WO2011118094A1 - イオン分離方法および質量分析装置 - Google Patents

イオン分離方法および質量分析装置 Download PDF

Info

Publication number
WO2011118094A1
WO2011118094A1 PCT/JP2010/072331 JP2010072331W WO2011118094A1 WO 2011118094 A1 WO2011118094 A1 WO 2011118094A1 JP 2010072331 W JP2010072331 W JP 2010072331W WO 2011118094 A1 WO2011118094 A1 WO 2011118094A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
time
ion
ions
separation method
Prior art date
Application number
PCT/JP2010/072331
Other languages
English (en)
French (fr)
Inventor
明人 金子
集 平林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2012506774A priority Critical patent/JP5462935B2/ja
Priority to US13/579,334 priority patent/US20120305762A1/en
Publication of WO2011118094A1 publication Critical patent/WO2011118094A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods

Definitions

  • the present invention relates to an ion trap mass spectrometer used for analyzing biological materials and the like.
  • the present invention relates to a technique for leaving only ions in a specific mass-to-charge ratio m / z range in an ion trap in an ion trap.
  • ions are trapped for a certain period of time by an Rf electric field, and concentrated ions are sequentially discharged from the ion trap according to the mass-to-charge ratio (m / z) and detected by a detector. be able to. This realizes mass spectrometry.
  • tandem mass spectrometry that acquires a mass spectrum of dissociated ions (fragment ions) for specific ions can also be performed. That is, a plurality of types of ions are accumulated inside the ion trap, and precursor ions to be subjected to tandem mass spectrometry are selected from the accumulated ions.
  • ions other than the selected precursor ions are discharged from the ion trap, and isolation is performed in which only the precursor ions are left in the ion trap.
  • the isolated precursor ions are subjected to collision-induced dissociation (CID), infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), electron transfer dissociation (ETD).
  • CID collision-induced dissociation
  • IRMPD infrared multiphoton dissociation
  • ECD electron capture dissociation
  • ETD electron transfer dissociation
  • the dissociated ions generated by dissociation means such as: Electron Transfer Dissociation are accumulated in the ion trap.
  • the dissociated ions are sent from the ion trap according to m / z and detected by the detector, whereby the m / z of the dissociated ions can be determined. Furthermore, it is possible to perform an MS n analysis (MS / MS / MS, MS / MS / MS / MS) in which isolation is performed so that specific dissociated ions remain as precursor ions and further dissociation is performed. it can.
  • the quadrupole ion trap includes a three-dimensional quadrupole ion trap (3DQ) composed of a ring electrode and a pair of bowl-shaped electrodes, and a linear ion trap (LIT) composed of parallel pole electrodes.
  • 3DQ three-dimensional quadrupole ion trap
  • LIT linear ion trap
  • the ions in the quadrupole ion trap vibrate (micro motion) at the same frequency as the Rf frequency by the Rf voltage applied between the opposing electrodes, and also vibrate (permanent motion) at a frequency lower than the Rf frequency. Trapped in a specific space.
  • the frequency of secular motion has a property that depends on the ion m / z. Therefore, when an alternating electric field (supplemental AC) having a secular motion frequency corresponding to a specific m / z ion is applied to the space where the ions are trapped, the amplitude of the secular motion increases due to resonance of the motion of the ions. .
  • supplemental AC alternating electric field
  • the supplemental AC voltage As the supplemental AC voltage is set higher, the amplitude of the resonating ions increases. Finally, the ions collide with the electrode or dissociate due to collision with the residual gas. Discharged. In addition, the longer the time during which the ions are exposed to the supplemental AC, the more the ions are discharged from the ion trap due to dissociation due to collision with the residual gas.
  • supplemental AC with a frequency corresponding to the m / z of other ions is applied. Isolation is achieved by resonant discharge.
  • supplemental AC is used so that all other ions are sequentially resonantly ejected within a range that does not resonate with the precursor ions. It is effective to sweep the frequency (change within a certain range). In this case, it is ideal that the precursor ions are preserved 100% and other ions are completely discharged.
  • e is an elementary charge
  • U is a DC voltage applied to the ion trap
  • r is an ion trap electrode radius
  • m z is an ion m / z
  • F is an Rf frequency
  • V RF is a voltage of Rf.
  • a predetermined supplemental AC For example, applying a predetermined supplemental AC, first sweeping the Rf voltage to resonantly eject ions at m / z lower than the precursor ions, and then resonating ions at m / z higher than the precursor ions. If the Rf voltage is swept so as to be discharged, the isolation is completed.
  • ions having a plurality of types of m / z can be ejected at the same time, which is advantageous in improving the throughput of analysis.
  • supplemental AC having various frequencies can be generated so that ions other than precursor ions are simultaneously discharged, isolation is completed in a short time.
  • This principle is utilized in systems called FNF (Filtered ⁇ Noise Field) (Patent Document 3) and SWIFT (Stored Waveform Inverse Fourier Transform).
  • FNF Frtered ⁇ Noise Field
  • SWIFT Stored Waveform Inverse Fourier Transform
  • the actually generated waveform is a composite of a number of supplemental ACs having regular frequency intervals. For this reason, the ion that resonates in the middle of adjacent frequencies has a relatively low AC amplitude, so that the efficiency of resonance ejection is not necessarily high.
  • ions in the low m / z region are discharged by sweeping the Rf voltage while applying a fixed supplemental AC. Isolation can also be performed for ions in the m / z region by applying a broadband waveform for a relatively short time in the corresponding frequency region.
  • auxiliary high frequency auxiliary Rf
  • the quadrupole electric field inside the ion trap is distorted. Therefore, by providing an electrode outside and correcting the distortion of the electric field, highly accurate isolation can be realized.
  • a single frequency auxiliary Rf is not applied to sweep the frequency and RF voltage, but a large number of frequencies are overlapped to reduce the frequency component corresponding to a certain mass range and open the window. It is necessary to use the broadband auxiliary Rf synthesized as provided. At this time, since there is a difference in the ease of resonance ejection of ions on the low mass side and the high mass side to be isolated, it is said that the high mass side is not sufficiently ejected by simply shortening the time for performing resonant ejection. There's a problem.
  • the present application is to provide a method for sufficiently discharging unnecessary ions and performing high-speed isolation while maintaining sufficient sensitivity of ions to be retained in a mass spectrometry method using an ion trap. .
  • a plurality of ions are introduced into an ion trap having a plurality of electrodes, and at least one of the plurality of electrodes is trapped in the ion trap at a first voltage.
  • a trapping process for applying an RF voltage, and a first time for ion separation by applying an RF voltage higher than the first voltage for a first time while applying an auxiliary RF voltage to an electrode to which the RF voltage is applied.
  • the separation step while the auxiliary RF voltage is applied to the electrode to which the RF voltage is applied, the RF voltage is made smaller than the first voltage and applied for a second time that is larger than the first time for ion separation.
  • An ion separation method having a second separation step and a discharge step of discharging ions remaining in the ion trap is used.
  • Another example of the present invention controls an ion source that generates a plurality of ions obtained by ionizing a sample, an ion trap having a plurality of electrodes, an AC power source that applies an AC electric field to the plurality of electrodes, and an AC power source.
  • a controller for detecting a plurality of ions for each mass-to-charge ratio controls an AC power source and generates a plurality of RF voltages with a first voltage.
  • a plurality of ions are applied to at least one of the electrodes in such a manner that an ion is trapped, and the auxiliary RF voltage is applied to the electrode to which the RF voltage is applied, and the RF voltage is set to a voltage higher than the first voltage.
  • a mass spectrometer is used in which ion separation is performed by applying a first time and applying an RF voltage lower than the first voltage for a second time greater than the first time.
  • the isolation of precursor ions can be completed in a very short time.
  • the problem that the high mass side is less likely to be discharged than the low mass side is solved.
  • the mass spectrometry of the present invention not only when a stable ion is selected as a precursor ion but also when a relatively unstable ion is selected, ion loss in the isolation process is extremely low. Can be held.
  • FIG. 1 is a three-dimensional quadrupole ion trap.
  • FIG. 13 shows an implementation example of an Rf voltage sequence applicable when throughput improvement is required.
  • FIG. 13 shows an example of realization of a sequence of Rf voltages that can be applied when ions that are difficult to isolate exist on the high mass side.
  • FIG. 15 shows an implementation example of a sequence of Rf voltages that can be applied when ions that are further difficult to isolate exist.
  • achievement of the sequence of the Rf voltage which set the isolation time of the high mass side short.
  • An example of realization of a sequence of Rf voltages when only one frequency is used as auxiliary Rf.
  • an auxiliary Rf was applied to sweep the Rf voltage (q-value).
  • FIG. 1 shows a configuration diagram of a mass spectrometer 1 that realizes an example mass spectrometry method of the present invention.
  • the mass spectrometer 1 includes a user interface unit 2, a control unit 3, a parameter storage unit 7, an AC circuit 8, a DC circuit 9, and a mass analysis unit 10.
  • the control unit 3 includes an internal parameter calculation unit 4, a sequence generation unit 5, and a sequence execution unit 6.
  • the mass spectrometer 10 includes an ion source 11, an ion trap 12, and a detector 13. In this example, the ion source unit 11 and the ion trap unit 12, and the ion trap unit 12 and the detection unit 13 are directly connected to each other. May enter.
  • the user of the mass spectrometer 1 inputs parameters for isolation from the user interface unit 2.
  • the user interface unit 2 can specify parameters for both specific ions and for automatically selecting and analyzing precursor ions such as data-dependent analysis.
  • multiple target ions can be set, and multiple parameters can be set accordingly.
  • a preset table is used, or a preset m / Z and charge functions can be used, or they can be combined.
  • m / z of the precursor ion parameters of the auxiliary Rf, parameters for how much Da the auxiliary Rf approaches in the isolation, low mass side and high mass side respectively Then input the parameters for sweep.
  • the parameters of the auxiliary Rf include the frequency of the auxiliary Rf in the case of a synthesized waveform of one to a plurality of frequencies, and the frequency of the window including the m / z of the precursor ions in the case of a broadband waveform in which many auxiliary Rf are synthesized. Specify each width.
  • auxiliary Rf parameter can be set independently for each of the low mass side and the high mass side of the precursor ion.
  • the parameter of how much the auxiliary Rf is brought close to in the mode 1 the parameter of how much the Rf voltage is swept from there, the Rf voltage at the time of the sweep Specify the tilt parameter.
  • an arbitrary Rf voltage function is set in mode 2. This function is described as a function of time. All parameters can be stored in the parameter storage unit 7 and can be called from the user interface unit 2 and designated, or a new parameter can be created by combining a plurality of called parameters.
  • precursor ions instead of precursor ion m / z, a list of precursor ions m / z, a list of precursor ion valences, a list of combinations of m / z and valence of precursor ions, precursor ions
  • parameters can be set as automatic analysis parameters. If the ion source unit 11 is used including liquid chromatography, the m / z of the precursor ion, or the m / z of the precursor ion and the valence are combined with each other in the liquid chromatography of the ion.
  • Retention time Retention Time: RT
  • RT is specified, if only m / z is specified, m / z is determined. If both m / z and valence are specified, RT is judged to be different even if both match. Is treated as another ion.
  • the auxiliary Rf The parameter for how much Da the auxiliary Rf is brought closer to during isolation, and the parameters at the time of sweeping on each of the low mass side and the high mass side are automatically set.
  • ⁇ Ion fragility is based on a two-stage setting, whether it is fragile or difficult to break, and the number of stages can be increased, and parameters are set according to that stage.
  • the control unit 3 transmits / receives signals to / from the mass analysis unit 10, the ion source unit 11, the ion trap unit 12, and the detection unit 13, sends signals to the AC circuit 8 and the DC circuit 9, and controls them.
  • the control unit 3 can perform analysis according to the parameters set for only specific ions based on the input parameters, and automatically select ions and set the parameters automatically. It is possible to analyze the specified ion, and when a specific ion appears, the parameter is set to that ion. In other cases, the parameter is automatically set and analysis is performed. An analysis combining automatic parameter setting can be performed, and parameters can be set and executed in real time based on information obtained by the detection unit 13 during the analysis. In particular, when performing analysis including liquid chromatography in the configuration of the ion source unit 11, typically, each ion is observed with a certain time width.
  • control unit 3 resets the parameters. Thus, analysis can be performed under better conditions.
  • the information obtained by the detection unit 13 corresponds to a list set in advance by the user interface unit 2, it is possible to make use of past results by performing analysis according to the set value.
  • the internal parameter calculation unit 4 stores the input information, past cases, feedback information from the detection information, and the like as necessary.
  • the internal parameters for generating a sequence for controlling the ion trap are calculated by referring to them.
  • the sequence generation unit 5 calculates a sequence for ion trap control along the time as shown in FIG. 2 based on the internal parameters calculated by the internal parameter calculation unit 4.
  • the sequence execution unit 6 controls the AC circuit 8 and the DC circuit 9 based on the ion trap control sequence generated in the sequence generation 5.
  • the parameter storage unit 7 stores preset information, past cases, and methods for automatically calculating internal parameters used when inputting parameters.
  • the AC circuit 8 and the DC circuit 9 are controlled by the sequence execution unit 6 and send a signal to the ion trap unit 10.
  • the detection unit 11 detects ions sent out from the ion trap and sends information on the detected ions to the control unit 3.
  • FIG. 3 shows a configuration example of the ion trap when the ion trap unit 12 of the mass spectrometer 1 is a linear ion trap.
  • the gate 14 controls whether or not ions are taken from outside the ion trap by a signal from the DC circuit 9, and the end cap 16 controls whether or not ions are sent outside the ion trap by a signal from the DC circuit 9. To do. Further, the behavior of ions in the linear ion trap 15 is controlled by a signal from the AC circuit 8. In this example, mass spectrometry is performed with an external device.
  • ions are introduced and delivered along the axial direction of the trap, but they need not be in the direction along the axial direction.
  • FIG. 4 shows the linear ion trap as viewed from the direction of ion introduction.
  • the rods facing each other form a pair.
  • a signal obtained by combining the Rf signal and the auxiliary Rf signal is applied to one pair, and a reverse-phase Rf signal is applied to the other pair.
  • linear ion trap cross section 17 is circular, but any cross section may be used as long as ion trapping by the Rf signal and resonance ejection by the auxiliary Rf can be performed. There may be a hole or an additional device for tandem mass spectrometry.
  • FIG. 5 shows the configuration of the ion trap when the ion trap section 12 of the mass spectrometer 1 is a three-dimensional quadrupole.
  • All the ions are introduced from the center of the end cap A18, and after necessary operations are performed in the ion trap composed of the ring electrode 19 and the portion surrounded by the end cap B20, the ions are sent out from the center of the end cap B20.
  • FIG. 6 is a cross-sectional view of the three-dimensional quadrupole ion trap of FIG. Although the shape such as the outer shape is different from the linear ion trap, the physical properties related to the principle of trapping and the numerical value indicating the stability of the trapped state of ions are the same.
  • the shapes of the end cap A cross section 21, the ring electrode cross section 22, and the end cap B cross section 23 may be any cross section as long as ions can be trapped by the Rf signal and resonance discharge can be performed by the auxiliary Rf. May have a hole for ion introduction or delivery, or an additional device for tandem mass spectrometry.
  • FIG. 2 is an example of a sequence generated by the sequence generation unit 5. The sequence is generated over time, and each time zone can be divided into T1 ion introduction time, T2 pre-isolation time, T3 isolation time, T4 post-isolation time, and T5 ion ejection time.
  • the time before T2 isolation may be eliminated by setting the time width to zero.
  • the time after T4 ⁇ isolation can include the time for performing tandem mass spectrometry such as CID and the time for cooling the thermal energy given to ions, and the time width should be zero. Can improve the measurement throughput.
  • the S1 gate voltage has a role of controlling ion introduction on the ion trap inlet side, ions are introduced into the ion trap by lowering the voltage, and ion introduction is stopped by raising the voltage.
  • the ion introduction timing can be set to an introduction time considering the space charge effect in the ion trap. That is, the total amount of ions trapped in the ion trap is estimated in real time on the basis of past information stored in the parameter storage unit 7 and feedback information such as the detected amount of ions obtained from the detection unit 13.
  • the introduction time can be set so that the space charge effect does not occur.
  • the S2 Rf voltage controls the q-value of the total ions introduced into the ion trap, thereby controlling the exposure method to the auxiliary Rf for the ions in the ion trap.
  • the S3 end cap voltage has a role of controlling the ion delivery at the exit side of the ion trap.
  • the voltage is lowered, the ions are sent from the ion trap, and when the voltage is raised, the delivery of ions is stopped.
  • the S4 auxiliary Rf voltage controls the exposure of the auxiliary Rf to ions in the ion trap during the T3 ion trap time.
  • S5 Auxiliary Rf is an auxiliary Rf that is actually exposed to ions.
  • a signal is generated at a low voltage, and is amplified by an amplification device and sent to an ion trap or the like. In such a case, the signal line before amplification by the amplification device is confirmed.
