WO2011115381A2 - 3차원 인공 지지체 및 그 제조방법 - Google Patents

3차원 인공 지지체 및 그 제조방법 Download PDF

Info

Publication number
WO2011115381A2
WO2011115381A2 PCT/KR2011/001516 KR2011001516W WO2011115381A2 WO 2011115381 A2 WO2011115381 A2 WO 2011115381A2 KR 2011001516 W KR2011001516 W KR 2011001516W WO 2011115381 A2 WO2011115381 A2 WO 2011115381A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
synthetic polymer
biodegradable synthetic
artificial
growth factor
Prior art date
Application number
PCT/KR2011/001516
Other languages
English (en)
French (fr)
Other versions
WO2011115381A3 (ko
Inventor
조동우
김종영
심진형
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US13/511,188 priority Critical patent/US9018008B2/en
Priority to CN201180011573.9A priority patent/CN102781486B/zh
Priority to JP2012543032A priority patent/JP2013512950A/ja
Priority to EP11756512.7A priority patent/EP2548588B1/en
Publication of WO2011115381A2 publication Critical patent/WO2011115381A2/ko
Publication of WO2011115381A3 publication Critical patent/WO2011115381A3/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/40Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/80Hyaluronan

Definitions

  • the present invention relates to a three-dimensional artificial support and a method of manufacturing the same, and more particularly, to a three-dimensional artificial support and a method of manufacturing the biodegradable polymer and hydrogel.
  • the field of tissue engineering is a technology field in which a small amount of cells collected from a patient's tissue is cultured in vitro and then differentiated into three-dimensional tissue to regenerate the tissues and organs.
  • tissue engineering research is being conducted in various approaches to restore the functions of various tissues and organs of the recently damaged human body.
  • tissue engineering three-dimensional cultures of tissues require artificial scaffolds that cells can recognize in a three-dimensional environment. These scaffolds provide appropriate ECMs to induce smooth deposition, proliferation, and differentiation of cells. Extra Cellular Matrix) structure. In addition, it must have a porous three-dimensional structure that is interconnected to the appropriate size to promote cell migration metabolism and vascular penetration for nutrient supply, and maintain sufficient strength to maintain its shape during tissue regeneration. .
  • the artificial support prepared by this method has a pore size of porous structure, It is difficult to control the position and porosity.
  • the porosity is increased in order to increase the connectivity between the pores in the artificial support, there is a problem that the mechanical strength is also lowered.
  • the present invention is to solve the problems of the background technology, and to provide an artificial support and a method for producing a tissue reinforcement ability by fusing a biodegradable polymer and a hydrogel (hydrogel). .
  • the artificial support according to an embodiment of the present invention is formed in a lattice form by alternately stacking a biodegradable synthetic polymer-hydrogel layer, wherein the biodegradable
  • the synthetic polymer-hydrogel layer is formed by arranging a plurality of biodegradable synthetic polymer-hydrogel units including a biodegradable synthetic polymer and a hydrogel at regular intervals.
  • the biodegradable synthetic polymer-hydrogel unit may be formed through a hydrogel line between a pair of opposing biodegradable synthetic polymer lines.
  • the biodegradable synthetic polymer is polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (Polycaprolactone) and polylacticco glycolic acid (Poly-lactic— co-glycolic acid, PLGA).
  • the hydrogel may be water soluble, in which case collagen and gelatin
  • the growth factor that can control the growth and function of the cells inside the hydrogel may be embedded, the growth factor embedded in the hydrogel is a transforming growth factor -PTGF-P, bone formation protein (BMP ), Vascular endothelial growth factor (VEGF) or epithelial cell growth factor (EGF).
  • the growth factor embedded in the hydrogel is a transforming growth factor -PTGF-P, bone formation protein (BMP ), Vascular endothelial growth factor (VEGF) or epithelial cell growth factor (EGF).
  • BMP bone formation protein
  • VEGF Vascular endothelial growth factor
  • EGF epithelial cell growth factor
  • cells to be regenerated inside the hydrogel may be embedded.
  • a method of preparing an artificial support comprises injecting a biodegradable synthetic polymer and a hydrogel into a first syringe and a crab 2 syringe, respectively, and the biodegradable synthesis injected into the first syringe.
  • a first injection step of forming a plurality of biodegradable synthetic polymer lines at regular intervals by spraying a polymer, and spraying the hydrogel injected into the second syringe to form a hydrogel between the plurality of biodegradable synthetic polymer lines Alternately stacking the biodegradable synthetic polymer-hydrogel layer by repeating the second spraying step of forming lines and pores alternately to form a biodegradable synthetic polymer-hydrogel layer, and repeating the first spraying step and the second spraying step. It includes a lamination step.
  • the method may further include a temperature control step of controlling the temperature of the biodegradable synthetic polymer and the hydrogel through a temperature controller connected to the first syringe and the second syringe after the injection step.
  • the biodegradable synthetic polymer may include at least one of polylactic acid, polyglycolic acid, polycaprolactone and polylacticcoglycolic acid.
  • the hydrogel may be water soluble, wherein the hydrogel may be any one of collagen, gel latin, chitosan, alginic acid or hyaluronic acid.
  • the growth factor capable of regulating the growth and function of cells in the hydrogel may be embedded, and the growth factor embedded in the hydrogel may be converted to growth factor -i3TGF-3, a bone morphogenetic protein (BMP). ), Vascular endothelial growth factor (VEGF) or epithelial cell growth factor (EGF).
  • BMP bone morphogenetic protein
  • VEGF Vascular endothelial growth factor
  • EGF epithelial cell growth factor
  • the cells to be regenerated inside the hydrogel can be embedded.
  • the embodiment of the present invention it is possible to improve the cell deposition ability and the proliferation ability of the deposited cells, to improve the mechanical strength of the artificial support, and to control the shape and pore size on the artificial support. do. .
  • FIG. 1 is an enlarged photograph of a artificial artificial support according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing the configuration of a multi-axis lamination system for manufacturing an artificial support according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing a process for preparing an artificial support according to an embodiment of the present invention.
  • 4A to 4E are views sequentially illustrating a process of manufacturing an artificial support according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the results of cell proliferation in an artificial scaffold prepared in an embodiment of the present invention.
  • FIG. 1 is an enlarged photograph of an artificial support manufactured according to an embodiment of the present invention.
  • the artificial support according to the present embodiment will be described in detail with reference to the artificial support.
  • hydrogel is a three-dimensional hydrophilic macromolecular structure that can contain a large amount of water, and can absorb water from as little as 20% of the total weight to as much as 953 ⁇ 4 or more.
  • These natural polymers are derived from natural materials, animals and humans, and have very good biocompatibility.
  • the support prepared by the hydrogel has less reaction response after transplantation, and is widely used as a support for tissue engineering because of its excellent biodegradability.
  • it has the advantage of protecting cells or peptides, proteins, DNA, etc. in an aqueous environment, easy delivery of products that supply or secrete nutrients to cells, and easily modify cell adhesion ligands.
  • the support when the support is formed using only hydrogel, its use may be limited to soft tissue regeneration due to low mechanical strength, and in terms of biodegradable behavior, it may be easily decomposed by enzymes in the body, and thus the support is divided into tissues to be regenerated. There can be problems with not playing a role.
  • the artificial support according to the present embodiment is formed to include both a biodegradable synthetic polymer and a hydrogel. Specifically, a plurality of biodegradable synthetic polymer-hydrogel layers including a biodegradable synthetic polymer and a hydrogel are formed and alternately stacked to form a lattice.
  • the biodegradable synthetic polymers are polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL) and polylacticcoglycolic acid (Poly—lactic-co-glycolic acid (PLGA).
  • PLA polylactic acid
  • PGA polyglycolic acid
  • PCL polycaprolactone
  • PLGA polylacticcoglycolic acid
  • any one of the above materials may be used to form a biodegradable synthetic polymer, or two or more materials may be used in combination.
  • hydrogels include collagen and gelatin.
  • an artificial support may be formed by enclosing a growth factor capable of controlling cell growth and function inside the hydrogel, wherein the growth factor may be a conversion growth factor-? TGF-? BMP), vascular endothelial cell growth factor (VEGF), epithelial cell growth factor (EGF) and the like.
  • the growth factor may be a conversion growth factor-? TGF-? BMP), vascular endothelial cell growth factor (VEGF), epithelial cell growth factor (EGF) and the like.
  • the artificial support may be formed by encapsulating cells to be regenerated in the hydrogel, wherein the growth factor is used. I can enclose it.
  • FIG. 2 is a view schematically showing a manufacturing system for manufacturing an artificial support according to an embodiment of the present invention
  • Figure 3 is a flow chart showing a process for manufacturing an artificial support using such a manufacturing system
  • 4A to 4E are diagrams sequentially illustrating a process of manufacturing an artificial support according to an exemplary embodiment of the present invention.
