周波数チャネルが存在するケースが例示される。
 図2は、本通信装置にかかるウエイクアップパケット2の一例を示す図である。
 ウエイクアップパケット2は、送受信器の同期をとるためのプリアンブル部21と、ウエイクアップ情報(ウエイクアップ情報部)22からなる。
 プリアンブル部21は、送受信器間の周波数および時間同期をとるための信号であり、例えば、1,0を繰り返す波形と、パケットの検出をするためのユニークワードなどが用いられた部分である(図5等参照)。
 ウエイクアップ情報22は、ウエイクアップさせる無線機(子機102)に対する情報をのせる部分であり、制御パラメータ221、宛先ID222、FCS(Frame Check Sequence)223からなる。
 制御パラメータ221は、ウエイクアップ情報22の長さや変調方式、制御コマンド種別など、ウエイクアップパケット2の変復調や種類を示す情報を含む。
 宛先ID222は、ウエイクアップパケット2の宛先を示す情報を含む。
 なお、具体的には、例えば、複数の無線機の中から、1台の無線機だけをウエイクアップさせる場合には、ウエイクアップさせる、その機器のIDを、宛先ID222に含めればよい。あるいは、ある特定のグループの、2以上の無線機(例えば、図17の子機102aおよび子機102b)をそれぞれウエイクアップさせる場合には、それらの2以上の無線機が構成するグループを特定するグループIDを含めるようにしてもよい。あるいは、当該パケットを受信した全ての無線機(例えば、図17の子機102a~102c)をウエイクアップさせる場合には、ブロードキャストIDを含めるようにしてもよい。また、宛先ID222には、複数のIDを含めてもよいし、送信元(親機101)のIDを含めるようにしてもよい。
 FCS223は、ウエイクアップ情報22の復調結果に誤りがないかを検出するビット列であり、例えば、CRC符号などの誤り検出符号を用いることができる。
 受信側(子機102)では、このようなウエイクアップパケット2を受信、復調し、FCS223によって、復調誤りがないことを検出できれば、ウエイクアップ情報22に基づいて、受信側(子機102)の動作の制御を行う。
 このような、ウエイクアップパケット2の送信および受信について、図1を用いて、詳細に説明する。
 制御部103は、無線機102とのデータ通信を無線機101が行うことを判断すると、ウエイクアップ情報22のビット列を生成し、生成されたビット列を、符号化部104に入力する。
 また、制御部103は、どの周波数チャネルで通信を行うかを決定し、決定された周波数チャネルを示す周波数チャネル情報103Iを、符号化部104と、周波数変換部106にそれぞれ入力する。
 符号化部104は、制御部103から入力されるウエイクアップ情報22のビット列(ウエイクアップ情報104Ia)を、制御部103により入力された周波数チャネル情報103Iに基づいて、当該周波数チャネル情報103Iにより示される周波数チャネルに対応する符号(図6参照)で符号化する。ここで、周波数チャネルに対応する符号は、以下の通りである。
 図6は、符号化に用いるテーブルの一例(テーブル6)を示す図である。
 図6において、周波数チャネルCH1での通信においては、情報ビット0を、シンボル(2,19)で表し、情報ビット1を、シンボル(12,3)で表すよう、符号化する例を示している(第1の方式)。以下、同様にして、周波数チャネルCH2での通信においては、情報ビット0は、シンボル(16,4)、情報ビット1は、シンボル(5,11)と符号化する(第2の方式)。周波数チャネルCH3での通信においては、情報ビット0は、シンボル(6,13)、情報ビット1は、シンボル(7,10)と符号化する(第3の方式)。このようにして符号化されたウエイクアップ情報22は、パルス間隔変調部105に入力される。
 つまり、例えば、符号化部104は、複数の方式の符号(符号61~符号63)のうちで、制御部103により決定された周波数チャネル(例えば、CH1)に対応する符号(符号61)で、制御部103により生成された、ウエイクアップ情報22のビット列を符号化する。
 なお、後で詳述されるように、例えば、子機102の復号化部112は、符号から、その符号に対応する周波数チャネルを、データ通信がされる周波数チャネルとして特定してもよい。
 図5は、パルス間隔変調部105によるパルス間隔変調信号の一例(信号51s)を示す図である。
 図5において、横軸は時間を示し、501はパルスを示す。パルス間隔変調では、各パルス間の間隔と、情報ビットを対応させることで、変調を行う。
 パルス間隔変調部105は、符号化部104からの入力が始まると、まずプリアンブル部(図5の「preample」の部分を参照)を出力する。プリアンブル部は、所定の間隔、例えば、図6の例では、パルス501と同じ幅を持つ間隔(これを基準間隔とし、1とする)で、所定回数パルスを繰り返すことで、生成される。
 プリアンブル部に続けて、ウエイクアップ情報22のパルス間隔変調を行う。ここでは、符号化部104で符号化された情報を、パルス間隔に置き換えて、パルスを発生する。図5では、周波数チャネルCH1での通信を行う場合を示し、ビット列0,1,0を送信する場合において、符号化部104は、図6の符号化テーブル(符号テーブル)に基づいて、このビット列を、(2,19)、(12,3)、(2,19)へと符号化する。
 パルス間隔変調部105は、これに基づいた間隔でパルスを生成し、プリアンブル部で生成される基準間隔1に対して、間隔2と間隔19で並ぶ3つのパルスによるパルス列でビット0を示し、間隔12と間隔3で並ぶ3つのパルスのパルス列でビット1を示す。
 このようにして、ウエイクアップ情報22のビット列を、周波数チャネルに応じたパルス間隔(間隔51sa等)に符号化して、パルス間隔変調信号(信号51s)を生成する。周波数チャネル毎に、パルス間隔の規則(符号化テーブルにおける、その周波数チャネルに対応する符号(符号61~符号63))が変えてあるため、受信側で、複数の周波数チャネルのパルスが重なって検出されても、この符号化テーブルに基づいて、パルス間隔復調を行えば、周波数チャネルを分離して、情報ビットを再生することができる。
 なお、各ビットを表すシンボル(符号)のシンボル長は、ビット毎に同じであってもよいし、異なっていてもよい。例えば、図6の例では、ビット0は(2,19)で表されるため、シンボル長は、パルス長を除くと、2+19=21となる。そして、ビット1は、(12,3)で表されるため、シンボル長は、パルス長を除くと、12+3=15となる。このように、シンボル長が異なる場合においては、例えば、情報ビットの1,0に偏りがある場合には、出現確率が多い方のビット列に、短いシンボル長を割り当てることで、パケット長を短くすることもできる。
 あるいは、周波数チャネルの状態、例えば、収容局数が多い周波数チャネルでは、短いシンボル長の符号を割り当てることで、時間利用効率を高めるといったこともできる。また、各ビットを表すシンボル長が互いに同じである場合には、パルス位置変調と同様の変復調処理とすることもできる。パルス間隔を決める符号には、種々の符号を用いることができ、例えば、PN系列やM系列などの擬似ランダム系列を用いてもよい。あるいは、符号間の相互相関性が低いWalsh符号やGold符号などに基づいた符号を用いてもよい。より好ましくは、符号間の相互相関性が低く、任意の時間シフトに対して、弁別性が高い符号を用いることで、受信側でパルスが重なって検出された場合でも、シンボルの分離および周波数チャネルの分離が、より精度よく行える。
 パルス間隔変調部105が出力するパルス列(信号51s)は、周波数変換部106に入力され、高周波の無線信号に変換され、アンテナ107から送信される。
 図7は、周波数変換部106のブロック構成の一例を示す図である。
 図7において、703は発振器、704はスイッチ、705は増幅器、706はバンドパスフィルタであり、その他は、図1と同じ符号なので、詳しい説明を省略する。
 制御部103からの周波数チャネル情報103Iに基づいて、発振器703は、周波数チャネル情報103Iにより示される周波数チャネルの高周波搬送波信号を発生する。発振器703で発生した高周波搬送波信号は、スイッチ704に入力される。
 スイッチ704は、パルス間隔変調部105が出力するパルス列に応じて、スイッチをオン、オフすることにより、OOK変調を行い、高周波信号を生成する。OOK変調された高周波信号は、増幅器705で増幅され、バンドパスフィルタ706で、チャネル帯域以外の不要信号を取り除いて、アンテナ107から送信される。
 なお、図7の例では、発振器703の出力を、スイッチ704でOOK変調する構成を示したが、他の構成も用いることができる。例えば、発振器703自体を、オン、オフしてもよいし、あるいは、増幅器705を可変増幅器に変えて、増幅率を、パルス列に応じて変化させることでも実現できる。あるいは、OOK変調に限らず、FSK変調やPSK変調などの他の変調方式も用いることができる。
 このようにして送信されたウエイクアップ信号を受信する無線機(受信機)102の動作について、以下で詳細に説明する。