  • FIG. 7 is a schematic diagram showing the relationship between the auxiliary Rf and the ions in the ion trap, corresponding to the control of the S2fRf voltage.
  • Reference numeral 25 denotes a time axis
  • reference numeral 26 denotes precursor ions.
  • the trapped ion group 31 is a larger circle with a higher mass and smaller with a lower mass. It is represented by a circle.
  • the auxiliary Rf is set away from the target precursor ion from the low mass side (28).
  • the sweep operation 29 for gradually increasing the Rf voltage, the q-value is swept, and ions whose resonance frequency is the set frequency of the auxiliary Rf are sequentially resonantly ejected (30).
  • the auxiliary Rf including only one frequency is used for the isolation of the low mass side and the high mass side, but the frequency of the low mass side and the high mass side is synthesized. Even if multiple frequencies are combined and combined, or broadband is used only on the low mass side, only on the high mass side, or on both the low mass side and the high mass side, this principle is basically the same. .
  • FIG. 8 shows the relationship between the q-value and the stability and instability of ions in the ion trap.
  • the q-value can take a value from 0 to 0.908 as shown in the figure.
  • Equation (2) the q-value on the high mass side is relatively low compared to the low mass side.
  • FIG. 9 is an example of the power spectrum of FNF used as auxiliary Rf in the mass spectrometer 1.
  • FNF used as auxiliary Rf in the mass spectrometer 1.
  • FIG. 8 for the sake of simplicity, an example is shown in which one frequency is used for each of the low mass side and the high mass side as the auxiliary Rf.
  • the isolation efficiency is increased by using FNF.
  • the sequence execution unit 6 in the control unit 3 executes the sequence as shown in FIG. 2, but the S2 Rf voltage is actually directly related to the isolation operation as described in FIG.
  • FIG. 10 shows an example of the S2 Rf voltage.
  • the Rf voltage may be not only a continuous function with respect to time but also a piecewise continuous function. Moreover, it may change linearly or non-linearly with respect to time, or a piecewise linear or non-linear part may be mixed.
  • the auxiliary Rf is brought close to the vicinity of the precursor ion instantaneously and the state is maintained for a certain time.
  • the isolation time is simply set to be uniformly short, the isolation on the high mass side with respect to the low mass side is recommended. The problem that becomes insufficient.
  • the time required for the ions to be exposed to the auxiliary Rf (exposure time) is lengthened, and unnecessary ions are sufficiently eliminated, while the minimum necessary scanning is performed. You can set the time.
  • the same time as the low mass side may be used, and when no ions exist on the high mass side, the time may be zero.
  • the time on the low mass side may be lengthened, and if there are no ions on the low mass side, the low mass side The time may be zero.
  • broadband may be used on both the low-mass side and the high-mass side, and when sufficient resonance discharge is possible, such as when there are few types of ions, the low-mass side and the high-mass side. Either one or both may be a combination of one or more frequencies.
  • the isolation time can be considerably shortened and can be suppressed to about 1 ms in some cases.
  • a time zone during which the auxiliary Rf is not applied is set, and this reduces the thermal energy of the ions, especially after the isolation, stabilizes the ions, and prevents unintended dissociation. is there.
  • FIG. 11 shows another example of the S2 Rf voltage.
  • by performing the sweep of the Rf voltage it is possible to prevent isolation leakage due to the FNF gap as shown in the enlarged view of FIG.
  • the sweep time on the high mass side can be made longer than that on the low mass side, resulting in exposure to the auxiliary Rf on the high mass side. Since the time can be lengthened, the problem that resonance discharge is difficult on the high mass side can be dealt with as in the example of FIG.
  • the same time as the low mass side may be used, and when no ions exist on the high mass side, the time may be zero.
  • the time on the low mass side may be lengthened, and if there are no ions on the low mass side, the low mass side The time may be zero.
  • broadband may be used on both the low mass side and the high mass side, and when sufficient resonance discharge is possible, such as when there are few types of ions, either the low mass side or the high mass side is used.
  • One or both may be a combination of one or more frequencies.
  • the window region 24 with a low frequency component of FNF is shown enlarged.
  • the frequency component of the window region 24 is not actually 0, but there is a slight frequency component.
  • unstable ions such as glycosylated peptides and protonated molecules of some low molecular weight compounds may be resonantly ejected by such a slight residual frequency component compared to ions that are difficult to break such as reserpine.
  • ions are reduced by being dissociated by receiving thermal energy.
  • the signal component of the frequency component is stronger in the part near the boundary of the frequency window than in the central part of the window, so if it takes a long time to bring the boundary part closer to the target precursor ion, the precursor ion is resonantly ejected. Or increase the possibility of dissociation.
  • FIG. 13 shows another example of the S2 Rf voltage.
  • the time is shortened by bringing the auxiliary Rf closer to a certain range at a time, and scanning is performed in a certain range, so that ions other than the precursor ions are sufficiently resonantly ejected. I am doing so.
  • the high mass side scans a long range over a long time compared to the low mass side, thereby addressing the problem that resonance discharge is less likely to occur due to a low q-value. That is, if the time required for isolation is set short, it is difficult to equalize the time required for isolation on the high mass side and low mass side of the precursor ions.
  • the time can be shortened by a scanning method, and sufficient isolation efficiency and sensitivity improvement of weak ions can be realized in about 5 ms in time.
  • Substance P here Specifically, when describing the amino acid sequence, SubstanceSubP (RPKPQQFFGLM) can be considered as a representative of a molecule that is easily lost.
  • the points to be emphasized in the case of isolation include cases where importance is attached to reducing the residual rate of molecules other than the isolation target in consideration of more accurate analysis, and the residual rate of molecules other than the isolation target.
  • the sensitivity of the molecule to be isolated may be emphasized, and it is necessary to change the isolation parameters depending on the purpose.
  • the remaining rate of other molecules is set to 0%.
  • the isolation target is prone to loss due to isolation, the remaining ratio of the isolation target may be increased to improve sensitivity even if some other molecules remain. .
  • the high mass side sweep time is compared to the low mass side.
  • the remaining ratio of molecules other than the isolation target can be suppressed to 20% or less.
  • the sweep time on the high mass side needs to be set to 1.4 times longer than that on the low mass side.
  • This condition that is, the condition that allows the remaining rate of molecules other than the molecule to be isolated to be 0%, can be regularly used as a normal measurement mode.
  • the sweep time on the high-mass side is increased in order to increase the residual rate of the isolation target in order to improve sensitivity even if some other molecules remain.
  • the residual rate was 30% at the time of the above 1.4 times setting, but the sweep time on the high mass side Is set to 1.2 times that of the low mass side, but the residual rate of nearby ions (685.90) increases to about 20%, but the residual rate of divalent ions of SubstanceSubP (RPKPQQFFGLM) Increases to 70%, so this setting is effective for soft ions, that is, ions that are easily lost.
  • the sweep time on the high mass side for an arbitrary time longer than 2.0 times. For example, the throughput can be ignored and the sweep can be performed for a necessary time that can eliminate ions existing on the high mass side.
  • the time width of the entire isolation is limited to 100 ms in order to adjust the timing of MS / MS analysis by ECD in the latter stage and tandem mass analysis by TOF. For this reason, the sweep time on the high mass side is limited to within 50 times that on the low mass side. This corresponds to the time width of the entire isolation being about 100 ms when the high mass side is set to 50 times when a sweep of about 2 ms is performed on the low mass side.
  • the sensitivity can be improved by changing the sweep time to match the sample.
  • broadband may be used on both the low-mass side and the high-mass side, and when sufficient resonance discharge is possible, such as when there are few types of ions, the low-mass side and the high-mass side. Either one or both may be a combination of one or more frequencies.
  • the Rf voltage shown in FIG. 13 may be realized by applying as follows. That is, the RF voltage has extreme values on the low mass side and the high mass side, and the RF voltage has a plurality of different slopes between the trap voltage and the extreme value, and the one closer to the extreme value among the different slopes.
  • the inclination may be applied so as to be smaller than the inclination that is farther from the extreme value among a plurality of different inclinations.
  • the RF voltage when the low mass side is separated, the RF voltage takes the maximum value, and the differential coefficient other than the discontinuity point of the curve taken by the RF voltage with respect to time is always positive at the time before the time when the maximum value is taken.
  • the derivative other than the discontinuity point of the curve that the RF voltage takes with respect to time is always negative or zero, and the high mass side is separated.
  • the RF voltage takes the minimum value, and before the time at which the minimum value is taken, the derivative other than the discontinuity point of the curve that the voltage takes with respect to time is always negative or zero, and the RF voltage is the minimum value.
  • the RF voltage may be applied so that the differential coefficient other than the discontinuity point of the curve that the RF voltage takes with respect to time is always positive or zero at a time later than the time taken.
  • FIG. 14 shows an example in which the time width before and after isolation is set to 0 in FIG.
  • FIG. 15 is an example in which the slope of the sweep on the high mass side is gently set in the parameter setting of FIG.
  • FIG. 16 shows the parameter setting of FIG. 15 in which the distance for bringing the high mass side closer to the auxiliary Rf is 0, and instead the sweep range is expanded.
  • FIG. 17 shows the difference in voltage control waveform generation during sweeping.
  • the voltage continuously changes, but when implemented with a digital circuit (44), there is a limit to the resolution of the voltage, so in principle it is stepped. Therefore, in the digital circuit, the setting of the slope of the sweep voltage sets the length of the duration of each stair step.
  • a line as disclosed in the embodiments of the present invention may be obtained by approximating the change in voltage with a smooth function.
  • the resonance discharge can be sufficiently caused by setting the duration of each voltage so that the time is about 4 to 5 cycles.
  • broadband may be used on both the low-mass side and the high-mass side, and when sufficient resonance discharge is possible, such as when there are few types of ions, the low-mass side and the high-mass side. Either one or both may be a combination of one or more frequencies.
  • FIG. 18 shows an example in which a function of the S2 Rf voltage is set in the user interface unit 2 and applied to the low mass side.
  • the function setting method may be a mathematical function expressed in time or a table showing time and voltage.
  • the approach of the auxiliary Rf on the low mass side is changed to reduce the time during which the auxiliary Rf approaches the precursor ion as much as possible, and the necessary range of scanning is also executed.
  • broadband may be used on both the low-mass side and the high-mass side, and when sufficient resonance discharge is possible, such as when there are few types of ions, the low-mass side and the high-mass side. Either one or both may be a combination of one or more frequencies.
  • an RF voltage may be applied as follows. That is, the RF voltage may have an extreme value with respect to time, change nonlinearly with respect to time, and apply the RF voltage so that the rate of change is closer to the extreme value and takes a larger value. .
  • FIG. 19 shows an example in which another function of the S2Rf voltage is set in the user interface unit 2 and applied to the low mass side.
  • the auxiliary Rf is brought close to the precursor ion, and further, the slope of the sweep is made quite gentle, so that another ion in the immediate vicinity of the low mass side of the precursor can be sufficiently eliminated.
  • tandem mass spectrometry performed after isolation can be performed with high accuracy.
  • broadband may be used on both the low-mass side and the high-mass side, and when sufficient resonance discharge is possible, such as when there are few types of ions, the low-mass side and the high-mass side. Either one or both may be a combination of one or more frequencies.
  • an RF voltage may be applied as follows. That is, the RF voltage may have an extreme value with respect to time, change nonlinearly with respect to time, and apply the RF voltage so that the rate of change is closer to the extreme value and takes a smaller value. .
  • FIG. 20 is an example in which the high-mass-side scan is performed only in one direction from the higher q-value to the lower one in the example of FIG.
  • the high mass side can be sufficiently isolated, setting it in this way and reducing the isolation time prevents the precursor ions from decreasing, improves sensitivity, and increases measurement throughput. I can do it.
  • FIG. 21 shows that in the situation where there are two ions on the low mass side and one on the high mass side as ions other than the target ions, the user interface unit 2 includes only one frequency as the auxiliary Rf and is low in the initial state.
  • the auxiliary Rf is specified at a place where the q-value is higher than the two ions on the mass side.
  • the one that is far from the target ion has a large amount of ions, so it is exposed to the auxiliary Rf for a long time.
  • the ion closer to the target ion on the low mass side and the ion on the high mass side have almost the same ion amount, and the auxiliary Rf is fixed, and the q-value when performing resonance ejection Since all are the same, the exposure time is the same.
  • FIG. 22 shows that two ions on the low mass side and one on the high mass side exist as ions other than the target ions in the user interface unit 2 as auxiliary Rf in the initial state. This is an example in which one is included where the q-value is higher than that of an ion and only one frequency is included where the q-value is lower than that of one ion on the high mass side.
  • the one that is far from the target ion has a large amount of ions, so it is exposed to the auxiliary Rf for a long time.
  • the ion closer to the target ion on the low mass side and the ion on the high mass side have almost the same ion content, but the q-value for resonance ejection is lower on the high mass side. Therefore, the exposure time on the high mass side is set longer.
  • FIG. 23 shows the detection unit when the parameter of the user interface unit 2 is adjusted so that the sequence corresponding to the sequence shown in FIG. 14 in the present embodiment is performed and Substance P (RPKPQQFFGLM) is isolated.
  • 13 is an example of the spectrum detected in FIG.
  • the peak 40 indicates Substance P (450.4, 3+, ionic strength 2538).
  • FIG. 24 is an example of a spectrum detected by the detection unit 13 immediately before the isolation shown in FIG. 23 is executed.
  • the peak 41 here indicates SubstanceSubP (450.4, 3+, ionic strength 2624).
  • This Substance P is a relatively fragile ion, but from the ratio of the ionic strengths in FIGS. 23 and 24, it is 96% after the isolation by the method of the present embodiment compared to before the isolation. Ion can be left. Further, another ion 42 shown in FIG. 24 has m / z of 458.4 and is not visible in FIG. 23, and it is understood that ions other than Substance P (RPKPQQFFGLM) are excluded. Since 99% of ions can be left in reserpine, which is an ion that is not easily broken, it can be seen that the same degree of isolation efficiency is achieved even in the case of easily broken ions.
  • the specific parameters for measuring Substance are as follows: m / z of precursor ion is 450.4, valence is trivalent, auxiliary Rf is FNF, and the window region is low mass side 20 Da, The total mass of 40 Da on the high mass side 20 Da, sweep is executed in mode 1 and the parameters are set close to 1.7 Da from the low mass side, and the slope of the Rf voltage is set so that the sweep width is 5 Da. The slope of the Rf voltage was set so as to approach 3 Da from the side, and the sweep width was 7 Da.
  • the Rf voltage is controlled digitally, the time width for keeping each voltage shown in FIG. 17 is 12 microseconds, and the resonance frequency is around 400 kHz.
  • the time is about 4 to 5 cycles of the vibration motion.
  • the ratio of the sweep width between the high mass side and the low mass side is the sweep time ratio. This is because the sweep width is swept stepwise with a certain time width. Therefore, in this case, the sweep time on the high mass side is 1.4 times the sweep time on the low mass side.
  • the total isolation time was about 5 milliseconds.
  • a set of preset high mass side sweep time and low mass side sweep time is displayed on a plurality of user interface units 2 and can be easily separated by user selection. You can also choose efficiency and overall isolation time.
  • a title 35 for selecting an isolation method is displayed, and in addition to the normal mode 36 in which the sweep time on the high mass side is made larger than the sweep time on the low mass side, the sweep time on the high mass side is set to be higher than the normal mode.
  • an isolation capability priority mode 37 that is further increased, and a soft ion mode 38 that reduces the sweep width and improves the residual rate of ions to be analyzed are displayed. By selecting one of these modes and pressing the OK button 39, the isolation can be executed in the appropriately selected mode each time.
  • Mass spectrometer 2 User interface 3 Control unit 4 Internal parameter calculator 5 Sequence generator 6 Sequence execution part 7 Parameter storage 8 AC circuit 9 DC circuit 10 Mass spectrometer 11 Ion source 12 Ion trap part 13 Detector 14 Gate 15 Linear ion trap 16 End cap 17 Linear ion trap cross section 18 End cap A 19 Ring electrode 20 End cap B 21 End cap A cross section 22 Ring electrode cross section 23 End cap B cross section 24 Window area 25 time axis 26 Precursor ions 27 Trapped ions on q-axis before applying auxiliary RF 28 A group of trapped ions in which auxiliary Rf is applied to the low mass side on the q axis A group of trapped ions when increasing the 29 Rf voltage and increasing the overall q-value 30 A state in which ions trapped on the low mass side are sequentially ejected by resonance 31 trapped ions 32 Trapped ions when the auxiliary Rf is applied to the high mass side and the Rf voltage is gradually lowered to lower the overall q-value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