  • the artificial support according to an embodiment of the present invention and a method of manufacturing the same will be described in detail below. do.
  • the artificial scaffold manufacturing system is a multi-axis lamination system.
  • the artificial support 200 having a three-dimensional shape is formed by using the 100.
  • the multiaxial lamination system 100 includes a lamination head 150 for ejecting an artificial support material to a predetermined thickness.
  • the stacking head 150 includes a syringe 151 in which material is introduced and stored therein, a nozzle 153 for injecting the material introduced into the syringe 151, and a heater 155 for appropriately maintaining the temperature of the material.
  • the biodegradable synthetic polymer and the hydrogel are injected into the syringes 151 of the two stacking heads 150, respectively, and sprayed through the respective nozzles 153 to form the artificial support 200. .
  • the multi-axis stacking system 100 moves the stacking head 150 in the X-axis direction.
  • Y-axis displacement moving part 120 for moving the X-axis displacement moving part 120 and the lamination head 150 in the y-axis direction
  • ⁇ -axis displacement moving part 140 for vertically moving the laminating head 150 in the Z- axis direction.
  • the shape of the artificial support 200 to be manufactured is input to the integrated controller 10 through the data model 20.
  • the data model 20 of the artificial support 200 is preferably set to each coordinate value of the three-dimensional artificial support 200 in order to input the 3D CAD (CAD) data.
  • the integrated controller 10 controls the operation of the multi-axis stacking system 100 in accordance with the three-dimensional shape data model of the artificial support 200. Thereby, the multi-axis stacking system 100 is applied according to the three-dimensional shape data of the artificial support 200 transmitted from the integration controller 10.
  • the artificial support material that is, the biodegradable synthetic polymer and the hydrogel are alternately sprayed while the layer head 150 behaves at the coordinate values to be set.
  • the temperature controller 30 is connected to the stacking head 150 of the multiaxial stacking system 100 to control the temperature of the syringe 151 of the stacking head 150.
  • the temperature controller 30 is connected to and controls the heater 155 attached to the stacking head 150 to control the biodegradable synthetic polymer and the hydrogel in the syringe 151 of the stacking head 150 to a predetermined temperature. Heated or maintained, whereby the biodegradable synthetic polymer and hydrogel's artificial support material can be changed or maintained in a state suitable for spraying, and sprayed through a syringe 151 of the stacking head 150 to a predetermined thickness Can be.
  • the temperature controller 30 is connected to the integrated control device 10 as well as the multi-axis stacking system 100, it can operate in conjunction with the behavior of the stacking head 150.
  • the pressure controller 40 is connected to the stacking head 150 of the multi-axis stacking system 100 to control the pressure delivered to the stacking head 150. That is, the pressure controller 40 is a means for controlling the pressure transmitted to the pressure transmitter of the stacking head 150, and the injection speed of the biodegradable synthetic polymer and the hydrogel ejected through the nozzle 153 of the stacking head 150 Can be different.
  • the pressure controller 40 according to the present embodiment transfers the pressure to the pressure transmitter of the stacking head 150 by the pneumatic method.
  • the three-dimensional artificial scaffold manufacturing system has a pneumatic device 50 that applies direct pressure to the pressure transmitter of the stacking head 150, which is operated by the pressure controller 40.
  • the air compressor 50 may be independently connected to each axis of the multi-axis stacking system 100 to adjust the air pressure in various ways for each axis. '
  • the artificial support manufacturing system using the multi-axis lamination system 100 is a system equipped with four axes that can control position, temperature, and pressure independently of each other, unlike a general single-axis system. It is possible to adjust the shape of the artificial support and the size of the pores.
  • the method of manufacturing an artificial support includes injecting a biodegradable synthetic polymer and a hydrogel into a syringe (S10), respectively, and spraying the biodegradable synthetic polymer at regular intervals.
  • the temperature control step of controlling the temperature of the biodegradable synthetic polymer and the hydrogel injected into the syringe through the silver controller may be further included.
  • the manufacturing method of such an artificial support will be described in more detail with reference to FIGS. 4A to 4E.
  • data is transferred from the data model 20 to the integrated control device 10 to form the artificial ' support 200.
  • the integrated controller 10 controls the temperature controller 30, the pressure controller 40 and the displacement moving parts 120, 130, 140 in each axial direction based on the transmitted data.
  • the temperature controller 30 and the heater 155 are maintained such that they are suitable for injection. Adjust the temperature of the syringe 151.
  • the biodegradable synthetic polymer may be used in any one or two or more of PLA, PGA, PCL and PLGA, and as a hydrogel, collagen, gelatin, chitosan, alginic acid and hyaluronic acid Either one can be used.
  • the biodegradable synthetic polymer is a state in which viscosity of PLGA and PCL in which the ratio of PLA and PGA is 85:15 is maintained at 120 degrees through the temperature controller 30 and the heater 155 at 120 degrees. It can be used by melting, hydrogel can be used to maintain the proper viscosity by stirring well so that the hyaluronic acid in the form of a powder mixed with distilled water to a gel state. At this time, the hydrogel does not apply heat because the properties of the material may be altered by heat.
  • the stacking head is controlled by the displacement moving parts 120, 130, 140 and the pressure controller 40, and is placed on the working table 110 through the spray nozzle 153 of the stacking head 150.
  • the biodegradable synthetic polymer and the hydrogelol are alternately sprayed to form the artificial support 200.
  • pneumatic pressure is used to inject the biodegradable synthetic polymer and hydrogel, and the pneumatic pressure used is about 650 kPa.
  • the biodegradable synthetic polymer in the first spraying step S20, is sprayed over several lines at predetermined intervals.
  • a plurality of biodegradable synthetic polymer lines 210 are formed, and as shown in FIG. 4B, a plurality of biodegradable polymers are formed so as to have an appropriate height in order to spray the hydrogel between the biodegradable synthetic polymer lines 210.
  • the height of one layer of the biodegradable synthetic polymer line 210 is about 100 ⁇ m, and it is laminated 3 to 4 times to have a height of 300 ⁇ m to 400 ⁇ m.
  • Figure 4c shows a second spray step (S30) for injecting a hydrogel, in the second spray step (S30) by forming a biodegradable synthetic polymer line 210 at intervals therebetween formed Hydrogel sprayed on a plurality of hydrogel lines 220
  • the hydrogel is sprayed by skipping the voids one by one, which is necessary to secure a void that can exchange oxygen and nutrients in the artificial support 200.
  • a single biodegradable synthetic polymer-hydrogel layer 240 is formed through the first spraying step S20 and the second spraying step S30.
  • the biodegradable synthetic polymer-hydrogel layer 240 is composed of the biodegradable synthetic polymer-hydrogel unit 230 including the biodegradable synthetic polymer line 210 and the hydrogel line 220 at regular intervals. Between-is made by forming voids.
  • the lamination step S40 is a step of laminating a plurality of biodegradable synthetic polymer-hydrogel layers 240 by repeating the first spraying step S20 and the second spraying step S30. Referring to FIG. After laminating one layer, the whole support is rotated 90 degrees, and the next layer is laminated so that the artificial support 200 forms a lattice pattern. By repeating the lamination step (S40) until the desired height it is possible to manufacture a grid-like artificial support 200 as shown in Figure 4e. / For example, in order to obtain an artificial support having a height of 2 I, the biodegradable synthetic polymer-hydrogel layer 240 having a height of 300 ⁇ m to 400 ⁇ m may be laminated 5 to 6 times.
  • artificial scaffolds were prepared according to the above-described artificial scaffold preparation method by using PCL and PLGA as biodegradable synthetic polymers, using hyaluronic acid as hydrogel, and gelatin.
  • MC3T3-E1 cells which are osteoblasts (pre-osteoblast) were used for the experiment, and 1 cells were implanted per artificial scaffold.
  • the cell counting kit-8 was used for evaluation of cell proliferation. Proliferation evaluation up to was performed.
  • FIG. 5 is a graph showing the results of cell proliferation according to the above experiment, and it is confirmed that the cell deposition of the artificial supports in which the hydrogel is embedded and the proliferation ability of the deposited cells are superior to the artificial support that does not include a hydrogel. Can be.
  • the artificial support including the biodegradable synthetic polymer and the hydrogel according to the present embodiment has an excellent effect on cell proliferation, and mechanical strength can also be improved as described above.
  • by enclosing the growth factor and cells together to help the regeneration of the tissue inside the artificial scaffold can maximize the efficiency of tissue regeneration.
  • this invention was demonstrated through the preferable embodiment, this invention is not limited to the above-mentioned embodiment.
  • the pattern of the biodegradable synthetic polymer part or the spraying position of the hydrogel can be freely adjusted, and by using a multi-axial lamination system, an artificial support other than a lattice pattern can be produced. That is, those skilled in the art to which the present invention pertains can readily understand that various modifications and variations are possible without departing from the spirit and scope of the claims set out below.