 アンテナ109で受信された信号は、周波数変換部110で、高周波信号から、後段の信号処理に適した周波数帯の信号に変換される。なお、この変換については、後述の図8などで、詳しく説明される。
 ここでは、OOK変調されている高周波信号の包絡線検波をすることで、ベースバンド帯の受信パルス列に変換する。
 受信パルス列は、パルス間隔復調部111によりパルス間隔復調がされることにより、パルス間隔で示される受信シンボル列に変換される。受信シンボル列は、復号化部112により、符号化テーブルに基づいて復号化され、情報ビット列と、周波数チャネル情報112I(周波数チャネル情報103I)とに変換される。なお、変換された周波数チャネル情報112Iは、親機101の周波数チャネル情報103Iの周波数チャネルと同じ周波数チャネルを示す。
 復号化された情報ビット列は、制御部113に入力される。
 そして、入力された情報ビット列のウエイクアップ情報22が、自局宛のウエイクアップ情報22であるかを、制御部113が判定する。制御部113は、自局宛のウエイクアップ情報22であった場合には、復号化部112からの周波数チャネル情報112Iに基づいて、当該周波数チャネル情報112Iにより示される周波数チャネルに、周波数変換部106の周波数チャネルを設定し、データ通信部114を起動する。
 データ通信部114は、制御部113が設定した周波数チャネルを用いて、周波数変換部110、アンテナ109を介して、無線機101とのデータ通信を開始する。
 図8は、周波数変換部110のブロック構成の一例を示す図である。
 図8において、801はバンドパスフィルタ、802は増幅器、803は包絡線検波器(Envelope Detector)であり、その他は、図1と同じ符号であるので、詳しい説明を省略する。
 無線機(受信機)102は、自局宛のウエイクアップ信号(信号51sの高周波信号)が、どの周波数チャネルを用いて送信されるかは分からない。そのため、周波数変換部110は、複数の周波数チャネルが同時に受信できるように設定される。例えば、バンドパスフィルタ801は、図4に示される周波数チャネルCH1,CH2,CH3が全て受信できるように、通過帯域幅を、チャネル帯域幅(図4の帯域42)の3倍(帯域41)とするように設定される。つまり、無線機102でのフィルタリングの帯域41は、従来例における、1チャネルの、比較的狭い帯域42の3倍の、比較的広い広帯域である。
 バンドパスフィルタ801を通過した3チャネル分の高周波信号は、増幅器802で増幅され、包絡線検波器803で包絡線検波される。つまり、OOK変調されている受信信号は、包絡線検波により、ベースバンド帯域の信号(図11の信号11c)に周波数変換され、パルス列に変換される。ここで、包絡線検波の周波数特性により、3チャネル分の高周波信号は、ベースバンド帯域に重畳されて、変換される。
 こうして、CH1~CH3の高周波信号が含まれる、周波数変換部110への入力信号110A(図13)が、それぞれの高周波信号で送信される低周波信号が何れも含まれ、それら複数の低周波信号が含まれる信号11c(図13、図11)に変換される。
 なお、このとき、異なる送信機、異なるチャネルから到来した複数の信号(図11の信号11a、信号11b)は、受信レベルが互いに異なるため、包絡線の振幅レベルも異なることから、変換されたパルス列のパルス振幅も異なる。この点に関して、後で詳述される。
 図11は、包絡線検波出力の一例を示す図である。
 図11において、横軸は時間を、縦軸は振幅を示し、四角はパルスを模式的に示している。図11の(a)の信号は、チャネルCH1で送信された信号(信号11a)、図11の(b)欄の信号は、チャネルCH2で送信された信号(信号11b)とする。これら、2つの信号(の各高周波信号が含まれる高周波信号)が、無線機(受信機)102の包絡線検波器(検波部)803に入力されると、その出力は、図11の(c)欄のようになり、振幅の異なる受信パルス列が重畳される(信号11c)。
 包絡線検波器803の出力(信号11c)は、パルス間隔復調部111に入力され、各々のパルスの間のパルス間隔が検出される。
 図9は、パルス間隔復調部111のブロック構成の一例を示す図である。
 図9において、901はパルス検出部、902はタイマー、903は間隔判定部である。
 パルス検出部901は、入力されたパルス列(信号11c)の振幅変化を検出し、振幅情報とエッジ情報を出力する。ここで、振幅情報としては、例えば、パルスのピーク振幅などを用いることができる。エッジ情報としては、振幅値が、所定の閾値を超えた時点(立ち上がりエッジ)や、振幅値が、所定の閾値を下回った時点(立ち下りエッジ)のタイミング情報を用いることができる。パルス検出部901が検出したパルスのエッジ情報は、タイマー902に入力される。
 タイマー902は、2つのエッジの間の時間を測定する。例えば、立ち上がりエッジから、次の立ち上がりエッジまでの時間を、パルス間隔として測定する。あるいは、立ち上がりエッジから、次の立ち下りエッジまでの時間を、パルス間隔として測定してもよい。また立ち上がりエッジから、直後の立ち下りエッジまでの時間を、パルス幅として測定する。タイマー902で測定された、2つのエッジ間の時間は、間隔判定部903に入力される。
 間隔判定部903では、パルス間隔の判定を行う。つまり、タイマー902が測定した、パルスの各エッジ間の間隔から、プリアンブルを検出し、基準間隔を求める。
 例えば、プリアンブルの検出においては、パルス幅とパルス間隔とが互いに等しい信号が繰り返されている場合において、立ち上がりエッジから、直後の立ち下りエッジまでの時間が、その立ち上がりエッジから、直後の、次の立ち上がりエッジまでの時間の半分になることが検出できる。このようなタイミング関係が、連続して発生する場合には、プリアンブルを検出したとみなすことができる。このときに得られるパルス間隔を、基準間隔として保存する。
 なお、より好ましくは、例えば、プリアンブルの期間中に検出されている、パルス幅およびパルス間隔を、それぞれ平均化することで、より精度よく、基準間隔を求めることができる。
 プリアンブル検出後には、パルス間隔変調されたパルス列が続くため、入力される受信パルス列の間隔を、基準間隔に基づいて判定していく。例えば、図5に示したパルス列が入力された場合には、そのパルス間隔を示す数値列、(2,19,12,3,2,19)が出力される。
 なお、より好ましくは、例えば、パルス検出部901で検出された振幅情報に基づいて、略同一の振幅とみなせるパルス同士の間隔を判定するとよい。例えば、図11の(c)欄のようなパルス列が、パルス検出部901に入力された場合、振幅の大きなパルス同士の間隔を判定した数値列(2,19,12,3)と、振幅の小さなパルス同士の間隔を判定した数値列(16,4,5,11)が出力される。
 パルス間隔復調部111が検出(出力)した、パルス間隔を示す数値列が、復号化部112によって復号化される。つまり、例えば、符号化部104で用いた、図6の符号化テーブルを逆引きすることで、情報ビットと、周波数チャネル情報112Iが得られる(算出される)。例えば、パルス間隔数値列(2,19,12,3,2,19)が入力されると、2つずつの組からなるシンボル(2,19)(12,3)(2,19)に分ける。そして、図6の符号化テーブルを参照すると、周波数チャネルCH1のシンボルであることが分かり、ひいては、それぞれの情報ビット0,1,0であることが分かる。このような復号化をすることで、パルス間隔数値列から、周波数チャネル情報112Iと、情報ビットを再生する。
 図10は、パルス間隔復調部(パルス間隔検出部)111の別の構成例(パルス間隔復調部111a)を示す図である。
 図10において、1001はコンパレータ、1002はマッチドフィルタである。
 コンパレータ1001で、所定閾値を超える信号を、パルスと判定し、マッチドフィルタ1002に入力する。
 マッチドフィルタ1002は、図6の符号テーブルに基づいたパルス間隔を検出するよう設定しておくことで、受信パルス列と相関の高いパルス間隔、すなわち情報シンボルを検出することができる。
 つまり、例えば、マッチドフィルタ1002は、図11の信号11cの各部分のうちから、周波数チャネル等を示す符号(符号61~符号63)のパターンに該当する部分を検出することにより、その部分が、そのパターンの符号の部分であることを検知してもよい。
 なお、あるいは、包絡線検波器803が出力した信号(信号11c)を、一旦メモリなどに蓄積してから、パルス列全体のパルス幅や、パルス間隔の平均を求め、これを基準として、各パルス間の相対的な間隔を、符号テーブルと照らし合わせながら判定して、情報シンボルを再生することもできる。このような復調を行う場合には、基準間隔を伝送しているプリアンブル部を短縮もしくは削除することもでき、通信オーバーヘッドをさらに低減することができる。
 このようにして復号化部112よって復号化された、情報ビット列と周波数チャネル情報112Iとは、それぞれ、制御部113に入力される。
 制御部113は、入力された情報ビット列が、ウエイクアップ情報22かどうかを判定し、また、これに含まれる宛先ID222が、自局宛とみなせるものかを判定する。
