RU2482570C1 - Способ обработки пористого материала - Google Patents

Способ обработки пористого материала Download PDF

Info

Publication number
RU2482570C1
RU2482570C1 RU2012110412/07A RU2012110412A RU2482570C1 RU 2482570 C1 RU2482570 C1 RU 2482570C1 RU 2012110412/07 A RU2012110412/07 A RU 2012110412/07A RU 2012110412 A RU2012110412 A RU 2012110412A RU 2482570 C1 RU2482570 C1 RU 2482570C1
Authority
RU
Russia
Prior art keywords
porous material
liquid
impregnation
processing
samples
Prior art date
Application number
RU2012110412/07A
Other languages
English (en)
Inventor
Александр Васильевич Кореляков
Евгений Петрович Хорин
Original Assignee
Открытое акционерное общество "Тюменский аккумуляторный завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Тюменский аккумуляторный завод" filed Critical Открытое акционерное общество "Тюменский аккумуляторный завод"
Priority to RU2012110412/07A priority Critical patent/RU2482570C1/ru
Application granted granted Critical
Publication of RU2482570C1 publication Critical patent/RU2482570C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Изобретение относится к области электротехники, в частности к способу обработки пористого материала, и может быть использовано при изготовлении устройств для преобразования химической энергии в электрическую, например при изготовлении сепараторов для свинцово-кислотных аккумуляторных батарей. Способ обработки пористого материала включает предварительное пропитывание пористого материала вспомогательной жидкостью, нерастворимой в пропиточной жидкости и имеющей температуру кипения ниже, чем у пропиточной жидкости, погружение пористого материала в пропиточную жидкость, причем пропитанный вспомогательной жидкостью пористый материал перед погружением его в пропиточную жидкость подвергают контактной сушке при атмосферном давлении. Технический результат заявляемого изобретения заключается в повышении эффективности обработки пористого материала за счет ускорения процесса обработки и увеличения степени пропитки, а также в упрощении технологии обработки пористого материала. 1 табл., 1 ил.

