WO2011115453A2 - 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법 - Google Patents

셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법 Download PDF

Info

Publication number
WO2011115453A2
WO2011115453A2 PCT/KR2011/001893 KR2011001893W WO2011115453A2 WO 2011115453 A2 WO2011115453 A2 WO 2011115453A2 KR 2011001893 W KR2011001893 W KR 2011001893W WO 2011115453 A2 WO2011115453 A2 WO 2011115453A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
porous
porous membrane
ultra
resistant
Prior art date
Application number
PCT/KR2011/001893
Other languages
English (en)
French (fr)
Other versions
WO2011115453A3 (ko
Inventor
서인용
조병광
정용식
김윤혜
김철현
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2011115453A2 publication Critical patent/WO2011115453A2/ko
Publication of WO2011115453A3 publication Critical patent/WO2011115453A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0207Elastomeric fibres
    • B32B2262/0215Thermoplastic elastomer fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0292Polyurethane fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an ultra-fine fibrous porous membrane having a shutdown function and a method for manufacturing the same, and in particular, a heat-resistant first porous membrane and a non-heat-resistant second porous membrane are laminated in a multi-layer structure so that heat is generated by local rapid ionic movement or the whole membrane is When the shutdown temperature is reached, the present invention relates to an ultra-fine fibrous porous membrane having a shutdown function capable of melting the portion or the entire non-heat-resistant second porous membrane to prevent the pores, and a method of manufacturing the same.
  • Secondary batteries including high energy density and high capacity lithium ion secondary batteries, lithium ion polymer batteries, and supercapacitors (electric double layer capacitors and similar capacitors) must have a relatively high operating temperature range and are continuously used in high rate charge / discharge conditions. When the temperature rises, the separator used in these batteries is required to have higher heat resistance and thermal stability than those required for ordinary separators. In addition, it should have excellent battery characteristics such as high ion conductivity that can cope with rapid charging and discharging and low temperature.
  • the separator is positioned between the anode and the cathode of the battery to insulate it, maintains the electrolyte to provide a path for ion conduction, and when the temperature of the battery becomes too high, a part of the separator melts to block pores in order to block the current.
  • the membrane should have a low shut-down temperature and a higher short-circuit temperature.
  • a contraction occurs at 150 ° C. or higher to expose an electrode part, which may cause a short circuit.
  • Lithium ion secondary batteries or gel polymer electrolyte membranes using polyolefin separators and liquid electrolytes, or conventional lithium ion polymer batteries using polymer electrolytes coated with polyolefin separators, are highly suitable for use in high energy density and high capacity batteries in terms of heat resistance. Lack. Therefore, the heat resistance required in high capacity, large area batteries such as automotive use does not satisfy the safety requirements.
  • Japanese Patent Laid-Open No. 2005-209570 discloses aromatic polyamides, polyimides, polyether sulfones, polyether ketones, polys having a melting point of 200 ° C. or higher in order to ensure sufficient safety at high energy density and size.
  • Heat-resistant resin solutions such as etherimide were coated on both sides of the polyolefin separator and immersed in a coagulating solution, washed with water and dried to give a polyolefin separator to which the heat-resistant resin was adhered.
  • a phase separator for imparting porosity is contained in the heat resistant resin solution and the heat resistant resin layer is also limited to 0.5-6.0 g / m 2 in order to reduce the decrease in ion conductivity.
  • the immersion in the heat resistant resin prevents the movement of lithium ions by blocking the pores of the polyolefin separation membrane, so that the charge and discharge characteristics are lowered.
  • the heat resistance is secured, the demand for large-capacity batteries such as automobiles falls far short.
  • the porosity of the commonly used polyolefin separator is about 40% and the pore size is also several tens of nm in size, so there is a limit in ion conductivity for large capacity batteries. .
  • polyamides having a melting point of 150 ° C. or higher are used for gel electrolytes of polymers such as polyethylene oxide, polypropylene oxide, polyether, and polyvinylidene. It is impregnated or apply
  • the required heat resistance may be satisfied, but in terms of ion conduction, ion transport in the support or the heat-resistant aromatic polymer layer is still limited similarly to the case of the separator or gel electrolyte of a conventional lithium ion battery.
  • International Publication No. WO 2001/89022 relates to a lithium secondary battery comprising a superfine fibrous porous polymer separator and a method for manufacturing the same, wherein the porous polymer separator melts one or more polymers or dissolves one or more polymers in an organic solvent.
  • injecting the molten polymer or polymer solution into a barrel of an electrospinning machine, and injecting the molten polymer or polymer solution through a nozzle onto a substrate Is disclosed to form a porous separator.
  • PVdF polyvinylidene fluoride
  • the porous polymer separator disclosed in WO 2001/89022 is prepared by preparing a polymer solution in which at least one polymer is dissolved in an organic solvent to a thickness of 50 ⁇ m by electrospinning, to manufacture a lithium secondary battery.
  • a porous polymer separator is inserted between the cathode and the anode to integrate the lamination, the content ratio of the heat resistant polymer and the swellable polymer has not been specifically described.
  • Korean Patent Laid-Open Publication No. 2006-60188 discloses a lithium polymer battery including a multilayer polymer membrane between a cathode and an anode, wherein the multilayer polymer membrane is formed of a high strength / high melting point polymer by electrospinning, and an electrolyte solution on both sides of the depth layer, respectively.
  • a three-layer separator consisting of an outer layer made of a high affinity and low melting point polymer.
  • Korean Patent Laid-Open Publication No. 2006-60188 is deeply electrospinning using only a high melting point polymer.
  • the spinning solution is prepared by electrospinning only the high melting point polymer, the volatilization of the solvent occurs very quickly. Therefore, in spinning equipment using a small number of spinning nozzles, volatilization of solvents too quickly does not have a significant effect on fiber formation, but a so-called multi-hole spinning pack using more than ten spinning nozzles is used.
  • a so-called multi-hole spinning pack using more than ten spinning nozzles is used.
  • the mass production equipment to be used if only a high melting point polymer is used alone, since a plurality of spinning needles are arranged, mutual interference occurs between the fibers to be emitted, and radiation problems as described above also occur.
  • the Korean Laid-Open Patent Publication No. 2006-60188 uses only a high melting point polymer as a deep layer and a low melting point polymer as an outer layer to sequentially electrospin to prepare a three-layered film, and then prepare a multilayer polymer film by hot air drying. Then, the multilayer polymer membrane prepared above is inserted between the cathode and the anode, and lamination is performed using a heating roll.
  • the high melting point polymer has a relatively high softening temperature
  • the pressure is difficult to be transferred to the deep layer and thus the membrane formation becomes difficult.
  • the outer layer of the low-melting polymer may be partially melted during the process to block pores.
  • Korean Patent Laid-Open No. 2008-13209 discloses a separator in which a fiber layer is coated on one or both surfaces of a porous membrane, wherein the fiber layer has a fibrous shape by electrospinning of a heat-resistant polymer material having a melting point of 180 ° C. or higher or no melting point. And a membrane having a heat resistant ultrafine fiber layer containing a fibrous form by electrospinning of a swellable polymer material in which swelling occurs in an electrolyte solution.
  • the porous membrane is used for the purpose of exhibiting a shutdown (shut-down) function to the polyolefin-based porous membrane (melting point of 100 ⁇ 180 °C), but by heating above the melting point of the porous membrane to express the shutdown of the porous membrane No test is done and only the shrinkage is measured to determine the shutdown function.
  • Korean Patent Laid-Open Publication No. 2008-13208 discloses a heat-resistant ultra-fine fibrous separator and a method for manufacturing the same, and a secondary battery using the same.
  • the heat-resistant ultra-fine fibrous separator is manufactured by an electrospinning method and has a melting point of 180 ° C. or higher or a melting point. It consists of ultra-fine fibers of heat-resistant polymer resin without or a micro-fine fiber of polymer resin capable of swelling in electrolyte together with the ultra-fine fibers of heat-resistant polymer resin.
  • the heat-resistant ultra-fine fibrous separator is a method of manufacturing a heat-resistant polymer material having a melting point of 180 ° C. or higher or no melting point, and electrospinning a solution containing a swellable polymer material that causes swelling in an electrolyte solution.
  • Mixed microfine fiber webs are formed, and the ultrafine fiber webs are thermocompressed (ie, laminated) in the range of 110 to 140 ° C.
  • Patent Publication No. 2008-13208 discloses polyethylene (PE), polypropylene (PP) and copolymers thereof having a melting point of 100-180 ° C. and a size of 0.05-5 ⁇ m in order to provide a shutdown function to a heat resistant ultra-fine fibrous separator.
  • Polyolefin-based microparticles comprising a 1 to 50g / m2 range for the separator.
  • the size of the microparticles in the Patent Publication No. 2008-13208 is larger than the pore size of the separation membrane, the pores are blocked to interfere with ion conduction, and therefore, the size of the fine particles should not be larger than the pore size of the heat resistant ultra-fine fibrous separator. If the particles are too large, it is considered that the electrospinning of the polymer solution in which the polyolefin particles are dispersed is difficult to form an ultrafine fibrous image.
  • PVdF polyvinylidene fluoride
  • the lamination temperature if the lamination temperature is too low, the web becomes too bulky and does not have rigidity. If the lamination temperature is too high, the web melts and the pores are blocked. In addition, thermocompression should be performed at a temperature that can completely volatilize the solvent (Solvent) remaining in the web, if too little volatilization may cause the web to melt.
  • solvent solvent
  • the heat resistant polymer material is more than 70% by weight, the content of the heat resistant polymer having relatively low elongation is excessively increased, resulting in poor workability in the manufacturing process including lamination.
  • Patent Publication No. 2008-13208 describes an embodiment in which a solution in which a heat-resistant polymer material and a swellable polymer material are mixed to form an ultra-fine fiber web by simple electrospinning, in this case, a fiber ( Solvent volatilization progresses rapidly during fiber formation, which leads to very fast drying of the fiber, making it possible to form fibers in 1-10 hole spinning packs, but more multi-hole spinning packs for mass production If you apply the fiber will not fly to capture. As a result, the separator obtained by using a multi-hole spinning pack becomes too bulky, making it difficult to form the separator, and acts as a trouble source of radiation.
  • the ultrafine fibrous web obtained by electrospinning may have weakened strength instead of increased pore instead of increasing pores, unless the pretreatment process adequately controls the amount of solvent and water remaining on the web surface before laminating. Alternatively, when the volatilization of the solvent is too slow, the web may melt during processing.
  • the production of ultra-fine fibrous membranes by spinning a mixture of a heat-resistant polymer material and a swellable polymer material may include mixing conditions of the heat-resistant polymer material and the swellable polymer material, lamination process temperature, temperature / humidity in the radiation chamber, and pretreatment. It is required to satisfy the demanding conditions as compared with the case where the process or the like spins only the swellable polymer material.
  • the heat resistant polymer material and the swellable polymer material are not well blended, and it is necessary to stir to prevent phase separation until the spinning starts and ends.
  • polyethylene PE
  • polypropylene PP
  • a melting point 100-180 ° C.
  • a size of 0.05-5 ⁇ m to give a shut down function to a heat resistant ultra-fine fibrous membrane. It is proposed to include polyolefin-based microparticles containing a copolymer or the like in the range of 1-50 g / m 2.
  • polyolefin-based microparticles such as polypropylene (PP) are added to a solution containing a mixture of a heat-resistant polymer material and a swellable polymer material, they may act as a cause of spinning trouble because they are not soluble in a solvent when electrospinning.
  • polyolefin-based fine particles are mixed in the form of fibers inside the fibers of the fibrous separation membrane, the polyolefin-based fine particles do not melt when the temperature rises, thereby causing no shutdown.
  • the present invention has been made in view of the problems of the prior art, the object of which is heat and non-heat resistance by the air electrospinning (AES) method of blowing the air auxiliary to the conventional general electrospinning process It is to provide a heat-resistant, high-strength ultra-fine fibrous porous membrane that provides a shutdown function to the heat-resistant high-strength separator by forming a high-strength ultra-fine fibrous porous membrane in a multi-layer structure, and a method of manufacturing the same.
  • AES air electrospinning
  • Another object of the present invention is to heat the non-heat-resistant second porous membrane of the portion when the heat-resistant first porous membrane and the non-heat-resistant second porous membrane are laminated in a multi-layer structure to generate heat due to local rapid ionic movement or to reach the shutdown temperature as a whole of the separator.
  • the present invention provides a heat-resistant / high strength ultra-fine fibrous porous membrane and a method for producing the same, which have a shutdown function capable of blocking the pores by melting and shutting down.
  • the ultra-fine fibrous porous membrane having a shutdown function the air-spinning (AES: Air-electrospinning a mixed solution of the heat-resistant polymer material and swellable polymer material having a melting point of more than 180 degrees)
  • a first porous membrane constituting a porous fibrous mixture of ultrafine fibrous images of a heat resistant polymer and a swellable polymer;
  • a third porous membrane laminated on top of the second porous membrane and made of the same material and structure as the first porous membrane AES: Air-electrospinning a mixed solution of the heat-resistant polymer material and swellable polymer material having a melting point of more than 180 degrees
  • a first porous membrane constituting a porous fibrous mixture of ultrafine fibrous images of a heat
  • the ultra-fine fibrous porous membrane having a shutdown function includes a first porous membrane made of ultra-fine fibers obtained by air electrospinning (AES) of a heat-resistant polymer material having a melting point of 180 degrees or more; A second porous membrane laminated on one surface of the first porous membrane and formed of an ultrafine fibrous form obtained by electrospinning a non-heat-resistant polymer material having a melting point of 150 degrees or less; And a third porous membrane laminated on top of the second porous membrane and made of the same material and structure as the first porous membrane.
  • AES air electrospinning
  • the first spinning solution is a mixture of a heat resistant polymer material having a melting point of 180 degrees or more and a swellable polymer material and a second heat resistant polymer material having a melting point of 150 degrees or less.
  • the step of spinning the first spinning solution on the second porous web to form a third porous web made of heat-resistant ultra-fine fibers mixed with a heat-resistant polymer and swellable polymer ultra-fine fibers It may include.
  • the method of manufacturing the porous separator of the present invention according to the second aspect of the present invention sequentially comprises a first spinning solution made of a heat resistant polymer material having a temperature of 180 degrees or more and a second spinning solution made of a non-heat resistant polymer material having a melting point of 150 degrees or less.
  • the present invention may further comprise the step of forming a third porous web made of ultra-fine fibers of the heat-resistant polymer by spinning the first spinning solution on the second porous web after the spinning of the second spinning solution.
  • the heat-resistant, high-strength ultra-fine fibrous porous membrane according to the present invention has a low heat shrinkage and a low heat resistance by forming a heat-resistant and non-heat-resistant high-strength ultra-fine fibrous porous membrane in a multilayer structure by sequential air electrospinning (AES).
  • AES sequential air electrospinning
  • the non-heat-resistant second porous portion of the corresponding portion or the entire membrane is It has a shutdown function that can melt the membrane to block the pores.
  • FIG. 1 is a schematic view showing an apparatus for manufacturing a porous separator of air electrospinning (AES) method according to the present invention
  • FIGS. 2 and 3 are cross-sectional views showing a porous separator according to an embodiment of the present invention
  • FIG. 6 to 9 show thickness ratios of the first sample 1 having the thickness ratio of the first to third porous membranes of Example 2 set to 2: 1: 2, and thickness ratios of the first to the third porous membranes of Example 2 of Example 2, respectively.
  • a second layer (2) set to 1: 3: 1 a third sample (3) consisting of a single layer separator made of a heat resistant polymer and a swellable polymer in Example 2, and a single layer made of only a non-heat resistant polymer in Example 2
  • the fourth sample 4 made of the separator is a photograph showing the results of comparative experiments of heat resistance and shutdown function while changing the heat treatment temperature.
  • FIGS. 2 and 3 are porous separators according to the first and second embodiments of the present invention, respectively. It is sectional drawing shown.
  • the porous separator 12 has a melting point of 100 to 150 ° C. so as to express a shutdown function with the heat resistant first porous membrane 12 a having a melting point exceeding 180 ° C.
  • the heat resistant first and third porous membranes 12a and 12c forming the porous separator 12 are manufactured by an air electrospinning (AES) method and are ultrafine fibrous by electrospinning of a heat resistant polymer material having a melting point of 180 ° C. or more. It comprises a fibrous form by air electrospinning of the swellable polymer material in which the swelling occurs in the over-electrolyte solution.
  • AES air electrospinning
  • the heat-resistant polymer material increases the heat resistance of the membrane
  • the fiber phase of the swellable polymer material increases the adhesion between the ultra-fine fibrous separator and the electrode, increases the electrolyte retention capacity of the ultra-fine fibrous separator, and also increases the ductility of the separator Do it.
  • the heat-resistant first and third porous membranes 12a and 12c forming the porous separator 12 are air electrospinning (AES) in a solution in which a heat-resistant polymer material having a melting point of 180 ° C. or more and a swellable polymer material is mixed to have heat resistance. It is produced by a laminating process after forming a porous web made of ultra-fine fibers using the method.
  • AES air electrospinning
  • the heat resistant porous membranes 12a and 12c consist of a porous fibrous mixture of a superfine fibrous phase of 50 to 70 wt% heat resistant polymer and 30 to 50 wt% swellable polymer.
  • the heat resistant polymer material for example, PAN or PES
  • the heat resistant polymer exceeds 70% by weight
  • the heat resistant polymer is less brittle than the swellable polymer, and thus, workability in the manufacturing process is inferior.
  • the heat-resistant polymer material contains less than 50% by weight, that is, the swellable polymer material (for example, polyvinylidene fluoride (PVdF)) in a ratio of more than 50% by weight in the lamination process for increasing the strength of the separator Melting of the separator occurs, which causes clogging of pores. Therefore, the swellable polymer material of the present invention is set to be included in the range of 30 to 50% by weight based on the entire polymer material contained in the spinning solution.
  • PVdF polyvinylidene fluoride
  • the heat resistant polymer usable in the present invention is a resin which can be dissolved in an organic solvent for electrospinning and has a melting point of more than 180 ° C., for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide , Aromatic polyesters such as poly (meth-phenylene isophthalamide), polysulfone, polyetherketone, polyethylene terephthalate, polytrimethylene telephthalate, polyethylene naphthalate, polytetrafluoroethylene, polydiphenoxyphospha Polyphosphazenes such as zen, poly ⁇ bis [2- (2-methoxyethoxy) phosphazene] ⁇ , polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butylates, cellulose acetates Propionate, polyester sulfone (PES), polyether imide (PEI) and the like can be used.
  • PAN
  • the swellable polymer resin usable in the present invention is a resin that swells in an electrolyte and can be formed into ultrafine fibers by electrospinning.
  • PVdF polyvinylidene fluoride
  • poly (vinylidene fluoride-co-hexa) Fluoropropylene) perfuluropolymer
  • poly (oxymethylene-oligo- Oxyethylene) polyoxides including polyethylene oxide and polypropylene oxide
  • polyvinylacetate poly (vinylpyrrolidone-vinylacetate)
  • polystyrene and polystyrene acrylonitrile copolymers polyacrylonitrile methyl methacrylate copolymers
  • Polyacrylic containing Casting reel can be given to the copolymer, polymethyl
  • the non-heat-resistant second porous membrane 12b forming the porous separator 12 is made of an ultra-fine fibrous form obtained by air electrospinning a non-heat-resistant polymer material having a melting point of less than 150 ° C to express a shutdown function.
  • the non-heat resistant polymer has a melting point of 150 ° C. or less, preferably 100 to 150 ° C., and is a fiber-forming polymer that can be manufactured in a fibrous form by air electrospinning except for a polyolefin-based polymer such as polyethylene or polypropylene. Whether thermoplastic or thermoset polymers. Therefore, the polymer that can be used in the present invention is not particularly limited except for the polyolefin-based polymer material.
  • Polymers usable for the non-heat resistant second porous membrane 12b include, for example, poly vinyl alcohol (PVA), poly vinyl pyrrolidone (PVP), polyvinylidene fluoride, poly (vinylidene fluoride-co-hexafluoro) Ropropylene), perfuluropolymer, polyvinylchloride or polyvinylidene chloride and copolymers thereof and polyethylene glycol derivatives including polyethylene glycol dialkyl ether and polyethylene glycol dialkyl ester, poly (oxymethylene-oligo-oxy Ethylene), polyoxides including polyethylene oxide and polypropylene oxide, polyvinylacetate, poly (vinylpyrrolidone-vinylacetate), polystyrene and polystyrene acrylonitrile copolymers, polyacrylonitrile methyl methacrylate copolymers Polyacrylonitrile copolymer containing, polymethyl methacrylate, polymeth Butyl methacrylate cop
  • the polymer material has a melting point different according to the molecular weight of the polymer, so that a polymer having a molecular weight of 150 ° C. or less can be adopted.
  • the porous separator 12 having the shutdown function of the present invention is required to have a structure in which the heat-resistant first porous membrane 12a is disposed on at least one side of both surfaces thereof.
  • the separator is included by maintaining the shape of the separator. The stability of the secondary battery can be achieved.
  • the ultra-fine fibrous porous membrane 12 having a three-layer structure in which the heat-resistant first porous membrane 12a, the non-heat-resistant second porous membrane 12b, and the heat-resistant third porous membrane 12c is laminated is constituted of a secondary battery. If an external short occurs during use, excessive current flows in the battery and heat is generated accordingly.
  • pores are generated in which a relatively rapid ion movement occurs in comparison with other portions, and thus, locally generated heat is generated in the pores.
  • the temperature of the corresponding portion rises in the range of 100 to 150 ° C. due to such local heating, the non-heat-resistant second porous membrane 12b is melted to shut down the pores.
  • the non-heat-resistant second porous membrane 12b is melted and shut down.
  • the porous membrane having the shutdown function according to the first feature is characterized in that the heat-resistant first porous membrane 12a, the non-heat-resistant second porous membrane 12b, and the heat-resistant third porous membrane 12c are formed by sequential air electrospinning (AES).
  • AES sequential air electrospinning
  • An ultra-fine fibrous porous membrane 12 having a laminated three-layer structure is manufactured.
  • a method of manufacturing a porous separator wherein a first spinning solution in which a heat resistant polymer material and a swellable polymer material are mixed and a second spinning solution made of a non-heat resistant polymer material are sequentially air-emitted (AES: Air- electrospinning) laminating a first porous web 7a made of heat resistant ultrafine fibers mixed with a heat resistant polymer and a swellable polymer ultrafine fibrous layer and a second porous web 7b made of an ultrafine fibrous image of a non-heat resistant polymer material;
  • the first spinning solution is spun onto the second porous web 7b to make the third porous web 7c made of heat-resistant ultra-fine fibers in which heat-resistant polymer and swellable polymer ultra-fine fibers are mixed.
  • It may further comprise a step, in this case a porous separator consisting of the heat-resistant first porous membrane 12a, the non-heat-resistant second porous membrane 12b and the heat-resistant third porous membrane 12c shown in FIG. (12) can be obtained.
  • an air spray electrospinning device shown in FIG. 1 is used.
  • the ultrafine fibers 5 are radiated to the collector 6 by applying a high voltage electrostatic force of 90 to 120 Kv between the spinneret 4 and the collector 6 on which the polymer solution is radiated.
  • a high voltage electrostatic force 90 to 120 Kv between the spinneret 4 and the collector 6 on which the polymer solution is radiated.
  • the spinning method catches the flying fibers 5 from being collected by the collector 6 by blowing the air 4a for each spinning nozzle 4. to be.