イオントラップを用いた質量分析の際に、特定のイオンを分離しイオントラップ内に残すべきイオンを残す方法において、高いイオン分離精度を伴い、かつイオン分離に必要な時間を短くするという課題を解決するために、残したいイオンよりも低質量のイオンを分離する第1の時間を、残したいイオンよりも高質量のイオンを分離する第2の時間より小さくする。

Description

イオン分離方法および質量分析装置
 本発明は、生体関連物質などの分析に用いられるイオントラップ型質量分析計に関する。特に、イオントラップが他質量分析計における、イオントラップ内に特定の質量電荷比m/z範囲のイオンだけを残す技術に関する。
 四重極イオントラップ質量分析計では、Rf電界により一定時間だけイオンをトラップし、濃縮されたイオンをその質量電荷比(m/z)に応じてイオントラップから順次排出し、検出器で検出することができる。このことにより、質量分析が実現する。
 さらに、特定のイオンを対象に解離イオン(フラグメントイオン)の質量スペクトルを取得するタンデム質量分析も実施することができる。すなわち、複数種類のイオンをイオントラップ内部で蓄積し、タンデム質量分析の対象とする前駆体イオンを蓄積されたイオンの中から選定する。
 そして、選定された前駆体イオン以外のイオンをイオントラップから排出し、前駆体イオンだけをイオントラップに残すアイソレーションが実施される。
 アイソレーションされた前駆体イオンは、衝突誘起解離(CID: Collision-Induced Dissociation)や赤外多光子解離(IRMPD: Infrared Multiphoton Dissociation)、電子捕獲解離(ECD: Electron Capture Dissociation)、電子移動解離(ETD: Electron Transfer Dissociation)などの解離手段により解離され、生成された解離イオンはイオントラップに蓄積される。
 そして、解離イオンがm/zに応じてイオントラップから送出されて検出器で検出されることにより、解離イオンのm/zを決定することができる。さらに、特定の解離イオンを前駆体イオンとして残留させるようにアイソレーションを実施し、更なる解離を実施するMS分析(MS/MS/MS,MS/MS/MS/MS)も実施することができる。
 以下では、四重極イオントラップにおける既知のアイソレーション方法について述べる。
 四重極イオントラップには、リング型電極と一対のお椀型電極から構成される三次元四重極イオントラップ(3DQ)や、平行なポール電極から構成されるリニアイオントラップ(LIT)が存在するが、原理は同様である。
 四重極イオントラップにおけるイオンは、対向する電極間に印加されるRf電圧によりRf周波数と同一の周波数で微振動(マイクロモーション)するとともに、Rf周波数より低い周波数でも振動(永年モーション)しながら、特定の空間内にトラップされる。
 そして、永年モーションの周波数は、イオンのm/zに依存する性質を有する。そこで、特定のm/zイオンに対応する永年モーションの周波数を持つ交流電界(サプリメンタルAC)をイオンがトラップされた空間に加えると、そのイオンの運動は、共鳴により永年モーションの振幅が増大する。
 そして、サプリメンタルACの電圧を高く設定すればするほど、共鳴するイオンの振幅は増加し、最後にはイオンが電極に衝突したり、残留ガスとの衝突により解離したりするなどによりイオントラップから排出される。  
また、イオンがサプリメンタルACへ暴露される時間を長くすればするほど、残留ガスとの衝突により解離するなどによりイオントラップから排出される。
 イオンのアイソレーションには、上記の原理が利用される。
 四重極イオントラップにトラップされた複数種のイオンに対し、前駆体イオンだけを残して他のイオンを排出するには、他のイオンのm/zに対応する周波数のサプリメンタルACを印加して共鳴排出することによりアイソレーションは実現する。
 しかし、他のイオンの種類が非常に多い場合やそれらのm/zが不明の場合には、前駆体イオンとは共鳴しない範囲で、他のイオン全てが順次共鳴排出されるようにサプリメンタルACの周波数をスイープする(ある範囲で変化させる)ことが有効である。この場合、前駆体イオンが100%保存され、他のイオンが完全に排出されることが理想である。
 そのためには、Rf電圧を増加させ、前駆体イオンをトラップする際の永年モーションの安定性を高くする必要がある。この安定性に関係する指標として、次のa値およびq-値が知られている。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、eは素電荷、Uはイオントラップに印加する直流電圧、rはイオントラップ電極内半径、mはイオンのm/z、FはRf周波数、VRFはRfの電圧である。
 通常、直流電圧Uは0とするので、aは0となり、結局、永年モーションの安定性はq-値で表わされる。
 この場合、安定性があるのは、qが0.908付近までであり、この数値が高いほど永年モーションの安定性が高く、共鳴排出が起こりやすいことが知られている。
 ただ、四重極イオントラップの構造や前駆体イオンのm/zに依存するが、Rf電圧を発生させる電源などの制約で、サプリメンタルACの周波数を変化させることが困難となる場合がある。
 ところが、次の式(3)に示すように、q-値とイオンに共鳴排出が起こる共鳴周波数fには次の関係式があることが知られている。
Figure JPOXMLDOC01-appb-M000003
 よって、式(2)および式(3)を組み合わせると、同様の共鳴排出は、サプリメンタルACの周波数を固定し、Rf電圧(VRF)をスイープ(特許文献1)することによっても実現出来ることがわかる。
 例えば、所定のサプリメンタルACを印加し、最初に前駆体イオンより低いm/zのイオンを共鳴排出するようにRf電圧をスイープし、次に、前駆体イオンより高いm/zのイオンを共鳴排出するようにRf電圧をスイープすればアイソレーションは完了する。
 さらに、周波数の異なるサプリメンタルACを合成すると、同時に複数種のm/zを有するイオンを共鳴排出することができ、分析のスループット向上に有利である。
 すなわち、前駆体イオン以外のイオンが同時に排出されるように様々な周波数を有するサプリメンタルACを発生させることができると、短時間にアイソレーションが完了する。この原理を活用したのがFNF(Filtered Noise Field)(特許文献3)やSWIFT(Stored Waveform Inverse Fourier Transform)などと呼ばれる方式である。発生される波形は、典型的なブロードバンドだが、アイソレーション範囲でイオンと共鳴する周波数成分だけは振幅がゼロとなるように構成する。
 実際に発生される波形は、規則的な周波数間隔を有する多数のサプリメンタルACが合成されたものである。そのため、隣接する周波数の中間で共鳴するイオンでは、ACの振幅が相対的に低いため、共鳴排出の効率が必ずしも高くない。
 このような事情があり、比較的高い電圧のブロードバンド波形を一定時間印加するか、先述のようにRf電圧(q-値)をスイープすることが有効である。
 また、前駆体イオンのm/zよりも低いm/zのイオンに対しては固定されたサプリメンタルACを印加しながらRf電圧をスイープすることにより低m/z領域のイオンを排出し、高m/z領域のイオンに対しては対応する周波数領域においてブロードバンド波形を比較的短時間だけ印加することによってもアイソレーションを実施することができる。
 このような方式を用いると、ブロードバンド波形から発生する高調波の影響を回避することができる。一方、幅が1Da(ダルトン)以下の狭いm/z範囲をアイソレーションする場合には、アイソレーションの中心m/zに対応する共鳴周波数に近いACの周波数を考慮し、Rf電圧(q-値)のスイープを実施することが有効である。
 このように、状況に応じて、ある周波数のみのサプリメンタルAC、周波数の異なるサプリメンタルACを合成したもの、もしくは、様々な周波数を合成したブロードバンドACなど、永年モーションの振幅を大きくし、共鳴排出を起こさせるために、元のRfに加えて補助的な高周波(補助Rf)を用いる。
 また、三次元四重極イオントラップにおいては、曲面で構成される電極にイオン排出用の穴が設けられているため、イオントラップ内部の四重極電界に歪が生じる。そこで、外部に電極を設置して電界の歪を補正することにより、精度の高いアイソレーションを実現することができる。
 アイソレーションを行う際には、測定の目的によって、スループットを高める、前駆体イオン以外のイオンの十分に排除する、前駆体イオンの排出や解離を最小限に留める、アイソレーション幅をより精密にする(特許文献4)などのチューニングを行う必要がある。
米国特許第4736101号明細書 米国特許第4749860号明細書 米国特許第5134286号明細書 米国特許第7456396号明細書 米国特許第5640011号明細書 米国特許第7285773号明細書
K.R. Jonscher and J.R. Yates, III, The Whys and Wherefores of Quadrupole Ion Trap Mass Spectrometry, ABRF News. 7, 1-15 (1996). M. H. Soni and G. R. Cooks, Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform, Analytical Chemistry 66, 2488-2496 (1994).
 イオントラップを用いた質量分析方法において、分析全体のスループットや感度を上げるためには、アイソレーションを高速に行う必要がある。イオントラップに導入されるイオンの量に依存するが、イオンが導入されるアキュミュレーション時間は数ミリ秒程度の場合がしばしば起こる。このような短時間のアキュミュレーションに対し、アイソレーションに要する時間は同等以下であることが望ましい。典型的には、アイソレーションが5ミリ秒以下で完了することが望ましい。
 また、高スループット化のためには、単一周波数の補助Rfを印加して周波数やRF電圧をスイープする方式ではなく、周波数を多数重ね合わせ、ある質量範囲に相当する周波数成分を低減し窓を設けるようにして合成したブロードバンドの補助Rfを用いる必要がある。このとき、アイソレーション対象の低質量側と高質量側でイオンの共鳴排出のされ易さに違いがあるため、一様に共鳴排出を行う時間を短くしただけでは高質量側が十分に排出されないという問題がある。
 また、窓の部分の周波数成分を完全に無くすことが出来ないため、不安定なイオンの場合、解離を起こしてしまう問題があった。即ち、ソフトなイオン化技術の発展に伴い、非常に不安定なイオンが分析の対象になってきた。典型例は、糖鎖修飾ペプチドや一部の低分子化合物のプロトン付加分子などである。ところが、このような不安定なイオンが前駆体に選定された場合に、イオントラップでのアイソレーション過程において、前駆体イオンが著しく損失し、分析感度を損なうことがある。そのため、比較的安定なイオンだけでなく、比較的不安定なイオンのアイソレーションにおいても、アイソレーション過程におけるイオン損失を回避することが、高スループット分析や高感度分析の観点から重要である。
 本願は、イオントラップを用いた質量分析方法において、残したいイオンの感度を十分に保ったままで、不要なイオンを十分に排出し、かつ高速にアイソレーションを行うための方法を提供することにある。
 本発明の一例は、複数のイオンを複数の電極を持つイオントラップに導入する導入工程と、複数の電極のうち少なくとも1つの電極に第1の電圧で複数のイオンをイオントラップにトラップするようにRF電圧を印加するトラップ工程と、補助RF電圧をRF電圧が印加されている電極に印加しながら、RF電圧を第1の電圧よりも大きくして第1の時間印加してイオン分離する第1分離工程と、補助RF電圧をRF電圧が印加されている電極に印加しながら、RF電圧を前記第1の電圧よりも小さくして第1の時間より大きい第2の時間印加してイオン分離する第2分離工程と、イオントラップに残存しているイオンを排出する排出工程と、を有するイオン分離方法を用いる。
 また、本発明の別の例は、試料をイオン化した複数のイオンを生成するイオン源部と、複数の電極を持つイオントラップと前記複数の電極に交流電場を印加する交流電源と交流電源を制御する制御器と、からなるイオントラップ部と、質量電荷比毎に複数のイオンを検出する検出部と、を有し、制御器は、交流電源を制御し、第1の電圧でRF電圧を複数の電極のうち少なくとも1つの電極に複数のイオンをイオントラップするように印加し、補助RF電圧をRF電圧が印加されている電極に印加しながら、RF電圧を第1の電圧よりも大きい電圧として第1の時間印加し、さらにRF電圧を第1の電圧よりも小さい電圧として第1の時間より大きい第2の時間印加してイオン分離することを特徴とする質量分析装置を用いる。
 本願で開示している一例の質量分析方法では、非常に短時間で前駆体イオンのアイソレーションを完了させることができる。
 その際には、低質量側に比べて、高質量側が排出されにくいという問題を解決している。また、本発明の別の例の質量分析法では、前駆体イオンに安定なイオンを選定した場合だけでなく比較的不安定なイオンを選定した場合にも、アイソレーション過程におけるイオン損失を極めて低く保持することができる。
 上記の結果、糖鎖修飾ペプチドのような比較的不安定なイオンを含む試料に対しても、高スループットで高感度なタンデム質量分析を実施することが可能になる。
