WO2011118773A1 - 多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット - Google Patents
多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット Download PDFInfo
- Publication number
- WO2011118773A1 WO2011118773A1 PCT/JP2011/057361 JP2011057361W WO2011118773A1 WO 2011118773 A1 WO2011118773 A1 WO 2011118773A1 JP 2011057361 W JP2011057361 W JP 2011057361W WO 2011118773 A1 WO2011118773 A1 WO 2011118773A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polycrystalline silicon
- region
- silicon ingot
- crucible
- height
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/002—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/003—Heating or cooling of the melt or the crystallised material
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Definitions
- the present invention relates to a method for producing a polycrystalline silicon ingot for casting a polycrystalline silicon ingot by unidirectionally solidifying a silicon melt in a silica crucible, and a polycrystalline silicon ingot obtained by this production method.
- a polycrystalline silicon ingot is used as a material for a substrate for a solar cell, as described in Patent Document 1, for example. That is, a polycrystalline silicon wafer is manufactured by slicing a polycrystalline silicon ingot to a predetermined thickness, and a solar cell substrate is manufactured by processing the polycrystalline silicon wafer.
- the characteristics of the polycrystalline silicon ingot which is the material of the solar cell substrate (polycrystalline silicon wafer) greatly influence the performance such as the conversion efficiency.
- the oxygen and impurities contained in the polycrystalline silicon are large, the conversion efficiency of the solar cell is greatly reduced. Therefore, in order to keep the conversion efficiency of the solar cell high, it is necessary to reduce the amount of oxygen and the amount of impurities in the polycrystalline silicon serving as the solar cell substrate.
- a polycrystalline silicon ingot solidified in one direction in a crucible that is, a polycrystalline silicon ingot obtained by sequentially solidifying in one fixed direction
- the bottom that is the solidification start part and the top that is the solidification end part tend to increase. Therefore, in order to reduce the amount of oxygen and the amount of impurities, the bottom and top of the polycrystalline silicon ingot solidified in a certain direction are cut and removed.
- the reason why the amount of oxygen and the amount of impurities increase at the bottom and top of the polycrystalline silicon ingot will be described in detail.
- the impurities are discharged from the solid phase toward the liquid phase because the solubility of the impurities in the solid phase is lower than that in the liquid phase. For this reason, the amount of impurities in the solid phase portion is reduced, but conversely, the amount of impurities is very high at the top of the polycrystalline ingot which is the solidification end portion.
- oxygen is mixed from the silica constituting the crucible into the silicon melt. Oxygen in the silicon melt is released from the liquid surface as SiO gas. At the start of solidification, oxygen is mixed from the bottom and side surfaces of the crucible, so that the amount of oxygen in the silicon melt increases at the start of solidification and the amount of oxygen at the bottom, which is the solidification start portion, increases. When solidification progresses on the bottom surface side and the solid-liquid interface rises, oxygen is mixed only from the side surface, so that the amount of oxygen mixed into the silicon melt gradually decreases. For the reasons described above, the amount of oxygen is high at the bottom, which is the solidification start portion.
- Patent Document 2 there is provided a technique for suppressing the mixing of oxygen by using a crucible in which a Si 3 N 4 coating layer is formed on the inner surface (side surface and bottom surface) of a silica crucible. Yes. Further, when a polycrystalline silicon ingot is solidified in one direction, as described in Non-Patent Document 1, for example, a constant solidification rate of 0.2 mm / min (12 mm / h) is set to improve production efficiency. I was planning.
- a polycrystalline silicon ingot grown by unidirectional solidification is an aggregate of columnar crystals extending in the height direction of the ingot. In the cross section perpendicular to the solidification direction, the conversion efficiency of the solar cell is improved as the ratio of the crystals oriented in the (001) and (111) orientations which are the preferential crystal orientations increases.
- Si 3 N 4 when using a crucible to form a coating layer Si 3 N 4 coating layer is not wet silicon melt chemically, i.e. Si Since the wettability of the silicon melt with respect to the 3 N 4 coating layer is low, generation of crystal nuclei serving as a solidification starting point is unlikely to occur. As a result, the number of crystal nuclei is reduced. Then, the crystal that started growing at the start of solidification grows as it is, and crystals that have grown in orientations other than the (001) and (111) orientations that are the preferential crystal orientations remain. In particular, the tendency is remarkable at the lower side portion from the center of the polycrystalline silicon ingot. From the above, when the crucible having the Si 3 N 4 coating layer is used, the conversion efficiency of the solar cell using the substrate obtained from the lower portion of the polycrystalline silicon ingot tends to be low.
- the use of a crucible formed with a Si 3 N 4 coating layer to reduce the amount of oxygen makes the crystal orientation random and improves the conversion efficiency of the solar cell. I could not.
- a crucible without a Si 3 N 4 coating layer is used in order to facilitate the generation of crystal nuclei, the mixing of oxygen cannot be suppressed, and the amount of oxygen in the polycrystalline silicon ingot As a result, the conversion efficiency of the solar cell could not be improved.
- the present invention has been made in view of the above-described situation, and there are many crystals facing the (001) and (111) orientations which are the preferential growth orientations, and the oxygen concentration at the bottom of the polycrystalline silicon ingot is high.
- the method for producing a polycrystalline silicon ingot according to the first aspect of the present invention is a method for producing a polycrystalline silicon ingot in which a molten silicon is unidirectionally solidified upward from the bottom surface in a crucible, the crucible comprising silica A silicon nitride coating layer is formed on the inner surface of the side wall, silica is disposed on the bottom surface thereof, and the solidification process in the crucible is measured from 0 mm to a height X with reference to the bottom surface of the crucible. Is divided into a first region up to, a second region from height X to height Y, and a third region greater than or equal to height Y.