  • the air jet electrospinning apparatus of the present invention is heat-resistant to sequentially air-spin a second spinning solution including a heat-resistant polymer material and a swellable polymer material and a second spinning solution composed of a non-heat-resistant polymer material.
  • the first mixing is performed by a built-in stirrer (2) using a mixing motor (2a) using a pneumatic pressure as a drive source to prevent phase separation until the first spinning solution in which the polymer material and the swellable polymer material are mixed with the solvent is spinning
  • a stirring tank (1), a second stirring tank (1a) for supplying a second spinning solution made of a non-heat-resistant polymer material similar to the first stirring tank (1), and a spinning nozzle (4) connected to a high voltage generator Include.
  • the spinning nozzles 4 are arranged above the grounded collector 6 in the form of a conveyor moving at a constant speed, and are arranged in three rows at intervals along the traveling direction of the collector 6, each of which has a plurality of rows. It consists of a spinning nozzle.
  • the first stirring tank (1) is connected to the spinning nozzles (41, 43) of the first and third rows through a metering pump (not shown) and the transfer pipe (3), the second stirring tank (1a) of the second row It is connected to the radiation nozzle 42.
  • the polymer spinning solution discharged sequentially from the three rows of spinning nozzles 41-43 passes through the spinning nozzles 41-43 charged by the high voltage generator, and is discharged to the ultrafine fibers 5, respectively, and moves at a constant speed.
  • the ultrafine fibers are sequentially stacked on the grounded collector 6 in the form to form a multilayer porous web 7a-7c.
  • a multi-hole spinning pack is used in a multi-hole air-electrospinning (AES) method in which the air 4a is sprayed for each of the radiation nozzles 41-43 in each row.
  • AES air-electrospinning
  • FIG. 1 only one radiation nozzle 41-43 is shown in each column for convenience of illustration, but a multi-hole radiation pack includes a plurality of radiation nozzles 4 having 10 holes or more in each column. It is arrange
  • the air electrospinning apparatus includes first and second rows of spinning nozzles 41 and 42 disposed in parallel to be spaced apart in the advancing direction of the collector 6 so as to spin the first spinning solution and the second spinning solution, respectively.
  • a multi-hole spinning pack is used, and the first and second rows of spinning nozzles 41 and 42 are each spraying a plurality of spinning nozzles and air 4a in which spinning of the spinning solution occurs.
  • a plurality of air spray nozzles (not shown).
  • the air injection electrospinning apparatus of the present invention may simultaneously perform air injection from the multi-hole spinning pack nozzle when the spinning solution is spinning for each spinning nozzle of each row.
  • the electrospinning when the electrospinning is made by air electrospinning, the air is sprayed from the outer circumference of the spinning nozzle to play a role in collecting and integrating the fibers composed of the polymer having a high volatility, thereby increasing the rigidity. Separation membranes can be produced, and in the case of general electrospinning equipment, air injection is not performed around the spinning nozzles, thereby minimizing spinning troubles that can occur while flying fibers.
  • the air pressure of the air jet is set in the range of 0.1 to 0.6 MPa. In this case, when the air pressure is less than 0.1MPa, it does not contribute to the collection / accumulation, and when the air pressure exceeds 0.6MPa, the cone of the spinning nozzle is hardened to block the needle, causing radiation trouble.
  • the air pressure is preferably set to 0.25 MPa.
  • the first stirring tank 1 for mixing the heat resistant polymer material and the swellable polymer material with a solvent may have electrical insulation when high voltage radiation is made using, for example, plastic materials such as MC nylon and acetal. It is preferable to use an insulating material.
  • the electric motor since the electric motor may be destroyed by the high voltage in the stirrer 2 used for stirring the spinning solution, it is preferable to use the mixing motor 2a using pneumatic pressure as a driving source. In this case, the stirrer 2 may be set to 1 to 500 RPM.
  • a single solvent or a two-component mixed solvent in which a high boiling point solvent and a low boiling point solvent are mixed may be used.
  • the mixing ratio between the two-component mixed solvent and the entire polymeric material is preferably set to about 8: 2 by weight.
  • the pre-air dry section by the pre-heater 8 as described later after the spinning process (Pre-Air Dry) While passing through the zone) the process of controlling the amount of solvent and water remaining on the surfaces of the first to third porous webs 7a-7c may be performed.
  • a non-heat-resistant polymer material is added to a single solvent or a two-component mixed solvent to prepare a second spinning solution.
  • the temperature and humidity inside the spinning chamber are volatilized from the solvent from the fiber spun. If the proper condition is not set to determine the formation of fibers, it is determined whether the diameter of the fiber and the formation of beads.
  • the temperature and humidity inside the spinning chamber should be set identically. If the temperature and humidity conditions inside the spinning chamber are different, either one of the first row of spinning nozzles 41 and the second row of spinning nozzles 42 is not capable of spinning or the web produced by the subsequent process is the web of the previous process. The adhesion can be lowered and separated.
  • the spinning nozzle of the second row spinning the second spinning solution does not contain the heat-resistant polymer material described above, the spinning nozzle may be spun by an electrospinning method, and other spinning methods other than electrospray may be used.
  • the first embodiment shown in FIG. 2 is disposed above the collector 6.
  • the second layer is disposed on the upper side of the collector 6 as in the first embodiment.
  • the second and third porous webs 7b and 7c stacked in the form are formed.
  • the first porous web 7a is made of fibers in which the first spinning solution is spun from the first spinning nozzle 41, and the second porous web 7b is from the second spinning nozzle 42 in the second chamber.
  • the use solution is made of fibers spun, and the third porous web 7c is made of fibers from which the first spinning solution is spun from the third spinning nozzle 43.
  • the first to third porous webs 7a-7c are formed by spinning of ultrafine fibers having a diameter of 0.3 to 1.5 um from three rows of spinning nozzles 41-43, respectively, and from three rows of spinning nozzles 41-43. At the same time, the fibers are fused in a three-dimensional network structure to form ultra-fine fibers.
  • Each web is ultra thin and ultra-light, and has a high surface area to volume ratio and high porosity.
  • the first to third porous webs 7a-7c obtained as described above are solvents remaining on the surface of the first to third porous webs 7a-7c while passing through a line drying section by the preheater 8. After the process of adjusting the amount of water and the calendering (calendering) process using the heat pressing roll (9) is made.
  • the pre-heater section pre-heats the porous section by adjusting the amount of solvent and water remaining on the surface of the porous web 7 by applying air of 20-40 ° C. to the web using a fan. By preventing the web 7 from becoming bulky, the role of increasing the strength of the separator and porosity can be controlled.
  • the heat-rolling roller 9 is used. In this case, if the calendering temperature is too low, the web If this is too bulky, it will not have rigidity and if it is too high, the web will melt and the pores will be blocked.
  • thermocompression should be performed at a temperature that can completely volatilize the solvent remaining on the web, and if the volatilization is performed too little, the web will melt.
  • thermocompression bonding in order for the shrinkage to be stable at 150 ° C., which is the heat resistance temperature required by the secondary battery, it is preferable to perform thermocompression bonding at 150 ° C. or higher to secure the stability of the separator 12.
  • a second porous web 7b formed by spinning a non-heat-resistant polymer material having a melting point of 150 ° C. or less is inserted or the first porous web 7b is inserted.
  • the second porous web 7b is attached to one surface of the porous web 7a or the third porous web 7c.
  • This low melting point polymer material has a greater ability to hold a solvent such as a solvent contained in the spinning solution than the first porous web 7a and the third porous web 7c including a heat resistant polymer having a melting point of 180 ° C. or higher. It is possible to perform thermocompression bonding at a relatively low temperature, and when the thermocompression bonding is performed at a temperature of 150 ° C. or more, a problem may occur in that the second porous web 7b is melted.
  • the pre-dried first and second porous webs 7a and 7b are thermocompressed at a temperature between 100 and 140 ° C.
  • the heat-compression roller 9 is set to a temperature of 100 to 140 ° C. and a pressure of 40 kgf / cm 2 or less (excluding the self-weight pressure of the compression roller) to the first to third porous webs 7a-7c.
  • porous separator 12 having a three-layer structure including the heat resistant first porous membrane 12a and the non-heat resistant second porous membrane 12b is obtained.
  • the porous membrane 12 obtained through the calendering process may be obtained with a thickness of 10 ⁇ 50 ⁇ m.
  • the non-heat resistant second porous membrane 12b is set not to exceed 40% of the total thickness, and preferably is set in the range of 10-40% of the total thickness of the separator.
  • the non-heat-resistant second porous membrane 12b exceeds 40% of the total thickness, not only the strength of the separator decreases, but also excessive shrinkage at the shutdown temperature may cause a large shrinkage of the web, thereby deteriorating the stability of the battery. 2 If the porous membrane 12b is less than 10% of the total thickness, there is a problem that does not sufficiently close the pores when the shutdown temperature is reached.
  • the separator of the present invention when the pores of a specific portion of the separator reaches the shutdown temperature due to a short circuit of the battery, the non-heat-resistant second porous membrane 12b of the corresponding pores is melted to close the pores. As a result, the separator of the present invention has a shutdown function.
  • the separator 12 obtained after the above calendering process, if necessary, the process of removing residual solvent or water using a secondary hot air dryer 10 having a temperature of 100 ° C. and a wind speed of 20 m / sec. After roughing, it is wound around the winder 11 as a separator roll.
  • the average diameter of the fibers constituting the fibrous separator has a great influence on the porosity and pore size distribution of the membrane.
  • the smaller the fiber diameter the smaller the pore size and the smaller the pore size distribution.
  • the specific surface area of the fiber is increased, thereby increasing the electrolyte holding capacity, thereby reducing the possibility of electrolyte leakage.
  • the diameter of the fibers constituting the heat resistant ultrafine fibrous separator 12 obtained in accordance with the present invention is in the range of 0.3-1.5 ⁇ m.
  • the membrane thickness is 10 to 50 ⁇ m, preferably 10-30 ⁇ m.
  • the porosity of the separator ranges from 40 to 70%.
  • a porous separator includes: a first porous membrane made of ultra-fine fibers obtained by air electrospinning (AES) of a heat-resistant polymer material having a melting point of 180 ° C. or higher; A second porous membrane laminated on one surface of the first porous membrane and made of ultra-fine fibrous form obtained by air electrospinning a non-heat-resistant polymer material having a melting point of 150 ° C. or less; And a third porous membrane laminated on top of the second porous membrane and made of the same material and structure as the first porous membrane.
  • AES air electrospinning
  • porous separator sequentially air electrospins (AES) a first spinning solution made of a heat resistant polymer material having a temperature of 180 ° C. or higher and a second spinning solution made of a non-heat resistant polymer material having a melting point of 150 ° C. or lower.
  • AES air electrospins
  • the present invention further comprises the step of spinning the first spinning solution on the second porous web after the spinning of the second spinning solution to form a third porous web made of ultra-fine fibers of the heat-resistant polymer is made of a heat-resistant polymer It is possible to obtain a porous membrane having a three-layer structure in which a second porous web made of a non-heat-resistant polymer material is inserted between the first and third porous webs.
  • the heat-resistant and high-strength ultra-fine fibrous porous membrane of the present invention and its manufacturing method according to the second aspect of the present invention are first and third porous as compared to the porous membrane according to the first aspect and the preparation method thereof.
  • the polymeric materials forming the webs are different and thus differ in the spinning method and the remaining conditions are substantially the same or similar.
  • a heat resistant polymer and a swellable polymer are mixed to form the first and third porous webs, but in the porous membrane according to the second aspect and the method of manufacturing the same, a heat resistant polymer is used. It does not contain all of the swelling polymer and spins using only the heat resistant polymer.
  • porous polymer according to the second aspect and the heat resistant polymer material used in the method of manufacturing the same use the same polymer as the heat resistant polymer used when preparing the porous membrane according to the first aspect.
  • the non-heat-resistant polymer uses the same polymer as the non-heat-resistant polymer used when producing the porous separator according to the first feature described above.
  • the spinning method usable in the preparation of the porous separator according to the second aspect of the present invention includes, in addition to air electrospinning, electroblown spinning, centrifugal electrospinning, and flash-electrospinning. Etc. can be used.
  • a solvent usable in the preparation of the porous separator according to the second aspect of the present invention is dimethyl formamide (di-methylformamide, DMF), dimethyl acetamide (di-methylacetamide, DMAc), THF (tetrahydrofuran), acetone (Acetone) ), Alcohols (alcohols), chloroform (Chloroform), dimethyl sulfoxide (DMSO), dichloromethane (dichloromethane), acetic acid (acetic acid), formic acid (formic acid), NMP (N-Methylpyrrolidone), fluorine-based alcohols, and water
  • DMF dimethyl formamide
  • DMAc dimethyl acetamide
  • THF tetrahydrofuran
  • acetone Acetone
  • Alcohols alcohols
  • chloroform Chloroform
  • dichloromethane dichloromethane
  • acetic acid acetic acid
  • the solvent mixed with the polymer material may use a one-component solvent, but it is preferable to use a two-component solvent in which a boiling point (BP) is mixed with a high boiling point.
  • BP boiling point
  • the heat-resistant polymer and the non-heat-resistant polymer are mixed with a solvent to prepare a first and a second spinning solution, respectively, and are sequentially spun to form a laminated first microfiber.
  • the third to third porous web is formed and line drying is performed to control the solvent and water remaining on the surface of the porous web of the multilayer structure in the same manner as the porous separator according to the first feature.
  • the first to third porous webs of the multi-layer structure in which the pre-drying is performed are thermally compressed at a temperature between 100 to 150 ° C. to form a porous separator 12 or first to third composed of first and second porous membranes.
  • a porous separator 12 made of a porous membrane is obtained.
  • a non-heat-resistant second porous membrane is inserted between the heat-resistant first and third porous membranes, and thus has a heat resistance and strength required as a separator for a secondary battery and simultaneously shut down.
  • a heat resistant ultra-fine fibrous porous membrane having a function is obtained.
  • the separator of the present invention when the pores of a specific portion of the separator or the entire membrane reaches a shutdown temperature due to a short circuit of the battery, the non-heat-resistant second porous membrane of the corresponding pores is melted to close the pores. As a result, the separator of the present invention has a shutdown function.
  • the porous separator 12 according to the second aspect of the present invention may be obtained with a thickness of 10 to 50 ⁇ m in the same manner as the porous separator according to the first aspect.
  • Example 1 uses a first to third spinning nozzle in the air electrospinning (AES) -type porous separator manufacturing apparatus according to the present invention shown in Figure 1 to prepare a membrane of a three-layer structure.
  • AES air electrospinning
  • 5.5 g of polyacrylonitrile (PAN) and 5.5 g of polyvinylidene fluoride (PVdF) were prepared to prepare a first nanofiber web made of heat resistant nanofibers by air electrospinning in the first row of the winding direction.
  • 89 g of a solvent dimethylacetamide (DMAc) was added thereto, and stirred at 80 ° C. to prepare a first spinning solution composed of a heat resistant polymer and a swellable polymer.
  • DMAc solvent dimethylacetamide
  • the first spinning solution was composed of different phases from each other, phase separation could occur quickly, and the mixture was put into a stirring tank using a pneumatic motor, and the polymer solution was discharged at 17.5 ul / min / hole.
  • humidity 60% while maintaining the temperature of the spinning section 33 °C, humidity 60% while applying a 100KV voltage to the spin nozzle pack (Spin Nozzle Pack) using a high voltage generator while applying an air pressure of 0.25MPa to the nozzle of the spinning pack
  • a first nanofiber web was prepared by mixing PAN and PVdF by air electrospinning (AES).
  • PVdF polyvinylidene fluoride
  • TPU thermoplastic polyurethane
  • the second spinning solution was composed of different phases from each other, phase separation could occur quickly, and the second spinning solution was put into a stirring tank using a pneumatic motor, and the polymer solution was discharged at 17.5 ul / min / hole.
  • the temperature of the spinning section is 33 °C and the humidity is 60% while applying a 100KV voltage to the spin pack nozzle using a high voltage generator and applying a pressure of 0.25 MPa to the nozzle of the spinning pack.
  • a third nanofiber web made of heat-resistant nanofibers in which PAN and PVdF are mixed by air electrospinning (AES) in the third row is formed on the top of the second nanofiber web in the same manner as the first nanofiber web. Formed.
  • a first row of first nanofiber webs made of a heat resistant polymer and a swellable polymer, a second row of second nanofiber webs made of a non-heat resistant polymer, and a third row of third nanofiber webs made of a heat resistant polymer and a swellable polymer Were sequentially laminated at a thickness ratio of 2: 1: 2 to obtain a nanofiber web having a three-layer structure.
  • the run time (RT) is 5 minutes in a first-line drying section in which air at 30 ° C. is circulated at a speed of 30 m / sec in order to increase the strength, which is an important function of the two-layer structured nanofiber web prepared as a separator. Passing at / m to control the solvent and water remaining on the surface of the nanofiber web.
  • This controlled three-layer nanofiber web is transferred to a calendering equipment, and the solvent may remain after calendering using a heating / pressing roll with a temperature of 110 ° C. and a pressure of 20 kgf / cm 2.
  • the temperature is passed through a secondary hot air dryer having a temperature of 100 ° C. and a flow rate of 20 m / sec.
  • the three-layer structure separator thus obtained was wound on a winder.
  • the separator of Example 1 finally obtained had a thickness of 25 ⁇ m, an air permeability of 0.304 cfm, and a pore size of 0.2261 ⁇ m.
  • a separator having a size of 160mm ⁇ 160mm is placed between the upper and lower SUS plates in a hot plate and air permeability at 20 ° C intervals from 80 ° C to 200 ° C. , Shrinkage, and pore size were measured and shown in Table 1, and SEM photographs of the separators at 140 ° C. and 160 ° C. are shown in FIGS. 4 and 5.
  • the membrane of Example 1 has a slight change in air permeability and shrinkage after heat treatment at 120 °C, the pore size formed by the heat-resistant polymer did not change significantly compared to before the heat treatment.
  • the porous separator of the three-layer structure according to Example 1 when the porous separator of the three-layer structure according to Example 1 is heat-treated at 220 ° C., the front and rear surfaces corresponding to the first and third porous membranes containing the heat resistant polymer do not have any shape change. Since the second porous membrane made of the non-heat resistant polymer is interposed between the first and third porous membranes, it cannot be visually identified, but it is estimated that melting occurs entirely.
  • the separator of Example 1 has a heat resistance and high strength characteristics while having a shutdown function at a temperature set at the time of fabrication of the battery.
  • Example 2 the thickness ratio of the first sample 1 having the thickness ratio of the first to third porous membranes set to 2: 1: 2 in Example 1, and the thickness ratio of the first to the third porous membranes of Example 1 set to 1
  • the second sample (2) set to 3: 3 the third sample (3) consisting of a single-layer separator of the first porous membrane made of the heat resistant polymer and the swellable polymer in Example 1, and in Example 1 described above
  • a fourth sample (4) consisting of a single-layer separator of a second porous membrane made of only a non-heat resistant polymer (eg, TPU) was compared and tested at 25 ° C., 140 ° C., 180 ° C. and 220 ° C. for heat resistance and shutdown function.
  • a non-heat resistant polymer eg, TPU
  • the fourth sample (4) consisting of a single-layer separation membrane of the second porous membrane made of only a non-heat-resistant polymer (for example, TPU) is melted at a temperature of 140 to 200 °C, the present invention that contains the same It can be seen that the first sample 1 has a shutdown function as a separator.
  • a non-heat-resistant polymer for example, TPU
  • Dimethylacetamide was prepared by 5.5 g of polyacrylonitrile (PAN) and 5.5 g of polyvinylidene fluoride (PVdF) to prepare a membrane composed of heat-resistant nanofibers by air electrospinning (AES).
  • PAN polyacrylonitrile
  • PVdF polyvinylidene fluoride
  • AES air electrospinning
  • DMAc was added to 89 g and stirred at 80 ° C. to prepare a spinning solution composed of a heat resistant polymer and a swellable polymer.
  • the air remains at the surface of the ultra-fine fibrous web by passing a primary line drying section in which 30 ° C. air is circulated at a speed of 30 m / sec at a running time (RT) of 5 min / m. Solvent and moisture were adjusted.
  • the microfiber web thus adjusted is transferred to a calendering device and calendered using a heating / pressurizing roll at a temperature of 190 ° C. and a pressure of 20 kgf / cm 2 to remove any solvents or moisture that may remain.
  • the separator passed through the secondary hot air dryer having a wind speed of 20 m / sec was wound on a winder.
  • the tension of the separator obtained by calendering while changing the pressing temperature to 150 °C, 170 °C, 190 °C, 210 °C, 230 °C in order to find out the change of the physical properties of the separator according to the change of the pressing temperature during calendaring Various physical properties such as strength, elastic modulus, adhesive strength, average porosity and air permeability were measured.
  • Example 4 was prepared in the same manner as in Example 3 except that the spinning solution was prepared by changing the mixing ratio of PAN / PVdF to a weight ratio of 7: 3, and various physical properties of the obtained separator were measured and shown in Table 2 below. .
  • Comparative Example 1 was prepared in the same manner as in Example 3 except that the spinning solution was prepared by changing the mixing ratio of PAN / PVdF to a weight ratio of 7.5: 2.5, and various physical properties of the obtained separator were measured and shown in Table 2 below. .
  • Comparative Example 2 was prepared in the same manner as in Example 3 except that the spinning solution was prepared using only the heat-resistant polymer PAN without mixing the heat-resistant polymer and the swelling polymer, and measured various physical properties of the separator obtained in Table 2 below.
  • Example 3 Example 4 Comparative Example 1 Comparative Example 2 PVdF / PAN 50/50% by weight PVdF / PAN 30/70 wt% PVdF / PAN 25/75 wt% PAN100 wt% Compression temperature 150 °C 170 °C 190 °C 210 °C 230 °C 190 °C 190 °C 190 °C 190 °C Tensile Strength (Mpa) 23.60 23.90 21.40 26.90 27.70 23.60 17.20 19.20 Tensile Elongation (%) 16.80 9.40 6.00 12.00 6.20 16.80 14.60 13.30 Modulus of elasticity (MPa) 791.00 900.50 956.30 937.60 1118.70 791.00 538.10 719.90 Adhesive strength (cN / 25mm) 426.30 651.20 648.20 621.60 527.60 426.30 36.20 26.70 Weight (g / m2) 16.76 16.
  • the swellable polymer when contained at 70 wt% or more (preferably 50 wt% or more), when the calendar is performed at 180 ° C. or more, the web melts, and the electrolyte solution swells too much even in the electrolyte impregnation test. It was confirmed that the high temperature and low temperature charge and discharge characteristics of the battery deteriorated.
  • the thickness fraction of the second porous membrane is in the range of 10 to 40%, as in Example 5 of the present invention, when the shutdown temperature is reached, the pores are adequately blocked by partial melting of the second porous membrane, thereby providing a good shutdown function.
  • the shape deformation of the separator is not large, there is no particular problem in the stability of the battery.
  • the heat resistant ultra-fine fibrous separator according to the present invention has a calorific structure in which a heat-resistant first porous membrane and a non-heat-resistant second porous membrane are calendered in a multi-layered structure to generate heat due to local rapid ionic motion or to reach a shutdown temperature as a whole of the separator or the whole of the corresponding membrane. It can be seen that the non-heat-resistant second porous membrane has a shutdown function capable of melting the pores.
  • the present invention is a high-strength ultra-fine fibrous porous membrane heat-resistant and non-heat-resistant in a secondary battery including a lithium ion secondary battery, a lithium ion polymer battery, a super capacitor that requires high heat resistance and thermal stability, such as hybrid electric vehicles, electric vehicles and fuel cell vehicles
  • a secondary battery including a lithium ion secondary battery, a lithium ion polymer battery, a super capacitor that requires high heat resistance and thermal stability, such as hybrid electric vehicles, electric vehicles and fuel cell vehicles