Description

Изобретение относится к области электротехники, в частности к способу обработки пористого материала, и может быть использовано при изготовлении устройств для преобразования химической энергии в электрическую, например, при изготовлении сепараторов для свинцово-кислотных аккумуляторных батарей.
Известен способ пропитки пористого материала, согласно которому пористый материал, с целью улучшения пропитки, подвергают предварительному вакуумированию для удаления воздуха из пор (см. Аксельруд Г.А., Лысянский В.М. Экстрагирование (система твердое тело - жидкость). Л.: Химия, 1974, с.37).
Недостатком известного способа является низкая эффективность, которая обусловлена цикличностью, длительностью и трудоемкостью процесса вакуумирования.
Наиболее близким по совокупности существенных признаков к заявляемому является способ обработки (пропитки) пористого материала, включающий пропитывание материала вспомогательной жидкостью, нерастворимой в пропиточной жидкости и имеющей температуру кипения ниже, чем у пропиточной жидкости, погружение пористого материала в пропиточную жидкость, находящуюся при температуре выше температуры кипения вспомогательной жидкости. В результате, находящаяся в порах материала вспомогательная жидкость испаряется. В порах материала создается вакуум, следствием чего является заполнение пор материала пропиточной жидкостью (см. патент на изобретение РФ №2356130, МПК8 Н01М 2/14, Н01М 4/88, дата подачи заявки 24.01.2008, опубликован 20.05.2009, «Способ пропитки пористого материала»).
Недостатком известного способа является низкая эффективность обработки пористого материала из-за несовершенного теплообмена при нагреве и испарении вспомогательной жидкости, не обеспечивающего благоприятных условий для создания вакуума в порах обрабатываемого материала. Как результат, увеличивается время обработки и уменьшается степень (полнота) пропитки пористого материала.
Кроме того, известный способ сложен, так как для проведения обработки пористого материала необходима пропиточная жидкость с различной температурой.
Технический результат заявляемого изобретения заключается в повышении эффективности обработки пористого материала за счет ускорения процесса обработки и увеличения степени пропитки, а также в упрощении технологии обработки пористого материала.
Заявляемый технический результат достигается тем, что в предлагаемом способе обработки пористого материала, включающем предварительное пропитывание пористого материала вспомогательной жидкостью, нерастворимой в пропиточной жидкости и имеющей температуру кипения ниже, чем у пропиточной жидкости, погружение пористого материала в пропиточную жидкость, согласно изобретению обрабатываемый материал, предварительно пропитанный вспомогательной жидкостью, перед погружением в пропиточную жидкость подвергают контактной сушке при атмосферном давлении.
Во время контактной сушки при атмосферном давлении пористый материал соприкасается с нагретой (выше температуры кипения вспомогательной жидкости) поверхностью, в результате чего происходит испарение вспомогательной жидкости. Благодаря эффективной теплопередаче между нагретой поверхностью и мокрым пористым материалом, в условиях отсутствия внешнего сопротивления испарению вспомогательной жидкости, происходит интенсивный переход вспомогательной жидкости в газообразное состояние. Газ, образующийся в порах материала, частично испаряется.
При погружении обработанного таким образом материала в пропиточную жидкость, находящуюся при температуре окружающей среды, в порах материала происходит конденсация паров вспомогательной жидкости. Создаваемая при осуществлении заявленного способа возможность увеличения разности температур пористого материала после контактной сушки и пропиточной жидкости, находящейся при температуре окружающей среды, позволяет обеспечить интенсификацию процессов конденсации паров вспомогательной жидкости, создания вакуума в порах материала и, как следствие, более эффективное заполнение пор пропиточной жидкостью, приводящее, в результате, к повышению степени пропитки.
Таким образом, обработка пористого материала заявленным способом позволяет повысить эффективность процесса за счет минимизации времени обработки и увеличения степени пропитки пористого материала.
Кроме того, обработка пористого материала заявленным способом позволяет упростить технологию, так как процессы теплообмена легко оперативно контролировать и регулировать, при этом исключается трудоемкая и малоэффективная операция нагревания пропиточной жидкости, присущая известному решению, взятому за прототип.
На чертеже схематично представлена установка, иллюстрирующая технологическую последовательность операций для осуществления заявляемого способа.
Технических решений, совпадающих с совокупностью существенных признаков заявляемого изобретения, не выявлено, что позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности - «новизна».