Abstract

본 발명은 조직 재생 능력이 강화된 인공 지지체 및 그 제조 방법에 관한 것으로서, 본 발명의 일 실시예에 따른 인공 지지체는 생분해성 합성 고분자-하이드로겔(hydrogel) 층을 교대로 적층하여 격자 형태로 형성한다. 이 때, 상기 생분해성 합성 고분자-하이드로겔 층은 생분해성 합성 고분자 및 하이드로겔을 포함하는 복수의 생분해성 합성 고분자-하이드로겔 유닛을 일정한 간격을 두고 배치하여 형성된다.

Description

【명세서】
【발명의 명칭】
3차원 인공 지지체 및 그 제조방법
[기술분야]
<ι> 본 발명은 3차원 인공 지지체 및 그 제조방법에 관한 것으로서, 보다 상세하 게는 생분해성 고분자 및 하이드로겔로 형성된 3차원 인공 지지체 및 그 제조방법 에 관한 것이다.
【배경기술】
<2> 조직 공학 (Tissue Engineering) 분야는 손상된 장기를 재생하기 위하여 환자 의 조직으로부터 소량 채취한 세포를 체외에서 대량으로 배양한 후, 3차원 조직으 로 분화시켜 이것을 조직 및 기관으로 재생시키는 기술 분야로서, 조직 공학 분야 와 관련하여 최근 손상된 인체의 다양한 조직과 기관의 기능을 복원하기 위해 다양 한 접근 방식으로 연구가 진행되고 있다.
<3> 조직 공학에서 조직의 3차원 배양을 위해서는 세포가 3차원 환경으로 인식할 수 있는 인공 지지체를 필요로 하는데, 이러한 인공 지지체는 세포가 원활한 증착, 증식 및 분화를 유도할 수 있도록 적절한 ECM(Extra Cellular Matrix) 구조를 가지 고 있어야 한다. 또한, 세포의 이동 신진대사 촉진 및 영양분 공급을 위한 혈관 침투를 위해 적절한 크기로 서로 연결된 다공성의 3차원 구조를 가져야 하며 , 조직 재생 기간 동안 그 형태를 유지할 수 있을 정도의 작절한 강도가 유지되어야 한다.
<4> 종래에는 이러한 3차원 인공 지지체를 얻기 위하여 염발포법, 상분리법, 염 침출법, 유화 동결 건조법 둥의 방법을 사용하였는데, 이러한 방법으로 제작된 인 공 지지체는 다공성 구조의 공극의 크기, 위치 및 공극률 둥의 조절이 어려운 한계 를 지닌다. 또한, 인공 지지체 내의 공극간의 연결성을 높이기 위해 공극률을 많 이 높이게 됨에 따라 기계적 강도 또한 낮아지게 되는 문제가 발생한다.
【발명의 상세한 설명】
[기술적 과제; J
<5> 본원 발명은 전슬한 배경기술의 문제점을 해결하기 위한 것으로서, 생분해성 고분자와 하이드로겔 (hydrogel)을 융합하여 조직 재생 능력이 강화된 인공 지지체 및 그 제조 방법을 제공하는 데 그 목적이 있다.
【기술적 해결방법】
<6> 본 발명의 일 실시예에 따른 인공 지지체는 생분해성 합성 고분자-하이드로 겔 (hydrogel) 층을 교대로 적층하여 격자 형태로 형성되고, 이 때 상기 생분해성 합성 고분자 -하이드로겔 층은 생분해성 합성 고분자 및 하이드로겔을 포함하는 복 수의 생분해성 합성 고분자 -하이드로겔 유닛을 일정한 간격을 두고 배치하여 형성 된다.
<7> 상기 생분해성 합성 고분자 -하이드로겔 유닛은 대향하는 한 쌍의 생분해성 합성 고분자 라인 사이에 하이드로겔 라인을 개재하여 형성될 수 있다.
<8> 상기 생분해성 합성 고분자는 폴리락틱산 (Poly-lactic Acid, PLA) , 폴리글리 콜산 (Poly-glycolic Acid, PGA), 폴리카프로락톤 (Polycaprolactone) 및 폴리락틱코 글리콜산 (Poly-lactic— co-glycolic Acid, PLGA) 중 적어도 하나를 포함할 수 있다. <9> 상기 하이드로겔은 수용성일 수 있고, 이 때 콜라겐 (Collagen), 젤라틴
(Gelatin), 키토산 (Chitosan), 알긴산 (Alginic Acid) 또는 히아루론산 (Hyaluronic Acid) 증 어느 하나일 수 있다.
<ιο> 상기 하이드로겔 내부에 세포의 성장과 기능을 조절할 수 있는 성장인자가 내재될 수 있으며, 상기 하이드로겔 내부에 내재된 상기 성장인자는 전환성 성장인 자 -PTGF-P, 골형성 단백질 (BMP), 혈관 내피 세포 성장인자 (VEGF) 또는 상피 세포 성장인자 (EGF) 중 어느 하나일 수 있다. 또한, 상기 하이드로겔 내부에 재생시키 려는 세포가 내재될 수 있다.
<ιι> 본 발명의 일 실시예에 따른 인공 지지체의 제조방법은 제 1 시린지 및 게 2 시린지에 각각 생분해성 합성 고분자 및 하이드로겔을 주입하는 주입단계, 상기 제 1 시린지에 주입된 상기 생분해성 합성 고분자를 분사하여 일정한 간격을 두고 복 수의 생분해성 합성 고분자 라인을 형성하는 제 1 분사단계, 상기 제 2 시린지에 주 입된 상기 하이드로겔을 분사하여 상기 복수의 생분해성 합성 고분자 라인의 사이 에 하이드로겔 라인과 공극을 교대로 형성해 생분해성 합성 고분자 -하이드로겔 층 을 형성하는 제 2 분사단계 및 상기 제 1 분사단계와 상기 계 2 분사단계를 반복하여 상기 생분해성 합성 고분자 -하이드로겔 층을 교대로 적층하는 적층단계를 포함한 다.
<12> 또한, 상기 주입단계 이후 상기 제 1 시린지 및 상기 제 2 시린지에 연결된 온 도 제어기를 통해 상기 생분해성 합성 고분자 및 상기 하이드로겔의 온도를 제어하 는 온도제어단계를 더 포함할 수 있다.
<13> 상기 생분해성 합성 고분자는 폴리락틱산, 폴리글리콜산, 폴리카프로락톤 및 폴리락틱코글리콜산 중 적어도 하나를 포함할수 있다.
<14> 상기 하이드로겔은 수용성일 수 있고, 이 때 상기 하이드로겔은 콜라겐, 젤 라틴, 키토산, 알긴산 또는 히아루론산 증 어느 하나일 수 있다. <15> 상기 하이드로겔 내부에 세포의 성장과 기능을 조절할 수 있는 성장인자를 내재시킬 수 있으며, 상기 하이드로겔 내부에 내재시킨 상기 성장인자는 전환성 성 장인자 -i3TGF- 3, 골형성 단백질 (BMP), 혈관 내피 세포 성장인자 (VEGF) 또는 상피 세포 성장인자 (EGF) 중 어느 하나일 수 있다. 또한, 상기 하이드로겔 내부에 재생 시키려는 세포를 내재시킬 수 있다.