 なお、ここで、「自局宛とみなせる」とは、例えば、宛先ID222が、自局のIDと一致する、自局が含まれるグループIDと一致する、ブロードキャストIDと一致する、などを指す。
 入力された情報ビット列が、ウエイクアップ情報22であると判定され、かつ、当該ウエイクアップ情報22のFCS223により、情報ビット列が誤りなく復調でき、かつ、当該ウエイクアップ情報22が、含まれる宛先ID222が、自局宛とみなせるウエイクアップ情報22であると判定されれば、データ通信部114を制御部113等が起動する。
 また、周波数変換部110に、復号化部112で検出された周波数チャネル情報112Iにより示される周波数チャネルを設定する。例えば、データ通信時には、設定された周波数チャネルだけを受信するように、バンドパスフィルタ801の帯域幅を、データ通信時の変調方式に合わせて切り替える。あるいは、データ通信時においては、OOK以外の変調方式を用いる場合には、周波数変換器として、包絡線検波器803を用いずに、発振器とミキサ(図示せず)を用いた周波数変換器に切り替えるといったことが行える。起動されたデータ通信部114は、周波数変換部110、アンテナ109を介して、無線機101とのデータ通信を行う。
 以上説明したようなウエイクアップ信号1Rを用いることによって、ウエイクアップ情報22が符号化された符号が、符号61~63の何れであるかにより、データ通信がされる周波数チャネル(周波数チャネル情報112I)が示される。そして、これにより、ウエイクアップ情報22と、ウエイクアップ情報22の符号の種類により示される周波数チャネル情報112Iとを、一度に送信することができる。このため、無線機(受信機)102は、自局宛のウエイクアップ信号1Rが、どの周波数チャネルを用いて送信されるかは直接的には分からなくても、適切な動作ができる。つまり、符号化テーブルに基づいて、パルス間隔を復調することにより、復調により特定される符号の種類に基づいて、どの周波数チャネルでウエイクアップ信号1Rが送信されたかを検出することができる。これにより、符号の種類から、間接的に、周波数チャネルが特定される。また、こうして検出された周波数チャネルで、データ通信を行うことで、データ通信時に双方のチャネルを合わせるためのチャネルネゴシエーションをすることが回避されて、チャネルネゴシエーションによるオーバーヘッドを削減することができる。
 なお、ウエイクアップ情報(図3のウエイクアップ情報32)に、データ通信に用いる周波数チャネル情報(図3のデータチャネル番号322)を含めるようにしてもよい。この場合、データ通信に用いる周波数チャネルを、ウエイクアップ信号1Rが送信される周波数チャネルとは違う周波数チャネルに指定することも可能となる。例えば、データ通信を、複数の周波数チャネルを束ねて用いる、より広帯域な変調方式で行ったり、あるいは、干渉が少ない周波数チャネルを指定する、チャネルホッピングのような動作にもこれを使うことができる。
 こうして、データ通信に用いる周波数チャネルを通知するウエイクアップ通信の消費電力を低減できる通信方法および通信装置が提供される。つまり、複数の周波数チャネルから、データ通信に用いる周波数チャネルを選択して、通信を行う通信方法であって、送信側(親機101)は、通信相手の宛先(宛先ID222)を少なくとも含んだウエイクアップ情報(ウエイクアップ情報22)を、送信する周波数チャネルに割り当てられた符号(例えば符号61)に基づいて、パルス間隔変調で変調したウエイクアップ信号(ウエイクアップ信号1R)を、前記周波数チャネルで(当該周波数チャネルの通信路に)送信し、受信側(子機102)は、前記複数の周波数チャネルの信号を同時に受信し(信号11c)、前記符号に基づいてパルス間隔復調をして、前記ウエイクアップ情報を再生し、前記宛先が自局宛であれば、パルス間隔復調に用いた前記符号(符号61)に基づいて、前記送信された周波数チャネル(CH1)を検出し、データ通信には、前記検出された周波数チャネルを用いる方法が用いられる。
 つまり、例えば、次の動作がされてもよい。
 すなわち、親機101と、子機102とを含んだシステム1が構築される(図1、12、17など)。
 より具体的には、例えば、子機102は、環境における情報(例えば、気温、湿度など)をセンシングしてもよい。そして、子機102と親機101とのデータ通信で、センシングされた情報が通信されてもよい。つまり、システム1は、センサネットワークのシステムでもよい。そして、具体的には、例えば、親機101および子機102の一方または両方は、RFIDでもよい。
 さらに具体的には、例えば、システム1は、図17に示されるように、複数の子機102(子機102a~102c)と、複数の親機101(親機101a~親機101b)とを含んでもよい。そして、例えば、それぞれの親機101が、それぞれの子機102とデータ通信してもよい。そして、例えば、複数の子機102が、建物における互いに異なる位置に設けられ、それぞれの子機102が、その子機102が設けられた位置における情報(気温等)をセンシングし、センシングされた情報を、それぞれの親機101とデータ通信してもよい。
 ここで、それぞれの子機102は、消費する電力が、十分に小さいことが望まれる無線機である。例えば、子機102は、電池により駆動され、当該電池に蓄えられた電力で駆動される駆動時間が、より長いことが望まれる無線機である。
 そこで、子機102においては、例えば、データ通信を開始させるウエイクアップ信号1Rが親機101により送信されたか否かが検出され、送信されたことが検出された場合にのみ、この検出のための機能ブロック(例えば、周波数変換部110、パルス間隔復調部111、復号化部112等)以外の他の機能ブロック(例えば、制御部113、データ通信部114)で、消費電力を(多く)消費させ、送信されたことが検出されない通常時には、他の機能ブロックで、消費電力を(多く)消費させなくてもよい。
 一方、データ通信に際しては、アンテナ109で受信された、複数の周波数チャネルの高周波信号が含まれる入力信号から、1つの周波数チャネルの、ベースバンド帯の信号(低周波信号)が生成される。
 ここで、このような、入力信号からの、1つの周波数チャネルの低周波信号の生成では、不安定な信号が生成されて、不適切な動作が生じるのを回避するために、従来例などにおいては、スーパーへテロダインの構成が用いられる。なお、スーパーへテロダインの構成が用いられなければ、例えば、多くのノイズが含まれる不適切な信号が生成されてしまったり、大きなノイズが含まれる不適切な信号が生成されてしまったりして、不適切な動作が生じる。
 そして、従来例では、ウエイクアップ信号1Rが送信されたか否かが検出される際にも、このような、入力信号からの、1つの周波数チャネルの低周波信号の生成が行われる。ここで、低周波信号が生成される1つの周波数チャネルは、例えば、先述された、ウエイクアップ専用の周波数チャネル(周波数Fa)である。また、先述のように、例えば、複数の周波数チャネルのそれぞれについて、その周波数チャネルの低周波信号の生成が行われ、その周波数チャネルでの送信がされたか否かが検出されることもある。
 しかしながら、スーパーヘテロダインの構成が用いられると、例えば、1つの周波数チャネルにおける、比較的狭い狭帯域(図4の帯域42)のフィルタが用いられたり、ミキサおよび発振器が用いられたりして、比較的大きな消費電力が消費されてしまう。ここで、例えば、狭帯域(図4の帯域42)のフィルタは、例えば、比較的多くのオペアンプを含むことにより、比較的多くの消費電力を消費してしまう。
 このため、従来例では、ウエイクアップ信号1Rが送信されたことの検出の際に、大きな消費電力が消費されて、ひいては、駆動時間が短くなってしまう。
 そこで、システム1の第1の通信装置(子機102、図12、図13など)は、例えば、次の動作をしてもよい。
 つまり、第1の通信装置は、先述の周波数変換部(周波数変換部110(図13))を備える。
 そして、周波数変換部が、アンテナ(図1のアンテナ109)により受信された、複数の周波数チャネルの高周波信号のそれぞれが含まれる入力信号(図13、図14の入力信号110A)から、それぞれの高周波信号で送信される低周波信号(図11の信号11a、信号11b)が何れも含まれる低周波信号(信号11c)を生成してもよい(図16のSb1)。
 なお、生成される低周波信号は、例えば、先述のように、複数の周波数チャネルの低周波信号(信号11a、信号11b)が重畳された、それら複数の低周波信号が重なった低周波信号(信号11c)である。
 そして、周波数検出部(パルス間隔復調部111)が、生成された前記低周波信号(信号11c)から、複数の前記周波数チャネルのうちの1つの前記周波数チャネル(例えば、CH1(図11の(a)欄を参照))で、前記ウエイクアップ信号(図12のウエイクアップ信号1R)が送信されたか否かを検出してもよい(Sb1)。
 そして、先述のデータ通信部(データ通信部114)が、周波数検出部により、こうして、ウエイクアップ信号が送信されたことが検出された場合に、第2の通信装置(親機101)とデータ通信を行い(Sb2)、検出されない場合には、前記データ通信を行わなくてもよい。