- the height X is 10 mm ⁇ X ⁇ 30 mm
- the height Y is 30 mm ⁇ Y ⁇ 100 mm
- the solidification rate V1 in the first region is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h
- the solidification rate V2 in the second region is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h.
- the solidification process in the crucible is performed with a first region from 0 mm to height X and a height X to height Y with reference to the bottom surface of the crucible. It is divided into a second region and a third region having a height Y or higher, and the solidification rates in the first region and the second region are defined.
- the crucible is made of silica, and a silicon nitride coating layer is formed on the inner surface of the side wall, and silica is disposed on the bottom surface thereof, so that the silica is exposed on the bottom surface of the crucible that is the starting point of solidification.
- Silica is chemically wetted with the silicon melt, that is, the wettability of the silicon melt with respect to silica is high, so that the generation of crystal nuclei is likely to occur.As a result, starting from the crystal nuclei, the initial stage of solidification Many fine crystals are formed. This fine crystal group has a random crystal orientation.
- the solidification rate V1 in the first region is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h and is relatively fast. It is possible to generate a large number of crystal groups having
- the solidification rate V2 is set to 1 mm / h ⁇ V2 ⁇ 5 mm / h and is relatively slow, orientation selective crystal growth from a crystal group having a random crystal orientation occurs, and the preferred growth orientation
- the crystal that faces is mainly grown.
- the preferential growth orientations of silicon are the (001) and (111) orientations, the aforementioned columnar crystals face these orientations, and it becomes possible to improve the conversion efficiency of the solar cell. .
- the solidification rate V1 is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h and is relatively fast, so that a solid phase can be quickly formed on the bottom portion of the crucible. Mixing of oxygen into the silicon melt from the bottom can be suppressed.
- the height X of the first region is set to 10 mm ⁇ X ⁇ 30 mm, it is possible to reliably suppress oxygen from entering the silicon melt from the bottom surface of the crucible.
- the solidification rate V2 in the second region is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h and is relatively slow, oxygen in the silicon melt is removed from the liquid surface in the second region. It becomes possible to release, and the amount of oxygen in the silicon melt can be greatly reduced. Furthermore, as described above, crystal orientation selective growth can be reliably performed. Since the height Y of the first region and the second region is 30 mm ⁇ Y ⁇ 100 mm, the length of the portion with a high oxygen content, and the length of the portion where the crystal faces a random orientation, The production yield of polycrystalline silicon as a product can be greatly improved.
- the solidification speed V1 in the first region is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h.
- the solidification speed V2 in the second region is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h.
- the height YX of the second region is set within a range of 10 mm ⁇ YX ⁇ 40 mm.
- the time for performing crystal orientation selective growth and the oxygen in the silicon melt are released to the outside. Time is sufficiently secured, and crystals having a preferential growth orientation can be selected and grown, and the amount of oxygen in the polycrystalline silicon ingot can be reliably reduced.
- the height YX of the second region is YX ⁇ 40 mm, the length of the portion where the oxygen amount is high and the portion where the crystal faces a random orientation is surely shortened. Can do.
- the solidification rate V3 in the third region is preferably set in a range of 5 mm / h ⁇ V3 ⁇ 30 mm / h. In this case, since the solidification rate V3 in the third region is set to V3 ⁇ 5 mm / h, the production efficiency of the polycrystalline silicon ingot can be kept high. On the other hand, since the solidification speed V3 in the third region is V3 ⁇ 30 mm / h, the unidirectional solidification can be performed smoothly.
- a silica multilayer coating layer in which a slurry layer and a stucco layer are laminated is preferably formed inside the bottom surface of the crucible.
- a silica multi-layered calling layer in which a slurry layer coated with silica-containing slurry and a stucco layer in which silica particles are stuccoed is formed on the inner side of the bottom surface of the crucible. Can be prevented from cracking.
- a polycrystalline silicon ingot according to the second aspect of the present invention is a polycrystalline silicon ingot manufactured by the above-described method for manufacturing a polycrystalline silicon ingot, and is a portion having a height of 40 mm from the bottom that is in contact with the bottom of the crucible.
- the crystal growth orientation is measured by the EBSD method, and the orientation distribution in the stereo triangle having the vertices at (100), (101), and (111) is obtained.
- a line connecting the branch point and the center of gravity of the stereo triangle is divided into a (100) side region, a (101) side region, and a (111) side region, and the crystal orientation distribution in each of these regions is represented by an electron diffraction pattern.
- the relative intensity ratio it is a polycrystalline silicon ingot whose distribution in the (101) side region is 10% or less.
- the crystal orientation distribution in the portion having a height of 40 mm from the bottom that was in contact with the bottom of the crucible was represented by the relative intensity ratio of the electron diffraction pattern.
- the proportion distributed in the side region is 10% or less, and the proportion distributed in the (001) side region and the (111) side region is large, so that it is high from the bottom that is in contact with the bottom surface of the crucible.
- crystal orientation selective growth has already been sufficiently performed. Therefore, even when this portion is used as a solar cell substrate, the conversion efficiency of the solar cell can be greatly improved.
- the oxygen concentration in the central portion of the cross section of the portion 30 mm in height from the bottom that is in contact with the bottom of the crucible is 4 ⁇ 10 17 atm / cm 3 or less. ing.
- the oxygen concentration at the center of the cross section of the portion 30 mm in height from the bottom that was in contact with the bottom of the crucible is 4 ⁇ 10 17 atm / cm 3 or less. It becomes possible to fully commercialize a portion having a height of 30 mm from the bottom.
- polycrystalline silicon capable of casting a polycrystalline silicon ingot capable of significantly reducing the yield of polycrystalline silicon as a product by reducing the portion having a high oxygen concentration at the bottom.
