WO2011118240A1 - 燃料供給制御装置及び燃料供給システム - Google Patents

燃料供給制御装置及び燃料供給システム Download PDF

Info

Publication number
WO2011118240A1
WO2011118240A1 PCT/JP2011/050158 JP2011050158W WO2011118240A1 WO 2011118240 A1 WO2011118240 A1 WO 2011118240A1 JP 2011050158 W JP2011050158 W JP 2011050158W WO 2011118240 A1 WO2011118240 A1 WO 2011118240A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve
pressure
regulator
downstream
Prior art date
Application number
PCT/JP2011/050158
Other languages
English (en)
French (fr)
Inventor
芳夫 齋藤
陽平 栗谷川
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to US13/636,240 priority Critical patent/US9032933B2/en
Priority to EP11759049.7A priority patent/EP2554824B1/en
Publication of WO2011118240A1 publication Critical patent/WO2011118240A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0605Control of components of the fuel supply system to adjust the fuel pressure or temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0673Valves; Pressure or flow regulators; Mixers
    • F02D19/0681Shut-off valves; Check valves; Safety valves; Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0239Pressure or flow regulators therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0673Valves; Pressure or flow regulators; Mixers
    • F02D19/0678Pressure or flow regulators therefor; Fuel metering valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/503Battery correction, i.e. corrections as a function of the state of the battery, its output or its type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel supply control device and a fuel supply system.
  • This application claims priority based on Japanese Patent Application No. 2010-071745 filed in Japan on March 26, 2010, the contents of which are incorporated herein by reference.
  • bi-fuel engine system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine as a technology to improve vehicle fuel efficiency and environmental protection performance.
  • liquid fuel such as gasoline
  • gaseous fuel such as compressed natural gas (CNG)
  • CNG compressed natural gas
  • An electromagnetic shut-off valve is inserted in the fuel supply path from the gas tank to the regulator.
  • a control device By controlling the open / close state of the shut-off valve with a control device, it is possible to switch between the start and stop of the supply of gaseous fuel. is there.
  • a gas fuel for an engine is detected by detecting a pressure difference before and after the shutoff valve using two pressure sensors and controlling a current value for opening the shutoff valve according to the detection result.
  • a technique for appropriately controlling the supply timing is disclosed.
  • a kick pilot structure as shown in FIG. 12 As a structure of the shut-off valve, a kick pilot structure as shown in FIG. 12 is known.
  • the plunger 101 when not energized, the plunger 101 is pressed by the spring 102 and the pilot valve 103 provided integrally with the plunger 101 is connected to the pilot valve seat 105 provided on the main valve 104. It comes into contact. That is, at the time of de-energization, the pilot valve 103 and the main valve 104 are both closed, and the flow of gaseous fuel from the upstream (gas tank side) flow path 106 to the downstream (regulator side) flow path 107 is blocked (see FIG. 12 (a)).
  • the pilot valve 103 is separated from the pilot valve seat 105 (that is, opened) by the movement of the plunger 101 by this suction force.
  • the gaseous fuel starts to flow from the upstream flow path 106 to the downstream flow path 107 (see FIG. 12B).
  • the main valve 104 remains closed (the movement of the plunger 101 is also stopped).
  • the plunger 101 starts to move again when the suction force by energization exceeds.
  • the main valve 104 is opened by the movement of the plunger 101, and the gaseous fuel starts to flow from the upstream channel 106 to the downstream channel 107 at the maximum flow rate (see FIG. 12C).
  • shut-off valve In the case of using such a kick pilot structure shut-off valve, if fuel injection is started after the shut-off valve is energized and before the main valve 104 is opened, the differential pressure between the upstream and downstream of the main valve 104 does not decrease. The main valve 104 may remain closed. In other words, there is a risk of fuel supply shortage.
  • the present invention has been made in view of the above-described circumstances.
  • a so-called kick pilot structure shut-off valve is used, the fuel injection start timing after energization of the shut-off valve is appropriately controlled, so that the fuel supply is insufficient. It is an object of the present invention to provide a fuel supply system and a fuel supply control device that can prevent the occurrence of fuel.
  • a fuel supply control device is arranged in a fuel supply path from a gaseous fuel tank to a regulator, and opens first when energized, and the first valve body
  • a fuel supply control device that performs energization control and fuel injection control of a shutoff valve having a second valve body that opens due to a difference in pressure difference between upstream and downstream after valve opening, the first fuel upstream of the shutoff valve
  • a delay time from the energization start timing of the shut-off valve to the fuel injection start timing is set according to the pressure and the second fuel pressure downstream of the regulator, and fuel injection is performed after the delay time has elapsed since the energization start of the shut-off valve.
  • a starting control unit is provided.
  • the control unit sets the delay time according to at least one of a battery voltage, a fuel temperature, and an intake air temperature in addition to the first fuel pressure and the second fuel pressure. May be.
  • Another fuel supply control device of the present invention is arranged in a fuel supply path from a gaseous fuel tank to a regulator, and opens upstream after opening the first valve body, which opens in advance when energized.
  • a fuel supply control device that performs energization control and fuel injection control of a shutoff valve having a second valve body that opens due to a differential pressure drop between downstream, and after the start of energization of the shutoff valve,
  • a control unit is provided that starts fuel injection after a predetermined delay time has elapsed based on a specified pressure upstream of the regulator and a specified pressure downstream of the regulator.
  • the delay time is based on at least one of a battery voltage, a fuel temperature, and an intake air temperature, in addition to a specified pressure upstream of the regulator and a specified pressure downstream of the regulator. It may be set in advance.
  • a fuel supply system is arranged in a fuel supply path from a gaseous fuel tank to a regulator, and the first valve body that opens in advance when energized and the first valve body
  • a fuel supply system including a shutoff valve having a second valve body that opens due to a difference in pressure difference between the upstream and downstream after the opening of the valve, wherein a fuel pressure upstream of the shutoff valve is detected as a first fuel pressure.
  • a fuel supply control device that sets a delay time until the start time and starts fuel injection after the delay time has elapsed from the start of energization of the shut-off valve.
  • the time from the start of energization of the shutoff valve to the opening of the second valve element varies depending on the first fuel pressure and the second fuel pressure. That is, if the change tendency is obtained in advance, an appropriate delay time can be set according to the actually detected first fuel pressure and second fuel pressure. Therefore, by delaying the fuel injection start timing using the delay time set as described above, the fuel injection start timing after energization of the shut-off valve can be appropriately controlled, and the fuel due to the inability to open the second valve element Occurrence of supply shortage can be avoided.
  • the fuel supply control device responds to at least one of a battery voltage, a fuel temperature, and an intake air temperature in addition to the first fuel pressure and the second fuel pressure.
  • the delay time may be set. In this case, the delay time can be accurately set according to the operating condition of the engine, and the occurrence of insufficient fuel supply can be reliably avoided.
  • Another fuel supply system is disposed in a fuel supply path from a gaseous fuel tank to a regulator, and opens first upstream after the valve opening of the first valve body when the first valve body opens before energization.
  • a fuel supply system comprising a shutoff valve having a second valve body that opens due to a pressure drop between the pressure sensor, a pressure sensor that detects fuel pressure downstream of the regulator, and after the start of energization of the shutoff valve,
  • a fuel supply control device for starting fuel injection after a lapse of a preset delay time based on a prescribed pressure upstream of the regulator and a prescribed pressure downstream of the regulator when the fuel pressure exceeds a predetermined pressure; Prepare.
  • the valve opening time of the second valve body is uniquely Determined. Accordingly, if the valve opening time of the second valve body that is uniquely determined is set in advance as a delay time (at this time, it may be set with a margin), the specified pressure upstream of the regulator and the Proper control of the fuel injection start timing after energization of the shut-off valve by starting fuel injection after the preset delay time has elapsed after the start of energization of the shut-off valve under the condition that the specified pressure downstream of the regulator is constant It is possible to avoid the occurrence of insufficient fuel supply due to the inability to open the second valve element. In this case, since only one pressure sensor is required, the cost can be reduced.
  • the delay time is previously determined based on at least one of a battery voltage, a fuel temperature, and an intake air temperature in addition to a specified pressure upstream of the regulator and a specified pressure downstream of the regulator. It may be set. In this case, since the fuel injection start timing can be controlled using an accurate delay time according to the operating state of the engine, it is possible to reliably avoid the occurrence of insufficient fuel supply.
  • a fuel supply system capable of appropriately controlling the fuel injection start timing after energization of the shut-off valve and thereby avoiding the occurrence of fuel supply shortage, and A fuel supply control device can be provided.
  • FIG. 2 is a block configuration diagram of a 1st-ECU 5 in the first embodiment.
  • 2 is a block configuration diagram of a 2nd-ECU 6 (fuel supply control device) in the first embodiment.
  • FIG. It is an example of the three-dimensional map which shows the correspondence of regulator downstream pressure Pf, tank supply pressure Pt, and main valve valve opening time Tm used for the setting of delay time Td. It is an operation
  • FIG. 6 is a block configuration diagram of a 2nd-ECU 6 '(fuel supply control device) in a second embodiment. It is a figure which shows the change characteristic of the downstream pressure of the cutoff valve 41 from the valve opening of the pilot valve 103 when the tank supply pressure Pt is a predetermined value. It is an operation
  • a bi-fuel engine system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine
  • liquid fuel such as gasoline
  • gaseous fuel such as compressed natural gas (CNG)
  • CNG compressed natural gas
  • FIG. 1 is a schematic configuration diagram of a bi-fuel engine system A in the first embodiment.
  • the bi-fuel engine system A in the first embodiment includes an engine 1, a liquid fuel supply unit 2, a gaseous fuel supply unit 3, a fuel changeover switch 4, a 1st-ECU 5, and a 2nd.
  • the ECU 6 fuel supply control device is generally configured.
  • the engine 1 is a four-cycle engine that can selectively use liquid fuel and gaseous fuel, and includes a cylinder 10, a piston 11, a connecting rod 12, a crankshaft 13, an intake valve 14, an exhaust valve 15, a spark plug 16, and an ignition coil. 17, intake pipe 18, exhaust pipe 19, air cleaner 20, throttle valve 21, liquid fuel injection valve 22, gaseous fuel injection valve 23, intake pressure sensor 24, intake air temperature sensor 25, throttle opening sensor 26, cooling water temperature sensor 27, A crank angle sensor 28 is provided.
  • the cylinder 10 is a hollow cylindrical member for reciprocating the piston 11 provided therein by repeating four strokes of intake, compression, combustion (expansion), and exhaust.
  • the cylinder 10 is an intake port 10a that is a flow path for supplying a mixture of air and fuel to the combustion chamber 10b.
  • the cylinder 10 retains the mixture and burns the mixture compressed in the compression stroke in the combustion stroke.
  • a combustion chamber 10b, which is a space, and an exhaust port 10c, which is a flow path for exhausting exhaust gas from the combustion chamber 10b to the outside during the exhaust stroke, are provided.
  • a cooling water passage 10 d for circulating cooling water is provided on the outer wall of the cylinder 10.
  • a crankshaft 13 for converting the reciprocating motion of the piston 11 into a rotational motion is connected to the piston 11 via a connecting rod 12.
  • the crankshaft 13 extends in a direction orthogonal to the reciprocating direction of the piston 11 and is connected to a flywheel, a transmission gear, etc. (not shown).
  • a rotor 13a used for detecting a crank angle is coaxially connected to the crankshaft 13.
  • a plurality of protrusions are provided on the outer periphery of the rotor 13a so that the rear ends of the protrusions are equiangularly spaced (for example, 20 ° apart) with respect to the rotation direction.
  • the intake valve 14 is a valve member for opening and closing an opening on the combustion chamber 10b side in the intake port 10a, and is connected to a camshaft (not shown) and is driven to open and close by the camshaft according to each stroke.
  • the exhaust valve 15 is a valve member for opening and closing the opening on the combustion chamber 10b side in the exhaust port 10c, and is connected to a camshaft (not shown), and is driven to open and close according to each stroke by the camshaft. .
  • the spark plug 16 is installed in the upper part of the combustion chamber 10b so that the electrode is exposed inside the combustion chamber 10b, and generates a spark between the electrodes by a high voltage signal supplied from the ignition coil 17.
  • the ignition coil 17 is a transformer composed of a primary winding and a secondary winding, and boosts an ignition voltage signal supplied from the 1st-ECU 5 to the primary winding and supplies the boosted voltage signal to the ignition plug 16 from the secondary winding. To do.
  • the intake pipe 18 is a pipe for supplying air, and is connected to the cylinder 10 so that the internal intake flow path 18a communicates with the intake port 10a.
  • the exhaust pipe 19 is a pipe for exhaust gas discharge, and is connected to the cylinder 10 so that the internal exhaust passage 19a communicates with the exhaust port 10c.
  • the air cleaner 20 is provided upstream of the intake pipe 18, cleans the air taken in from the outside, and sends it to the intake passage 18a.
  • the throttle valve 21 is provided inside the intake passage 18a, and rotates according to a throttle operation (or an accelerator operation). That is, as the throttle valve 21 rotates, the cross-sectional area of the intake passage 18a changes, and the intake air amount changes.
  • the liquid fuel injection valve 22 is an electromagnetic valve (for example, a solenoid valve) installed in the intake pipe 18 so that the injection port is exposed to the intake port 10a side.