Abstract

본 발명은 내열성 제1 다공성 막과 비내열성 제2 다공성 막이 다층 구조로 캘린더링되어 국부적인 기공으로 급격한 이온 운동으로 발열이 이루어지거나 분리막 전체적으로 셧다운 온도에 도달하는 경우 해당 부분 또는 전체의 비내열성 제2 다공성 막을 용융시켜서 셧다운(shutdown)시킴에 의해 해당 기공을 막을 수 있는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그의 제조방법에 관한 것이다. 본 발명의 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막은, 융점이 180℃ 이상인 내열성 고분자 물질과 팽윤성 고분자 물질의 혼합용액을 에어 전기방사(AES: Air-electrospinning)함에 의해 내열성 고분자와 팽윤성 고분자의 초극세 섬유상이 혼재된 다공성 섬유상을 이루는 제1 다공성 막; 및 상기 제1 다공성 막의 일면에 적층되며 융점이 150℃ 이하인 비내열성 고분자 물질을 에어 전기방사하여 얻어진 초극세 섬유상으로 이루어진 제2 다공성 막을 포함한다.

Description

셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법
본 발명은 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그의 제조방법에 관한 것으로, 특히 내열성 제1 다공성 막과 비내열성 제2 다공성 막이 다층 구조로 라미네이팅되어 국부적인 급격한 이온 운동으로 발열이 이루어지거나 분리막 전체가 셧다운 온도에 도달하는 경우 해당 부분 또는 전체의 비내열성 제2 다공성 막을 용융시켜서 해당 기공을 막을 수 있는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그의 제조방법에 관한 것이다.
전자제품의 디지털화와 고성능화 등으로 소비자의 요구가 바뀜에 따라 시장요구도 박형, 경량화와 고에너지 밀도에 의한 고용량을 지니는 전지의 개발로 흐름이 바뀌고 있는 상황이다. 또한, 미래의 에너지 및 환경 문제를 대처하기 위하여 하이브리드 전기 자동차나 전기 자동차, 및 연료전지 자동차의 개발이 활발히 진행되고 있는 바, 자동차 전원용으로 전지의 대형화가 요구되고 있다.
고에너지 밀도 및 대용량의 리튬이온 이차전지, 리튬이온 고분자전지, 슈퍼 커패시터(전기이중층 커패시터 및 유사 커패시터)를 포함하는 이차전지는 상대적으로 높은 작동온도범위를 지녀야 하며, 지속적으로 고율 충방전 상태로 사용될 때 온도가 상승되므로, 이들 전지에 사용되는 분리막은 보통의 분리막에서 요구되는 것보다도 높은 내열성과 열 안정성이 요구되고 있다. 또한, 급속 충방전 및 저온에 대응할 수 있는 높은 이온전도도 등 우수한 전지특성을 지녀야 한다.
분리막은 전지의 양극과 음극 사이에 위치하여 절연을 시키며, 전해액을 유지시켜 이온전도의 통로를 제공하며, 전지의 온도가 지나치게 높아지면 전류를 차단하기 위하여 분리막의 일부가 용융되어 기공을 막는 폐쇄기능을 갖고 있다.
온도가 더 올라가 분리막이 용융되면 큰 홀이 생겨 양극과 음극 사이에 단락이 발생된다. 이 온도를 단락온도(SHORT CIRCUIT TEMPERATURE)라 하는데, 일반적으로 분리막은 낮은 폐쇄(SHUTDOWN) 온도와 보다 높은 단락온도를 가져야 한다. 폴리에틸렌 분리막의 경우 전지의 이상 발열시 150℃ 이상에서 수축하여 전극 부위가 드러나게 되어 단락이 유발될 가능성이 있다.
그러므로, 고에너지 밀도화, 대형화 이차전지를 위하여 폐쇄기능과 내열성을 모두 갖는 것이 매우 중요하다. 즉, 내열성이 우수하여 열 수축이 작고, 높은 이온전도도에 따른 우수한 싸이클 성능을 갖는 분리막이 필요하다.
기존의 폴리올레핀 분리막과 액체전해액을 사용하는 리튬이온 이차전지나 겔 고분자전해질막이나 폴리올레핀 분리막에 겔 코팅한 고분자 전해질을 사용하는 기존의 리튬이온 고분자전지는 내열성 측면에서 고에너지 밀도 및 고용량 전지에 이용하기에는 매우 부족하다. 그러므로 자동차용과 같은 고용량, 대면적 전지에서 요구되는 내열성은 안전성 요구를 만족하지 못하고 있다.
이러한 문제를 해결하기 위하여, 일본 공개특허 2005-209570에서는 고에너지 밀도화 및 대형화시 충분한 안전성을 확보하기 위하여, 200℃ 이상의 용융점을 지닌 방향족 폴리아마이드, 폴리이미드, 폴리에테르 설폰, 폴리에테르 케톤, 폴리에테르이미드 등의 내열성 수지 용액을 폴리올레핀 분리막의 양면에 도포하고 이를 응고액에 침지, 수세, 건조하여 내열성 수지가 접착된 폴리올레핀 분리막을 제시하였다. 상기 공개특허에서는 이온전도도의 저하를 줄이기 위하여 다공성 부여를 위한 상분리제가 내열성 수지 용액에 함유되고 내열성 수지층도 0.5-6.0g/㎡로 제한하였다.
그러나, 내열성 수지에 침지하는 것은 폴리올레핀 분리막의 기공을 막아 리튬이온의 이동을 제한하므로 충방전 특성의 저하가 일어나게 되어 내열성을 확보하였다 하더라도 자동차용과 같은 대용량 전지의 요구에는 많이 못 미치고 있다. 또한, 내열성 수지의 침지로 인해 폴리올레핀 다공막의 기공구조가 막히지 않는다 하더라도, 보편적으로 사용되는 폴리올레핀 분리막의 기공도는 40% 정도이고 기공크기 또한 수십 nm 크기이므로 대용량 전지를 위한 이온전도도에 한계가 있다.
일본공개특허 2001-222988 및 2006-59717에서는 융점이 150℃ 이상인 폴리아라미드, 폴리이미드의 직포, 부직포, 천, 다공성 필름 등에 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리에테르, 폴리비닐리덴 같은 고분자의 겔 전해질에 함침하거나 도포하여 내열성 전해질막을 제조하고 있다. 그러나, 이 경우도 요구되는 내열성은 만족할지 모르지만, 이온전도 측면에서는 지지체나 내열성 방향족 고분자 층에서의 이온이동은 기존의 리튬이온 전지의 분리막이나 겔 전해질의 경우와 비슷하게 여전히 제한을 받고 있다.
한편, 국제공개 WO 2001/89022호에는 초극세 섬유상의 다공성 고분자 분리막을 포함하는 리튬이차전지 및 그 제조방법에 관한 것으로서, 다공성 고분자 분리막이 하나 이상의 고분자를 용융시키거나 또는 하나 이상의 고분자를 유기 용매에 용해시켜 용융 고분자 또는 고분자 용액을 얻는 단계, 용융 고분자 또는 고분자 용액을 전하유도 방사장치(electrospinning machine)의 배럴(barrel)에 투입하는 단계, 및 용융 고분자 또는 고분자 용액을 기판 상에 노즐을 통하여 전하유도 방사시켜 다공성 분리막을 형성시키는 단계를 포함하는 방법이 개시되어 있다.
만약, 상기 국제공개 WO 2001/89022호에서는 다공성 고분자 분리막이 셀룰로오스 아세테이트와 같은 내열성 고분자만을 전기 방사(electrospinning)하거나, 또는 내열성 고분자와 팽윤성 고분자인 폴리비닐리덴플루오라이드(PVdF)를 혼합하여 전기 방사하는 경우, 내열성 고분자의 특성상 섬유(fiber) 형성시 용매의 휘발이 매우 신속하게 진행되어 섬유의 건조가 매우 빠르게 발생하므로 1~10홀(hole) 방사팩에서는 섬유 형성이 가능하나, 대량생산을 위해 그 이상의 멀티-홀(multi-hole) 방사팩을 적용하면 섬유가 날려 다니면서 포집이 이루어지지 않게 된다. 그 결과, 멀티-홀(multi-hole) 방사팩을 사용하여 얻어지는 분리막은 너무 밀착성이 떨어져 벌키(bulky)해짐에 따라 분리막 형성이 어려워지며, 방사의 트러블(trouble)의 원인으로 작용하기도 한다.
또한, 상기 국제공개 WO 2001/89022호에 제시된 다공성 고분자 분리막은 하나 이상의 고분자를 유기 용매에 용해시킨 고분자 용액을 전하 방사(electrospinning)에 의해 50㎛ 두께로 제조한 후, 리튬이차전지를 제조하기 위하여 음극과 양극 사이에 다공성 고분자 분리막을 삽입하여 라미네이션으로 일체화시키고 있으나, 내열성 고분자와 팽윤성 고분자의 함량 비율에 대하여는 구체적으로 제시하고 있지 못하고 있다.
한국 공개특허 제2006-60188호에는 음극과 양극 사이에 다층형 고분자막을 포함하는 리튬 고분자 전지로서, 다층형 고분자막이 전기방사에 의해 고강도/고융점 고분자로 이루어진 심층과, 심층의 양측면에 각각 전해액과 친화성이 높고 저융점 고분자로 이루어진 외층으로 구성된 3층 구조의 분리막을 개시하고 있다.
상기 한국 공개특허 제2006-60188호는 심층으로 고융점 고분자만을 사용하여 전기방사하고 있다. 일반적으로 고융점 고분자만으로 방사용액을 준비하여 전기방사하는 경우 용매의 휘발이 매우 빠르게 이루어진다. 따라서, 소수의 방사노즐을 사용하는 방사장비에서는 용매가 지나치게 빨리 휘발하는 것이 섬유형성에 큰 영향을 미치지 않으나, 10개 이상의 다수의 방사노즐을 사용하는 소위 멀티-홀(multi-hole) 방사팩을 사용하는 양산설비에 있어서는 고융점 고분자만을 단독으로 사용하면, 방사 니들이 다수 배치되어 있으므로 방사되는 섬유 사이에 상호 간섭이 발생하면서 역시 상술한 바와 같은 방사 트러블이 발생한다.
또한, 상기 한국 공개특허 제2006-60188호는 심층으로 고융점 고분자만을 사용하고 외층으로 저융점 고분자를 사용하여 순차적으로 전기방사하여 3층 구조의 막을 제조한 후, 열풍 건조하여 다층형 고분자막을 준비하고, 음극과 양극 사이에 상기 제조된 다층형 고분자 막을 삽입하고 가열 롤을 이용하여 라미네이션을 진행하고 있다.
그러나, 이와 같이 3층 구조의 막을 제조한 후, 라미네이션 공정을 거치지 않고 열풍 건조만 하여 다층형 고분자막을 준비하는 경우, 벌키(bulky)한 상태인 다층형 고분자막은 와인더를 이용한 고분자막의 권선이 불가능하여 양산공정에는 적용이 불가능한 기술이다.
더욱이, 고융점 고분자는 연화점(softening temperature)이 상대적으로 높기 때문에 심층의 외부에 저융점 고분자로 이루어진 외층이 적층된 3층 구조의 다층막을 캘린더링 하는 경우, 가압력이 심층으로까지 전달되기 어려워 멤브레인화가 균일하게 이루어지지 못한다. 즉, 외층을 이루는 저융점 고분자에 적합한 캘린더링 온도에서 캘린더링을 할 경우 심층은 멤브레인화가 낮게 되어 벌키(bulky)한 상태를 완전히 해소하는 것이 곤란한 경우가 발생하게 되고, 심층의 멤브레인화를 도모하기 위하여 캘린더링 온도를 상승시키는 경우 공정 수행 중에 저융점 고분자의 외층이 부분적으로 용융되어 기공이 막힐 염려가 있다.
또한, 한국 공개특허 제2008-13209호에는 다공막의 일면 또는 양면에 섬유층이 코팅된 분리막으로서, 상기 섬유층은, 융점이 180℃ 이상이거나 융점이 없는 내열성 고분자 물질의 전기방사(electrospinning)에 의한 섬유상과, 전해액에 팽윤이 일어나는 팽윤성 고분자 물질의 전기방사에 의한 섬유상을 포함하는 내열성 초극세 섬유층을 지닌 분리막이 제안되어 있다.
여기서, 상기 다공막은 폴리올레핀계 다공막(융점 100~180℃)으로 셧다운(shut-down) 기능을 발휘하기 위한 목적으로 사용하고 있으나, 다공막의 융점 이상으로 가열하여 다공막의 셧다운을 발현하는 시험이 이루어지지 않고 단지 수축률만을 측정하여 셧다운 기능을 판단하고 있다.
이러한 한국 공개특허 제2008-13209호는 중심부가 기존에 분리막으로 사용하던 폴리올레핀계 다공막을 사용한 것이므로, 전기방사 방법에 의해 얻어지는 다공성 웹의 우수한 물성들을 다층 구조의 모든 층이 가질 수 없다는 한계가 있다.
또한, 한국 공개특허 제2008-13208호에는 내열성 초극세 섬유상 분리막 및 그 제조 방법과, 이를 이용한 이차전지가 개시되어 있으며, 내열성 초극세 섬유상 분리막은 전기방사 방법에 의해 제조되며, 융점이 180℃ 이상이거나 융점이 없는 내열성 고분자 수지의 초극세 섬유로 이루어지거나, 혹은 내열성 고분자 수지의 초극세 섬유와 함께 전해액에 팽윤이 가능한 고분자 수지의 초극세 섬유상으로 이루어져 있다.
상기 내열성 초극세 섬유상 분리막의 제조 방법은 융점이 180℃ 이상이거나 융점이 없는 내열성 고분자 물질과, 전해액에 팽윤이 일어나는 팽윤성 고분자 물질을 혼합한 용액을 전기방사하여, 내열성 고분자 초극세 섬유상과 팽윤성 고분자 초극세 섬유상이 혼재된 초극세 섬유 웹을 형성하고, 초극세 섬유 웹을 110~140℃ 범위에서 열 압착(즉, 라미네이팅)하고 있다.
또한, 상기 공개특허 제2008-13208호에는 내열성 초극세 섬유상 분리막에 셧다운 기능 부여를 위하여 융점이 100-180℃, 크기 0.05-5㎛인 폴리에틸렌(PE), 폴레프로필렌(PP) 및 이들의 공중합체 등을 포함하는 폴리올레핀계 미세입자를 분리막에 대해 1-50g/㎡ 범위로 포함하고 있다.
이 경우, 상기 공개특허 제2008-13208호에서 미세입자의 크기는 분리막의 기공 크기보다 클 경우에는 기공이 막히게 되어 이온전도를 방해하게 되므로 내열성 초극세 섬유상 분리막의 기공 크기보다 크지 않아야 하며, 또한, 폴리올레핀 입자가 너무 크면, 폴리올레핀 입자가 분산된 고분자 용액의 전기방사가 어려워 초극세 섬유상을 형성하기가 어려워지는 점을 고려하고 있다.
그러나, 상기 공개특허 제2008-13208호에서 제안하고 있는 바와 같이, 내열성 고분자 물질과 팽윤성 고분자 물질을 혼합한 용액을 전기 방사할 때, 예를 들어, 팽윤성 고분자 물질인 폴리비닐리덴플루오라이드(PVdF)가 50중량% 초과의 비율로 함유되는 경우 분리막의 강도 증가를 위한 190℃ 라미네이션 공정시에 분리막이 녹는 현상이 발생하여 기공이 막히는 문제가 발생한다.
즉, 라미네이션(Lamination) 온도가 너무 낮으면 웹(web)이 너무 벌키(Bulky)해져서 강성을 갖지 못하고 너무 높으면 웹이 녹아 기공(Pore)이 막히게 된다. 또한, 웹에 잔존해 있는 용매(Solvent)를 완전히 휘발할 수 있는 온도에서 열압착이 이루어져야 하며, 너무 적게 휘발시키게 되면 웹이 녹는 현상이 발생할 수 있다.
또한, 내열성 고분자 물질이 70중량%를 초과하게 되는 경우 연신율이 상대적으로 떨어지는 내열성 고분자의 함량이 지나치게 많아져 라미네이션을 포함하는 제조과정에서의 작업성이 떨어지는 문제가 발생하게 된다.
더욱이, 상기 공개특허 제2008-13208호에는 실시예 설명에서 내열성 고분자 물질과 팽윤성 고분자 물질을 혼합한 용액을 단순 전기방사로 초극세 섬유 웹을 형성하는 것으로 기재하고 있으나, 이 경우 내열성 고분자의 특성상 섬유(fiber) 형성시 용매 휘발이 빠르게 진행되어 섬유의 건조가 매우 빠르게 발생하여 1~10홀(hole) 방사팩에서는 섬유 형성이 가능하나, 대량생산을 위해 그 이상의 멀티-홀(multi-hole) 방사팩을 적용하면 섬유가 날려 다니면서 포집이 이루어지지 않게 된다. 그 결과, 멀티-홀(multi-hole) 방사팩을 사용하여 얻어지는 분리막은 너무 벌키(bulky)해짐에 따라 분리막 형성이 어려워지며, 방사의 트러블(trouble) 원인으로 작용한다.
또한, 내열성 고분자 물질과 팽윤성 고분자 물질을 혼합한 용액을 전기 방사하는 경우 방사실 내부의 온도/습도가 고분자 물질에 따라 용매 휘발에 큰 영향을 미치게 되어 섬유 형성이 이루어지지 못하는 문제가 발생할 수 있으나, 이러한 문제와 관련하여 상기 공개특허 제2008-13208호에서는 언급이 없다.
더욱이, 전기 방사에 의해 얻어지는 초극세 섬유 웹은 라미네이팅이 이루어지기 전에 웹 표면에 잔존해 있는 용매와 수분의 양을 적절하게 조절하는 전처리 공정을 거치지 않는 경우 기공이 증가하는 대신에 웹의 강도가 약해지거나 또는 용매의 휘발이 너무 느리게 이루어지는 경우 가공 중에 웹이 녹는 현상이 발생할 수 있게 된다.
또한, 내열성 고분자 물질과 팽윤성 고분자 물질을 혼합한 용액을 방사하여 초극세 섬유상 분리막을 제조하는 것은 내열성 고분자 물질과 팽윤성 고분자 물질의 혼합조건, 라미네이션(Lamination) 공정온도, 방사실 내부의 온도/습도, 전처리공정 등이 팽윤성 고분자 물질만을 방사하는 경우에 비하여 까다로운 조건을 만족하는 것이 요구된다.
일반적으로 내열성 고분자 물질과 팽윤성 고분자 물질은 혼합(blending)이 잘 이루어지지 않으며, 방사가 시작되어 종료될 때 까지 상분리를 방지하도록 교반해주는 것이 필요하다.
한편, 상기 공개특허 제2008-13208호에서는 내열성 초극세 섬유상 분리막에 폐쇄기능(SHUTDOWN FUNCTION) 부여를 위하여 융점이 100-180℃, 크기 0.05-5㎛인 폴리에틸렌(PE), 폴레프로필렌(PP) 및 이들의 공중합체 등을 포함하는 폴리올레핀계 미세입자를 1-50g/㎡ 범위로 포함하는 것을 제안하고 있다.
그러나, 폴레프로필렌(PP)과 같은 폴리올레핀계 미세입자를 내열성 고분자 물질과 팽윤성 고분자 물질을 혼합한 용액에 첨가하여 전기 방사할 때 용매에 잘 녹지 않기 때문에 방사 트러블(trouble)의 원인으로 작용할 수 있으며, 또한 폴리올레핀계 미세입자는 섬유상 분리막의 섬유 내부에 입자상으로 혼입되어 있기 때문에 온도가 상승할 때 녹지 못하여 셧다운이 일어나지 않는 문제가 있다.