Заявляемые существенные признаки, предопределяющие получение указанного технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности - «изобретательский уровень».
Условие патентоспособности «промышленная применимость» подтверждается примером конкретного применения способа.
Возможность осуществления заявленного способа обработки пористого материала и его преимущества, в сравнении с прототипом, проиллюстрированы следующими примерами.
Обработка пористого материала по заявляемому способу (пример 1)
Для осуществления заявляемого способа брали пористый гидрофобный материал, используемый при производстве сепараторной ленты на ОАО «Тюменский аккумуляторный завод».
Для опытных образцов использовали пористую полуфабрикатную сепараторную ленту, полученную из гранулированного сырья с добавлением регенерированного индустриального масла (на экструдере). Образцы пористого материала диаметром 50 мм вырубали из средней части полуфабрикатной ленты и каждый образец взвешивали.
Для проведения опытов в качестве вспомогательной жидкости использовали гексан, температура кипения которого составляет 80°С (возможно использование смеси углеводородов, например, легкой фракции бензина).
В качестве пропиточной жидкости использовали раствор сульфонола. Для этого порошкообразный сульфонол в количестве 15 г растворяли при непрерывном перемешивании в 1 л дистиллированной воды при температуре окружающей среды.
Температура кипения пропиточной жидкости - 100°С.
В данном примере в качестве поверхности, на которой сушили пористый материал, использовали бытовой электрический утюг с автоматическим регулятором температуры, расположенный подошвой вверх. Температуру нагрева подошвы утюга поддерживали в пределах 110±5°С.
Для обработки пористого материала готовили три партии по пять образцов в каждой. Образцы каждой партии поочередно подвергали обработке в соответствии с заявленным способом.
Заявленная последовательность действий.
Действие первое. Каждый образец опускали в цилиндр со вспомогательной жидкостью и выдерживали по 30 с. При этом происходило пропитывание пористого образца вспомогательной жидкостью, в которой растворялись регенерированное индустриальное масло и прочие загрязнения, присутствующие в пористом материале.
Действие второе. Образцы, пропитанные вспомогательной жидкостью, по очереди переносили на нагретую до 110±5°С поверхность утюга. Образцы первой партии выдерживали 30 с, образцы второй партии - 20 с, образцы третьей партии - 10 с. Таким образом осуществляли контактную сушку каждого образца.
При соприкосновении мокрого образца с нагретой до 110±5°С контактной поверхностью (температура выше температуры кипения пропиточной жидкости) осуществлялось интенсивное испарение вспомогательной жидкости и частичное удаление ее из пор материала. Другая часть вспомогательной жидкости, в виде паров, оставалась в порах материала. Следует отметить, что при изменении температуры контактной поверхности или времени контакта в сторону увеличения возможно увеличение интенсивности испарения вспомогательной жидкости и, как следствие, скорости и полноты ее перевода в другое агрегатное состояние.
Действие третье. Образцы материала после контактной сушки погружали в приготовленную пропиточную жидкость, находящуюся при температуре окружающей среды, и выдерживали в ней по 30 с.
Температура каждого образца после контактной сушки не превышала температуру кипения испаряемой вспомогательной жидкости. В данном примере она соответствовала 60°С.
В результате данного действия происходила конденсация паров вспомогательной жидкости с образованием вакуума в порах материала, что способствовало интенсивному заполнению пор материала пропиточной жидкостью.
По истечении задаваемого времени образцы вынимали из пропиточной жидкости, удаляли поверхностные капли с помощью фильтровальной бумаги. Каждый образец взвешивали с точностью до 1 мг и определяли изменение массы в процентах.
В качестве окончательного результата изменения массы по каждой партии принимали среднее арифметическое значение для пяти образцов.
Для сравнения осуществляли обработку пористого материала по известному способу (пример 2).
Для обработки также готовили три партии образцов пористого материала: по пять штук в каждой партии.
Подготовленные образцы (аналогичные используемым в примере 1) поочередно подвергали обработке в соответствии с известным способом по патенту РФ №2356130 (прототип). При этом, также как и в примере 1, в качестве вспомогательной жидкости использовали гексан, в качестве пропиточной жидкости использовали раствор сульфонола. Пропиточную жидкость применяли при различных температурах: нагретую до температуры 85±5°С и при температуре окружающей среды.
