WO2011120441A1 - 一种成对电解合成生产丁二酸和硫酸的方法 - Google Patents

一种成对电解合成生产丁二酸和硫酸的方法 Download PDF

Info

Publication number
WO2011120441A1
WO2011120441A1 PCT/CN2011/072346 CN2011072346W WO2011120441A1 WO 2011120441 A1 WO2011120441 A1 WO 2011120441A1 CN 2011072346 W CN2011072346 W CN 2011072346W WO 2011120441 A1 WO2011120441 A1 WO 2011120441A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
reaction
sulfuric acid
anode
electrolyte
Prior art date
Application number
PCT/CN2011/072346
Other languages
English (en)
French (fr)
Inventor
高云芳
Original Assignee
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学 filed Critical 浙江工业大学
Publication of WO2011120441A1 publication Critical patent/WO2011120441A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • the present invention relates to a method of synthesizing synthetically produced succinic acid and sulfuric acid.
  • Succinic acid (Succinic acid, abbreviated as SA), commonly known as succinic acid, is colorless or white crystalline, odorless and sour, and is an important chemical raw material. Widely used in medicine, pesticides, fine chemicals, alkyd resins, etc. In recent years, succinic acid has been widely used in biodegradable plastic polybutylene succinate (PBS) organic coatings.
  • PBS biodegradable plastic polybutylene succinate
  • Industrially synthesized succinic acid mainly includes chemical methods, biological conversion methods, and electrolysis methods.
  • Electrolytic method uses electrocatalytic reduction of maleic anhydride as raw material to prepare succinic acid. It has been industrialized in the 1930s. After nearly 80 years of development, electrolytic synthesis technology and process are mature, electrolytic yield, current efficiency and conversion rate. Higher, can produce high-purity succinic acid products, and achieve zero discharge of wastewater through mother liquor circulation technology, which is a true green chemical synthesis technology.
  • the current technology for the production of succinic acid by electrolysis mainly uses the non-diaphragm method, such as the patent application No. 200710047530.1, application number 200610148269.X and so on. From the anode reaction, most of them are used. Oxygen evolution reaction as a technical route for anode reaction, using lead dioxide as anode material, high cell voltage, electrode life Short life, the initial investment of the electrode is large. At the same time, there is also the literature "Fine Chemicals", 1997, 14, 56 ⁇ 57 reported that the reaction of electrooxidation of glyoxal to glyoxylic acid was used as the anode reaction, but the yield of glyoxylic acid and succinic acid was relatively low.
  • the method for electrolytically synthesizing succinic acid and sulfuric acid used in the present invention is not only a pairwise electrosynthesis technology, but also an indirect electrosynthesis technique using " ⁇ / ⁇ 2 " as a medium. It adopts a cation membrane-separated electrolyzer, and sulphur dioxide gas is introduced into the anolyte system to make sulphuric acid in the anolyte system by iodide ion electrooxidation and subsequent oxidation-reduction reaction, and succinic acid is prepared in the catholyte system. . Therefore, the present invention is a novel technique for simultaneously producing succinic acid and sulfuric acid by electrolysis. Third, the invention content
  • the technical problem to be solved by the present invention is to provide a method for synthesizing and synthesizing succinic acid and sulfuric acid by pairwise reaction, and by finding a suitable paired anode (electrode) reaction, significantly reducing the cell voltage and production cost of succinic acid electrolysis synthesis, The electrolyte is recycled, the current efficiency is high, and the problems of short electrode life and environmental pollution are solved.
  • the technical solution adopted by the present invention is:
  • a method for synthesizing and synthesizing succinic acid and sulfuric acid by a pair of processes wherein: in a cation exchange membrane-separated electrochemical reactor, maleic acid or maleic anhydride is used as a raw material in a cathode chamber, and sulfuric acid is used.
  • a cation exchange membrane-separated electrochemical reactor maleic acid or maleic anhydride is used as a raw material in a cathode chamber, and sulfuric acid is used.
  • the following cathodic reaction occurs:
  • the reaction in the cathode chamber proceeds until more succinic acid is formed, the resulting cathode chamber electrolyte is subjected to post-treatment to obtain succinic acid; those skilled in the art can monitor the degree of progress of the reaction based on the theoretical amount of electricity.
  • concentration of sulfuric acid in the anode chamber electrolyte reaches a higher concentration
  • the anode chamber electrolyte is concentrated and treated to obtain a higher concentration of sulfuric acid, and the distilled hydroiodic acid and water vapor are returned to the anolyte circulation system.
  • an aqueous solution of sulfuric acid containing iodide ions is used as an electrolyte, and sulfur dioxide is introduced into the anolyte circulation system, and an anodic reaction occurs as follows:
  • sulfur dioxide is generally introduced as a sulfur dioxide gas, and the above sulfurous acid is formed by reacting so 2 with water.