따라서, 본 발명은 이러한 종래기술의 문제점을 감안하여 안출된 것으로, 그 목적은 종래 일반적인 전기방사공정에 보조적으로 에어를 블로우잉하는 에어 전기방사(AES: Air-electrospinning)방법에 의해 내열성 및 비 내열성 고강도 초극세 섬유상 다공성 막을 다층 구조로 형성함에 의해 내열성 고강도 분리막에 셧다운 기능을 부여한 내열성, 고강도 초극세 섬유상 다공성 분리막 및 그의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 내열성 제1 다공성 막과 비내열성 제2 다공성 막이 다층 구조로 라미네이팅되어 국부적인 급격한 이온 운동으로 발열이 이루어지거나 분리막 전체적으로 셧다운 온도에 도달하는 경우 해당 부분의 비내열성 제2 다공성 막을 용융시켜서 셧다운(showndown)시킴에 의해 해당 기공을 막을 수 있는 셧다운 기능을 갖는 내열성/고강도 초극세 섬유상 다공성 분리막 및 그의 제조방법을 제공하는 데 있다.
상기 목적들을 달성하기 위하여, 본 발명의 제1 특징에 따른 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막은, 융점이 180도 이상인 내열성 고분자 물질과 팽윤성 고분자 물질의 혼합용액을 에어 전기방사(AES: Air-electrospinning)함에 의해 내열성 고분자와 팽윤성 고분자의 초극세 섬유상이 혼재된 다공성 섬유상을 이루는 제1 다공성 막; 상기 제1 다공성 막의 일면에 적층되며 융점이 150도 이하인 비내열성 고분자 물질을 에어 전기방사하여 얻어진 초극세 섬유상으로 이루어진 제2 다공성 막; 및 상기 제2 다공성 막의 상부에 적층되며 상기 제1 다공성 막과 동일한 재료와 구조로 이루어진 제3 다공성 막을 포함하는 것을 특징으로 한다.
본 발명의 제2 특징에 따른 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막은, 융점이 180도 이상인 내열성 고분자 물질의 에어 전기방사(AES)에 의해 얻어진 초극세 섬유로 이루어진 제1 다공성 막; 상기 제1 다공성 막의 일면에 적층되며 융점이 150도 이하인 비내열성 고분자 물질을 전기방사하여 얻어진 초극세 섬유상으로 이루어진 제2 다공성 막; 및 상기 제2 다공성 막의 상부에 적층되며 상기 제1 다공성 막과 동일한 재료와 구조로 이루어진 제3 다공성 막을 포함하는 것을 특징으로 한다.
본 발명의 제1 특징에 따른 본 발명의 다공성 분리막의 제조방법은 융점이 180도 이상인 내열성 고분자 물질과 팽윤성 고분자 물질이 혼합된 제1 방사용액과 융점이 150도 이하인 비내열성 고분자 물질로 이루어진 제2 방사용액을 순차적으로 에어 전기방사(AES)하여 내열성 고분자와 팽윤성 고분자 초극세 섬유상이 혼재된 내열성 초극세 섬유로 이루어진 제1 다공성 웹과 비내열성 고분자 물질의 초극세 섬유상으로 이루어진 제2 다공성 웹을 적층 형성하는 단계와, 상기 적층된 제1 및 제2 다공성 웹을 100~140℃ 사이의 온도에서 열 압착하여 다공성 분리막을 얻는 단계를 포함하는 것을 특징으로 한다.
또한, 본 발명에서는 상기 제2 방사용액의 방사 후에 제2 다공성 웹 위에 제1 방사용액을 방사하여 내열성 고분자와 팽윤성 고분자 초극세 섬유상이 혼재된 내열성 초극세 섬유로 이루어진 제3 다공성 웹을 형성하는 단계를 더 포함할 수 있다.
더욱이, 본 발명의 제2 특징에 따른 본 발명의 다공성 분리막의 제조방법은 180도 이상인 내열성 고분자 물질로 이루어진 제1 방사용액과 융점이 150도 이하인 비내열성 고분자 물질로 이루어진 제2 방사용액을 순차적으로 에어 전기방사(AES)하여 내열성 고분자의 초극세 섬유로 이루어진 제1 다공성 웹과 비내열성 고분자 물질의 초극세 섬유상으로 이루어진 제2 다공성 웹을 적층 형성하는 단계와, 상기 적층된 제1 및 제2 다공성 웹을 100~140℃ 사이의 온도에서 열 압착하여 다공성 분리막을 얻는 단계를 포함하는 것을 특징으로 한다.
또한, 본 발명에서는 상기 제2 방사용액의 방사 후에 제2 다공성 웹 위에 제1 방사용액을 방사하여 내열성 고분자의 초극세 섬유로 이루어진 제3 다공성 웹을 형성하는 단계를 더 포함할 수 있다.
상기한 바와 같이, 본 발명에 따른 내열성, 고강도 초극세 섬유상 다공성 분리막은 순차적인 에어 전기 방사(AES)에 의해 내열성 및 비 내열성 고강도 초극세 섬유상 다공성 막을 다층 구조로 형성함에 의해 열 수축이 작고 내열성을 지녀 이차전지 구성시 안전성이 높은 이차전지를 구현함과 동시에 셧다운 기능을 부여할 수 있다.
또한, 본 발명에서는 내열성 제1 다공성 막과 비내열성 제2 다공성 막이 다층 구조로 라미네이팅되어 국부적인 급격한 이온 운동으로 발열이 이루어지거나 분리막 전체적으로 셧다운 온도에 도달하는 경우 해당 부분 또는 전체의 비내열성 제2 다공성 막을 용융시켜서 해당 기공을 막을 수 있는 셧다운 기능을 갖는다.
도 1은 본 발명에 따른 에어 전기방사(AES) 방식의 다공성 분리막 제조장치를 개략적으로 나타낸 구성도,
도 2 및 도 3은 본 발명의 실시예에 따른 다공성 분리막을 나타낸 단면도,
도 4 및 도 5은 각각 본 발명의 실시예 1에 따른 3층 구조의 다공성 분리막의 열처리 온도에 따른 이미지를 확대한 SEM 사진,
도 6내지 도 9는 각각 실시예 2에서 제1 내지 제3 다공성 막의 두께 비율을 2:1:2로 설정한 제1 샘플(1), 실시예 2에서 제1 내지 제3 다공성 막의 두께 비율을 1:3:1로 설정한 제2 샘플(2), 실시예 2에서 내열성 고분자와 팽윤성 고분자로 이루어진 단일층 분리막으로 이루어진 제3 샘플(3), 및 실시예 2에서 비내열성 고분자만으로 이루어진 단일층 분리막으로 이루어진 제4 샘플(4)을, 열처리 온도를 변경하면서 내열성 및 셧다운 기능을 비교 실험한 결과를 나타낸 사진이다.
이하에서, 첨부된 도면을 참조하여 본 발명에 따른 셧다운 기능을 갖는 내열성 및 고강도 초극세 섬유상 다공성 분리막을 더욱 상세하게 설명한다.
첨부된 도 1은 본 발명에 따른 에어 전기방사(AES) 방식의 다공성 분리막 제조장치를 개략적으로 나타낸 구성도, 도 2 및 도 3은 각각 본 발명의 제1 및 제2 실시예에 따른 다공성 분리막을 나타낸 단면도이다.
[분리막 구조]
먼저, 도 2 및 도 3에 도시된 바와 같이, 본 발명에 따른 다공성 분리막(12)은 융점이 180℃를 초과하는 내열성 제1 다공성 막(12a)과 셧다운 기능을 발현하도록 융점이 100~150℃ 사이인 비내열성 제2 다공성 막(12b)이 적층된 2층 구조 또는 내열성 제1 다공성 막(12a), 비내열성 제2 다공성 막(12b) 및 내열성 제3 다공성 막(12c)이 적층된 3층 구조를 갖는다.
상기 다공성 분리막(12)을 형성하는 내열성 제1 및 제3 다공성 막(12a,12c)은 에어 전기방사(AES) 방법에 의해 제조되며, 융점이 180℃ 이상인 내열성 고분자 물질의 전기방사에 의한 초극세 섬유상과 전해액에 팽윤이 일어나는 팽윤성 고분자 물질의 에어 전기방사에 의한 섬유상을 포함하여 이루어진다. 여기서, 내열성 고분자 물질은 분리막의 내열성을 높여주며, 팽윤성 고분자 물질의 섬유상은 초극세 섬유상 분리막과 전극과의 접착력을 증대시키고, 초극세 섬유상 분리막의 전해액 보액능력을 증대시키며, 또한 분리막의 연성을 높여주는 역할을 한다.
상기 다공성 분리막(12)을 형성하는 내열성 제1 및 제3 다공성 막(12a,12c)은 내열성을 갖도록 180℃ 이상의 융점을 갖는 내열성 고분자 물질과 팽윤성 고분자 물질을 혼합한 용액을 에어 전기방사(AES) 방법을 이용하여 초극세 섬유로 이루어진 다공성 웹을 형성한 후 라미네이팅 공정에 의해 제조된다. 이 경우, 내열성 다공성 막(12a,12c)은 50~70중량% 내열성 고분자와 30~50중량%의 팽윤성 고분자의 초극세 섬유상이 혼재된 다공성 섬유상으로 이루어지는 것이 바람직하다.
상기 내열성 고분자 물질(예를 들어, PAN 또는 PES)이 70중량%를 초과하게 되면 내열성 고분자가 팽윤성 고분자에 비해 상대적으로 취성이 크기 때문에 제조공정에서의 작업성이 떨어지게 된다.
또한, 내열성 고분자 물질이 50중량% 미만, 즉 팽윤성 고분자 물질(예를 들어, 폴리비닐리덴플루오라이드(PVdF))이 50중량% 초과의 비율로 함유되는 경우 분리막의 강도 증가를 위한 라미네이션 공정시에 분리막이 녹는 현상이 발생하여 기공이 막히는 문제가 발생한다. 따라서, 본 발명의 팽윤성 고분자 물질은 방사용액에 포함된 고분자 물질 전체에 대하여 30~50중량% 범위로 포함되도록 설정된다.
본 발명에서 사용 가능한 내열성 고분자는 전기방사를 위해 유기용매에 용해될 수 있고 융점이 180℃를 초과하는 수지로서, 예를 들어, 폴리아크릴로니트릴(PAN), 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리{비스[2-(2-메톡시에톡시)포스파젠]} 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 폴리에스테르설폰(PES), 폴리에테르 이미드(PEI) 등을 사용할 수 있다.
본 발명에 사용 가능한 팽윤성 고분자 수지는 전해액에 팽윤이 일어나는 수지로서 전기 방사법에 의하여 초극세 섬유로 형성 가능한 것으로, 예를 들어, 폴리비닐리덴 플루오라이드(PVdF), 폴리(비닐리덴플루오라이드-코-헥사플루오로프로필렌), 퍼풀루오로폴리머, 폴리비닐클로라이드 또는 폴리비닐리덴 클로라이드 및 이들의 공중합체 및 폴리에틸렌글리콜 디알킬에테르 및 폴리에틸렌글리콜 디알킬에스터를 포함하는 폴리에틸렌글리콜 유도체, 폴리(옥시메틸렌-올리 고-옥시에틸렌), 폴리에틸렌옥사이드 및 폴리프로필렌옥사이드를 포함하는 폴리옥사이드, 폴리비닐아세테이트, 폴리(비닐피롤리돈-비닐아세테이트), 폴리스티렌 및 폴리스티렌 아크릴로니트릴 공중합체, 폴리아크릴로니트릴 메틸메타크릴레이트 공중합체를 포함하는 폴리아크릴로니트릴 공중합체, 폴리메틸메타크릴레이트, 폴리메틸메타크릴레이트 공중합체 및 이들의 혼합물을 들 수 있다.
상기 다공성 분리막(12)을 형성하는 비내열성 제2 다공성 막(12b)은 셧다운 기능을 발현하도록 융점이 150℃ 미만인 비내열성 고분자 물질을 에어 전기방사하여 얻어진 초극세 섬유상으로 이루어진다.
상기 비내열성 고분자는 융점이 150℃이하, 바람직하게는 100~150℃ 범위 내의 융점을 가지며, 에어 전기방사에 의해 섬유상으로 제조가 가능한 섬유 성형성 고분자라면 폴리에틸렌 또는 폴리프로필렌과 같은 폴리올레핀계를 제외하고 열가소성 또는 열경화성 고분자를 불문한다. 따라서 본 발명에서 사용 가능한 고분자는 폴리올레핀계를 제외하면 특별히 고분자 물질이 제한되지 않는다.
비내열성 제2 다공성 막(12b)에 사용 가능한 고분자로는 예를 들면, PVA(poly vinyl alcohol), PVP(poly vinyl pyrrolidone), 폴리비닐리덴 플루오라이드, 폴리(비닐리덴플루오라이드-코-헥사플루오로프로필렌), 퍼풀루오로폴리머, 폴리비닐클로라이드 또는 폴리비닐리덴 클로라이드 및 이들의 공중합체 및 폴리에틸렌글리콜 디알킬에테르 및 폴리에틸렌글리콜 디알킬에스터를 포함하는 폴리에틸렌글리콜 유도체, 폴리(옥시메틸렌-올리 고-옥시에틸렌), 폴리에틸렌옥사이드 및 폴리프로필렌옥사이드를 포함하는 폴리옥사이드, 폴리비닐아세테이트, 폴리(비닐피롤리돈-비닐아세테이트), 폴리스티렌 및 폴리스티렌 아크릴로니트릴 공중합체, 폴리아크릴로니트릴 메틸메타크릴레이트 공중합체를 포함하는 폴리아크릴로니트릴 공중합체, 폴리메틸메타크릴레이트, 폴리메틸메타크릴레이트 공중합체, 열가소성 폴리우레탄(TPU: thermoplastic polyurethane) 및 이들의 혼합물을 들 수 있다.
또한, 일반적으로 고분자 재료는 고분자의 분자량에 따라 융점이 상이하므로 융점이 150℃이하인 분자량을 갖는 고분자를 채택할 수 있다.
본 발명의 셧다운 기능을 갖는 다공성 분리막(12)은 양면 중 적어도 하나의 면에는 내열성 제1 다공성 막(12a)이 외측에 배치된 구조를 갖는 것이 요구된다. 이러한 구조를 갖는 경우 온도가 상승하여 일측의 비내열성 제2 다공성 막(12b)이 수축될지라도 타측의 내열성 제1 다공성 막(12a)이 변형되는 것을 방지하여 분리막의 형상을 유지함에 의해 분리막을 포함하는 2차 전지의 안정성을 도모할 수 있게 된다.
상기한 내열성 제1 다공성 막(12a), 비내열성 제2 다공성 막(12b) 및 내열성 제3 다공성 막(12c)이 적층된 3층 구조를 갖는 초극세 섬유상 다공성 분리막(12)은 2차 전지를 구성하여 사용할 때 외부 단락이 발생하면 전지 내에 과도한 전류가 흐르게 되며 이에 따라 열이 발생된다.
이 경우, 분리막에서는 국부적으로 다른 부분과 비교하여 상대적으로 급격한 이온 운동이 발생하는 기공이 발생하고, 따라서 이 기공 부분에 국부적인 발열이 이루어지게 된다. 이러한 국부적인 발열로 인하여 해당 부분의 온도가 100~150℃ 범위로 상승하면 비내열성 제2 다공성 막(12b)이 용융되어 해당 기공을 셧다운(showndown)시키게 된다.
또한, 주변 환경의 영향으로 분리막을 포함한 2차 전지 전체가 설정된 온도에 도달하는 경우에도 비내열성 제2 다공성 막(12b)이 용융되어 셧다운(showndown)시키게 된다.
[제1 특징에 따른 다공성 분리막 제조]
제1 특징에 따른 셧다운 기능을 갖는 다공성 분리막은 순차적인 에어 전기방사(AES)에 의해 내열성 제1 다공성 막(12a), 비내열성 제2 다공성 막(12b) 및 내열성 제3 다공성 막(12c)이 적층된 3층 구조를 갖는 초극세 섬유상 다공성 분리막(12)이 제조된다.
본 발명의 제1특징에 따른 다공성 분리막의 제조방법은 내열성 고분자 물질과 팽윤성 고분자 물질이 혼합된 제1 방사용액과 비내열성 고분자 물질로 이루어진 제2 방사용액을 순차적으로 에어 전기방사(AES: Air-electrospinning)하여 내열성 고분자와 팽윤성 고분자 초극세 섬유상이 혼재된 내열성 초극세 섬유로 이루어진 제1 다공성 웹(7a)과 비내열성 고분자 물질의 초극세 섬유상으로 이루어진 제2 다공성 웹(7b)을 적층 형성하는 단계와, 상기 적층된 제1 및 제2 다공성 웹(7a,7b)의 표면에 잔존하는 용매와 수분을 조절하는 선 건조 단계와, 상기 선 건조된 제1 및 제2 다공성 웹(7a,7b)을 100~140℃ 사이의 온도에서 열 압착하는 단계를 통하여, 도 2에 도시된 내열성 다공성 막(12a)과 비내열성 다공성 막(12b)으로 이루어진 다공성 분리막(12)을 얻는다.
또한, 본 발명에서는 상기 제2 방사용액의 방사 후에 제2 다공성 웹(7b) 위에 제1 방사용액을 방사하여 내열성 고분자와 팽윤성 고분자 초극세 섬유상이 혼재된 내열성 초극세 섬유로 이루어진 제3 다공성 웹(7c)을 형성하는 단계를 더 포함함할 수 있으며, 이 경우 도 3에 도시된 내열성 제1 다공성 막(12a), 비내열성 제2 다공성 막(12b) 및 내열성 제3 다공성 막(12c)으로 이루어진 다공성 분리막(12)을 얻을 수 있다.
본 발명에서는 다공성 분리막(12)을 제조할 때 도 1에 나타낸 에어분사 전기방사장치를 사용한다.
본 발명의 에어 전기방사(AES) 방법은 고분자 용액이 방사되는 방사노즐(4)과 콜렉터(6) 사이에 90~120Kv의 고전압 정전기력을 인가함에 의해 콜렉터(6)에 초극세 섬유(5)가 방사되어 초극세 섬유 다공성 웹(7)을 형성하며, 이 경우 각 방사노즐(4)마다 에어(4a)를 분사함에 의해 방사된 섬유(5)가 콜렉터(6)에 포집되지 못하고 날리는 것을 잡아주는 방사방법이다.
도 1을 참고하면, 본 발명의 에어 분사 전기방사장치는 내열성 고분자 물질과 팽윤성 고분자 물질이 혼합된 제1 방사용액과 비내열성 고분자 물질로 이루어진 제2 방사용액을 순차적으로 에어 전기방사할 수 있도록 내열성 고분자 물질과 팽윤성 고분자 물질이 용매와 혼합된 제1 방사용액이 방사가 이루어질 때까지 상분리를 방지하도록 공압을 이용한 믹싱 모터(2a)를 구동원으로 사용하는 교반기(2)를 내장하고 믹싱이 이루어지는 제1 교반탱크(1)와, 상기 제1 교반탱크(1)와 유사하게 비내열성 고분자 물질로 이루어진 제2 방사용액을 공급하는 제2 교반탱크(1a)와, 고전압 발생기가 연결된 방사노즐(4)을 포함한다.
상기 방사노즐(4)은 일정 속도로 이동하는 컨베이어 형태의 접지된 콜렉터(6)의 상측에 배치되며, 콜렉터(6)의 진행방향을 따라 간격을 두고 3열로 배치되어 있고, 각 열마다 다수의 방사노즐로 이루어져 있다.
상기 제1 교반탱크(1)는 도시되지 않은 정량 펌프와 이송관(3)을 통하여 제1 및 제3 열의 방사노즐(41,43)에 연결되며, 제2 교반탱크(1a)는 제2 열의 방사노즐(42)에 연결되어 있다.
3 열의 방사노즐(41-43)로부터 순차적으로 토출되는 고분자 방사용액은 고전압 발생기에 의하여 하전된 방사노즐(41-43)을 통과하면서 각각 초극세 섬유(5)로 방출되어, 일정 속도로 이동하는 컨베이어 형태의 접지된 콜렉터(6) 위에 초극세 섬유가 순차적으로 적층되어 다층의 다공성 웹(7a-7c)이 형성된다.
이 경우, 내열성 고분자가 포함되거나 또는 내열성 고분자로만 이루어진 방사용액을 방사하는 경우 팽윤성 고분자 물질과 다르게 내열성 고분자의 특성상 섬유(fiber) 형성시 용매 휘발이 빠르게 진행되어 섬유의 건조가 매우 빠르게 발생하게 된다.
따라서, 상기 공개특허 제2008-13208호에서 언급한 바와 같은 통상적인 전기방사(Electrospinning) 방법을 사용하면, 1~10홀(hole) 방사팩에서는 섬유 형성이 가능하나, 대량생산을 위해 10홀 이상의 방사노즐을 갖는 멀티-홀(multi-hole) 방사팩을 적용하면 멀티-홀간의 상호 간섭이 발생하여 섬유가 날려 다니면서 포집이 이루어지지 않게 된다. 그 결과, 멀티-홀(multi-hole) 방사팩을 사용하여 전기방사(Electrospinning) 방법으로 얻어지는 분리막은 너무 벌키(bulky)해짐에 따라 분리막 형성이 어려워지며, 방사의 트러블(trouble) 원인으로 작용한다.