В соответствии со способом по патенту РФ №2356130 образцы пористого материала погружали в емкость со вспомогательной жидкостью и выдерживали в течение 30 с. Затем образцы переносили в емкость с пропиточной жидкостью, которая была предварительно нагрета до 85±5°С. Одну партию образцов выдерживали в нагретой пропиточной жидкости 30 с, другую - 20 с, а третью - 10 с. Далее образцы погружали в пропиточную жидкость при температуре окружающей среды, выдерживая в ней каждый образец 30 с. При завершении обработки образцы вынимали из пропиточной жидкости, удаляли поверхностные капли фильтровальной бумагой, взвешивали с точностью до 1 мг и определяли изменение массы в процентах.
В качестве окончательного результата изменения массы, как и в примере 1, брали ее среднее арифметическое значение для пяти образцов.
Показатели заявляемого способа обработки пористого материала, указанные в примере 1, и показатели способа - прототипа (пример 2), приведены в таблице.
Как видно из таблицы, среднее увеличение массы образца пористого материала при обработке его заявляемым способом равняется в %: 29,6; 29,8 и 29,5 (соответственно для 1-й, 2-й и 3-й партии образцов). А среднее увеличение массы образца пористого материала при обработке его по способу-прототипу равняется в %: 21,3; 15,8 и 10,5 (соответственно для 1-й, 2-й и 3-й партии образцов). То есть опытным путем подтверждено большее увеличение массы образцов, а следовательно, и увеличение степени пропитки при обработке пористого материала заявленным способом, в сравнении с прототипом. При этом для образцов первой партии степень пропитки по заявляемому способу увеличилась в 1,5 раза, а для образцов третьей партии - в 3 раза.
Следует отметить также, что степень пропитки при обработке материала заявляемым способом для образцов первой, второй и третьей партии примерно одинакова (%: 29,6; 29,8; 29,5), т.е. мало зависит от времени обработки. Степень пропитки материала при обработке по способу-прототипу имеет наибольшее значение (21,3%) при максимальном времени обработки (90 с) и минимальное значение (10,5%) при минимальном времени обработки (70 с). Из этого следует, что увеличение степени пропитки при обработке пористого материала заявляемым способом достигается за меньшее количество времени в сравнении со способом-прототипом.
Таким образом, сравнение данных примеров 1 и 2 позволяет заключить, что при использовании заявляемого способа обработки пористого материала достигается увеличение степени пропитки и ускорение процесса обработки, т.е. эффективность процесса возрастает.
Возможность практического использования заявляемого способа представлена на установке, схематично изображенной на фигуре. Установка иллюстрирует технологическую последовательность заявляемого способа обработки пористого материала.
В состав установки входят: лента 1 пористого материала, лентопротяжный механизм 2, бак 3 для вспомогательной жидкости, бак 4 для пропиточной жидкости, контактный нагреватель 5.
Таблица
Показатели Номер партии
1 2 3
Пример 1
1. Температура вспомогательной жидкости соответствует температуре окружающей среды, °С
2. Время пропитки образца пористого материала вспомогательной жидкостью, с 30 30 30
3. Температура поверхности, на которой осуществляют контактную сушку образца пористого материала, °С 110±5 110±5 110±5
4. Время контактной сушки образца пористого материала, с 30 20 10
5. Температура пропиточной жидкости соответствует температуре окружающей среды, °С
6. Время пропитки образца пористого материала пропиточной жидкостью, с 30 20 10
7. Среднее увеличение массы образца пористого материала после его обработки, % 29,6 29,8 29,5
8. Общее время обработки образца пористого материала, с 90 80 70
Пример 2
1. Температура вспомогательной жидкости соответствует температуре окружающей среды, °С
2. Время пропитки образца пористого материала вспомогательной жидкостью, с 30 30 30
3. Температура поверхности, на которой осуществляют контактную сушку образца пористого материала, °С 85±5 85±5 85±5
4. Время контактной сушки образца пористого материала, с 30 20 10
5. Температура пропиточной жидкости соответствует температуре окружающей среды, °С
6. Время пропитки образца пористого материала пропиточной жидкостью, с 30 30 30
7. Среднее увеличение массы образца пористого материала после его обработки, % 21,3 15,8 10,5
8. Общее время обработки образца пористого материала, с 90 80 70
В бак 3 заливают вспомогательную жидкость (гексан), в бак 4 заливают пропиточную жидкость (2%-ный водный раствор сульфонола). Устанавливают температуру поверхности для осуществления контактной сушки, равную 110±5°С. Движущаяся лента пористого материала погружается сначала в бак со вспомогательной жидкостью, находящейся при температуре окружающей среды, затем выходит из бака и движется по нагретой до 110±5°С поверхности, на которой происходит контактная сушка пористого материала. После контактной сушки лента погружается в бак с пропиточной жидкостью, находящейся при температуре окружающей среды. Скорость движения ленты и время контактной сушки выбирают исходя из толщины ленты и характеристик пористого материала.