 なお、例えば、データ通信部114が、送信されたことが検出された場合にのみ、比較的多い消費電力を消費し(Sb2)、送信が検出されない場合には、例えば0などの、比較的少ない消費電力のみを消費してもよい。また、検出されない場合には、スリープ状態が維持されてもよい。
 すなわち、周波数変換部(周波数変換部110)により生成される低周波信号(信号11c)は、スーパーヘテロダインの方式が用いられずに生成される信号であり、スーパーヘテロダインの方式で生成される場合に消費される消費電力よりも少ない消費電力のみの消費により生成される信号である。
 そして、具体的には、例えば、周波数変換部(周波数変換部110)が、前記入力信号(入力信号110A)を、前記複数の周波数チャネル(図4の帯域41)にフィルタリングするバンドパスフィルタ(図14のバンドパスフィルタ801)と、フィルタリングされた信号を増幅する増幅器(増幅器802)と、増幅された信号を包絡線検波することにより、複数の前記周波数チャネルの前記低周波信号(信号11a、信号11b)が何れも含まれる前記低周波信号(信号11c)として、前記包絡線検波で得られる低周波信号(信号11c)を生成する包絡線検波器(包絡線検波器803)とを備えてもよい。これにより、前記入力信号から当該低周波信号(信号11c)が生成されるのに際して、スーパーヘテロダイン方式で当該低周波信号が生成される場合に消費される消費電力よりも少ない消費電力が消費されてもよい。
 これにより、ウエイクアップ信号1Rが送信されたか否かの検出に際して、少ない消費電力が消費され、ひいては、通信装置の駆動時間が長くできる。
 つまり、消費電力の低減(長い駆動時間)が実現できる。
 しかも、それら複数の周波数チャネルのうちの1つで、ウエイクアップ信号1Rが送信される複数の周波数チャネル(図4)に含まれる周波数チャネルの個数が多い場合でも(例えば、24個でも)、単に、複数の周波数チャネルの低周波信号が重畳された、1つの低周波信号(信号11c)が生成されるだけで、多くの信号が生成されない。このため、周波数チャネルの個数が多くても、消費電力が少ないことが維持され、確実に、消費電力が少なくできる。
 なお、パルス間隔復調部111は、複数の周波数チャネルのうちの、何れの周波数チャネルでウエイクアップ信号1Rが送信された場合にも、送信がされたことを検出してもよい。
 これにより、複数の周波数チャネルのうちから、親機101等により選択された、通信の品質が高い周波数チャネルなどの適切な周波数チャネルで、ウエイクアップ信号1Rが送信され、確実に、適切な周波数チャネルで送信ができる。
 具体的には、例えば、品質が高い周波数チャネルとして、ウエイクアップ信号1Rの送信以外の他の通信がされない周波数チャネルが選択されてもよい。
 これにより、ウエイクアップ専用の周波数チャネル(先述の周波数Fa)が設けられず、他の通信がされない周波数チャネルが変化する場合でも、変化した後の適切な周波数チャネルが選択されて、確実に、適切な周波数チャネルが選択される。つまり、容易かつ確実に、適切な周波数チャネルで、ウエイクアップ信号1Rの送信ができる。
 そして、より具体的には、例えば、データ通信部(データ通信部114)が、前記ウエイクアップ信号が送信されたことが検出された場合に、検出がされた当該ウエイクアップ信号の前記間隔(図12の間隔1Ra、1Rb(間隔1Rx))により示される前記周波数チャネルで、前記データ通信を行ってもよい。
 なお、ウエイクアップ信号に含まれる2つのパルスの間の間隔(図6の符号61の2など、間隔1Rx)は、そのウエイクアップ信号の周波数チャネル(例えば、CH1)以外の、何れの他の周波数チャネル(CH2、CH3)でのウエイクアップ信号での2つのパルスの間の間隔(符号62および符号63での間隔、例えば、(5、11)における11など)とも異なってもよい。なお、符号における2つのパルスの間隔のみが、この通りで、先述されたプリアンブル部の2つのパルスの間隔は、この通りでなくてもよい。
 そして、第2の通信装置(親機101)において、次の動作が行われてもよい。
 つまり、間隔制御部(パルス間隔変調部105)が、上述された、複数の周波数チャネル(図4)のうちの1つの周波数チャネルで、ウエイクアップ信号1Rを、子機102に送信させてもよい(Sa1)。
 そして、データ通信部(データ通信部108)が、ウエイクアップ信号1Rが送信された場合に、送信された子機102とデータ通信を行う(Sa2)。
 そして、より具体的には、例えば、第2の通信装置が、前記複数の周波数チャネルから、前記ウエイクアップ信号1Rを送信させる1つの周波数チャネルを選択し、選択された前記1つの周波数チャネルで、当該ウエイクアップ信号1Rを送信させる制御部(制御部103)を備えてもよい。
 これにより、ウエイクアップ信号1Rの送信される周波数チャネルが1個であるにも関わらず、比較的確実に、適切な周波数チャネルでの送信ができる。
 そして、例えば、さらに具体的には、当該制御部が、第3の通信装置(当該第2の通信装置(例えば、図17の親機101a)とは異なる他の通信装置(例えば、親機101b))により通信に用いられる、当該第3の通信装置により送信されるウエイクアップ信号により示される周波数チャネル以外の他の周波数チャネルを選択してもよい。
 また、第3の通信装置のウエイクアップ信号により示される、当該第3の通信装置により、適切と判定された周波数チャネルと同じ周波数チャネルが選択されてもよい。
 こうして、他の親機101bのウエイクアップ信号から特定される周波数チャネルが選択されてもよい。
 これにより、簡単かつ確実に、適切な周波数チャネルが選択できる。
 なお、例えば、具体的には、子機102の周波数変換部110により生成される、複数の周波数チャネルの低周波信号(信号11a、信号11b)が重畳された低周波信号(信号11c)は、その低周波信号(信号11c)から、上述された、それぞれの周波数チャネルの低周波信号(信号11a、信号11b)が特定される信号である。ここで、それぞれの周波数チャネルの低周波信号が特定されるとは、具体的には、例えば、その低周波信号のプリアンブル部21、宛先ID222、それらが符号化された符号の種類(符号61等)などの、その低周波信号の各情報が特定されることをいう。
 なお、重畳された低周波信号(信号11c)に含まれる、ウエイクアップ信号1Rが送信された周波数チャネル(例えばCH1)の低周波信号(信号11a)は、含まれる何れの他の周波数チャネルの低周波信号(信号11bなど)の振幅とも異なる振幅でもよい(図11の信号11cにおける、CH1の振幅を参照)。
 なお、ウエイクアップ信号1Rの送信がされた周波数チャネル(例えばCH1)の低周波信号(信号11a)の振幅は、例えば、複数の振幅のうちの、親機101により送信がされる電力に対応する振幅でもよい。
 そして、重畳された低周波信号(信号11c)のうちの、当該電力に対応する振幅などの、所定の振幅の部分が、ウエイクアップ信号1Rの低周波信号(信号11a)として、パルス間隔復調部111により検出されてもよい。
 なお、ウエイクアップ信号1Rにより、データ通信がされる周波数チャネルが示されてもよい。例えば、ウエイクアップ信号1Rが符号化された符号の種類(符号61~符号63)により周波数チャネルが示されてもよいし、ウエイクアップ信号1Rに含まれるデータチャネル番号322(図3)により周波数チャネルが示されてもよい。
 そして、子機102のデータ通信部114が、送信されたウエイクアップ信号1Rにより示される周波数チャネル(CH1)が設定された周波数変換部110を用いるなどにより、その周波数チャネルでのデータ通信が行われてもよい。
 また、子機102は、電池の電力で駆動されるリモコンに設けられる無線機でもよい。そして、親機101は、例えばテレビなどの、そのリモコンにより動作が制御される装置に設けられる無線機でもよい。そして、テレビの側から、リモコンの側にウエイクアップ信号1Rが送信された場合に、それら2つの無線機の間でデータ通信がされてもよい。
 このように、親機101では、パルス間隔変調部105などの複数の構成が組み合わされる。これにより、組み合わせによる相乗効果が生じる。また、子機102でも、パルス間隔復調部111などの複数の構成が組み合わさられて、相乗効果が生じる。親機101および子機102のそれぞれは、これらの、構成、作用、効果の点において、従来例とは相違する。
 以上、本発明を実施した際における、具体的な形態の例を説明したが、本発明は、上記実施例に限定されるものではなく種々変形して実施可能であり、上述した各実施例を適宜組み合わせることが可能である。
 なお、実施形態にかかる各構成は、集積回路であるLSIとして実現されてもよい。これらの構成は、1チップ化されてもよい。つまり、例えば、一部または全てを含むように、1チップ化されてもよい。ここでは、LSIといったが、集積度の違いによっては、IC、システムLSI、スーパーLSI、ウルトラLSIと称呼されることもある。また、集積回路化の手法は、LSIの手法に限られるものではなく、専用回路または汎用プロセッサで集積回路化を行ってもよい。また、LSI製造後にプログラムすることが可能なFPGA(Field Programmable GateArray)や、LSI内部の回路セルの接続や、設定を再構成可能なリコンフィギュラブル・プロセッサを用いてもよい。あるいは、これらの機能ブロックの演算は、例えばDSPやCPUなどを用いて演算することもできる。さらに、これらの処理ステップの処理を、プログラムとして記録媒体に記録して、記録されたプログラムを実行することで、その処理をすることもできる。