이를 고려하여 본 발명에서는 멀티-홀(multi-hole) 방사팩을 사용하면서 각 열의 방사노즐(41-43)마다 에어(4a)의 분사가 이루어지는 에어 전기방사(AES: Air-electrospinning) 방법으로 다층의 다공성 웹(7a-7c)을 형성한다. 또한 도 1에는 도시의 편의상 각 열마다 단지 1개의 방사노즐(41-43)이 표시되어 있으나, 멀티-홀(multi-hole) 방사팩에는 10홀 이상의 다수의 방사노즐(4)이 각 열마다 콜렉터(6)의 진행방향에 직각방향으로 배치되어 있다.
상기 에어 전기방사는 제1 방사용액과 제2 방사용액을 각각 방사하기 위하여 콜렉터(6)의 진행방향으로 간격을 두고 평행하게 배치된 제1 및 제2 열의 방사노즐(41,42)을 구비하는 멀티-홀(multi-hole) 방사팩을 사용하여 이루어지며, 상기 제1 및 제2 열의 방사노즐(41,42)은 각각 방사용액의 방사가 이루어지는 다수의 방사노즐과 에어(4a)를 분사하기 위한 다수의 에어분사노즐(도시되지 않음)을 포함한다.
이에 따라 본 발명의 에어 분사 전기방사장치는 상기 각 열의 방사노즐마다 방사용액의 방사가 이루어질 때 멀티-홀 방사팩 노즐로부터 에어 분사가 동시에 이루어질 수 있다.
즉, 본 발명에서는 에어 전기방사에 의해 전기방사가 이루어질 때 방사노즐의 외주로부터 에어(Air) 분사가 이루어져서 휘발성이 빠른 고분자로 이루어진 섬유를 에어가 포집하고 집적시키는 데 역할을 해 줌으로써 보다 강성이 높은 분리막을 생산할 수 있으며, 일반적인 전기방사 장비의 경우에 방사노즐 주변에 에어(Air) 분사가 이루어지지 않아 섬유(fiber)가 날아다니면서 발생할 수 있는 방사 트러블(trouble)을 최소화 할 수 있게 된다.
본 발명에서 사용하는 멀티-홀 방사팩 노즐은 에어 분사의 에어압이 0.1~0.6MPa 범위로 설정된다. 이 경우 에어압이 0.1MPa 미만인 경우 포집/집적에 기여를 하지 못하며, 0.6MPa를 초과하는 경우 방사노즐의 콘을 굳게 하여 니들을 막는 현상이 발생하여 방사 트러블이 발생한다.
특히, 내열성 고분자 물질과 팽윤성 고분자 물질로서 PAN과 PVdF를 혼합하여 사용하는 경우 에어압은 0.25MPa로 설정되는 것이 바람직하다.
상기 내열성 고분자 물질과 팽윤성 고분자 물질은 용매와 혼합되어 제1방사용액을 형성할 때 방사가 시작되어 종료될 때 까지 상분리를 방지하도록 교반해주는 것이 필요하다. 따라서, 내열성 고분자 물질과 팽윤성 고분자 물질을 용매와 혼합하는 제1 교반탱크(1)는 예를 들어, MC 나일론, 아세탈과 같은 플라스틱류의 재료를 사용하여 고전압 방사가 이루어질 때 전기 절연이 이루어질 수 있는 절연재를 사용하는 것이 바람직하다. 또한, 방사용액의 교반을 위해 사용되는 교반기(2)는 고전압에 의해 전기 모터는 파괴될 수 있으므로 공압을 이용한 믹싱 모터(2a)를 구동원으로 사용하는 것이 바람직하다. 이 경우, 교반기(2)는 1~500RPM으로 설정될 수 있다.
본 발명에서는 방사용액을 준비할 때 내열성 고분자 물질과 팽윤성 고분자 물질의 혼합 고분자인 경우, 단일 용매 또는 고비등점 용매와 저비등점 용매를 혼합한 2성분계 혼합용매를 사용할 수 있다. 이 경우, 2성분계 혼합용매와 전체 고분자 물질 사이의 혼합비율은 중량비로 약 8:2로 설정되는 것이 바람직하다.
본 발명에서는 단일 용매를 사용할 때는 고분자의 종류에 따라 용매의 휘발이 잘 이루어지지 못하는 경우가 있다는 것을 고려하여 방사공정 이후에 후술하는 바와 같이 프리히터(8)에 의한 선 건조구간(Pre-Air Dry Zone)을 통과하면서 제1 내지 제3 다공성 웹(7a-7c)의 표면에 잔존해 있는 용매와 수분의 양을 조절하는 공정을 거칠 수 있다.
또한, 본 발명에서는 제2 다공성 웹(7b)을 형성하기 위하여 비내열성 고분자 물질을 단일 용매 또는 2 성분계 혼합용매에 첨가하여 제2 방사용액을 준비한다.
한편, 상기와 같이 제1 및 제2 방사용액을 준비한 후 멀티-홀 노즐팩을 사용하여 에어 전기방사(AES) 방법으로 방사를 진행할 때 방사실 내부의 온도 및 습도는 방사되는 섬유로부터 용매의 휘발에 지대한 영향을 주게 되어 적정한 조건이 설정되지 못하는 경우 섬유형성 여부를 결정하게 되며, 또한 섬유의 직경과 비드의 형성 여부가 결정된다.
상기 제1 및 제2 방사용액은 3열의 방사노즐(41-43)을 통하여 순차적으로 연속적으로 방사할 때 방사실 내부의 온도 및 습도는 동일하게 설정되어야 한다. 만약 방사실 내부의 온도 및 습도 조건이 상이한 경우 제1열의 방사노즐(41)과 제2열의 방사노즐(42) 중 어느 하나는 방사가 불가능하거나 후속 공정에 따라 생성된 웹이 전 공정의 웹과 밀착성이 낮아져서 분리될 수 있다.
상기 제1 및 제2 방사용액을 방사하는 경우 고분자 물질에 따라 상이하나 온도 허용범위: 30~40℃, 습도 허용범위: 40~70%로 설정된다.
상기와 같이, 내열성 고분자 물질과 팽윤성 고분자 물질을 용매와 혼합한 제1 방사용액 및 비내열성 고분자 물질을 용매와 혼합한 제2 방사용액을 에어 전기방사하는 경우 방사실 내부의 온도, 습도가 고분자 물질에 따라 용매 휘발에 큰 영향을 미치게 되어 섬유 형성이 이루어지지 못하는 문제가 발생할 수 있다.
상기와 같이 제1 및 제2 방사용액을 준비한 후 3열의 방사노즐(41-43)이 배치된 멀티-홀 노즐팩을 사용하여 에어 전기방사(AES) 방법으로 방사를 진행하면 3열의 방사노즐(41-43)로부터 방사가 이루어지면서 일정 속도로 이동하는 컨베이어 형태의 접지된 콜렉터(6)의 상측에는 도 3에 도시된 3층으로 적층된 제1 내지 제3 다공성 웹(7a-7c)이 형성된다.
상기 제2 방사용액을 방사하는 제2 열의 방사노즐은 상기한 내열성 고분자 물질을 포함하고 있지 않으므로 전기방사 방법으로 방사하는 것이 가능하며 물론 일렉트로 스프레이를 제외한 다른 방사방법도 사용 가능하다.
또한, 상기 3열의 방사노즐(41-43)이 배치된 멀티-홀 노즐팩에서 마지막 열의 방사노즐(43)을 제외하고 방사하는 경우 콜렉터(6)의 상측에는 도 2에 도시된 제1실시예와 같은 2층으로 적층된 제1 및 제2 다공성 웹(7a,7b)이 형성된다.
더욱이, 상기 3열의 방사노즐(41-43)이 배치된 멀티-홀 노즐팩에서 첫 번째 열의 방사노즐(41)을 제외하고 방사하는 경우 콜렉터(6)의 상측에는 제1실시예와 같은 2층으로 적층된 제2 및 제3 다공성 웹(7b,7c)이 형성된다.
이 때, 제1 다공성 웹(7a)은 제1방사노즐(41)로부터 제1 방사용액이 방사된 섬유로 이루어진 것이고, 제2 다공성 웹(7b)은 제2방사노즐(42)로부터 제2 방사용액이 방사된 섬유로 이루어진 것이며, 제3 다공성 웹(7c)은 제3 방사노즐(43)로부터 제1 방사용액이 방사된 섬유로 이루어진 것이다.
상기 제1 내지 제3 다공성 웹(7a-7c)은 각각 3열의 방사노즐(41-43)로부터 0.3~1.5um 직경의 초극세 섬유의 방사에 의해 형성된 것으로, 3열의 방사노즐(41-43)로부터 섬유의 생성과 동시에 3차원의 네트워크 구조로 융착되어 초극세 섬유로 이루어진 것으로, 각 웹은 초박막, 초경량으로서, 부피 대비 표면적 비가 높고, 높은 기공도를 가진다.
상기와 같이 얻어진 제1 내지 제3 다공성 웹(7a-7c)은 이후 프리히터(8)에 의한 선 건조구간을 통과하면서 제1 내지 제3 다공성 웹(7a-7c)의 표면에 잔존해 있는 용매와 수분의 양을 조절하는 공정을 거친 후 가열 압착롤(9)을 이용한 캘린더링(calendering) 공정이 이루어진다.
프리히터(8)에 의한 선 건조구간은 20~40℃의 에어를 팬(fan)을 이용하여 웹에 인가하여 다공성 웹(7)의 표면에 잔존해 있는 용매와 수분의 양을 조절함에 의해 다공성 웹(7)이 벌키(bulky)해지는 것을 방지하여 분리막의 강도를 증가시켜주는 역할과 동시에 다공성(Porosity)을 조절할 수 있게 된다.
이 경우, 용매의 휘발이 지나치게 많이 된 상태에서 캘린더링이 이루어지면 다공성은 증가하나 웹의 강도가 약해지고, 반대로 용매의 휘발이 적게 되면 웹이 녹는 현상이 발생하게 된다.
상기한 선 건조공정에 후속된 제1 내지 제3 다공성 웹(7a-7c)의 캘린더링 공정에서는 가열 압착롤러(9)를 사용하여 진행되며, 이 경우 캘린더링 온도가 너무 낮으면 웹(web)이 너무 벌키(Bulky)해져서 강성을 갖지 못하고 너무 높으면 웹이 녹아 기공이 막히게 된다.
또한, 웹에 잔존해 있는 용매를 완전히 휘발할 수 있는 온도에서 열압착이 이루어져야 하며, 너무 적게 휘발시키게 되면 웹이 녹는 현상이 발생하게 된다.
일반적으로 2차 전지에서 요구하는 내열온도인 150℃에서 수축이 안정적이기 위해서는 150℃ 이상에서 열압착을 실시하여 분리막(12)의 안정성을 확보하는 것이 바람직하다.
그러나, 본 발명에서는 제1 다공성 웹(7a)과 제3 다공성 웹(7c) 사이에 150℃ 이하의 융점을 갖는 비내열성 고분자 물질을 방사하여 이루어진 제2 다공성 웹(7b)이 삽입되거나 또는 제1 다공성 웹(7a) 또는 제3 다공성 웹(7c)의 일면에 제2 다공성 웹(7b)이 부착되어 있다.
이러한 저 융점의 고분자 물질은 180℃ 이상의 융점을 갖는 내열성 고분자를 포함하는 제1 다공성 웹(7a)과 제3 다공성 웹(7c) 보다 방사용액에 포함된 솔벤트와 같은 용매를 보유하는 능력이 크기 때문에 상대적으로 낮은 온도에서 열압착을 실시하는 것이 가능하며, 또한 150℃ 이상의 온도에서 열압착을 실시하는 경우 제2 다공성 웹(7b)이 녹는 문제가 발생될 수 있다.
더욱이, 3층 구조인 경우 제1 다공성 웹(7a)과 제3 다공성 웹(7c) 사이에 삽입된 제2 다공성 웹(7b)은 용매의 휘발이 적게 이루어지므로 단일층 구조의 웹을 캘린더링하는 경우와 비교하여 낮은 온도에서 압착이 이루어지는 것이 요구된다.
따라서, 본 발명에서는 상기 선 건조된 제1 및 제2 다공성 웹(7a,7b)을 100~140℃ 사이의 온도에서 열 압착을 실시한다.
이를 위해 본 발명에서는 가열 압착롤러(9)를 100~140℃의 온도, 40kgf/cm2 이하의 압력(압착롤러의 자중압력 제외)으로 설정하여 제1 내지 제3 다공성 웹(7a-7c)의 캘린더링을 진행하여, 선 수축을 실시함으로써 실제 사용시에 분리막의 안정화를 유지할 수 있게 된다.
상기한 웹의 캘린더링 공정이 이루어지면 내열성 제1 다공성 막(12a)과 비내열성 제2 다공성 막(12b)으로 이루어진 3층 구조의 다공성 분리막(12)을 얻는다. 상기 캘린더링 공정을 통하여 얻어진 다공성 분리막(12)은 10~50㎛의 두께로 얻어질 수 있다.
본 발명에서는 비내열성 제2 다공성 막(12b)이 전체 두께의 40%를 초과하지 않도록 설정되며, 바람직하게는 분리막 전체 두께의 10-40% 범위로 설정된다. 비내열성 제2 다공성 막(12b)이 전체 두께의 40%를 초과하는 경우 분리막의 강도가 감소할 뿐 아니라 셧다운 온도에서 과도한 용융으로 웹 수축이 크게 발생하여 전지의 안정성을 해치게 될 우려가 있고, 제2 다공성 막(12b)이 전체 두께의 10% 미만인 경우 셧다운 온도에 도달할 때 기공의 폐쇄역할을 충분히 하지 못하는 문제가 발생하게 된다.
본 발명에서는 전지의 단락현상 등으로 인하여 분리막의 특정 부분의 기공이 셧다운 온도에 도달하는 경우 해당 기공 부분의 비내열성 제2 다공성 막(12b)이 용융되면서 기공을 폐쇄하게 된다. 그 결과, 본 발명의 분리막은 셧다운 기능을 갖게 된다.
한편, 본 발명에서는 필요에 따라 상기한 캘린더링 공정이 이루어진 후 얻어진 분리막(12)은 온도 100℃, 풍속 20m/sec인 2차 열풍 건조기(10)를 사용하여 잔류 용매나 수분을 제거하는 공정을 거친 후, 분리막 롤로서 와인더(11)에 권선된다.
섬유상 분리막을 구성하는 섬유의 평균 직경은 분리막의 기공도 및 기공크기 분포에 매우 큰 영향을 미친다. 섬유 직경이 작을수록 기공 크기가 작아지며, 기공 크기 분포도 작아진다. 또한, 섬유의 직경이 작을수록 섬유의 비표면적이 증대되므로 전해액 보액능력이 커지게 되어 전해액 누액의 가능성이 줄어들게 된다.
본 발명에 따라 얻어진 내열성 초극세 섬유상 분리막(12)을 구성하는 섬유의 직경은 0.3-1.5㎛범위이다. 분리막 두께는 10~50㎛이며, 바람직하게는 10-30㎛이다. 또한, 분리막의 기공도는 40~70% 범위를 갖는다.
[제2특징에 따른 다공성 분리막 제조]
본 발명의 제2특징에 따른 다공성 분리막은, 융점이 180℃ 이상인 내열성 고분자 물질의 에어 전기방사(AES)에 의해 얻어진 초극세 섬유로 이루어진 제1 다공성 막; 상기 제1 다공성 막의 일면에 적층되며 융점이 150℃ 이하인 비내열성 고분자 물질을 에어 전기방사하여 얻어진 초극세 섬유상으로 이루어진 제2 다공성 막; 및 상기 제2 다공성 막의 상부에 적층되며 상기 제1 다공성 막과 동일한 재료와 구조로 이루어진 제3 다공성 막을 포함한다.
더욱이, 본 발명의 제2특징에 따른 다공성 분리막은 180℃ 이상인 내열성 고분자 물질로 이루어진 제1 방사용액과 융점이 150℃ 이하인 비내열성 고분자 물질로 이루어진 제2 방사용액을 순차적으로 에어 전기방사(AES)하여 내열성 고분자의 초극세 섬유로 이루어진 제1 다공성 웹과 비내열성 고분자 물질의 초극세 섬유상으로 이루어진 제2 다공성 웹을 적층 형성하는 단계와, 상기 적층된 제1 및 제2 다공성 웹을 100~140℃ 사이의 온도에서 열 압착하여 다공성 분리막을 얻는 단계를 포함하는 제조방법에 의해 얻어진다.
또한, 본 발명에서는 상기 제2 방사용액의 방사 후에 제2 다공성 웹 위에 제1 방사용액을 방사하여 내열성 고분자의 초극세 섬유로 이루어진 제3 다공성 웹을 형성하는 단계를 더 포함함에 의해 내열성 고분자로 이루어진 제1 및 제3 다공성 웹 사이에 비내열성 고분자 물질로 이루어진 제2 다공성 웹이 삽입된 3층 구조의 다공성 분리막을 얻을 수 있다.
상기한 바와 같이, 본 발명의 제2특징에 따른 본 발명의 내열성 및 고강도 초극세 섬유상 다공성 분리막 및 그 제조방법은 상기한 제1특징에 따른 다공성 분리막 및 그 제조방법과 비교할 때 제1 및 제3 다공성 웹을 형성하는 고분자 물질이 상이하고, 이에 따라 방사 방법에서 차이가 있고 나머지 조건은 실질적으로 동일하거나 유사하다.
우선, 제1특징에 따른 다공성 분리막 및 그 제조방법에서는 제1 및 제3 다공성 웹을 형성할 때 내열성 고분자와 팽윤성 고분자를 혼합하여 사용하나, 제2특징에 따른 다공성 분리막 및 그 제조방법에서는 내열성 고분자와 팽윤성 고분자를 모두 포함하지 않고 내열성 고분자만을 사용하여 방사한다.
제2특징에 따른 다공성 분리막 및 그 제조방법에 사용되는 내열성 고분자 물질은 상기한 제1특징에 따른 다공성 분리막을 제조할 때 사용되는 내열성 고분자와 동일한 고분자를 사용한다. 또한, 비내열성 고분자는 상기한 제1특징에 따른 다공성 분리막을 제조할 때 사용되는 비내열성 고분자와 동일한 고분자를 사용한다.
또한, 본 발명의 제2특징에 따른 다공성 분리막의 제조에 사용 가능한 방사방법으로는 에어 전기방사 이외에 전기분사방사(electroblown spinning), 원심전기방사(centrifugal electrospinning), 및 플래쉬 전기방사(flash-electrospinning) 등을 사용할 수 있다.
또한, 본 발명의 제2특징에 따른 다공성 분리막의 제조에 사용 가능한 용매는 디메틸 포름아미드(di-methylformamide, DMF), 디메틸 아세트마아미드(di-methylacetamide, DMAc), THF(tetrahydrofuran), 아세톤(Acetone), 알코올(Alcohol)류, 클로로포름(Chloroform), DMSO(dimethyl sulfoxide), 디클로로메탄(dichloromethane), 초산(acetic acid), 개미산(formic acid), NMP(N-Methylpyrrolidone), 불소계 알콜류, 및 물로 이루어진 군에서 선택되는 1종 이상인 것을 사용할 수 있다.
이 경우, 방사용액을 준비하기 위하여 고분자 물질과 혼합되는 용매는 1성분계 용매를 사용하는 것도 가능하나, 비등점(BP: boiling point)이 높은 것과 낮은 것을 혼합한 2성분계 용매를 사용하는 것이 바람직하다.
본 발명의 제2특징에 따른 다공성 분리막의 제조에서는 상기한 내열성 고분자 및 비내열성 고분자를 각각 용매와 혼합하여 제1 및 제2 방사용액을 준비한 후, 순차적으로 방사하여 초극세 섬유로 이루어진 적층된 제1 내지 제3 다공성 웹을 형성하고, 제1특징에 따른 다공성 분리막의 제조와 동일하게 상기 다층 구조의 다공성 웹의 표면에 잔존하는 용매와 수분을 조절하는 선 건조를 실시한다.
그 후, 상기 선 건조가 이루어진 다층 구조의 제1 내지 제3 다공성 웹을 100~150℃ 사이의 온도에서 열 압착하여 제1 및 제2 다공성 막으로 이루어진 다공성 분리막(12) 또는 제1 내지 제3 다공성 막으로 이루어진 다공성 분리막(12)을 얻는다.