  • the electrochemical reactor employed in the present invention is separated by a cation exchange membrane.
  • an electrode resistant to ruthenium/ ⁇ 2 and acid corrosion is selected as the anode, and a conductive polymer electrode modified by a graphite electrode or a carbon material or DSA is preferably used as an anode (titanium-based Ru0 2 - Ti0 2 shaped stable anode).
  • An electrode having a high hydrogen evolution overpotential is selected as the cathode, preferably a lead or a lead alloy electrode is used as a cathode, and a pole spacing between the cathode and the anode should be as small as possible, preferably 0.5 to 5 cm.
  • the reaction conditions are preferably as follows: controlling the concentration of sulfuric acid in the electrolyte of the cathode chamber to be 0.5 to 3 mol/L, and the concentration of maleic acid being 0.5 to 3 mol/L; controlling the concentration of sulfuric acid in the electrolyte of the anode chamber is 0.5 ⁇ 7 mol/L, ⁇ concentration is 0.5 ⁇ 4mol/L, and the ratio of the total moles of iodine and 13 -form formed by the anodic reaction per unit time to the molar ratio of added S0 2 is 1:1 ⁇ 1.5.
  • the cathode current density of the electrolytic reaction is controlled to 300 to 1200 A/m 2 and the anode current density is 300 to 1500 A/m 2 .
  • the process of the invention can be carried out in a continuous or batch manner during the electrolysis process.
  • the continuous production mode is as follows: the raw materials required for production are continuously added, and when the electrolytic reaction proceeds to a certain extent, a part of the electrolyte is taken for post-treatment, and the obtained post-treatment mother liquid is mixed into the raw material and returned to the electrolyte system; : Among the materials required for production, the catholyte portion is added once or in batches, and so 2 is continuously introduced into the anolyte.
  • the electrolysis reaction proceeds to a certain extent, replace the new electrolyte, The finished electrolyte is post-treated and the raw material is added as a new electrolyte.
  • the catholyte aftertreatment according to the present invention is: the obtained cathode chamber electrolyte is cooled, crystallized, filtered, and further washed and dried with a filter cake to obtain a succinic acid product.
  • the mother liquor obtained by filtration is replenished with maleic acid or maleic anhydride and returned to the cathode chamber for recycling, which not only improves the yield, saves the raw materials, reduces the production cost, and at the same time realizes green clean production.
  • the anolyte post-treatment according to the present invention is: when the concentration of sulfuric acid reaches a certain value, the anode chamber electrolyte is concentrated and treated to obtain a higher concentration of sulfuric acid, and the distilled hydriodic acid and water vapor are returned to the anolyte. Circulatory system.
  • reaction control reaction temperature also has a large influence on the reaction because the solubility of succinic acid in water increases greatly with increasing temperature.
  • reaction temperature is 20 to 70 ° C, preferably 30 to 50 ° C.
  • the experimental apparatus used in the present invention comprises a cationic membrane-separated electrochemical reactor, an anolyte storage tank, and a catholyte storage tank.
  • the electrochemical reactor is separated by a cation membrane into an anode chamber provided with an anode and a cathode provided with a cathode.
  • the electrochemical reactor may be a monopole or a bipolar structure composed of a plurality of units.
  • the bottom (or lower) inlet of the anode chamber is connected to the liquid outlet at the bottom of the anolyte storage tank via a pump, a flow control valve, and the top (or upper) outlet port of the anode chamber and the anolyte storage tank
  • the liquid inlet connection constitutes an anolyte circulation system;
  • the bottom (or lower) inlet port of the cathode chamber is connected to the liquid outlet at the bottom of the catholyte storage tank via a pump, a flow control valve, the top of the cathode chamber ( Or upper)
  • the liquid outlet is connected to the liquid inlet of the catholyte storage tank to form a catholyte circulation system.
  • the sulfur dioxide gas passes into the anolyte circulation system, one directly introducing the sulfur dioxide gas into the anode chamber of the electrochemical reactor, and performing the redox reaction in the anode chamber; the other is the sulfur dioxide gas.
  • the anolyte storage tank is introduced, and the redox reaction is carried out in the anolyte storage tank, which is carried out separately from the electrochemical reaction in the electrochemical reactor.
  • the beneficial effects of the present invention are as follows: (1) The present invention significantly reduces the energy consumption required for electrolytic synthesis of succinic acid by designing a suitable paired anode (electrode) reaction; (2) the present invention The use of inexpensive anode materials saves initial investment and production costs while overcoming the problem of short electrode life; (3) The invention also provides a method for producing sulfuric acid by low-temperature wet method; (4) The current efficiency of the invention is high , Recycled electrolyte for clean production, suitable for industrial use Scale production. Fourth, the description of the drawings