【유리한 효과】
<16> 본 발명의 실시예에 따르면 세포 증착 능력과 증착된 세포의 증식 능력을 향 상시킬 수 있고, 인공 지지체의 기계적 강도를 개선할 수 있으며, 인공 지지체위 형상 및 공극의 크기를 조절할수 있게 된다. .
<17> 또한, 다축 적층 시스템의 자동화 시스템을 활용하여 공정 속도를 향상시킬 수 있게 된다.
【도면의 간단한 설명】
<18> 도 1은 본 발명의 일 실시예에 따라쎄조한 인공 지지체를 확대하여 나타낸 사진이다ᅳ
<19> 도 2는 본 발명의 일 실시예에 따라 인공 지지체를 제조하기 위한 다축 적층 시스템의 구성을 개략적으로 나타내는 도면이다.
<20> 도 3은 본 발명의 일 실시예에 따라 인공 지지체를 제조하는 공정올 나타내 는 순서도이다.
<21> 도 4a 내지 도 4e는 본 발명의 일 실시예에 따라 인공 지지체를 제조하는 과 정을 순차적으로 나타내는 도면이다.
<22> 도 5는 본 발명의 일 실시예에 파라 제조한 인공 지지체에서 세포 증식한 결 과를 나타내는 그래프이다.
【발명의 실시를 위한 형태]
<23> 아하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속 하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설 명한다. 한편, 도면에서 각 구성요소의 크기는 설명의 편의를 위하여 임의로 나타 낸 것으로, 본 발명이 반드시 도면에 도시된 바에 한정되지 않는다 .
<24> 도 1은 본 발명의 일 실시예에 따라 제조한 인공 지지체를 확대하여 나타낸 사진으로, 이하에서는 이를 참조하여 본 실시예에 따른 인공 지지체에 대하여 구체 적으로 설명한다.
<25> 현재 널리 이용되는 생분해성 합성 고분자로 제작된 인공 지지체는 세포에 완벽한 3차원적인 환경을 제공하지 못하며 , 상대적으로 표면의 소수성의 성질로 인 해 초기 세포 주입시에 초기 세포 주입 시에 세포 손실이 크게 되는 등 세포 친화 도가 낮은 한계가 있다.
<26> 한편, 하이드로겔 (hydrogel)은 다량의 수분을 함유할 수 있는 3차원의 친수 성 고분자 망상 구조를 가진 물질로서, 적게는 전체 중량의 20%에서 많게는 95¾ 이 상의 물을 흡수할 수 있는데, 이러한 천연 고분자는 천연 물질, 동물, 인체 둥에서 유래한 고분자로 매우 우수한 생체 적합성을 가진다. 이에 따라, 하이드로겔로 제 작된 지지체는 이식 후 염증 반웅이 적고, 생분해성이 우수하여 조직 공학용 지지 체로 많이 사용된다. 또한, 수용액 환경 하에서 세포 또는 펩타이드, 단백질, DNA 등을 보호할 수 있고 세포에 영양원을 공급하거나 분비하는 생성물의 전달이 용이 하며 세포 접착 리간드를 쉽게 수식할 수 있는 장점을 지니고 있다. 하지만, 하이 드로겔만으로 지지체를 형성할 경우 낮은 기계적 강도로 인해 연조직 재생 등에만 그 사용이 한정될 수 있고, 생분해성 거동 측면에서도 체내 효소에 의해 쉽게 분해 될 수 있어 조직이 재생되기까지 층분한 지지체 역할을 하지 못하는 문제가 생길 수 있다.
<27> 이러한 한계를 극복하기 위하여 본 실시예에 따른 인공 지지체는 생분해성 합성 고분자 및 하이드로겔을 모두 포함하여 형성된다. 구체적으로는 생분해성 합 성 고분자 및 하이드로겔을 포함하는 복수의 생분해성 합성 고분자 -하이드로겔 층 을 형성하고, 이를 교대로 적층함으로써 격자 형태로 형성한다.
<28> 이 때 생분해성 합성 고분자는 폴리락틱산 (Poly-lactic Acid, PLA), 폴리글 리콜산 (Poly-glycolic Acid, PGA), 폴리카프로락톤 (Polycaprolactone, PCL) 및 폴 리락틱코글리콜산 (Poly— lactic-co-glycolic Acid, PLGA) 중 적어도 하나를 포함할 수 있다. 즉, 상기 재료 증 어느 하나를 사용하여 생분해성 합성 고분자를 구성할 수 있고, 또는 둘 이상의 재료를 흔합하여 사용할수도 있다.
<29> 또한, 하이드로겔로 웅용 가능한 천연 고분자로는 콜라겐 (Collagen), 젤라틴
(Gelatin), 키토산 (Chi tosan) , 알긴산 (Alginic Acid), 히아루론산 (Hyaluronic Acid) 등이 있다.
<30> 한편, 세포의 성장 및 기능을 조절할 수 있는 성장인자를 하이드로겔 내부에 봉입하여 인공 지지체를 형성할 수도 있는데, 이 때 성장인자로는 전환 성장인자- ? TGF-?, 골형성 단백질 (BMP), 혈관 내피 세포 성장인자 (VEGF), 상피 세포 성장인 자 (EGF) 등이 사용될 수 있다. 이러한 성장인자를 하이드로겔 내부에 내재시킴으 로써 조직 재생을 증진시킬 수 있게 된다. 또한, 하이드로겔 내부에 재생시키고자 하는 세포를 봉입하여 인공 지지체를 형성할 수도 있고, 이 때 상기 성장인자를 함 께 봉입할 수 있다.
<31> 이와 같이 생분해성 합성 고분자에 하이드로겔올 융합하여 인공 지지체를 형 성함으로써 , 세포 증착 능력과 증착된 세포의 증식 능력을 향상시킬 수 있고, 기계 적 강도 문제 역시 해결할 수 있게 된다.
<32> 도 2는 본 발명의 일 .실시예에 따른 인공 지지체를 제조하기 위한 제조 시스 템을 개략적으로 나타내는 도면이고, 도 3은 이러한 제조 시스템을 이용하여 인공 지지체를 제조하는 공정을 나타내는 순서도이며, 도 4a 내지 도 4e는 본 발명의 실 시예에 따라 인공 지지체를 제조하는 과정을 순차적으로 나타내는 도면으로, 이하 에서는 이들을 참조하여 본 발명의 일 실시예에 따른 인공 지지체 및 그 제조방법 을 구체적으로 설명한다.
<33> 도 2에 도시된 바와 같이, 인공 지지체 제조 시스템은 다축 적층 시스템
(100)을 이용하여 3차원 형상의 인공 지지체 (200)를 형성한다.
<34> 다축 적층 시스템 (100)은 인공 지지체 재료를 기 설정된 굵기로 분출시키는 적층 해드 (150)를 구비한다. 적층 헤드 (150)는 재료가 유입되고 이를 보관하는 시 린지 (syringe)(151), 시린지 (151)로 유입된 재료를 분사시키는 노즐 (153) 및 재료 의 온도를 적절하게 유지시키는 히터 (155)를 포함하는데 , 본 실시예에서는 두 개의 적층 헤드 (150)의 시린지 (151)에 각각 생분해성 합성 고분자와 하이드로겔이 주입 되어 각각의 노즐 (153)을 통해 분사됨으로써 인공 지지체 (200)가 형성된다.
<35> 이런 적층 해드 (150)를 X축과 y축으로 이루어진 평면 좌표 뿐만 아니라 상하 방향의 z축으로도 거동시키기 위해 다축 적층 시스템 (100)은 적층 헤드 (150)를 X축 방향으로 거동시키는 X축 변위 이동부 (120), 적층 헤드 (150)를 y축 방향으로 거동 시키는 y축 변위 이동부 (130), 적층 헤드 (150)를 Z축 방향으로 상하 거동시키는 τ 축 변위 이동부 (140)를 각각 구비한다. 즉, 이와 같은 다축 적층 시스템 (100)은 작업 테이블 (110)에 인공 지지체 재료를 매트릭스 방식으로 적층함으로써, 형상화 하고자 하는 복잡한 3차원 형상의 인공 지지체 (200)를 제작할 수 있다.
<36> 제작하고자 하는 인공 지지체 (200)의 형상 등은 데이터 모델 (20)을 통해 통 합 제어장치 (10)에 입력된다. 이 때, 인공 지지체 (200)의 데이터 모델 (20)은 3D 캐드 (CAD) 데이터로 입력하기 위하여 3차원 형상의 인공 지지체 (200)의 각 좌표 값 이 설정되는 것이 바람직하다.
<37> 통합 제어장치 (10)는 인공 지지체 (200)의 3차원 형상 데이터 모델에 따라 다 축 적층 시스템 (100)의 작동을 제어한다. 이에 의해, 다축 적층 시스템 (100)은 통 합 제어장치 (10)로부터 전달되는 인공 지지체 (200)의 3차원 형상 데이터에 따라 적 층 해드 (150)를 설정하고자 하는 좌표 값으로 거동시키면서 인공 지지체 재료, 즉 생분해성 합성 고분자와 하이드로겔을 교대로 분사한다.
<38> 온도 제어기 (30)는 다축 적층 시스템 (100)의 적층 헤드 (150)에 연결되어, 적 층 해드 (150)의 시린지 (151)의 온도를 제어한다. 구체적으로, 온도 제어기 (30)는 적층 헤드 (150)에 부착된 히터 (155)와 연결되어 이를 제어함으로써, 적층 헤드 (150)의 시린지 (151) 내의 생분해성 합성 고분자와 하이드로겔를 기 설정된 온도로 가열 또는 유지하고, 이로 인해 생분해성 합성 고분자와 하이드로겔의 인공 지지체 재료는 분사되기에 적절한 상태로 변화 또는 유지될 수 있고, 적층 헤드 (150)의 시 린지 (151)를 통해 기 설정된 굵기로 분사될 수 있다. 한편, 온도 제어기 (30)는 다 축 적층 시스템 (100)뿐만 아니라, 통합 제어장치 (10)에도 함께 연결됨으로써, 적층 헤드 (150)의 거동에 연계되어 동작할 수 있다.
<39> 압력 제어기 (40)는 다축 적층 시스템 (100)의 적층 헤드 (150)에 연결되어, 적 층 헤드 (150)에 전달되는 압력을 제어한다. 즉, 압력 제어기 (40)는 적층 헤드 (150)의 압력 전달기에 전달되는 압력을 제어하는 수단으로서, 적층 헤드 (150)의 노즐 (153)을 통해 분출되는 생분해성 합성 고분자 및 하이드로겔의 분사 속도를 달 리할 수 있다. 본 실시예에 따른 압력 제어기 (40)는 공압 방식에 의해 적층 헤드 (150)의 압력 전달기에 압력을 전달한다. 이를 위해 3차원 인공 지지체 제조 시스 템은 적층 헤드 (150)의 압력 전달기에 직접적안 압력을 가하는 공압기 (50)를 구비 하며 , 이런 공압기 (50)는 압력 제어기 (40)에 와해 작동된다. 이 때 , 공압기 (50)는 다축 적층 시스템 (100)의 각 축에 독립적으로 연결되어 각 축별로 다양하게 공압을 조절할 수 있다. '
<40> 이와 같이 다축 적층 시스템 (100)을 이용한 인공 지지체 제조 시스템은 일반 적인 단일축 시스템과 달리 서로 독립적으로 위치, 온도 및 압력의 제어가 가능한 4개의 축이 장착된 시스템으로서, 이러한 제조 시스템을 이용하여 인공 지지체의 형상과 공극의 크기 등의 조절이 가능하게 된다.
<41> 도 3을 참조하면, 본 실시예에 따른 인공 지지체를 제조하는 방법은 생분해 성 합성 고분자 및 하이드로겔을 각각 시린지에 주입하는 단계 (S10), 일정한 간격 을 두고 생분해성 합성 고분자를 분사하는 제 1 분사단계 (S20), 생분해성 합성 고분 자 라인 사이에 하이드로겔을 분사하는 제 2 분사단계 (S30) 및 생분해성 합성 고분 자 -하이드로겔 층을 교대로 적층하는 단계 (S40)를 포함하고, 은도 제어기를 통하여 시린지에 주입된 생분해성 합성 고분자 및 하이드로겔의 온도를 제어하는 온도 제 어단계를 더 포함할 수 있다. <42> 이와 같은 인공 지지체의 제조방법을 도 4a 내지 도 4e를 참조하여 보다 구 체적으로 설명한다.
<43> 우선, 인공 '지지체 (200)를 형성하기 위하여 통합 제어장치 (10)로 데이터 모 델 (20)로부터 데이터를 전달한다. 통합 제어장치 (10)는 전달된 데이터를 토대로 온도 제어기 (30), 압력 제어기 (40) 및 각 축 방향으로의 변위 이동부들 (120, 130, 140)을 제어한다.
<44> 두 개의 적층 해드 (150)의 시린지 (151)에 각각 생분해성 합성 고분자와 하이 드로겔을 주입시킨 후 온도 제어기 (30) 및 히터 (155)를 통하여 이들이 분사되기에 적합한 상태가 유지되도록 시린지 (151)의 온도를 조절한다 . 이 때 , 전술한 바와 같이 , 생분해성 합성 고분자로는 PLA, PGA, PCL 및 PLGA 중 어느 하나 또는 둘 이 상을 혼합하여 사용할 수 있고, 하이드로겔로는 콜라겐, 젤라틴, 키토산, 알긴산 및 하이루론산 중 어느 하나를 사용할 수 있다. 일례로, 생분해성 합성 고분자은 PLA와 PGA의 비율이 85: 15인 PLGA과 PCL을 90도에서 흔합한 재료를 온도 제어기 (30) 및 히터 (155)를 통해 120도를 유지함으로써 점도를 가진 상태로 용융시켜 사 용할 수 있으며, 하이드로겔은 파우더 형태의 하이루론산을 증류수와 흔합하여 젤 상태가 되도록 잘 저어 적절한 점도를 유지하여 사용할 수 있다. 이 때, 하이드로 · 겔은 열에 의해 재료의 성질이 변질될 수 있으므로 열을 가하지 않는다.
<45> 이후, 적층 헤드가 변위 이동부들 (120, 130, 140) 및 압력 제어기 (40)의 제 어를 받고, 적층 헤드 (150)의 분사 노즐 (153)을 통해 작업 테이불 (110) 상에 생분 해성 합성 고분자와 하이드로겔올 교대로 분사함으로써 인공 지지체 (200)를 형성하 게 된다. 한편, 본 실시예에서는 생분해성 합성 고분자와 하이드로겔을 분사하는 데 있어서 공압을 이용하며 , 사용되는 공압은 약 650kPa로 한다.
<46> 도 4a 및 도 4b를 참조하면, 제 1 분사 단계 (S20)에서는 생분해성 합성 고분 자를 기설정된 간격을 두고 여러 라인에 걸쳐 분사시킨다. 이로 인해 복수의 생분 해성 합성 고분자 라인 (210)이 형성되게 되고, 생분해성 합성 고분자 라인 (210)의 사이에 하이드로겔을 분사시키기 위해 적절한 높이를 갖도록, 도 4b에서와 같이, 생분해성 고분자를 여러 번 적층한다. 본 실시예에서는 생분해성 합성 고분자 라 인 (210)의 한 층의 높이가 약 lOOum이고, 이를 3 내지 4회 적층하여 300um 내지 400um의 높이가 되도록 한다.
<47> 도 4c는 하이드로겔을 분사하는 제 2 분사 단계 (S30)를 나타내는 것으로, 제 2 분사 단계 (S30)에서는 간격을 두고 생분해성 합성 고분자 라인 (210)을 형성함으로 써 그 사이에 형성된 공극에 하이드로겔을 분사하여 복수의 하이드로겔 라인 (220) 을 형성하는데, 하이드로젤을 분사하는 분사 노즐 (153)의 위치가 공극의 가운데 오 도록 제어함으로써 정확한 위치에 분사할 수 있도록 한다. 이 때, 공극을 한 칸씩 건너뛰며 하이드로겔을 분사하게 되는데, 이는 인공 지지체 (200) 내에 산소 및 영 양분올 주고 받을 수 있는 공극이 필요하여 이를 확보하기 위함이다. 이와 같은 방식으로 제 1 분사 단계 (S20) 및 제 2 분사 단계 (S30)를 거쳐 한 층의 생분해성 합 성 고분자 -하이드로겔 층 (240)이 형성된다. 즉, 생분해성 합성 고분자 -하이드로겔 층 (240)은 생분해성 합성 고분자 라인 (210)과 하이드로겔 라인 (220)을 포함하는 생 분해성 합성 고분자—하이드로겔 유닛 (230)이 일정한 간격으로 배치되어 그 사이에 - 공극을 형성함으로써 이루어진다.
<48> 적층 단계 (S40)는 제 1 분사 단계 (S20)와 제 2 분사 단계 (S30)를 반복하여 생 분해성 합성 고분자 -하이드로겔 층 (240)올 복수 적층하는 단계로서, 도 4d를 참조 하면, 한 층을 적층한 후 전체적으로 90도 회전을 시켜 다음 층을 적층함으로써 인 공 지지체 (200)가 격자 무늬를 이루도록 한다. 이와 같은 적층 단계 (S40)를 원하 는 높이가 될 때까지 반복 수행함으로써 도 4e에서와 같이 격자 무늬의 인공 지지 체 (200)를 제조할 수 있게 된다. / 일례로, 2 I 높이의 인공 지지체를 얻기 위하여 는 300um 내지 400um 높이의 생분해성 합성 고분자 -하이드로겔 층 (240)을 5 내지 6 회 적층할수 있다.
<49> 본 실시예에 따른 인공 지지체의 효과를 검증하기 위하여 다음과 같이 실험 을 수행하였다. 본 실험을 위하여, 생분해성 합성 고분자로 PCL과 PLGA를 사용하 고 하이드로겔로 하이루론산을 사용한 경우와 젤라틴을 사용한 경우로 나누어 전술 한 인공 지지체 제조 방법에 따라 인공 지지체를 제작하였다. 또한, 실험을 위해 조골아세포 (pre-osteoblast)인 MC3T3-E1 세포를 사용하였고, 인공 지지체당 1( 개의 세포를 식종하였다. 세포 증식의 평가를 위하여 cell counting kit-8을 사용하였 으며, 7일까지의 증식 평가를 수행하였다.
<50> 도 5는 상기 실험에 따른 세포 증식 결과를 나타내는 그래프로서, 하이드로 겔이 내재되어 있는 인공지지체들의 세포 증착 및 증착된 세포들의 증식 능력이 하 이드로겔을 포함하지 않는 인공 지지체보다 우수함을 확인할 수 있다.
<51> 이를 통해 본 실시예에 따라 생분해성 합성 고분자와 하이드로겔을 포함하는 인공 지지체가 세포 증식에 우수한 효과를 가지고 있음을 확인할 수 있고, 전술한 바와 같이 기계적 강도 역시 개선할 수 있게 된다. 또한, 인공 지지체 내부에 조 직의 재생에 도움을 줄 수 있는 성장인자와 세포를 함께 봉입함으로써 조직 재생 효능을 극대화시킬 수 있다. 상기와 같이, 본 발명을 바람직한 실시예를 통하여 설명하였으나, 본 발명은 전술한 실시예에 한정되지 않는다. 생분해성 합성 고분자 부분의 패턴 또는 하이 드로겔의 분사 위치를 자유롭게 조절할 수 있고, 다축 적층 시스템을 이용함으로써 격자 무늬 외의 다른 형태의 인공 지지체를 제조할 수도 있다. 즉, 다음에 기재하 는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능 하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 수 있을 것이다.