- An ingot manufacturing method and a polycrystalline silicon ingot can be provided.
- the polycrystalline silicon ingot 1 according to this embodiment is a material for a polycrystalline silicon wafer used as a solar cell substrate.
- the polycrystalline silicon ingot 1 of the present embodiment has a quadrangular column shape, and its height H is set within a range of 200 mm ⁇ H ⁇ 350 mm. More specifically, in the present embodiment, the height H of the polycrystalline silicon ingot 1 is set to 300 mm. Further, the bottom surface of the quadrangular shape has a square shape with a side of about 680 mm.
- the bottom portion S1 of the polycrystalline silicon ingot 1 has a high oxygen concentration
- the top portion S2 of the polycrystalline silicon ingot 1 has a high impurity concentration. Therefore, the bottom portion S1 and the top portion S2 are cut and removed, and only the product portion S3 is commercialized as a polycrystalline silicon wafer.
- the crystal growth orientation is measured by the EBSD method in a horizontal section of a portion 40 mm in height from the bottom of the polycrystalline silicon ingot 1. More specifically, in the measurement by the EBSD method, the azimuth distribution in the stereo triangle having (001), (101), (111) as vertices is obtained, and this stereo triangle is divided into the bisectors of each side The region having the vertices of (001), (101), and (111) is divided into three regions by a line connecting the center of gravity of the stereo triangle, and (001) side region, (101) side region, (111) ) Define as side area.
- the proportion distributed in the (101) side region is 10% or less. That is, there are many crystals facing the crystal orientation distributed in the (001) side region and the (111) side region.
- the polycrystalline silicon ingot 1 is configured such that the oxygen concentration at the central portion of the cross section at a height of 30 mm from the bottom is 4 ⁇ 10 17 atm / cm 3 or less.
- a 5 mm ⁇ 5 mm ⁇ 5 mm square measurement sample is taken from the center of the cross section, and the oxygen concentration is measured by infrared fluorescence analysis (IPS).
- IPS infrared fluorescence analysis
- the polycrystalline silicon ingot manufacturing apparatus 10 includes a crucible 20 in which a silicon melt L is stored, a chill plate 12 on which the crucible 20 is placed, an underfloor heater 13 that supports the chill plate 12 from below, and a crucible. 20 and a ceiling heater 14 disposed above 20.
- a heat insulating material 15 is provided around the crucible 20.
- the chill plate 12 has a hollow structure, and Ar gas is supplied to the inside through a supply pipe 16.
- the crucible 20 has a horizontal cross-sectional shape that is square (square) or round (circular), and in this embodiment, the crucible 20 is square (square).
- the crucible 20 is provided on a crucible main body 21 made of silica, an Si 3 N 4 coating layer 22 provided inside the side wall of the crucible main body 21, and a bottom surface 20 a of the crucible main body 21. And a silica multilayer coating layer 27.
- the Si 3 N 4 coating layer 22 is formed in a mixture base comprising Si 3 N 4 powder 24 of 0.2 to 4.0 ⁇ m and silica 25 containing 10 to 6000 ppm of sodium. , 50 to 300 ⁇ m fine fused silica sand 26 is dispersed. A mixture substrate made of Si 3 N 4 powder 24 and sodium-containing silica 25 is disposed (exposed) on the outermost surface of the Si 3 N 4 coating layer 22.
- the silica multilayer coating layer 27 has a multilayer structure in which a slurry layer 28 and a stucco layer 29 are stacked.
- the slurry layer 28 and the stucco layer 29 are laminated in a total of 3 or more and 4 or less layers.
- the slurry layer 28 is formed by applying a slurry obtained by mixing a filler having a particle size of 10 ⁇ m or more and 50 ⁇ m or less and an aqueous dispersion of colloidal silica.
- the stucco layer 29 is formed by spraying silica particles having a particle size of 0.3 mm or more and 3 mm or less.
- a thermocouple for monitoring the height of the solidification interface is installed on the side surface of the crucible 20.
- the polycrystalline silicon ingot 1 is cast using the polycrystalline silicon ingot manufacturing apparatus 10 described above.
- the silicon raw material is charged into the crucible 20 in which the Si 3 N 4 coating layer 22 is formed on the side wall inner surface and the silica multilayer coating layer 27 is formed on the bottom surface.
- the silicon raw material a lump called “chunk” obtained by crushing high purity silicon of 11N (purity: 99.99999999999) is used.
- the particle size of the bulk silicon raw material is, for example, 30 mm to 100 mm.
- This silicon raw material is heated by energizing the ceiling heater 14 and the underfloor heater 13. Thereby, the silicon melt L is stored in the crucible 20.
- energization of the underfloor heater 13 is stopped, and Ar gas is supplied into the chill plate 12 through the supply pipe 16. Thereby, the bottom part of the crucible 20 is cooled. Further, by gradually reducing the energization to the ceiling heater 14, the silicon melt L in the crucible 20 is cooled from the bottom of the crucible 20, and solidifies in one direction from the bottom upward.
- the solidification speed of the silicon melt L in the crucible 20 that is, the moving speed upward of the solid-liquid interface. Adjust.
- the solidification process of the silicon melt L in the crucible 20 is divided into three regions, and the solidification rate is set for each region.
- the solidification process in the crucible 20 is described with reference to the bottom surface 20a of the crucible 20 as a first area A1 from 0 mm to height X, a second area A2 from height X to height Y,
- the height X is set to be within a range of 10 mm ⁇ X ⁇ 30 mm and the height Y is within a range of 30 mm ⁇ Y ⁇ 100 mm.
- the height YX of the second region A2 is set to be within a range of 10 mm ⁇ YX ⁇ 40 mm.