 さらには、半導体技術の進歩または、派生する別技術により、LSIに置き換わる集積回路かの技術が登場すれば、当然、その技術を用いて、機能ブロックを集積化してもよい。バイオ技術の適応などが可能性としてあり得る。
 なお、単なる細部については、如何なる形態が採られてもよい。つまり、例えば、細部においては、上述された形態とは異なる形態が採られてもよいし、細部において、公知の技術が付け加えられてもよいし、細部に、改良発明が付け加えられてもよいし、他の形態が採られてもよい。何れのケースのシステムでも、本発明が適用される限り、本システム1の範囲に属する。
 また、互いに、遠く離れた箇所に記載された複数の技術事項が、適宜、組み合わせられた形態が構築されてもよい。
 また、上述のそれぞれの工程を含んだ方法が構築されてもよいし、上述のそれぞれの機能を実現するためのコンピュータプログラムが構築されてもよいし、そのコンピュータプログラムが記憶された記憶媒体が構築されてもよいし、それぞれの機能を備える集積回路が構築されてもよい。
 本技術は、複数の周波数チャネルを使用し、通信頻度が少なく、受信待ち受け時間が非常に長いが、低消費電力が要求される通信(例えばRFIDや無線センサネットワーク、無線リモコンなど)を行う通信機器一般に、広く適用することができる。
 1R ウエイクアップ信号
 11c 信号
 101 無線機
 102 無線機
 103、113 制御部
 104 符号化部
 105 パルス間隔変調部
 106、110 周波数変換部
 107、109 アンテナ
 108、114 データ通信部
 111 パルス間隔復調部
 112 復号化部

Claims (14)

  1.  データ通信を行うデータ通信部と、
     複数の周波数チャネルの信号が同時に受信された信号から、1の前記周波数チャネルにおけるウエイクアップ信号の2つのパルスの時刻の間の間隔により示される周波数チャネルを検出し、前記データ通信部に、検出された前記周波数チャネルで前記データ通信をさせる周波数検出部とを備える通信装置。
  2.  前記2つのパルスの間の前記間隔により示される前記周波数チャネルは、前記複数の周波数チャネルから、第1の通信装置である当該通信装置とは異なる第2の通信装置により選択された周波数チャネルであり、
     前記ウエイクアップ信号は、当該第2の通信装置がデータ通信をする相手の通信装置を特定する宛先情報を少なくとも含んだウエイクアップ情報が、当該ウエイクアップ信号が送信される前記周波数チャネルに割り当てられた符号に基づいてパルス間隔変調で変調された信号であり、
     前記周波数検出部は、
     前記複数の周波数チャネルの信号が同時に受信された前記信号を、前記ウエイクアップ信号の前記符号に基づいてパルス間隔復調して、前記ウエイクアップ情報を再生し、
     当該ウエイクアップ情報に含まれる前記宛先情報が当該第1の通信装置を特定すれば、パルス間隔復調に用いた前記符号に基づいて、当該符号に割り当てられた前記周波数チャネルを、当該ウエイクアップ信号が送信された前記周波数チャネルとして検出し、前記データ通信部による前記データ通信に、検出された前記周波数チャネルを用いさせる請求項1記載の通信装置。
  3.  周波数変換部を備え、
     当該第1の通信装置は、センサネットワークに含まれる、情報をセンシングする装置の少なくとも一部である当該第1の通信装置と、当該第1の通信装置に前記ウエイクアップ信号を送信することにより、送信された当該第1の通信装置とのデータ通信を開始させる、当該第1の通信装置とは異なる第2の通信装置とのうちの、前記第1の通信装置であり、
     前記周波数変換部は、アンテナにより受信された、複数の前記周波数チャネルの高周波信号のそれぞれが含まれる入力信号から、それぞれの前記高周波信号で送信される低周波信号が何れも含まれる低周波信号を生成し、
     前記周波数検出部は、生成された前記低周波信号から、複数の前記周波数チャネルのうちの1の前記周波数チャネルで、前記ウエイクアップ信号が送信されたか否かを検出し、
     前記データ通信部は、前記周波数検出部により、送信がされたことが検出された場合に、前記第2の通信装置とデータ通信を行い、検出されない場合には、当該データ通信を行わない請求項2記載の通信装置。
  4.  前記周波数変換部は、
     前記入力信号を、複数の前記周波数チャネルにフィルタリングするバンドパスフィルタと、
     フィルタリングされた信号を増幅する増幅器と、
     増幅された信号を包絡線検波することにより、複数の前記周波数チャネルによる前記低周波信号が何れも含まれる前記低周波信号として、前記包絡線検波で得られる低周波信号を生成する包絡線検波器とを備え、
     前記入力信号から当該低周波信号が生成されるのに際して、スーパーヘテロダイン方式で当該低周波信号が生成される場合に消費される消費電力よりも少ない消費電力を消費する請求項3記載の通信装置。
  5.  前記データ通信部は、前記ウエイクアップ信号が送信されたことが検出された場合に、検出がされた当該ウエイクアップ信号の前記間隔により示される前記周波数チャネルで、前記データ通信を行う請求項4記載の通信装置。
  6.  複数の周波数チャネルから選択された周波数チャネルにより、第2の通信装置である当該通信装置とは異なる第1の通信装置とデータ通信を行うデータ通信部と、
     それら2つのパルスの時刻の間の間隔が、選択された前記周波数チャネルを示す2つのパルスが含まれるウエイクアップ信号を前記第1の通信装置へと送信させる間隔制御部とを備える通信装置。
  7.  前記間隔制御部は、データ通信がされる相手の通信装置を特定する宛先情報を少なくとも含んだウエイクアップ情報を、データ通信がされる前記周波数チャネルに割り当てられた符号に基づいて、パルス間隔変調で変調した前記ウエイクアップ信号を、データ通信がされる前記周波数チャネルで送信させる請求項6記載の通信装置。
  8.  前記複数の周波数チャネルから、前記ウエイクアップ信号を送信させる1の周波数チャネルを選択し、選択された前記1の周波数チャネルで、当該ウエイクアップ信号を送信させる制御部を備え、
     当該制御部は、第3の通信装置により通信に用いられる、当該第3の通信装置により送信されるウエイクアップ信号により示される周波数チャネル以外の他の周波数チャネルを選択する請求項6記載の通信装置。
  9.  第1の通信装置と、第2の通信装置とを含む通信システムであって、
     前記第2の通信装置は、
     複数の周波数チャネルから選択された周波数チャネルにより、当該第2の通信装置とは異なる第1の通信装置とデータ通信を行う第2のデータ通信部と、
     それら2つのパルスの時刻の間の間隔が、選択された前記周波数チャネルを示す2つのパルスが含まれるウエイクアップ信号を前記第1の通信装置に送信させる間隔制御部とを備え、
     前記第1の通信装置は、
     データ通信を行う第1のデータ通信部と、
     複数の周波数チャネルの信号が同時に受信された信号から、1の前記周波数チャネルにおける前記ウエイクアップ信号の前記2つのパルスの時刻の間の前記間隔により示される前記周波数チャネルを検出し、前記第1のデータ通信部に、検出された前記周波数チャネルで前記データ通信をさせる周波数検出部とを備える通信システム。
  10.  前記第2の通信装置においては、
     少なくとも、前記第2のデータ通信部が行う前記データ通信の相手を特定する宛先情報を含んだウエイクアップ情報と、前記ウエイクアップ信号を送信する周波数チャネルを特定する周波数チャネル情報とを出力すると共に、前記第2のデータ通信部の起動を制御する制御部と、
     出力された前記ウエイクアップ情報を、出力された前記周波数チャネル情報に割り当てられた符号に基づいて符号化する符号化部とを備え、
     前記間隔制御部は、パルスを生成し、前記符号化部の出力を、生成される前記パルスの間隔に変換し、
     前記間隔制御部の出力を、前記ウエイクアップ信号を送信する前記周波数チャネルの無線信号に変換する第2の周波数変換部と、
     前記第2の周波数変換部の出力を放射する第2のアンテナとを備え、
     前記第2のデータ通信部は、前記制御部による、当該第2のデータ通信部の起動の制御に基づいて、前記第2の周波数変換部と前記第2のアンテナを介して、データ通信の前記相手とデータ通信を行い、
     前記第1の通信装置においては、
     前記無線信号を受信する第1のアンテナと、
     前記第1のアンテナで受信した前記無線信号を、復調に適した予め定められた周波数帯の、複数の周波数チャネルを同時に受信した前記信号に変換する第1の周波数変換部と、
     復号化部とを備え、