Claims

【청구의 범위】
【청구항 1】
복수의 생분해성 합성 고분자 -하이드로겔 (hydrogel) 층을 교차 적층시켜 격 자 형태로 형성된 인공 지지체에 있어서,
상기 생분해성 합성 고분자 -하이드로겔 층은, 생분해성 합성 고분자 및 하이 드로겔을 포함하는 복수의 생분해성 합성 고분자 -하이드로겔 유닛들이 간격을 두고 배치되어 형성된, 인공 지지체.
【청구항 2】
청구항 1에 있어서,
상기 생분해성 합성 고분자 -하이드로겔 유닛은 대향하는 한 쌍의 생분해성 합성 고분자 라인 사이에 하이드로겔 라인을 개재하여 형성된, 인공 지지체.
【청구항 3】
청구항 1에 있어서,
상기 생분해성 합성 고분자는 폴리락틱산 (Poly-lactic Acid, PLA), 폴리글리 콜산 (Poly-glycolic Acid, PGA), 폴리카프로락톤 (Polycaprolactone) 및 폴리락틱코 글리콜산 (Poly-lactic-co-glycolic Acid, PLGA) 중 적어도 하나를 포함하는, 인공 지지체.
【청구항 4】
청구항 1에 있어서,
상기 하이드로겔은 수용성인, 인공 지지체.
【청구항 5】
청구항 4에 있어서,
상기 하이드로겔은 콜라겐 (Collagen), 젤라틴 (Gelat in), 키토산 (Chitosan), 알긴산 (Alginic Acid) 또는 히아루론산 (Hyaluronic Acid) 중 어느 하나인, 인공 지 지체.
【청구항 6】
청구항 1에 있어서,
상기 하이드로겔 내부에 세포의 성장과 기능을 조절할 수 있는 성장인자가 내재된' 인공 지지체.
【청구항 71
청구항 6에 있어서,
상기 하이드로겔 내부에 내재된 상기 성장인자는 전환성 성장인자 -PTGF-P, 골형성 단백질 (BMP), 혈관 내피 세포 성장인자 (VEGF) 또는 상피 세포 성장인자 (EGF) 증 어느 하나인, 인공 지지체.
[청구항 8】
청구항 1에 있어서,
상기 하이드로겔 내부에 재생시키려는 세포가 내재된, 인공 지지체.
【청구항 9】
저 U시린지 (syringe) 및 제 2 시린지에 각각 생분해성 합성 고분자 및 하이드 로겔올 주입하는 주입단계 ;
상기 제 1 시린지에 주입된 상기 생분해성 합성 고분자를 분사하여 일정한 간 격을 두고 복수의 생분해성 합성 고분자 라인을 형성하는 제 1 분사단계;
상기 제 2 시린지에 주입된 상기 하이드로겔을 분사하여, 한 쌍의 생분해성 합성 고분자 라인의 사이에 하이드로겔 라인이 개재된 생분해성 합성 고분자 -하이 드로겔 유닛 및 공극이 교대로 형성된 생분해성 합성 고분자 -하이드로겔 층을 형성 하는 제 2 분사단계 ; 및
상기 제 1 분사단계와 상기 제 2 분사단계를 반복하여 상기 생분해성 합성 고 분자 -하이드로겔 층을 교차 적층하는 적층단계;
를 포함하는 인공 지지체 제조방법.
【청구항 10】
청구항 9에 있어서,
상기 생분해성 합성 고분자는 폴리락틱산 (Poly-lactic Acid, PLA), 폴리글리 콜산 (Poly-glycolic Acid, PGA), 폴리카프로락톤 (Polycaprolactone) 및 폴리락틱코 글리콜산 (Poly-lactic— co-glycolic Acid, PLGA) 증 적어도 하나를 포함하는, 인공 지지체 제조방법.
【청구항 11】
청구항 9에 있어서,
상기 하이드로겔은 수용성인, 인공 지지체 제조방법.
【청구항 12]
청구항 11에 있어서,
상기 하이드로겔은 콜라겐, 젤라틴, 키토산, 알긴산 또는 히아루론산 중 어 느 하나인, 인공 지지체 제조방법.
[청구항 13】
청구항 9에 있어서 , 상기 하이드로겔 내부에 세포의 성장과 기능을 조절할 수 있는 성장인자를 내재시킨, 인공 지지체 제조방법.
【청구항 14】
청구항 13에 있어서,
상기 하이드로겔 내부에 내재시킨 상기 성장인자는 전환성 성장인자 -PTGF- β , 골형성 단백질 (BMP), 혈관 내피 세포 성장인자 (VEGF) 또는 상피 세포 성장인자 (EGF) 증 어느 하나인, 인공 지지체 제조방법.
【청구항 15】
청구항 9에 있어서,
상기 하이드로겔 내부에 재생시키려는 세포를 내재시킨, 인공 지지체 제조방 법.
PCT/KR2011/001516 2010-03-19 2011-03-04 3차원 인공 지지체 및 그 제조방법 WO2011115381A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/511,188 US9018008B2 (en) 2010-03-19 2011-03-04 Three-dimensional scaffold and method of manufacturing the same
CN201180011573.9A CN102781486B (zh) 2010-03-19 2011-03-04 三维人造支架及其制造方法
JP2012543032A JP2013512950A (ja) 2010-03-19 2011-03-04 三次元人工支持体及びその製造方法
EP11756512.7A EP2548588B1 (en) 2010-03-19 2011-03-04 Three-dimensional scaffold and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100024736A KR101067827B1 (ko) 2010-03-19 2010-03-19 3차원 인공 지지체 및 그 제조방법
KR10-2010-0024736 2010-03-19