- X 20 mm
- Y 40 mm
- the height YX of the second region A2 is 20 mm.
- the solidification rate in each region is set as follows.
- the solidification speed V1 in the first region A1 is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h.
- the solidification speed V2 in the second region A2 is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h.
- the solidification speed V1 in the third region A3 is set within a range of 5 mm / h ⁇ V1 ⁇ 30 mm / h. More specifically, as shown in FIG.
- the solidification rate V1 in the first region A1 from the bottom to 20 mm is 15 mm / h
- the solidification rate V2 in the second region A2 from 20 mm to 40 mm is 3 mm / h, 40 mm.
- the solidification speed V3 in the third region A3 is set to 5.8 mm / h.
- the average solidification rate of the entire polycrystalline silicon ingot 1 is 6.5 mm / h.
- the solid-liquid interface of silicon in the crucible has a flat shape. The height of the silicon solid-liquid interface from the bottom of the crucible is monitored by a thermocouple installed on the side of the crucible.
- the rectangular columnar polycrystalline silicon ingot 1 shown in FIG. 1 is formed by the unidirectional solidification method.
- the solidification process in the crucible 20 is performed from 0 mm to a height X with reference to the bottom surface 20a of the crucible 20. It is divided into a first region A1, a second region A2 from height X to height Y, and a third region A3 having height Y or higher, and the solidification rate in each region is defined.
- the Si 3 N 4 coating layer 22 is formed on the inner surface of the side wall of the crucible 20 and the silica multilayer coating layer 27 is formed on the bottom surface 20a, the bottom surface of the crucible 20 serving as a solidification start point.
- silica wets chemically with the silicon melt L, that is, the wettability to the silicon melt L is exposed, and the generation of crystal nuclei can be promoted.
- the solidification rate V2 when the solidification rate V2 is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h and is relatively slow, selective growth of a crystal group having a random crystal orientation occurs, giving priority. Crystals oriented in the growth direction mainly grow. As a result, it becomes possible to cast the polycrystalline silicon ingot 1 composed of large columnar crystals with uniform crystal orientation.
- the preferential growth directions of the silicon polycrystal are the (001) and (111) directions, as shown in FIG. 2, many of the above-mentioned columnar crystals face these directions. It becomes possible to improve the conversion efficiency of the solar cell.
- the solidification rate V1 in the first region A1 is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h and is relatively fast, a solid phase is quickly formed on the bottom surface 20 a of the crucible 20. As a result, mixing of oxygen from the bottom surface 20a of the crucible 20 into the silicon melt L can be suppressed.
- the solidification speed V1 in the first region A1 is set within a range of 10 mm / h ⁇ V1 ⁇ 20 mm / h. Further, if the solidification rate V2 is less than 1 mm / h, the solid phase may be remelted. On the other hand, if the solidification rate V2 exceeds 5 mm / h, it becomes impossible to sufficiently perform selective crystal growth and oxygen release. For this reason, the solidification speed V2 in the second region A2 is set within a range of 1 mm / h ⁇ V2 ⁇ 5 mm / h.
- release oxygen in a silicon melt outside are fully ensured.
- crystals having a preferential growth orientation can be selectively grown and the amount of oxygen in the polycrystalline silicon ingot can be reliably reduced.
- the silica multi-layered calling layer 27 is formed on the bottom surface of the crucible 20 by laminating a slurry layer 28 coated with a slurry containing silica and a stucco layer 29 in which silica particles are stuccoed.
- the bottom crack of the silicon ingot 1 can be suppressed.
- the crystal growth orientation is measured by the EBSD method in the horizontal section of the portion 40 mm in height from the bottom that is in contact with the bottom of the crucible 20, and (001)
- An orientation distribution in a stereo triangle having vertices (101) and (111) is obtained, and the stereo triangle is represented by a line connecting the bisection point of each side and the center of gravity of the stereo triangle (001) side region, ( 101) side region and (111) side region are divided into three, and the crystal orientation distribution occupying each of these regions is indicated by the relative intensity ratio of the electron diffraction pattern.
- the distribution ratio in the (101) side region is 10%. Therefore, selective growth has already been performed in a portion 40 mm in height from the bottom, and when this portion is used as a solar cell substrate, conversion efficiency is improved. It is possible to.
- the oxygen concentration in the central portion of the cross section of the portion 30 mm in height from the bottom that is in contact with the bottom surface 20 a of the crucible 20 is 4 ⁇ 10 17 atm / cm 3 or less. Therefore, it becomes possible to fully commercialize a portion having a height of 30 mm from the bottom.
- the present invention is not limited to this, and the design can be changed as appropriate.
- the polycrystalline silicon ingot manufacturing apparatus shown in FIG. 2 has been described as casting a polycrystalline silicon ingot.
- the present invention is not limited to this, and the polycrystalline silicon ingot manufacturing apparatus having another structure can be used to manufacture polycrystalline silicon. An ingot may be cast.
- the size and shape of the polycrystalline silicon ingot are not limited to this embodiment, and the design may be changed as appropriate.
- a polycrystalline silicon ingot having a size of 680 mm square and a height of 300 mm was cast using the polycrystalline silicon ingot manufacturing apparatus described in the present embodiment.
- the pattern is solidified in the pattern described in the previous embodiment.
- a polycrystalline silicon ingot was cast at different speeds. That is, as shown in FIG.
- the solidification rate V1 in the first region A1 from the bottom to 20 mm is 15 mm / h
- the solidification rate V2 in the second region A2 from 20 mm to 40 mm is 3 mm / h, from 40 mm to 300 mm.
- the solidification speed V3 in the third region A3 was set to 5.8 mm / h.