本発明の一例の質量分析方法を実現した質量分析装置の装置構成を示した説明図。 リニアイオントラップおよび周辺部分に送る信号のシーケンスを示した図。 図1におけるイオントラップ部が、リニアイオントラップの場合の、イオントラップ部分の構成と、交流および直流信号の接続方法、およびイオンの流れを示した説明図。 リニアイオントラップ部分をイオンが通過する軸方向から見た説明図。 図1におけるイオントラップ部が、3次元四重極イオントラップの場合のイオントラップ部分の構成を示した説明図。 3次元四重極イオントラップの断面図と、交流および直流信号の接続方法を示した説明図。 イオントラップ内で共鳴排出によりイオンが排出される原理を説明した模式図。 トラップされたイオンの安定性を示す指標である、a-値とq-値の関係を示した図。 補助RfとしてFNFを用いた場合のパワースペクトルと、多数の周波数が重ね合わされている部分において、実際には各周波数成分の間にすきまが存在することを示した図。 壊れにくいイオンのアイソレーション方法として適用可能なRf電圧のシーケンスの実現例。 スイープを行う場合のアイソレーション方法として適用可能なRf電圧のシーケンスの実現例。 補助RfとしてFNFを用いた場合のパワースペクトルと、目的とするイオンに対応する周波数付近を拡大して示した図。 壊れやすいイオンのアイソレーション方法として適用可能なRf電圧のシーケンスの実現例。 図13において、スループット向上が必要な場合に適用可能なRf電圧のシーケンスの実現例。 図13において、高質量側にアイソレーションしにくいイオンが存在する場合に適用可能なRf電圧のシーケンスの実現例。 図15において、さらにアイソレーションしにくいイオンが存在する場合に適用可能なRf電圧のシーケンスの実現例。 Rf電圧のスイープの傾きを変える場合に、回路の実現方法での差を示した図。 非常に壊れやすいイオンのアイソレーション方法として適用可能なRf電圧のシーケンスの実現例。 前駆体イオンの低質量側のすぐ近くに排除したいイオンがある場合に適用可能なRf電圧のシーケンスの実現例。 図19において、高質量側のアイソレーション時間を短かく設定したRf電圧のシーケンスの実現例。 補助Rfとして周波数を1つだけ用いる場合のRf電圧のシーケンスの実現例。 補助Rfとして周波数を2つ用いる場合のRf電圧のシーケンスの実現例。 実際に、Substance P(RPKPQQFFGLM)の3価イオンをアイソレーションした際のスペクトルの例。 図23のアイソレーションを実行する直前の、アイソレーションを行わない状態でのスペクトルの例。 異なるイオン分離の方法である複数のモードを選ぶ一例。
 イオントラップの形式にかかわらず、補助Rfを印加し、Rf電圧(q-値)をスイープするという構成を実現した。
 図1に、本発明の一例の質量分析方法を実現した、質量分析装置1の構成図を示す。質量分析装置1は、ユーザーインターフェイス部2と、制御部3と、パラメータ記憶部7と、交流回路8と、直流回路9と、質量分析部10からなる。そして、制御部3は、内部パラメータ計算部4と、シーケンス生成部5と、シーケンス実行部6を有している。また、質量分析部10は、イオン源部11と、イオントラップ部12と、検出部13とを有している。この例では、イオン源部11とイオントラップ部12の間や、イオントラップ部12の間と検出部13の間は直接つながっているが、タンデム質量分析のために、これらの間に別の装置が入っても良い。
 まず、質量分析装置1のユーザーはユーザーインターフェイス部2から、アイソレーション時のパラメータを入力する。このユーザーインターフェイス部2では、特定のイオンを対象にする場合と、データ依存分析のような、自動的に前駆体イオンを選択し分析する場合の双方のパラメータを指定出来る。
 特定のイオンを対象にする場合、対象のイオンは複数設定することが出来、それに応じてパラメータも複数設定することが出来る。
 自動的に分析する場合には、パラメータ記憶部7に保存された情報をもとに、特定のイオンを対象にした過去の実績を参照したり、あらかじめ設定した表を用いたり、あらかじめ設定したm/zや電荷に関する関数を用いたり、それらを組み合わせたりすることが出来る。
 ユーザーインターフェイス部2では、具体的なパラメータとして、前駆体イオンのm/z、補助Rfのパラメータ、アイソレーションの際に補助Rfを何Da分だけ近づけるかのパラメータ、低質量側と高質量側それぞれで、スイープ時のパラメータを入力する。
 補助Rfのパラメータとしては、補助Rfが1つから複数の周波数の合成波形の場合はその周波数を、補助Rfが多数合成したブロードバンド波形の場合は前駆体イオンのm/zを含む窓の範囲の幅を、それぞれ指定する。
 また、前駆体イオンの低質量側と高質量側それぞれ独立に、補助Rfのパラメータを設定することが出来る。
 スイープ時のパラメータとしては、モード1の時は、補助Rfをどの程度の質量範囲まで近づけるかのパラメータ、そこからどの程度の範囲だけRf電圧をスイープするかのパラメータ、スイープの際のRf電圧の傾きのパラメータを指定する。スイープ時のパラメータとして、モード2の時は、任意のRf電圧の関数を設定する。この関数は、時間の関数として記述する。また、全てのパラメータは、パラメータ記憶部7に保存することが出来、ユーザーインターフェイス部2から呼び出して指定したり、呼び出したパラメータを複数組み合わせて新しいパラメータを作成したりすることが出来る。
 さらに、前駆体イオンのm/zの代わりに、前駆体イオンのm/zのリスト、前駆体イオンの価数のリスト、前駆体イオンのm/zと価数の組み合わせのリスト、前駆体イオンの範囲、前駆体イオンの範囲と価数の組み合わせのリストや、それらリストの組み合わせのリスト指定することによって、自動分析のパラメータとすることが出来る。もし、イオン源部11に液体クロマトグラフィーを含めて使用する場合、前駆体イオンのm/z、もしくは前駆体イオンのm/zと価数と組になる形で、そのイオンの液体クロマトグラフィー内での保持時間(Retention Time:RTと略す)を指定することも出来る。
 このRTを指定する場合、m/zのみを指定した場合はm/zが、m/zと価数を指定した場合はその両方が一致したとしても、RTが別であると判断される場合には、別のイオンとして扱われる。
 また、前駆体イオンのm/zを無指定とすることによって、指定された前駆体イオンのm/zや指定されたリストに該当しないイオンに対するパラメータ(規定のパラメータ)とすることが出来る。
 さらには、糖鎖修飾を受けたタンパク質もしくはペプチドなどのように、あらかじめ試料に含まれるイオンの性質に傾向がある場合には、その性質に合わせたパラメータや、イオンの電荷や質量電荷比に応じて設定出来る計算方法により、自動的にパラメータを設定するための計算式を作成、編集および保存したり、その式を呼び出してパラメータ設定したりすることが出来る。
 具体的には、前駆体イオンのm/zおよび価数と、そのイオンが壊れやすさの選択、前駆体イオンを中心として何Daの幅以内のイオンを残すかの指定を行うと、補助Rfのパラメータ、アイソレーションの際に補助Rfを何Da分だけ近づけるかのパラメータ、低質量側と高質量側それぞれのスイープ時のパラメータが自動的に設定される。
 自動的に設定されたパラメータは、一部または全部を手動で設定変更することも出来る。
 イオンの壊れやすさは、壊れやすいか、壊れにくいかといった2段階の設定を基本とし、段階を増やすことが可能であり、その段階に合わせてパラメータが設定される。
 制御部3では、質量分析部10、イオン源部11、イオントラップ部12および検出部13との信号の送受信や、交流回路8や直流回路9に信号を送り、また、それらを制御する。
 この制御部3では、入力されたパラメータをもとに、特定のイオンのみを対象としてそのイオンに設定されたパラメータに従った分析も行えるし、自動的にイオンを選択し自動的にパラメータを設定して分析することも出来るし、特定のイオンが出現した場合にはそのイオンに設定したパラメータで、それ以外の場合は自動的にパラメータを設定して分析を行うような、特定イオンの指定と自動パラメータ設定を組み合わせた分析も行えるし、分析中に検出部13で得た情報をもとに実時間でパラメータを設定して実行することも出来る。  
特に、イオン源部11の構成の中に、液体クロマトグラフィーを含めて分析を行う際には、典型的には、各イオンはある時間幅を持って観測されるため、時間帯の始めの部分で、規定のパラメータによる分析を行い、検出部13で得られる、イオンのm/z、価数、タンデム質量分析の場合の開裂パターンなどの情報をもとに、制御部3でパラメータを再設定して、より良い条件で分析を行うことも出来る。
 さらに、検出部13で得られる情報が、あらかじめユーザーインターフェイス部2で設定したリストに該当する場合には、その設定値に従って分析を行うことで、過去の実績を生かすことも出来る。
 ユーザーインターフェイス部2で入力された情報をもとに、内部パラメータ計算部4では、入力された情報や、過去の事例、検出情報からのフィードバックの情報などを、必要に応じてパラメータ記憶部7を参照するなどして、イオントラップ制御用のシーケンスを生成するための内部パラメータを計算する。
 シーケンス生成部5では、内部パラメータ計算部4で計算された内部パラメータをもとに、図2に示すような時間に沿ったイオントラップ制御用のシーケンスを計算する。
 シーケンス実行部6では、シーケンス生成5で生成されたイオントラップ制御用のシーケンスをもとに、交流回路8および直流回路9を制御する。
 パラメータ記憶部7は、パラメータ入力時に利用する、あらかじめ設定された情報や、過去の事例や、自動的に内部パラメータを計算するための方法を格納する。
 交流回路8および直流回路9は、シーケンス実行部6の制御を受け、イオントラップ部10に信号を送る。
 検出部11では、イオントラップから送り出されたイオンを検出するとともに、検出されたイオンの情報を制御部3に送る。
 図3に、質量分析装置1のイオントラップ部12が、リニアイオントラップの場合のイオントラップの構成例を示す。
 全てのイオンは、ゲート14を通って、リニアイオントラップ15に導入される。リニアイオントラップ15内で必要な操作を行ったあと、イオンはエンドキャップ16からイオントラップ外に送出される。
 ゲート14は、直流回路9からの信号によって、イオントラップ外部からイオンを取り入れるかどうかを制御し、エンドキャップ16は、直流回路9からの信号によって、イオントラップ外部へイオンを送出するかどうかを制御する。  
また、リニアイオントラップ15内のイオンの挙動は、交流回路8からの信号によって制御される。この例では、外部の装置で質量分析が行われる。
 この例のリニアイオントラップは、イオンはトラップの軸方向に沿って導入および送出が行われるが、それらは軸方向に沿った方向でなくとも良い。
 図4はリニアイオントラップを、イオン導入方向から見たものである。向い合うロッドは組になっており、片方の組には、Rf信号と補助Rf信号を合わせた信号が、もう片方には、逆相のRf信号が印加されている。
 ここでは、リニアイオントラップ断面17は円形となっているが、Rf信号によるイオンのトラップや、補助Rfによる共鳴排出が行える限り、どのような断面形状でも構わないし、途中にイオン導入もしくは送出用の穴があっても構わないし、タンデム質量分析用の付加装置が付いていても構わない。
 図5は、質量分析装置1のイオントラップ部12が、三次元四重極の場合のイオントラップの構成を示している。
 全てのイオンは、エンドキャップA18の中心から導入され、リング電極19と、エンドキャップB20で囲まれた部分で構成されるイオントラップで必要な操作を行ったあと、エンドキャップB20の中心から送出される。
 図6は、図5の三次元四重極イオントラップの断面図である。外形などの形態は、リニアイオントラップとは違うものの、トラップされる原理やイオンのトラップ状態の安定性を示す数値に関係する物理的な性質は同じである。
 ここでは、エンドキャップA断面21、リング電極断面22、エンドキャップB断面23の形状は、Rf信号によるイオンのトラップや、補助Rfによる共鳴排出が行える限り、どのような断面形状でも構わないし、途中にイオン導入もしくは送出用の穴があっても構わないし、タンデム質量分析用の付加装置が付いていても構わない。
 その他、タンデム質量分析を行えるように、イオントラップの他に、その前後に四重極フィルター、TOF、オービトラップ、FTICRなどの様々な装置を連結して利用する場合があるが、その際でも同様に本発明の各例は利用出来る。(図3の説明を参照)  
 図2は、シーケンス生成部5で生成されるシーケンスの例である。シーケンスは、時間に沿って生成され、各時間帯は、T1 イオン導入時間、T2 アイソレーション前時間、T3 アイソレーション時間、T4 アイソレーション後時間、T5 イオン排出時間に分けることが出来る。
 T2 アイソレーション前時間は、その時間幅を0にすることによって、無いものとしても良い。また、T4 アイソレーション後時間は、CIDなどのタンデム質量分析を行う時間や、イオンに与えられた熱的なエネルギーを冷却するための時間を含むことが出来るし、その時間幅を0にすることによって測定のスループットを向上させることが出来る。
 図2において、S1 ゲート電圧は、イオントラップ入口側のイオン導入を制御する役割を持ち、電圧を下げることでイオンがイオントラップ内に導入され、電圧を上げることで、イオンの導入が止まる。