  • the liquid fuel injection valve 22 injects the liquid fuel (gasoline etc.) supplied from the liquid fuel supply unit 2 from the injection port in response to the fuel injection valve drive signal supplied from the 1st-ECU 5.
  • the gaseous fuel injection valve 23 is an electromagnetic valve (for example, a solenoid valve) installed in the intake pipe 18 so that the injection port is exposed to the intake port 10a side.
  • the gaseous fuel injection valve 23 injects gaseous fuel (CNG or the like) supplied from the gaseous fuel supply unit 3 from the injection port in response to a fuel injection valve drive signal supplied from the 2nd-ECU 6.
  • the intake pressure sensor 24 is a semiconductor pressure sensor using, for example, a piezoresistance effect.
  • the intake pressure sensor 24 is installed in the intake pipe 18 so that the sensitivity surface is exposed to the intake passage 18a downstream of the throttle valve 21, and an intake pressure signal corresponding to the intake pressure in the intake pipe 18 is 1st-. It outputs to ECU5.
  • the intake air temperature sensor 25 is installed in the intake pipe 18 so that the sensitive portion is exposed on the intake flow path 18a side upstream of the throttle valve 21, and an intake air temperature signal corresponding to the intake air temperature in the intake pipe 18 is 1st ⁇ . It outputs to ECU5.
  • the throttle opening sensor 26 outputs a throttle opening signal corresponding to the opening of the throttle valve 21 to the 1st-ECU 5.
  • the coolant temperature sensor 27 is installed in the cylinder 10 so that the sensitive part is exposed to the coolant channel 10d side, and outputs a coolant temperature signal corresponding to the temperature of the coolant flowing through the coolant channel 10d to the 1st-ECU 5.
  • the crank angle sensor 28 is, for example, an electromagnetic pickup sensor.
  • the crank angle sensor 28 outputs a pair of pulse signals having different polarities to the 1st-ECU 5 each time each protrusion provided on the outer periphery of the rotor 13a passes in the vicinity of the sensor. More specifically, the crank angle sensor 28 outputs a pulse-shaped signal having a negative amplitude when the front end of each protrusion passes in the rotation direction, and the rear end of each protrusion in the rotation direction. When the signal passes, a pulse-like signal having a positive polarity is output.
  • the liquid fuel supply unit 2 includes a liquid fuel tank 30 and a fuel pump 31.
  • the liquid fuel tank 30 is a container that stores liquid fuel such as gasoline fuel or alcohol fuel.
  • the fuel pump 31 pumps out the liquid fuel in the liquid fuel tank 30 according to the pump drive signal supplied from the 1st-ECU 5 and pumps it to the fuel inlet of the liquid fuel injection valve 22.
  • the gaseous fuel supply unit 3 includes a gaseous fuel tank 40, a shutoff valve 41, a regulator 42, a filter 43, a relief valve 44, a first pressure sensor 45 and a second pressure sensor 46.
  • the gaseous fuel tank 40 is a pressure vessel filled with high-pressure gaseous fuel such as CNG.
  • the shut-off valve 41 is a kick pilot structure shut-off valve inserted in a fuel supply path from the gaseous fuel tank 40 to the regulator 42.
  • the shutoff valve 41 switches between starting and stopping the supply of gaseous fuel from the gaseous fuel tank 40 by performing a valve opening operation and a valve closing operation in accordance with the shutoff valve drive signal supplied from the 2nd-ECU 6. As described with reference to FIG.
  • the shut-off valve 41 having such a kick pilot structure includes a pilot valve 103 (first valve body) that opens in advance when energized, and a valve opening of the pilot valve 103. And a main valve 104 (second valve body) that is opened by lowering the differential pressure between the upstream and downstream later.
  • the regulator 42 is a pressure regulating valve disposed downstream of the cutoff valve 41.
  • the regulator 42 depressurizes the high-pressure gaseous fuel supplied from the gaseous fuel tank 40 to the desired pressure when the shut-off valve 41 is opened, and then sends it to the filter 43 installed downstream.
  • the filter 43 removes foreign matters (for example, foreign matters such as compressor oil in the gaseous fuel) contained in the gaseous fuel delivered from the regulator 42, and delivers the gaseous fuel after removing the foreign matters to the fuel inlet of the gaseous fuel injection valve 23.
  • the relief valve 44 is a safety valve inserted in a branch pipe communicating with a pipe connecting the regulator 42 and the filter 43. The relief valve 44 opens when the fuel pressure downstream of the regulator 42 exceeds the set pressure, and discharges (relieves) the gaseous fuel to the outside.
  • the first pressure sensor 45 is a pressure sensor arranged in the fuel supply path from the gaseous fuel tank 40 to the shutoff valve 41.
  • the first pressure sensor 45 detects the fuel pressure upstream of the shutoff valve 41 as a tank supply pressure (first fuel pressure), and outputs a tank supply pressure signal indicating the detection result to the 2nd-ECU 6.
  • the second pressure sensor 46 is a pressure sensor disposed on the filter 43. The second pressure sensor 46 detects the fuel pressure downstream of the regulator 42 as the regulator downstream pressure (second fuel pressure), and outputs a regulator downstream pressure signal indicating the detection result to the 2nd-ECU 6.
  • the fuel changeover switch 4 is a switch that allows the fuel to be changed manually.
  • the fuel changeover switch 4 outputs to the 2nd-ECU 6 a fuel designation signal indicating the state of the switch, that is, whether liquid fuel is designated as fuel used in the engine 1 or gaseous fuel is designated.
  • the 1st-ECU 5 performs operation control of the engine 1 mainly using liquid fuel.
  • the 1st-ECU 5 includes a waveform shaping circuit 50, a rotation speed counter 51, an A / D converter 52, an ignition circuit 53, a fuel injection valve drive circuit 54, a pump drive circuit 55, a ROM (Read Only Memory ) 56, a RAM (Random Access Memory) 57, a communication circuit 58 and a CPU (Central Processing Unit) 59.
  • the waveform shaping circuit 50 converts the crank signal input from the crank angle sensor 28 into a square-wave pulse signal (for example, a negative crank signal is set to a high level and a positive polarity signal and a ground level crank signal are set to a low level).
  • the waveform is shaped and output to the rotation number counter 51 and the CPU 59. That is, this square-wave pulse signal is a signal whose period is the time required for the crankshaft 13 to rotate 20 °.
  • the square-wave pulse signal output from the waveform shaping circuit 50 is referred to as a crank pulse signal.
  • the rotation speed counter 51 calculates the engine rotation speed based on the crank pulse signal input from the waveform shaping circuit 50 and outputs the calculation result to the CPU 59.
  • the A / D converter 52 includes an intake pressure signal input from the intake pressure sensor 24, an intake air temperature signal input from the intake air temperature sensor 25, a throttle opening signal input from the throttle opening sensor 26, and a cooling water temperature sensor.
  • the cooling water temperature signal input from 27 is converted into a digital signal (intake pressure value, intake air temperature value, throttle opening value, cooling water temperature value) and output to the CPU 59.
  • the ignition circuit 53 includes a capacitor for accumulating a power supply voltage supplied from a battery (not shown). In response to a request from the CPU 59, the primary winding of the ignition coil 17 using the electric charge accumulated in the capacitor as an ignition voltage signal. To discharge.
  • the fuel injection valve drive circuit 54 generates a fuel injection valve drive signal in response to a request from the CPU 59 and outputs the fuel injection valve drive signal to the liquid fuel injection valve 22.
  • the pump drive circuit 55 generates a pump drive signal in response to a request from the CPU 59 and outputs the pump drive signal to the fuel pump 31.
  • the ROM 56 is a non-volatile memory that stores in advance an engine control program for realizing various functions of the CPU 59 and various setting data.
  • the RAM 57 is a volatile working memory used as a temporary data storage destination when the CPU 59 executes an engine control program and performs various operations.
  • the communication circuit 58 is a communication interface that realizes data communication between the 1st-ECU 5 and the 2nd-ECU 6 under the control of the CPU 59, and is connected to the 2nd-ECU 6 via a communication cable.
  • the CPU 59 receives the crank pulse signal input from the waveform shaping circuit 50, the engine speed obtained from the speed counter 51, and the intake pressure obtained from the A / D converter 52. Based on the value, the intake air temperature value, the throttle opening value, the cooling water temperature value, and various information obtained from the 2nd-ECU 6 via the communication circuit 58, the operation control of the engine 1 with the liquid fuel is performed.
  • the CPU 59 monitors the rotation state of the crankshaft 13 (in other words, the position of the piston 11 in the cylinder 10) based on the crank pulse signal input from the waveform shaping circuit 50, and the piston 11 is ignited. When the position corresponding to the timing is reached, an ignition control signal is output to the ignition circuit 53 to spark the spark plug 16.
  • the CPU 59 drives the fuel pump 31 by outputting a fuel supply control signal to the pump drive circuit 55, and the liquid fuel injection valve 22. Supply liquid fuel to Further, the CPU 59 outputs the fuel injection control signal to the fuel injection valve drive circuit 54 when the piston 11 reaches the position corresponding to the fuel injection timing, thereby injecting the liquid fuel by the liquid fuel injection valve 22. To do.
  • the CPU 59 transmits the position of the piston 11 recognized by the CPU 59, the engine speed, the intake pressure value, the intake air temperature value, the throttle opening value, and the cooling water temperature value to the 2nd-ECU 6 via the communication circuit 58. It also has a function to do.
  • the 2nd-ECU 6 performs operation control of the engine 1 mainly using gaseous fuel.
  • the 2nd-ECU 6 includes a communication circuit 60, an A / D converter 61, a fuel injection valve drive circuit 62, a shutoff valve drive circuit 63, a ROM 64, a RAM 65, a timer 66, and a CPU 67.
  • the communication circuit 60 is a communication interface that realizes data communication between the 1st-ECU 5 and the 2nd-ECU 6 under the control of the CPU 67, and is connected to the 1st-ECU 5 (specifically, the communication circuit 58) via a communication cable. Yes.
  • the A / D converter 61 converts the tank supply pressure signal input from the first pressure sensor 45 and the regulator downstream pressure signal input from the second pressure sensor 46 into digital signals (tank supply pressure Pt and regulator downstream pressure Pf). ) And output to the CPU 67.
  • the fuel injection valve drive circuit 62 generates a fuel injection valve drive signal in response to a request from the CPU 67 and outputs the fuel injection valve drive signal to the gaseous fuel injection valve 23.
  • the cutoff valve drive circuit 63 generates a cutoff valve drive signal in response to a request from the CPU 67 and outputs the cutoff valve drive signal to the cutoff valve 41.
  • the ROM 64 is a non-volatile memory that stores in advance an engine control program for realizing various functions of the CPU 67 and various setting data.
  • the RAM 65 is a volatile working memory used as a temporary storage destination of data when the CPU 67 executes an engine control program and performs various operations.
  • the timer 66 performs time counting in response to a request from the CPU 67 and notifies the CPU 67 of the time count result.
  • the CPU 67 (control unit) follows the engine control program stored in the ROM 64, the fuel designation signal input from the fuel changeover switch 4, the position of the piston 11 obtained from the 1st-ECU 5 via the communication circuit 60, and the engine rotation. Based on the number, intake pressure value, intake air temperature value, throttle opening value and cooling water temperature value, tank supply pressure Pt and regulator downstream pressure Pf obtained from the A / D converter 61 Take control.
  • the CPU 67 determines that liquid fuel is designated as the fuel to be used in the engine 1 as a result of the analysis of the fuel designation signal input from the fuel changeover switch 4, the CPU 67 passes through the communication circuit 60. An operation instruction using the liquid fuel is transmitted to the 1st-ECU 5 (specifically, the communication circuit 58).
  • the CPU 67 determines that the gaseous fuel is designated as the fuel to be used in the engine 1 as a result of the analysis of the fuel designation signal input from the fuel changeover switch 4, the tank supply obtained from the A / D converter 61 is obtained.
  • a delay time Td from the energization start timing of the shutoff valve 41 to the fuel injection start timing is set according to the pressure Pt and the regulator downstream pressure Pf, and fuel injection is started after the elapse of the delay time Td from the energization start of the shutoff valve 41. It has a function.
  • the CPU 67 corresponds to the tank supply pressure Pt and the regulator downstream pressure Pf obtained from the A / D converter 61 with reference to a three-dimensional map as shown in FIG.
  • the main valve opening time Tm to be acquired is acquired, and the acquired main valve opening time Tm is set as the delay time Td.
  • the main valve opening time Tm is the time taken from the energization of the shutoff valve 41 to the opening of the main valve 104.
  • the main valve opening time Tm varies depending on the pressure upstream and downstream of the shutoff valve 41 (tank supply pressure Pt and regulator downstream pressure Pf). If the change tendency of the main valve opening time Tm is obtained in advance, an appropriate delay time can be set according to the actually detected tank supply pressure Pt and regulator downstream pressure Pf. In the present embodiment, a change tendency of the main valve opening time Tm depending on the tank supply pressure Pt and the regulator downstream pressure Pf of the cutoff valve 41 to be used is obtained in advance, and a three-dimensional map showing these relationships is created. This is stored in the ROM 64.
  • FIG. 5 is a flowchart showing a control process of the shutoff valve 41 and the gaseous fuel injection valve 23 executed by the CPU 67.
  • the CPU 67 first analyzes the fuel designation signal input from the fuel changeover switch 4 and determines whether or not gaseous fuel is designated as the fuel to be used in the engine 1 (step). S1).
  • step S ⁇ b> 2 the case of “Yes”
  • step S ⁇ b> 11 the case of “No”
  • step S1 determines whether or not the delay time Td has been set in the timer 66 (step S2).
  • step S7 determines whether or not the delay time Td has been set in the timer 66.
  • step S2 the CPU 67 acquires the tank supply pressure Pt and the regulator downstream pressure Pf from the A / D converter 61 (step S3).
  • the CPU 67 further refers to the three-dimensional map stored in the ROM 64 to obtain the main valve opening time Tm corresponding to the tank supply pressure Pt and the regulator downstream pressure Pf, and the main valve opening time.
  • Tm is set as the delay time Td (step S4).
  • a value obtained by adding a margin to the main valve opening time Tm may be set as the delay time Td.
  • the CPU 67 starts energization of the shutoff valve 41 by requesting the shutoff valve drive circuit 63 to generate a shutoff valve drive signal (step S5). Then, the CPU 67 sets a timer with a delay time Td for the timer 66 simultaneously with the start of energization of the shutoff valve 41 (step S6). Thereby, the timer 66 starts time counting of the delay time Td.
