WO2011118106A1 - 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 - Google Patents

炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 Download PDF

Info

Publication number
WO2011118106A1
WO2011118106A1 PCT/JP2010/073335 JP2010073335W WO2011118106A1 WO 2011118106 A1 WO2011118106 A1 WO 2011118106A1 JP 2010073335 W JP2010073335 W JP 2010073335W WO 2011118106 A1 WO2011118106 A1 WO 2011118106A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
carbon fiber
resin composition
reinforced composite
composite material
Prior art date
Application number
PCT/JP2010/073335
Other languages
English (en)
French (fr)
Inventor
新井厚仁
坂田宏明
大皷寛
石川学哉
加藤秀利
中谷仁郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US13/634,518 priority Critical patent/US9434811B2/en
Priority to EP10848498.1A priority patent/EP2551288B1/en
Priority to RU2012144811/04A priority patent/RU2012144811A/ru
Priority to JP2010550961A priority patent/JP5003827B2/ja
Priority to KR1020127024658A priority patent/KR101761439B1/ko
Priority to CN201080065693.2A priority patent/CN102822227B/zh
Priority to CA2788525A priority patent/CA2788525A1/en
Priority to BR112012018769A priority patent/BR112012018769A2/pt
Publication of WO2011118106A1 publication Critical patent/WO2011118106A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3227Compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to an epoxy resin composition for carbon fiber reinforced composite materials (hereinafter sometimes simply referred to as “epoxy resin composition”), a prepreg, and a carbon fiber composite material. More specifically, the present invention relates to an epoxy resin composition that provides a carbon fiber reinforced composite material that is excellent in mechanical strength under severe conditions such as low temperature and high temperature moisture absorption and that is suitable as a structural material, and a prepreg and a carbon fiber reinforced composite material.
  • carbon fiber reinforced composite materials using carbon fibers as reinforced fibers have utilized their high specific strength and specific elastic modulus to make structural materials such as aircraft and automobiles, sports such as tennis rackets, golf shafts and fishing rods, and It has been used for general industrial purposes.
  • a prepreg which is a sheet-like intermediate material in which a reinforcing fiber is impregnated with an uncured matrix resin is used to cure the prepreg, or a reinforcing fiber disposed in a mold.
  • a resin transfer molding method is used in which a liquid resin is poured to obtain an intermediate and then cured.
  • a carbon fiber reinforced composite material is usually obtained by laminating a plurality of prepregs and then applying heat and pressure.
  • a thermosetting resin, particularly an epoxy resin is often used from the viewpoint of productivity such as processability.
  • carbon fiber reinforced composite materials are required to have high strength in more severe use environments such as high temperature and high humidity and low temperature.
  • compressive strength is also an important physical property.
  • the compressive strength is measured using a test piece such as a non-perforated plate, a perforated plate, or a cylinder. In actual use, it is often in the form of a plate with a bolt hole.
  • the compressive strength of the hole plate especially the strength under high temperature and high humidity conditions, is important.
  • the conventional composite material with a polymer matrix has the advantage of light weight, but the compressive strength may decrease greatly with the decrease in strength and elastic modulus under high-temperature and high-humidity conditions. There was something to be done.
  • Examples of the resin composition that gives a carbon fiber composite material having excellent compressive strength include tetraglycidyl diaminodiphenylmethane, a bifunctional epoxy resin such as bisphenol A type epoxy resin and diglycidyl resorcinol, and an epoxy composed of 3,3′-diaminodiphenyl sulfone.
  • a resin composition (see Patent Document 3), an epoxy resin composition comprising a polyfunctional epoxy resin and a diglycidylaniline derivative and 4,4′-diaminodiphenylsulfone (see Patent Document 4), a polyfunctional epoxy resin and a special skeleton And an epoxy resin composition comprising 3,3′-diaminodiphenylsulfone (see Patent Document 5). Although these can achieve an improvement in compressive strength, nothing is said about an improvement in tensile strength at low temperatures.
  • an object of the present invention is to provide an epoxy resin composition that is excellent in mechanical strength of a tensile system and a compression system and provides a carbon fiber reinforced composite material suitable as a structural material, and a prepreg and a carbon fiber reinforced composite material. .
  • the present invention has the following configuration in order to achieve the above object. That is, an epoxy resin composition comprising at least the following components [A] and [B], wherein [A] is 20 to 80% by mass with respect to 100% by mass of the total amount of the epoxy resin, [B ] 10 to 50% by mass of an epoxy resin composition for a carbon fiber reinforced composite material.
  • [A] An epoxy resin having a structure represented by the general formula (1) and having one or more amine-type glycidyl groups at the meta position.
  • an epoxy resin composition having excellent heat resistance and excellent processability when obtaining a prepreg can be obtained.
  • a prepreg can be obtained by combining this epoxy resin composition and carbon fiber, and a carbon fiber reinforced composite material having excellent tensile strength and compressive strength can be obtained by curing this epoxy resin composition. .
  • the epoxy resin [A] represented by the above formula (1) has a ring structure of four or more members.
  • An epoxy resin [B] having two or more and one amine-type glycidyl group or one ether-type glycidyl group directly linked to the ring structure is included in the epoxy resin composition in a specific content ratio, thereby achieving a trade-off. It has been found that an optimal structure can be obtained to achieve both high tensile strength and compressive strength.
  • R 1 , R 2 , R 3 and R 4 of the epoxy resin [A] having a structure represented by the formula (1) contained in the epoxy resin composition of the present invention are each a hydrogen atom and a carbon number of 1 to 4 aliphatic hydrocarbon groups and alicyclic hydrocarbon groups having 4 or less carbon atoms. If the structure of R 1 , R 2 , R 3 , or R 4 is too large, the viscosity of the epoxy resin composition becomes too high and handling properties are impaired, or compatibility with other components in the epoxy resin composition is impaired. The strength improving effect may not be obtained.
  • the epoxy resin having an amine-type glycidyl group in the meta position as referred to in the present invention is the 3-position or 3'-position when the carbon on the benzene ring to which the ether group of the formula (1) is linked is the 1-position. Or an amine-type glycidyl group linked to the 5th or 5 'position carbon.
  • epoxy resin [A] examples include tetraglycidyl-3,4′-diaminodiphenyl ether, tetraglycidyl-3,3′-diaminodiphenyl ether, tetraglycidyl-3,4′-diamino-2,2′-dimethyldiphenyl ether, Tetraglycidyl-3,4'-diamino-2,2'-dibromodiphenyl ether, tetraglycidyl-3,4'-diamino-5-methyldiphenyl ether, tetraglycidyl-3,4'-diamino-2'-methyldiphenyl ether, tetra Glycidyl-3,4′-diamino-3′-methyldiphenyl ether, tetraglycidyl-3,4′-diamino-5,2′-dimethyldiphenyl ether, tetraglycidyl-3,4′
  • R 1 , R 2 , R 3 and R 4 are preferably hydrogen atoms from the viewpoint of compatibility with other epoxy resins, and tetraglycidyl-3,4′-diaminodiphenyl ether or from the viewpoint of heat resistance. Tetraglycidyl-3,3′-diaminodiphenyl ether is more preferred. From the viewpoint of flame retardancy, it is also a preferred form that is substituted with a halogen atom such as Cl or Br.
  • the epoxy resin [A] used in the present invention is represented by the following general formula (2)
  • R 1 to R 4 are at least one selected from the group consisting of a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, an alicyclic hydrocarbon group having 4 or less carbon atoms, and a halogen atom.
  • the method for producing an epoxy resin [A] is obtained by adding 4 molecules of epichlorohydrin to 1 molecule of a diaminodiphenyl ether derivative, and the following general formula (3)
  • R 1 to R 4 are at least one selected from the group consisting of a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, an alicyclic hydrocarbon group having 4 or less carbon atoms, and a halogen atom.
  • the subsequent dichlorohydrin derivative is dehydrochlorinated with an alkali compound to produce a tetrafunctional epoxy compound represented by the following general formula (1).
  • R 1 to R 4 are at least one selected from the group consisting of a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, an alicyclic hydrocarbon group having 4 or less carbon atoms, and a halogen atom.
  • generates the epoxy compound shown by this is shown.
  • the compounding amount of the epoxy resin [A] needs to be 20 to 80% by mass, preferably 30 to 75% by mass with respect to 100% by mass of the total amount of the epoxy resin compounded.
  • the epoxy resin [B] contained in the epoxy resin composition of the present invention has two or more four-membered ring structures, such as cyclohexane, benzene, pyridine, etc. Or having at least one condensed ring structure composed of 4 or more ring members such as phthalimide, naphthalene, and carbazole.
  • the amine type glycidyl group or ether type glycidyl group directly linked to the ring structure of the epoxy resin [B] is a structure in which an N atom is bonded to a ring structure such as benzene or phthalimide, and an O atom is bonded to an ether type.
  • the amine type is a monofunctional or bifunctional epoxy resin
  • the ether type is a monofunctional epoxy resin.
  • the blending amount of [B] needs to be 10 to 50% by mass with respect to the total blended epoxy resin.
  • a monofunctional epoxy resin is more excellent in the effect of strength development, and a bifunctional epoxy resin is more excellent in heat resistance. Therefore, the blending amount of [B] is more preferably 10 to 40% by mass with respect to the total amount of the epoxy resin blended in the monofunctional epoxy resin, and 25 to 50% by mass with respect to the total epoxy resin blended in the bifunctional epoxy resin. % Is more preferable.
  • epoxy resin [B] examples include glycidylphthalimide, glycidyl-1,8-naphthalimide, glycidylcarbazole, glycidyl-3,6-dibromocarbazole, glycidylindole, glycidyl-4-acetoxyindole, glycidyl-3-methylindole Glycidyl-3-acetylindole, glycidyl-5-methoxy-2-methylindole, o-phenylphenyl glycidyl ether, p-phenylphenyl glycidyl ether, p- (3-methylphenyl) phenyl glycidyl ether, 2,6-di Benzylphenyl glycidyl ether, 2-benzylphenyl glycidyl ether, 2,6-diphenylphenyl glycidyl ether, 4- ⁇ -
  • epoxy resin [B] “Denacol (registered trademark)” Ex-731 (glycidyl phthalimide, manufactured by Nagase ChemteX Corp.), OPP-G (o-phenylphenyl glycidyl ether, manufactured by Sanko Co., Ltd.) ), PxGAN (diglycidyl-p-phenoxyaniline, manufactured by Toray Fine Chemical Co., Ltd.) and the like.
  • thermosetting resin used by being copolymerized with an epoxy resin include unsaturated polyester resin, vinyl ester resin, epoxy resin, benzoxazine resin, phenol resin, urea resin, melamine resin, and polyimide resin. It is done. These resin compositions and compounds may be used alone or in combination as appropriate.
  • the blending of at least another epoxy resin of [A] and [B] has both the fluidity of the resin and the heat resistance after curing.
  • a glycidyl ether type epoxy resin having a phenol as a precursor is preferably used as the bifunctional epoxy resin.
  • examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, urethane-modified epoxy resins, hydantoin type and resorcinol type epoxy resins. It is done.
  • liquid bisphenol A type epoxy resin, bisphenol F type epoxy resin and resorcinol type epoxy resin are preferably used in combination with other epoxy resins because of their low viscosity.
  • the solid bisphenol A type epoxy resin gives a structure having a lower crosslink density compared to the liquid bisphenol A type epoxy resin, so that the heat resistance is low, but a tougher structure is obtained, so that a glycidylamine type epoxy resin is obtained.
  • liquid bisphenol A type epoxy resin or bisphenol F type epoxy resin is obtained.
  • An epoxy resin having a naphthalene skeleton gives a cured resin having low water absorption and high heat resistance.
  • Biphenyl type epoxy resins, dicyclopentadiene type epoxy resins, phenol aralkyl type epoxy resins and diphenylfluorene type epoxy resins are also preferably used because they give a cured resin having a low water absorption rate.
  • Urethane-modified epoxy resins and isocyanate-modified epoxy resins give cured resins having high fracture toughness and high elongation.
  • bisphenol A type epoxy resin examples include “EPON (registered trademark)” 825 (manufactured by Japan Epoxy Resin Co., Ltd.), “Epiclon (registered trademark)” 850 (manufactured by DIC Corporation), and “Epototo (registered trademark)” ) "YD-128 (manufactured by Tohto Kasei Co., Ltd.), DER-331 and DER-332 (above, manufactured by Dow Chemical Co.).
  • Examples of commercially available resorcinol-type epoxy resins include “Deconal (registered trademark)” EX-201 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available glycidyl aniline type epoxy resins include GAN and GOT (manufactured by Nippon Kayaku Co., Ltd.).
  • biphenyl type epoxy resins examples include NC-3000 (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available urethane-modified epoxy resins include AER4152 (manufactured by Asahi Kasei Epoxy Corporation).
  • a commercially available hydantoin type epoxy resin includes AY238 (manufactured by Huntsman Advanced Materials).
  • epoxy resins used as epoxy resins other than [A] and [B] as tri- or higher functional glycidylamine type epoxy resins, for example, diaminodiphenylmethane type, diaminodiphenylsulfone type, aminophenol type, metaxylenediamine type 1,3-bisaminomethylcyclohexane type, isocyanurate type epoxy resins and the like.
  • diaminodiphenylmethane type and aminophenol type epoxy resins are particularly preferably used because of a good balance of physical properties.
  • Examples of the tri- or higher functional glycidyl ether type epoxy resin include epoxy resins such as phenol novolak type, orthocresol novolak type, trishydroxyphenylmethane type, and tetraphenylolethane type.
  • the amount of the tri- or higher functional epoxy resin including the epoxy resin [A] is the amount of the epoxy resin [A] and [B] combined with the epoxy resin other than [A] and [B].
  • the total amount of the epoxy resin) is preferably 40 to 80% by mass, more preferably 50 to 70% by mass with respect to 100% by mass.
  • Diaminodiphenylmethane type epoxy resin as a commercial product of tri- or higher functional epoxy resin is ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldite (registered trademark)” MY720, “Araldite (registered trademark)” MY721, “Araldite (registered) Trademark) “MY9512”, “Araldite (registered trademark)” MY9663 (manufactured by Huntsman Advanced Materials), and “Epototo (registered trademark)” YH-434 (manufactured by Toto Kasei Co., Ltd.).
  • metaxylenediamine type epoxy resins examples include TETRAD-X (Mitsubishi Gas Chemical Co., Ltd.).
  • Examples of commercially available 1,3-bisaminomethylcyclohexane type epoxy resins include TETRAD-C (manufactured by Mitsubishi Gas Chemical Company).
  • TEPIC-P (manufactured by Nissan Chemical Co., Ltd.) can be mentioned.
  • trishydroxyphenylmethane type epoxy resins examples include Tactix 742 (manufactured by Huntsman Advanced Materials).
  • phenol novolac epoxy resins examples include DEN431 and DEN438 (manufactured by Dow Chemical Co., Ltd.) and “jER (registered trademark)” 152 (manufactured by Japan Epoxy Resins Co., Ltd.).
  • ortho-cresol novolak epoxy resins examples include EOCN-1020 (manufactured by Nippon Kayaku Co., Ltd.) and “Epiclon (registered trademark)” N-660 (manufactured by DIC Corporation).
  • Examples of commercially available dicyclopentadiene type epoxy resins include “Epiclon (registered trademark)” HP7200 (manufactured by DIC Corporation).
  • the epoxy resin composition for carbon fiber reinforced composite material of the present invention may be used by blending a curing agent.
  • curing agent demonstrated here is a hardening
  • Specific examples of the curing agent include dicyandiamide, aromatic polyamine, aminobenzoic acid esters, various acid anhydrides, phenol novolac resin, cresol novolac resin, polyphenol compound, imidazole derivative, aliphatic amine, tetramethylguanidine.
  • Thiourea addition amine carboxylic acid anhydride such as methylhexahydrophthalic anhydride, carboxylic acid hydrazide, carboxylic acid amide, polymercaptan and Lewis acid complex such as boron trifluoride ethylamine complex.
  • an aromatic polyamine as a curing agent, a cured epoxy resin with good heat resistance can be obtained.
  • various isomers of diaminodiphenylsulfone are the most suitable curing agents for obtaining a cured epoxy resin having good heat resistance.
  • the optimum value for the amount of curing agent added depends on the type of epoxy resin and curing agent.
  • the ratio of the active hydrogen amount of the aromatic amine curing agent to the epoxy group amount of the epoxy resin is 0.7 to 0.
  • a high elastic modulus resin may be obtained as compared with the case where it is used in an equivalent amount, which is also a preferable embodiment.
  • These curing agents may be used alone or in combination.
  • aromatic polyamine curing agents include Seika Cure S (manufactured by Wakayama Seika Kogyo Co., Ltd.), MDA-220 (manufactured by Mitsui Chemicals), “jER Cure (registered trademark)” W (Japan Epoxy Resin ( ), And 3,3′-DAS (Mitsui Chemicals), “Lonacure (registered trademark)” M-DEA (Lonza), “Lonzasure (registered trademark)” M-DIPA ( Lonza Corporation), “Lonzacure (registered trademark)” M-MIPA (Lonza Corporation), “Lonzacure (registered trademark)” DETDA 80 (Lonza Corporation), and the like.