 イオン導入のタイミングは、イオントラップ内の空間電荷効果を考慮した導入時間を設定することが出来る。すなわち、イオントラップ内にトラップされるイオンの総量を、パラメータ記憶部7に蓄えられた過去の実績や、検出部13から得られるイオンの検出量などのフィードバック情報をもとに実時間で推定し、空間電荷効果が起こらないように導入時間を設定することが出来る。
 S2 Rf電圧は、イオントラップ内に導入されたイオン全体のq-値を制御し、それによって、イオントラップ内のイオンに対する、補助Rfへの暴露方法を制御する。
 S3 エンドキャップ電圧は、イオントラップ出口側のイオン送出を制御する役割を持ち、電圧を下げることでイオントラップからイオンが送出され、電圧を上げることで、イオンの送出が止まる。
 S4 補助Rf電圧は、T3 イオントラップ時間における、イオントラップ内のイオンに対する、補助Rfへの暴露を制御する。S5 補助Rfは、実際にイオンに暴露される補助Rfである。
 これらのS1からS5までが質量分析装置でどのように実施されているかは、質量分析装置1の、制御部3から、交流回路8や直流回路9への信号線、もしくは、それらから質量分析部10への配線をオシロスコープなどの装置を用いることで容易に確認することが出来る。
 通常は、低電圧で信号を作成し、それを増幅装置で増幅してイオントラップなどへ送るため、そのような場合は増幅装置で増幅する前の信号線を確認することとなる。
 図7は、S2 Rf電圧の制御に対応する、補助Rfとイオントラップ内のイオンとの関係を模式図で示したものである。なお、符号25は時間軸を、符号26は前駆体イオンを示す。
 イオンの質量が大きいほどq-値は小さくなり、イオンの質量が小さいほどq-値は大きくなるので、図7において、トラップされたイオン群31は、高質量ほど大きい円で、低質量ほど小さい円で表わされている。
 補助Rfを印加する前のトラップされたイオン群27に対して、まず、低質量側から、補助Rfを、目的とする前駆体イオンから離れたところに設定する(28)。Rf電圧を徐々に上げてゆくスイープ操作29を行うことによって、q-値がスイープされ、設定した補助Rfの周波数が共鳴周波数となったイオンが順次共鳴排出される(30)。
 同様に、補助Rfを、目的とする前駆体イオンの高質量側の離れたところに設定し(32)、Rf電圧を徐々に下げてゆくスイープ操作を行うことによって、q-値がスイープされ、設定した補助Rfの周波数が共鳴周波数となったイオンが順次共鳴射出される(33)。最後には、トラップされたイオン群から目的のイオンのみが残される(34)。
 イオントラップ内では、イオンが過剰量導入された際に、見かけの質量が増加する空間電荷効果という現象が知られている。  
この空間電荷効果が起こると、正確なアイソレーションを妨げることになるが、アイソレーションの際に、図7で説明したように低質量側から行うことによって、高質量側のアイソレーションを行う前にイオントラップ内のイオンを減らし、空間電荷効果を低減することが出来、結果として、空間電荷効果の悪影響を避けてアイソレーションが出来るようになる効果がある。
 この例では、低質量側と高質量側それぞれのアイソレーションの際に1つだけ周波数を含む補助Rfを使用している例を示したが、低質量側と高質量側の周波数を合成したり、複数の周波数を合成して組み合わせたり、ブロードバンドを低質量側のみ、もしくは高質量側のみ、もしくは低質量側と高質量側の両方に用いたりしたとしても、この原理は基本的には変わらない。
 図8には、q-値とイオントラップ内のイオンの安定および不安定の関係を示した。本実施例では、イオントラップは、図のa=0の領域で利用しているため、図に示すように、q-値は、0から0.908までの値を取り得る。
 また、重要な性質として、式(2)の定義からわかるように、低質量側に比べて、高質量側のq-値が相対的に低くなる点が挙げられる。
 なお、本実施例ではa=0の場合を扱っているが、a≠0であったとしても、q-値がイオンの安定性を表すことに変わりはなく、q-値をaの値に応じた曲線で評価することによって、同様に実施出来る。
 図9は、質量分析装置1で補助Rfとして使用しているFNFのパワースペクトルの例である。図8のアイソレーションの説明では、簡単のため、補助Rfとして低質量側、高質量側それぞれある1つの周波数を使う例を示したが、そこで説明したように、広い範囲のスイープ操作が必要になってしまうため、本実施例ではFNFを利用することによってアイソレーション効率を上げている。
 ただし、FNFによる前駆体イオンへの悪影響が認められる場合に、1つ、もしくは複数の周波数を合成した補助Rfを使うこととしても良い。
 制御部3内にある、シーケンス実行部6は、図2のようなシーケンスを実行するが、S2 Rf電圧が、実際に図7で説明したようなアイソレーション操作に直接関係がある。
 図10に、S2 Rf電圧の実施例を示す。
 Rf電圧は、時間に関して連続関数であるだけではなく区分的連続関数をとってもよい。また、時間に対して線形に変化しても非線形に変化しても良いし、区分的に線形、非線形な部分が混在しても良い。
 この例では、前駆体イオン付近まで、補助Rfを瞬時に近づけ、一定時間その状態を保っている。スループット向上のためには、出来るだけ一定に保つ時間を少なくするのが望ましいが、その際に、単純にアイソレーション時間を一様に短く設定すると、低質量側に対して高質量側のアイソレーションが不十分となる問題が発生する。
 そのため、高質量側においては、低質量側に比較して、イオンが補助Rfへの暴露される時間(暴露時間)を長くし、十分に不必要なイオンを排除しつつ、必要最小限のスキャン時間を設定することが出来る。
 また、高質量側が十分に共鳴排出出来る場合には、低質量側と同じ時間でも良いし、高質量側にイオンが存在しない場合には、時間が0でも良い。その逆に、低質量側のイオン量が多く、十分に共鳴排出出来ない場合には、低質量側の時間を長くしても良いし、低質量側にイオンが無い場合には、低質量側の時間が0でも良い。
 また、補助Rfについては、低質量側と高質量側の両方でブロードバンドを用いても良いし、イオンの種類が少ない場合など、十分に共鳴排出出来る場合には、低質量側、高質量側のどちらか一方、もしくは両方を、1つもしくは複数の周波数の合成としても良い。
 この例では、高質量側が共鳴排出されにくいという問題に対処出来るが、図9の拡大図に示したように、FNFを用いる場合、実際には各周波数成分の間に隙間が出来てしまうため、このような隙間に該当するイオンを含む試料では、アイソレーションが不十分であるという問題が起きる可能性がある。
 しかし一方で、このような問題が起きない場合には、アイソレーションの時間をかなり短く、場合によっては1ms程度まで抑えることが出来るという利点がある。
 アイソレーション前後には、補助Rfがかからない時間帯を設定しており、これによって、特にアイソレーション後の、イオンの熱的なエネルギーを減少させ、イオンを安定化させ、意図しない解離を防ぐ効果がある。
 図11に、S2 Rf電圧の別の実施例を示す。この例では、Rf電圧のスイープを行うことで、図9の拡大図に示したような、FNFの隙間によるアイソレーション漏れを防ぐことが出来る。
 また、アイソレーションのスイープ幅や、スイープの傾きを調整することによって、低質量側に比較して、高質量側のスイープ時間を長く取ることが出来、結果として高質量側の補助Rfへの暴露時間を長くすることが出来るため、図10の例と同様に、高質量側が共鳴排出されにくいという問題に対処出来る。
 また、高質量側が十分に共鳴排出出来る場合には、低質量側と同じ時間でも良いし、高質量側にイオンが存在しない場合には、時間が0でも良い。その逆に、低質量側のイオン量が多く、十分に共鳴排出出来ない場合には、低質量側の時間を長くしても良いし、低質量側にイオンが無い場合には、低質量側の時間が0でも良い。
 補助Rfについては、低質量側と高質量側の両方でブロードバンドを用いても良いし、イオンの種類が少ない場合など、十分に共鳴排出出来る場合には、低質量側、高質量側のどちらか一方、もしくは両方を、1つもしくは複数の周波数の合成としても良い。
 ここで、図12と同様の、FNF波形の例を示す。この図の拡大図では、FNFの周波数成分が低い窓領域24を拡大して示している。FNFを作る原理上、ここで示したように、実際には窓領域24の周波数成分は0にはなっておらず、わずかながら周波数成分が存在する。
 そのため、レセルピンなどの壊れにくいイオンに比較して、糖鎖修飾ペプチドや一部の低分子化合物のプロトン付加分子などの不安定なイオンは、このようなわずかに残る周波数成分によって、共鳴排出されたり、熱的なエネルギーを受けて解離されたりして、イオンが減少してしまうという現象が見られる。
 特に周波数の窓の境界に近い部分は、窓の中心部分に比べて周波数成分の信号強度が強いため、この境界部分を目的とする前駆体イオンに近づける時間が長いと、前駆体イオンが共鳴排出もしくは解離する可能性を高める。
 図13は、また別のS2 Rf電圧の実施例である。この例では、図11に比較して、ある範囲までは一度に補助Rfを近づけることで時間を短縮するとともに、ある範囲はスキャンを行うことで、前駆体イオン以外のイオンを十分に共鳴排出させるようにしている。また、高質量側は低質量側に比較して長い範囲を長い時間をかけてスキャンを行うことによって、q-値が低いことによって共鳴排出が起こりにくい問題点にも対処している。即ち、アイソレーションに要する時間を短く設定すると、前駆体イオンの高質量側と低質量側でアイソレーションに要する時間を同等にすることは困難となる。同等に設定すると、高質量側にあるイオンの排除が不完全になるためである。この原因は、イオンの永年モーションを調和振動子とみなすことが出来るため、次の関係により、q-値が低減することにより振動運動のポテンシャル深さP(4式)が浅くなるためと説明される。
Figure JPOXMLDOC01-appb-M000004
 実際に、この方法によって、スキャンを行う方法で、かつ時間短縮することが出来、時間にして5ms程度で、十分なアイソレーション効率と、弱いイオンの感度向上を実現出来る。
 実際の試料の模した試料として、アイソレーションの際の損失の度合いに応じて、レセルピン(損失し難い)、Substance P(RPKPQQFFGLM) (損失し易い)、質量分析マーカ(Ultramark)(中程度の損失のし易さ)を混合した試料を準備した。
 理由は、実際の試料においては、中に含まれる分子によって、アイソレーションの際の損失のし易さに違いがあるため、その状況を再現するためである。また、実験の再現のし易さを考慮して、一般的に流通しており、入手が容易なものを使用した。
 一般的に、生体分子の中でも、ペプチドや翻訳後修飾を受けたペプチドなどは、質量分析における損失のし易さに違いがあることが知られており、前記の3つのうちSubstance P, ここで具体的にアミノ酸配列を表記するとSubstance P(RPKPQQFFGLM)は、損失し易い分子の代表と考えることが出来る。また、アイソレーションの際に重視する点としては、より正確な分析を考慮してアイソレーション対象以外の分子の残存率を低減することを重視する場合と、アイソレーション対象以外の分子の残存率よりも、アイソレーション対象の分子の感度を重視する場合があり、目的によってアイソレーション時のパラメータを変更する必要がある。
 一般的な状況では、MS/MSやMS/MS/MSなどの分析においては、アイソレーション後に他の分子が残存することで分析に悪影響を与えるため、他の分子の残存率を0%にすることは重要であるが、一方でアイソレーション対象が、アイソレーションによって損失し易い場合には、若干の他の分子を残してでも、感度向上のためにアイソレーション対象の残存率を上げる場合がある。
 アイソレーションの際のパラメータとして、低質量側と比較した高質量側のスイープ時間について着目すると、前記3種の分子のそれぞれをアイソレーションする際に、高質量側のスイープ時間は低質量側に比較して1.2倍長く設定することにより、アイソレーション対象以外の分子の残存率を20%以下に抑えることが出来る。
 さらに、アイソレーション対象の分子以外の分子の残存率を0%とするためには、高質量側のスイープ時間は低質量側に比較して1.4倍長く設定する必要があった。
 この条件、すなわち、アイソレーション対象の分子以外の分子の残存率を0%と出来る条件は、通常の測定モードとして、この設定を定常的に利用可能である。
 また、損失し易い分子の代表であるSubstance P(RPKPQQFFGLM)においては、若干の他の分子を残してでも、感度向上のためにアイソレーション対象の残存率を上げるために、高質量側のスイープ時間は低質量側に比較して1.4倍より低く設定することによって、イオンの残存率を上げることが可能である。具体的には、Substance P(RPKPQQFFGLM)の2価イオン(674.86)に着目すると、前記の1.4倍設定の際には残存率が30%であったが、高質量側のスイープ時間を低質量側に比較して1.2倍に設定することによって、近接のイオン(685.90)の残存率は20%程度に増加するものの、Substance P(RPKPQQFFGLM)の2価イオンの残存率は、70%に増加するので、ソフトなイオン、すなわち損失し易いイオンの場合にはこの設定が有効である。
 レセルピンでは、高質量側のスイープ時間は低質量側に比較して2.0倍でも、レセルピン自身の残存率を99%に保つことが出来るので、アイソレーション能力を優先する場合には、この設定が有効である。