- the average solidification rate of the entire polycrystalline silicon ingot 1 was 6.5 mm / h, and the time required for solidification was 52.7 hours.
- a crucible in which a Si 3 N 4 coating layer is formed on the inner surface of the side wall and the inner surface of the bottom surface (that is, the entire inner surface) is used, and the solidification rate is changed in the pattern described in FIG.
- a polycrystalline silicon ingot was cast.
- a crucible having a Si 3 N 4 coating layer formed on the inner surface of the side wall and the inner side of the bottom surface (that is, the entire inner surface) was used, and a polycrystalline silicon ingot was cast at a solidification rate constant at 5.1 mm / h. .
- the time required for coagulation was 59 hours.
- the comparative example and the conventional example, test pieces of 5 mm ⁇ 5 mm ⁇ 5 mm from the center of the horizontal cross section at each of six places of height 20 mm, 40 mm, 60 mm, 100 mm, 200 mm, 280 mm
- the crystal orientation distribution was measured by the EBSD method. Then, the orientation distribution in the stereo triangle having (001), (111) and (101) as vertices is obtained, and this stereo triangle is represented by a line connecting the bisector of each side and the center of gravity of the stereo triangle.
- FIG. 8 shows the results of the present invention
- FIG. 9 shows the results of the comparative example
- FIG. 10 shows the results of the conventional example.
- the oxygen concentration was very high near the bottom, and the oxygen concentration exceeded 4 ⁇ 10 17 atm / cm 3 even at a height of 50 mm from the bottom. Further, in the comparative example and the present invention example, as shown in FIG. 7, the oxygen concentration is lower than that in the conventional example, and the oxygen concentration is high only in a small portion at the bottom, and already in the portion having a height of 20 mm. The oxygen concentration was 4 ⁇ 10 17 atm / cm 3 or less.
- the ratio of crystals having a crystal orientation in the (101) region is 10% or less in a horizontal section 40 mm from the bottom, and (001), (111 ) It is confirmed that selective growth in the direction is performed. That is, in the example of the present invention, crystals with (001) and (111) orientations grow from a portion 40 mm from the bottom.
- the ratio of crystals whose crystal orientation is in the (101) region gradually decreases as the distance from the bottom increases. Even in the portion, the ratio of crystals whose crystal orientation is in the (101) region exceeds 10%. Therefore, when this portion up to 100 mm is used as a solar cell substrate, the conversion efficiency of the solar cell is lowered.
- the ratio of crystals having a crystal orientation in the (101) region exceeds 20% even at a portion 200 mm from the bottom, and the crystal growth orientation is completely controlled. It wasn't. From the above, according to the present invention, a polycrystalline silicon ingot in which there are many crystals facing the (001) and (111) orientations which are the preferential growth orientations and the portion having a high oxygen concentration at the bottom is reduced is cast. It was confirmed that it was possible to do.
- a high-quality polycrystalline silicon ingot can be provided by reducing the portion having a high oxygen concentration at the bottom of the polycrystalline silicon ingot.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本願は、2010年3月26日に、日本に出願された特願2010-071700号に基づき優先権を主張し、その内容をここに援用する。
特に、多結晶シリコンに含有される酸素や不純物が多いと、太陽電池の変換効率が大幅に低下する。したがって、太陽電池の変換効率を高く保つには、太陽電池用基板となる多結晶シリコン中の酸素量や不純物量を低減する必要がある。
以下に、上記多結晶シリコンインゴットの底部および頂部において、それぞれ酸素量および不純物量が高くなる理由について詳しく説明する。
ルツボ内でシリコン融液を上方に向けて一方向凝固させた場合、固相での不純物の溶解度が液相よりも低いので、固相から液相に向けて不純物が排出される。このため、固相部分の不純物量は低くなるが、逆に凝固終了部分である上記多結晶インゴットの頂部においては、不純物量が非常に高くなる。
また、多結晶シリコンインゴットを一方向凝固させる場合、非特許文献1に記載されているように、例えば0.2mm/min(12mm/h)といった一定の凝固速度に設定し、生産効率の向上を図っていた。
一方、結晶核の発生を起り易くするために、Si3N4コーティング層を形成していないルツボを使用した場合には、酸素の混入を抑えることができず、多結晶シリコンインゴット内の酸素量が増加し、やはり、太陽電池の変換効率を向上させることができなかった。
このように、従来の多結晶シリコンインゴットの製造方法においては、酸素量の低減と、結晶方位の調整とを両立することができなかった。
従来の多結晶シリコンインゴット製造方法では、Si3N4コーティング層を形成したルツボを用いても、シリコン融液内への酸素の混入を抑制する事は出来ても、完全に防ぐことはできない。したがって、前述のように、凝固開始部である底部側の酸素濃度が高くなる。製品としての多結晶シリコンの酸素量の上限値を低く設定した場合、上記設定値を満足させるためには、多結晶シリコンインゴットの底部側を大きく切断除去する必要がある。この場合、多結晶シリコンインゴット当たりから製品化される多結晶シリコンの量が少なくなり、多結晶シリコンの生産効率が大幅に低減してしまうといった問題があった。
前記第1領域における凝固速度V1が、10mm/h≦V1≦20mm/hの範囲内に設定され、前記第2領域における凝固速度V2が、1mm/h≦V2≦5mm/hの範囲内に設定されている多結晶シリコンインゴットの製造方法である。
そして、第1領域及び第2領域の高さYが30mm≦Y<100mmとされているので、酸素量が高い部分の長さ、及び、結晶がランダムな方位を向いている部分の長さ、を短くでき、製品となる多結晶シリコンの生産歩留まりを大幅に向上させることができる。
このため、前記第1領域における凝固速度V1を10mm/h≦V1≦20mm/hの範囲内に設定している。
また、凝固速度V2が1mm/h未満であると固相が再溶融する可能性がある。
また、凝固速度V2が5mm/hを超えると、結晶の方位選択的な成長、および酸素の放出を十分に行うことができなくなる。このため、前記第2領域における凝固速度V2を1mm/h≦V2≦5mm/hの範囲内に設定している。
この場合、前記第2領域の高さY-Xが、Y-X≧10mmとされているので、結晶の方位選択的な成長を行う時間、及びシリコン融液内の酸素を外部へと放出する時間が充分に確保され、優先成長方位の結晶を選択して成長させることができるとともに、多結晶シリコンインゴット内の酸素量を確実に低減することができる。一方、前記第2領域の高さY-Xが、Y-X≦40mmとされているので、酸素量が高い部分及び結晶がランダムな方位を向いている部分の長さを確実に短くすることができる。
この場合、前記第3領域における凝固速度V3が、V3≧5mm/hとされているので、多結晶シリコンインゴットの生産効率を高く保つことができる。一方、前記第3領域における凝固速度V3が、V3≦30mm/hとされているので、一方向凝固を円滑に実施することができる。
この場合、ルツボの底面内側に、シリカを含むスラリーを塗布したスラリー層と、シリカ粒子をスタッコ(まぶす)したスタッコ層とが積層されたシリカ多層コーリング層が形成されているので、多結晶シリコンインゴットの底部割れを抑制することができる。なお、上述の作用効果を確実に得るためには、このスラリー層とスタッコ層を、合計で3層以上4層以下、形成することが好ましい。
この構成の多結晶シリコンインゴットにおいては、前記ルツボの底面に接触していた底部から高さ30mmの部分の断面中心部における酸素濃度が4×1017atm/cm3以下とされていることから、底部から高さ30mmの部分を十分に製品化することが可能となる。
本実施形態である多結晶シリコンインゴット1は、太陽電池用基板として使用される多結晶シリコンウェハの素材となるものである。
この多結晶シリコンインゴット1の底部側部分S1は酸素濃度が高く、多結晶シリコンインゴット1の頂部側部分S2は不純物濃度が高い。そのため、これら底部側部分S1及び頂部側部分S2は切断除去され、製品部S3のみが多結晶シリコンウェハとして製品化される。
この多結晶シリコンインゴット製造装置10は、シリコン融液Lが貯留されるルツボ20と、このルツボ20が載置されるチルプレート12と、このチルプレート12を下方から支持する床下ヒータ13と、ルツボ20の上方に配設された天井ヒータ14と、を備えている。また、ルツボ20の周囲には、断熱材15が設けられている。
チルプレート12は、中空構造とされており、供給パイプ16を介して内部にArガスが供給される構成とされている。
このルツボ20は、図4に示すように、シリカからなるルツボ本体21と、このルツボ本体21の側壁内側に設けられたSi3N4コーティング層22と、ルツボ本体21の底面20aに設けられたシリカ多層コーティング層27と、を備えている。
また、図示しないが、凝固界面の高さをモニターするための熱電対が、ルツボ20の側面に設置されている。
次に、床下ヒータ13への通電を停止し、チルプレート12の内部に供給パイプ16を介してArガスを供給する。これにより、ルツボ20の底部を冷却する。さらに、天井ヒータ14への通電を徐々に減少させることにより、ルツボ20内のシリコン融液Lは、ルツボ20の底部から冷却され、底部から上方に向けて一方向凝固する。
そして、本実施形態では、ルツボ20内のシリコン融液Lの凝固過程を3つの領域に区分けし、それぞれの領域毎に凝固速度を設定している。
本実施形態では、X=20mm、Y=40mmとし、第2領域A2の高さY-Xを20mmとしている。
より具体的には、図6に示すように、底部から20mmまでの第1領域A1における凝固速度V1が15mm/h、20mmから40mmまでの第2領域A2における凝固速度V2が3mm/h、40mmから300mmまでの第3領域A3における凝固速度V3が5.8mm/hに設定されている。多結晶シリコンインゴット1全体の平均凝固速度は、6.5mm/hである。
一方向凝固時における、ルツボ内のシリコンの固液界面はフラットな形状をしている。シリコンの固液界面のルツボ底面からの高さは、ルツボ側面に設置した熱電対によりモニターする。
また、凝固速度V2が1mm/h未満であると固相が再溶融してしまう可能性がある。
また、凝固速度V2が5mm/hを超えると、結晶の選択的な成長および酸素の放出を十分に行うことができなくなる。このため、第2領域A2における凝固速度V2を1mm/h≦V2≦5mm/hの範囲内に設定している。
例えば、図2に示す多結晶シリコンインゴット製造装置によって、多結晶シリコンインゴットを鋳造するものとして説明したが、これに限定されることはなく、他の構造の多結晶シリコンインゴット製造装置によって多結晶シリコンインゴットを鋳造してもよい。
また、多結晶シリコンインゴットの大きさや形状は、本実施形態に限定されることはなく、適宜設計変更してもよい。
本発明例として、図4に示すように、側壁内面にSi3N4コーティング層を形成し、底面内側にシリカ多層コーティング層を形成したルツボを用いて、前述の実施形態に記載したパターンで凝固速度を変化させて多結晶シリコンインゴットを鋳造した。すなわち、図6に示すように、底部から20mmまでの第1領域A1における凝固速度V1を15mm/h、20mmから40mmまでの第2領域A2における凝固速度V2を3mm/h、40mmから300mmまでの第3領域A3における凝固速度V3を5.8mm/hに設定した。なお、多結晶シリコンインゴット1全体の平均凝固速度は6.5mm/hとなり、凝固に要した時間は52.7時間であった。
さらに、従来例として、側壁内面及び底面内側(すなわち、内面全体)にSi3N4コーティング層を形成したルツボを使用し、凝固速度を5.1mm/hで一定として多結晶シリコンインゴットを鋳造した。なお、凝固に要した時間は59時間であった。
また、比較例及び本発明例では、図7に示すように、従来例に比べると酸素濃度が低く、底部の僅かな部分においてのみ酸素濃度が高くなっており、高さ20mmの部分ですでに酸素濃度が酸素濃度が4×1017atm/cm3以下であった。
以上のことから、本発明によれば、優先成長方位である(001)、(111)方位を向く結晶が多く存在し、かつ、底部における酸素濃度が高い部分を少なくした多結晶シリコンインゴットを鋳造することが可能であることが確認された。
20 ルツボ
22 Si3N4コーティング層
27 シリカ多層コーティング層
Claims (6)
- ルツボ内において溶融シリコンを、その底面から上方に向けて一方向凝固させる多結晶シリコンインゴットの製造方法であって、
前記ルツボは、シリカで構成され、その側壁内面には窒化珪素コーティング層が形成され、その底面にはシリカが配設されており、
前記ルツボ内における凝固過程を、前記ルツボの底面を基準として、0mmから高さXまでの第1領域と、高さXから高さYまでの第2領域と、高さY以上の第3領域と、に区分けし、この高さXが10mm≦X<30mm、高さYが30mm≦Y<100mmとされており、
前記第1領域における凝固速度V1が、10mm/h≦V1≦20mm/hの範囲内に設定され、前記第2領域における凝固速度V2が、1mm/h≦V2≦5mm/hの範囲内に設定されている多結晶シリコンインゴットの製造方法。 - 前記第2領域の高さY-Xが、10mm≦Y-X≦40mmの範囲内に設定されている請求項1に記載の多結晶シリコンインゴットの製造方法。
- 前記第3領域における凝固速度V3が、5mm/h≦V3≦30mm/hの範囲内に設定されている請求項1または請求項2に記載の多結晶シリコンインゴットの製造方法。
- 前記ルツボの底面には、スラリー層とスタッコ層とが積層されたシリカ多層コーティング層が形成されている請求項1から請求項3のいずれか一項に記載の多結晶シリコンインゴットの製造方法。
- 請求項1から請求項4のいずれか一項に記載の多結晶シリコンインゴットの製造方法によって製造された多結晶シリコンインゴットであって、
前記ルツボの底面に接触していた底部から高さ40mmの部分の水平断面において、結晶の成長方位をEBSD法で測定し、(100)、(101)、(111)を頂点とするステレオ三角形内の方位分布を求め、このステレオ三角形を、各辺の二等分点と前記ステレオ三角形の重心とを結ぶ線によって(100)側領域、(101)側領域、(111)側領域に3分割し、これらの各領域に占める結晶方位分布を電子線回折パターンの相対強度比率で示した結果、(101)側領域に分布する割合が10%以下とされている多結晶シリコンインゴット。 - 前記ルツボの底面に接触していた底部から高さ30mmの部分の断面中心部における酸素濃度が4×1017atm/cm3以下とされている請求項5に記載の多結晶シリコンインゴット。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180015881.9A CN102834354B (zh) | 2010-03-26 | 2011-03-25 | 多晶硅锭的制造方法及多晶硅锭 |
US13/637,054 US9388507B2 (en) | 2010-03-26 | 2011-03-25 | Method for manufacturing polycrystalline silicon ingot, and polycrystalline silicon ingot |
KR1020127025111A KR101431360B1 (ko) | 2010-03-26 | 2011-03-25 | 다결정 실리콘 잉곳의 제조 방법 및 다결정 실리콘 잉곳 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-071700 | 2010-03-26 | ||
JP2010071700A JP5676900B2 (ja) | 2010-03-26 | 2010-03-26 | 多結晶シリコンインゴットの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118773A1 true WO2011118773A1 (ja) | 2011-09-29 |
Family
ID=44673313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/057361 WO2011118773A1 (ja) | 2010-03-26 | 2011-03-25 | 多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット |
Country Status (5)
Country | Link |
---|---|
US (1) | US9388507B2 (ja) |
JP (1) | JP5676900B2 (ja) |
KR (1) | KR101431360B1 (ja) |
CN (1) | CN102834354B (ja) |
WO (1) | WO2011118773A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103094379A (zh) * | 2011-11-28 | 2013-05-08 | 昆山中辰矽晶有限公司 | 太阳能电池 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10087080B2 (en) | 2011-11-28 | 2018-10-02 | Sino-American Silicon Products Inc. | Methods of fabricating a poly-crystalline silcon ingot from a nucleation promotion layer comprised of chips and chunks of silicon-containing particles |
SG190514A1 (en) * | 2011-11-28 | 2013-06-28 | Sino American Silicon Prod Inc | Crystalline silicon ingot and method of fabricating the same |
JP5135467B1 (ja) * | 2011-12-22 | 2013-02-06 | シャープ株式会社 | 多結晶シリコンインゴットの製造方法 |
KR101779267B1 (ko) | 2012-10-10 | 2017-09-18 | 저지앙 위후이 쏠라 에너지 소스 컴퍼니 리미티드 | 다결정 실리콘 잉곳, 다결정 실리콘 잉곳을 제조하는 방법, 및 도가니 |
CN103014834B (zh) * | 2013-01-10 | 2015-11-18 | 韩华新能源科技有限公司 | 一种提高铸造多晶硅锭质量的方法 |
US10029919B2 (en) | 2014-04-29 | 2018-07-24 | Sino-American Silicon Products Inc. | Multicrystalline silicon brick and silicon wafer therefrom |
TWI551737B (zh) * | 2014-08-07 | 2016-10-01 | Method for manufacturing polycrystalline silicon ingots | |
CN104294355A (zh) * | 2014-09-04 | 2015-01-21 | 奥特斯维能源(太仓)有限公司 | 一种多晶硅制备工艺 |
TWI557281B (zh) * | 2015-07-17 | 2016-11-11 | Sino American Silicon Prod Inc | 多晶矽晶鑄錠、多晶矽晶棒及多晶矽晶片 |
US10825940B2 (en) * | 2015-08-26 | 2020-11-03 | Sino-American Silicon Products Inc. | Polycrystalline silicon column and polycrystalline silicon wafer |
GB2550415A (en) * | 2016-05-18 | 2017-11-22 | Rec Solar Pte Ltd | Silicon ingot growth crucible with patterned protrusion structured layer |