  • compositions obtained by pre-reacting these epoxy resin and curing agent, or a part of them can be blended in the composition.
  • This method may be effective for viscosity adjustment and storage stability improvement.
  • thermoplastic resin is mixed or dissolved in the above epoxy resin composition.
  • thermoplastic resins are generally selected from the group consisting of a carbon-carbon bond, amide bond, imide bond, ester bond, ether bond, carbonate bond, urethane bond, thioether bond, sulfone bond and carbonyl bond in the main chain.
  • a thermoplastic resin having a selected bond is preferred.
  • this thermoplastic resin may have a partially crosslinked structure, and may be crystalline or amorphous.
  • the glass transition temperature (Tg) of the thermoplastic resin is at least 150 ° C. or higher and preferably 170 ° C. or higher. If the glass transition temperature of the thermoplastic resin to be blended is less than 150 ° C., it may be easily deformed by heat when used as a molded body. Furthermore, as a terminal functional group of this thermoplastic resin, things, such as a hydroxyl group, a carboxyl group, a thiol group, and an acid anhydride, can react with a cationically polymerizable compound, and are used preferably.
  • PES7600P (above, manufactured by Sumitomo Chemical Co., Ltd.) and the like, and a copolymer oligomer of polyethersulfone and polyetherethersulfone as described in JP-T-2004-506789, Furthermore, “Ultem (registered trademark)” 1000, “Ultem (registered trademark)” 1010, “Ultem (registered trademark)” 1040 (above, manufactured by Solvay Advanced Polymers Co., Ltd.) and the like, which are commercially available polyetherimides, may be mentioned. .
  • the oligomer refers to a polymer having a relatively low molecular weight in which about 10 to 100 finite number of monomers are bonded.
  • a mixture of epoxy resin and thermoplastic resin often gives better results than using them alone.
  • the brittleness of the epoxy resin is covered with the toughness of the thermoplastic resin, and the molding difficulty of the thermoplastic resin is covered with the epoxy resin, thereby providing a balanced base resin.
  • the use ratio (parts by mass) of the epoxy resin and the thermoplastic resin is preferably in the range of 2 to 40 parts by mass of the thermoplastic resin with respect to a total of 100 parts by mass of the blended epoxy resin in terms of balance. More preferably, it is in the range of 5 to 30 parts by mass.
  • thermoplastic resin particles it is also preferable to mix thermoplastic resin particles with the epoxy resin composition of the present invention.
  • thermoplastic resin particles By blending the thermoplastic resin particles, the toughness of the matrix resin is improved and the impact resistance is improved when a carbon fiber reinforced composite material is obtained.
  • thermoplastic resin particles used in the present invention the same thermoplastic resins as those exemplified above can be used as the thermoplastic resin that can be mixed or dissolved in the epoxy resin composition. From the viewpoint of giving stable adhesive strength and impact resistance when a fiber reinforced composite material is obtained, it is preferable that the shape is maintained in the particles. Among them, polyamide is most preferable, and among polyamides, nylon 12, nylon 11 and nylon 6/12 copolymer give particularly good adhesive strength with a thermosetting resin.
  • the shape of the thermoplastic resin particles may be spherical particles, non-spherical particles, or porous particles, but the spherical shape is superior in viscoelasticity because it does not deteriorate the flow characteristics of the resin, and there is no origin of stress concentration.
  • polyamide particles include SP-500 (manufactured by Toray Industries, Inc.), “Trepearl (registered trademark)” TN (manufactured by Toray Industries, Inc.), and “Orgasol (registered trademark)” 1002D (manufactured by ATOCHEM). ), “Orgasol (registered trademark)” 2002 (manufactured by ATOCHEM), “Orgasol (registered trademark)” 3202 (manufactured by ATOCHEM), and the like.
  • the epoxy resin composition of the present invention is a coupling agent, a thermosetting resin particle, a thermoplastic resin that can be dissolved in an epoxy resin, or silica gel, carbon black, clay, carbon nanotube, as long as the effects of the present invention are not hindered.
  • An inorganic filler such as a metal powder can be blended.
  • the carbon fiber used in the present invention can be any type of carbon fiber depending on the application, but is preferably a carbon fiber having a tensile modulus of at most 400 GPa from the viewpoint of impact resistance. From the viewpoint of strength, a carbon fiber having a tensile strength of preferably 4.4 to 6.5 GPa is preferably used because a composite material having high rigidity and mechanical strength can be obtained. The tensile elongation is also an important factor, and it is preferably a carbon fiber having a high tensile strength and a high elongation of 1.7 to 2.3%. Accordingly, carbon fibers having the characteristics that the tensile elastic modulus is at least 230 GPa, the tensile strength is at least 4.4 GPa, and the tensile elongation is at least 1.7% are most suitable.
  • Carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T810G-24K, and “Torayca (registered trademark)” T700G- 24K, “Torayca (registered trademark)” T300-3K, and “Torayca (registered trademark)” T700S-12K (manufactured by Toray Industries, Inc.).
  • the form and arrangement of the carbon fibers can be appropriately selected from long fibers and woven fabrics arranged in one direction. However, in order to obtain a carbon fiber reinforced composite material that is lighter and more durable, It is preferably in the form of continuous fibers such as long fibers (fiber bundles) or woven fabrics arranged in one direction.
  • the number of filaments in one fiber bundle is preferably in the range of 2500 to 50000.
  • the number of filaments is less than 2500, the fiber arrangement tends to meander and easily cause a decrease in strength. If the number of filaments exceeds 50,000, resin impregnation may be difficult during prepreg production or molding.
  • the number of filaments is more preferably in the range of 2800 to 36000.
  • the prepreg according to the present invention is obtained by impregnating carbon fiber with the epoxy resin composition of the present invention.
  • the carbon fiber mass fraction of the prepreg is preferably 40 to 90% by mass, more preferably 50 to 80% by mass. If the carbon fiber mass fraction is too low, the weight of the resulting composite material becomes excessive, and the advantages of the carbon fiber reinforced composite material having excellent specific strength and specific elastic modulus may be impaired. If it is too high, poor impregnation of the resin composition occurs, and the resulting composite material tends to have a lot of voids, and its mechanical properties may be greatly deteriorated.
  • the prepreg of the present invention comprises a wet method in which the epoxy resin composition of the present invention is dissolved in a solvent such as methyl ethyl ketone and methanol to lower the viscosity and impregnated into a reinforcing fiber, and the epoxy resin composition is heated to lower the viscosity and strengthened. It can be suitably produced by a hot melt method for impregnating fibers.
  • the wet method is a method of obtaining a prepreg by immersing a reinforcing fiber in a solution of an epoxy resin composition, then pulling it up and evaporating the solvent using an oven or the like.
  • the hot melt method is a method in which a reinforcing fiber is impregnated directly with an epoxy resin composition whose viscosity has been reduced by heating, or a resin film in which an epoxy resin composition is coated on release paper or the like is prepared, and then a reinforcing fiber is prepared.
  • This is a method of obtaining a prepreg by transferring and impregnating the epoxy resin composition by overlapping the resin film from both sides or one side and heating and pressurizing.
  • This hot melt method is a preferred embodiment because substantially no solvent remains in the prepreg.
  • the fiber reinforced composite material of the present invention is obtained by laminating a plurality of prepregs produced by such a method, and then heat-curing the epoxy resin composition while applying heat and pressure to the obtained laminate. Can be manufactured.
  • a press molding method As a method for applying heat and pressure, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, and the like are used.
  • a wrapping tape method and an internal pressure molding method are preferably used for molding sports equipment.
  • the wrapping tape method is a method in which a prepreg is wound around a mandrel or the like and a tubular body made of a fiber reinforced composite material is formed, and is a suitable method for producing a rod-like body such as a golf shaft or a fishing rod.
  • the prepreg was wound around a mandrel, and a wrapping tape made of a thermoplastic resin film was wound outside the prepreg for fixing and applying pressure, and the epoxy resin composition was cured by heating in an oven. Thereafter, the core bar is removed to obtain a tubular body.
  • the internal pressure molding method is to set a preform in which a prepreg is wound on an internal pressure applying body such as a tube made of a thermoplastic resin in a mold, and then apply high pressure gas to the internal pressure applying body to apply pressure. At the same time, the mold is heated to form a tubular body.
  • This internal pressure molding method is particularly preferably used when molding a complicated shape such as a golf shaft, a bat, and a racket such as tennis or badminton.
  • the carbon fiber reinforced composite material of the present invention can be manufactured by, for example, a method of laminating the above-described prepreg of the present invention in a predetermined form and curing the epoxy resin by applying pressure and heating.
  • the carbon fiber reinforced composite material of the present invention can also be produced by using the above-described epoxy resin composition by a method that does not go through a prepreg.
  • Examples of such a method include a method of directly impregnating the epoxy resin composition of the present invention into a reinforcing fiber and then heat-curing, that is, a hand lay-up method, a filament winding method, a pultrusion method, a resin injection. -Molding method and resin transfer molding method are used.
  • a method of preparing an epoxy resin composition by mixing one or more main agents composed of an epoxy resin and one or more curing agents immediately before use is preferably employed.
  • the carbon fiber reinforced composite material of the present invention can have high compressive strength and high tensile properties, that is, high tensile strength utilization rate.
  • the tensile strength utilization factor here is obtained by the following formula.
  • (Tensile strength utilization rate of carbon fiber reinforced composite material) (Tensile strength of carbon fiber reinforced composite material) / ((Strand strength of carbon fiber) ⁇ (Volume content of carbon fiber)) Carbon fiber reinforced composites even under severe environmental conditions if the tensile strength utilization rate under low temperature (under -60 ° C) is 75% or more and the porous compressive strength (OHC) under high temperature moisture absorption conditions is 240 MPa or more It is preferable because the effect of reducing the weight of the material can be easily expressed. More preferably, the porous compressive strength (OHC) under a high temperature moisture absorption condition is 250 MPa or more because the degree of freedom in design when used for structural members such as aircraft and windmills is increased.
  • the fiber volume content can be determined by the nitric acid decomposition method described in JIS K7075 (1991).
  • the carbon fiber reinforced composite material of the present invention is preferable for aircraft structural members, windmill blades, automobile outer plates, and computer applications such as IC trays and laptop computer housings (housing), and sports applications such as golf shafts and tennis rackets. Used.
  • the epoxy resin composition of the present invention and the prepreg and carbon fiber reinforced composite material using the epoxy resin composition of the present invention will be described more specifically with reference to examples.
  • the carbon fiber, the resin raw material, the preparation method of the prepreg and the carbon fiber reinforced composite material used in the examples, the evaluation method of the porous compressive strength, and the evaluation method of the tensile strength are shown below.
  • the production environment and evaluation of the prepregs of the examples are performed in an atmosphere at a temperature of 25 ° C. ⁇ 2 ° C. and a relative humidity of 50% unless otherwise specified.
  • Epoxy resin [A] 34TGDDE (tetraglycidyl-3,4′-diaminodiphenyl ether) and 33TGDDE (tetraglycidyl-3,3′-diaminodiphenyl ether) were synthesized by the following method.
  • Epichlorohydrin 1221.2 g (13.2 mol) 610.6 g (6.6 mol) was charged into a four-necked flask equipped with a thermometer, dropping funnel, condenser and stirrer, and the temperature was adjusted to 70 with nitrogen purge.
  • ⁇ Curing agent> ⁇ Seika Cure S (4,4'-diaminodiphenyl sulfone, manufactured by Wakayama Seika Kogyo Co., Ltd.) -3,3'-DAS (3,3'-diaminodiphenyl sulfone, manufactured by Mitsui Chemicals Fine Co., Ltd.).
  • This test piece was subjected to a perforated compression test (measured at 82 ° C. after being immersed in warm water at 70 ° C. for 2 weeks) using an Instron universal testing machine according to the standard of ASTM-D6484.
  • Example 1 In a kneader, 50 parts by weight of 34TGDDE, 30 parts by weight of PxGAN, and 20 parts by weight of “Araldite (registered trademark)” MY721 were kneaded at 160 ° C. for 2 hours, and then cooled to 80 ° C. to obtain 40 parts by weight of Seikacure S.
  • An epoxy resin composition was prepared by kneading. Table 1 shows the composition and ratio (in Table 1, the numbers represent parts by mass). The obtained epoxy resin composition was coated on a release paper with a resin basis weight of 50 g / m 2 using a knife coater to prepare a resin film.
  • This resin film is overlapped on both sides of carbon fibers (weight per unit area: 200 g / m 2 ) aligned in one direction, using a heat roll, and the epoxy resin composition is made into carbon fibers while heating and pressing at a temperature of 100 ° C. and 1 atm.
  • a prepreg was obtained by impregnation.
  • the carbon fiber volume content of the carbon fiber reinforced composite material obtained by curing the prepreg was 58.7%. Using this volume content, the subsequent utilization of tensile strength was calculated.
  • Example 2 to 5 Comparative Examples 1 to 3
  • a prepreg was produced in the same manner as in Example 1 except that the types and blending amounts of the epoxy resin and the curing agent were changed as shown in Tables 1 and 4. Similarly, the volume content of carbon fibers was 58.7%.
  • Example 6 In a kneading apparatus, 60 parts by weight of 34TGDDE, 40 parts by weight of PxGAN, and 10 parts by weight of PES5003P were kneaded at 160 ° C. to visually confirm that PES5003P was dissolved, and then cooled to 80 ° C. to obtain 35 Seica Cure S.
  • An epoxy resin composition was prepared by kneading parts by mass. Table 2 shows the composition and ratio (in Table 2, the numbers represent parts by mass). The obtained epoxy resin composition was coated on a release paper with a resin basis weight of 50 g / m 2 using a knife coater to prepare a resin film.
  • This resin film is overlapped on both sides of carbon fibers (weight per unit area: 200 g / m 2 ) aligned in one direction, using a heat roll, and the epoxy resin composition is made into carbon fibers while heating and pressing at a temperature of 100 ° C. and 1 atm.
  • a prepreg was obtained by impregnation.
  • the volume content of carbon fibers in the carbon fiber subject composite material obtained by molding this prepreg was 58.7%.
  • Example 7 to 18, Comparative Examples 4 to 5, 7 A prepreg was produced in the same manner as in Example 1 except that the types and blending amounts of the epoxy resin and the curing agent were changed as shown in Tables 2 to 5.
  • the volume content of carbon fibers in the carbon fiber subject composite material obtained by molding this prepreg was 58.7%.
  • This resin film is overlapped on both sides of carbon fibers (weight per unit area: 200 g / m 2 ) aligned in one direction, using a heat roll, and the epoxy resin composition is made into carbon fibers while heating and pressing at a temperature of 100 ° C. and 1 atm.
  • a prepreg was obtained by impregnation.
  • the carbon fiber reinforced composite material obtained by the epoxy resin composition of the present invention is excellent in mechanical strength in more severe use environments such as high temperature and high humidity and low temperature, and therefore is particularly suitable for structural materials.
  • primary aircraft structural materials such as main wing, tail and floor beams
  • secondary structural materials such as flaps, ailerons, cowls, fairings and interior materials, rocket motor cases and satellite structural materials
  • structural materials for moving bodies such as automobiles, ships and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcing bars, and repair reinforcements
  • civil engineering and building material applications such as materials.
  • golf shafts fishing rods, tennis, badminton, squash and other racket applications, hockey and other stick applications, and ski pole applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

 低温下や高温吸湿下等の厳しい使用環境での機械強度に優れ、構造材料として好適な炭素繊維強化複合材料、これを得るためのエポキシ樹脂組成物、およびそのエポキシ樹脂組成物を用いて得られるプリプレグを提供する。少なくとも次の構成要素[A]、[B]を含んでなるエポキシ樹脂組成物であって、配合したエポキシ樹脂総量100質量%に対して[A]を20~80質量%と、[B]を10~50質量%含むことを特徴とする炭素繊維強化複合材料用エポキシ樹脂組成物である。 [A]:式(1)で表される構造を有するエポキシ樹脂 [B]:4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1つ有するエポキシ樹脂

Description

炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
 本発明は、炭素繊維強化複合材料用エポキシ樹脂組成物(以下、単に「エポキシ樹脂組成物」と言うこともある。)、プリプレグ、および炭素繊維複合材料に関する。さらに詳しくは、低温下や高温吸湿下等の厳しい使用環境での機械強度に優れ、構造材料として好適な炭素繊維強化複合材料を与えるエポキシ樹脂組成物、およびプリプレグ、炭素繊維強化複合材料に関する。
 近年、炭素繊維を強化繊維として用いた炭素繊維強化複合材料は、その高い比強度と比弾性率を利用して、航空機や自動車などの構造材料、テニスラケット、ゴルフシャフトおよび釣り竿などのスポーツ、および一般産業用途などに利用されてきた。
 その炭素繊推強化複合材料の製造方法には、強化繊維に未硬化のマトリックス樹脂が含浸されたシート状中間材料であるプリプレグを用い、それを硬化させる方法や、モールド中に配置した強化繊維に液状の樹脂を流し込んで中間体を得て、それを硬化させるレジン・トランスファー・モールディング法などが用いられている。これらの製造方法のうち、プリプレグを用いる方法では、通常、プリプレグを複数枚積層した後、加熱加圧することによって炭素繊維強化複合材料を得ている。このプリプレグに用いられるマトリックス樹脂としては、プロセス性などの生産性の面から、熱硬化性樹脂、特にエポキシ樹脂が用いられることが多い。
 なかでも、航空機や自動車などの構造材用途では、近年、使用例が増えるに従い、この炭素繊維強化複合材料に対する要求特性は厳しくなってきている。特に、航空機部材や自動車部材等の構造材に適用されるにつれて、炭素繊維強化複合材料に対して高温高湿下や低温下などのより厳しい使用環境での高強度化が要求されてきている。
 従来技術では、低温条件下の引張強度を向上させると高温高湿条件下の圧縮強度が損なわれ、また逆に、高温高湿条件下の圧縮強度を向上させると低温条件下の引張強度が損なわれることが多く、引張強度と圧縮強度を高度に両立させることは非常に困難であった。
 炭素繊維強化複合材料の引張強度の向上には、強化繊維の高強度化や高繊維体積分率化(高Vf化)が有効である。従来、高強度の強化繊維を得る方法が提案されている(特許文献1参照)が、この提案では、炭素繊維強化複合材料としたときに発現する強度への言及がない。一般に、強化繊維を高強度化するほど、繊維本来の強度を利用することが難しくなる傾向がある。また、同じ強度の強化繊維でも組み合わせるマトリックス樹脂やその成形条件により、その引張強度利用率が大きく変動していくことが知られている。特に、硬化の温度条件が180℃以上になると、その硬化の際に繊維強化複合材料に残留する熱応力歪から高強度が発現しにくいという問題があるため、このような高強度の炭素繊維を得ることができても炭素繊維強化複合材料としての強度を発現させるためには、さらに技術的な課題をクリアする必要がある。
 また、マトリックス樹脂の引張破断伸度と破壊靱性KIcが特定の関係を満たせば高い引張強度利用率が得られることが示されている(特許文献2参照)。しかし、破壊靱性KIcの向上のために、マトリックス樹脂に熱可塑性樹脂や、ゴム成分を多量に配合すると、一般的に粘度が上昇し、プリプレグ製造のプロセス性や、取扱性を損ねることがある。
 また、炭素繊維強化複合材料を構造材料として用いる場合、圧縮強度も重要な物性である。圧縮強度の測定には、無孔板、有孔板、円筒などの試験片を用いて行われるが、実際の使用においては、ボルト穴を設けた板材の形にすることが多いため、特に有孔板の圧縮強度、なかでも高温高湿条件での強度が重要になる。しかし、従来のポリマーをマトリックスとする複合材料では、軽量という利点を有するものの、高温高湿条件下では強度や弾性率の低下にともない圧縮強度が大きく低下することがあり、適用可能な用途が制限されることがあった。
 圧縮強度に優れた炭素繊維複合材料を与える樹脂組成物としては、テトラグリシジルジアミノジフェニルメタンとビスフェノールA型エポキシ樹脂やジグリシジルレゾルシノールなどの2官能エポキシ樹脂、および3,3’-ジアミノジフェニルスルホンからなるエポキシ樹脂組成物や(特許文献3参照)、多官能エポキシ樹脂とジグリシジルアニリン誘導体、および4,4’-ジアミノジフェニルスルホンからなるエポキシ樹脂組成物(特許文献4参照)、多官能エポキシ樹脂と特殊骨格を有するエポキシ樹脂、および3,3’-ジアミノジフェニルスルホンからなるエポキシ樹脂組成物(特許文献5参照)が開示されている。これらは圧縮強度の向上は実現できるものの、低温下での引張強度の向上に関しては何ら述べられていない。
特開平11-241230号公報 特開平9-235397号公報 国際公開第1996/17006号パンフレット 特開2003-26768号公報 特開2002-363253号公報
 そこで、本発明の目的は、引張系と圧縮系の機械強度に優れ、構造材料として好適な炭素繊維強化複合材料を与えるエポキシ樹脂組成物、およびプリプレグ、炭素繊維強化複合材料を提供することである。
 本発明は、上記目的を達成するために次の構成を有するものである。すなわち、少なくとも次の構成要素[A]、[B]を含んでなるエポキシ樹脂組成物であって、配合したエポキシ樹脂総量100質量%に対して[A]を20~80質量%と、[B]を10~50質量%含むことを特徴とする炭素繊維強化複合材料用エポキシ樹脂組成物。
[A]一般式(1)で表される構造を有し、1個以上のアミン型グリシジル基をメタ位に有するエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000002
[B]4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1つ有するエポキシ樹脂
(ただし式中、R~Rは、水素原子、炭素数1~4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。)。
 また、本発明においては、前記のエポキシ樹脂組成物を硬化してなる樹脂硬化物、および炭素繊維を含んでなる炭素繊維強化複合材料、前記のエポキシ樹脂組成物を炭素繊維に含浸させてプリプレグとし、さらには、かかるプリプレグを硬化させて炭素繊維強化複合材料とすることができる。
 本発明によれば、耐熱性に優れ、かつプリプレグを得る際のプロセス性に優れたエポキシ樹脂組成物を得ることができる。このエポキシ樹脂組成物と炭素繊維を組み合わせることにより、プリプレグを得ることができ、また、このエポキシ樹脂組成物を硬化させることにより引張強度と圧縮強度に優れた炭素繊維強化複合材料を得ることができる。
 以下、本発明のエポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料料について詳細に説明する。
 本発明者らは、炭素繊維強化複合材料の引張特性と圧縮特性の強度発現メカニズムを鋭意検討した結果、前記式(1)で表されるエポキシ樹脂[A]、4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1つ有するエポキシ樹脂[B]を、エポキシ樹脂組成物中にそれぞれ特定の含有比で含むことにより、二律背反であった引張強度と圧縮強度とを高いレベルで両立するのに最適な構造が得られることを見出した。
 本発明のエポキシ樹脂組成物に含まれる、式(1)で表される構造を有するエポキシ樹脂[A]のR、R、R、Rは、各々が水素原子、炭素数1~4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基である。R、R、R、Rの構造が大きすぎるとエポキシ樹脂組成物の粘度が高くなりすぎて取り扱い性を損ねる、あるいはエポキシ樹脂組成物中の他の成分との相溶性が損なわれ、強度向上効果が得られないことがある。
 なお、本発明で言う、アミン型グリシジル基をメタ位に有するエポキシ樹脂とは、前記式(1)のエーテル基が連結するベンゼン環上の炭素を1位とした時に、3位または3’位ないし5位または5’位の炭素にアミン型グリシジル基が連結しているものを言う。
 エポキシ樹脂[A]としては、例えば、テトラグリシジル-3,4’-ジアミノジフェニルエーテル、テトラグリシジル-3,3’-ジアミノジフェニルエーテル、テトラグリシジル-3,4’-ジアミノ-2,2’-ジメチルジフェニルエーテル、テトラグリシジル-3,4’-ジアミノ-2,2’-ジブロモジフェニルエーテル、テトラグリシジル-3,4’-ジアミノ-5-メチルジフェニルエーテル、テトラグリシジル-3,4’-ジアミノ-2’-メチルジフェニルエーテル、テトラグリシジル-3,4’-ジアミノ-3’-メチルジフェニルエーテル、テトラグリシジル-3,4’-ジアミノ-5,2’-ジメチルジフェニルエーテル、テトラグリシジル-3,4’-ジアミノ-5,3’-ジメチルジフェニルエーテル、テトラグリシジル-3,3’-ジアミノ-5-メチルジフェニルエーテル、テトラグリシジル-3,3’-ジアミノ-5,5’-ジメチルジフェニルエーテル、テトラグリシジル-3,3’-ジアミノ-5,5’-ジブロモジフェニルエーテルなどが挙げられる。
 なかでも、R、R、R、Rは、他のエポキシ樹脂への相溶性の点からは水素原子が好ましく、耐熱性の点から、テトラグリシジル-3,4’-ジアミノジフェニルエーテルもしくはテトラグリシジル-3,3’-ジアミノジフェニルエーテル、がより好ましい。また、難燃性の点からは、これがClやBrといったハロゲン原子で置換されているものも好ましい形態である。
 次に、本発明で用いられるエポキシ樹脂[A]の製造方法について例示説明する。
 本発明で用いられるエポキシ樹脂[A]は、下記一般式(2)
Figure JPOXMLDOC01-appb-C000003
(ただし式中、R~Rは、水素原子、炭素数1~4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。)で示されるジアミノジフェニルエーテル誘導体と、エピクロロヒドリンを反応させることにより製造することができる。
 すなわち、一般的なエポキシ樹脂の製造方法と同じく、エポキシ樹脂[A]の製造方法は、ジアミノジフェニルエーテル誘導体1分子にエピクロロヒドリン4分子が付加し、下記一般式(3)
Figure JPOXMLDOC01-appb-C000004
(ただし式中、R~Rは、水素原子、炭素数1~4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。)で示されるジクロロヒドリン体が生成する付加工程と続くジクロロヒドリン体をアルカリ化合物により脱塩化水素し、4官能エポキシ体である下記一般式(1)
Figure JPOXMLDOC01-appb-C000005
(ただし式中、R~Rは、水素原子、炭素数1~4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。)で示されるエポキシ化合物が生成する環化工程からなる。
 エポキシ樹脂[A]は、配合量が少なすぎると耐熱性を損ねてしまい、多すぎると架橋密度が高くなるため脆い材料となることがあり、炭素繊維強化複合材料の耐衝撃性と強度を損ねてしまうことがある。エポキシ樹脂[A]の配合量は、配合したエポキシ樹脂総量100質量%に対して20~80質量%であることを必要とし、好ましくは30~75質量%である。
 本発明のエポキシ樹脂組成物に含まれるエポキシ樹脂[B]の、4員環以上の環構造を2つ以上有する、とは、シクロヘキサンやベンゼン、ピリジンなど4員環以上の単環構造を2つ以上有するか、フタルイミドやナフタレン、カルバゾールなどの各々4員環以上の環からなる縮合環構造を少なくとも1つ以上有することを示す。
 また、エポキシ樹脂[B]の環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基とは、ベンゼンやフタルイミドなどの環構造にアミン型ならばN原子、エーテル型ならばO原子が結合した構造を有することを示し、アミン型ならば1官能または2官能のエポキシ樹脂、エーテル型ならば1官能のエポキシ樹脂である。
 エポキシ樹脂[B]の配合量が少ないと、炭素繊維強化複合材料の強度向上の効果がほとんどなく、配合量が多すぎると、耐熱性を著しく損ねてしまう。したがって、[B]の配合量は配合されたエポキシ樹脂総量に対して10~50質量%であることを必要とする。また、[B]において、1官能エポキシ樹脂はより強度発現の効果に優れ、2官能エポキシ樹脂はより耐熱性に優れる。ゆえに[B]の配合量は、1官能エポキシ樹脂では配合されたエポキシ樹脂総量に対して10~40質量%がより好ましく、2官能エポキシ樹脂では配合されたエポキシ樹脂総量に対して25~50質量%がより好ましい。
 エポキシ樹脂[B]としては、例えば、グリシジルフタルイミド、グリシジル-1,8-ナフタルイミド、グリシジルカルバゾール、グリシジル-3,6-ジブロモカルバゾール、グリシジルインドール、グリシジル-4-アセトキシインドール、グリシジル-3-メチルインドール、グリシジル-3-アセチルインドール、グリシジル-5-メトキシ-2-メチルインドール、o-フェニルフェニルグリシジルエーテル、p-フェニルフェニルグリシジルエーテル、p-(3-メチルフェニル)フェニルグリシジルエーテル、2,6-ジベンジルフェニルグリシジルエーテル 、2-ベンジルフェニルグリシジルエーテル 、2,6-ジフェニルフェニルグリシジルエーテル、4-α-クミルフェニルグリシジルエーテル、o-フェノキシフェニルグリシジルエーテル、p-フェノキシフェニルグリシジルエーテル、ジグリシジル-1-アミノナフタレン、ジグリシジル-p-フェノキシアニリン、ジグリシジル-4-(4-メチルフェノキシ)アニリン、ジグリシジル-4-(3-メチルフェノキシ)アニリン、ジグリシジル-4-(2-メチルフェノキシ)アニリン、ジグリシジル-4-(4-エチルフェノキシ)アニリン、ジグリシジル-4-(3-エチルフェノキシ)アニリン、ジグリシジル-4-(2-エチルフェノキシ)アニリン、ジグリシジル-4-(4-プロピルフェノキシ)アニリン、ジグリシジル-4-(4-tert-ブチルフェノキシ)アニリン、ジグリシジル-4-(4-シクロヘキシルフェノキシ)アニリン、ジグリシジル-4-(3-シクロヘキシルフェノキシ)アニリン、ジグリシジル-4-(2-シクロヘキシルフェノキシ)アニリン、ジグリシジル-4-(4-メトキシフェノキシ)アニリン、ジグリシジル-4-(3-メトキシフェノキシ)アニリン、ジグリシジル-4-(2-メトキシフェノキシ)アニリン、ジグリシジル-4-(3-フェノキシフェノキシ)アニリン、ジグリシジル-4-(4-フェノキシフェノキシ)アニリン、ジグリシジル-4-[4-(トリフルオロメチル)フェノキシ]アニリン、ジグリシジル-4-[3-(トリフルオロメチル)フェノキシ]アニリン、ジグリシジル-4-[2-(トリフルオロメチル)フェノキシ]アニリン、ジグリシジル-p-(2-ナフチルオキシフェノキシ)アニリン、ジグリシジル-p-(1-ナフチルオキシフェノキシ)アニリン、ジグリシジル-4-[(1,1’-ビフェニル-4-イル)オキシ]アニリン、ジグリシジル-4-(4-ニトロフェノキシ)アニリン、ジグリシジル-4-(3-ニトロフェノキシ)アニリン、ジグリシジル-4-(2-ニトロフェノキシ)アニリン、ジグリシジル-4-(4-メチルフェノキシ)アニリン、ジグリシジル-4-(3-メチルフェノキシ)アニリン、ジグリシジル-4-(2-メチルフェノキシ)アニリン、ジグリシジル-4-(4-エチルフェノキシ)アニリン、ジグリシジル-4-(3-エチルフェノキシ)アニリン、ジグリシジル-4-(4-tert-ブチルフェノキシ)アニリン、ジグリシジル-4-(4-シクロヘキシルフェノキシ)アニリン、ジグリシジル-p-(2-ナフチルオキシフェノキシ)アニリンなどが挙げられる。
 エポキシ樹脂[B]の市販品としては、“デナコール(登録商標)”Ex-731(グリシジルフタルイミド、ナガセケムテックス(株)製)、OPP-G(o-フェニルフェニルグリシジルエーテル、三光(株)製)、PxGAN(ジグリシジル-p-フェノキシアニリン、東レ・ファインケミカル(株)製)などが挙げられる。
 本発明においては、[A]、[B]の他のエポキシ樹脂や、エポキシ樹脂と熱硬化性樹脂の共重合体等を含んでも良い。エポキシ樹脂と共重合させて用いられる上記の熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等が挙げられる。これらの樹脂組成物や化合物は、単独で用いてもよいし適宜配合して用いてもよい。少なくとも[A]、[B]の他のエポキシ樹脂を配合することは、樹脂の流動性と硬化後の耐熱性を兼ね備えるものとする。
 [A]、[B]以外のエポキシ樹脂として用いられるエポキシ樹脂のうち、2官能のエポキシ樹脂としては、フェノールを前駆体とするグリシジルエーテル型エポキシ樹脂が好ましく用いられる。このようなエポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ウレタン変性エポキシ樹脂、ヒダントイン型およびレゾルシノール型エポキシ樹脂等が挙げられる。
 液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂およびレゾルシノール型エポキシ樹脂は、低粘度であるために、他のエポキシ樹脂と組み合わせて使うことが好ましい。
 また、固形のビスフェノールA型エポキシ樹脂は、液状ビスフェノールA型エポキシ樹脂に比較し架橋密度の低い構造を与えるため耐熱性は低くなるが、より靭性の高い構造が得られるため、グリシジルアミン型エポキシ樹脂や液状のビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂と組み合わせて用いられる。
 ナフタレン骨格を有するエポキシ樹脂は、低吸水率かつ高耐熱性の硬化樹脂を与える。また、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂およびジフェニルフルオレン型エポキシ樹脂も、低吸水率の硬化樹脂を与えるため好適に用いられる。ウレタン変性エポキシ樹脂およびイソシアネート変性エポキシ樹脂は、破壊靱性と伸度の高い硬化樹脂を与える。
 ビスフェノールA型エポキシ樹脂の市販品としては、“EPON(登録商標)”825(ジャパンエポキシレジン(株)製)、“エピクロン(登録商標)”850(DIC(株)製)、“エポトート(登録商標)”YD―128(東都化成(株)製)、およびDER―331やDER-332(以上、ダウケミカル社製)などが挙げられる。
 ビスフェノールF型エポキシ樹脂の市販品としては、“jER(登録商標)”806、 “jER(登録商標)”807および“jER(登録商標)”1750(以上、ジャパンエポキシレジン(株)製)、“エピクロン(登録商標)”830(DIC(株)製)および“エポトート(登録商標)”YD―170(東都化成(株)製)などが挙げられる。
 レゾルシノール型エポキシ樹脂の市販品としては、“デコナール(登録商標)”EX-201(ナガセケムテックス(株)製)などが挙げられる。
 グリシジルアニリン型のエポキシ樹脂市販品としては、GANやGOT(以上、日本化薬(株)製)などが挙げられる。
 ビフェニル型エポキシ樹脂の市販品としては、NC-3000(日本化薬(株)製)などが挙げられる。
 ウレタン変性エポキシ樹脂の市販品としては、AER4152(旭化成エポキシ(株)製)などが挙げられる。
 ヒダントイン型のエポキシ樹脂市販品としては、AY238(ハンツマン・アドバンスト・マテリアルズ社製)が挙げられる。
 [A]、[B]以外のエポキシ樹脂として用いられるエポキシ樹脂のうち、3官能以上のグリシジルアミン型エポキシ樹脂としては、例えば、ジアミノジフェニルメタン型、ジアミノジフェニルスルホン型、アミノフェノール型、メタキシレンジアミン型、1,3-ビスアミノメチルシクロヘキサン型、イソシアヌレート型等のエポキシ樹脂が挙げられる。中でも物性のバランスが良いことから、ジアミノジフェニルメタン型とアミノフェノール型のエポキシ樹脂が特に好ましく用いられる。
 また、3官能以上のグリシジルエーテル型エポキシ樹脂としては、例えば、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型およびテトラフェニロールエタン型等のエポキシ樹脂が挙げられる。
 エポキシ樹脂[A]を含む3官能以上のエポキシ樹脂の配合量が少なすぎると耐熱性を損ねてしまい、多すぎると架橋密度が高くなるため脆い材料となることがあり、炭素繊維強化複合材料の耐衝撃性と強度を損ねてしまうことがある。エポキシ樹脂[A]を含む3官能以上のエポキシ樹脂の配合量は、エポキシ樹脂[A]と[B]、および[A]、[B]以外のエポキシ樹脂とを合わせ配合されたエポキシ樹脂量(エポキシ樹脂総量)100質量%に対して、好ましくは40~80質量%であり、より好ましくは50~70質量%である。
 3官能以上のエポキシ樹脂の市販品としてジアミノジフェニルメタン型のエポキシ樹脂は、ELM434(住友化学(株)製)、“アラルダイト(登録商標)”MY720、“アラルダイト(登録商標)”MY721、“アラルダイト(登録商標)”MY9512、“アラルダイト(登録商標)”MY9663(以上ハンツマン・アドバンスト・マテリアルズ社製)、および“エポトート(登録商標)”YH―434(東都化成(株)製)などが挙げられる。
 メタキシレンジアミン型のエポキシ樹脂の市販品としては、TETRAD-X(三菱ガス化学社製)が挙げられる。
 1,3-ビスアミノメチルシクロヘキサン型のエポキシ樹脂の市販品としては、TETRAD-C(三菱ガス化学社製)が挙げられる。
 イソシアヌレート型のエポキシ樹脂の市販品としては、TEPIC-P(日産化学社製)が挙げられる。
 トリスヒドロキシフェニルメタン型のエポキシ樹脂市販品としては、Tactix742(ハンツマン・アドバンスト・マテリアルズ社製)が挙げられる。
 テトラフェニロールエタン型のエポキシ樹脂の市販品としては、“jER(登録商標)”1031S(ジャパンエポキシレジン(株)製)が挙げられる。
 アミノフェノール型のエポキシ樹脂の市販品としては、ELM120やELM100(以上、住友化学(株)製)、“jER(登録商標)”630(ジャパンエポキシレジン(株)製)、および“アラルダイト(登録商標)”MY0510(ハンツマン(株)製)、“アラルダイト(登録商標)”MY0600(ハンツマン(株)製)、“アラルダイト(登録商標)”MY0610(ハンツマン(株)製)、などが挙げられる。
 フェノールノボラック型エポキシ樹脂の市販品としては、DEN431やDEN438(以上、ダウケミカル社製)および“jER(登録商標)”152(ジャパンエポキシレジン(株)製)などが挙げられる。
 オルソクレゾールノボラック型のエポキシ樹脂の市販品としては、EOCN-1020(日本化薬社製)や“エピクロン(登録商標)”N-660(DIC(株)製)などが挙げられる。
 ジシクロペンタジエン型エポキシ樹脂の市販品としては、“エピクロン(登録商標)”HP7200(DIC(株)製)などが挙げられる。
 本発明の炭素繊維強化複合材料用エポキシ樹脂組成物は、硬化剤を配合して用いると良い。ここで説明される硬化剤は、本発明のエポキシ樹脂組成物に含まれるエポキシ樹脂の硬化剤であり、エポキシ基と反応し得る活性基を有する化合物である。硬化剤としては、具体的には、例えば、ジシアンジアミド、芳香族ポリアミン、アミノ安息香酸エステル類、各種酸無水物、フェノールノボラック樹脂、クレゾールノボラック樹脂、ポリフェノール化合物、イミダゾール誘導体、脂肪族アミン、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物のようなカルボン酸無水物、カルボン酸ヒドラジド、カルボン酸アミド、ポリメルカプタンおよび三フッ化ホウ素エチルアミン錯体のようなルイス酸錯体などが挙げられる。
 芳香族ポリアミンを硬化剤として用いることにより、耐熱性の良好なエポキシ樹脂硬化物が得られる。特に、芳香族ポリアミンの中でも、ジアミノジフェニルスルホンの各種異性体は、耐熱性の良好なエポキシ樹脂硬化物を得るため最も適している硬化剤である。
 また、ジシアンジアミドと尿素化合物、例えば、3,4-ジクロロフェニル-1,1-ジメチルウレアとの組合せ、あるいはイミダゾール類を硬化剤として用いることにより、比較的低温で硬化しながら高い耐熱耐水性が得られる。酸無水物を用いてエポキシ樹脂を硬化することは、アミン化合物硬化に比べ吸水率の低い硬化物を与える。その他、これらの硬化剤を潜在化したもの、例えば、マイクロカプセル化したものを用いることにより、プリプレグの保存安定性、特にタック性やドレープ性が室温放置しても変化しにくい。
 硬化剤の添加量の最適値は、エポキシ樹脂と硬化剤の種類により異なる。例えば、芳香族アミン硬化剤では、化学量論的に当量となるように添加することが好ましいが、エポキシ樹脂のエポキシ基量に対する芳香族アミン硬化剤の活性水素量の比を0.7~0.9付近とすることにより、当量で用いた場合より高弾性率樹脂が得られることがあり、これも好ましい態様である。これらの硬化剤は、単独で使用しても複数を併用してもよい。
 芳香族ポリアミン硬化剤の市販品としては、セイカキュアS(和歌山精化工業(株)製)、MDA-220(三井化学(株)製)、“jERキュア(登録商標)”W(ジャパンエポキシレジン(株)製)、および3,3’-DAS(三井化学(株)製)、“Lonzacure(登録商標)”M-DEA(Lonza(株)製)、“Lonzacure(登録商標)”M-DIPA(Lonza(株)製)、“Lonzacure(登録商標)”M-MIPA(Lonza(株)製)および“Lonzacure(登録商標)”DETDA 80(Lonza(株)製)などが挙げられる。
 また、これらエポキシ樹脂と硬化剤、あるいはそれらの一部を予備反応させた物を組成物中に配合することもできる。この方法は、粘度調節や保存安定性向上に有効な場合がある。
 本発明においては、上記のエポキシ樹脂組成物に、熱可塑性樹脂を混合または溶解させて用いることも好適な態様である。このような熱可塑性樹脂としては、一般に、主鎖に、炭素-炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合からなる群から選ばれた結合を有する熱可塑性樹脂であることが好ましい。また、この熱可塑性樹脂は、部分的に架橋構造を有していても差し支えなく、結晶性を有していても非晶性であってもよい。特に、ポリアミド、ポリカーボナート、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルイミド、フェニルトリメチルインダン構造を有するポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアラミド、ポリエーテルニトリルおよびポリベンズイミダゾールからなる群から選ばれた少なくとも1種の樹脂が、上記のエポキシ樹脂組成物に含まれるいずれかのエポキシ樹脂に混合または溶解していることが好適である。
 なかでも、良好な耐熱性を得るためには、熱可塑性樹脂のガラス転移温度(Tg)が少なくとも150℃以上であり、170℃以上であることが好ましい。配合する熱可塑性樹脂のガラス転移温度が、150℃未満であると、成形体として用いた時に熱による変形を起こしやすくなる場合がある。さらに、この熱可塑性樹脂の末端官能基としては、水酸基、カルボキシル基、チオール基、酸無水物などのものがカチオン重合性化合物と反応することができ、好ましく用いられる。具体的には、ポリエーテルスルホンの市販品である“スミカエクセル(登録商標)”PES3600P、“スミカエクセル(登録商標)”PES5003P、“スミカエクセル(登録商標)”PES5200P、“スミカエクセル(登録商標)”PES7600P(以上、住友化学工業(株)製)などを使用することができ、また、特表2004-506789号公報に記載されるようなポリエーテルスルホンとポリエーテルエーテルスルホンの共重合体オリゴマー、さらにポリエーテルイミドの市販品である“ウルテム(登録商標)”1000、“ウルテム(登録商標)”1010、“ウルテム(登録商標)”1040(以上、ソルベイアドバンストポリマーズ(株)製)などが挙げられる。オリゴマーとは10個から100個程度の有限個のモノマーが結合した比較的分子量が低い重合体を指す。
 エポキシ樹脂と熱可塑性樹脂との混合物は、それらを単独で用いた場合より良好な結果を与えることが多い。エポキシ樹脂の脆さを熱可塑性樹脂の強靱さでカバーし、かつ熱可塑性樹脂の成形困難性をエポキシ樹脂でカバーし、バランスのとれたベース樹脂となる。エポキシ樹脂と熱可塑性樹脂と使用割合(質量部)は、バランスの点で、好ましくは配合したエポキシ樹脂の合計100質量部に対して熱可塑性樹脂の配合量が2~40質量部の範囲であり、より好ましくは5~30質量部の範囲である。
 本発明においては、本発明のエポキシ樹脂組成物に熱可塑性樹脂粒子を配合することも好適である。熱可塑性樹脂粒子を配合することにより、炭素繊維強化複合材料としたときに、マトリックス樹脂の靱性が向上し耐衝撃性が向上する。
 本発明で用いられる熱可塑性樹脂粒子の素材としては、エポキシ樹脂組成物に混合または溶解して用い得る熱可塑性樹脂として、先に例示した各種の熱可塑性樹脂と同様のものを用いることができる。繊維強化複合材料とした時に安定した接着強度や耐衝撃性を与える観点から、粒子中で形態を保持するものであることが好ましい。中でも、ポリアミドは最も好ましく、ポリアミドの中でも、ナイロン12、ナイロン11やナイロン6/12共重合体は、特に良好な熱硬化性樹脂との接着強度を与える。この熱可塑性樹脂粒子の形状としては、球状粒子でも非球状粒子でも、また多孔質粒子でもよいが、球状の方が樹脂の流動特性を低下させないため粘弾性に優れ、また応力集中の起点がなく、高い耐衝撃性を与えるという点で好ましい態様である。ポリアミド粒子の市販品としては、SP-500(東レ(株)製)、“トレパール(登録商標)”TN(東レ(株)製)、“オルガソール(登録商標)”1002D(ATOCHEM(株)製)、“オルガソール(登録商標)”2002(ATOCHEM(株)製)、“オルガソール(登録商標)”3202(ATOCHEM(株)製)などが挙げられる。
 本発明のエポキシ樹脂組成物は、本発明の効果を妨げない範囲で、カップリング剤や、熱硬化性樹脂粒子、エポキシ樹脂に溶解可能な熱可塑性樹脂、あるいはシリカゲル、カーボンブラック、クレー、カーボンナノチューブ、金属粉体といった無機フィラー等を配合することができる。
 本発明で用いられる炭素繊維は、用途に応じてあらゆる種類の炭素繊維を用いることが可能であるが、耐衝撃性の点から高くとも400GPaの引張弾性率を有する炭素繊維であることが好ましい。また、強度の観点からは、高い剛性および機械強度を有する複合材料が得られることから、引張強度が好ましくは4.4~6.5GPaの炭素繊維が用いられる。また、引張伸度も重要な要素であり、引張伸度が1.7~2.3%の高強度でありかつ高伸度である炭素繊維であることが好ましい。従って、引張弾性率が少なくとも230GPaであり、引張強度が少なくとも4.4GPaであり 、引張伸度が少なくとも1.7%であるという特性を兼ね備えた炭素繊維が最も適している。
 炭素繊維の市販品としては、“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T800S-24K、“トレカ(登録商標)”T810G-24K、“トレカ(登録商標)”T700G-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T700S-12K(以上東レ(株)製)などが挙げられる。
 炭素繊維の形態や配列については、一方向に引き揃えた長繊維や織物等から適宜選択できるが、軽量で耐久性がより高い水準にある炭素繊維強化複合材料を得るためには、炭素繊維が、一方向に引き揃えた長繊維(繊維束)や織物等連続繊維の形態であることが好ましい。
 本発明において用いられる炭素繊維束は、一つの繊維束中のフィラメント数が2500~50000本の範囲であることが好ましい。フィラメント数が2500本を下回ると繊維配列が蛇行しやすく強度低下の原因となりやすい。また、フィラメント数が50000本を上回るとプリプレグ作製時あるいは成形時に樹脂含浸が難しいことがある。フィラメント数は、より好ましくは2800~36000本の範囲である。
 本発明によるプリプレグは、本発明のエポキシ樹脂組成物を炭素繊維に含浸したものである。そのプリプレグの炭素繊維質量分率は好ましくは40~90質量%であり、より好ましくは50~80質量%である。炭素繊維質量分率が低すぎると、得られる複合材料の重量が過大となり、比強度および比弾性率に優れる炭素繊維強化複合材料の利点が損なわれることがあり、また、炭素繊維質量分率が高すぎると、樹脂組成物の含浸不良が生じ、得られる複合材料がボイドの多いものとなり易く、その力学特性が大きく低下することがある。
 本発明のプリプレグは、本発明のエポキシ樹脂組成物を、メチルエチルケトンやメタノール等の溶媒に溶解して低粘度化し、強化繊維に含浸させるウェット法と、エポキシ樹脂組成物を加熱により低粘度化し、強化繊維に含浸させるホットメルト法等によって好適に製造することができる。
 ウェット法は、強化繊維をエポキシ樹脂組成物の溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発せしめ、プリプレグを得る方法である。
 ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、またはエポキシ樹脂組成物を離型紙等の上にコーティングした樹脂フィルムを作製しておき、次に強化繊維の両側または片側からその樹脂フィルムを重ね、加熱加圧することによりエポキシ樹脂組成物を転写含浸せしめ、プリプレグを得る方法である。このホットメルト法では、プリプレグ中に残留する溶媒が実質的に皆無となるため好ましい態様である。
 また、本発明の繊維強化複合材料は、このような方法により製造された複数のプリプレグを積層後、得られた積層体に熱および圧力を付与しながらエポキシ樹脂組成物を加熱硬化させる方法等により製造することができる。
 熱および圧力を付与する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法および内圧成形法等が使用される。特にスポーツ用品の成形には、ラッピングテープ法と内圧成形法が好ましく用いられる。
 ラッピングテープ法は、マンドレル等の芯金にプリプレグを捲回して、繊維強化複合材料製の管状体を成形する方法であり、ゴルフシャフトや釣り竿等の棒状体を作製する際に好適な方法である。より具体的には、マンドレルにプリプレグを捲回し、プリプレグの固定および圧力付与のため、プリプレグの外側に熱可塑性樹脂フィルムからなるラッピングテープを捲回し、オーブン中でエポキシ樹脂組成物を加熱硬化させた後、芯金を抜き去って管状体を得る方法である。
 また、内圧成形法は、熱可塑性樹脂製のチューブ等の内圧付与体にプリプレグを捲回したプリフォームを金型中にセットし、次いでその内圧付与体に高圧の気体を導入して圧力を付与すると同時に金型を加熱せしめ、管状体を成形する方法である。この内圧成形法は、ゴルフシャフト、バット、およびテニスやバトミントン等のラケットのような複雑な形状物を成形する際に、特に好ましく用いられる。
 本発明の炭素繊維強化複合材料は、上述した本発明のプリプレグを所定の形態で積層し、加圧・加熱してエポキシ樹脂を硬化させる方法を一例として製造することができる。
 本発明の炭素繊維強化複合材料は、前記したエポキシ樹脂組成物を用いて、プリプレグを経由しない方法によっても製造することができる。
 このような方法としては、例えば、本発明のエポキシ樹脂組成物を直接強化繊維に含浸させた後加熱硬化する方法、即ち、ハンド・レイアップ法、フィラメント・ワインディング法、プルトルージョン法、レジン・インジェクション・モールディング法およびレジン・トランスファー・モールディング法等が用いられる。これら方法では、エポキシ樹脂からなる1つ以上の主剤と、1つ以上の硬化剤とを使用直前に混合してエポキシ樹脂組成物を調製する方法が好ましく採用される。
 本発明の炭素繊維強化複合材料は高い圧縮強度と高い引張特性、すなわち高い引張強度利用率が得られる。ここでいう引張強度利用率とは、下記の式で得られる。
 (炭素繊維強化複合材料の引張強度利用率)=(炭素繊維強化複合材料の引張強度)/((炭素繊維のストランド強度)×(炭素繊維の体積含有率))
低温下(-60℃下)での引張強度利用率が75%以上であり、かつ高温吸湿条件下での有孔圧縮強度(OHC)が240MPa以上であれば、厳しい環境条件でも炭素繊維強化複合材料の軽量化効果が発現しやすくできるため好ましい。さらに好ましくは高温吸湿条件下での有孔圧縮強度(OHC)が250MPa以上であると、航空機や風車など構造部材に用いる際の設計自由度があがるため好ましい。
繊維体積含有率は、JIS K7075(1991)に記載の硝酸分解法により求めることができる。
 本発明の炭素繊維強化複合材料は、航空機構造部材、風車の羽根、自動車外板およびICトレイやノートパソコンの筐体(ハウジング)などのコンピュータ用途、さらにはゴルフシャフトやテニスラケットなどスポーツ用途に好ましく用いられる。
 以下、実施例によって、本発明のエポキシ樹脂組成物と、それを用いたプリプレグおよび炭素繊維強化複合材料について、より具体的に説明する。実施例で用いた炭素繊維、樹脂原料、プリプレグと炭素繊維強化複合材料の作製方法、有孔圧縮強度の評価方法、および引張強度の評価法を次に示す。実施例のプリプレグの作製環境と評価は、特に断りのない限り、温度25℃±2℃、相対湿度50%の雰囲気で行ったものである。
 <炭素繊維>
・“トレカ(登録商標)”T800G-24K-31E(フィラメント数24,000本、引張強度5.9GPa、引張弾性率294GPa、引張伸度2.0%の炭素繊維、東レ(株)製)。
 <エポキシ樹脂>
 (エポキシ樹脂[A])
・34TGDDE(テトラグリシジル-3,4’-ジアミノジフェニルエーテル)および33TGDDE(テトラグリシジル-3,3’-ジアミノジフェニルエーテル)は下記の方法で合成した。
温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1221.2g(13.2mol)610.6g(6.6mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1020gに溶解させた3,4’-ジアミノジフェニルエーテル222.2g(1.1mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)-3,4’-ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液229g(2.75mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、408gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が398g(収率85.2%)得られた。主生成物であるテトラグリシジル-3,4’-ジアミノジフェニルエーテルの純度は、84%(GCarea%)であった。
温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1221.2g(13.2mol)610.6g(6.6mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1020gに溶解させた3,3’-ジアミノジフェニルエーテル222.2g(1.1mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)-3,3’-ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液229g(2.75mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、408gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が395g(収率84.5%)得られた。主生成物であるテトラグリシジル-3,3’-ジアミノジフェニルエーテルの純度は、82%(GCarea%)であった。
 (エポキシ樹脂[B])
・“デナコール(登録商標)”Ex-731(N-グリシジルフタルイミド、ナガセケムテックス(株)製)
・OPP-G(o-フェニルフェニルグリシジルエーテル、三光(株)製)
・PxGAN(ジグリシジル-p-フェノキシアニリン、東レ・ファインケミカル(株)製)
・下記方法で合成した4PxPOG(4-フェノキシフェニルグリシジルエーテル)
 温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン305.3g(3.3mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1020gに溶解させた4-フェノキシフェノール204.8g(1.1mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、4-フェノキシ-O-(2-ヒドロキシ-3-クロロプロピル)フェノールを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液229g(2.75mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、410gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、粘性液体が215.6g(収率89%)得られた。主生成物である4-フェノキシフェニルグリシジルエーテルの純度は、92%(GCarea%)であった。
・下記方法で合成した4CmPOG(4-α-クミルフェニルグリシジルエーテル)
 合成したエポキシ樹脂の前駆体となる化合物を4-α-クミルフェノールに変更したこと以外は、上記した4-フェノキシフェニルグリシジルエーテルと同様の反応条件と手順によりグリシジル化反応を行い4-α-クミルフェニルグリシジルエーテルを得た。
 (エポキシ樹脂[D])
・“アラルダイト(登録商標)”MY721(テトラグリシジルジアミノジフェニルメタン、ハンツマン・アドバンスト・マテリアルズ(株)製)
・“EPICLON(登録商標)”830(ビスフェノールF型エポキシ樹脂、DIC(株)製)
・44TGDDE(テトラグリシジル-3,4’-ジアミノジフェニルエーテル)は下記の方法で合成した。
温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1221.2g(13.2mol)610.6g(6.6mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1020gに溶解させた3,3’-ジアミノジフェニルエーテル222.2g(1.1mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)-3,3’-ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液229g(2.75mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、408gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が416g(収率89%)得られた。主生成物であるテトラグリシジル-3,3’-ジアミノジフェニルエーテルの純度は、87%(GCarea%)であった。
 <硬化剤>
・セイカキュアS(4,4’-ジアミノジフェニルスルホン、和歌山精化工業(株)製)
・3,3’-DAS(3,3’-ジアミノジフェニルスルホン、三井化学ファイン(株)製)。
 <熱可塑性樹脂[C]>
・PES5003P(ポリエーテルスルホン、住友化学(株)製)。
 (1)炭素繊維強化複合材料の0°の定義
 JIS K7017(1999)に記載されているとおり、一方向繊維強化複合材料の繊維方向を軸方向とし、軸方向を0°軸と定義したときの軸直交方向を90°と定義する。
 (2)炭素繊維強化複合材料の0°引張強度測定
 一方向プリプレグを所定の大きさにカットし、一方向に6枚積層した後、真空バッグを行い、オートクレーブを用いて、温度180℃、圧力6kg/cm、2時間で硬化させ、一方向強化材(炭素繊維強化複合材料)を得た。この一方向強化材を幅12.7mm、長さ230mmでカットし、両端に1.2mm、長さ50mmのガラス繊維強化プラスチック製のタブを接着し試験片を得た。この試験片はインストロン万能試験機を用いて、JISK7073-1988の規格に準じて0゜引張試験(測定温度-60℃)を行った。
 (3)炭素繊維強化複合材料の高温吸湿条件下の有孔圧縮強度(OHC)測定
 一方向プリプレグを所定の大きさにカットし、(+45/0/-45/90度)2Sの構成となるように16枚積層した後、真空バッグを行い、オートクレーブを用いて、温度180℃、圧力6kg/cm、2時間で硬化させ、擬似等方強化材(炭素繊維強化複合材料)を得た。この擬似等方強化材を0゜方向が304.8mm、90゜方向が38.1mmの長方形に切り出し、中央部に直径6.35mmの円形の孔を穿孔して有孔板に加工して試験片を得た。この試験片はインストロン万能試験機を用いて、ASTM-D6484の規格に準じて有孔圧縮試験(70℃の温水に2週間浸漬後、82℃で測定)を行った。
 (実施例1)
 混練装置で、50質量部の34TGDDE、30質量部のPxGAN、および20質量部の“アラルダイト(登録商標)”MY721を160℃で2時間混練した後、80℃に冷ましてセイカキュアSを40質量部混練して、エポキシ樹脂組成物を作製した。表1に、組成と割合を示す(表1中、数字は質量部を表す。)
 得られたエポキシ樹脂組成物を、ナイフコーターを用いて樹脂目付50g/mで離型紙上にコーティングし、樹脂フィルムを作製した。この樹脂フィルムを、一方向に引き揃えた炭素繊維(目付200g/m)の両側に重ね合せてヒートロールを用い、温度100℃、1気圧で加熱加圧しながらエポキシ樹脂組成物を炭素繊維に含浸させプリプレグを得た。このプリプレグを硬化させた炭素繊維強化複合材料の炭素繊維の体積含有率は58.7%であった。この体積含有率を用いて、これ以降の引張強度利用率を計算した。
 得られたプリプレグを用い、上記の(2)炭素繊維強化複合材料の0°引張強度測定と(3)炭素繊維強化複合材料の高温吸湿条件下の有孔圧縮強度(OHC)測定に記載のとおりに実施して、炭素繊維強化複合材料を得、0°引張強度と高温吸湿条件下の有孔圧縮強度(OHC)を測定した。結果を表1に示す。
 (実施例2~5、比較例1~3)
 エポキシ樹脂と硬化剤の種類および配合量を、表1、4に示すように変更したこと以外は、実施例1と同様にしてプリプレグを作製した。同様に炭素繊維の体積含有率は58.7%であった。
 得られたプリプレグを用い、上記の(2)炭素繊維強化複合材料の0°引張強度測定と(3)炭素繊維強化複合材料の高温吸湿条件下の有孔圧縮強度(OHC)測定に記載のとおりに実施して、炭素繊維強化複合材料を得、0°引張強度と高温吸湿条件下の有孔圧縮強度(OHC)を測定した。結果を表1、4に示す。
 (実施例6)
 混練装置で、60質量部の34TGDDEと40質量部のPxGAN、および10質量部のPES5003Pを160℃で混練してPES5003Pが溶解したことを目視で確認した後、80℃に冷ましてセイカキュアSを35質量部混練して、エポキシ樹脂組成物を作製した。表2に、組成と割合を示す(表2中、数字は質量部を表す。)
 得られたエポキシ樹脂組成物を、ナイフコーターを用いて樹脂目付50g/mで離型紙上にコーティングし、樹脂フィルムを作製した。この樹脂フィルムを、一方向に引き揃えた炭素繊維(目付200g/m)の両側に重ね合せてヒートロールを用い、温度100℃、1気圧で加熱加圧しながらエポキシ樹脂組成物を炭素繊維に含浸させプリプレグを得た。このプリプレグを成形した炭素繊維教科複合材料中の炭素繊維の体積含有率は58.7%であった。
 得られたプリプレグを用い、上記の(2)炭素繊維強化複合材料の0°引張強度測定と(3)炭素繊維強化複合材料の高温吸湿条件下の有孔圧縮強度(OHC)測定に記載のとおりに実施して、炭素繊維強化複合材料を得、0°引張強度と高温吸湿条件下の有孔圧縮強度(OHC)を測定した。結果を表3に示す。
 (実施例7~18、比較例4~5、7)
 エポキシ樹脂と硬化剤の種類および配合量を、表2~5に示すように変更したこと以外は、実施例1と同様にしてプリプレグを作製した。このプリプレグを成形した炭素繊維教科複合材料中の炭素繊維の体積含有率は58.7%であった。
 得られたプリプレグを用い、上記の(2)炭素繊維強化複合材料の0°引張強度測定と(3)炭素繊維強化複合材料の高温吸湿条件下の有孔圧縮強度(OHC)測定に記載のとおりに実施して、炭素繊維強化複合材料を得、0°引張強度と高温吸湿条件下の有孔圧縮強度(OHC)を測定した。結果を表2~5に示す。
 (比較例6)
 混練装置で、40質量部の34TGDDE、および60質量部のPxGANを160℃で2時間混練した後、80℃に冷ましてセイカキュアSを25質量部混練して、エポキシ樹脂組成物を作製した。表4に、組成と割合を示す(表4中、数字は質量部を表す。)
 得られたエポキシ樹脂組成物を、ナイフコーターを用いて樹脂目付50g/mで離型紙上にコーティングし、樹脂フィルムを作製した。この樹脂フィルムを、一方向に引き揃えた炭素繊維(目付200g/m)の両側に重ね合せてヒートロールを用い、温度100℃、1気圧で加熱加圧しながらエポキシ樹脂組成物を炭素繊維に含浸させプリプレグを得た。
 得られたプリプレグを用い、上記の(2)炭素繊維強化複合材料の0°引張強度測定と(3)炭素繊維強化複合材料の高温吸湿条件下の有孔圧縮強度(OHC)測定に記載のとおりに実施して、炭素繊維強化複合材料を得ようとしたところ、炭素繊維複合材料表面にひび割れが生じた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明のエポキシ樹脂組成物により得られる炭素繊維強化複合材料は高温高湿下や低温下などのより厳しい使用環境での機械強度に優れるため特に構造材料に好適に用いられる。例えば、航空宇宙用途では主翼、尾翼およびフロアビーム等の航空機一次構造材用途、フラップ、エルロン、カウル、フェアリングおよび内装材等の二次構造材用途、ロケットモーターケースおよび人工衛星構造材用途等に好適に用いられる。また一般産業用途では、自動車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、および補修補強材料等の土木・建築材料用途等に好適に用いられる。さらにスポーツ用途では、ゴルフシャフト、釣り竿、テニス、バトミントンおよびスカッシュ等のラケット用途、ホッケー等のスティック用途、およびスキーポール用途等に好適に用いられる。

Claims (10)

  1. 少なくとも次の構成要素[A]、[B]を含んでなるエポキシ樹脂組成物であって、配合したエポキシ樹脂総量100質量%に対して[A]を20~80質量%と、[B]を10~50重量%含むことを特徴とする炭素繊維強化複合材料用エポキシ樹脂組成物。
    [A]:下記一般式(1)で表される構造を有し、1個以上のアミン型グリシジル基をメタ位に有するエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (ただし式中、R~Rは、水素原子、炭素数1~4の脂肪族炭化水素基、炭素数4以下の脂環式炭化水素基、ハロゲン原子からなる群から選ばれた少なくとも一つを表す。)
    [B]:4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1つ有するエポキシ樹脂
  2. さらに下記[C]を含む、請求項1に記載の炭素繊維強化複合材料用エポキシ樹脂組成物。
    [C]:エポキシ樹脂に溶解可能な熱可塑性樹脂
  3. [B]が4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基またはエーテル型グリシジル基を1個有する1官能エポキシ樹脂である、請求項1または2に記載の炭素繊維強化複合材料用エポキシ樹脂組成物。
  4. エポキシ樹脂組成物中のエポキシ樹脂総量100質量%に対して、[B]の配合量が10~40質量%である、請求項3に記載の炭素繊維強化複合材料用エポキシ樹脂組成物。
  5. [B]が4員環以上の環構造を2つ以上有し、かつ、環構造に直結したアミン型グリシジル基を有する2官能のエポキシ樹脂である、請求項1または2に記載の炭素繊維強化複合材料用エポキシ樹脂組成物。
  6. エポキシ樹脂組成物中のエポキシ樹脂総量100質量%に対して、[B]の配合量が25~50質量%である、請求項5に記載の炭素繊維強化複合材料用エポキシ樹脂組成物。
  7. [A]がテトラグリシジル-3,4’-ジアミノジフェニルエーテルである、請求項1~6のいずれかに記載の炭素繊維強化複合材料用エポキシ樹脂組成物。
  8. 請求項1~7のいずれかに記載のエポキシ樹脂組成物を炭素繊維に含浸させてなるプリプレグ。
  9. 請求項8に記載のプリプレグを硬化させて得られる炭素繊維強化複合材料。
  10. 請求項1~9のいずれかに記載のエポキシ樹脂組成物を硬化してなる樹脂硬化物、および炭素繊維を含んでなる炭素繊維強化複合材料。
PCT/JP2010/073335 2010-03-23 2010-12-24 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 WO2011118106A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/634,518 US9434811B2 (en) 2010-03-23 2010-12-24 Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
EP10848498.1A EP2551288B1 (en) 2010-03-23 2010-12-24 Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
RU2012144811/04A RU2012144811A (ru) 2010-03-23 2010-12-24 Композиция эпоксидной смолы, предназначенная для использования в композитном материале, армированном углеродным волокном, препрег и композитный материал, армированный углеродным волокном
JP2010550961A JP5003827B2 (ja) 2010-03-23 2010-12-24 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
KR1020127024658A KR101761439B1 (ko) 2010-03-23 2010-12-24 탄소 섬유 강화 복합 재료용 에폭시 수지 조성물, 프리프레그 및 탄소 섬유 강화 복합 재료
CN201080065693.2A CN102822227B (zh) 2010-03-23 2010-12-24 碳纤维增强复合材料用环氧树脂组合物、预浸料以及碳纤维增强复合材料
CA2788525A CA2788525A1 (en) 2010-03-23 2010-12-24 Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
BR112012018769A BR112012018769A2 (pt) 2010-03-23 2010-12-24 composição de resina epóxi, pré impregnado e material compósito

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-065662 2010-03-23
JP2010065662 2010-03-23

Publications (1)

Publication Number Publication Date
WO2011118106A1 true WO2011118106A1 (ja) 2011-09-29

Family

ID=44672689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073335 WO2011118106A1 (ja) 2010-03-23 2010-12-24 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料

Country Status (9)

Country Link
US (1) US9434811B2 (ja)
EP (1) EP2551288B1 (ja)
JP (1) JP5003827B2 (ja)
KR (1) KR101761439B1 (ja)
CN (1) CN102822227B (ja)
BR (1) BR112012018769A2 (ja)
CA (1) CA2788525A1 (ja)
RU (1) RU2012144811A (ja)
WO (1) WO2011118106A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412742A1 (en) * 2009-03-24 2012-02-01 Toray Industries, Inc. Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
WO2013021851A1 (ja) * 2011-08-11 2013-02-14 東レ・ファインケミカル株式会社 高純度エポキシ化合物およびその製造方法
JP2013147522A (ja) * 2012-01-17 2013-08-01 Toray Ind Inc 電子機器用接着剤組成物
WO2013183303A1 (ja) * 2012-06-08 2013-12-12 株式会社Adeka 硬化性樹脂組成物、樹脂組成物、これらを用いてなる樹脂シート、及びこれらの硬化物
WO2014112180A1 (ja) * 2013-01-15 2014-07-24 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2015005411A1 (ja) * 2013-07-11 2015-01-15 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2016208618A1 (ja) 2015-06-25 2016-12-29 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器
JP2017119813A (ja) * 2015-06-25 2017-07-06 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器
WO2018173716A1 (ja) * 2017-03-22 2018-09-27 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2018173617A1 (ja) 2017-03-23 2018-09-27 東レ株式会社 塗液含浸シート状強化繊維束およびシート状一体物の製造方法、塗工装置
WO2019177131A1 (ja) * 2018-03-16 2019-09-19 帝人株式会社 エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法
JP2019157096A (ja) * 2018-03-16 2019-09-19 帝人株式会社 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP2019157095A (ja) * 2018-03-16 2019-09-19 帝人株式会社 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP2019163438A (ja) * 2018-03-16 2019-09-26 帝人株式会社 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法
WO2019235237A1 (ja) 2018-06-05 2019-12-12 東レ株式会社 塗液含浸強化繊維ファブリック、シート状一体物、プリプレグ、プリプレグテープおよび繊維強化複合材料の製造方法
JP2020023628A (ja) * 2018-08-08 2020-02-13 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
WO2020031766A1 (ja) 2018-08-09 2020-02-13 東レ株式会社 プリプレグの製造方法、塗工装置およびプリプレグの製造装置
JP2020023627A (ja) * 2018-08-08 2020-02-13 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
WO2020040150A1 (ja) 2018-08-22 2020-02-27 東レ株式会社 プリプレグ、プリプレグテープおよび繊維強化複合材料の製造方法ならびに塗工装置
WO2020040153A1 (ja) 2018-08-22 2020-02-27 東レ株式会社 プリプレグの製造方法および製造装置
JP2020164672A (ja) * 2019-03-29 2020-10-08 帝人株式会社 バインダー樹脂組成物、プリフォーム、並びに繊維強化複合材料、及び繊維強化複合材料の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292375A1 (en) * 2005-06-28 2006-12-28 Martin Cary J Resin compositions with high thermoplatic loading
EP2781539A1 (en) * 2013-03-19 2014-09-24 Siemens Aktiengesellschaft Fibre reinforced plastic composite, method of manufacturing thereof, plastic composite starting material for manufacturing the fibre reinforced plastic composite, and component of a wind turbine comprising the fibre reinforced plastic composite
KR101708546B1 (ko) * 2015-01-09 2017-02-20 도레이첨단소재 주식회사 인장강도와 파괴인성이 향상된 복합재료와 기계적 특성과 내압 특성이 우수한 압력용기
JP6708121B2 (ja) * 2015-03-17 2020-06-10 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
KR102628204B1 (ko) * 2015-12-25 2024-01-24 도레이 카부시키가이샤 에폭시 수지 조성물, 섬유 강화 복합 재료, 성형품 및 압력 용기
RU2018141102A (ru) 2016-08-26 2020-09-28 Торэй Индастриз, Инк. Композиция эпоксидной смолы, препрег и материал фиброармированного пластика
AU2019233463A1 (en) * 2018-03-16 2020-10-08 Teijin Limited Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor
CN109180941B (zh) * 2018-08-23 2021-04-23 哈尔滨工业大学 一种有机-无机杂化八官能环氧poss树脂的制备方法及碳纤维增强复合材料的制备方法
CN116379080B (zh) * 2023-04-18 2023-11-03 吉林化工学院 一种新型碳玻纤维混杂的复合材料板弹簧

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169618A (ja) * 1988-12-22 1990-06-29 Sumitomo Chem Co Ltd エポキシ樹脂組成物及びそれを主成分とする繊維強化複合材料
JPH0326750A (ja) * 1989-06-23 1991-02-05 Sumitomo Chem Co Ltd 繊維強化複合材料
JPH04356521A (ja) * 1991-01-18 1992-12-10 Matsushita Electric Works Ltd エポキシ樹脂組成物
WO1996017006A1 (fr) 1994-12-02 1996-06-06 Toray Industries, Inc. Preimpregne et materiau composite renforces par des fibres
JPH09235397A (ja) 1996-03-01 1997-09-09 Toray Ind Inc プリプレグおよび繊維強化プラスチック
JPH11241230A (ja) 1997-12-11 1999-09-07 Toray Ind Inc 炭素繊維、炭素繊維用前駆体繊維、複合材料および炭素繊 維の製造方法
JP2002363253A (ja) 2001-06-12 2002-12-18 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2003026768A (ja) 2001-07-13 2003-01-29 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2004506789A (ja) 2000-08-22 2004-03-04 サイテク・テクノロジー・コーポレーシヨン 分子鎖連結に適した組成物
JP2006265458A (ja) * 2005-03-25 2006-10-05 Yokohama Rubber Co Ltd:The プリプレグ用樹脂組成物およびプリプレグ
WO2010109929A1 (ja) * 2009-03-24 2010-09-30 東レ株式会社 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277376A (ja) * 1985-10-01 1987-04-09 Kanegafuchi Chem Ind Co Ltd 新規グリシジル化合物およびその製造方法
JPS62124110A (ja) * 1985-11-25 1987-06-05 Dainippon Ink & Chem Inc エポキシ樹脂組成物
GB9520704D0 (en) * 1995-10-10 1995-12-13 Secr Defence High temperature epoxy resins
JP2010059225A (ja) * 2008-09-01 2010-03-18 Toray Ind Inc 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169618A (ja) * 1988-12-22 1990-06-29 Sumitomo Chem Co Ltd エポキシ樹脂組成物及びそれを主成分とする繊維強化複合材料
JPH0326750A (ja) * 1989-06-23 1991-02-05 Sumitomo Chem Co Ltd 繊維強化複合材料
JPH04356521A (ja) * 1991-01-18 1992-12-10 Matsushita Electric Works Ltd エポキシ樹脂組成物
WO1996017006A1 (fr) 1994-12-02 1996-06-06 Toray Industries, Inc. Preimpregne et materiau composite renforces par des fibres
JPH09235397A (ja) 1996-03-01 1997-09-09 Toray Ind Inc プリプレグおよび繊維強化プラスチック
JPH11241230A (ja) 1997-12-11 1999-09-07 Toray Ind Inc 炭素繊維、炭素繊維用前駆体繊維、複合材料および炭素繊 維の製造方法
JP2004506789A (ja) 2000-08-22 2004-03-04 サイテク・テクノロジー・コーポレーシヨン 分子鎖連結に適した組成物
JP2002363253A (ja) 2001-06-12 2002-12-18 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2003026768A (ja) 2001-07-13 2003-01-29 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2006265458A (ja) * 2005-03-25 2006-10-05 Yokohama Rubber Co Ltd:The プリプレグ用樹脂組成物およびプリプレグ
WO2010109929A1 (ja) * 2009-03-24 2010-09-30 東レ株式会社 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2551288A4

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412742A4 (en) * 2009-03-24 2012-07-25 Toray Industries EPOXY RESIN COMPOSITION FOR A FIBER-REINFORCED COMPOSITE MATERIAL, PREPREG AND FIBER-REINFORCED COMPOSITE MATERIAL
EP2412742A1 (en) * 2009-03-24 2012-02-01 Toray Industries, Inc. Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
WO2013021851A1 (ja) * 2011-08-11 2013-02-14 東レ・ファインケミカル株式会社 高純度エポキシ化合物およびその製造方法
JP2013147522A (ja) * 2012-01-17 2013-08-01 Toray Ind Inc 電子機器用接着剤組成物
US9598573B2 (en) 2012-06-08 2017-03-21 Adeka Corporation Curable resin composition, resin composition, resin sheet formed by using said curable resin composition and resin composition, and cured materials thereof
WO2013183303A1 (ja) * 2012-06-08 2013-12-12 株式会社Adeka 硬化性樹脂組成物、樹脂組成物、これらを用いてなる樹脂シート、及びこれらの硬化物
JP5800031B2 (ja) * 2013-01-15 2015-10-28 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
KR102081662B1 (ko) 2013-01-15 2020-02-27 도레이 카부시키가이샤 에폭시 수지 조성물, 프리프레그 및 탄소 섬유 강화 복합 재료
KR20150105316A (ko) * 2013-01-15 2015-09-16 도레이 카부시키가이샤 에폭시 수지 조성물, 프리프레그 및 탄소 섬유 강화 복합 재료
US9683072B2 (en) 2013-01-15 2017-06-20 Toray Industries, Inc. Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
WO2014112180A1 (ja) * 2013-01-15 2014-07-24 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
US10400076B2 (en) 2013-07-11 2019-09-03 Toray Industries, Inc. Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JPWO2015005411A1 (ja) * 2013-07-11 2017-03-02 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2015005411A1 (ja) * 2013-07-11 2015-01-15 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
KR102625584B1 (ko) 2015-06-25 2024-01-17 도레이 카부시키가이샤 에폭시 수지 조성물, 섬유 강화 복합 재료, 성형품 및 압력 용기
JP2017119813A (ja) * 2015-06-25 2017-07-06 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器
KR20180022778A (ko) 2015-06-25 2018-03-06 도레이 카부시키가이샤 에폭시 수지 조성물, 섬유 강화 복합 재료, 성형품 및 압력 용기
WO2016208618A1 (ja) 2015-06-25 2016-12-29 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器
US11034810B2 (en) 2017-03-22 2021-06-15 Toray Industries, Inc. Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
WO2018173716A1 (ja) * 2017-03-22 2018-09-27 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
CN110431166A (zh) * 2017-03-22 2019-11-08 东丽株式会社 环氧树脂组合物、预浸料坯以及碳纤维增强复合材料
WO2018173617A1 (ja) 2017-03-23 2018-09-27 東レ株式会社 塗液含浸シート状強化繊維束およびシート状一体物の製造方法、塗工装置
US11224993B2 (en) 2017-03-23 2022-01-18 Toray Industries, Inc. Production method and coating device for coating-liquid-impregnated sheet-like reinforcing-fiber bundle and sheet-like integrated object
JP7224800B2 (ja) 2018-03-16 2023-02-20 帝人株式会社 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP2019163438A (ja) * 2018-03-16 2019-09-26 帝人株式会社 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP7315304B2 (ja) 2018-03-16 2023-07-26 帝人株式会社 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP2019157095A (ja) * 2018-03-16 2019-09-19 帝人株式会社 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP7190258B2 (ja) 2018-03-16 2022-12-15 帝人株式会社 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP2019157096A (ja) * 2018-03-16 2019-09-19 帝人株式会社 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
WO2019177131A1 (ja) * 2018-03-16 2019-09-19 帝人株式会社 エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法
WO2019235237A1 (ja) 2018-06-05 2019-12-12 東レ株式会社 塗液含浸強化繊維ファブリック、シート状一体物、プリプレグ、プリプレグテープおよび繊維強化複合材料の製造方法
US11192280B2 (en) 2018-06-05 2021-12-07 Toray Industries, Inc. Coating-liquid-impregnated fiber-reinforced fabric, sheet-shaped integrated object, prepreg, prepreg tape, and method for manufacturing fiber-reinforced composite material
JP2020023628A (ja) * 2018-08-08 2020-02-13 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
WO2020032090A1 (ja) * 2018-08-08 2020-02-13 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
WO2020032091A1 (ja) * 2018-08-08 2020-02-13 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
JP2020023627A (ja) * 2018-08-08 2020-02-13 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
US11319404B2 (en) 2018-08-08 2022-05-03 Teijin Limited Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production methods for these
JP7072466B2 (ja) 2018-08-08 2022-05-20 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
JP7072465B2 (ja) 2018-08-08 2022-05-20 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
US11421091B2 (en) 2018-08-09 2022-08-23 Toray Industries, Inc. Method for manufacturing prepreg, coating device, and apparatus for manufacturing prepreg
US11639427B2 (en) 2018-08-09 2023-05-02 Toray Industries, Inc. Method for manufacturing prepreg, coating device, and apparatus for manufacturing prepreg
WO2020031766A1 (ja) 2018-08-09 2020-02-13 東レ株式会社 プリプレグの製造方法、塗工装置およびプリプレグの製造装置
US11499025B2 (en) 2018-08-22 2022-11-15 Toray Industries, Inc. Prepreg manufacturing method and manufacturing apparatus
US11566117B2 (en) 2018-08-22 2023-01-31 Toray Industries, Inc. Production method for prepreg, prepreg tape, and fiber reinforced composite material, and coating device
WO2020040150A1 (ja) 2018-08-22 2020-02-27 東レ株式会社 プリプレグ、プリプレグテープおよび繊維強化複合材料の製造方法ならびに塗工装置
WO2020040153A1 (ja) 2018-08-22 2020-02-27 東レ株式会社 プリプレグの製造方法および製造装置
JP2020164672A (ja) * 2019-03-29 2020-10-08 帝人株式会社 バインダー樹脂組成物、プリフォーム、並びに繊維強化複合材料、及び繊維強化複合材料の製造方法
JP7431508B2 (ja) 2019-03-29 2024-02-15 帝人株式会社 バインダー樹脂組成物、プリフォーム、並びに繊維強化複合材料、及び繊維強化複合材料の製造方法

Also Published As

Publication number Publication date
CA2788525A1 (en) 2011-09-29
EP2551288B1 (en) 2016-06-01
CN102822227B (zh) 2014-11-05
US20130005855A1 (en) 2013-01-03
KR20130018698A (ko) 2013-02-25
BR112012018769A2 (pt) 2016-04-12
EP2551288A4 (en) 2015-10-14
JP5003827B2 (ja) 2012-08-15
EP2551288A1 (en) 2013-01-30
CN102822227A (zh) 2012-12-12
US9434811B2 (en) 2016-09-06
JPWO2011118106A1 (ja) 2013-07-04
KR101761439B1 (ko) 2017-07-25
RU2012144811A (ru) 2014-04-27

Similar Documents

Publication Publication Date Title
JP5003827B2 (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP4811532B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5800031B2 (ja) エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
KR101555395B1 (ko) 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
JP6187586B2 (ja) ベンゾオキサジン樹脂組成物、プリプレグ、および繊維強化複合材料
US10400076B2 (en) Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JP6497027B2 (ja) エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
EP3312210B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2011079983A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2011162619A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5729023B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2016132709A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
KR20190046842A (ko) 에폭시 수지 조성물, 프리프레그, 및 섬유 강화 플라스틱 재료
JP2016132708A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6555006B2 (ja) エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP5447059B2 (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2011057851A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
CN112739741A (zh) 环氧树脂组合物、预浸料坯、以及纤维增强复合材料
JP2019059827A (ja) エポキシ樹脂組成物、プリプレグ、樹脂硬化物および繊維強化複合材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065693.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010550961

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2788525

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010848498

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13634518

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127024658

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012144811

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012018769

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012018769

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120727