상기와 같이 본 발명의 제2특징에 따른 다공성 분리막은 내열성 제1 및 제3 다공성 막 사이에 비내열성 제2 다공성 막이 삽입되어 있어, 2차전지용 분리막으로서 요구되는 내열성 및 강도를 구비함과 동시에 셧다운 기능을 갖는 내열성 초극세 섬유상 다공성 분리막이 얻어진다.
또한, 본 발명에서는 전지의 단락현상 등으로 인하여 분리막의 특정 부분의 기공 또는 분리막 전체가 셧다운 온도에 도달하는 경우 해당 기공 부분의 비내열성 제2 다공성 막이 용융되면서 기공을 폐쇄하게 된다. 그 결과, 본 발명의 분리막은 셧다운 기능을 갖게 된다.
상기 본 발명의 제2특징에 따른 다공성 분리막(12)은 제1특징에 따른 다공성 분리막과 동일하게 10~50㎛의 두께로 얻어질 수 있다.
이하에서는 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 그러나, 아래의 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다.
<실시예 1>
실시예 1은 도 1에 도시된 본 발명에 따른 에어 전기방사(AES) 방식의 다공성 분리막 제조장치에서 제1 내지 제3 방사노즐을 사용하여 3층 구조의 분리막을 제조한다.
권취 방향의 제1 열에 에어 전기방사에 의해서 내열성 나노 섬유로 이루어진 제1 나노섬유 웹을 제조하기 위해서 폴리아크릴로니트릴(PAN: Polyacrylonitrile) 5.5g과 폴리비닐리덴 플루오라이드(PVdF: Polyvinylidenefluoride) 5.5g을 용매 디메틸아세트 아마이드(DMAc) 89g에 첨가하고 80℃에서 교반하여 내열성 고분자와 팽윤성 고분자로 이루어진 제1 방사용액을 제조하였다.
이 제1 방사용액은 서로 간의 다른 상으로 이루어져 있어서 상 분리가 빠르게 일어날 수 있으므로 공압 모터를 사용하여 교반할 수 있는 믹싱 탱크에 투입하고, 고분자 용액을 17.5ul/min/hole 토출하였다. 이때 방사 구간의 온도는 33℃, 습도는 60%를 유지하면서 고전압 발생기를 사용하여 방사 노즐 팩(Spin Nozzle Pack)에 100KV 전압을 인가함과 동시에 방사 팩의 노즐에 0.25MPa의 에어압력을 부여하면서 에어 전기방사(AES)에 의해 PAN와 PVdF가 혼합된 제1 나노섬유 웹을 제조하였다.
권취 방향의 제2 열에 에어 전기방사(AES)에 의해서 비내열성 나노 섬유로 이루어진 제2 나노섬유 웹을 제조하기 위해서 폴리비닐리덴 플루오라이드(PVdF) 3g과 열가소성 폴리우레탄(TPU: Thermoplastic polyurethane) 12g을 디메틸아세트 아마이드(DMAc) 68g과 아세톤(Ac) 17g이 혼합된 용매에 첨가하고 80℃에서 교반하여 비내열성 고분자로 이루어진 제2방사용액을 제조하였다. 이 제2 방사용액은 서로 간에 다른 상으로 이루어져 있어서 상 분리가 빠르게 일어날 수 있으므로 공압모터를 사용해 교반할 수 있는 믹싱 탱크에 투입하고, 고분자 용액을 17.5ul/min/hole 토출하였다. 이때 방사 구간의 온도는 33℃, 습도는 60%를 유지하면서 고전압 발생기를 사용하여 방사 팩 노즐(spin pack nozzle)에 100KV 전압을 인가함과 동시에 방사 팩의 노즐에 0.25MPa의 압력을 부여하면서 에어 전기방사(AES)에 의해 PVdF와 TPU가 혼합된 제2 나노섬유 웹을 제1 나노섬유 웹의 상부에 형성하였다.
이어서, 제3 열에 제1 나노섬유 웹과 동일하게 에어 전기방사(AES: Air-Electrospinning)에 의해서 PAN와 PVdF가 혼합된 내열성 나노 섬유로 이루어진 제3 나노섬유 웹을 제2 나노섬유 웹의 상부에 형성하였다.
이 경우, 내열성 고분자와 팽윤성 고분자로 이루어진 제1 열의 제1 나노섬유 웹과, 비내열성 고분자로 이루어진 제2 열의 제2 나노섬유 웹과, 내열성 고분자와 팽윤성 고분자로 이루어진 제3 열의 제3 나노섬유 웹은 순차적으로 2:1:2의 두께 비율로 적층되어 3층 구조의 나노섬유 웹이 얻어졌다.
그 후, 이렇게 제조된 2층 구조 나노섬유 웹을 분리막으로서 가져야 할 중요한 기능인 강도를 증가시키기 위해서 30℃의 공기가 30m/sec의 속도로 순환하고 있는 1차 선 건조구간을 런닝 타임(RT) 5min/m로 통과시켜 나노섬유 웹 표면에 잔존해 있는 용매와 수분을 조절하였다. 이렇게 조절된 3층 구조의 나노섬유 웹은 캘린더링 장비로 이동하여, 온도가 110℃, 압력은 20kgf/cm2 조건의 가열/가압 롤을 사용하여 캘린더링 한 후 잔존해 있을 가능성이 있는 용매나 수분을 제거하기 위해 온도가 100℃, 풍량이 20m/sec인 2차 열풍건조기를 통과시킨다. 이렇게 하여 얻어진 3층 구조 분리막을 와인더에 권선하였다.
최종적으로 얻어진 실시예 1의 분리막은 두께가 25um이며, 공기투과도가 0.304cfm, 기공 크기가 0.2261um로 나타났다.
이렇게 제작된 분리막을 내열성 및 셧다운 기능을 시험하기 위하여 핫플레이트(Hot plate)에서 위/아래의 SUS plate사이에 160mm×160mm 크기의 분리막을 위치시킨 후 80℃~200℃까지 20℃ 간격으로 공기투과도, 수축률, 및 기공크기를 측정하여 표 1에 나타내었고, 140℃ 및 160℃일 때의 분리막의 SEM 사진을 도 4 및 도 5에 나타내었다.
표 1
공기투과도(cfm) 기공크기(um)
열처리 전 열처리 후
80℃ 0.334 0.325 0.2542
100℃ 0.373 0.311 0.2908
120℃ 0.306 0.276 0.2881
140℃ 0.319 0.203 0.2714
160℃ 0.326 × ×
180℃ 0.323 × ×
200℃ 0.321 × ×
상기 표 1에 나타난 바와 같이, 실시예 1의 분리막은 120℃에서 열처리 후에 공기투과도 및 수축률의 미세한 변화가 발생하고 있으나, 내열성 고분자에 의해 형성되는 기공크기는 열처리 전과 비교하여 큰 변동은 없었다.
140℃에서 열처리한 경우에는 도 4에 나타난 바와 같이, 외관상으로는 수축이 거의 이루어지지 않았고 내열성 기공크기도 큰 변화가 없으나, 비내열성 고분자로 이루어진 제2 다공성 막이 부분적으로 용융되어 공기투과도만 다소 낮아지는 것으로 나타났다.
160℃에서 열처리한 경우 도 5에 나타난 바와 같이 외관상으로 수축이 다소 이루어지는 것으로 나타났고 내부적으로 비내열성 고분자로 이루어진 제2 다공성 막이 용융되어 기공을 막음에 따라 공기투과가 이루어지지 않는 것으로 나타났다. 따라서, 실시예 1의 분리막은 이차전지에 조립되어 사용될 때 160℃에서 셧다운이 발생하는 것으로 예상된다.
더욱이, 후술하는 바와 같이 실시예 1에 따른 3층 구조의 다공성 분리막은 220℃에서 열처리한 경우 내열성 고분자를 포함하는 제1 및 제3 다공성 막에 해당하는 정면 및 배면은 어떤 형상의 변화도 발생되지 않았으며, 비내열성 고분자로 이루어진 제2 다공성 막은 제1 및 제3 다공성 막 사이에 삽입되어 있으므로 육안으로 식별이 불가능하나 전체적으로 용융이 발생한 것으로 추정된다.
따라서, 실시예 1의 분리막은 전지 제작시 설정된 온도에서 셧다운 기능을 가지면서 내열성 및 고강도 특성을 갖는 것을 알 수 있다.
<실시예 2>
층간 비율에 따른 수축시험
실시예 2는 상기한 실시예 1에서 제1 내지 제3 다공성 막의 두께 비율을 2:1:2로 설정한 제1 샘플(1), 실시예 1에서 제1 내지 제3 다공성 막의 두께 비율을 1:3:1로 설정한 제2 샘플(2), 상기한 실시예 1에서 내열성 고분자와 팽윤성 고분자로 이루어진 제1 다공성 막의 단일층 분리막으로 이루어진 제3 샘플(3), 및 상기한 실시예 1에서 비내열성 고분자(예를 들어, TPU)만으로 이루어진 제2 다공성 막의 단일층 분리막으로 이루어진 제4 샘플(4)을 25℃, 140℃, 180℃ 및 220℃에서 내열성 및 셧다운 기능을 비교 실험한 것이다.
도 6에 도시된 25℃로 핫플레이트의 온도를 설정한 경우, 모든 샘플에 어떠한 변화도 발생하지 않았다. 도 7에 도시된 140℃로 핫플레이트의 온도를 설정한 경우, 제1 내지 제3 샘플(1-3)에는 어떤 변화도 발생하지 않았으나, 제4 샘플(4)은 부분적으로 용융이 발생하여 샘플이 수축된 것을 알 수 있었다.
도 8에 도시된 180℃로 핫플레이트의 온도를 설정한 경우, 제1 내지 제3 샘플(1-3)에는 어떤 변화도 발생하지 않았으나, 제4 샘플(4)은 전체의 3/5 정도에서 용융이 발생하여 샘플이 수축된 것을 알 수 있었다.
도 9 도시된 220℃로 핫플레이트의 온도를 설정한 경우, 제1 샘플(1)에는 어떤 변화도 발생하지 않았으나, 제2 내지 제4 샘플(2-4)에는 수축으로 인해 분리막의 형태 변형이 발생하였고, 특히 제4 샘플(4)은 전체의 4/5 정도에서 용융이 발생하였다.
상기한 도 6 내지 도 9에 도시된 시험으로부터 알 수 있는 바와 같이, 본 발명에 따라 제1 내지 제3 다공성 막의 두께 비율을 2:1:2로 설정한 제1 샘플(1)에서는 220℃의 온도로 상승할지라도 수축에 의한 형태 변형이 발생하지 않아 분리막으로서 충분한 내열성을 구비한 것으로 나타났고, 다공성 막의 두께 비율을 1:3:1로 설정한 제2 샘플(2)에서는 220℃의 온도로 상승하는 경우 형태 변형이 발생하여 분리막으로서 충분한 내열성을 갖지 못한 것으로 나타났다.
또한, 비내열성 고분자(예를 들어, TPU)만으로 이루어진 제2 다공성 막의 단일층 분리막으로 이루어진 제4 샘플(4)은 140 내지 200℃의 온도에서 용융이 발생하여, 이를 내부에 포함하고 있는 본 발명의 제1 샘플(1)은 분리막으로서 셧다운 기능을 갖는 것을 알 수 있다.
한편, 본 발명에서 제1 다공성 막을 형성하는 내열성 고분자와 팽윤성 고분자의 함량비를 변화시킨 분리막에 대해 여러 가지 물성의 변화를 측정하여 표 2에 나타내었다.
<실시예 3>
- PAN/PVdF(5/5) 20wt% - DMAc Solution
에어 전기방사(AES: Air-Electrospinning)에 의해서 내열성 나노 섬유로 이루어진 분리막을 제조하기 위하여 폴리아크릴로니트릴(PAN: Polyacrylonitrile) 5.5g과 폴리비닐리덴 플루오라이드(PVdF: Polyvinylidenefluoride) 5.5g을 디메틸아세트 아미드(DMAc) 89g에 첨가하고 80℃에서 교반하여 내열성 고분자와 팽윤성 고분자로 이루어진 방사용액을 제조하였다.
이 방사용액은 서로 간에 다른 상으로 이루어져 있어서 상 분리가 빠르게 일어날 수 있으므로 공압 모터를 사용하여 교반할 수 있는 믹싱 탱크에 투입하고, 고분자 용액을 17.5ul/min/hole로 토출하였다. 이때 방사 구간의 온도는 36℃, 습도는 60%를 유지하면서 고전압 발생기를 사용하여 방사 노즐 팩(Spin Nozzle Pack)에 100KV 전압을 부여함과 동시에 방사 팩 노즐에 0.25MPa의 에어압력을 부여하여, PAN과 PVdF가 혼합된 초극세 섬유 웹을 제조하였다.
이렇게 제조된 초극세 섬유 웹의 강도를 증가시키기 위하여 30℃의 공기가 30m/sec의 속도로 순환하고 있는 1차 선 건조 구간을 런닝 타임(RT) 5min/m 으로 통과함으로써 초극세 섬유 웹의 표면에 잔존해 있는 용제와 수분을 조절하였다. 이렇게 조절된 초극세 섬유 웹은 캘린더링 장비로 이동하여 온도 190℃, 압력 20kgf/cm2 조건의 가열/가압 롤을 사용하여 캘린더링한 후 잔존해 있을 가능성이 있는 용제나 수분을 제거하기 위해 온도 100℃, 풍속 20m/sec인 2차 열풍건조기를 통과한 분리막을 와인더에 권선하였다.
또한, 캘린더링시에 압착온도의 변화에 따른 분리막의 물성의 변화를 알아보기 위해 압착온도를 150℃, 170℃, 190℃, 210℃, 230℃로 변화시키면서 캘린더링을 실시하고 얻어진 분리막의 인장강도, 탄성계수, 접착강도, 평균기공, 공기투과도 등의 각종 물성을 측정하였다.
<실시예 4>
- PAN/PVdF(7/3) 20wt% - DMAc Solution
실시예 4는 PAN/PVdF의 혼합비를 7:3의 중량비로 변경하여 방사용액을 준비한 것을 제외하고 실시예 3과 동일하게 분리막을 제조하고 얻어진 분리막에 대한 각종 물성을 측정하여 하기 표 2에 나타내었다.
<비교예 1>
- PAN/PVdF(75/25) 20wt% - DMAc Solution
비교예 1은 PAN/PVdF의 혼합비를 7.5:2.5의 중량비로 변경하여 방사용액을 준비한 것을 제외하고 실시예 3과 동일하게 분리막을 제조하고 얻어진 분리막에 대한 각종 물성을 측정하여 하기 표 2에 나타내었다.
<비교예 2>
- PAN(100) 20wt% - DMAc Solution
비교예 2는 내열성 고분자와 팽윤성 고분자를 혼합하지 않고 내열성 고분자 PAN만으로 방사용액을 준비한 것을 제외하고 실시예 3과 동일하게 분리막을 제조하고 얻어진 분리막에 대한 각종 물성을 측정하여 하기 표 2에 나타내었다.
표 2
실시예 3 실시예 4 비교예 1 비교예 2
PVdF/PAN 50/50중량% PVdF/PAN 30/70중량% PVdF/PAN 25/75중량% PAN100중량%
압착온도 150℃ 170℃ 190℃ 210℃ 230℃ 190℃ 190℃ 190℃
인장강도(Mpa) 23.60 23.90 21.40 26.90 27.70 23.60 17.20 19.20
인장신도(%) 16.80 9.40 6.00 12.00 6.20 16.80 14.60 13.30
탄성계수(MPa) 791.00 900.50 956.30 937.60 1118.70 791.00 538.10 719.90
접착강도(cN/25㎜) 426.30 651.20 648.20 621.60 527.60 426.30 36.20 26.70
무게(g/㎡) 16.76 16.64 16.44 18.56 18.60 14.01 10.12 9.36
두께(um) 27.00 23.60 24.80 26.00 25.00 26.00 26.20 25.40
평균기공(um) 0.26 0.23 0.22 0.22 0.27 0.22 0.31 0.22
공기투과도(cfm) 0.26 0.20 0.19 0.14 0.13 0.25 0.74 0.42
표 2로부터 알 수 있는 바와 같이, 내열성 고분자와 팽윤성 고분자가 혼합될 때 비교예 1과 같이 내열성 고분자가 70중량%를 초과하면 분리막의 인장강도, 탄성계수 및 접착강도가 실시예들과 비교할 때 현저하게 떨어지는 것을 알 수 있다.
또한, 캘린더링 시의 압착온도를 150℃, 170℃, 190℃, 210℃, 230℃로 변화시킨 결과, 얻어진 분리막의 인장강도, 탄성계수, 접착강도가 동시에 적정범위의 값을 나타내는 것은 170℃ 내지 210℃ 범위에서 캘린더링이 이루어지는 것이 가장 바람직한 것으로 나타났다.
즉, 비교예의 경우와 같이 팽윤성 고분자가 70중량% 이상(바람직하게는 50중량% 이상) 포함되는 경우 180℃ 이상에서 캘린더링을 실시하면 웹이 용융되며, 전해액 함침 시험에서도 전해액이 너무 많이 팽윤되어 전지의 고온 및 저온 충, 방전 특성이 나빠지는 것을 확인할 수 있었다.
<실시예 5>
본 발명에서 제 1 내지 제 3 다공성 막으로 구성되는 분리막에 있어서, 제 2 다공성 막의 두께의 변화에 따른 분리막 특성변화를 확인하였으며, 그 결과를 표 3에 나타내었다.
표 3
제 1 내지 제 3 다공성 막의 두께 비율 제 2 다공성 막의 두께분율 (%) 분리막의 특성
비교예 3 23:4:23 8 셧다운 기능 발현이 곤란(기공 폐쇄가 안됨)
실시예 5 4.5:1:4.5 10 제 2 다공성 막의 용융으로 기공 폐쇄 현상이 나타남
2:1:2 20
3.5:3:3.5 30
3:4:3 40
비교예 4 1:2:1 50 과다 용융으로 분리막의 형태 변형(수축)이 심함
5 1:3:1 60 과다 용융으로 분리막의 형태 변형(수축)이 심함
표 3에서 보는 바와 같이, 제 2 다공성 막의 두께 분율이 지나치게 작은 경우에는 셧다운 온도에 도달하는 경우에도 기공패쇄 현상이 나타나지 않아 셧다운 기능을 발현하지 못하는 것을 알 수 있다.(비교예 3) 또한, 비교예 4와 비교예 5에서 보는 바와 같이, 제 2 다공성 막의 두께 분율이 지나치게 큰 경우에는 비내열성 고분자의 과다 용융으로 분리막의 형태 변형이 심하게 나타남으로써 전지의 안정성 확보에 문제가 있다는 것을 알 수 있다.
이와는 달리, 본 발명의 실시예 5에서와 같이 제 2 다공성 막의 두께 분율이 10~40%의 범위에 있는 경우에는 셧다운 온도에 도달시 제 2 다공성 막의 부분 용융으로 기공이 적절히 패쇄됨으로써 셧다운 기능을 잘 발휘하고 있고, 또한 분리막의 형태 변형도 크지 않아서 전지의 안정성에도 특별한 문제를 야기하지 않는다.
본 발명에 따른 내열성 초극세 섬유상 분리막은 내열성 제1 다공성 막과 비내열성 제2 다공성 막이 다층 구조로 캘린더링되어 국부적인 급격한 이온 운동으로 발열이 이루어지거나 분리막 전체적으로 셧다운 온도에 도달하는 경우 해당 부분 또는 전체의 비내열성 제2 다공성 막을 용융시켜 해당 기공을 막을 수 있는 셧다운 기능을 갖는다는 것을 알 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 하이브리드 전기자동차, 전기 자동차 및 연료전지 자동차 등과 같이 높은 내열성과 열 안정성이 요구되는 리튬이온 이차전지, 리튬이온 고분자 전지, 슈퍼 커패시터를 포함하는 이차전지에서 내열성 및 비내열성 고강도 초극세 섬유상 다공성 막을 다층 구조로 형성함에 의해 셧다운 기능을 구비하는 내열성 및 고강도 분리막 및 그의 제조에 적용될 수 있다.