     前記周波数検出部が、前記第1の周波数変換部で変換された後の、複数の周波数チャネルを同時に受信した前記信号の前記2つのパルスの間の前記間隔を検出し、
     前記復号化部は、前記周波数検出部の出力である、検出された前記間隔を、1以上の当該間隔により表される前記符号に基づいて復号化して、前記ウエイクアップ情報と、前記周波数チャネル情報を検出し、
     前記第1のデータ通信部は、前記復号化部が出力する前記ウエイクアップ情報に含まれる前記宛先情報が、当該第1の通信装置を特定すれば、前記復号化部により検出された前記周波数チャネル情報に基づいて、当該周波数チャネル情報により示される前記周波数チャネルが設定された前記第1の周波数変換部を用いて、示される当該周波数チャネルで、前記第2の通信装置とデータ通信を行う請求項9記載の通信システム。
  11.  データ通信を行うデータ通信工程と、
     複数の周波数チャネルの信号が同時に受信された信号から、1の前記周波数チャネルにおけるウエイクアップ信号の2つのパルスの時刻の間の間隔により示される周波数チャネルを検出し、前記データ通信工程において、検出された前記周波数チャネルで前記データ通信をさせる周波数検出工程とを含む通信方法。
  12.  複数の周波数チャネルから選択された周波数チャネルにより、当該通信方法を実行する第2の通信装置とは異なる第1の通信装置とデータ通信を行うデータ通信工程と、
     それら2つのパルスの時刻の間の間隔が、選択された前記周波数チャネルを示す2つのパルスが含まれるウエイクアップ信号を前記第1の通信装置へと送信させる間隔制御工程とを含む通信方法。
  13.  データ通信を行うデータ通信部と、
     複数の周波数チャネルの信号が同時に受信された信号から、1の前記周波数チャネルにおけるウエイクアップ信号の2つのパルスの時刻の間の間隔により示される周波数チャネルを検出し、前記データ通信部に、検出された前記周波数チャネルで前記データ通信をさせる周波数検出部とを備える集積回路。
  14.  複数の周波数チャネルから選択された周波数チャネルにより、当該集積回路が設けられた第2の通信装置とは異なる第1の通信装置とデータ通信を行うデータ通信部と、
     それら2つのパルスの時刻の間の間隔が、選択された前記周波数チャネルを示す2つのパルスが含まれるウエイクアップ信号を前記第1の通信装置へと送信させる間隔制御部とを備える集積回路。
PCT/JP2010/007130 2010-03-31 2010-12-08 通信装置、通信システム、通信方法、集積回路 WO2011121690A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011535338A JP5576872B2 (ja) 2010-03-31 2010-12-08 通信装置、通信システム、通信方法、集積回路
US13/322,608 US9065698B2 (en) 2010-03-31 2010-12-08 Communications apparatus, communications system, communications method and integrated circuit
CN201080023503.0A CN102484498B (zh) 2010-03-31 2010-12-08 通信装置、通信系统、通信方法、集成电路
EP10848872.7A EP2555438B1 (en) 2010-03-31 2010-12-08 Communications apparatus, communications system, communications method and integrated circuit for communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010084202 2010-03-31
JP2010-084202 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011121690A1 true WO2011121690A1 (ja) 2011-10-06

Family

ID=44711486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007130 WO2011121690A1 (ja) 2010-03-31 2010-12-08 通信装置、通信システム、通信方法、集積回路

Country Status (5)

Country Link
US (1) US9065698B2 (ja)
EP (1) EP2555438B1 (ja)
JP (1) JP5576872B2 (ja)
CN (1) CN102484498B (ja)
WO (1) WO2011121690A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072053A1 (ja) * 2013-11-13 2015-05-21 日本電気通信システム株式会社 基地局、無線端末、通信システム、通信方法、プログラム
EP2784249A4 (en) * 2011-11-25 2015-08-19 Mitsubishi Electric Corp VEHICLE MOUNTED COMMUNICATION SYSTEM, MOBILE DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
JP2015154129A (ja) * 2014-02-12 2015-08-24 日本電気通信システム株式会社 無線通信端末
JP2019537906A (ja) * 2017-04-18 2019-12-26 華為技術有限公司Huawei Technologies Co.,Ltd. 覚醒無線のための複数帯域スケジューリング
JP2020509673A (ja) * 2017-02-13 2020-03-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 周波数情報を有するウェイクアップ信号
JPWO2019116763A1 (ja) * 2017-12-15 2020-11-19 ヌヴォトンテクノロジージャパン株式会社 通信システム、送信装置、受信装置及び通信方法
WO2021088489A1 (zh) * 2019-11-04 2021-05-14 大连大学 节点数据传输方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8392732B2 (en) 2010-04-16 2013-03-05 Comcast Cable Communications, Llc Systems, apparatuses, and methods to monitor signals received by a paging monitor to detect an activity trigger
US20120307839A1 (en) * 2011-05-31 2012-12-06 Dumitru Mihai Ionescu Method for receiving channel selection information
US9250685B2 (en) * 2012-11-05 2016-02-02 Comcast Cable Communications, Llc Remotely waking a sleeping device using a wake configuration file
US9408150B2 (en) * 2013-09-11 2016-08-02 Microsemi Corporation Multi-channel low power wake-up system
US9867130B2 (en) * 2015-04-28 2018-01-09 Texas Instruments Incorporated System and method for ultra low power mode transmission
WO2016186738A1 (en) 2015-05-17 2016-11-24 Intel Corporation Apparatus, system and method of communicating a wakeup packet
FR3038170B1 (fr) * 2015-06-26 2017-08-18 Sigfox Procede et dispositif de reception d’un signal module en phase ou en frequence par une sequence de symboles a deux etats
US10285129B2 (en) * 2015-07-09 2019-05-07 Verizon Patent And Licensing Inc. Wakeup system and method for devices in power saving mode
CN106488460B (zh) * 2015-08-28 2020-06-23 苏州恩泽迅扬节能科技有限公司 无线通信方法及其对应的主设备、从设备和无线通信系统