  • the CPU 67 determines whether or not the delay time Td has elapsed based on the time count result notified from the timer 66 when “Yes” in the above step S2 or after the completion of the processing in the above step S6 (step S6). S7).
  • the process proceeds to step S8, whereas in the case of “No”, the present control process is terminated.
  • step S7 the CPU 67 determines whether or not the shutoff valve 41 is normally opened (that is, whether the pilot valve 103 and the main valve 104 of the shutoff valve 41 are both opened) (step S8).
  • the process proceeds to step S ⁇ b> 9, while in the case of “No”, this control process is terminated.
  • Whether or not the shut-off valve 41 is normally opened can be determined by the following method. Depending on the open / close state of the pilot valve 103 and the main valve 104 of the shut-off valve 41, the time-varying characteristics of the pressure downstream of the shut-off valve 41 having these valves (regulator downstream pressure Pf) tend to be different. Accordingly, if the correspondence relationship between the time variation characteristic of the regulator downstream pressure Pf and the open / closed state of the pilot valve 103 and the main valve 104 is obtained in advance, the pilot valve 103 is obtained from the measured value of the regulator downstream pressure Pf based on the correspondence relationship. In addition, the open / closed state of the main valve 104 can be known.
  • the correspondence relationship between the time variation characteristic of the regulator downstream pressure Pf and the open / closed states of the pilot valve 103 and the main valve 104 is obtained when the regulator downstream pressure Pf is equal to or lower than the threshold before the shutoff valve 41 is energized (first case). : A case where the differential pressure between the upstream and downstream of the shutoff valve 41 is large) and a case where the regulator downstream pressure Pf exceeds the threshold (second case: a case where the differential pressure between the upstream and downstream of the shutoff valve 41 is small). Different. Therefore, it is necessary to use different correspondence relationships between the first case and the second case.
  • FIG. 6 shows the correspondence between the time variation characteristic of the regulator downstream pressure Pf and the open / closed states of the pilot valve 103 and the main valve 104 in the first case.
  • 6A shows each tendency of the time variation characteristic of the regulator downstream pressure Pf
  • FIG. 6B shows the open / closed state of the pilot valve 103 and the main valve 104 corresponding to each tendency.
  • both the pilot valve 103 and the main valve 104 are closed (see pattern d), or the pilot valve 103 is closed and the main valve 104 is opened. (See pattern c).
  • the regulator downstream pressure Pf exceeds the threshold value Pth after the delay time Td has elapsed from the start of energization of the shutoff valve 41, it is estimated that at least the pilot valve 103 has been normally opened. The Therefore, by activating the gaseous fuel injection valve 23, the fuel downstream of the shutoff valve 41 (downstream of the regulator 42) is consumed. After the activation of the gaseous fuel injection valve 23, as shown in FIG. 6A, when the regulator downstream pressure Pf becomes equal to or lower than the threshold value Pth (see the one-dot chain line portion), the fuel consumption downstream of the regulator 42 from the upstream. Therefore, it is estimated that the main valve 104 is closed as shown in FIG. 6B (see pattern b).
  • the main valve 104 is also opened as shown in FIG. 6B (see pattern a). That is, in this case, it can be determined that the shut-off valve 41 is normally opened.
  • FIG. 7 shows a correspondence relationship between the time variation characteristics of the regulator downstream pressure Pf and the open / close states of the pilot valve 103 and the main valve 104 in the second case.
  • 7A shows each tendency of the time change characteristic of the downstream pressure P
  • FIG. 7B shows the open / closed state of the pilot valve 103 and the main valve 104 corresponding to each tendency.
  • the fuel downstream of the regulator 42 is consumed by starting the gaseous fuel injection valve 23 after the delay time Td has elapsed from the start of energization of the shutoff valve 41. .
  • the regulator downstream pressure Pf becomes equal to or lower than the threshold value Pth (see the two-dot chain line portion)
  • the fuel consumption downstream of the regulator 42 is upstream. Therefore, it is estimated that at least the main valve 104 is closed as shown in FIG. 7B (see patterns f and h).
  • the regulator downstream pressure Pf has not become equal to or lower than the threshold value Pth after the start of the gaseous fuel injection valve 23 (see the solid line portion)
  • the fuel consumption downstream of the regulator 42 Since it is considered that the fuel supply from the upstream is in time, it is estimated that at least the main valve 104 is in an open state as shown in FIG. 7B (see patterns e and g). That is, in this case, it can be determined that the shut-off valve 41 is normally opened.
  • step S ⁇ b> 8 the CPU 67 determines whether or not the shut-off valve 41 is normally opened by the above method.
  • cranking is started (step S9), and further, the fuel injection valve drive circuit 62 is requested to generate a fuel injection valve drive signal, whereby the fuel by the gaseous fuel injection valve 23 is Injection is started (step S10).
  • step S 1 if “No” in step S 1, that is, if liquid fuel is designated as the fuel used in the engine 1, the CPU 67 finishes generating the fuel injection valve drive signal for the fuel injection valve drive circuit 62. By requesting, the fuel injection by the gaseous fuel injection valve 23 is terminated (step S11). Further, the CPU 67 requests the shut-off valve drive circuit 63 to finish generating the shut-off valve drive signal, thereby terminating the energization of the shut-off valve 41 (closing the shut-off valve 41) and ending this control process. (Step S12). When the liquid fuel is designated as the fuel to be used in the engine 1, the CPU 67 transmits the operation instruction using the liquid fuel to the 1st-ECU 5 via the communication circuit 60, thereby switching to the operation using the liquid fuel.
  • an appropriate delay time Td can be set according to the actually detected tank supply pressure Pt and regulator downstream pressure Pf. Therefore, by delaying the fuel injection start timing using the set delay time Td, the fuel injection start timing after energization of the shutoff valve 41 can be appropriately controlled, and fuel supply is insufficient due to the inability to open the main valve 104. Can be avoided.
  • FIG. 8 is a schematic configuration diagram of a bi-fuel engine system B in the second embodiment.
  • the same components as those in FIG. 1 (first embodiment) are denoted by the same reference numerals. Therefore, in the following, for simplification of description, the bi-fuel engine system B in the second embodiment will be described by paying attention only to differences from the first embodiment, and description of points that are the same will be omitted.
  • the difference from the first embodiment is that the first pressure sensor 45 is deleted and the regulator downstream pressure signal output from the second pressure sensor 46. Is input to the 2nd-ECU 6 '.
  • FIG. 9 is a block diagram showing the internal configuration of the 2nd-ECU 6 '.
  • the 2nd-ECU 6 ′ in the second embodiment differs from the first embodiment in that the regulator downstream pressure signal input from the second pressure sensor 46 is The point that the A / D converter 61 ′ that converts to a digital signal (regulator downstream pressure Pf) and outputs it to the CPU 67 ′ is built in, and the regulator downstream pressure Pf becomes equal to or higher than the predetermined pressure after the shutoff valve 41 is energized.
  • a CPU 67 ′ having a function of starting fuel injection after a delay time Td set in advance based on a specified pressure upstream of the regulator 42 and a specified pressure downstream of the regulator 42 is incorporated. (Other functions of the CPU 67 ′ are the same as those of the CPU 67 of the first embodiment).
  • FIG. 10 shows a change characteristic of the regulator downstream pressure Pf from the start of energization of the shutoff valve 41 when the tank supply pressure Pt is a predetermined value.
  • the delay time Td is set by, for example, the tank supply guarantee pressure and the regulator specified pressure P1.
  • the tank supply guarantee pressure is a guarantee pressure of the gaseous fuel supplied from the gaseous fuel tank 40
  • the regulator specified pressure P ⁇ b> 1 is a set pressure downstream of the regulator 42.
  • the uniquely opened valve opening time t1 of the main valve 104 is set in advance as a delay time Td.
  • the delay time Td may be set with a margin for the valve opening time t1.
  • FIG. 11 is a flowchart showing a control process of the shutoff valve 41 and the gaseous fuel injection valve 23 executed by the CPU 67 '.
  • the CPU 67 ′ first analyzes the fuel designation signal input from the fuel changeover switch 4 and determines whether or not gaseous fuel is designated as the fuel to be used in the engine 1 (step). S21).
  • the process proceeds to step S22, whereas in the case of “No”, the process proceeds to step S29.
  • step S21 the CPU 67 'requests the shutoff valve drive circuit 63 to generate a shutoff valve drive signal, thereby starting energization of the shutoff valve 41 (step S22). Then, the CPU 67 'determines whether or not the regulator downstream pressure Pf is equal to or higher than a predetermined pressure (step S23).
  • the process proceeds to step S24, whereas in the case of “No”, the present control process is terminated.
  • step S23 the CPU 67 'determines whether or not the delay time Td has been set in the timer 66 (step S24).
  • step S24 the process proceeds to step S26, whereas in the case of “No”, the timer 66 is set for the delay time Td (step S25). Thereby, the timer 66 starts time counting of the delay time Td.
  • the CPU 67 ′ determines whether or not the delay time Td has elapsed based on the time count result notified from the timer 66 in the case of “Yes” in the above step S24 or after the completion of the processing in the above step S25 ( Step S26).
  • the process proceeds to step S27, whereas in the case of “No”, the present control process is terminated.
  • the CPU 67 'starts cranking step S27.
  • the fuel injection by the gaseous fuel injection valve 23 is started by requesting the fuel injection valve drive circuit 62 to generate a fuel injection valve drive signal (step S28).
  • step S 21 that is, if liquid fuel is designated as the fuel used in the engine 1, the CPU 67 ′ finishes generating the fuel injection valve drive signal for the fuel injection valve drive circuit 62.
  • the fuel injection by the gaseous fuel injection valve 23 is terminated (step S29).
  • step S30 by requesting the shut-off valve drive circuit 63 to finish generating the shut-off valve drive signal, the energization of the shut-off valve 41 is finished (the shut-off valve 41 is closed), and this control process is finished (step). S30).
  • the main valve opening time Tm that is uniquely determined by the specified pressure upstream of the regulator 42 and the specified pressure downstream of the regulator 42 is set in advance as the delay time Td. (At this time, it may be set with a margin or may not be provided with a margin.)
  • fuel injection is started after a preset delay time Td has elapsed. By doing so, it is possible to appropriately control the fuel injection start timing after the shutoff valve 41 is energized, and to avoid the shortage of fuel supply due to the inability to open the main valve 104.
  • this invention is not limited to the said 1st and 2nd embodiment, The following modifications are mentioned.
  • the three-dimensional map shown in FIG. 4 is prepared for each of a plurality of different battery voltages, a battery voltage detection circuit is provided in the 2nd-ECU 6, and the battery voltage detected by the detection circuit is determined. What is necessary is just to give CPU67 the function to change the three-dimensional map to refer.
  • fuel temperature or intake air temperature may be used as a parameter. That is, the delay time Td may be set based on at least one of the battery voltage, the fuel temperature, and the intake air temperature in addition to the tank supply pressure Pt and the regulator downstream pressure Pf. As a result, the delay time Td can be accurately set according to the operating condition of the engine 1, and the occurrence of insufficient fuel supply can be reliably avoided.
  • the delay time Td set in advance based on the specified pressure upstream of the regulator 42 and the specified pressure downstream of the regulator 42 is used is exemplified.
  • the delay time Td may be set in advance based on the battery voltage.
  • a delay time Td is set in advance based on a specified pressure upstream of the regulator 42 and a specified pressure downstream of the regulator 42, and a battery voltage detection circuit is connected to the 2nd-ECU 6.
  • the CPU 67 ′ has a function of changing the delay time Td to be used according to the battery voltage detected by the detection circuit.
  • fuel temperature or intake air temperature may be used as a parameter. That is, the delay time Td may be set in advance based on at least one of the battery voltage, the fuel temperature, and the intake air temperature in addition to the specified pressure upstream of the regulator 42 and the specified pressure downstream of the regulator 42.
  • the 1st-ECU 5 responsible for operation control using liquid fuel and the 2nd-ECUs 6 and 6 ′ responsible for operation control using gas fuel and failure diagnosis of the shutoff valve 41 are separately provided.
  • the bi-fuel engine systems A and B are illustrated, a configuration in which the functions of these two ECUs are integrated into one ECU may be adopted.
  • the bifuel engine systems A and B have been described as examples of the fuel supply system according to the present invention.
  • the present invention is not limited to this, and only gaseous fuel is used.
  • the present invention can be applied even to a mono-fuel engine system that supplies a single engine.
  • the kick pilot structure of the shut-off valve 41 shown in FIG. 12 is merely an example, and the valve is opened by lowering the differential pressure between upstream and downstream after the first valve body that opens in advance when energized.
  • the present invention can be applied to any shut-off valve having a second valve body.
  • the fuel supply control device and the fuel supply system of the present invention when a so-called kick pilot structure shut-off valve is used, the fuel injection start timing after energization of the shut-off valve is appropriately controlled so that the fuel supply is insufficient. It is possible to provide a fuel supply system and a fuel supply control device capable of avoiding the occurrence.
  • A, B Bi-fuel engine system (fuel supply system) DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Liquid fuel supply part 3 ... Gaseous fuel supply part 4 ... Fuel switch 5 ... 1st-ECU (Electronic Control Unit) 6, 6 '... 2nd-ECU (fuel supply control device) 23 ... Gaseous fuel injection valve 41 ... Shut-off valve 67, 67 '... CPU (control part) 103 ... Pilot valve (first valve body) 104 ... Main valve (second valve element)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 本発明の燃料供給制御装置は、気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁の通電制御、及び燃料噴射制御を行う燃料供給制御装置であって、前記遮断弁の上流の第1燃料圧力及び前記レギュレータの下流の第2燃料圧力に応じて前記遮断弁の通電開始時期から燃料噴射開始時期までの遅延時間を設定し、前記遮断弁の通電開始から前記遅延時間の経過後に燃料噴射を開始する制御部を備える。