Claims (17)

  1. 융점이 180℃ 이상인 내열성 고분자 물질과 팽윤성 고분자 물질의 혼합용액을 에어 전기방사(AES: Air-electrospinning)에 의해 내열성 고분자와 팽윤성 고분자의 초극세 섬유상이 혼재된 다공성 섬유상을 형성하는 제1 다공성 막;
    상기 제1 다공성 막의 일면에 적층되며 융점이 150℃ 이하인 비내열성 고분자 물질을 에어 전기방사에 의해 초극세 섬유상으로 이루어진 제2 다공성 막; 및 상기 제2 다공성 막의 상부에 적층되며 상기 제1 다공성 막과 동일한 재료와 구조로 이루어진 제3 다공성 막을 포함하는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막.
  2. 제1항에 있어서, 상기 제1 및 제3 다공성 막은 각각 50~70중량%의 내열성 고분자와 30~50중량%의 팽윤성 고분자를 포함하는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막.
  3. 제1항 또는 제2항에 있어서, 상기 제2 다공성 막은 분리막 전체 두께의 10 내지 40%의 두께로 설정되는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막.
  4. 제1항 또는 제2항에 있어서, 상기 제1 및 제3 다공성 막은 각각 폴리아크릴로니트릴(PAN)과 폴리비닐리덴 플루오라이드(PVdF)의 혼합물질로 이루어지는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막.
  5. 제1항 또는 제2항에 있어서, 상기 제2다공성 막은 폴리비닐리덴 플루오라이드(PVdF)와 열가소성 폴리우레탄(TPU)의 혼합물질로 이루어지는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막.
  6. 융점이 180℃ 이상인 내열성 고분자 물질의 에어 전기방사에 의해 얻어진 초극세 섬유로 이루어진 제1 다공성 막;
    상기 제1 다공성 막의 일면에 적층되며 융점이 150℃ 이하인 비내열성 고분자 물질을 에어 전기방사하여 얻어진 초극세 섬유상으로 이루어진 제2 다공성 막; 및
    상기 제2 다공성 막의 상부에 적층되며 상기 제1 다공성 막과 동일한 재료와 구조로 이루어진 제3 다공성 막을 포함하는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막.
  7. 제6항에 있어서, 상기 제2 다공성 막은 분리막 전체 두께의 10 내지 40% 두께로 설정되는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막.
  8. 융점이 180℃ 이상인 내열성 고분자 물질과 팽윤성 고분자 물질이 혼합된 제1 방사용액과 융점이 150℃ 이하인 비내열성 고분자 물질로 이루어진 제2 방사용액을 순차적으로 에어 전기방사(AES: Air-electrospinning)하여 내열성 고분자와 팽윤성 고분자 물질의 초극세 섬유상이 혼재된 내열성 초극세 섬유로 이루어진 제1 다공성 웹과 비내열성 고분자 물질의 초극세 섬유상으로 이루어진 제2 다공성 웹을 적층 형성하는 단계;
    상기 제2 방사용액의 방사 후에 상기 제2 다공성 웹의 상부에 상기 제1 방사용액을 다시 방사하여 내열성 고분자와 팽윤성 고분자의 초극세 섬유상이 혼재된 내열성 초극세 섬유로 이루어진 제3 다공성 웹을 형성하는 단계; 및
    상기 적층된 제1 내지 제3 다공성 웹을 열 압착하여 다공성 분리막을 얻는 단계를 포함하는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  9. 제8항에 있어서, 상기 제1 및 제3 다공성 막은 각각 50~70중량%의 내열성 고분자와 30~50중량%의 팽윤성 고분자를 포함하는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  10. 제8항 또는 제9항에 있어서, 상기 제2 다공성 막은 분리막 전체 두께의 10 내지 40%의 두께로 설정되는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  11. 제8항에 있어서, 상기 적층된 제1 내지 제3 다공성 웹을 열 압착하는 단계 이전에 상기 제1 내지 제3 다공성 웹의 표면에 잔존하는 용매와 수분을 조절하는 선 건조단계를 더 포함하는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  12. 제8항에 있어서, 상기 적층된 제1 내지 제3 다공성 웹을 열 압착하는 단계 이후에 분리막에 잔존하는 용매와 수분을 제거하는 열풍 건조단계를 더 포함하는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  13. 제8항에 있어서, 상기 에어 전기방사는 제1 방사용액과 제2 방사용액을 각각 방사하기 위하여 간격을 두고 평행하게 배치된 제1 및 제2 열의 방사노즐을 구비하며, 상기 제1 및 제2 열의 방사노즐 각각은 방사용액의 방사가 이루어지는 다수의 방사노즐과 에어를 분사하기 위한 다수의 에어분사노즐을 포함하는 다열 구조의 멀티-홀(multi-hole) 방사팩을 사용하여 이루어지는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  14. 제13항에 있어서, 상기 에어 전기방사시에 방사 팩 노즐에 인가되는 에어압은 0.1~0.6MPa 범위로 설정되는 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  15. 제8항에 있어서, 상기 열 압착시의 온도는 100~140℃의 범위에서 설정되는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  16. 180℃ 이상인 내열성 고분자 물질로 이루어진 제1 방사용액과 융점이 150℃이하인 비내열성 고분자 물질로 이루어진 제2 방사용액을 순차적으로 에어 전기방사하여 내열성 고분자의 초극세 섬유로 이루어진 제1 다공성 웹과 비내열성 고분자 물질의 초극세 섬유상으로 이루어진 제2 다공성 웹을 적층 형성하고, 상기 제2 방사용액의 방사 후에 제2 다공성 웹 위에 제1 방사용액을 에어 전기방사하여 내열성 고분자의 초극세 섬유로 이루어진 제3 다공성 웹을 형성하는 단계; 및
    상기 적층된 제1 내지 제3 다공성 웹을 열 압착하여 3층 구조의 다공성 분리막을 얻는 단계를 포함하는 것을 특징으로 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
  17. 제16항에 있어서, 상기 열 압착시의 온도는 100~140℃ 사이로 설정되는 것을 특징으로 하는 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막의 제조방법.
PCT/KR2011/001893 2010-03-18 2011-03-18 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법 WO2011115453A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0024442 2010-03-18
KR20100024442 2010-03-18