US9974023B2 (en) * 2015-09-25 2018-05-15 Intel Corporation Apparatus, system and method of communicating a wakeup packet
US20170280392A1 (en) * 2016-03-28 2017-09-28 Intel Corporation Fine timing measurement signaling
CN107770848B (zh) * 2016-08-15 2020-09-11 华为技术有限公司 通信系统中传输唤醒包的方法和设备
CN108011700B (zh) * 2016-10-31 2021-04-09 华为技术有限公司 指示信息发送方法、接收方法及设备
US20190090189A1 (en) * 2017-09-21 2019-03-21 Qualcomm Incorporated Wake-up message generation and decoding
CN111386732B (zh) 2017-11-03 2023-07-14 索尼集团公司 对终端进行操作的方法、终端和基站
US11019568B2 (en) * 2018-03-21 2021-05-25 Mediatek Singapore Pte. Ltd. Channel access for multi-user (MU) wake-up signal transmission by using FDMA scheme
KR102131796B1 (ko) * 2018-09-18 2020-07-08 현대오트론 주식회사 Daisy chain 연결 구조를 가진 ic id 자동 증가 통신 방법 및 이를 수행하는 ic 통신 장치
EP3895479A1 (en) 2018-12-13 2021-10-20 Telefonaktiebolaget Lm Ericsson (Publ) Wakeup receiver and system using frequency shift keying and shifted-frequency retransmission
WO2020119913A1 (en) * 2018-12-13 2020-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Wakeup receiver and wakeup signal transmission
WO2021004697A1 (en) * 2019-07-10 2021-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Avoiding false detection associated with wake-up signal
CN220234679U (zh) * 2020-02-27 2023-12-22 维尔塞特公司 一种支持扩展频谱唤醒代码的差分检测的接收装置
KR102421478B1 (ko) * 2021-01-20 2022-07-14 연세대학교 산학협력단 변조 방법, 복조 방법 및 이들을 이용하는 변조 장치 및 복조 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836446A (ja) * 1994-07-22 1996-02-06 Nec Corp ワイヤレスキーボード
JP2002084210A (ja) * 2000-09-07 2002-03-22 Sharp Corp 無線通信システム及び無線通信装置及びこの無線通信システムを備えた電子機器
JP2007173904A (ja) 2005-12-19 2007-07-05 Mitsubishi Electric Corp 通信装置及び通信方式

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525992A (en) * 1994-11-14 1996-06-11 Texas Instruments Deutschland Gmbh Method and system for conserving power in a recognition system
US6593845B1 (en) * 1998-01-09 2003-07-15 Intermac Ip Corp. Active RF tag with wake-up circuit to prolong battery life
JP2003517242A (ja) 1999-12-16 2003-05-20 インフィネオン テクノロジーズ アクチェンゲゼルシャフト 動作モードおよびエネルギーを節約する静止モードを有する電子デバイスおよびこの2つのモードを切換える方法
JP2004147047A (ja) * 2002-10-24 2004-05-20 Fujitsu Ltd オーディオインタフェースおよびオーディオデータ伝送システム
WO2005013637A1 (ja) 2003-07-30 2005-02-10 Nec Corporation 無線送受信機及び無線送受信機の間欠送受信制御方法
US20060198335A1 (en) 2005-03-04 2006-09-07 Jukka Reunamaki Embedding secondary transmissions in an existing wireless communications network
US7604178B2 (en) * 2005-05-11 2009-10-20 Intelleflex Corporation Smart tag activation
KR20080053174A (ko) * 2006-12-08 2008-06-12 한국전자통신연구원 배터리 구비형 패시브 태그의 웨이크업 신호 발생 장치
WO2008069626A1 (en) 2006-12-08 2008-06-12 Electronics And Telecommunications Research Institute Apparatus and method of generating wake-up signal in battery-powered passive tag
US8363583B2 (en) 2006-12-15 2013-01-29 Qualcomm Incorporated Channel access scheme for ultra-wide band communication
CN101641929A (zh) 2007-01-26 2010-02-03 新加坡科技研究局 射频识别收发器
TW200849913A (en) 2007-01-26 2008-12-16 Agency Science Tech & Res A radio frequency identification transceiver
JP2009186360A (ja) 2008-02-07 2009-08-20 Denso Corp 電波伝搬時間計測校正方法、距離計測方法、電波伝搬時間計測校正システム及び距離計測システム
WO2009118012A1 (en) 2008-03-26 2009-10-01 Aalborg Universitet Device and method for activating a communication unit
JP4616377B2 (ja) * 2008-09-12 2011-01-19 アルプス電気株式会社 車両用通信装置
JP5029922B2 (ja) 2009-01-26 2012-09-19 古河電気工業株式会社 無線通信装置
JP4738508B2 (ja) * 2009-04-03 2011-08-03 三菱電機株式会社 受信回路、通信機器及び通信システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836446A (ja) * 1994-07-22 1996-02-06 Nec Corp ワイヤレスキーボード
JP2002084210A (ja) * 2000-09-07 2002-03-22 Sharp Corp 無線通信システム及び無線通信装置及びこの無線通信システムを備えた電子機器
JP2007173904A (ja) 2005-12-19 2007-07-05 Mitsubishi Electric Corp 通信装置及び通信方式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2555438A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784249A4 (en) * 2011-11-25 2015-08-19 Mitsubishi Electric Corp VEHICLE MOUNTED COMMUNICATION SYSTEM, MOBILE DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