  • 1 is a schematic view of an experimental apparatus used in an embodiment of the present invention: 1 anode, 2 cathode, 3 anolyte storage tank, 4- catholyte storage tank, 5-cation exchange membrane, 6-flow control valve, 7-pump, 8 — 50 2 air intake.
  • FIG. 2 is a process flow diagram of the present invention. V. Specific implementation methods
  • a single-pole diaphragm electrolyzer is used, graphite is used as the anode, and metal lead is used as the cathode.
  • the apparent area of the anode and the anode are both 50 cm 2 and the pole spacing is 4 cm.
  • the F101 polyvinylidene fluoride homogeneous cation exchange membrane is used as the separator.
  • the initial electrolyte in the anode chamber has a sulfuric acid concentration of 1 mol/L, a potassium iodide concentration of 1 mol/L, a cathode chamber initial electrolyte sulfuric acid concentration of 1 mol/L, a maleic anhydride concentration of 1 mol/L, and a controlled electrolyte temperature of 30 to 35 ° C
  • the electrolytes in the anode and anode chambers are all circulated through the external reservoir pump.
  • the total amount of anolyte and catholyte is 3 liters respectively.
  • Sulfur dioxide is introduced into the anode chamber as a gas.
  • the amount of sulfur dioxide gas is controlled to ensure the anode chamber.
  • the electrolyte did not change slightly reddish brown (ie the electrolyte remained blue-yellow).
  • the current density in the electrolysis reaction was 1000 A/m 2 and the average cell voltage was 2.38 V.
  • a monopolar diaphragm electrolyzer was used, graphite was used as the anode, and metal lead was used as the cathode.
  • the electrode area was 50 cm 2 and the pole spacing was 4 cm.
  • the F101 polyvinylidene fluoride homogeneous cation exchange membrane was used as the separator.
  • the anode chamber electrolyte is the electrolyte after the reaction of the first embodiment
  • the cathode chamber electrolyte is the mother of the filtration in the first embodiment.
  • the temperature of the electrolyte was controlled to be 50 to 55 ° C, and other conditions were the same as in Example 1.
  • the average cell voltage in the electrolysis reaction was 2.26 V.
  • a single-pole diaphragm electrolyzer was used, DSA was used as the anode, and metal lead was used as the cathode.
  • the electrode area was 50 cm 2 and the pole spacing was 2 cm.
  • the Nafionl cation exchange membrane was used as the separator.
  • the anode chamber electrolyte is the electrolyte solution after the reaction of Example 2
  • the cathode chamber electrolyte is the solution prepared by adding maleic anhydride to the mother liquor filtered in Example 2, wherein the concentration of maleic acid is 1.2 mol/L.
  • the electrolyte temperature was controlled at 30 to 35 ° C, and sulfur dioxide was added to the anolyte storage tank as a gas to control the current density to 500 A/m 2 .
  • Other conditions were the same as in Example 1.
  • the average cell voltage in the electrolysis reaction was 1.38V.
  • a monopolar diaphragm electrolyzer was used, graphite was used as the anode, and metal lead was used as the cathode.
  • the electrode area was 100 cm 2 and the pole spacing was 1.5 cm.
  • the Nafionl cation exchange membrane was used as the separator.
  • the anode chamber electrolyte is the electrolyte solution after the reaction of Example 3, and the cathode chamber electrolyte is the solution prepared by adding maleic acid to the mother liquor filtered in Example 3, wherein the concentration of maleic acid is 0.8. Mol/L.
  • the electrolyte temperature is controlled to be 40 to 45 ° C, and sulfur dioxide is added to the anode chamber as a gas.
  • the control current density was 750 A/m 2 , and other conditions were the same as in Example 1.
  • the average cell voltage in the electrolysis reaction was 1.59V.
  • a monopolar diaphragm electrolyzer was used, graphite was used as the anode, and metal lead was used as the cathode.
  • the electrode area was ldm 2 and the pole spacing was 1.5 cm.
  • the Nafionl cation exchange membrane was used as the separator.
  • the anode chamber electrolyte is the electrolyte solution after the reaction of Example 4, and the cathode chamber electrolyte is the solution prepared by adding maleic acid to the mother liquor filtered in Example 4, wherein the concentration of maleic acid is 0.8. Mol/L.
  • the electrolyte temperature is controlled to be 50 to 55 ° C, and sulfur dioxide is added to the anode chamber as a gas.
  • the control current density was 1200 A/m 2 , and other conditions were the same as in Example 1. In the electrolysis reaction, the average cell voltage was 1.64V.
  • Electrolysis was stopped after 2 hours of energization, and the catholyte was cooled, crystallized, filtered, deionized water washed, and dried to obtain 49.7 g of succinic acid, and the cathode current efficiency was 94.1%.
  • the anode chamber electrolyte was sampled and analyzed, the SO-concentration in the solution was 1.83 mol/L, and the total anode current efficiency was 96.56%.
  • the sulfuric acid concentration is 5.49 mol/L, and the vaporized vapor phase material is collected, and after cooling, it is returned to the anolyte circulation system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

一种成对电解合成生产丁二酸和硫酸的方法 一、 技术领域
本发明涉及一种成对电解合成生产丁二酸和硫酸的方法。
二、 背景技术
丁二酸 (succinic acid, 简称 SA) 俗名琥珀酸, 无色或白色结晶, 无臭、 味酸, 是一种 重要的化工原料。 广泛应用于医药、 农药、 精细化工、 醇酸树脂等领域, 近年来, 丁二酸在 全生物降解塑料聚丁二酸丁二醇酯 (PBS ) 有机涂料等领域取得广泛应用。
工业上合成丁二酸主要有化学法、 生物转化法和电解法。
目前, 大部分工业用丁二酸是通过化学法生产, 主要分为氧化法、 加氢法和催化加成法 等, 这些方法工艺比较成熟, 但存在较多的问题, 如副反应较难控制、 产率低、 纯度不高、 操作条件难度高、 使用催化剂价格昂贵等, 而且在生产过程中会造成大量的污染。
近年来, 利用细菌或微生物发酵获得丁二酸, 由于采用淀粉、 葡萄糖、 牛乳或其它微生 物能够利用的废料为原料, 逐渐成为国内外研究的热点。 但仍有大量的工作需进一步研究和 完善, 如产品提取效率低、 产酸率和转化率低、 生产成本昂贵、 产生的废水量大 (据估计每 生产 It丁二酸产生的废水将达到 10t以上) 等, 很难满足工业生产的需要。 目前, 生物转化法 生产丁二酸仅限于实验室研究阶段, 工业化生产尚需时日。
电解法以顺丁烯二酸酐为原料电解还原制备丁二酸, 20世纪 30年代已实现工业化生产, 经过近 80年的发展, 电解合成技术和工艺较成熟, 电解收率、 电流效率和转化率较高, 能制 得高纯的丁二酸产品, 同时通过母液循环套用技术实现了废水的零排放, 是一种真正的绿色 化学合成技术。
从文献资料看, 目前电解法生产丁二酸的技术主要采用了无隔膜法技术, 如专利申请号 200710047530.1、 申请号 200610148269.X等所提出的主张; 从阳极反应看, 绝大部分采用了 以析氧反应作为阳极反应的技术路线, 选用二氧化铅作为阳极材料, 槽电压高, 电极使用寿 命短, 电极初始投资大。 同时也有文献《精细化工》, 1997, 14, 56〜57报道, 采用了以乙二 醛电氧化生成乙醛酸的反应作为阳极反应, 但乙醛酸、 丁二酸的收率相对较低。
目前本发明采用的电解合成丁二酸、 硫酸的方法既是一种成对电合成技术, 又是一种以 "Γ/Ι2 "作为媒质的间接电合成技术。 其采用了阳离子膜分隔式电解槽, 在阳极液系统中通入 二氧化硫气体, 使阳极液系统中通过碘离子电氧化及后续氧化还原反应制成硫酸, 同时在阴 极液系统中制得丁二酸。 因此本发明是一种采用电解技术同时制造丁二酸、 硫酸的新技术。 三、 发明内容
本发明要解决的技术问题是提供一种成对电解合成生产丁二酸和硫酸的方法, 通过寻找 合适的成对阳极 (电极) 反应, 显著降低丁二酸电解合成的槽电压和生产成本, 电解液循环 使用, 电流效率高, 同时解决了电极使用寿命短, 环境污染等问题。
为解决上述技术问题, 本发明所采用的技术方案为:
一种成对电解合成生产丁二酸和硫酸的方法, 所述的方法为: 在阳离子交换膜分隔的电 化学反应器中, 阴极室中以顺丁烯二酸或顺酐为原料, 以硫酸为反应物和支持电解质, 发生 如下阴极反应:
Figure imgf000003_0001
当阴极室中反应进行到生成较多的丁二酸时, 所得阴极室电解液通过后处理即得到丁二酸; 本领域技术人员可以根据理论电量来监控反应进行的程度。
阳极室中, 以含碘离子的硫酸水溶液为电解液, 发生阳极反应生成碘和 , 同时在阳极 液循环系统中通入二氧化硫, 通过与阳极反应生成的碘或 13—发生氧化还原反应生成硫酸并再 生出碘离子。 当阳极室电解液中硫酸浓度达到较高浓度时, 将阳极室电解液进行浓縮后处理, 获得更高浓度的硫酸, 同时蒸出的氢碘酸、 水蒸汽返回阳极液循环系统。 下面对上述技术方案做具体说明:
阳极室中, 以含碘离子的硫酸水溶液为电解液, 并在阳极液循环系统中通入二氧化硫, 发生如下阳极反应:
21 —— I2+2e (或 31-—— I3- +2e) (1) 上述阳极反应 (1) 式中生成的碘和 13—随后与 302或112803发生如 (2— 1)、 (2-2), (2 -3)式所示的氧化还原反应, 在生成硫酸的同时, 碘离子得到再生(构成间接电合成方式):
I2+S02 + 2H20 = H2S04 + 2HI (2—1) H2S03+I2 + H20 = 4H++2I +SO (2—2) I3 +S02+2H20 = 4H++3I +SO (2—3) 本发明阳极室中, 二氧化硫一般以二氧化硫气体形式通入, 上述亚硫酸是 so2与水反应 形成。
本发明采用的电化学反应器以阳离子交换膜分隔。所述的电化学反应器中,选用耐 Γ/Ι2、 酸腐蚀的电极作为阳极, 优选以石墨电极、碳素类材料复合改性的导电高分子电极或 DSA为 阳极(钛基 Ru02-Ti02形稳阳极)。 选用析氢过电位较高的电极作为阴极, 优选以铅或铅合金 电极为阴极, 阴极与阳极的极间距应尽量降低, 优选 0.5~5cm。
本发明在反应过程中,优选反应条件如下:控制阴极室电解液中硫酸浓度为 0.5〜3mol/L、 顺丁烯二酸浓度为 0.5〜3 mol/L; 控制阳极室电解液中硫酸浓度为 0.5〜7 mol/L、 Γ浓度为 0.5〜4mol/L,并且控制单位时间内阳极反应生成的碘和 13—的总摩尔数与加入的 S02的摩尔数 比为 1: 1〜1.5。优选控制电解反应的阴极电流密度为 300〜1200A/m2,阳极电流密度为 300〜 1500A/m2
本发明方法在电解过程中可采用连续方式或间歇方式进行。 所述连续生产方式为: 生产 所需的原料连续加入, 当电解反应进行到一定程度时, 取部分电解液进行后处理, 所得后处 理母液配入原料返回电解液系统; 所述间歇生产方式为: 生产所需的物料中, 阴极液部分一 次或分批加入, 阳极液中 so2连续通入。 当电解反应进行到一定程度时, 更换新电解液, 反 应完的电解液经后处理, 配入原料作为新电解液备用。
本发明所述的阴极液后处理为: 所得阴极室电解液通过冷却、 结晶、 过滤, 并进一步对 滤饼洗涤、 干燥即可得到丁二酸产品。 过滤所得母液补充顺丁烯二酸或顺酐后返回阴极室循 环使用, 这样不仅提高了收率, 节约了原料, 降低了生产成本, 同时实现了绿色清洁生产。
本发明所述的阳极液后处理为: 当硫酸浓度达到一定值时, 将阳极室电解液进行浓縮后 处理, 获得更高浓度的硫酸, 同时蒸出的氢碘酸、 水蒸汽返回阳极液循环系统。
此外, 反应温度的控制对于反应也有较大的影响, 这是因为丁二酸在水中的溶解度随着 温度的升高有较大的增加。 反应温度过低时, 反应过程中就会有大量的丁二酸结晶析出使槽 电压升高, 影响反应进行; 而温度过高对反应设备、 离子膜寿命等都有不良影响。 本反应控 制反应温度 20~70°C, 优选 30〜50°C。
本发明采用的实验装置包括阳离子膜分隔的电化学反应器、 阳极液贮槽、 阴极液贮槽, 所述的电化学反应器通过阳离子膜分隔成设置有阳极的阳极室和设置有阴极的阴极室, 所述 的电化学反应器可采用单极式或由多个单元组成的复极式结构。 所述的阳极室的底部 (或下 部)进液口经由泵、流量控制阀与阳极液贮槽底部的液体出口连接,所述的阳极室的顶部(或 上部)出液口与阳极液贮槽的液体入口连接, 构成阳极液循环系统;所述的阴极室的底部(或 下部) 进液口经由泵、 流量控制阀与阴极液贮槽底部的液体出口连接, 所述的阴极室的顶部 (或上部) 出液口与阴极液贮槽的液体入口连接, 构成阴极液循环系统。 本发明中, 二氧化 硫气体通入阳极液循环系统的方式有两种, 一种直接将二氧化硫气体通入电化学反应器的阳 极室, 在阳极室中进行氧化还原反应; 另一种是将二氧化硫气体通入阳极液贮槽, 在阳极液 贮槽中进行氧化还原反应, 与电化学反应器内的电化学反应分开进行。
与现有技术相比, 本发明的有益效果在于: (1 )本发明通过设计合适的成对阳极(电极) 反应, 显著降低了丁二酸电解合成所需的能耗; (2) 本发明采用廉价的阳极材料, 节省了初 始投资和生产成本, 同时克服了电极使用寿命较短的问题; (3) 本发明同时提供了一种低温 湿法制硫酸的方法; (4) 本发明电流效率高, 电解液循环使用, 实现清洁生产, 适合于工业 化规模生产。 四、 附图说明
图 1为本发明实施例所采用的实验装置示意图: 1 阳极, 2 阴极, 3 阳极液贮槽, 4- 阴极液贮槽, 5—阳离子交换膜, 6—流量控制阀, 7—泵, 8— 502进气口。