Description

燃料供給制御装置及び燃料供給システム
 本発明は、燃料供給制御装置及び燃料供給システムに関する。
 本願は、2010年3月26日に、日本に出願された特願2010-071745号に基づき優先権を主張し、その内容をここに援用する。
 近年では、車両の燃費性能及び環境保護性能を向上させる技術として、ガソリン等の液体燃料と圧縮天然ガス(CNG)等の気体燃料とを選択的に切替えて単一エンジンに供給するバイフューエルエンジンシステムの導入が進んでいる。このバイフューエルエンジンシステムでは、一般的に気体燃料を使用する場合、ガスタンクに充填された高圧の気体燃料をレギュレータによって所望の圧力まで減圧した後、気体燃料専用の燃料噴射弁に供給する。
 ガスタンクからレギュレータに至る燃料供給経路には電磁式の遮断弁が介挿されており、この遮断弁の開閉状態を制御装置によって制御することで、気体燃料の供給開始と停止との切替えが可能である。例えば、下記特許文献1には、2つの圧力センサを用いて遮断弁前後の圧力差を検出し、その検出結果に応じて遮断弁を開弁させる電流値を制御することで、エンジンに対する気体燃料の供給タイミングを適切に制御する技術が開示されている。
特開2002-256980号公報
 遮断弁の構造として、図12に示すようなキックパイロット構造が知られている。このキックパイロット構造の遮断弁では、非通電時において、プランジャ101がスプリング102によって押圧されて、プランジャ101に一体的に設けられたパイロットバルブ103が、メインバルブ104に設けられたパイロット弁座105と接触した状態となる。つまり、非通電時において、パイロットバルブ103及びメインバルブ104は共に閉弁状態となり、上流(ガスタンク側)流路106から下流(レギュレータ側)流路107への気体燃料の流通が遮断される(図12(a)参照)。
 一方、遮断弁の通電によって、スプリング102の反発力より強い吸引力がプランジャ101に作用すると、この吸引力によるプランジャ101の移動によってパイロットバルブ103がパイロット弁座105から離れ(つまり開弁し)、気体燃料が上流流路106から下流流路107へ流通し始める(図12(b)参照)。この時点では、未だ上流流路106と下流流路107との差圧が大きいため、メインバルブ104は閉弁状態のままである(プランジャ101の移動もストップする)。
 そして、パイロットバルブ103の開弁後、上流流路106と下流流路107との差圧が小さくなると、通電による吸引力が上回った時点でプランジャ101は再び移動を開始する。このプランジャ101の移動によってメインバルブ104が開弁し、最大流量で気体燃料が上流流路106から下流流路107へ流通し始める(図12(c)参照)。このように、キックパイロット構造の遮断弁においては、遮断弁の通電からメインバルブ104の開弁までに時間がかかる。
 このようなキックパイロット構造の遮断弁を用いた場合において、遮断弁の通電後、メインバルブ104が開弁する前に燃料噴射を開始すると、メインバルブ104の上流下流間の差圧が低下せず、メインバルブ104が閉弁状態のままとなる虞がある。つまり、燃料供給不足に陥る虞がある。
 本発明は、上述した事情に鑑みてなされたものであり、いわゆるキックパイロット構造の遮断弁を用いた場合において、遮断弁通電後の燃料噴射開始時期を適切に制御し、以って燃料供給不足の発生を回避可能な燃料供給システム及び燃料供給制御装置を提供することを目的とする。
 上記課題を解決するために、本発明の燃料供給制御装置は、気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開く第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁の通電制御、及び燃料噴射制御を行う燃料供給制御装置であって、前記遮断弁の上流の第1燃料圧力及び前記レギュレータの下流の第2燃料圧力に応じて前記遮断弁の通電開始時期から燃料噴射開始時期までの遅延時間を設定し、前記遮断弁の通電開始から前記遅延時間の経過後に燃料噴射を開始する制御部を備える。
 本発明の燃料供給制御装置において、前記制御部は、前記第1燃料圧力及び前記第2燃料圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つに応じて前記遅延時間を設定してもよい。
 本発明の他の燃料供給制御装置は、気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁の通電制御、及び燃料噴射制御を行う燃料供給制御装置であって、前記遮断弁の通電開始後、前記レギュレータの下流の燃料圧力が所定圧以上となった場合、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力を基に予め設定されている遅延時間の経過後に燃料噴射を開始する制御部を備える。
 本発明の他の燃料供給制御装置において、前記遅延時間は、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つを基に予め設定されていてもよい。
 上記課題を解決するために、本発明の燃料供給システムは、気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁を備える燃料供給システムであって、前記遮断弁の上流の燃料圧力を第1燃料圧力として検出する第1圧力センサと、前記レギュレータの下流の燃料圧力を第2燃料圧力として検出する第2圧力センサと、前記第1燃料圧力及び前記第2燃料圧力に応じて前記遮断弁の通電開始時期から燃料噴射開始時期までの遅延時間を設定し、前記遮断弁の通電開始から前記遅延時間の経過後に燃料噴射を開始する燃料供給制御装置とを備える。
 遮断弁の通電開始から第2の弁体が開弁するまでの時間は、第1燃料圧力及び第2燃料圧力に依存して変化する。つまり、その変化傾向を予め求めておけば、実際に検出された第1燃料圧力及び第2燃料圧力に応じて適切な遅延時間を設定することができる。従って、そのように設定した遅延時間を用いて燃料噴射開始時期を遅らせることにより、遮断弁通電後の燃料噴射開始時期を適切に制御することができ、第2の弁体の開弁不能による燃料供給不足の発生を回避することができる。
 また、本発明では、本発明の燃料供給システムにおいて、前記燃料供給制御装置は、前記第1燃料圧力及び前記第2燃料圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つに応じて前記遅延時間を設定してもよい。
 この場合、エンジンの運転状況に応じて精度良く遅延時間を設定することができ、燃料供給不足の発生を確実に回避することできる。
 本発明の他の燃料供給システムは、気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁を備える燃料供給システムであって、前記レギュレータの下流の燃料圧力を検出する圧力センサと、前記遮断弁の通電開始後、前記燃料圧力が所定圧以上となった場合、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力を基に予め設定されている遅延時間の経過後に燃料噴射を開始する燃料供給制御装置とを備える。
 前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力が既知の場合、実際に検出したレギュレータの下流の燃料圧力が所定圧以上の時には、第2の弁体の開弁時間は一義的に定まる。従って、一義的に定まる第2の弁体の開弁時間を遅延時間として予め設定しておけば(この時、マージンを持たせて設定しても良い)、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力が一定条件下において、遮断弁の通電開始後、予め設定されている遅延時間の経過後に燃料噴射を開始することにより、遮断弁通電後の燃料噴射開始時期を適切に制御することができ、第2の弁体の開弁不能による燃料供給不足の発生を回避することができる。また、この場合、圧力センサは1つで足りるので、コストの削減を図ることができる。
 本発明の他の燃料供給システムにおいて、前記遅延時間は、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つを基に予め設定されていてもよい。
 この場合、エンジンの運転状況に応じた精度の良い遅延時間を用いて燃料噴射開始時期を制御することができるため、燃料供給不足の発生を確実に回避することできる。
 本発明によれば、いわゆるキックパイロット構造の遮断弁を用いた場合において、遮断弁通電後の燃料噴射開始時期を適切に制御し、以って燃料供給不足の発生を回避可能な燃料供給システム及び燃料供給制御装置を提供することができる。
第1実施形態におけるバイフューエルエンジンシステムA(燃料供給システム)の構成概略図である。 第1実施形態における1st-ECU5のブロック構成図である。 第1実施形態における2nd-ECU6(燃料供給制御装置)のブロック構成図である。 遅延時間Tdの設定に使用される、レギュレータ下流圧Pfとタンク供給圧Ptとメインバルブ開弁時間Tmとの対応関係を示す3次元マップの一例である。 第1実施形態におけるCPU67の動作フローチャートである。 遮断弁41が正常に開弁したかを判定する手法に関する第1説明図である。 遮断弁41が正常に開弁したかを判定する手法に関する第2説明図である。 第2実施形態におけるバイフューエルエンジンシステムB(燃料供給システム)の構成概略図である。 第2実施形態における2nd-ECU6’(燃料供給制御装置)のブロック構成図である。 タンク供給圧Ptがある所定の値だった場合の、パイロットバルブ103の開弁からの遮断弁41の下流圧の変化特性を示す図である。 第2実施形態におけるCPU67’の動作フローチャートである。 キックパイロット構造の遮断弁の内部構成例である。
 以下、本発明の一実施形態について、図面を参照しながら説明する。なお、以下では、本発明に係る燃料供給システムとして、ガソリン等の液体燃料と圧縮天然ガス(CNG)等の気体燃料とを選択的に切替えて単一エンジンに供給するバイフューエルエンジンシステムを例示して説明する。また、本発明に係る燃料供給制御装置として、そのバイフューエルエンジンシステムで使用されるECU(Electronic Control Unit)を例示して説明する。
〔第1実施形態〕
 図1は、第1実施形態におけるバイフューエルエンジンシステムAの構成概略図である。この図1に示すように、第1実施形態におけるバイフューエルエンジンシステムAは、エンジン1と、液体燃料供給部2と、気体燃料供給部3と、燃料切替スイッチ4と、1st-ECU5と、2nd-ECU6(燃料供給制御装置)とから概略構成されている。
 エンジン1は、液体燃料と気体燃料とを選択的に使用可能な4サイクルエンジンであり、シリンダ10、ピストン11、コンロッド12、クランクシャフト13、吸気バルブ14、排気バルブ15、点火プラグ16、点火コイル17、吸気管18、排気管19、エアクリーナ20、スロットルバルブ21、液体燃料噴射弁22、気体燃料噴射弁23、吸気圧センサ24、吸気温センサ25、スロットル開度センサ26、冷却水温センサ27及びクランク角度センサ28を備えている。
 シリンダ10は、内部に設けられたピストン11を、吸気、圧縮、燃焼(膨張)、排気の4行程を繰り返すことによって往復運動させるための中空の円筒形状部材である。シリンダ10は、空気と燃料との混合気を燃焼室10bに供給するための流路である吸気ポート10a、上記混合気を留め、圧縮行程において圧縮された混合気を燃焼行程において燃焼させるための空間である燃焼室10b、排気行程において燃焼室10bから排気ガスを外部に排出するための流路である排気ポート10cが設けられている。このシリンダ10の外壁には、冷却水を循環させるための冷却水路10dが設けられている。
 ピストン11には、ピストン11の往復運動を回転運動に変換するためのクランクシャフト13がコンロッド12を介して連結されている。
 クランクシャフト13は、ピストン11の往復方向と直交する方向に延在しており、不図示のフライホイール、ミッションギア等と連結されている。このクランクシャフト13には、クランク角度を検出するために用いられるロータ13aが同軸接続されている。このロータ13aの外周には、複数の突起が回転方向に対して、各突起の後端が等角度間隔(例えば20°間隔)になるように設けられている。
 吸気バルブ14は、吸気ポート10aにおける燃焼室10b側の開口部を開閉するための弁部材であり、不図示のカムシャフトと連結されており、当該カムシャフトによって各行程に応じて開閉駆動される。
 排気バルブ15は、排気ポート10cにおける燃焼室10b側の開口部を開閉するための弁部材であり、不図示のカムシャフトと連結されており、当該カムシャフトによって各行程に応じて開閉駆動される。
 点火プラグ16は、燃焼室10bの内側に電極が露出するように燃焼室10bの上部に設置されており、点火コイル17から供給される高電圧信号によって電極間に火花を発生する。
 点火コイル17は、1次巻線と2次巻線からなるトランスであり、1st-ECU5から1次巻線に供給される点火用電圧信号を昇圧して2次巻線から点火プラグ16に供給する。
 吸気管18は、空気供給用の配管であり、内部の吸気流路18aが吸気ポート10aと連通するようにシリンダ10に連結されている。
 排気管19は、排気ガス排出用の配管であり、内部の排気流路19aが排気ポート10cと連通するようにシリンダ10に連結されている。
 エアクリーナ20は、吸気管18の上流に設けられており、外部から取り込まれる空気を清浄化して吸気流路18aに送り込む。
 スロットルバルブ21は、吸気流路18aの内部に設けられており、スロットル操作(もしくはアクセル操作)に応じて回動する。つまり、スロットルバルブ21の回動によって吸気流路18aの断面積が変化し、吸気量が変化する。
 液体燃料噴射弁22は、吸気ポート10a側に噴射口が露出するように吸気管18に設置された電磁弁(例えばソレノイドバルブ等)である。液体燃料噴射弁22は、1st-ECU5から供給される燃料噴射弁駆動信号に応じて、液体燃料供給部2から供給される液体燃料(ガソリン等)を噴射口から噴射する。
 気体燃料噴射弁23は、吸気ポート10a側に噴射口が露出するように吸気管18に設置された電磁弁(例えばソレノイドバルブ等)である。気体燃料噴射弁23は、2nd-ECU6から供給される燃料噴射弁駆動信号に応じて、気体燃料供給部3から供給される気体燃料(CNG等)を噴射口から噴射する。
 吸気圧センサ24は、例えばピエゾ抵抗効果を利用した半導体圧力センサである。吸気圧センサ24は、スロットルバルブ21の下流において吸気流路18a側に感度面が露出するように吸気管18に設置されており、吸気管18内の吸気圧に応じた吸気圧信号を1st-ECU5に出力する。
 吸気温センサ25は、スロットルバルブ21の上流において吸気流路18a側に感部が露出するように吸気管18に設置されており、吸気管18内の吸気温度に応じた吸気温信号を1st-ECU5に出力する。
 スロットル開度センサ26は、スロットルバルブ21の開度に応じたスロットル開度信号を1st-ECU5に出力する。
 冷却水温センサ27は、冷却水路10d側に感部が露出するようにシリンダ10に設置されており、冷却水路10dを流れる冷却水の温度に応じた冷却水温信号を1st-ECU5に出力する。
 クランク角度センサ28は、例えば電磁式ピックアップセンサである。クランク角度センサ28は、ロータ13aの外周に設けられた各突起がセンサ近傍を通過する毎に極性の異なる1対のパルス状の信号を1st-ECU5に出力する。より詳細には、このクランク角度センサ28は、回転方向に対して各突起の前端が通過した場合、負極性の振幅を有するパルス状の信号を出力し、回転方向に対して各突起の後端が通過した場合、正極性の振幅を有するパルス状の信号を出力する。
 液体燃料供給部2は、液体燃料タンク30及び燃料ポンプ31から構成されている。
 液体燃料タンク30は、例えばガソリン燃料、或いはアルコール燃料などの液体燃料を貯留する容器である。
 燃料ポンプ31は、1st―ECU5から供給されるポンプ駆動信号に応じて、液体燃料タンク30内の液体燃料を汲み出して液体燃料噴射弁22の燃料入口に圧送する。
 気体燃料供給部3は、気体燃料タンク40、遮断弁41、レギュレータ42、フィルタ43、リリーフバルブ44、第1圧力センサ45及び第2圧力センサ46から構成されている。
 気体燃料タンク40は、例えばCNG等の高圧の気体燃料が充填された耐圧容器である。
 遮断弁41は、気体燃料タンク40からレギュレータ42に至る燃料供給経路に介挿されたキックパイロット構造の遮断弁である。遮断弁41は、2nd-ECU6から供給される遮断弁駆動信号に応じて開弁動作及び閉弁動作を行うことで、気体燃料タンク40からの気体燃料の供給開始と停止を切替える。なお、このようなキックパイロット構造の遮断弁41は、図12を用いて説明したように、通電時に先行して開弁するパイロットバルブ103(第1の弁体)と、パイロットバルブ103の開弁後に上流下流間の差圧低下によって開弁するメインバルブ104(第2の弁体)とを有している。
 レギュレータ42は、遮断弁41の下流に配置された調圧弁である。レギュレータ42は、遮断弁41の開弁時に気体燃料タンク40から供給される高圧の気体燃料を所望の圧力まで減圧した後、下流に設置されたフィルタ43に送出する。
 フィルタ43は、レギュレータ42から送出される気体燃料に含まれる異物(例えば気体燃料中のコンプレッサーオイル等の異物)を除去し、異物除去後の気体燃料を気体燃料噴射弁23の燃料入口に送出する。
 リリーフバルブ44は、レギュレータ42とフィルタ43とを結ぶ配管に連通する分岐配管に介挿された安全弁である。リリーフバルブ44は、レギュレータ42の下流の燃圧が設定圧力を越えた場合に開弁して気体燃料を外部に排出する(リリーフする)。
 第1圧力センサ45は、気体燃料タンク40から遮断弁41に至る燃料供給経路に配置された圧力センサである。第1圧力センサ45は、遮断弁41の上流の燃料圧力をタンク供給圧(第1燃料圧力)として検出し、その検出結果を示すタンク供給圧信号を2nd-ECU6に出力する。
 第2圧力センサ46は、フィルタ43に配置された圧力センサである。第2圧力センサ46は、レギュレータ42の下流の燃料圧力をレギュレータ下流圧(第2燃料圧力)として検出し、その検出結果を示すレギュレータ下流圧信号を2nd-ECU6に出力する。
 燃料切替スイッチ4は、手動操作による燃料の切替えを可能とするスイッチである。燃料切替スイッチ4は、そのスイッチの状態、つまりエンジン1で使用する燃料として液体燃料が指定されているのか、気体燃料が指定されているのかを示す燃料指定信号を2nd-ECU6に出力する。
 1st-ECU5は、主に液体燃料によるエンジン1の運転制御を行う。図2に示すように、1st-ECU5は、波形整形回路50、回転数カウンタ51、A/D変換器52、点火回路53、燃料噴射弁駆動回路54、ポンプ駆動回路55、ROM(Read Only Memory)56、RAM(Random Access Memory)57、通信回路58及びCPU(Central Processing Unit)59を備えている。
 波形整形回路50は、クランク角度センサ28から入力されるクランク信号を、方形波のパルス信号(例えば負極性のクランク信号をハイレベルとし、正極性及びグランドレベルのクランク信号をローレベルとする)に波形整形し、回転数カウンタ51及びCPU59に出力する。つまり、この方形波のパルス信号は、クランクシャフト13が20°回転する際に要した時間を周期とする信号である。以下では、この波形整形回路50から出力される方形波のパルス信号をクランクパルス信号と称す。
 回転数カウンタ51は、上記波形整形回路50から入力されるクランクパルス信号に基づいてエンジン回転数を算出し、その算出結果をCPU59に出力する。
 A/D変換器52は、吸気圧センサ24から入力される吸気圧信号、吸気温センサ25から入力される吸気温信号、スロットル開度センサ26から入力されるスロットル開度信号、及び冷却水温センサ27から入力される冷却水温信号を、デジタル信号(吸気圧値、吸気温値、スロットル開度値、冷却水温値)に変換してCPU59に出力する。
 点火回路53は、不図示のバッテリから供給される電源電圧を蓄積するコンデンサを備え、CPU59からの要求に応じて、コンデンサに蓄積された電荷を点火用電圧信号として点火コイル17の1次巻線に放電する。
 燃料噴射弁駆動回路54は、CPU59からの要求に応じて燃料噴射弁駆動信号を生成し、当該燃料噴射弁駆動信号を液体燃料噴射弁22に出力する。
 ポンプ駆動回路55は、CPU59からの要求に応じてポンプ駆動信号を生成し、当該ポンプ駆動信号を燃料ポンプ31に出力する。
 ROM56は、CPU59の各種機能を実現するためのエンジン制御プログラムや各種設定データを予め記憶している不揮発性メモリである。
 RAM57は、CPU59がエンジン制御プログラムを実行して各種動作を行う際に、データの一時保存先に用いられる揮発性のワーキングメモリである。
 通信回路58は、CPU59による制御の下、1st-ECU5と2nd-ECU6とのデータ通信を実現する通信インターフェイスであり、通信ケーブルを介して2nd-ECU6と接続されている。
 CPU59は、ROM56に記憶されているエンジン制御プログラムに従い、波形整形回路50から入力されるクランクパルス信号と、回転数カウンタ51から得られるエンジン回転数と、A/D変換器52から得られる吸気圧値、吸気温値、スロットル開度値及び冷却水温値と、通信回路58を介して2nd-ECU6から得られる各種情報とに基づいて、液体燃料によるエンジン1の運転制御を行う。
 具体的には、CPU59は、波形整形回路50から入力されるクランクパルス信号に基づいてクランクシャフト13の回転状態(換言すれば、シリンダ10内におけるピストン11の位置)を監視し、ピストン11が点火時期に対応する位置に到達した時点で、点火制御信号を点火回路53に出力することにより、点火プラグ16をスパークさせる。
 CPU59は、通信回路58を介して2nd-ECU6から液体燃料による運転指示を受信した場合、燃料供給制御信号をポンプ駆動回路55に出力することで燃料ポンプ31を駆動させて、液体燃料噴射弁22への液体燃料の供給を開始する。また、CPU59は、ピストン11が燃料噴射時期に対応する位置に到達した時点で、燃料噴射制御信号を燃料噴射弁駆動回路54に出力することにより、液体燃料噴射弁22による液体燃料の噴射を実施する。なお、このCPU59は、自身が認識しているピストン11の位置、エンジン回転数、吸気圧値、吸気温値、スロットル開度値及び冷却水温値を、通信回路58を介して2nd-ECU6に送信する機能も有している。
 2nd-ECU6は、主に気体燃料によるエンジン1の運転制御を行う。図3に示すように、2nd-ECU6は、通信回路60、A/D変換器61、燃料噴射弁駆動回路62、遮断弁駆動回路63、ROM64、RAM65、タイマ66及びCPU67を備えている。
 通信回路60は、CPU67による制御の下、1st-ECU5と2nd-ECU6とのデータ通信を実現する通信インターフェイスであり、通信ケーブルを介して1st-ECU5(詳細には通信回路58)と接続されている。
 A/D変換器61は、第1圧力センサ45から入力されるタンク供給圧信号と、第2圧力センサ46から入力されるレギュレータ下流圧信号を、デジタル信号(タンク供給圧Pt及びレギュレータ下流圧Pf)に変換してCPU67に出力する。
 燃料噴射弁駆動回路62は、CPU67の要求に応じて燃料噴射弁駆動信号を生成し、当該燃料噴射弁駆動信号を気体燃料噴射弁23に出力する。
 遮断弁駆動回路63は、CPU67の要求応じて遮断弁駆動信号を生成し、当該遮断弁駆動信号を遮断弁41に出力する。
 ROM64は、CPU67の各種機能を実現するためのエンジン制御プログラムや各種設定データを予め記憶している不揮発性メモリである。
 RAM65は、CPU67がエンジン制御プログラムを実行して各種動作を行う際に、データの一時保存先に用いられる揮発性のワーキングメモリである。
 タイマ66は、CPU67の要求に応じてタイムカウントを行い、そのタイムカウント結果をCPU67に通知する。
 CPU67(制御部)は、ROM64に記憶されているエンジン制御プログラムに従い、燃料切替スイッチ4から入力される燃料指定信号と、通信回路60を介して1st-ECU5から得られるピストン11の位置、エンジン回転数、吸気圧値、吸気温値、スロットル開度値及び冷却水温値と、A/D変換器61から得られるタンク供給圧Pt及びレギュレータ下流圧Pfとに基づいて、気体燃料によるエンジン1の運転制御を行う。
 具体的には、このCPU67は、燃料切替スイッチ4から入力される燃料指定信号の解析の結果、エンジン1で使用する燃料として液体燃料が指定されていると判断した場合、通信回路60を介して液体燃料による運転指示を1st-ECU5(詳細には通信回路58)に送信する。
 CPU67は、燃料切替スイッチ4から入力される燃料指定信号の解析の結果、エンジン1で使用する燃料として気体燃料が指定されていると判断した場合、A/D変換器61から得られたタンク供給圧Pt及びレギュレータ下流圧Pfに応じて、遮断弁41の通電開始時期から燃料噴射開始時期までの遅延時間Tdを設定し、遮断弁41の通電開始から遅延時間Tdの経過後に燃料噴射を開始する機能を有している。
 本実施形態では、CPU67は、ROM64に予め記憶されている図4に示すような3次元マップを参照して、A/D変換器61から得られたタンク供給圧Pt及びレギュレータ下流圧Pfに対応するメインバルブ開弁時間Tmを取得し、その取得したメインバルブ開弁時間Tmを遅延時間Tdとして設定する。こうすることにより、遮断弁41の通電開始から遅延時間Tdの経過後に燃料噴射を開始することにより、メインバルブ104の開弁不能による燃料供給不足の発生を回避することができる。ここで、メインバルブ開弁時間Tmとは、遮断弁41の通電からメインバルブ104の開弁までにかかる時間のことである。メインバルブ開弁時間Tmは、遮断弁41の上流及び下流の圧力(タンク供給圧Pt及びレギュレータ下流圧Pf)に依存して変化する。メインバルブ開弁時間Tmの変化傾向を予め求めておけば、実際に検出されたタンク供給圧Pt及びレギュレータ下流圧Pfに応じて適切な遅延時間を設定することができる。本実施形態では、使用される遮断弁41のタンク供給圧Pt及びレギュレータ下流圧Pfに依存するメインバルブ開弁時間Tmの変化傾向を予め求めて、これらの関係を示す3次元マップを作成し、これをROM64に記憶している。
 図5は、CPU67が実行する遮断弁41及び気体燃料噴射弁23の制御処理を示すフローチャートである。この図5に示すように、CPU67は、まず、燃料切替スイッチ4から入力される燃料指定信号を解析して、エンジン1で使用する燃料として気体燃料が指定されているか否かを判定する(ステップS1)。ここで、「Yes」の場合にはステップS2の処理に移行する一方、「No」の場合にはステップS11の処理に移行する。
 上記ステップS1において「Yes」の場合、CPU67は、タイマ66に遅延時間Tdをセット済みか否か判定する(ステップS2)。ここで、「Yes」の場合にはステップS7の処理に移行する一方、「No」の場合にはステップS3の処理に移行する。
 上記ステップS2において「No」の場合、CPU67は、A/D変換器61からタンク供給圧Pt及びレギュレータ下流圧Pfを取得する(ステップS3)。そして、CPU67は、さらに、ROM64に記憶されている上記3次元マップを参照して、タンク供給圧Pt及びレギュレータ下流圧Pfに対応するメインバルブ開弁時間Tmを取得し、そのメインバルブ開弁時間Tmを遅延時間Tdとして設定する(ステップS4)。なお、メインバルブ開弁時間Tmにマージンを持たせた値を遅延時間Tdとして設定しても良い。
 そして、CPU67は、遮断弁駆動回路63に遮断弁駆動信号の生成を要求することで、遮断弁41の通電を開始する(ステップS5)。そして、CPU67は、遮断弁41の通電開始と同時に、タイマ66に対して遅延時間Tdのタイマセットを行う(ステップS6)。これにより、タイマ66は、遅延時間Tdのタイムカウントを開始する。
 そして、CPU67は、上記ステップS2において「Yes」の場合、または上記ステップS6の処理終了後、タイマ66から通知されるタイムカウント結果を基に遅延時間Tdが経過したか否かを判定する(ステップS7)。ここで、「Yes」の場合にはステップS8の処理に移行する一方、「No」の場合には本制御処理を終了する。
 上記ステップS7において「Yes」の場合、CPU67は、遮断弁41が正常に開いたか(つまり、遮断弁41のパイロットバルブ103及びメインバルブ104が共に開いたか)否かを判定する(ステップS8)。ここで、「Yes」の場合にはステップS9の処理に移行する一方、「No」の場合には本制御処理を終了する。
 遮断弁41が正常に開弁したか否かは次のような手法で判定することができる。遮断弁41のパイロットバルブ103及びメインバルブ104の開閉状態に応じて、それらのバルブを有する遮断弁41の下流の圧力(レギュレータ下流圧Pf)の時間変化特性は異なる傾向となる。従って、予めレギュレータ下流圧Pfの時間変化特性とパイロットバルブ103及びメインバルブ104の開閉状態との対応関係を求めておけば、その対応関係に基づいて、レギュレータ下流圧Pfの実測値からパイロットバルブ103及びメインバルブ104の開閉状態を知ることができる。
 また、レギュレータ下流圧Pfの時間変化特性とパイロットバルブ103及びメインバルブ104の開閉状態との対応関係は、遮断弁41の通電前にレギュレータ下流圧Pfが閾値以下であった場合(第1のケース:遮断弁41の上流下流間の差圧が大きいケース)と、レギュレータ下流圧Pfが閾値を越えていた場合(第2のケース:遮断弁41の上流下流間の差圧が小さいケース)とで異なる。従って、上記の第1のケースと第2のケースとで異なる対応関係を用いる必要がある。
 図6は、第1のケースにおけるレギュレータ下流圧Pfの時間変化特性とパイロットバルブ103及びメインバルブ104の開閉状態との対応関係を示したものである。図6(a)は、レギュレータ下流圧Pfの時間変化特性の各傾向を示し、図6(b)は、各傾向に対応するパイロットバルブ103及びメインバルブ104の開閉状態を示している。
 図6(a)に示すように、第1のケースにおいて、遮断弁41の通電開始から遅延時間Tdの経過後にレギュレータ下流圧Pfが閾値Pthを越えなかった場合(波線部分参照)、図6(b)に示すように、パイロットバルブ103及びメインバルブ104の両方が閉弁状態になっているか(パターンd参照)、或いはパイロットバルブ103が閉弁状態でメインバルブ104が開弁状態になっている(パターンc参照)と推定される。
 また、図6(a)に示すように、遮断弁41の通電開始から遅延時間Tdの経過後にレギュレータ下流圧Pfが閾値Pthを越えた場合、少なくともパイロットバルブ103は正常に開弁したと推定される。そこで、気体燃料噴射弁23を起動させることで遮断弁41下流(レギュレータ42下流)の燃料を消費させてみる。この気体燃料噴射弁23の起動以降、図6(a)に示すように、レギュレータ下流圧Pfが閾値Pth以下となった場合(一点鎖線部分参照)、レギュレータ42下流の燃料消費に対して上流からの燃料供給が間に合っていないと考えられるため、図6(b)に示すように、メインバルブ104が閉弁状態になっていると推定される(パターンb参照)。
 さらに、図6(a)に示すように、気体燃料噴射弁23の起動以降、レギュレータ下流圧Pfが閾値Pth以下とならなかった場合(実線部分参照)、レギュレータ42下流の燃料消費に対して上流からの燃料供給が間に合っていると考えられるため、図6(b)に示すように、メインバルブ104も開弁状態になっていると推定される(パターンa参照)。つまり、この場合には遮断弁41が正常に開弁したと判定することができる。
 一方、図7は、第2のケースにおけるレギュレータ下流圧Pfの時間変化特性とパイロットバルブ103及びメインバルブ104の開閉状態との対応関係を示したものである。
 図7(a)は、下流側圧力Pの時間変化特性の各傾向を示し、図7(b)は、各傾向に対応するパイロットバルブ103及びメインバルブ104の開閉状態を示している。
 図7(a)に示すように、第2のケースでは、遮断弁41の通電開始から遅延時間Tdの経過後に気体燃料噴射弁23を起動させることで、レギュレータ42下流の燃料を消費させてみる。この気体燃料噴射弁23の起動以降、図7(a)に示すように、レギュレータ下流圧Pfが閾値Pth以下となった場合(二点鎖線部分参照)、レギュレータ42下流の燃料消費に対して上流からの燃料供給が間に合っていないと考えられるため、図7(b)に示すように、少なくともメインバルブ104が閉弁状態になっていると推定される(パターンf、h参照)。
 また、図7(a)に示すように、この気体燃料噴射弁23の起動以降、レギュレータ下流圧Pfが閾値Pth以下とならなかった場合(実線部分参照)、レギュレータ42下流の燃料消費に対して上流からの燃料供給が間に合っていると考えられるため、図7(b)に示すように、少なくともメインバルブ104が開弁状態になっていると推定される(パターンe、g参照)。つまり、この場合には遮断弁41が正常に開弁したと判定することができる。
 図5に戻り、CPU67は、ステップS8において、上記の手法によって遮断弁41が正常に開弁したか否かを判定する。ここで、「Yes」の場合、クランキングを開始し(ステップS9)、さらに、燃料噴射弁駆動回路62に対して燃料噴射弁駆動信号の生成を要求することで、気体燃料噴射弁23による燃料噴射を開始する(ステップS10)。
 一方、上記ステップS1において「No」の場合、つまりエンジン1で使用する燃料として液体燃料が指定されている場合、CPU67は、燃料噴射弁駆動回路62に対して燃料噴射弁駆動信号の生成終了を要求することで、気体燃料噴射弁23による燃料噴射を終了する(ステップS11)。さらに、CPU67は、遮断弁駆動回路63に対して遮断弁駆動信号の生成終了を要求することで、遮断弁41の通電を終了して(遮断弁41を閉弁させて)本制御処理を終了する(ステップS12)。なお、CPU67は、エンジン1で使用する燃料として液体燃料が指定されている場合、通信回路60を介して液体燃料による運転指示を1st-ECU5に送信することで、液体燃料による運転に切替える。
 以上のように、本第1実施形態によれば、実際に検出されたタンク供給圧Pt及びレギュレータ下流圧Pfに応じて適切な遅延時間Tdを設定することができる。そのため、設定した遅延時間Tdを用いて燃料噴射開始時期を遅らせることにより、遮断弁41の通電後の燃料噴射開始時期を適切に制御することができ、メインバルブ104の開弁不能による燃料供給不足の発生を回避することができる。
〔第2実施形態〕
 次に、第2実施形態におけるバイフューエルエンジンシステムBについて説明する。図8は、第2実施形態におけるバイフューエルエンジンシステムBの構成概略図である。なお、図8において、図1(第1実施形態)と同様の構成要素には同一符号を付している。
 従って、以下では、説明の簡略化のため、第2実施形態におけるバイフューエルエンジンシステムBについて、第1実施形態と異なる点にのみ着目して説明し、一致する点の説明は省略する。
 図8に示すように、第2実施形態におけるバイフューエルエンジンシステムBにおいて、第1実施形態と異なる点は、第1圧力センサ45が削除され、第2圧力センサ46から出力されるレギュレータ下流圧信号が2nd-ECU6’に入力される点である。
 図9は、2nd-ECU6’の内部構成を示すブロック図である。この図9と図3とを比較してわかるように、第2実施形態における2nd-ECU6’において、第1実施形態と異なる点は、第2圧力センサ46から入力されるレギュレータ下流圧信号を、デジタル信号(レギュレータ下流圧Pf)に変換してCPU67’に出力するA/D変換器61’が内蔵されている点と、遮断弁41の通電開始後、レギュレータ下流圧Pfが所定圧以上となった場合、レギュレータ42の上流の規定圧力及びレギュレータ42の下流の規定圧力を基に予め設定されている遅延時間Tdの経過後に燃料噴射を開始する機能を有するCPU67’が内蔵されている点である(CPU67’のその他の機能については第1実施形態のCPU67と同様である)。
 図10は、タンク供給圧Ptがある所定の値だった場合の、遮断弁41の通電開始からのレギュレータ下流圧Pfの変化特性を示したものである。図10を用いて、第2実施形態の動作について説明する。上記遅延時間Tdを、例えばタンク供給保障圧力とレギュレータ規定圧力P1とにより設定しておく。ここで、タンク供給保障圧力は、気体燃料タンク40から供給される気体燃料の保障圧力であり、レギュレータ規定圧力P1は、レギュレータ42の下流の設定圧力である。これらに基づいて、レギュレータ42の上流及び下流の圧力を既知とした場合、実際に検出したレギュレータ下流圧Pfが所定圧P2以上の時には、メインバルブ104の開弁時間t1は一義的に定まる。この一義的に定まるメインバルブ104の開弁時間t1を遅延時間Tdとして予め設定する。なお、開弁時間t1にマージンを持たせて遅延時間Tdを設定しても良い。遮断弁41の通電開始t0後、パイロットバルブ103が開弁しレギュレータ下流圧Pfが上昇する。レギュレータ下流圧Pfがある所定値(図10中の所定圧P2)に達した後、遅延時間Tdの経過後に気体燃料噴射弁23を起動させれば、メインバルブ104の開弁不能による燃料供給不足に陥ることはない。
 図11は、CPU67’が実行する遮断弁41及び気体燃料噴射弁23の制御処理を示すフローチャートである。この図11に示すように、CPU67’は、まず、燃料切替スイッチ4から入力される燃料指定信号を解析し、エンジン1で使用する燃料として気体燃料が指定されているか否かを判定する(ステップS21)。ここで、「Yes」の場合にはステップS22の処理に移行する一方、「No」の場合にはステップS29の処理に移行する。
 上記ステップS21において「Yes」の場合、CPU67’は、遮断弁駆動回路63に遮断弁駆動信号の生成を要求することで、遮断弁41の通電を開始する(ステップS22)。そして、CPU67’は、レギュレータ下流圧Pfが所定圧以上か否かを判定する(ステップS23)。ここで、「Yes」の場合にはステップS24の処理に移行する一方、「No」の場合には本制御処理を終了する。
 上記ステップS23において「Yes」の場合、CPU67’は、タイマ66に遅延時間Tdをセット済みか否かを判定する(ステップS24)。ここで、「Yes」の場合にはステップS26の処理に移行する一方、「No」の場合にはタイマ66に対して遅延時間Tdのタイマセットを行う(ステップS25)。これにより、タイマ66は、遅延時間Tdのタイムカウントを開始する。
 そして、CPU67’は、上記ステップS24において「Yes」の場合、または上記ステップS25の処理終了後、タイマ66から通知されるタイムカウント結果を基に遅延時間Tdが経過したか否かを判定する(ステップS26)。ここで、「Yes」の場合にはステップS27の処理に移行する一方、「No」の場合には本制御処理を終了する。上記ステップS26において「Yes」の場合、CPU67’は、クランキングを開始する(ステップS27)。さらに、燃料噴射弁駆動回路62に対して燃料噴射弁駆動信号の生成を要求することで、気体燃料噴射弁23による燃料噴射を開始する(ステップS28)。
 一方、上記ステップS21において「No」の場合、つまりエンジン1で使用する燃料として液体燃料が指定されている場合、CPU67’は、燃料噴射弁駆動回路62に対して燃料噴射弁駆動信号の生成終了を要求することで、気体燃料噴射弁23による燃料噴射を終了する(ステップS29)。さらに、遮断弁駆動回路63に対して遮断弁駆動信号の生成終了を要求することで、遮断弁41の通電を終了して(遮断弁41を閉弁させて)本制御処理を終了する(ステップS30)。なお、CPU67’は、エンジン1で使用する燃料として液体燃料が指定されている場合、通信回路60を介して液体燃料による運転指示を1st-ECU5に送信することで、液体燃料による運転に切替える。
 以上のように、本第2実施形態によれば、レギュレータ42の上流の規定圧力及びレギュレータ42の下流の規定圧力によって一義的に定まるメインバルブ開弁時間Tmを、遅延時間Tdとして予め設定しておき(この時、マージンを持たせて設定しても良いし、マージンを持たせなくても良い)、遮断弁41の通電開始後、予め設定されている遅延時間Tdの経過後に燃料噴射を開始することにより、遮断弁41の通電後の燃料噴射開始時期を適切に制御することができ、メインバルブ104の開弁不能による燃料供給不足の発生を回避することができる。また、この第2実施形態では、圧力センサ(第2圧力センサ46)は1つで足りるので、コストの削減を図ることができる。
 なお、本発明は上記第1及び第2実施形態に限定されず、以下のような変形例が挙げられる。
 (1)上記第1実施形態では、タンク供給圧Pt及びレギュレータ下流圧Pfに応じて遅延時間Tdを設定する場合を例示したが、これらタンク供給圧Pt及びレギュレータ下流圧Pfに加えて、例えばバッテリ電圧に応じて遅延時間Tdを設定するようにしても良い。
 具体的には、図4に示した3次元マップを複数の異なるバッテリ電圧毎に用意しておき、2nd-ECU6にバッテリ電圧の検出回路を設け、この検出回路によって検出されたバッテリ電圧に応じて参照する3次元マップを変える機能をCPU67に持たせれば良い。また、バッテリ電圧の他、燃料温度、或いは吸気温度をパラメータとして用いても良い。つまり、タンク供給圧Pt及びレギュレータ下流圧Pfに加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つに基づいて遅延時間Tdを設定するようにしても良い。これにより、エンジン1の運転状況に応じて精度良く遅延時間Tdを設定することができ、燃料供給不足の発生を確実に回避することできる。
 (2)上記第2実施形態では、レギュレータ42の上流の規定圧力及びレギュレータ42の下流の規定圧力を基に予め設定されている遅延時間Tdを用いる場合を例示したが、これらレギュレータ42の上流の規定圧力及びレギュレータ42の下流の規定圧力に加えて、例えばバッテリ電圧を基に遅延時間Tdを予め設定しても良い。
 具体的には、複数の異なるバッテリ電圧毎に、レギュレータ42の上流の規定圧力及びレギュレータ42の下流の規定圧力を基に遅延時間Tdを予め設定しておき、2nd-ECU6にバッテリ電圧の検出回路を設け、この検出回路によって検出されたバッテリ電圧に応じて使用する遅延時間Tdを変える機能をCPU67’に持たせれば良い。また、バッテリ電圧の他、燃料温度、或いは吸気温度をパラメータとして用いても良い。つまり、レギュレータ42の上流の規定圧力及びレギュレータ42の下流の規定圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つを基に遅延時間Tdを予め設定しても良い。これにより、エンジン1の運転状況に応じた精度の良い遅延時間Tdを用いて燃料噴射開始時期を制御することができるため、燃料供給不足の発生を確実に回避することできる。
 (3)上記第1及び第2実施形態では、液体燃料による運転制御を担う1st-ECU5と、気体燃料による運転制御及び遮断弁41の故障診断を担う2nd-ECU6、6’とを別個に備えたバイフューエルエンジンシステムA、Bを例示したが、これら2つのECUの機能を1つのECUに統合するような構成を採用しても良い。
 (4)上記第1及び第2実施形態では、本発明に係る燃料供給システムとして、バイフューエルエンジンシステムA、Bを例示して説明したが、本発明はこれに限定されず、気体燃料のみを単一エンジンに供給するモノフューエルエンジンシステムであっても、本発明を適用することができる。
 (5)図12に示した遮断弁41のキックパイロット構造はあくまで一例であり、通電時に先行して開弁する第1の弁体と、その開弁後に上流下流間の差圧低下によって開弁する第2の弁体とを有する遮断弁であれば、本発明を適用することができる。
 本発明の燃料供給制御装置及び燃料供給システムによれば、いわゆるキックパイロット構造の遮断弁を用いた場合において、遮断弁通電後の燃料噴射開始時期を適切に制御し、以って燃料供給不足の発生を回避可能な燃料供給システム及び燃料供給制御装置を提供することができる。
 A、B…バイフューエルエンジンシステム(燃料供給システム)
 1…エンジン
 2…液体燃料供給部
 3…気体燃料供給部
 4…燃料切替スイッチ
 5…1st-ECU(Electronic Control Unit)
 6、6’…2nd-ECU(燃料供給制御装置)
 23…気体燃料噴射弁
 41…遮断弁
 67、67’…CPU(制御部)
 103…パイロットバルブ(第1の弁体)
 104…メインバルブ(第2の弁体)