US9430890B2 (en) 2011-11-25 2016-08-30 Mitsubishi Electric Corporation In-vehicle communication system, mobile device, communication system, and communication method
JPWO2015072053A1 (ja) * 2013-11-13 2017-03-16 日本電気通信システム株式会社 基地局、無線端末、通信システム、通信方法、プログラム
US10313974B2 (en) 2013-11-13 2019-06-04 Nec Communication Systems, Ltd. Base station, wireless terminal, communication system, communication method, and program
WO2015072053A1 (ja) * 2013-11-13 2015-05-21 日本電気通信システム株式会社 基地局、無線端末、通信システム、通信方法、プログラム
JP2015154129A (ja) * 2014-02-12 2015-08-24 日本電気通信システム株式会社 無線通信端末
JP2020509673A (ja) * 2017-02-13 2020-03-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 周波数情報を有するウェイクアップ信号
JP2019537906A (ja) * 2017-04-18 2019-12-26 華為技術有限公司Huawei Technologies Co.,Ltd. 覚醒無線のための複数帯域スケジューリング
US11082976B2 (en) 2017-04-18 2021-08-03 Huawei Technologies Co., Ltd. Multiband scheduling for wake up radio
JP7091328B2 (ja) 2017-04-18 2022-06-27 華為技術有限公司 覚醒無線のための複数帯域スケジューリング
US11575397B2 (en) 2017-04-18 2023-02-07 Huawei Technologies Co., Ltd. Multiband scheduling for wake up radio
JPWO2019116763A1 (ja) * 2017-12-15 2020-11-19 ヌヴォトンテクノロジージャパン株式会社 通信システム、送信装置、受信装置及び通信方法
US11139848B2 (en) 2017-12-15 2021-10-05 Nuvoton Technology Corporation Japan Communication system, transmission device, reception device, and communication method
JP7054707B2 (ja) 2017-12-15 2022-04-14 ヌヴォトンテクノロジージャパン株式会社 通信システム、受信装置及び通信方法
WO2021088489A1 (zh) * 2019-11-04 2021-05-14 大连大学 节点数据传输方法

Also Published As

Publication number Publication date
EP2555438A1 (en) 2013-02-06
CN102484498B (zh) 2014-10-15
EP2555438A4 (en) 2014-09-03
CN102484498A (zh) 2012-05-30
JP5576872B2 (ja) 2014-08-20
JPWO2011121690A1 (ja) 2013-07-04
US9065698B2 (en) 2015-06-23
EP2555438B1 (en) 2017-02-08
US20120069893A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5576872B2 (ja) 通信装置、通信システム、通信方法、集積回路
US10142821B2 (en) Wireless communication between devices that use different wireless protocols
US10420072B2 (en) Methods and apparatus for low power wireless communication
US9191890B2 (en) Systems and methods for low power operations on wireless networks
JP5661861B2 (ja) サブパケット・パルスベース通信
US6996154B2 (en) Low power dual protocol transceiver
Hessar et al. {TinySDR}:{Low-Power}{SDR} Platform for {Over-the-Air} Programmable {IoT} Testbeds
US8599824B2 (en) Method and system for bluetooth conditional synchronization
WO2018057518A1 (en) Systems and methods for transmitting a wake-up radio signal to low power devices in a wireless communication system
WO2017027847A1 (en) Backscatter devices and network systems incorporating backscatter devices
JP2011527873A (ja) 低電力無線通信システム
JP2012253744A (ja) チャネル選択情報を受け取るための方法
EP2833680A1 (en) An energy limited node, an access network node, a communications system, and a communication method
JP2010118855A (ja) 無線通信装置
Schumacher et al. A review of ultra-low-power and low-cost transceiver design
US20030107475A1 (en) Receiver for and method of extending battery life
Dissanayake et al. A multichannel, MEMS-less− 99dBm 260nW bit-level duty cycled wakeup receiver
US20100220774A1 (en) Low power uwb transmitter and receiver in impulse-based uwb communication system and method for operating the same
JP2017063405A (ja) 標準準拠無線信号を修正するデータ送信機
KR100616660B1 (ko) 저전력 무선 송수신기
Gavrikov et al. Using Bluetooth Low Energy to trigger an ultra-low power FSK wake-up receiver
JP2015177284A (ja) 無線装置およびそれにおいて実行されるプログラム
US20170019208A1 (en) Data modulation method for ieee 802.11 and ieee 802.15 devices to generate low frequency signals
JP4901497B2 (ja) 通信システム、送信機、受信機、通信方法、送信機検出方法、通信手順設定方法
JP2008011048A (ja) 無線送信装置、無線受信装置、及び、無線送受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023503.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011535338

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848872

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010848872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13322608

Country of ref document: US

Ref document number: 2010848872

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE