WO2011118773A1 - 多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット - Google Patents

多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット Download PDF

Info

Publication number
WO2011118773A1
WO2011118773A1 PCT/JP2011/057361 JP2011057361W WO2011118773A1 WO 2011118773 A1 WO2011118773 A1 WO 2011118773A1 JP 2011057361 W JP2011057361 W JP 2011057361W WO 2011118773 A1 WO2011118773 A1 WO 2011118773A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
region
silicon ingot
crucible
height
Prior art date
Application number
PCT/JP2011/057361
Other languages
English (en)
French (fr)
Inventor
続橋 浩司
洋 池田
昌弘 金井
脇田 三郎
Original Assignee
三菱マテリアル株式会社
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201180015881.9A priority Critical patent/CN102834354B/zh
Priority to US13/637,054 priority patent/US9388507B2/en
Priority to KR1020127025111A priority patent/KR101431360B1/ko
Publication of WO2011118773A1 publication Critical patent/WO2011118773A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for producing a polycrystalline silicon ingot for casting a polycrystalline silicon ingot by unidirectionally solidifying a silicon melt in a silica crucible, and a polycrystalline silicon ingot obtained by this production method.
  • a polycrystalline silicon ingot is used as a material for a substrate for a solar cell, as described in Patent Document 1, for example. That is, a polycrystalline silicon wafer is manufactured by slicing a polycrystalline silicon ingot to a predetermined thickness, and a solar cell substrate is manufactured by processing the polycrystalline silicon wafer.
  • the characteristics of the polycrystalline silicon ingot which is the material of the solar cell substrate (polycrystalline silicon wafer) greatly influence the performance such as the conversion efficiency.
  • the oxygen and impurities contained in the polycrystalline silicon are large, the conversion efficiency of the solar cell is greatly reduced. Therefore, in order to keep the conversion efficiency of the solar cell high, it is necessary to reduce the amount of oxygen and the amount of impurities in the polycrystalline silicon serving as the solar cell substrate.
  • a polycrystalline silicon ingot solidified in one direction in a crucible that is, a polycrystalline silicon ingot obtained by sequentially solidifying in one fixed direction
  • the bottom that is the solidification start part and the top that is the solidification end part tend to increase. Therefore, in order to reduce the amount of oxygen and the amount of impurities, the bottom and top of the polycrystalline silicon ingot solidified in a certain direction are cut and removed.
  • the reason why the amount of oxygen and the amount of impurities increase at the bottom and top of the polycrystalline silicon ingot will be described in detail.
  • the impurities are discharged from the solid phase toward the liquid phase because the solubility of the impurities in the solid phase is lower than that in the liquid phase. For this reason, the amount of impurities in the solid phase portion is reduced, but conversely, the amount of impurities is very high at the top of the polycrystalline ingot which is the solidification end portion.
  • oxygen is mixed from the silica constituting the crucible into the silicon melt. Oxygen in the silicon melt is released from the liquid surface as SiO gas. At the start of solidification, oxygen is mixed from the bottom and side surfaces of the crucible, so that the amount of oxygen in the silicon melt increases at the start of solidification and the amount of oxygen at the bottom, which is the solidification start portion, increases. When solidification progresses on the bottom surface side and the solid-liquid interface rises, oxygen is mixed only from the side surface, so that the amount of oxygen mixed into the silicon melt gradually decreases. For the reasons described above, the amount of oxygen is high at the bottom, which is the solidification start portion.
  • Patent Document 2 there is provided a technique for suppressing the mixing of oxygen by using a crucible in which a Si 3 N 4 coating layer is formed on the inner surface (side surface and bottom surface) of a silica crucible. Yes. Further, when a polycrystalline silicon ingot is solidified in one direction, as described in Non-Patent Document 1, for example, a constant solidification rate of 0.2 mm / min (12 mm / h) is set to improve production efficiency. I was planning.
  • a polycrystalline silicon ingot grown by unidirectional solidification is an aggregate of columnar crystals extending in the height direction of the ingot. In the cross section perpendicular to the solidification direction, the conversion efficiency of the solar cell is improved as the ratio of the crystals oriented in the (001) and (111) orientations which are the preferential crystal orientations increases.
  • Si 3 N 4 when using a crucible to form a coating layer Si 3 N 4 coating layer is not wet silicon melt chemically, i.e. Si Since the wettability of the silicon melt with respect to the 3 N 4 coating layer is low, generation of crystal nuclei serving as a solidification starting point is unlikely to occur. As a result, the number of crystal nuclei is reduced. Then, the crystal that started growing at the start of solidification grows as it is, and crystals that have grown in orientations other than the (001) and (111) orientations that are the preferential crystal orientations remain. In particular, the tendency is remarkable at the lower side portion from the center of the polycrystalline silicon ingot. From the above, when the crucible having the Si 3 N 4 coating layer is used, the conversion efficiency of the solar cell using the substrate obtained from the lower portion of the polycrystalline silicon ingot tends to be low.
  • the use of a crucible formed with a Si 3 N 4 coating layer to reduce the amount of oxygen makes the crystal orientation random and improves the conversion efficiency of the solar cell. I could not.
  • a crucible without a Si 3 N 4 coating layer is used in order to facilitate the generation of crystal nuclei, the mixing of oxygen cannot be suppressed, and the amount of oxygen in the polycrystalline silicon ingot As a result, the conversion efficiency of the solar cell could not be improved.
  • the present invention has been made in view of the above-described situation, and there are many crystals facing the (001) and (111) orientations which are the preferential growth orientations, and the oxygen concentration at the bottom of the polycrystalline silicon ingot is high.
  • the method for producing a polycrystalline silicon ingot according to the first aspect of the present invention is a method for producing a polycrystalline silicon ingot in which a molten silicon is unidirectionally solidified upward from the bottom surface in a crucible, the crucible comprising silica A silicon nitride coating layer is formed on the inner surface of the side wall, silica is disposed on the bottom surface thereof, and the solidification process in the crucible is measured from 0 mm to a height X with reference to the bottom surface of the crucible. Is divided into a first region up to, a second region from height X to height Y, and a third region greater than or equal to height Y.
  • the height X is 10 mm ⁇ X ⁇ 30 mm
  • the height Y is 30 mm ⁇ Y ⁇ 100 mm
  • the solidification rate V1 in the first region is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h
  • the solidification rate V2 in the second region is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h.
  • the solidification process in the crucible is performed with a first region from 0 mm to height X and a height X to height Y with reference to the bottom surface of the crucible. It is divided into a second region and a third region having a height Y or higher, and the solidification rates in the first region and the second region are defined.
  • the crucible is made of silica, and a silicon nitride coating layer is formed on the inner surface of the side wall, and silica is disposed on the bottom surface thereof, so that the silica is exposed on the bottom surface of the crucible that is the starting point of solidification.
  • Silica is chemically wetted with the silicon melt, that is, the wettability of the silicon melt with respect to silica is high, so that the generation of crystal nuclei is likely to occur.As a result, starting from the crystal nuclei, the initial stage of solidification Many fine crystals are formed. This fine crystal group has a random crystal orientation.
  • the solidification rate V1 in the first region is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h and is relatively fast. It is possible to generate a large number of crystal groups having
  • the solidification rate V2 is set to 1 mm / h ⁇ V2 ⁇ 5 mm / h and is relatively slow, orientation selective crystal growth from a crystal group having a random crystal orientation occurs, and the preferred growth orientation
  • the crystal that faces is mainly grown.
  • the preferential growth orientations of silicon are the (001) and (111) orientations, the aforementioned columnar crystals face these orientations, and it becomes possible to improve the conversion efficiency of the solar cell. .
  • the solidification rate V1 is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h and is relatively fast, so that a solid phase can be quickly formed on the bottom portion of the crucible. Mixing of oxygen into the silicon melt from the bottom can be suppressed.
  • the height X of the first region is set to 10 mm ⁇ X ⁇ 30 mm, it is possible to reliably suppress oxygen from entering the silicon melt from the bottom surface of the crucible.
  • the solidification rate V2 in the second region is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h and is relatively slow, oxygen in the silicon melt is removed from the liquid surface in the second region. It becomes possible to release, and the amount of oxygen in the silicon melt can be greatly reduced. Furthermore, as described above, crystal orientation selective growth can be reliably performed. Since the height Y of the first region and the second region is 30 mm ⁇ Y ⁇ 100 mm, the length of the portion with a high oxygen content, and the length of the portion where the crystal faces a random orientation, The production yield of polycrystalline silicon as a product can be greatly improved.
  • the solidification speed V1 in the first region is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h.
  • the solidification speed V2 in the second region is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h.
  • the height YX of the second region is set within a range of 10 mm ⁇ YX ⁇ 40 mm.
  • the time for performing crystal orientation selective growth and the oxygen in the silicon melt are released to the outside. Time is sufficiently secured, and crystals having a preferential growth orientation can be selected and grown, and the amount of oxygen in the polycrystalline silicon ingot can be reliably reduced.
  • the height YX of the second region is YX ⁇ 40 mm, the length of the portion where the oxygen amount is high and the portion where the crystal faces a random orientation is surely shortened. Can do.
  • the solidification rate V3 in the third region is preferably set in a range of 5 mm / h ⁇ V3 ⁇ 30 mm / h. In this case, since the solidification rate V3 in the third region is set to V3 ⁇ 5 mm / h, the production efficiency of the polycrystalline silicon ingot can be kept high. On the other hand, since the solidification speed V3 in the third region is V3 ⁇ 30 mm / h, the unidirectional solidification can be performed smoothly.
  • a silica multilayer coating layer in which a slurry layer and a stucco layer are laminated is preferably formed inside the bottom surface of the crucible.
  • a silica multi-layered calling layer in which a slurry layer coated with silica-containing slurry and a stucco layer in which silica particles are stuccoed is formed on the inner side of the bottom surface of the crucible. Can be prevented from cracking.
  • a polycrystalline silicon ingot according to the second aspect of the present invention is a polycrystalline silicon ingot manufactured by the above-described method for manufacturing a polycrystalline silicon ingot, and is a portion having a height of 40 mm from the bottom that is in contact with the bottom of the crucible.
  • the crystal growth orientation is measured by the EBSD method, and the orientation distribution in the stereo triangle having the vertices at (100), (101), and (111) is obtained.
  • a line connecting the branch point and the center of gravity of the stereo triangle is divided into a (100) side region, a (101) side region, and a (111) side region, and the crystal orientation distribution in each of these regions is represented by an electron diffraction pattern.
  • the relative intensity ratio it is a polycrystalline silicon ingot whose distribution in the (101) side region is 10% or less.
  • the crystal orientation distribution in the portion having a height of 40 mm from the bottom that was in contact with the bottom of the crucible was represented by the relative intensity ratio of the electron diffraction pattern.
  • the proportion distributed in the side region is 10% or less, and the proportion distributed in the (001) side region and the (111) side region is large, so that it is high from the bottom that is in contact with the bottom surface of the crucible.
  • crystal orientation selective growth has already been sufficiently performed. Therefore, even when this portion is used as a solar cell substrate, the conversion efficiency of the solar cell can be greatly improved.
  • the oxygen concentration in the central portion of the cross section of the portion 30 mm in height from the bottom that is in contact with the bottom of the crucible is 4 ⁇ 10 17 atm / cm 3 or less. ing.
  • the oxygen concentration at the center of the cross section of the portion 30 mm in height from the bottom that was in contact with the bottom of the crucible is 4 ⁇ 10 17 atm / cm 3 or less. It becomes possible to fully commercialize a portion having a height of 30 mm from the bottom.
  • polycrystalline silicon capable of casting a polycrystalline silicon ingot capable of significantly reducing the yield of polycrystalline silicon as a product by reducing the portion having a high oxygen concentration at the bottom.
  • An ingot manufacturing method and a polycrystalline silicon ingot can be provided.
  • the polycrystalline silicon ingot 1 according to this embodiment is a material for a polycrystalline silicon wafer used as a solar cell substrate.
  • the polycrystalline silicon ingot 1 of the present embodiment has a quadrangular column shape, and its height H is set within a range of 200 mm ⁇ H ⁇ 350 mm. More specifically, in the present embodiment, the height H of the polycrystalline silicon ingot 1 is set to 300 mm. Further, the bottom surface of the quadrangular shape has a square shape with a side of about 680 mm.
  • the bottom portion S1 of the polycrystalline silicon ingot 1 has a high oxygen concentration
  • the top portion S2 of the polycrystalline silicon ingot 1 has a high impurity concentration. Therefore, the bottom portion S1 and the top portion S2 are cut and removed, and only the product portion S3 is commercialized as a polycrystalline silicon wafer.
  • the crystal growth orientation is measured by the EBSD method in a horizontal section of a portion 40 mm in height from the bottom of the polycrystalline silicon ingot 1. More specifically, in the measurement by the EBSD method, the azimuth distribution in the stereo triangle having (001), (101), (111) as vertices is obtained, and this stereo triangle is divided into the bisectors of each side The region having the vertices of (001), (101), and (111) is divided into three regions by a line connecting the center of gravity of the stereo triangle, and (001) side region, (101) side region, (111) ) Define as side area.
  • the proportion distributed in the (101) side region is 10% or less. That is, there are many crystals facing the crystal orientation distributed in the (001) side region and the (111) side region.
  • the polycrystalline silicon ingot 1 is configured such that the oxygen concentration at the central portion of the cross section at a height of 30 mm from the bottom is 4 ⁇ 10 17 atm / cm 3 or less.
  • a 5 mm ⁇ 5 mm ⁇ 5 mm square measurement sample is taken from the center of the cross section, and the oxygen concentration is measured by infrared fluorescence analysis (IPS).
  • IPS infrared fluorescence analysis
  • the polycrystalline silicon ingot manufacturing apparatus 10 includes a crucible 20 in which a silicon melt L is stored, a chill plate 12 on which the crucible 20 is placed, an underfloor heater 13 that supports the chill plate 12 from below, and a crucible. 20 and a ceiling heater 14 disposed above 20.
  • a heat insulating material 15 is provided around the crucible 20.
  • the chill plate 12 has a hollow structure, and Ar gas is supplied to the inside through a supply pipe 16.
  • the crucible 20 has a horizontal cross-sectional shape that is square (square) or round (circular), and in this embodiment, the crucible 20 is square (square).
  • the crucible 20 is provided on a crucible main body 21 made of silica, an Si 3 N 4 coating layer 22 provided inside the side wall of the crucible main body 21, and a bottom surface 20 a of the crucible main body 21. And a silica multilayer coating layer 27.
  • the Si 3 N 4 coating layer 22 is formed in a mixture base comprising Si 3 N 4 powder 24 of 0.2 to 4.0 ⁇ m and silica 25 containing 10 to 6000 ppm of sodium. , 50 to 300 ⁇ m fine fused silica sand 26 is dispersed. A mixture substrate made of Si 3 N 4 powder 24 and sodium-containing silica 25 is disposed (exposed) on the outermost surface of the Si 3 N 4 coating layer 22.
  • the silica multilayer coating layer 27 has a multilayer structure in which a slurry layer 28 and a stucco layer 29 are stacked.
  • the slurry layer 28 and the stucco layer 29 are laminated in a total of 3 or more and 4 or less layers.
  • the slurry layer 28 is formed by applying a slurry obtained by mixing a filler having a particle size of 10 ⁇ m or more and 50 ⁇ m or less and an aqueous dispersion of colloidal silica.
  • the stucco layer 29 is formed by spraying silica particles having a particle size of 0.3 mm or more and 3 mm or less.
  • a thermocouple for monitoring the height of the solidification interface is installed on the side surface of the crucible 20.
  • the polycrystalline silicon ingot 1 is cast using the polycrystalline silicon ingot manufacturing apparatus 10 described above.
  • the silicon raw material is charged into the crucible 20 in which the Si 3 N 4 coating layer 22 is formed on the side wall inner surface and the silica multilayer coating layer 27 is formed on the bottom surface.
  • the silicon raw material a lump called “chunk” obtained by crushing high purity silicon of 11N (purity: 99.99999999999) is used.
  • the particle size of the bulk silicon raw material is, for example, 30 mm to 100 mm.
  • This silicon raw material is heated by energizing the ceiling heater 14 and the underfloor heater 13. Thereby, the silicon melt L is stored in the crucible 20.
  • energization of the underfloor heater 13 is stopped, and Ar gas is supplied into the chill plate 12 through the supply pipe 16. Thereby, the bottom part of the crucible 20 is cooled. Further, by gradually reducing the energization to the ceiling heater 14, the silicon melt L in the crucible 20 is cooled from the bottom of the crucible 20, and solidifies in one direction from the bottom upward.
  • the solidification speed of the silicon melt L in the crucible 20 that is, the moving speed upward of the solid-liquid interface. Adjust.
  • the solidification process of the silicon melt L in the crucible 20 is divided into three regions, and the solidification rate is set for each region.
  • the solidification process in the crucible 20 is described with reference to the bottom surface 20a of the crucible 20 as a first area A1 from 0 mm to height X, a second area A2 from height X to height Y,
  • the height X is set to be within a range of 10 mm ⁇ X ⁇ 30 mm and the height Y is within a range of 30 mm ⁇ Y ⁇ 100 mm.
  • the height YX of the second region A2 is set to be within a range of 10 mm ⁇ YX ⁇ 40 mm.
  • X 20 mm
  • Y 40 mm
  • the height YX of the second region A2 is 20 mm.
  • the solidification rate in each region is set as follows.
  • the solidification speed V1 in the first region A1 is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h.
  • the solidification speed V2 in the second region A2 is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h.
  • the solidification speed V1 in the third region A3 is set within a range of 5 mm / h ⁇ V1 ⁇ 30 mm / h. More specifically, as shown in FIG.
  • the solidification rate V1 in the first region A1 from the bottom to 20 mm is 15 mm / h
  • the solidification rate V2 in the second region A2 from 20 mm to 40 mm is 3 mm / h, 40 mm.
  • the solidification speed V3 in the third region A3 is set to 5.8 mm / h.
  • the average solidification rate of the entire polycrystalline silicon ingot 1 is 6.5 mm / h.
  • the solid-liquid interface of silicon in the crucible has a flat shape. The height of the silicon solid-liquid interface from the bottom of the crucible is monitored by a thermocouple installed on the side of the crucible.
  • the rectangular columnar polycrystalline silicon ingot 1 shown in FIG. 1 is formed by the unidirectional solidification method.
  • the solidification process in the crucible 20 is performed from 0 mm to a height X with reference to the bottom surface 20a of the crucible 20. It is divided into a first region A1, a second region A2 from height X to height Y, and a third region A3 having height Y or higher, and the solidification rate in each region is defined.
  • the Si 3 N 4 coating layer 22 is formed on the inner surface of the side wall of the crucible 20 and the silica multilayer coating layer 27 is formed on the bottom surface 20a, the bottom surface of the crucible 20 serving as a solidification start point.
  • silica wets chemically with the silicon melt L, that is, the wettability to the silicon melt L is exposed, and the generation of crystal nuclei can be promoted.
  • the solidification rate V2 when the solidification rate V2 is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h and is relatively slow, selective growth of a crystal group having a random crystal orientation occurs, giving priority. Crystals oriented in the growth direction mainly grow. As a result, it becomes possible to cast the polycrystalline silicon ingot 1 composed of large columnar crystals with uniform crystal orientation.
  • the preferential growth directions of the silicon polycrystal are the (001) and (111) directions, as shown in FIG. 2, many of the above-mentioned columnar crystals face these directions. It becomes possible to improve the conversion efficiency of the solar cell.
  • the solidification rate V1 in the first region A1 is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h and is relatively fast, a solid phase is quickly formed on the bottom surface 20 a of the crucible 20. As a result, mixing of oxygen from the bottom surface 20a of the crucible 20 into the silicon melt L can be suppressed.
  • the solidification speed V1 in the first region A1 is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h. Further, if the solidification rate V2 is less than 1 mm / h, the solid phase may be remelted. On the other hand, if the solidification rate V2 exceeds 5 mm / h, it becomes impossible to sufficiently perform selective crystal growth and oxygen release. For this reason, the solidification speed V2 in the second region A2 is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h.
  • release oxygen in a silicon melt outside are fully ensured.
  • crystals having a preferential growth orientation can be selectively grown and the amount of oxygen in the polycrystalline silicon ingot can be reliably reduced.
  • the silica multi-layered calling layer 27 is formed on the bottom surface of the crucible 20 by laminating a slurry layer 28 coated with a slurry containing silica and a stucco layer 29 in which silica particles are stuccoed.
  • the bottom crack of the silicon ingot 1 can be suppressed.
  • the crystal growth orientation is measured by the EBSD method in the horizontal section of the portion 40 mm in height from the bottom that is in contact with the bottom of the crucible 20, and (001)
  • An orientation distribution in a stereo triangle having vertices (101) and (111) is obtained, and the stereo triangle is represented by a line connecting the bisection point of each side and the center of gravity of the stereo triangle (001) side region, ( 101) side region and (111) side region are divided into three, and the crystal orientation distribution occupying each of these regions is indicated by the relative intensity ratio of the electron diffraction pattern.
  • the distribution ratio in the (101) side region is 10%. Therefore, selective growth has already been performed in a portion 40 mm in height from the bottom, and when this portion is used as a solar cell substrate, conversion efficiency is improved. It is possible to.
  • the oxygen concentration in the central portion of the cross section of the portion 30 mm in height from the bottom that is in contact with the bottom surface 20 a of the crucible 20 is 4 ⁇ 10 17 atm / cm 3 or less. Therefore, it becomes possible to fully commercialize a portion having a height of 30 mm from the bottom.
  • the present invention is not limited to this, and the design can be changed as appropriate.
  • the polycrystalline silicon ingot manufacturing apparatus shown in FIG. 2 has been described as casting a polycrystalline silicon ingot.
  • the present invention is not limited to this, and the polycrystalline silicon ingot manufacturing apparatus having another structure can be used to manufacture polycrystalline silicon. An ingot may be cast.
  • the size and shape of the polycrystalline silicon ingot are not limited to this embodiment, and the design may be changed as appropriate.
  • a polycrystalline silicon ingot having a size of 680 mm square and a height of 300 mm was cast using the polycrystalline silicon ingot manufacturing apparatus described in the present embodiment.
  • the pattern is solidified in the pattern described in the previous embodiment.
  • a polycrystalline silicon ingot was cast at different speeds. That is, as shown in FIG.
  • the solidification rate V1 in the first region A1 from the bottom to 20 mm is 15 mm / h
  • the solidification rate V2 in the second region A2 from 20 mm to 40 mm is 3 mm / h, from 40 mm to 300 mm.
  • the solidification speed V3 in the third region A3 was set to 5.8 mm / h.
  • the average solidification rate of the entire polycrystalline silicon ingot 1 was 6.5 mm / h, and the time required for solidification was 52.7 hours.
  • a crucible in which a Si 3 N 4 coating layer is formed on the inner surface of the side wall and the inner surface of the bottom surface (that is, the entire inner surface) is used, and the solidification rate is changed in the pattern described in FIG.
  • a polycrystalline silicon ingot was cast.
  • a crucible having a Si 3 N 4 coating layer formed on the inner surface of the side wall and the inner side of the bottom surface (that is, the entire inner surface) was used, and a polycrystalline silicon ingot was cast at a solidification rate constant at 5.1 mm / h. .
  • the time required for coagulation was 59 hours.
  • the comparative example and the conventional example, test pieces of 5 mm ⁇ 5 mm ⁇ 5 mm from the center of the horizontal cross section at each of six places of height 20 mm, 40 mm, 60 mm, 100 mm, 200 mm, 280 mm
  • the crystal orientation distribution was measured by the EBSD method. Then, the orientation distribution in the stereo triangle having (001), (111) and (101) as vertices is obtained, and this stereo triangle is represented by a line connecting the bisector of each side and the center of gravity of the stereo triangle.
  • FIG. 8 shows the results of the present invention
  • FIG. 9 shows the results of the comparative example
  • FIG. 10 shows the results of the conventional example.
  • the oxygen concentration was very high near the bottom, and the oxygen concentration exceeded 4 ⁇ 10 17 atm / cm 3 even at a height of 50 mm from the bottom. Further, in the comparative example and the present invention example, as shown in FIG. 7, the oxygen concentration is lower than that in the conventional example, and the oxygen concentration is high only in a small portion at the bottom, and already in the portion having a height of 20 mm. The oxygen concentration was 4 ⁇ 10 17 atm / cm 3 or less.
  • the ratio of crystals having a crystal orientation in the (101) region is 10% or less in a horizontal section 40 mm from the bottom, and (001), (111 ) It is confirmed that selective growth in the direction is performed. That is, in the example of the present invention, crystals with (001) and (111) orientations grow from a portion 40 mm from the bottom.
  • the ratio of crystals whose crystal orientation is in the (101) region gradually decreases as the distance from the bottom increases. Even in the portion, the ratio of crystals whose crystal orientation is in the (101) region exceeds 10%. Therefore, when this portion up to 100 mm is used as a solar cell substrate, the conversion efficiency of the solar cell is lowered.
  • the ratio of crystals having a crystal orientation in the (101) region exceeds 20% even at a portion 200 mm from the bottom, and the crystal growth orientation is completely controlled. It wasn't. From the above, according to the present invention, a polycrystalline silicon ingot in which there are many crystals facing the (001) and (111) orientations which are the preferential growth orientations and the portion having a high oxygen concentration at the bottom is reduced is cast. It was confirmed that it was possible to do.
  • a high-quality polycrystalline silicon ingot can be provided by reducing the portion having a high oxygen concentration at the bottom of the polycrystalline silicon ingot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 シリコン融液を底面から上方に向けて一方向凝固させる多結晶シリコンインゴットの製造方法であって、ルツボの底面にはシリカが配設されており、前記ルツボ内における凝固過程を、前記ルツボの底面を基準として、0mmから高さX(10mm≦X<30mm)までの第1領域と、高さXから高さY(30mm≦Y<100mm)までの第2領域と、高さY以上の第3領域と、に区分けし、前記第1領域における凝固速度V1が、10mm/h≦V1≦20mm/hの範囲内に設定され、前記第2領域における凝固速度V2が、1mm/h≦V2≦5mm/hの範囲内に設定されている。(001)、(111)方位を向く結晶が多く存在し、かつ、底部における酸素濃度が高い部分が少なく、製品として多結晶シリコンの生産歩留まりを大幅に向上させることができる多結晶シリコンインゴット、及び、多結晶シリコンインゴットの製造方法を提供する。

Description

多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット
 本発明は、シリカ製ルツボ内においてシリコン融液を一方向凝固することによって多結晶シリコンインゴットを鋳造する多結晶シリコンインゴットの製造方法、及び、この製造方法によって得られる多結晶シリコンインゴットに関する。
 本願は、2010年3月26日に、日本に出願された特願2010-071700号に基づき優先権を主張し、その内容をここに援用する。
 多結晶シリコンインゴットは、例えば特許文献1に記載されているように、太陽電池用基板の素材として利用されている。すなわち、多結晶シリコンインゴットを所定の厚さにスライスして多結晶シリコンウェハを製造し、この多結晶シリコンウェハを加工して太陽電池用基板が製造される。太陽電池では、太陽電池用基板(多結晶シリコンウェハ)の素材である多結晶シリコンインゴットの特性が、変換効率等の性能を大きく左右する。
 特に、多結晶シリコンに含有される酸素や不純物が多いと、太陽電池の変換効率が大幅に低下する。したがって、太陽電池の変換効率を高く保つには、太陽電池用基板となる多結晶シリコン中の酸素量や不純物量を低減する必要がある。
 ルツボ内で一方向凝固させた多結晶シリコンインゴット、すなわち一つの定まった方向に向けて逐次的に凝固させることにより得られる多結晶シリコンインゴットでは、凝固開始部分である底部及び凝固終了部分である頂部において、酸素量や不純物量が高くなる傾向にある。したがって、酸素量および不純物量を低減させるために、一定方向凝固された多結晶シリコンインゴットの底部及び頂部は切断除去される。
 以下に、上記多結晶シリコンインゴットの底部および頂部において、それぞれ酸素量および不純物量が高くなる理由について詳しく説明する。
 ルツボ内でシリコン融液を上方に向けて一方向凝固させた場合、固相での不純物の溶解度が液相よりも低いので、固相から液相に向けて不純物が排出される。このため、固相部分の不純物量は低くなるが、逆に凝固終了部分である上記多結晶インゴットの頂部においては、不純物量が非常に高くなる。
 また、シリカ製ルツボ内にシリコン融液を貯留した際に、ルツボを構成するシリカからシリコン融液へと酸素が混入する。シリコン融液内の酸素は、SiOガスとして液面から放出される。凝固開始時には、ルツボの底面及び側面から酸素が混入するため、凝固開始時点ではシリコン融液内の酸素量が高くなり、凝固開始部分である底部での酸素量が高くなる。底面側での凝固が進行し固液界面が上昇すると、側面からのみ酸素が混入するようになるため、徐々にシリコン融液に混入する酸素量は低減していく。以上のような理由から、凝固開始部分である底部では、酸素量が高くなる。
 そこで、従来、例えば特許文献2に示すように、シリカ製ルツボの内面(側面及び底面)にSiコーティング層を形成したルツボを用いることにより、酸素の混入を抑制する技術が提供されている。
 また、多結晶シリコンインゴットを一方向凝固させる場合、非特許文献1に記載されているように、例えば0.2mm/min(12mm/h)といった一定の凝固速度に設定し、生産効率の向上を図っていた。
特開平10-245216号公報 特開2001-198648号公報
Noriaki Usami,Kentaro Kutsukake,Kozo Fujiwara,and Kazuo Nakajima ; "Modification of local structures in multicrystals revealed by spatially resolved x-ray rocking curve analysis", JOURNAL OF APPLIED PHYSICS 102,103504 (2007)
 太陽電池の変換効率は、太陽電池用基板となる多結晶シリコン中の酸素量や不純物量に加えて、この多結晶シリコンの結晶品質にも大きく影響されることが知られている。一方向凝固により成長した多結晶シリコンインゴットは、インゴットの高さ方向に伸びた柱状晶の集合体である。そして、凝固方向に直交する断面において、優先結晶方位である(001)、(111)方位を向く結晶の割合が多いほど、太陽電池の変換効率が向上する。
 特許文献2及び非特許文献1に記載されているように、Siコーティング層を形成したルツボを使用した場合、Siコーティング層がシリコン融液と化学的に濡れない、すなわちSiコーティング層に対するシリコン融液の濡れ性が低い、ことから、凝固の開始点となる結晶核の発生が起りにくくなる。そして、結果として、結晶核の数が少なくなる。すると、凝固の開始時点で成長を始めた結晶がそのまま成長し、優先結晶方位である(001)、(111)方位以外の方位に成長した結晶が残存してしまう。特に、多結晶シリコンインゴットの中央より下部側部分では、その傾向が顕著である。以上から、Siコーティング層を形成したルツボを使用した場合、多結晶シリコンインゴットの下部側部分から得られる基板を使った太陽電池の変換効率は低くなる傾向があった。
 すなわち、従来の多結晶シリコンインゴットの製造方法においては、酸素量を低減するためにSiコーティング層を形成したルツボを使用すると、結晶方位がランダムとなり、太陽電池の変換効率を向上させることができなかった。
 一方、結晶核の発生を起り易くするために、Siコーティング層を形成していないルツボを使用した場合には、酸素の混入を抑えることができず、多結晶シリコンインゴット内の酸素量が増加し、やはり、太陽電池の変換効率を向上させることができなかった。
 このように、従来の多結晶シリコンインゴットの製造方法においては、酸素量の低減と、結晶方位の調整とを両立することができなかった。
 また、最近では、太陽電池にに対して、さらなる変換効率の向上が求められている。そのため、従来よりも酸素濃度の低い(具体的には、酸素濃度が4×1017atm/cm以下)多結晶シリコンの供給が求められている。
 従来の多結晶シリコンインゴット製造方法では、Siコーティング層を形成したルツボを用いても、シリコン融液内への酸素の混入を抑制する事は出来ても、完全に防ぐことはできない。したがって、前述のように、凝固開始部である底部側の酸素濃度が高くなる。製品としての多結晶シリコンの酸素量の上限値を低く設定した場合、上記設定値を満足させるためには、多結晶シリコンインゴットの底部側を大きく切断除去する必要がある。この場合、多結晶シリコンインゴット当たりから製品化される多結晶シリコンの量が少なくなり、多結晶シリコンの生産効率が大幅に低減してしまうといった問題があった。
 本発明は、上述した状況に鑑みてなされたものであって、優先成長方位である(001)、(111)方位を向く結晶が多く存在し、かつ、多結晶シリコンインゴット底部の酸素濃度が高い部分を少なくすることで、製品として多結晶シリコンの生産歩留まりを大幅に向上させることができる多結晶シリコンインゴットを鋳造することが可能な多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットを提供することを目的とする。
 本発明の第一態様の多結晶シリコンインゴットの製造方法は、ルツボ内において溶融シリコンを、その底面から上方に向けて一方向凝固させる多結晶シリコンインゴットの製造方法であって、前記ルツボは、シリカで構成され、その側壁内面には窒化珪素コーティング層が形成され、その底面にはシリカが配設されており、前記ルツボ内における凝固過程を、前記ルツボの底面を基準として、0mmから高さXまでの第1領域と、高さXから高さYまでの第2領域と、高さY以上の第3領域と、に区分けし、この高さXが10mm≦X<30mm、高さYが30mm≦Y<100mmとされており、
 前記第1領域における凝固速度V1が、10mm/h≦V1≦20mm/hの範囲内に設定され、前記第2領域における凝固速度V2が、1mm/h≦V2≦5mm/hの範囲内に設定されている多結晶シリコンインゴットの製造方法である。
 この構成の多結晶シリコンインゴットの製造方法においては、前記ルツボ内における凝固過程を、前記ルツボの底面を基準として、0mmから高さXまでの第1領域と、高さXから高さYまでの第2領域と、高さY以上の第3領域と、に区分けし、第1領域と第2領域における凝固速度を規定している。
 前記ルツボは、シリカで構成され、その側壁内面には窒化珪素コーティング層が形成され、その底面にはシリカが配設されているので、凝固の開始点となるルツボの底面においてはシリカが露呈していることになる。シリカはシリコン融液と化学的に濡れる、すなわちシリカに対するシリコン融液の濡れ性が高いことから、結晶核の発生が起り易くなり、結果として、この結晶核を起点として、凝固の初期段階に、数多くの微細な結晶が形成される。この微細な結晶群はランダムな結晶方位を有している。本発明の第一態様では、前記第1領域における凝固速度V1を10mm/h≦V1≦20mm/hの範囲内に設定し、比較的速くしているので、この第1領域においてランダムな結晶方位を有する多数の結晶群を発生させることが可能となる。
 第2領域において、凝固速度V2を1mm/h≦V2≦5mm/hに設定し、比較的遅くすると、ランダムな結晶方位を有する結晶群からの方位選択的な結晶の成長が起り、優先成長方位を向く結晶が主に成長する。その結果、結晶方位の揃った大きな柱状晶からなる多結晶シリコンインゴットを鋳造することが可能となる。ここで、シリコンの優先成長方位が(001)、(111)方位であることから、前述の柱状晶はこれらの方位を向くことになり、太陽電池の変換効率の向上を図ることが可能となる。
 また、前記第1領域において凝固速度V1を10mm/h≦V1≦20mm/hの範囲内に設定し、比較的速くしているので、ルツボの底面部分に固相をすばやく形成できるので、ルツボの底面からシリコン融液への酸素の混入を抑制することができる。また、第1領域の高さXが10mm≦X<30mmとされているので、ルツボの底面からシリコン融液への酸素の混入を確実に抑制することができる。
 さらに、前記第2領域における凝固速度V2を1mm/h≦V2≦5mm/hの範囲内に設定し、比較的遅くしているので、この第2領域においてシリコン融液内の酸素を液面から放出させることが可能となり、シリコン融液内の酸素量を大幅に低減することができる。さらに、上述のように、結晶の方位選択的な成長を確実に行うことができる。
 そして、第1領域及び第2領域の高さYが30mm≦Y<100mmとされているので、酸素量が高い部分の長さ、及び、結晶がランダムな方位を向いている部分の長さ、を短くでき、製品となる多結晶シリコンの生産歩留まりを大幅に向上させることができる。
 なお、凝固速度V1が10mm/h未満であると結晶核の発生が不十分となり、ランダムな結晶方位を有する多数の結晶群を発生させることができなくなる。また、凝固速度V1が20mm/hを超えると、第1領域の高さXを薄くすることができなくなる。
 このため、前記第1領域における凝固速度V1を10mm/h≦V1≦20mm/hの範囲内に設定している。
 また、凝固速度V2が1mm/h未満であると固相が再溶融する可能性がある。
 また、凝固速度V2が5mm/hを超えると、結晶の方位選択的な成長、および酸素の放出を十分に行うことができなくなる。このため、前記第2領域における凝固速度V2を1mm/h≦V2≦5mm/hの範囲内に設定している。
 前記第2領域の高さY-Xが、10mm≦Y-X≦40mmの範囲内に設定されていることが好ましい。
 この場合、前記第2領域の高さY-Xが、Y-X≧10mmとされているので、結晶の方位選択的な成長を行う時間、及びシリコン融液内の酸素を外部へと放出する時間が充分に確保され、優先成長方位の結晶を選択して成長させることができるとともに、多結晶シリコンインゴット内の酸素量を確実に低減することができる。一方、前記第2領域の高さY-Xが、Y-X≦40mmとされているので、酸素量が高い部分及び結晶がランダムな方位を向いている部分の長さを確実に短くすることができる。
 前記第3領域における凝固速度V3は、5mm/h≦V3≦30mm/hの範囲内に設定されていることが好ましい。
 この場合、前記第3領域における凝固速度V3が、V3≧5mm/hとされているので、多結晶シリコンインゴットの生産効率を高く保つことができる。一方、前記第3領域における凝固速度V3が、V3≦30mm/hとされているので、一方向凝固を円滑に実施することができる。
 前記ルツボの底面内側には、スラリー層とスタッコ層とが積層されたシリカ多層コーティング層が形成されていることが好ましい。
 この場合、ルツボの底面内側に、シリカを含むスラリーを塗布したスラリー層と、シリカ粒子をスタッコ(まぶす)したスタッコ層とが積層されたシリカ多層コーリング層が形成されているので、多結晶シリコンインゴットの底部割れを抑制することができる。なお、上述の作用効果を確実に得るためには、このスラリー層とスタッコ層を、合計で3層以上4層以下、形成することが好ましい。
 本発明の第二態様の多結晶シリコンインゴットは、前述の多結晶シリコンインゴットの製造方法によって製造された多結晶シリコンインゴットであって、前記ルツボの底面に接触していた底部から高さ40mmの部分の水平断面において、結晶の成長方位をEBSD法で測定し、(100)、(101)、(111)を頂点とするステレオ三角形内の方位分布を求め、このステレオ三角形を、各辺の二等分点と前記ステレオ三角形の重心とを結ぶ線によって(100)側領域、(101)側領域、(111)側領域に3分割し、これらの各領域に占める結晶方位分布を電子線回折パターンの相対強度比率で示した結果、(101)側領域に分布する割合が10%以下とされている多結晶シリコンインゴットである。
 この構成の多結晶シリコンインゴットにおいては、前記ルツボの底面に接触していた底部から高さ40mmの部分において、結晶方位分布を電子線回折パターンの相対強度比率で示した結果、ステレオ三角形の(101)側領域に分布する割合が10%以下とされており、(001)側領域及び(111)側領域に分布する割合が大きくなっているので、前記ルツボの底面に接触していた底部から高さ40mmの部分において、すでに、結晶の方位選択的な成長が十分に行われている。よって、この部分を太陽電池用基板として利用した場合でも、太陽電池の変換効率を大幅に向上させることが可能となる。
 また、本発明の第二態様の多結晶シリコンインゴットでは、前記ルツボの底面に接触していた底部から高さ30mmの部分の断面中心部における酸素濃度が4×1017atm/cm以下とされている。
 この構成の多結晶シリコンインゴットにおいては、前記ルツボの底面に接触していた底部から高さ30mmの部分の断面中心部における酸素濃度が4×1017atm/cm以下とされていることから、底部から高さ30mmの部分を十分に製品化することが可能となる。
 このように、本発明によれば、底部における酸素濃度が高い部分を少なくし、製品として多結晶シリコンの歩留まりを大幅に向上させることができる多結晶シリコンインゴットを鋳造することが可能な多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットを提供することができる。
本発明の実施形態である多結晶シリコンインゴットの概略説明図である。 図1に示す多結晶シリコンインゴットの底部から40mmの部分の水平断面において、結晶の成長方位をEBSD法で測定した結果をステレオ三角形に表示した図である。 図1に示す多結晶シリコンインゴットを製造するのに使用される多結晶シリコンインゴット製造装置の概略説明図である。 図3に示す多結晶シリコンインゴット製造装置において用いられるルツボの概略説明図である。 図4に示すルツボ内におけるシリコン融液の凝固状態を示す説明図である。 本発明の実施形態である多結晶シリコンインゴットの製造方法における凝固速度設定を示すパターン図である。 実施例における多結晶シリコンインゴット内の酸素量測定結果を示すグラフである。 実施例における本発明例の多結晶シリコンインゴット内の結晶方位分布を電子線回折パターンの相対強度比率で示したグラフである。 実施例における比較例の多結晶シリコンインゴット内の結晶方位分布を電子線回折パターンの相対強度比率で示したグラフである。 実施例における従来例の多結晶シリコンインゴット内の結晶方位分布を電子線回折パターンの相対強度比率で示したグラフである。
 以下に、本発明の実施形態である多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットについて、添付した図面を参照して説明する。
 本実施形態である多結晶シリコンインゴット1は、太陽電池用基板として使用される多結晶シリコンウェハの素材となるものである。
 本実施形態の多結晶シリコンインゴット1は、図1に示すように、四角形柱状をなしており、その高さHは、200mm≦H≦350mmの範囲内に設定されている。さらに詳しくは、本実施形態では、多結晶シリコンインゴット1の高さH=300mmに設定されている。また、四角形の形状の底面は、一辺が約680mmの正方形をなしている。
 この多結晶シリコンインゴット1の底部側部分S1は酸素濃度が高く、多結晶シリコンインゴット1の頂部側部分S2は不純物濃度が高い。そのため、これら底部側部分S1及び頂部側部分S2は切断除去され、製品部S3のみが多結晶シリコンウェハとして製品化される。
 図2に示すように、この多結晶シリコンインゴット1の底部から高さ40mmの部分の水平断面において、結晶の成長方位をEBSD法で測定する。より詳細には、上記EBSD法による測定において、(001)、(101)、(111)を頂点とするステレオ三角形内の方位分布を求め、このステレオ三角形を、各辺の二等分点と前記ステレオ三角形の重心とを結ぶ線によって3つの領域に分割し、(001)、(101)、および(111)の頂点を有する領域をそれぞれ、(001)側領域、(101)側領域、(111)側領域と定義する。そして、これらの各領域に占める結晶方位分布を電子線回折パターンの相対強度比率で表すと、(101)側領域に分布する割合が10%以下となっている。すなわち、(001)側領域及び(111)側領域に分布する結晶方位を向く結晶が多く存在しているの。
 また、この多結晶シリコンインゴット1においては、底部から高さ30mmの部分の断面中心部における酸素濃度が4×1017atm/cm以下となるように構成されている。なお、本実施形態では、この断面中心部から5mm×5mm×5mm角の測定サンプルを採取し、赤外線蛍光分析(IPS)法によって酸素濃度を測定している。
 次に、この多結晶シリコンインゴット1を製造する際に用いられる多結晶シリコンインゴット製造装置10について、図3を参照して説明する。
 この多結晶シリコンインゴット製造装置10は、シリコン融液Lが貯留されるルツボ20と、このルツボ20が載置されるチルプレート12と、このチルプレート12を下方から支持する床下ヒータ13と、ルツボ20の上方に配設された天井ヒータ14と、を備えている。また、ルツボ20の周囲には、断熱材15が設けられている。
 チルプレート12は、中空構造とされており、供給パイプ16を介して内部にArガスが供給される構成とされている。
 ルツボ20は、水平断面形状が角形(四角形)又は丸形(円形)とされており、本実施形態では、角形(四角形)とされている。
 このルツボ20は、図4に示すように、シリカからなるルツボ本体21と、このルツボ本体21の側壁内側に設けられたSiコーティング層22と、ルツボ本体21の底面20aに設けられたシリカ多層コーティング層27と、を備えている。
 Siコーティング層22は、図4に示すように、0.2~4.0μmのSi粉末24と、ナトリウムを10~6000ppm含有するシリカ25と、からなる混合体素地内に、50~300μmの微細溶融シリカ砂26が分散された構造とされている。そして、Siコーティング層22の最表面にはSi粉末24とナトリウム含有シリカ25とからなる混合体素地が配置(露出)されている。
 また、シリカ多層コーティング層27は、スラリー層28と、スタッコ層29とが積層配置された多層構造とされている。このシリカ多層コーティング層27は、スラリー層28及びスタッコ層29が、合計で3層以上4層以下、積層配置されている。ここで、スラリー層28は、粒度10μm以上50μm以下のフィラーとコロイダルシリカの水分散液を混合したスラリーを塗布することで形成される。また、スタッコ層29は、粒度0.3mm以上3mm以下のシリカ粒子を散布(まぶす)ことによって形成される。
 また、図示しないが、凝固界面の高さをモニターするための熱電対が、ルツボ20の側面に設置されている。
 次に、本実施形態である多結晶シリコンインゴット1の製造方法について説明する。本実施形態では、前述した多結晶シリコンインゴット製造装置10を用いて多結晶シリコンインゴット1を鋳造する構成とされている。
 まず、側壁内面にSiコーティング層22が形成され、底面にシリカ多層コーティング層27が形成されたルツボ20内に、シリコン原料を装入する。ここで、シリコン原料としては、11N(純度99.999999999)の高純度シリコンを砕いて得られた「チャンク」と呼ばれる塊状のものが使用される。この塊状のシリコン原料の粒径は、例えば、30mmから100mmとされている。
 このシリコン原料を、天井ヒータ14と床下ヒータ13とに通電して加熱する。これにより、ルツボ20内には、シリコン融液Lが貯留される。
 次に、床下ヒータ13への通電を停止し、チルプレート12の内部に供給パイプ16を介してArガスを供給する。これにより、ルツボ20の底部を冷却する。さらに、天井ヒータ14への通電を徐々に減少させることにより、ルツボ20内のシリコン融液Lは、ルツボ20の底部から冷却され、底部から上方に向けて一方向凝固する。
 このとき、チルプレート12へのArガスの供給量及び天井ヒータ14への通電量を制御することによって、ルツボ20内のシリコン融液Lの凝固速度、すなわち、固液界面の上方への移動速度を調整する。
 そして、本実施形態では、ルツボ20内のシリコン融液Lの凝固過程を3つの領域に区分けし、それぞれの領域毎に凝固速度を設定している。
 詳述すると、ルツボ20内における凝固過程を、ルツボ20の底面20aを基準として、0mmから高さXまでの第1領域A1と、高さXから高さYまでの第2領域A2と、高さY以上の第3領域A3と、に区分けし、高さXを10mm≦X<30mm、高さYを30mm≦Y<100mmの範囲内となるように設定している。また、第2領域A2の高さY-Xが、10mm≦Y-X≦40mmの範囲内となるように設定している。
 本実施形態では、X=20mm、Y=40mmとし、第2領域A2の高さY-Xを20mmとしている。
 それぞれの領域における凝固速度は、次のように設定されている。第1領域A1における凝固速度V1は10mm/h≦V1≦20mm/hの範囲内に設定されている。第2領域A2における凝固速度V2は1mm/h≦V2≦5mm/hの範囲内に設定されている。第3領域A3における凝固速度V1は5mm/h≦V1≦30mm/hの範囲内に設定されている。
 より具体的には、図6に示すように、底部から20mmまでの第1領域A1における凝固速度V1が15mm/h、20mmから40mmまでの第2領域A2における凝固速度V2が3mm/h、40mmから300mmまでの第3領域A3における凝固速度V3が5.8mm/hに設定されている。多結晶シリコンインゴット1全体の平均凝固速度は、6.5mm/hである。
 一方向凝固時における、ルツボ内のシリコンの固液界面はフラットな形状をしている。シリコンの固液界面のルツボ底面からの高さは、ルツボ側面に設置した熱電対によりモニターする。
 このようにして、図1に示す四角柱状の多結晶シリコンインゴット1が、一方向凝固法によって成形される。
 以上の構成を持つ本実施形態の多結晶シリコンインゴット1の製造方法及び多結晶シリコンインゴット1においては、ルツボ20内における凝固過程を、ルツボ20の底面20aを基準として、0mmから高さXまでの第1領域A1と、高さXから高さYまでの第2領域A2と、高さY以上の第3領域A3と、に区分けし、それぞれの領域における凝固速度を規定している。
 ここで、本実施形態では、ルツボ20の側壁内面にSiコーティング層22が形成され、底面20aにシリカ多層コーティング層27が形成されているので、凝固の開始点となるルツボ20の底面20aにおいては、シリコン融液Lと化学的に濡れる、すなわちシリコン融液Lへの濡れ性が高い、シリカが露呈していることになり、結晶核の発生を促進することができる。よって、0mmから高さXまでの第1領域A1における凝固速度V1を10mm/h≦V1≦20mm/hの範囲内に設定し、比較的速くすることで、前述の核を起点としてランダムな結晶方位を有する多数の結晶群を発生させることが可能となる。
 そして、第2領域A2において、凝固速度V2を1mm/h≦V2≦5mm/hの範囲内に設定し、比較的遅くすると、ランダムな結晶方位を有する結晶群の選択的な成長が起り、優先成長方位を向く結晶が主に成長する。その結果、結晶方位の揃った大きな柱状晶からなる多結晶シリコンインゴット1を鋳造することが可能となる。ここで、シリコン多結晶の優先成長方位が(001)、(111)方位であることから、図2に示すように、前述の柱状晶として、これらの方位を向くものが多く存在することになり、太陽電池の変換効率の向上を図ることが可能となる。
 また、第1領域A1における凝固速度V1を10mm/h≦V1≦20mm/hの範囲内に設定し、比較的速くしているので、ルツボ20の底面20aに固相がすばやく形成される。その結果、ルツボ20の底面20aからシリコン融液Lへの酸素の混入を抑制することができる。また、第1領域A1の高さXが10mm≦X<30mmとされており、本実施形態ではX=20mmとされているので、ルツボ20の底面20aからシリコン融液Lへの酸素の混入を確実に抑制することができる。
 また、第2領域A2における凝固速度V2を1mm/h≦V2≦5mm/hの範囲内に設定し、比較的遅くしているので、この第2領域A2においてシリコン融液L内の酸素を液面から放出させることが可能となる。その結果、シリコン融液L内の酸素量を大幅に低減することができる。そして、第1領域A1及び第2領域A2の高さYが30mm≦Y<100mmとされ、本実施形態ではY=40mmとされているので、酸素量が高い部分の長さを短くでき、製品となる多結晶シリコンの歩留まりを大幅に向上させることができる。
 なお、凝固速度V1が10mm/h未満であると結晶核の発生が不十分となり、ランダムな結晶方位を有する多数の結晶群を発生させることができなくなる。また、凝固速度V1が20mm/hを超えると、第1領域の高さXを薄くすることができなくなる。このため、第1領域A1における凝固速度V1を10mm/h≦V1≦20mm/hの範囲内に設定している。
 また、凝固速度V2が1mm/h未満であると固相が再溶融してしまう可能性がある。
 また、凝固速度V2が5mm/hを超えると、結晶の選択的な成長および酸素の放出を十分に行うことができなくなる。このため、第2領域A2における凝固速度V2を1mm/h≦V2≦5mm/hの範囲内に設定している。
 さらに、第2領域A2の高さY-Xが、10mm≦Y-X≦40mmの範囲内に設定されており、本実施形態ではY-X=20mmとされているので、結晶の選択成長を行う時間及びシリコン融液内の酸素を外部へと放出する時間が充分に確保される。その結果、優先成長方位の結晶を選択的に成長させることができるとともに、多結晶シリコンインゴット内の酸素量を確実に低減することができる。
 また、第3領域A3における凝固速度V3が、5mm/h≦V3≦30mm/hの範囲内に設定され、本実施形態ではV3=5.9mm/hに設定されているので、多結晶シリコンインゴットの生産効率を確保することができるとともに、一方向凝固を円滑に実施することができる。
 さらに、ルツボ20の底面に、シリカを含むスラリーを塗布したスラリー層28と、シリカ粒子をスタッコ(まぶす)したスタッコ層29とが積層されたシリカ多層コーリング層27が形成されているので、多結晶シリコンインゴット1の底部割れを抑制することができる。
 また、本実施形態である多結晶シリコンインゴット1は、ルツボ20の底面に接触していた底部から高さ40mmの部分の水平断面において、結晶の成長方位をEBSD法で測定し、(001)、(101)、(111)を頂点とするステレオ三角形内の方位分布を求め、このステレオ三角形を、各辺の二等分点と前記ステレオ三角形の重心とを結ぶ線によって(001)側領域、(101)側領域、(111)側領域に3分割し、これらの各領域に占める結晶方位分布を電子線回折パターンの相対強度比率で示した結果、(101)側領域に分布する割合が10%以下とされているので、この底部から高さ40mmの部分において既に選択成長が行われていることになり、この部分を太陽電池用基板として利用した場合に、変換効率を向上させることが可能となる。
 さらに、本実施形態である多結晶シリコンインゴット1は、ルツボ20の底面20aに接触していた底部から高さ30mmの部分の断面中心部における酸素濃度が4×1017atm/cm以下とされているので、底部から高さ30mmの部分を十分に製品化することが可能となる。
 以上、本発明の実施形態である多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットについて説明したが、これに限定されることはなく、適宜設計変更することができる。
 例えば、図2に示す多結晶シリコンインゴット製造装置によって、多結晶シリコンインゴットを鋳造するものとして説明したが、これに限定されることはなく、他の構造の多結晶シリコンインゴット製造装置によって多結晶シリコンインゴットを鋳造してもよい。
 また、多結晶シリコンインゴットの大きさや形状は、本実施形態に限定されることはなく、適宜設計変更してもよい。
 本発明の効果を確認すべく行った確認実験の結果を以下に示す。本実施形態で説明した多結晶シリコンインゴット製造装置を用いて、680mm角×高さ300mmの多結晶シリコンインゴットを鋳造した。
 本発明例として、図4に示すように、側壁内面にSiコーティング層を形成し、底面内側にシリカ多層コーティング層を形成したルツボを用いて、前述の実施形態に記載したパターンで凝固速度を変化させて多結晶シリコンインゴットを鋳造した。すなわち、図6に示すように、底部から20mmまでの第1領域A1における凝固速度V1を15mm/h、20mmから40mmまでの第2領域A2における凝固速度V2を3mm/h、40mmから300mmまでの第3領域A3における凝固速度V3を5.8mm/hに設定した。なお、多結晶シリコンインゴット1全体の平均凝固速度は6.5mm/hとなり、凝固に要した時間は52.7時間であった。
 また、比較例として、側壁内面及び底面内側(すなわち、内面全体)にSiコーティング層を形成したルツボを使用し、本発明例と同様に図6に記載されたパターンで凝固速度を変化させて多結晶シリコンインゴットを鋳造した。
 さらに、従来例として、側壁内面及び底面内側(すなわち、内面全体)にSiコーティング層を形成したルツボを使用し、凝固速度を5.1mm/hで一定として多結晶シリコンインゴットを鋳造した。なお、凝固に要した時間は59時間であった。
 このようにして得られた本発明例、比較例、従来例の多結晶シリコンインゴットについて、高さ10mm,25mm,50mm,100mm,150mm,200mm,250mm,290mmの各8箇所において、水平断面中央部から5mm×5mm×5mmの測定サンプルを採取し、赤外線蛍光分析(IPS)法により、シリコン中の酸素濃度を測定した。測定結果を図7に示す。
 また、本発明例、比較例、従来例の多結晶シリコンインゴットについて、高さ20mm,40mm,60mm,100mm,200mm,280mmの各6箇所において、水平断面中央部から5mm×5mm×5mmの試験片を切り出し、EBSD法により結晶方位分布を測定した。そして、(001)、(111)、(101)を頂点とするステレオ三角形内の方位分布を求め、このステレオ三角形を、各辺の二等分点と前記ステレオ三角形の重心とを結ぶ線によって、(001)側領域、(101)側領域、(111)側領域に3分割し、これらの各領域に占める結晶方位分布を電子線回折パターンの相対強度比率で示した。結果を、本発明例の測定結果を図8に、比較例の測定結果を図9に、従来例の測定結果を図10に示す。
 従来例では、図7に示すように、底部近傍において酸素濃度が非常に高くなっており、底部から高さ50mmの部分でも酸素濃度が4×1017atm/cmを超えていた。
 また、比較例及び本発明例では、図7に示すように、従来例に比べると酸素濃度が低く、底部の僅かな部分においてのみ酸素濃度が高くなっており、高さ20mmの部分ですでに酸素濃度が酸素濃度が4×1017atm/cm以下であった。
 また、本発明例においては、図8に示すように、底部から40mmの水平断面において、結晶方位が(101)領域にある結晶の比率が10%以下となっており、(001)、(111)方位への選択成長が行われていることが確認される。すなわち、本発明例では、底部から40mmの部分から(001)、(111)方位の向く結晶が成長しているのである。
 これに対して、比較例においては、図9に示すように、結晶方位が(101)領域にある結晶の比率が底部から離間するにしたがい漸次減少する傾向が確認されるが、底部から100mmの部分でも、結晶方位が(101)領域にある結晶の比率が10%を超えている。よって、この100mmまでの部分を太陽電池用基板として使用した場合、太陽電池の変換効率が低下してしまう。
 また、従来例においては、図10に示すように、底部から200mmの部分でも、結晶方位が(101)領域にある結晶の比率が20%を超えており、結晶の成長方位の制御が全く行われていなかった。
 以上のことから、本発明によれば、優先成長方位である(001)、(111)方位を向く結晶が多く存在し、かつ、底部における酸素濃度が高い部分を少なくした多結晶シリコンインゴットを鋳造することが可能であることが確認された。
 多結晶シリコンインゴットの底部における酸素濃度が高い部分を少なくすることにより、高品質な多結晶シリコンインゴットを提供することができる。
 1  多結晶シリコンインゴット
 20  ルツボ
 22  Siコーティング層
 27  シリカ多層コーティング層

Claims (6)

  1.  ルツボ内において溶融シリコンを、その底面から上方に向けて一方向凝固させる多結晶シリコンインゴットの製造方法であって、
     前記ルツボは、シリカで構成され、その側壁内面には窒化珪素コーティング層が形成され、その底面にはシリカが配設されており、
     前記ルツボ内における凝固過程を、前記ルツボの底面を基準として、0mmから高さXまでの第1領域と、高さXから高さYまでの第2領域と、高さY以上の第3領域と、に区分けし、この高さXが10mm≦X<30mm、高さYが30mm≦Y<100mmとされており、
     前記第1領域における凝固速度V1が、10mm/h≦V1≦20mm/hの範囲内に設定され、前記第2領域における凝固速度V2が、1mm/h≦V2≦5mm/hの範囲内に設定されている多結晶シリコンインゴットの製造方法。
  2.  前記第2領域の高さY-Xが、10mm≦Y-X≦40mmの範囲内に設定されている請求項1に記載の多結晶シリコンインゴットの製造方法。
  3.  前記第3領域における凝固速度V3が、5mm/h≦V3≦30mm/hの範囲内に設定されている請求項1または請求項2に記載の多結晶シリコンインゴットの製造方法。
  4.  前記ルツボの底面には、スラリー層とスタッコ層とが積層されたシリカ多層コーティング層が形成されている請求項1から請求項3のいずれか一項に記載の多結晶シリコンインゴットの製造方法。
  5.  請求項1から請求項4のいずれか一項に記載の多結晶シリコンインゴットの製造方法によって製造された多結晶シリコンインゴットであって、
     前記ルツボの底面に接触していた底部から高さ40mmの部分の水平断面において、結晶の成長方位をEBSD法で測定し、(100)、(101)、(111)を頂点とするステレオ三角形内の方位分布を求め、このステレオ三角形を、各辺の二等分点と前記ステレオ三角形の重心とを結ぶ線によって(100)側領域、(101)側領域、(111)側領域に3分割し、これらの各領域に占める結晶方位分布を電子線回折パターンの相対強度比率で示した結果、(101)側領域に分布する割合が10%以下とされている多結晶シリコンインゴット。
  6.  前記ルツボの底面に接触していた底部から高さ30mmの部分の断面中心部における酸素濃度が4×1017atm/cm以下とされている請求項5に記載の多結晶シリコンインゴット。
PCT/JP2011/057361 2010-03-26 2011-03-25 多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット WO2011118773A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180015881.9A CN102834354B (zh) 2010-03-26 2011-03-25 多晶硅锭的制造方法及多晶硅锭
US13/637,054 US9388507B2 (en) 2010-03-26 2011-03-25 Method for manufacturing polycrystalline silicon ingot, and polycrystalline silicon ingot
KR1020127025111A KR101431360B1 (ko) 2010-03-26 2011-03-25 다결정 실리콘 잉곳의 제조 방법 및 다결정 실리콘 잉곳

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-071700 2010-03-26
JP2010071700A JP5676900B2 (ja) 2010-03-26 2010-03-26 多結晶シリコンインゴットの製造方法

Publications (1)

Publication Number Publication Date
WO2011118773A1 true WO2011118773A1 (ja) 2011-09-29

Family

ID=44673313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057361 WO2011118773A1 (ja) 2010-03-26 2011-03-25 多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット

Country Status (5)

Country Link
US (1) US9388507B2 (ja)
JP (1) JP5676900B2 (ja)
KR (1) KR101431360B1 (ja)
CN (1) CN102834354B (ja)
WO (1) WO2011118773A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094379A (zh) * 2011-11-28 2013-05-08 昆山中辰矽晶有限公司 太阳能电池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087080B2 (en) 2011-11-28 2018-10-02 Sino-American Silicon Products Inc. Methods of fabricating a poly-crystalline silcon ingot from a nucleation promotion layer comprised of chips and chunks of silicon-containing particles
SG190514A1 (en) * 2011-11-28 2013-06-28 Sino American Silicon Prod Inc Crystalline silicon ingot and method of fabricating the same
JP5135467B1 (ja) * 2011-12-22 2013-02-06 シャープ株式会社 多結晶シリコンインゴットの製造方法
KR101779267B1 (ko) 2012-10-10 2017-09-18 저지앙 위후이 쏠라 에너지 소스 컴퍼니 리미티드 다결정 실리콘 잉곳, 다결정 실리콘 잉곳을 제조하는 방법, 및 도가니
CN103014834B (zh) * 2013-01-10 2015-11-18 韩华新能源科技有限公司 一种提高铸造多晶硅锭质量的方法
US10029919B2 (en) 2014-04-29 2018-07-24 Sino-American Silicon Products Inc. Multicrystalline silicon brick and silicon wafer therefrom
TWI551737B (zh) * 2014-08-07 2016-10-01 Method for manufacturing polycrystalline silicon ingots
CN104294355A (zh) * 2014-09-04 2015-01-21 奥特斯维能源(太仓)有限公司 一种多晶硅制备工艺
TWI557281B (zh) * 2015-07-17 2016-11-11 Sino American Silicon Prod Inc 多晶矽晶鑄錠、多晶矽晶棒及多晶矽晶片
US10825940B2 (en) * 2015-08-26 2020-11-03 Sino-American Silicon Products Inc. Polycrystalline silicon column and polycrystalline silicon wafer
GB2550415A (en) * 2016-05-18 2017-11-22 Rec Solar Pte Ltd Silicon ingot growth crucible with patterned protrusion structured layer
TW201816200A (zh) 2016-08-03 2018-05-01 法商維蘇威法國公司 用於熔融矽結晶之坩鍋、其製造方法及其用途
KR102366166B1 (ko) 2021-08-18 2022-02-23 주식회사 린텍 단결정 및 다결정 로드에 의해 도가니 내부에 산소 배출 통로를 형성하는 다결정 실리콘 잉곳 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198648A (ja) * 2000-01-11 2001-07-24 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2004196577A (ja) * 2002-12-18 2004-07-15 Jfe Steel Kk 多結晶シリコンの製造方法
JP2006273628A (ja) * 2005-03-28 2006-10-12 Kyocera Corp 多結晶シリコンインゴットの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245216A (ja) 1997-03-04 1998-09-14 Kawasaki Steel Corp 太陽電池用シリコンの製造方法
FR2853913B1 (fr) * 2003-04-17 2006-09-29 Apollon Solar Creuset pour un dispositif de fabrication d'un bloc de materiau cristallin et procede de fabrication
EP1739209A1 (en) * 2005-07-01 2007-01-03 Vesuvius Crucible Company Crucible for the crystallization of silicon
KR101074304B1 (ko) 2006-08-31 2011-10-17 미쓰비시마테리알덴시카세이가부시키가이샤 금속 실리콘과 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198648A (ja) * 2000-01-11 2001-07-24 Mitsubishi Materials Corp シリコンインゴット鋳造用鋳型およびその製造方法
JP2004196577A (ja) * 2002-12-18 2004-07-15 Jfe Steel Kk 多結晶シリコンの製造方法
JP2006273628A (ja) * 2005-03-28 2006-10-12 Kyocera Corp 多結晶シリコンインゴットの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094379A (zh) * 2011-11-28 2013-05-08 昆山中辰矽晶有限公司 太阳能电池

Also Published As

Publication number Publication date
JP2011201737A (ja) 2011-10-13
US20130008371A1 (en) 2013-01-10
JP5676900B2 (ja) 2015-02-25
CN102834354B (zh) 2015-03-11
KR101431360B1 (ko) 2014-08-19
KR20120135284A (ko) 2012-12-12
US9388507B2 (en) 2016-07-12
CN102834354A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5676900B2 (ja) 多結晶シリコンインゴットの製造方法
US20130015318A1 (en) Layered crucible for casting silicon ingot and method of producing same
US8973888B2 (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
JP5637220B2 (ja) 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー
KR101779267B1 (ko) 다결정 실리콘 잉곳, 다결정 실리콘 잉곳을 제조하는 방법, 및 도가니
EP3458629B1 (en) Silicon ingot growth crucible with patterned protrusion structured layer
TW201715097A (zh) 製造矽鑄錠之坩堝、製造其與矽鑄錠之方法
WO2011118770A1 (ja) 多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット
JP5201446B2 (ja) ターゲット材およびその製造方法
JP2019069898A (ja) 多結晶シリコンの製造方法
JP2008081394A (ja) 金属シリコンとその製造方法
TWI606512B (zh) 電漿蝕刻裝置用矽構件及電漿蝕刻裝置用矽構件之製造方法
WO2024204031A1 (ja) シリコンインゴット、シリコンインゴット製造用ルツボ、シリコンインゴット製造用ルツボの製造方法、および、シリコンインゴットの製造方法
KR102366166B1 (ko) 단결정 및 다결정 로드에 의해 도가니 내부에 산소 배출 통로를 형성하는 다결정 실리콘 잉곳 제조방법
US20160141442A1 (en) Use of silicon nitride as a substrate and a coating material for the rapid solidification of silicon
JP2015214473A (ja) 多結晶シリコンのインゴットの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015881.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025111

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13637054

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759577

Country of ref document: EP

Kind code of ref document: A1