Claims (1)

  1. Способ обработки пористого материала, включающий предварительное пропитывание пористого материала вспомогательной жидкостью, нерастворимой в пропиточной жидкости и имеющей температуру кипения ниже, чем у пропиточной жидкости, погружение пористого материала в пропиточную жидкость, отличающийся тем, что пропитанный вспомогательной жидкостью пористый материал перед погружением его в пропиточную жидкость подвергают контактной сушке при атмосферном давлении.
RU2012110412/07A 2012-03-19 2012-03-19 Способ обработки пористого материала RU2482570C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012110412/07A RU2482570C1 (ru) 2012-03-19 2012-03-19 Способ обработки пористого материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012110412/07A RU2482570C1 (ru) 2012-03-19 2012-03-19 Способ обработки пористого материала

Publications (1)

Publication Number Publication Date
RU2482570C1 true RU2482570C1 (ru) 2013-05-20

Family

ID=48789996

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012110412/07A RU2482570C1 (ru) 2012-03-19 2012-03-19 Способ обработки пористого материала

Country Status (1)

Country Link
RU (1) RU2482570C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2280298C2 (ru) * 2004-08-02 2006-07-20 Федеральное государственное унитарное предприятие УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ Способ изготовления щелочного аккумулятора с окисно-никелевым положительным и кадмиевым отрицательным электродами
RU2305348C2 (ru) * 2003-05-30 2007-08-27 Эл Джи Кем, Лтд Аккумуляторная литиевая батарея, использующая сепаратор, частично покрытый гелеобразным полимером
RU2356130C1 (ru) * 2008-01-24 2009-05-20 Юрий Михайлович Демидов Способ пропитки пористого материала
WO2011115453A2 (ko) * 2010-03-18 2011-09-22 주식회사 아모그린텍 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법
KR20110120716A (ko) * 2010-04-29 2011-11-04 국방과학연구소 다공성 SiOC 박막을 이용한 전해질 분리판 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2305348C2 (ru) * 2003-05-30 2007-08-27 Эл Джи Кем, Лтд Аккумуляторная литиевая батарея, использующая сепаратор, частично покрытый гелеобразным полимером
RU2280298C2 (ru) * 2004-08-02 2006-07-20 Федеральное государственное унитарное предприятие УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ Способ изготовления щелочного аккумулятора с окисно-никелевым положительным и кадмиевым отрицательным электродами
RU2356130C1 (ru) * 2008-01-24 2009-05-20 Юрий Михайлович Демидов Способ пропитки пористого материала
WO2011115453A2 (ko) * 2010-03-18 2011-09-22 주식회사 아모그린텍 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법
KR20110120716A (ko) * 2010-04-29 2011-11-04 국방과학연구소 다공성 SiOC 박막을 이용한 전해질 분리판 및 그 제조방법

Similar Documents

Publication Publication Date Title
CN103586002B (zh) 用于脱除水中重金属离子的杂化膜吸附剂的制备方法
CN105405658B (zh) 一种高压螺栓式铝电解电容器用阳极箔的纯无机酸化成工艺
CN105274623B (zh) 真空浸渍结合冷冻干燥原位生长莫来石晶须的方法
CN205435181U (zh) 一种双级真空滤油机
CN103203785B (zh) 一种桉木消减干燥缺陷及阻燃处理方法
CN108993173A (zh) 一种用于膜蒸馏的pvdf中空纤维膜及其制备和应用
CN104532504A (zh) 一种聚四氟乙烯玻璃纤维透气漆布的制备工艺
CN102046540B (zh) 污泥的处理方法
CN103991864A (zh) 一种石墨烯气凝胶的制备方法
RU2482570C1 (ru) Способ обработки пористого материала
CN105977515A (zh) 一种磁控溅射制备CeO2/PTFE/Nafion复合膜的方法
CN104953101A (zh) 热处理石墨烯气凝胶负载二氧化锡电极材料的制备方法
El-Sherif et al. Modification of adsorptive properties of bagasse fly ash for uptaking cadmium from aqueous solution
CN101630746A (zh) 具有防渗漏和疏水性能的燃料电池流场板以及专用浸渍剂、浸渍方法和装置
CN104530774B (zh) 一种含酯基季铵盐改性蒙脱土及其制备方法
CN108666502B (zh) 一种亲水耐热锂电池隔膜的制备方法
CN111362350B (zh) 一种疏水金属网及制备方法和在油水分离中的应用
RU2356130C1 (ru) Способ пропитки пористого материала
CN105031950A (zh) 一种基于多孔复合材料的可控蒸发表面温度的方法
CN115746383B (zh) 复合膜材料及其制备方法与太阳能蒸发器
CN113336482B (zh) 一种高保温性能二氧化硅气凝胶保温毡的制备工艺
JPH0768186A (ja) 高分子イオン交換膜の不純物除去方法
CN110105087A (zh) 一种Ti3C2薄膜表面官能团的调控方法
CN105778964B (zh) 一种煤焦油脱水方法及煤焦油脱水装置
CN103285734A (zh) 一种基于纳米滤膜的废有机溶剂处理工艺及系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160320