Claims (8)

  1.  気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁の通電制御、及び燃料噴射制御を行う燃料供給制御装置であって、
     前記遮断弁の上流の第1燃料圧力及び前記レギュレータの下流の第2燃料圧力に応じて前記遮断弁の通電開始時期から燃料噴射開始時期までの遅延時間を設定し、前記遮断弁の通電開始から前記遅延時間の経過後に燃料噴射を開始する制御部を備える燃料供給制御装置。
  2.  前記制御部は、前記第1燃料圧力及び前記第2燃料圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つに応じて前記遅延時間を設定する請求項1に記載の燃料供給制御装置。
  3.  気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁の通電制御、及び燃料噴射制御を行う燃料供給制御装置であって、
     前記遮断弁の通電開始後、前記レギュレータの下流の燃料圧力が所定圧以上となった場合、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力を基に予め設定されている遅延時間の経過後に燃料噴射を開始する制御部を備える燃料供給制御装置。
  4.  前記遅延時間は、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つを基に予め設定されている請求項3に記載の燃料供給制御装置。
  5.  気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁を備える燃料供給システムであって、
     前記遮断弁の上流の燃料圧力を第1燃料圧力として検出する第1圧力センサと、
     前記レギュレータの下流の燃料圧力を第2燃料圧力として検出する第2圧力センサと、
     前記第1燃料圧力及び前記第2燃料圧力に応じて前記遮断弁の通電開始時期から燃料噴射開始時期までの遅延時間を設定し、前記遮断弁の通電開始から前記遅延時間の経過後に燃料噴射を開始する燃料供給制御装置と、
    を備える燃料供給システム。
  6.  前記燃料供給制御装置は、前記第1燃料圧力及び前記第2燃料圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つに応じて前記遅延時間を設定する請求項5に記載の燃料供給システム。
  7.  気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及び該第1の弁体の開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁を備える燃料供給システムであって、
     前記レギュレータの下流の燃料圧力を検出する圧力センサと、
     前記遮断弁の通電開始後、前記燃料圧力が所定圧以上となった場合、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力を基に予め設定されている遅延時間の経過後に燃料噴射を開始する燃料供給制御装置と、
    を備える燃料供給システム。
  8.  前記遅延時間は、前記レギュレータの上流の規定圧力及び前記レギュレータの下流の規定圧力に加えて、バッテリ電圧、燃料温度、吸気温度の少なくとも1つを基に予め設定されている請求項7に記載の燃料供給システム。
PCT/JP2011/050158 2010-03-26 2011-01-07 燃料供給制御装置及び燃料供給システム WO2011118240A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/636,240 US9032933B2 (en) 2010-03-26 2011-01-07 Fuel supply control device and fuel supply system
EP11759049.7A EP2554824B1 (en) 2010-03-26 2011-01-07 Fuel supply control device and fuel supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010071745A JP5425681B2 (ja) 2010-03-26 2010-03-26 内燃機関の燃料供給システム及び内燃機関の燃料供給制御装置
JP2010-071745 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118240A1 true WO2011118240A1 (ja) 2011-09-29

Family

ID=44672818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050158 WO2011118240A1 (ja) 2010-03-26 2011-01-07 燃料供給制御装置及び燃料供給システム

Country Status (4)

Country Link
US (1) US9032933B2 (ja)
EP (1) EP2554824B1 (ja)
JP (1) JP5425681B2 (ja)
WO (1) WO2011118240A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932707B2 (en) 2010-11-05 2018-04-03 Greenfield Specialty Alcohols Inc. Bagasse fractionation for cellulosic ethanol and chemical production
BR112013010479A2 (pt) * 2010-11-05 2016-08-02 Greenfield Ethanol Inc processo contínuo para fracionamento de biomassa de bagaço de cana-de-açúcar
JP5856384B2 (ja) * 2011-03-30 2016-02-09 株式会社ケーヒン 燃料供給システム及び燃料噴射制御装置
JP5438745B2 (ja) * 2011-11-28 2014-03-12 本田技研工業株式会社 流体供給システム
US9422900B2 (en) * 2012-03-27 2016-08-23 Ford Global Technologies, Llc System and method for closing a tank valve
JP5827587B2 (ja) 2012-03-27 2015-12-02 株式会社ケーヒン 燃料噴射システム
CA2820013C (en) * 2013-06-28 2014-12-02 Westport Power Inc. Module for controlling fuel pressure in an internal combustion engine
JP2015105584A (ja) * 2013-11-28 2015-06-08 愛三工業株式会社 気体燃料供給装置
US9556792B2 (en) 2014-10-17 2017-01-31 Kohler, Co. Dual compressor turbocharger
US10378549B2 (en) * 2014-10-17 2019-08-13 Kohler Co. Dual compressor turbocharger
US20160160742A1 (en) * 2014-12-03 2016-06-09 Caterpillar Inc. Engine system having enriched pre-chamber spark plug
CN105351104B (zh) * 2015-12-08 2018-08-21 重庆润通科技有限公司 油气两用集成开关
US10934948B2 (en) * 2018-02-05 2021-03-02 Caterpillar Inc. System and method to determine failure of a gas shut off valve
KR20210049348A (ko) * 2019-10-25 2021-05-06 현대자동차주식회사 차량용 통합 연료 필터 장치
CN111520238A (zh) * 2020-04-27 2020-08-11 一汽解放汽车有限公司 一种气体燃料供给压力控制装置
US11967744B2 (en) * 2022-02-11 2024-04-23 Ford Global Technologies, Llc Fuel cell vehicle with bypass valve control for clearing exhaust

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256980A (ja) 2001-03-05 2002-09-11 Fujitsu Ten Ltd 燃料遮断弁制御装置
JP2005038693A (ja) * 2003-07-14 2005-02-10 Honda Motor Co Ltd 燃料電池システムの起動方法
JP2006147346A (ja) * 2004-11-19 2006-06-08 Toyota Motor Corp 流体供給システム
JP2006156320A (ja) * 2004-11-30 2006-06-15 Honda Motor Co Ltd ガス消費機器の停止方法
JP2009129593A (ja) * 2007-11-21 2009-06-11 Honda Motor Co Ltd 遮断弁の開弁完了判断方法および開弁完了判断装置
JP2010071745A (ja) 2008-09-17 2010-04-02 Toshiba Corp 二次監視レーダによるモードs質問の送信方法及び二次監視レーダ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686718B2 (ja) * 1994-04-22 1997-12-08 シーケーディ株式会社 自動車用の天然ガス燃料供給装置
JPH0988724A (ja) * 1995-09-27 1997-03-31 Tokyo Gas Co Ltd 圧縮天然ガス自動車の燃料供給装置
JP2006348918A (ja) * 2005-06-20 2006-12-28 Honda Motor Co Ltd ガスエンジン用燃料供給装置
JP4424615B2 (ja) * 2005-09-28 2010-03-03 本田技研工業株式会社 ガス燃料供給装置
JP2007173158A (ja) * 2005-12-26 2007-07-05 Aisin Seiki Co Ltd 燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256980A (ja) 2001-03-05 2002-09-11 Fujitsu Ten Ltd 燃料遮断弁制御装置
JP2005038693A (ja) * 2003-07-14 2005-02-10 Honda Motor Co Ltd 燃料電池システムの起動方法
JP2006147346A (ja) * 2004-11-19 2006-06-08 Toyota Motor Corp 流体供給システム
JP2006156320A (ja) * 2004-11-30 2006-06-15 Honda Motor Co Ltd ガス消費機器の停止方法
JP2009129593A (ja) * 2007-11-21 2009-06-11 Honda Motor Co Ltd 遮断弁の開弁完了判断方法および開弁完了判断装置
JP2010071745A (ja) 2008-09-17 2010-04-02 Toshiba Corp 二次監視レーダによるモードs質問の送信方法及び二次監視レーダ

Also Published As

Publication number Publication date
EP2554824B1 (en) 2020-07-15
JP2011202615A (ja) 2011-10-13
US9032933B2 (en) 2015-05-19
US20130014729A1 (en) 2013-01-17
EP2554824A4 (en) 2018-03-14
EP2554824A1 (en) 2013-02-06
JP5425681B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5425681B2 (ja) 内燃機関の燃料供給システム及び内燃機関の燃料供給制御装置
JP5425677B2 (ja) 燃料供給システム及び遮断弁故障診断装置
JP5518537B2 (ja) 遮断弁故障診断装置
JP5401352B2 (ja) 燃料切替制御装置及び方法
JP4148127B2 (ja) 燃料噴射装置
US7373918B2 (en) Diesel engine control system
EP2450559B1 (en) Fuel supply device
JP2009057924A (ja) 燃料噴射特性検出装置及び燃料噴射指令補正装置
CN101566100A (zh) 发动机关闭后的燃料供给系统诊断
WO2015045503A1 (ja) 内燃機関の燃料噴射制御装置
JP5856384B2 (ja) 燃料供給システム及び燃料噴射制御装置
US9897016B2 (en) Apparatus for controlling the fuel supply of an internal combustion engine
US8938349B2 (en) Method and device for operating a fuel injection system
JP2011149364A (ja) 燃料噴射制御装置及び方法
JP2008215185A (ja) 燃料噴射制御装置及び燃料噴射制御システム
JP2009243286A (ja) エンジンの燃料供給システム
JP7492654B2 (ja) 燃料噴射制御装置
WO2017069052A1 (ja) 高圧ポンプの制御装置
JP2018189033A (ja) 燃料噴射制御装置
JP2019039409A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13636240

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011759049

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004977

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 8359/CHENP/2012

Country of ref document: IN