 また、高質量側のスイープ時間を2.0倍より長い任意の時間スイープすることは原理的には可能である。例えば、スループットは無視して、高質量側に存在するイオンを排除出来る必要な時間だけスイープすることは可能である。ただし、装置構成のうち、イオントラップ以外の部分からの制約を受ける場合がある。本実施例の場合、後段のECDによるMS/MS分析や、TOFによるタンデム質量分析のタイミング調整のため、アイソレーション全体の時間幅を100msに制限している。そのため、高質量側のスイープ時間は、低質量側に比較して50倍以内に制限している。これは、低質量側で2ms程度のスイープを行った際に、高質量側を50倍に設定すると、アイソレーション全体の時間幅が約100msになることに対応する。
 アイソレーション時の影響の受けやすさ、すなわちアイソレーション時の損失度合いが比較的揃っているイオンを含む試料に関しては、その試料に合わせたスイープ時間に設定変更することにより、より感度を向上出来る。
 また、補助Rfについては、低質量側と高質量側の両方でブロードバンドを用いても良いし、イオンの種類が少ない場合など、十分に共鳴排出出来る場合には、低質量側、高質量側のどちらか一方、もしくは両方を、1つもしくは複数の周波数の合成としても良い。
 ここで、図13にあらわされているRf電圧は、次にように印加して実現されても良い。すなわち、低質量側及び高質量側にRF電圧は極値を持ち、さらにRF電圧はトラップ電圧と極値との間に複数の異なる傾きを持ち、この複数の異なる傾きのうち極値に近い方の傾きの大きさが、複数の異なる傾きのうち極値に遠い方の傾きの大きさよりも小さくなるように印加してもよい。
 また、別の例として次のように実現されてもよい。すなわち、低質量側を分離する際に、RF電圧は最大値を取り、最大値を取る時刻より前の時刻においてはRF電圧が時間に対して取る曲線の不連続点以外の微分係数が常に正またはゼロであり、RF電圧が最大値を取る時刻より後の時刻においてはRF電圧が時間に対して取る曲線の不連続点以外の微分係数が常に負またはゼロであり、高質量側を分離する際に、RF電圧は最小値を取り、最小値を取る時刻より前の時刻においては電圧が時間に対して取る曲線の不連続点以外の微分係数が常に負またはゼロでありRF電圧が最小値を取る時刻より後の時刻においてはRF電圧が時間に対して取る曲線の不連続点以外の微分係数が常に正またはゼロであるようにRF電圧を印加しても良い。
 図14は、図13において、アイソレーション前およびアイソレーション後の時間幅を0にした例である。
 結果として、イオン導入後、急にRf電圧を変更され、結果としてイオンのq-値が急に変わることになるが、このような場合でもイオンの安定性に影響は無い。
 図15は、図13のパラメータ設定のうち、高質量側のスイープの傾きをゆるやかに設定した例である。
 この場合、図13に比較して時間はかかるものの、補助Rfへの暴露時間が長くなるため、高質量側が共鳴射出しにくい場合に対応出来、傾きを調整することで最小限の時間とすることが出来る。
 図16は、図15のパラメータ設定のうち、高質量側を補助Rfに近づける距離を0とし、その代わりにスイープ範囲を広げたものである。  
この例では、補助RfとしてFNFを用いている場合に、スキャン範囲が不十分で、ところどころにイオンが残る現象が起こる場合に有効である。  
また、高質量側を補助Rfに近づける距離設定を0にせずに、スイープ範囲を広げることで、結果として補助Rfへの暴露時間が長くなるため、図13と同様に、高質量側が共鳴射出しにくいという問題に対処出来る。
 図17は、スイープ時の電圧制御の波形生成に関する違いを示したものである。アナログ回路で実現した場合(43)には連続的に電圧が変化するが、デジタル回路で実現した場合(44)には、電圧の分解能に限界があるため、原理的に階段状となる。そのため、デジタル回路では、スイープ電圧の傾きの設定は、各階段のステップの持続時間の長さを設定することになる。その電圧の変化を滑らかな関数で近似するなどして本発明の実施例にて開示しているような線になればよい。
 また、各電圧が一定時間持続されることを利用し、共鳴排出に用いられる周波数からその1周期にかかる時間を計算し、それに基づいて持続時間を設定することにより、効果的に共鳴排出を行うことが出来る。実際の例では、4周期ないし5周期程度の時間になるように、各電圧の持続時間が設定されるようにすることで、十分に共鳴排出を起こすことが出来る。
 また、補助Rfについては、低質量側と高質量側の両方でブロードバンドを用いても良いし、イオンの種類が少ない場合など、十分に共鳴排出出来る場合には、低質量側、高質量側のどちらか一方、もしくは両方を、1つもしくは複数の周波数の合成としても良い。
 図18は、ユーザーインターフェイス部2において、S2 Rf電圧の関数を設定し、それを低質量側に適用した例である。関数の設定方法は、時間で表わされる数学的な関数でも良いし、時間と電圧を表にしたものでも良い。
 この例の場合は、低質量側の補助Rfの近づけ方を変更し、出来る限り前駆体イオンの近くに補助Rfが近づいている時間を減らすとともに、必要な範囲のスキャンも実行している。
 また、補助Rfについては、低質量側と高質量側の両方でブロードバンドを用いても良いし、イオンの種類が少ない場合など、十分に共鳴排出出来る場合には、低質量側、高質量側のどちらか一方、もしくは両方を、1つもしくは複数の周波数の合成としても良い。
 この場合は次のようにRF電圧を印加してもよい。すなわち、RF電圧は時間に対して極値を持ち、時間に対して非線形に変化させ、その変化率の大きさが極値に近いほど大きな値をとるように、RF電圧を印加しても良い。
 図19は、ユーザーインターフェイス部2において、S2Rf電圧の別の関数を設定し、それを低質量側に適用した例である。
 この例の場合は、前駆体イオンへ補助Rfを近づけ、さらにスイープの傾きをかなりゆるやかにすることで、前駆体の低質量側のすぐ近くにある別のイオンを十分に排除することが出来る。これにより、アイソレーション後に行うタンデム質量分析を精度良く行うことが出来る。
 また、補助Rfについては、低質量側と高質量側の両方でブロードバンドを用いても良いし、イオンの種類が少ない場合など、十分に共鳴排出出来る場合には、低質量側、高質量側のどちらか一方、もしくは両方を、1つもしくは複数の周波数の合成としても良い。
 この場合は次のようにRF電圧を印加してもよい。すなわち、RF電圧は時間に対して極値を持ち、時間に対して非線形に変化させ、その変化率の大きさが極値に近いほど小さな値をとるように、RF電圧を印加しても良い。
 図20は、図19の例において、高質量側のスキャンをq-値の高い方から低い方への1方向のみ行った例である。この場合、高質量側は十分にアイソレーションが出来るために、このように設定し、アイソレーション時間を減らすことで、前駆体イオンが減少することを防ぎ、感度が向上出来るとともに、測定スループットも向上出来る。
 図21は、目的とするイオン以外のイオンとして、低質量側で2つ、高質量側1つ存在する状況において、ユーザーインターフェイス部2において、補助Rfとして1つだけ周波数を含み、初期状態では低質量側の2つのイオンよりもq-値の高いところに補助Rfを指定した例である。
 低質量側の2つのイオンのうち、目的のイオンから離れている方はイオン量が多いため長めに補助Rfへの暴露を行っている。また、低質量側のうち目的のイオンに近い方のイオンと、高質量側のイオンは、イオン量はほぼ同等であり、さらに、補助Rfが固定であり、共鳴排出を行う際のq-値は全て同じになるため、暴露時間は同じとしている。
 図22は、目的とするイオン以外のイオンとして、低質量側で2つ、高質量側1つ存在する状況において、ユーザーインターフェイス部2において、補助Rfとして、初期状態で、低質量側の2つのイオンよりq-値の高いところに1つ、高質量側の1つのイオンよりq-値の低いところに1つだけ周波数を含むものを指定した例である。
 低質量側の2つのイオンのうち、目的のイオンから離れている方はイオン量が多いため長めに補助Rfへの暴露を行っている。また、低質量側のうち目的のイオンに近い方のイオンと、高質量側のイオンは、イオン量はほぼ同等であるが、共鳴排出を行う際のq-値が高質量側の方が低いため、高質量側の暴露時間を長めに設定している。
 図23は、本実施例のうち、図14に示したシーケンスに対応するシーケンスが実施されるようにユーザーインターフェイス部2のパラメータを調整し、Substance P(RPKPQQFFGLM)をアイソレーションした際に、検出部13で検出されたスペクトルの例である。ピーク40はSubstance P(450.4,3+,イオン強度2538)を示している。また、図24は、図23のアイソレーションを実行する直前に、検出部13で検出されたスペクトルの例である。ここでのピーク41はSubstance P(450.4,3+,イオン強度2624)を示している。
 このSubstance P(RPKPQQFFGLM)は比較的壊れやすいイオンであるが、図23と図24のイオン強度の比から、本実施例の方法により、アイソレーション前に比較して、アイソレーション後も96%のイオンを残すことが出来ている。  
また、図24で示した別のイオン42はm/zが458.4のものであり、図23では見えておらず、Substance P(RPKPQQFFGLM)以外のイオンは排除されていることがわかる。  
壊れにくいイオンであるレセルピンにおいては99%のイオンを残すことが出来ていることから、壊れやすいイオンにおいても同等程度のアイソレーション効率を実現していることがわかる。
 なお、Substance P(RPKPQQFFGLM)を測定する際の具体的なパラメータは、前駆体イオンのm/zが450.4、価数3価、補助RfはFNFを使用し窓領域は低質量側20Da、高質量側20Daの合計40Da、スイープはモード1で実行し、そのパラメータは、低質量側からは1.7Daまで近づけることとし、スイープ幅が5DaになるようにRf電圧の傾きを設定、高質量側からは3Daまで近づけることとし、スイープ幅は7DaになるようにRf電圧の傾きを設定した。
 また、この実施例では、Rf電圧の制御はデジタルで行っており、図17に示した各電圧をキープする時間幅は12マイクロ秒であり、共鳴周波数は400kHz付近であることから、この周波数における振動運動の約4から5周期分程度の時間となっている。高質量側と低質量側のスイープ幅の比がそれぞれスイープ時間の比となっている。これは、スイープ幅を一定の時間幅で階段状にスイープすることによる。したがって、この場合は高質量側のスイープ時間は低質量側のスイープ時間の1.4倍となっている。以上のパラメータで、アイソレーション全体の時間は約5ミリ秒を実現した。
 また、図25に示されるように、予め設定された高質量側のスイープ時間と低質量側のスイープ時間との組を複数ユーザーインターフェイス部2にて表示し、ユーザーが選択することによって簡易に分離効率とアイソレーション全体の時間を選ぶこともできる。ここでは一例として、アイソレーション方法の選択というタイトル35が表示され、高質量側のスイープ時間を低質量側のスイープ時間より大きくする通常モード36の他に、高質量側のスイープ時間を通常モード以上にさらに大きくするアイソレーション能力優先モード37や、またスイープ幅を少なくとり解析対象イオンの残存率向上を図るソフトイオンモード38を表示している。これらのモードから一つを選び、OKボタン39を押すことにより、その都度適切に選ばれたモードにてアイソレーションを実行することが出来る。
1  質量分析装置全体  
2  ユーザーインターフェイス部  
3  制御部  
4  内部パラメータ計算部  
5  シーケンス生成部  
6  シーケンス実行部  
7  パラメータ記憶部  
8  交流回路  
9  直流回路  
10  質量分析部  
11  イオン源部  
12  イオントラップ部  
13  検出部  
14  ゲート  
15  リニアイオントラップ  
16  エンドキャップ  
17  リニアイオントラップ断面  
18  エンドキャップA  
19  リング電極  
20  エンドキャップB  
21  エンドキャップA断面  
22  リング電極断面  
23  エンドキャップB断面  
24  窓領域  
25  時間軸  
26  前駆体イオン  
27  補助RFを印加する前のq軸上のトラップされたイオン群  
28  q軸上で低質量側に補助Rfが印加された状態のトラップされたイオン群  
29  Rf電圧を上げ全体的にq-値を上げてゆく際のトラップされたイオン群  
30  低質量側においてトラップされたイオン群が順次共鳴排出される様子  
31  トラップされたイオン群  
32  高質量側に補助Rfを印加し徐々にRf電圧を下げ全体的にq-値を下げてゆく時のトラップされたイオン群  
33  高質量側が順次共鳴排出されるトラップされたイオン群  
34  トラップされたイオン群から残された目的のイオン  
35  アイソレーション方法の選択画面タイトル  
36  通常モード  
37  アイソレーション能力優先モード  
38  ソフトイオンモード  
39  決定ボタン  
40  Substance Pのアイソレーション後のイオン強度ピーク  
41  Substance Pのアイソレーション前のイオン強度ピーク  
42  Substance Pではない別のイオン  
43  アナログ回路による実現方法  
44  デジタル回路による実現方法。

Claims (20)

  1.  複数のイオンを複数の電極を持つイオントラップに導入する導入工程と、前記複数の電極のうち少なくとも1つの電極に第1の電圧で前記複数のイオンを前記イオントラップにトラップするようにRF電圧を印加するトラップ工程と、補助RF電圧を前記RF電圧が印加されている電極に印加しながら、前記RF電圧を前記第1の電圧よりも大きくして第1の時間印加してイオン分離する第1分離工程と、前記補助RF電圧を前記RF電圧が印加されている電極に印加しながら、前記RF電圧を前記第1の電圧よりも小さくして前記第1の時間より大きい第2の時間印加してイオン分離する第2分離工程と、前記イオントラップに残存しているイオンを排出する排出工程と、を有するイオン分離方法。
  2.  請求項1に記載のイオン分離方法であって、前記複数のイオンは、ペプチドもしくは翻訳後修飾を受けたペプチドを含むことを特徴とするイオン分離方法。
  3.  請求項1に記載のイオン分離方法であって、前記第2の時間を前記第1の時間で除した値は、1.2以上であることを特徴とするイオン分離方法。
  4.  請求項3に記載のイオン分離方法であって、前記第2の時間を前記第1の時間で除した値は、1.4以上であることを特徴とするイオン分離方法。
  5.  請求項4に記載のイオン分離方法であって、前記第2の時間を前記第1の時間で除した値は、2以上であり、前記複数のイオンは、レセルピンを含むことを特徴とするイオン分離方法。
  6.  請求項2に記載のイオン分離方法であって、前記第2の時間を前記第1の時間で除した値は、1.2以上1.4以下であり、前記複数のイオンは、Substance Pを含むことを特徴とするイオン分離方法。
  7.  請求項1に記載のイオン分離方法であって、前記第1分離工程か前記第2分離工程のいずれか一つまたは両方において、前記RF電圧は、時間に対して極値を持つことを特徴とするイオン分離方法。
  8.  請求項7に記載のイオン分離方法であって、前記第1分離工程か前記第2分離工程のいずれか一つまたは両方において、前記RF電圧を時間に対して線形に変化させることを特徴とするイオン分離方法。
  9.  請求項7に記載のイオン分離方法であって、前記第1分離工程か前記第2分離工程のいずれか一つまたは両方において、前記RF電圧を時間に対して非線形に変化させることを特徴とするイオン分離方法。
  10.  請求項7に記載のイオン分離方法であって、前記第1分離工程か前記第2分離工程のいずれか一つまたは両方において、前記RF電圧は前記第1の電圧と前記極値との間に複数の異なる傾きを持ち、前記複数の異なる傾きのうち前記極値に近い方の傾きの大きさが、前記複数の異なる傾きのうち前記極値に遠い方の傾きの大きさよりも小さいことを特徴とするイオン分離方法。
  11.  請求項8に記載のイオン分離方法であって、前記第1分離工程か前記第2分離工程のいずれか一つまたは両方において、前記RF電圧は時間に対して傾きの大きさが前記極値の前後において異なることを特徴とするイオン分離方法。
  12.  請求項9に記載のイオン分離方法であって、前記第1分離工程か前記第2分離工程のいずれか一つまたは両方において、前記RF電圧は時間に対する変化率の大きさが前記極値に近づくにつれて大きくなることを特徴とするイオン分離方法。
  13.  請求項9に記載のイオン分離方法であって、前記第1分離工程か前記第2分離工程のいずれか一つまたは両方において、前記RF電圧は時間に対する変化率の大きさが前記極値に近づくにつれて小さくなることを特徴とするイオン分離方法。
  14.  請求項1に記載のイオン分離方法であって、前記第1分離工程か前記第2分離工程のいずれか一つまたは両方において、前記RF電圧は時間に関して任意の区分的連続関数で表わされることを特徴とするイオン分離方法。
  15.  請求項14に記載のイオン分離方法であって、前記第1分離工程において、前記RF電圧は最大値を取り、前記最大値を取る時刻より前の時刻においては前記RF電圧が時間に対して取る曲線の不連続点以外の微分係数が常に正またはゼロであり、前記RF電圧が前記最大値を取る時刻より後の時刻においては前記RF電圧が時間に対して取る曲線の不連続点以外の微分係数が常に負またはゼロであり、前記第2分離工程において前記RF電圧は最小値を取り、前記最小値を取る時刻より前の時刻においては前記RF電圧が時間に対して取る曲線の不連続点以外の微分係数が常に負またはゼロであり前記RF電圧が前記最小値を取る時刻より後の時刻においては前記RF電圧が時間に対して取る曲線の不連続点以外の微分係数が常に正またはゼロであることを特徴とするイオン分離方法。
  16.  請求項14に記載のイオン分離方法であって、前記第1分離工程において、前記RF電圧は最大値を取り、前記RF電圧が前記最大値を取る時刻の前後で時間に対して直線であり、前記第2分離工程において前記RF電圧は最小値を取り、前記RF電圧が前記最小値を取る時刻の前後で時間に対して直線であることを特徴とするイオン分離方法。
  17.  請求項16に記載のイオン分離方法であって、  
    前記第1分離工程において、前記RF電圧は前記最大値を取る時刻の前後で時間に対して直線であり、前記最大値の前の前記直線の始点が、第1の不連続点でかつ前記第1の電圧よりも高くなっておりかつ前記第1の不連続点より時間的に前の部分は前記第1の電圧となっており、前記最大値の後の直線の終点は第2の不連続点で且つ前記第1の電圧よりも高くなっており、  
    前記第2分離工程において、前記RF電圧が前記最小値を取る時刻の前後で時間に対して直線であり、前記最小値の前の直線の始点が第3の不連続点となっておりかつ前記第1の電圧よりも低くなっておりかつ前記最小値の後の直線の終点が第4の不連続点となっており、前記第1の電圧よりも低くなっておりかつ前記第4の不連続点の時間的に後の部分は前記第1の電圧となっていることを特徴とするイオン分離方法。
  18.  請求項1に記載のイオン分離方法であって、前記導入工程の前に、それぞれ異なる予め決められた第1の時間と第2の時間との組を持つ複数のモードからいずれか一つを選ぶ工程を有することを特徴とするイオン分離方法。
  19.  試料をイオン化した複数のイオンを生成するイオン源部と、複数の電極を持つイオントラップと前記複数の電極に交流電場を印加する交流電源と前記交流電源を制御する制御器と、からなるイオントラップ部と、質量電荷比毎に前記複数のイオンを検出する検出部と、を有し、前記制御器は、前記交流電源を制御し、第1の電圧で前記RF電圧を前記複数の電極のうち少なくとも1つの電極に前記複数のイオンをトラップするように印加し、前記補助RF電圧を前記RF電圧が印加されている電極に印加しながら、前記RF電圧を前記第1の電圧よりも大きい電圧として第1の時間印加し、さらに前記RF電圧を前記第1の電圧よりも小さい電圧として前記第1の時間より大きい第2の時間印加してイオン分離することを特徴とする質量分析装置。
  20.  請求項19に記載の質量分析装置であって、さらに前記制御部と接続されたユーザーインターフェイス部を備え、前記ユーザーインターフェイス部は、予め決められた第1の時間と第2の時間との組を持つ複数のモードを表示することを特徴とする質量分析装置。
PCT/JP2010/072331 2010-03-24 2010-12-13 イオン分離方法および質量分析装置 WO2011118094A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012506774A JP5462935B2 (ja) 2010-03-24 2010-12-13 イオン分離方法および質量分析装置
US13/579,334 US20120305762A1 (en) 2010-03-24 2010-12-13 Ion isolation method and mass spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-067205 2010-03-24
JP2010067205 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118094A1 true WO2011118094A1 (ja) 2011-09-29

Family

ID=44672676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072331 WO2011118094A1 (ja) 2010-03-24 2010-12-13 イオン分離方法および質量分析装置

Country Status (3)

Country Link
US (1) US20120305762A1 (ja)
JP (1) JP5462935B2 (ja)
WO (1) WO2011118094A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038672A1 (ja) * 2012-09-10 2014-03-13 株式会社島津製作所 イオントラップにおけるイオン選択方法及びイオントラップ装置
JP7312914B2 (ja) 2019-12-17 2023-07-21 エフ. ホフマン-ラ ロシュ アーゲー 多重遷移監視のための方法および装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674299B2 (en) * 2009-02-19 2014-03-18 Hitachi High-Technologies Corporation Mass spectrometric system
GB2495036B (en) * 2010-07-07 2019-03-27 Thermo Fisher Scient Gmbh Kits for analyte mass spectrometry quantitation using a universal reporter
WO2013176901A1 (en) 2012-05-23 2013-11-28 President And Fellows Of Harvard College Mass spectrometry for multiplexed quantitation using multiple frequency notches
EP2909618B1 (en) 2012-10-22 2021-02-17 President and Fellows of Harvard College Accurate and interference-free multiplexed quantitative proteomics using mass spectrometry
US9111735B1 (en) * 2013-01-30 2015-08-18 Bruker Daltonik Gmbh Determination of elemental composition of substances from ultrahigh-resolved isotopic fine structure mass spectra
WO2014200987A2 (en) * 2013-06-10 2014-12-18 President And Fellows Of Harvard College Ms1 gas-phase enrichment using notched isolation waveforms
US9524860B1 (en) * 2015-09-25 2016-12-20 Thermo Finnigan Llc Systems and methods for multipole operation
WO2017210427A1 (en) 2016-06-03 2017-12-07 President And Fellows Of Harvard College Techniques for high throughput targeted proteomic analysis and related systems and methods
US10347477B2 (en) * 2017-03-24 2019-07-09 Thermo Finnigan Llc Methods and systems for quantitative mass analysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689696A (ja) * 1992-05-29 1994-03-29 Varian Assoc Inc イオン単離のための四重極トラップの改良方法
JP2006526876A (ja) * 2003-06-05 2006-11-24 シマヅ リサーチ ラボラトリー(ヨーロッパ)リミティド イオントラップ質量アナライザを使用して高精度の質量スペクトルを得る方法及びイオントラップ質量アナライザを使用した質量分析において化学シフトを判定及び/又は低減する方法
JP2008510290A (ja) * 2004-08-19 2008-04-03 サーモ フィニガン リミテッド ライアビリティ カンパニー 質量分析用四重極イオントラップにおけるイオン分離
JP2008130469A (ja) * 2006-11-24 2008-06-05 Hitachi High-Technologies Corp 質量分析装置及び質量分析方法
JP2009037819A (ja) * 2007-08-01 2009-02-19 Hitachi Ltd 質量分析計及び質量分析方法
WO2009030900A2 (en) * 2007-09-04 2009-03-12 Micromass Uk Limited Tandem ion trapping arrangement
JP2010032227A (ja) * 2008-07-25 2010-02-12 Hitachi High-Technologies Corp 質量分析装置および質量分析方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396064A (en) * 1994-01-11 1995-03-07 Varian Associates, Inc. Quadrupole trap ion isolation method
US6147348A (en) * 1997-04-11 2000-11-14 University Of Florida Method for performing a scan function on quadrupole ion trap mass spectrometers
JP4317083B2 (ja) * 2004-06-04 2009-08-19 株式会社日立ハイテクノロジーズ 質量分析方法及び質量分析システム
US20080194487A1 (en) * 2005-01-12 2008-08-14 Witten Mark L Treatment of Skin Diseases
GB0511386D0 (en) * 2005-06-03 2005-07-13 Shimadzu Res Lab Europe Ltd Method for introducing ions into an ion trap and an ion storage apparatus
US7372024B2 (en) * 2005-09-13 2008-05-13 Agilent Technologies, Inc. Two dimensional ion traps with improved ion isolation and method of use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689696A (ja) * 1992-05-29 1994-03-29 Varian Assoc Inc イオン単離のための四重極トラップの改良方法
JP2006526876A (ja) * 2003-06-05 2006-11-24 シマヅ リサーチ ラボラトリー(ヨーロッパ)リミティド イオントラップ質量アナライザを使用して高精度の質量スペクトルを得る方法及びイオントラップ質量アナライザを使用した質量分析において化学シフトを判定及び/又は低減する方法
JP2008510290A (ja) * 2004-08-19 2008-04-03 サーモ フィニガン リミテッド ライアビリティ カンパニー 質量分析用四重極イオントラップにおけるイオン分離
JP2008130469A (ja) * 2006-11-24 2008-06-05 Hitachi High-Technologies Corp 質量分析装置及び質量分析方法
JP2009037819A (ja) * 2007-08-01 2009-02-19 Hitachi Ltd 質量分析計及び質量分析方法
WO2009030900A2 (en) * 2007-09-04 2009-03-12 Micromass Uk Limited Tandem ion trapping arrangement
JP2010032227A (ja) * 2008-07-25 2010-02-12 Hitachi High-Technologies Corp 質量分析装置および質量分析方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038672A1 (ja) * 2012-09-10 2014-03-13 株式会社島津製作所 イオントラップにおけるイオン選択方法及びイオントラップ装置
JP5928597B2 (ja) * 2012-09-10 2016-06-01 株式会社島津製作所 イオントラップにおけるイオン選択方法及びイオントラップ装置
JP7312914B2 (ja) 2019-12-17 2023-07-21 エフ. ホフマン-ラ ロシュ アーゲー 多重遷移監視のための方法および装置

Also Published As

Publication number Publication date
JPWO2011118094A1 (ja) 2013-07-04
JP5462935B2 (ja) 2014-04-02
US20120305762A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5462935B2 (ja) イオン分離方法および質量分析装置
JP5541374B2 (ja) 飛行時間型質量分析装置及び飛行時間型質量分析装置におけるイオン分析方法
JP4894918B2 (ja) イオントラップ質量分析装置
JP4894916B2 (ja) イオントラップ質量分析装置
JP4745982B2 (ja) 質量分析方法
JP3989845B2 (ja) 質量分析の方法及び装置
JP4918846B2 (ja) 質量分析装置及び質量分析方法
JP4687787B2 (ja) 質量分析方法及び質量分析装置
JP5611475B2 (ja) 質量分析の方法および質量分析計
JP5158196B2 (ja) 質量分析装置
US8552365B2 (en) Ion population control in a mass spectrometer having mass-selective transfer optics
JP2005524211A (ja) 衝突エネルギーを変化させることによる質量分析における広いイオンフラグメント化範囲を得る方法
JP5771456B2 (ja) 質量分析方法
US7956322B2 (en) Mass spectrometer and mass spectrometric analysis method
CN107690690B (zh) 使用离子过滤的质量分析方法
WO2003088306A1 (en) Fragmentation of ions by resonant excitation in a low pressure ion trap
US20220384173A1 (en) Methods and Systems of Fourier Transform Mass Spectrometry
US11881388B2 (en) Fourier transform mass spectrometers and methods of analysis using the same
CN112640036A (zh) Rf离子阱离子加载方法
CN116686065A (zh) 使用带通过滤碰撞池对高强度离子束执行ms/ms以增强质谱稳健性的方法
JP2023506895A (ja) フーリエ変換四重極較正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13579334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012506774

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848486

Country of ref document: EP

Kind code of ref document: A1