TW201816200A (zh) | 2016-08-03 | 2018-05-01 | 法商維蘇威法國公司 | 用於熔融矽結晶之坩鍋、其製造方法及其用途 |
KR102366166B1 (ko) | 2021-08-18 | 2022-02-23 | 주식회사 린텍 | 단결정 및 다결정 로드에 의해 도가니 내부에 산소 배출 통로를 형성하는 다결정 실리콘 잉곳 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001198648A (ja) * | 2000-01-11 | 2001-07-24 | Mitsubishi Materials Corp | シリコンインゴット鋳造用鋳型およびその製造方法 |
JP2004196577A (ja) * | 2002-12-18 | 2004-07-15 | Jfe Steel Kk | 多結晶シリコンの製造方法 |
JP2006273628A (ja) * | 2005-03-28 | 2006-10-12 | Kyocera Corp | 多結晶シリコンインゴットの製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10245216A (ja) | 1997-03-04 | 1998-09-14 | Kawasaki Steel Corp | 太陽電池用シリコンの製造方法 |
FR2853913B1 (fr) * | 2003-04-17 | 2006-09-29 | Apollon Solar | Creuset pour un dispositif de fabrication d'un bloc de materiau cristallin et procede de fabrication |
EP1739209A1 (en) * | 2005-07-01 | 2007-01-03 | Vesuvius Crucible Company | Crucible for the crystallization of silicon |
KR101074304B1 (ko) | 2006-08-31 | 2011-10-17 | 미쓰비시마테리알덴시카세이가부시키가이샤 | 금속 실리콘과 그 제조 방법 |
-
2010
- 2010-03-26 JP JP2010071700A patent/JP5676900B2/ja active Active
-
2011
- 2011-03-25 US US13/637,054 patent/US9388507B2/en active Active
- 2011-03-25 WO PCT/JP2011/057361 patent/WO2011118773A1/ja active Application Filing
- 2011-03-25 CN CN201180015881.9A patent/CN102834354B/zh active Active
- 2011-03-25 KR KR1020127025111A patent/KR101431360B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001198648A (ja) * | 2000-01-11 | 2001-07-24 | Mitsubishi Materials Corp | シリコンインゴット鋳造用鋳型およびその製造方法 |
JP2004196577A (ja) * | 2002-12-18 | 2004-07-15 | Jfe Steel Kk | 多結晶シリコンの製造方法 |
JP2006273628A (ja) * | 2005-03-28 | 2006-10-12 | Kyocera Corp | 多結晶シリコンインゴットの製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103094379A (zh) * | 2011-11-28 | 2013-05-08 | 昆山中辰矽晶有限公司 | 太阳能电池 |
Also Published As
Publication number | Publication date |
---|---|
JP2011201737A (ja) | 2011-10-13 |
US20130008371A1 (en) | 2013-01-10 |
JP5676900B2 (ja) | 2015-02-25 |
CN102834354B (zh) | 2015-03-11 |
KR101431360B1 (ko) | 2014-08-19 |
KR20120135284A (ko) | 2012-12-12 |
US9388507B2 (en) | 2016-07-12 |
CN102834354A (zh) | 2012-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5676900B2 (ja) | 多結晶シリコンインゴットの製造方法 | |
US20130015318A1 (en) | Layered crucible for casting silicon ingot and method of producing same | |
US8973888B2 (en) | Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same | |
JP5637220B2 (ja) | 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー | |
KR101779267B1 (ko) | 다결정 실리콘 잉곳, 다결정 실리콘 잉곳을 제조하는 방법, 및 도가니 | |
EP3458629B1 (en) | Silicon ingot growth crucible with patterned protrusion structured layer | |
TW201715097A (zh) | 製造矽鑄錠之坩堝、製造其與矽鑄錠之方法 | |
WO2011118770A1 (ja) | 多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット | |
JP5201446B2 (ja) | ターゲット材およびその製造方法 | |
JP2019069898A (ja) | 多結晶シリコンの製造方法 | |
JP2008081394A (ja) | 金属シリコンとその製造方法 | |
TWI606512B (zh) | 電漿蝕刻裝置用矽構件及電漿蝕刻裝置用矽構件之製造方法 | |
WO2024204031A1 (ja) | シリコンインゴット、シリコンインゴット製造用ルツボ、シリコンインゴット製造用ルツボの製造方法、および、シリコンインゴットの製造方法 | |
KR102366166B1 (ko) | 단결정 및 다결정 로드에 의해 도가니 내부에 산소 배출 통로를 형성하는 다결정 실리콘 잉곳 제조방법 | |
US20160141442A1 (en) | Use of silicon nitride as a substrate and a coating material for the rapid solidification of silicon | |
JP2015214473A (ja) | 多結晶シリコンのインゴットの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180015881.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11759577 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127025111 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13637054 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11759577 Country of ref document: EP Kind code of ref document: A1 |