Publications (2)

Publication Number Publication Date
WO2011115453A2 true WO2011115453A2 (ko) 2011-09-22
WO2011115453A3 WO2011115453A3 (ko) 2012-01-12

Family

ID=44649740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001893 WO2011115453A2 (ko) 2010-03-18 2011-03-18 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR101265735B1 (ko)
WO (1) WO2011115453A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482570C1 (ru) * 2012-03-19 2013-05-20 Открытое акционерное общество "Тюменский аккумуляторный завод" Способ обработки пористого материала
CN107731532A (zh) * 2017-11-18 2018-02-23 陈馨雅 一种电解电容器用隔膜纸

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291090B1 (ko) * 2011-10-04 2013-08-01 천석원 스피커 진동판
WO2013066022A1 (ko) * 2011-10-31 2013-05-10 주식회사 아모텍 적층형 나노섬유 웹 및 그 제조방법, 그리고 이를 이용한 나노섬유 복합재
KR101366022B1 (ko) * 2011-12-21 2014-02-24 주식회사 아모그린텍 전극 조립체
KR101470696B1 (ko) * 2012-10-10 2014-12-08 한국생산기술연구원 리튬이차전지용 분리막의 제조방법 및 이에 따라 제조된 분리막 및 이를 구비하는 리튬이차전지
KR101419772B1 (ko) * 2013-03-14 2014-07-17 (주)에프티이앤이 내열성이 향상된 이차전지용 내열성/무기 고분자 2층 분리막 및 이의 제조방법
KR101447564B1 (ko) * 2013-03-14 2014-10-07 (주)에프티이앤이 상향식 전기방사를 이용한 이차전지용 분리막의 제조방법 및 그에 따라 제조된 분리막
WO2014142450A1 (ko) * 2013-03-14 2014-09-18 (주)에프티이앤이 이차전지용 다공성 분리막의 제조방법 및 이에 따라 제조된 이차전지용 다공성 분리막
KR101371061B1 (ko) * 2013-03-14 2014-03-10 (주)에프티이앤이 내열성이 향상된 이차전지용 2층 분리막 및 이의 제조방법
KR101375226B1 (ko) * 2013-03-14 2014-03-17 (주)에프티이앤이 내열성이 향상된 이차전지용 3층 분리막의 제조방법 및 그에 따라 제조된 분리막
WO2014142449A1 (ko) * 2013-03-14 2014-09-18 (주)에프티이앤이 내열성이 향상된 이차전지용 다층 분리막의 제조방법 및 그에 따라 제조된 다층 분리막
KR101447566B1 (ko) * 2013-03-14 2014-10-07 (주)에프티이앤이 이차전지용 다층 분리막의 제조방법 및 그에 따라 제조된 다층 분리막
KR101479748B1 (ko) * 2013-03-14 2015-01-07 (주)에프티이앤이 이차전지용 무기 고분자 분리막 및 이의 제조방법
KR101724009B1 (ko) * 2013-08-14 2017-04-06 삼성에스디아이 주식회사 리튬 이차 전지
CN104377328B (zh) 2013-08-14 2019-09-13 三星Sdi株式会社 可再充电锂电池
US9419265B2 (en) 2013-10-31 2016-08-16 Lg Chem, Ltd. High-strength electrospun microfiber non-woven web for a separator of a secondary battery, a separator comprising the same and a method for manufacturing the same
TWI788616B (zh) * 2019-05-30 2023-01-01 財團法人工業技術研究院 複合膜及其製作方法與應用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140131A (ja) * 1997-07-24 1999-02-12 Du Pont Teijin Advanced Paper Kk 電池セパレーター
JP2002237333A (ja) * 2001-02-09 2002-08-23 Toshiba Corp 非水電解質二次電池
KR20060060188A (ko) * 2004-11-30 2006-06-05 에스케이씨 주식회사 다층형 고분자 막을 이용한 리튬 고분자 전지 및 그의제조방법
KR20080045289A (ko) * 2005-09-16 2008-05-22 토넨 케미칼 코퍼레이션 폴리에틸렌 미세 다공막 및 그 제조 방법, 및 전지용세퍼레이터
JP2009104834A (ja) * 2007-10-22 2009-05-14 Asahi Kasei Chemicals Corp 多層多孔膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845239B1 (ko) 2006-08-07 2008-07-10 한국과학기술연구원 내열성 초극세 섬유층을 지닌 분리막 및 이를 이용한이차전지
KR100820162B1 (ko) 2006-08-07 2008-04-10 한국과학기술연구원 내열성 초극세 섬유상 분리막 및 그 제조 방법과, 이를 이용한 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140131A (ja) * 1997-07-24 1999-02-12 Du Pont Teijin Advanced Paper Kk 電池セパレーター
JP2002237333A (ja) * 2001-02-09 2002-08-23 Toshiba Corp 非水電解質二次電池
KR20060060188A (ko) * 2004-11-30 2006-06-05 에스케이씨 주식회사 다층형 고분자 막을 이용한 리튬 고분자 전지 및 그의제조방법
KR20080045289A (ko) * 2005-09-16 2008-05-22 토넨 케미칼 코퍼레이션 폴리에틸렌 미세 다공막 및 그 제조 방법, 및 전지용세퍼레이터
JP2009104834A (ja) * 2007-10-22 2009-05-14 Asahi Kasei Chemicals Corp 多層多孔膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482570C1 (ru) * 2012-03-19 2013-05-20 Открытое акционерное общество "Тюменский аккумуляторный завод" Способ обработки пористого материала
CN107731532A (zh) * 2017-11-18 2018-02-23 陈馨雅 一种电解电容器用隔膜纸

Also Published As

Publication number Publication date
KR20110105365A (ko) 2011-09-26
WO2011115453A3 (ko) 2012-01-12
KR101265735B1 (ko) 2013-05-20

Similar Documents

Publication Publication Date Title
WO2011115453A2 (ko) 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법
WO2011055967A2 (ko) 내열성 및 고강도 초극세 섬유상 분리막 및 그의 제조방법과 이를 이용한 이차 전지
WO2018030797A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2009125985A2 (en) Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
WO2009125984A2 (en) Microporous polyolefin composite film with a thermally stable porous layer at high temperature
KR101283013B1 (ko) 고내열성 및 고강도 초극세 섬유상 분리막 및 그의 제조방법
WO2012060604A2 (ko) 내열성 분리막, 전극 조립체 및 이를 이용한 이차 전지와 그 제조방법
WO2013012292A2 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2012002754A2 (ko) 전기방사된 나노 섬유 웹을 이용한 액체 필터용 필터여재와 그 제조방법 및 이를 이용한 액체 필터
WO2011090356A2 (en) Porous multi-layer film with improved thermal properties
WO2015069045A1 (ko) 전기화학소자용 분리막
WO2014030899A1 (ko) 셧다운 기능을 갖는 복합 다공성 분리막 및 그 제조방법과 이를 이용한 이차전지
WO2015065122A1 (ko) 전기화학소자용 분리막의 제조방법 및 그로부터 제조된 전기화학소자용 분리막
WO2015093852A1 (ko) 전기화학소자용 분리막
WO2015069008A1 (ko) 전기화학소자용 분리막
WO2014123268A1 (ko) 역구조를 갖는 하이브리드 난워븐 세퍼레이터
WO2020013675A1 (ko) 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2019039820A2 (ko) 다공성 복합 분리막 및 이의 제조방법
WO2014065460A1 (ko) 이차전지 분리막용 pet 부직포 및 이를 포함하는 이차전지용 분리막
WO2014115922A1 (ko) 전해액 젖음성이 우수한 이차전지용 분리막 및 이의 제조방법
WO2020022851A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2014142450A1 (ko) 이차전지용 다공성 분리막의 제조방법 및 이에 따라 제조된 이차전지용 다공성 분리막
WO2009139585A2 (en) Microporous polyolefin film with thermally stable porous layer at high temperature
KR20040108525A (ko) 전기화학소자용 복합막, 그 제조방법 및 이를 구비한전기화학소자
WO2014112776A1 (ko) 폴리머 전해질, 이를 이용한 리튬 이차 전지 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756584

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756584

Country of ref document: EP

Kind code of ref document: A2