图 2是本发明的工艺流程图。 五、 具体实施方式
为了更好地实施本发明特举例说明, 但不是对本发明的限制。
实施例 1
采用单极式隔膜电解槽, 用石墨作阳极, 金属铅作阴极, 阴、 阳极表观面积均为 50cm2, 极间距为 4cm, 采用 F101聚偏氟乙烯均相阳离子交换膜为隔膜。
其中, 阳极室初始电解液中硫酸浓度 lmol/L、 碘化钾浓度 lmol/L, 阴极室初始电解液硫 酸浓度 1 mol/L, 顺酐浓度 lmol/L, 控制电解液温度 30〜35°C反应, 阴、 阳极室电解液均通 过外置储液槽泵循环, 阳极电解液、 阴极电解液总量分别为 3升, 二氧化硫以气体形式通入 阳极室, 二氧化硫气体通入量控制为在保证阳极室电解液不变红棕色的前提下略微过量 (即 电解液保持青黄色)。 电解反应中电流密度为 1000A/m2, 平均槽电压为 2.38V。
恒电流电解 10小时后停止电解, 阴极液经冷却、 结晶、 过滤、 去离子水洗涤、 干燥后获 得丁二酸 68.4g, 阴极电流效率为 95.1%。 实施例 2
采用单极式有隔膜电解槽, 用石墨作阳极, 用金属铅作阴极, 电极面积 50cm2, 极间距 4cm, 采用 F101聚偏氟乙烯均相阳离子交换膜为隔膜。
其中, 阳极室电解液为实施例 1反应后的电解液, 阴极室电解液为实施例 1中过滤的母 液添加顺酐后制得的溶液, 其中顺丁烯二酸的浓度为 1 mol/L。 控制电解液温度为 50〜55°C, 其他条件同实施例 1, 电解反应中平均槽电压为 2.26V。
通电 5小时后停止电解, 阴极液经冷却、 结晶、 过滤、 去离子水洗涤、 干燥后获得丁二 酸 51.1g, 阴极电流效率为 94.2%。 实施例 3
采用单极式隔膜电解槽, 用 DSA作阳极, 用金属铅作阴极, 电极面积 50cm2, 极间距为 2cm, 采用 Nafionl 阳离子交换膜为隔膜。
其中, 阳极室电解液为实施例 2反应后的电解液, 阴极室电解液为实施例 2过滤后的母 液添加顺酐后制得的溶液, 其中顺丁烯二酸的浓度为 1.2 mol/L。 控制电解液温度 30〜35°C, 二氧化硫以气体形式加入到阳极液储液槽中,控制电流密度为 500A/m2,其他条件同实施例 1。 电解反应中平均槽电压为 1.38V。
通电 10小时后停止电解, 阴极液经冷却、 结晶、 过滤、 去离子水洗涤、 干燥后获得丁二 酸 52.2g, 阴极电流效率 94.9%。 实施例 4
采用单极式有隔膜电解槽, 用石墨作阳极, 用金属铅作阴极, 电极面积为 100cm2, 极间 距 1.5cm, 采用 Nafionl 阳离子交换膜为隔膜。
其中, 阳极室电解液为实施例 3反应后的电解液, 阴极室电解液为实施例 3过滤后的母 液添加顺丁烯二酸后制得的溶液, 其中顺丁烯二酸的浓度为 0.8 mol/L。控制电解液温度 40〜 45°C反应, 二氧化硫以气体形式加入到阳极室中。 控制电流密度为 750A/m2, 其他条件同实 施例 1。 电解反应中平均槽电压为 1.59V。
通电 2小时后停止电解, 阴极液经冷却、 结晶、 过滤、 去离子水洗涤、 干燥后获得丁二 酸 31.2g, 阴极电流效率为 94.5%。 实施例 5
采用单极式隔膜电解槽,用石墨作阳极,用金属铅作阴极,电极面积 ldm2,极间距 1.5cm, 采用 Nafionl 阳离子交换膜为隔膜。
其中, 阳极室电解液为实施例 4反应后的电解液, 阴极室电解液为实施例 4过滤后的母 液添加顺丁烯二酸后制得的溶液, 其中顺丁烯二酸的浓度为 0.8 mol/L。控制电解液温度 50〜 55°C反应, 二氧化硫以气体形式加入到阳极室中。 控制电流密度为 1200A/m2, 其他条件同实 施例 1。 电解反应中, 平均槽电压为 1.64V。
通电 2小时后停止电解, 阴极液经冷却、 结晶、 过滤、 去离子水洗涤、 干燥后获得丁二 酸 49.7g, 阴极电流效率为 94.1%。 上述实施例 1〜5实验结束后, 阳极室电解液取样分析, 溶液中 SO -浓度为 1.83mol/L, 阳极总电流效率为 96.56%。 上述阳极液经过蒸发浓縮至约 1L时, 硫酸浓度为 5.49mol/L, 收 集蒸发气相物质, 经冷却后返回阳极液循环系统。

Claims

权 利 要 求 书
1、 一种成对电解合成生产丁二酸和硫酸的方法, 其特征在于所述的方法为: 在阳离子交换膜 分隔的电化学反应器中, 阴极室中以顺丁烯二酸或顺酐为原料, 以硫酸为反应物和支持电解 质, 发生阴极反应生成丁二酸, 当反应进行到生成较多的丁二酸时, 所得阴极室电解液通过 后处理得到丁二酸;阳极室中,以含碘离子的硫酸水溶液为电解液,发生阳极反应生成碘和 13_, 同时在阳极液循环系统中通入二氧化硫, 通过与阳极反应生成的碘或 13—发生氧化还原反应生 成硫酸并再生碘离子, 当硫酸浓度达到较高浓度时, 取所得的阳极室电解液进行浓縮后处理, 获得更高浓度的硫酸, 同时蒸出的氢碘酸、 水蒸汽返回阳极液循环系统。
2、 如权利要求 1所述的方法, 其特征在于所述的电化学反应器中, 以石墨电极、 碳素类材料 复合改性的导电高分子电极或钛基 Ru02-Ti02形稳阳极为阳极, 以铅或铅合金电极为阴极, 阴极与阳极的极间距为 0.5〜5 cm。
3、 如权利要求 1 所述的方法, 其特征在于在反应过程中, 控制阴极室电解液中硫酸浓度为 0.5〜3mol/L、顺丁烯二酸浓度为 0.5〜3 mol/L;控制阳极室电解液中硫酸浓度为 0.5〜7 mol/L、 Γ浓度为 0.5〜4 mol/L,并且控制单位时间内阳极反应生成的碘和 13 -的总摩尔数与加入的 S02 的摩尔数比为 1: 1〜1.5。
4、 如权利要求 3所述的方法, 其特征在于控制电解反应的阴极电流密度为 300〜1200A/m2, 阳极电流密度为 300〜1500A/m2
5、 如权利要求 1所述的方法, 其特征在于所述的阴极室电解液通过如下方法进行后处理: 将 所得阴极室电解液经冷却、 结晶、 过滤、 洗涤、 干燥得到丁二酸, 过滤后得到的母液补充顺 丁烯二酸或顺酐后返回阴极室循环使用。
6、 如权利要求 1所述的方法, 其特征在于控制电解反应温度为 20〜70°C。
7、 如权利要求 1所述的方法, 其特征在于控制电解反应温度为 30〜50°C。
8、如权利要求 1所述的方法, 其特征在于所述的成对电解合成丁二酸和硫酸的方法按间歇或 连续方式进行。
PCT/CN2011/072346 2010-04-01 2011-03-31 一种成对电解合成生产丁二酸和硫酸的方法 WO2011120441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101377204A CN101792913B (zh) 2010-04-01 2010-04-01 一种成对电解合成生产丁二酸和硫酸的方法
CN201010137720.4 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011120441A1 true WO2011120441A1 (zh) 2011-10-06

Family

ID=42585821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072346 WO2011120441A1 (zh) 2010-04-01 2011-03-31 一种成对电解合成生产丁二酸和硫酸的方法

Country Status (3)

Country Link
US (1) US20130134047A1 (zh)
CN (1) CN101792913B (zh)
WO (1) WO2011120441A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792913B (zh) * 2010-04-01 2012-11-14 浙江工业大学 一种成对电解合成生产丁二酸和硫酸的方法
CN102031536A (zh) * 2010-11-08 2011-04-27 福建师范大学 一种基于双极膜技术同时制备丁二酸和乙醛酸的方法
CN102899680A (zh) * 2012-11-02 2013-01-30 福建师范大学 一种基于双极膜电解槽的串联溢流法生产丁二酸方法
CN102877087A (zh) * 2012-11-02 2013-01-16 福建师范大学 基于串联溢流的单离子交换膜电解槽连续制备丁二酸方法
CN105177620B (zh) * 2015-05-14 2018-05-11 山东飞扬化工有限公司 一种零极距的隔膜法电解合成丁二酸装置及方法
CN104862730B (zh) * 2015-06-12 2018-03-06 广东航鑫科技股份公司 一种离子膜电解制备高锰酸钾的方法
CN107794550B (zh) * 2017-09-07 2019-04-09 浙江工业大学 一种在电解合成丁二酸过程中降低副产物反丁烯二酸含量的方法
CN112251768A (zh) * 2020-10-09 2021-01-22 浙江工业大学 一种工业化电解生产丁二酸的石墨电极系统
TWI848226B (zh) * 2021-07-14 2024-07-11 住華科技股份有限公司 偏光膜的製造方法與製造系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135458C1 (ru) * 1997-12-23 1999-08-27 Государственный научный центр Российской Федерации "НИОПИК" Способ получения янтарной кислоты
CN101008085A (zh) * 2006-12-29 2007-08-01 华东理工大学 顺丁烯二酸酐电解还原制丁二酸的方法
CN101225524A (zh) * 2007-09-30 2008-07-23 浙江工业大学 一种新型无隔膜间歇式绿色电合成丁二酸的方法
CN101423953A (zh) * 2007-10-29 2009-05-06 上海申人精细化工有限公司 有机无隔膜配对电合成丁二酸的方法
CN101792913A (zh) * 2010-04-01 2010-08-04 浙江工业大学 一种成对电解合成生产丁二酸和硫酸的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1457791A (en) * 1922-10-20 1923-06-05 James F Norris Process of making succinic acid
DE2542935C2 (de) * 1975-09-26 1983-10-20 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zur Herstellung von Schwefelsäure aus Schefeldioxid
US4076601A (en) * 1976-11-22 1978-02-28 Monsanto Company Electrolytic process for the preparation of ethane-1,1,2,2-tetracarboxylate esters and related cyclic tetracarboxylate esters
US4431496A (en) * 1982-09-07 1984-02-14 Institute Of Gas Technology Depolarized electrowinning of zinc
US4460444A (en) * 1983-04-06 1984-07-17 Westinghouse Electric Corp. Hydriodic acid-anode-depolarized hydrogen generator
US5770033A (en) * 1993-07-13 1998-06-23 Lynntech, Inc. Methods and apparatus for using gas and liquid phase cathodic depolarizers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135458C1 (ru) * 1997-12-23 1999-08-27 Государственный научный центр Российской Федерации "НИОПИК" Способ получения янтарной кислоты
CN101008085A (zh) * 2006-12-29 2007-08-01 华东理工大学 顺丁烯二酸酐电解还原制丁二酸的方法
CN101225524A (zh) * 2007-09-30 2008-07-23 浙江工业大学 一种新型无隔膜间歇式绿色电合成丁二酸的方法
CN101423953A (zh) * 2007-10-29 2009-05-06 上海申人精细化工有限公司 有机无隔膜配对电合成丁二酸的方法
CN101792913A (zh) * 2010-04-01 2010-08-04 浙江工业大学 一种成对电解合成生产丁二酸和硫酸的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI YANWEI ET AL.: "Advances in study of paired electrosynthesis", MODERM CHEMICAL INDUSTRY, vol. 26, July 2006 (2006-07-01), pages 25 - 29 *
ZHANG HONGKUN ET AL.: "Synthesis of Succines Acid and Glyoxylic Acid by Paired electrolysis", FINE CHEMICALS, vol. 14, no. 5, October 1997 (1997-10-01), pages 56 - 57 *

Also Published As

Publication number Publication date
CN101792913B (zh) 2012-11-14
US20130134047A1 (en) 2013-05-30
CN101792913A (zh) 2010-08-04

Similar Documents

Publication Publication Date Title
WO2011120441A1 (zh) 一种成对电解合成生产丁二酸和硫酸的方法
CN110117794B (zh) 一种电还原co2制甲酸盐的三室型电解池装置及其电解方法
CN111254456B (zh) 2-硝基-4-甲砜基苯甲酸的电化学合成方法
CN105688676A (zh) 一种双极膜电渗析法制备次磷酸的工艺
CN111848409A (zh) 一种双极膜电渗析辅助制备四乙基四氟硼酸铵的方法
CN110644013B (zh) 一种氧化铟及其前驱体的制备方法
CN201981262U (zh) 一种用于制备钒电池电解液的循环电解反应装置
WO2023221748A1 (zh) 一种电催化乙二醇或电催化重整废弃塑料pet制备乙醇酸盐的方法
CN114574881B (zh) 一种电催化氧化醛醇类物质制备多元羧酸的方法
CN116288430A (zh) 一种提高4-氨基-3,6-二氯吡啶甲酸电解合成效率的方法
CN102839383B (zh) 一种基于氯碱用全氟离子交换膜的有机酸盐电解制备有机酸的方法
CN112626547B (zh) 利用超声辅助间接电合成醌类化合物的方法
CN115818715A (zh) 一种不同晶型的富氧空位五氧化二铌催化剂及其合成方法和在空气阴极中的应用
CN109852987B (zh) 一种耦合反渗透技术制备乙醛酸钠的方法
CN114133004A (zh) 一种新型电催化膜反应器及其在制备高纯氢气上的应用
CN105887123A (zh) 一种PdCl2的制备方法
CN101302622B (zh) 蔗糖电解还原制取六元醇的方法
CN108893753B (zh) 一种咪唑类磷酸二烷基酯离子液体的制备方法
CN113969410B (zh) 一种采用非贵金属氧化物将5-羟甲基糠醛电催化加氢合成2,5-二羟甲基呋喃的方法
CN110922333B (zh) 一种利用电渗析技术制备四乙基四氟硼酸铵的方法
CN114481170B (zh) 一种由糠醛线性成对电化学合成糠酸的方法
CN1026803C (zh) 双极室成对电解法生产乙醛酸
CN109790630B (zh) 用于制造甲基乙基酮的电化学方法
CN109666571A (zh) Spe电解制活性氢对白酒的陈化方法
CN106391139A (zh) 一种电渗析法制备六羟基铂酸二(乙醇胺)水溶液的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762015

Country of ref document: EP

Kind code of ref document: A1