Publications (2)

Publication Number Publication Date
WO2011115381A2 true WO2011115381A2 (ko) 2011-09-22
WO2011115381A3 WO2011115381A3 (ko) 2012-01-12

Family

ID=44649693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001516 WO2011115381A2 (ko) 2010-03-19 2011-03-04 3차원 인공 지지체 및 그 제조방법

Country Status (6)

Country Link
US (1) US9018008B2 (ko)
EP (1) EP2548588B1 (ko)
JP (1) JP2013512950A (ko)
KR (1) KR101067827B1 (ko)
CN (1) CN102781486B (ko)
WO (1) WO2011115381A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889471A (zh) * 2011-10-18 2014-06-25 浦项工科大学校产学协力团 膜式人造支架及其制造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360942B1 (ko) * 2012-10-08 2014-02-12 조선대학교산학협력단 세포가 담지된 생체적합성 고분자-천연생체적합성 재료 하이브리드 구조체 및 그 제조방법
US20160095958A1 (en) * 2013-05-28 2016-04-07 The Johns Hopkins University Bone regeneration using stromal vascular fraction, platelet-derived growth factor-rich hydrogel, three-dimensional printed poly-epsilon-caprolactone scaffolds
US9604407B2 (en) * 2013-12-03 2017-03-28 Xerox Corporation 3D printing techniques for creating tissue engineering scaffolds
US10195313B2 (en) * 2014-04-10 2019-02-05 Wisconsin Alumni Research Foundation Method for forming hydrogel arrays using surfaces with differential wettability
EP3213776B1 (en) * 2014-10-31 2020-06-17 FUJIFILM Corporation Tubular structure, device for producing tubular structure, and method for producing tubular structure
CN105012060B (zh) * 2015-07-08 2017-03-15 上海大学 制备三维多尺度血管化支架的方法
US10695463B2 (en) 2015-09-08 2020-06-30 Clemson University Research Foundation Multi-layered biomimetic material and method of formation
KR20170032604A (ko) * 2015-09-15 2017-03-23 한국산업기술대학교산학협력단 치조골 재생용 차폐막
TWI593547B (zh) 2015-11-13 2017-08-01 財團法人工業技術研究院 三維組織列印裝置、三維組織列印方法及人工皮膚
WO2018021754A1 (ko) * 2016-07-25 2018-02-01 주식회사 메디팹 이중가교를 갖는 3차원 세포배양 지지체 제조방법 및 3차원 세포배양 지지체 제작을 위한 캐스팅 트레이
KR101877892B1 (ko) * 2016-07-25 2018-07-12 주식회사 메디팹 이중가교를 갖는 3차원 세포배양 지지체 제조방법
US20180057784A1 (en) 2016-08-27 2018-03-01 3D Biotek, Llc Bioreactor
KR101974999B1 (ko) 2017-05-29 2019-08-26 포항공과대학교 산학협력단 호흡기관 대체 삼차원 지지체의 제조방법
KR102091840B1 (ko) * 2018-06-20 2020-03-20 한국생산기술연구원 3차원 하이드로젤 적층 구조물, 및 이의 제조방법
KR102083788B1 (ko) * 2018-09-04 2020-03-03 주식회사 티앤알바이오팹 인공 혈관 제조용 3d 프린팅 시스템 및 이를 이용한 인공 혈관의 제조 방법
JP7033095B2 (ja) * 2019-03-04 2022-03-09 日清食品ホールディングス株式会社 三次元筋組織とその製造方法
KR102214090B1 (ko) * 2019-04-12 2021-02-09 주식회사 플코스킨 유방 재건술용 무세포동종진피 대체를 위한 3차원 고분자 복합구조체의 개발
KR102253724B1 (ko) * 2019-11-26 2021-05-20 주식회사 티앤알바이오팹 회전형 3d 프린팅 조형판 및 이를 포함하는 3d 프린터
CN111249528B (zh) * 2020-01-20 2021-07-16 浙江大学 一种基于复层细胞网格的组织工程骨及其制备方法
CN113172880B (zh) * 2021-05-05 2023-03-31 西北工业大学 一种基于气动精准控制活性软骨支架的连续梯度化仿生制造方法
KR102467263B1 (ko) * 2021-11-24 2022-11-16 재단법인 대구경북첨단의료산업진흥재단 인공 혈관 및 그 제조 방법
KR20230080621A (ko) 2021-11-30 2023-06-07 주식회사 엘앤씨바이오 인체 이식을 위한 3d 프린팅 구조체 및 그 제조방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1053758A1 (de) 1999-05-19 2000-11-22 Resorba Chirurgisches Nahtmaterial Franz Hiltner GmbH &amp; Co. Bioabsorbierbares Implantat
US6730252B1 (en) * 2000-09-20 2004-05-04 Swee Hin Teoh Methods for fabricating a filament for use in tissue engineering
US6599323B2 (en) * 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
DE10130968B4 (de) * 2001-06-27 2009-08-20 Envisiontec Gmbh Beschichtetes Polymermaterial, dessen Verwendung sowie Verfahren zu dessen Herstellung
WO2003004254A1 (en) * 2001-07-03 2003-01-16 The Regents Of The University Of California Microfabricated biopolymer scaffolds and method of making same
KR20030032420A (ko) * 2001-10-18 2003-04-26 한국과학기술연구원 손상된 안구 조직의 재생을 위한 생분해성 고분자로제조된 다공성 지지체
US20040126405A1 (en) * 2002-12-30 2004-07-01 Scimed Life Systems, Inc. Engineered scaffolds for promoting growth of cells
DK1722834T3 (da) 2003-12-22 2012-10-22 Regentis Biomaterials Ltd Matrix, som omfatter naturligt forekommende tværbundet proteinskelet
US9427496B2 (en) * 2005-02-18 2016-08-30 Drexel University Method for creating an internal transport system within tissue scaffolds using computer-aided tissue engineering
US9168328B2 (en) * 2005-02-25 2015-10-27 Drexel University Layered manufacturing utilizing foam as a support and multifunctional material for the creation of parts and for tissue engineering
WO2006091921A2 (en) * 2005-02-25 2006-08-31 Drexel University Super-sparger microcarrier beads and precision extrusion deposited poly-epsilon-caprolactone structures for biological applications
US20080020049A1 (en) 2005-02-25 2008-01-24 Andrew Darling Super-sparger microcarrier beads and precision extrusion deposited poly-epsilon-caprolactone structures for biological applications
CA2599946A1 (en) 2005-03-07 2006-09-14 Georgia Tech Research Corporation Nanofilament scaffold for tissue regeneration
US20080220042A1 (en) * 2006-01-27 2008-09-11 The Regents Of The University Of California Biomolecule-linked biomimetic scaffolds
WO2008003320A2 (en) * 2006-07-05 2008-01-10 Region Midtjylland Three-dimensional cell scaffolds
US20080193536A1 (en) * 2006-08-14 2008-08-14 Alireza Khademhosseini Cell-Laden Hydrogels
US20100167401A1 (en) * 2007-03-19 2010-07-01 Vasif Hasirci Stacked, patterned biomaterials and/or tissue engineering scaffolds
CN101279850B (zh) 2008-05-12 2011-07-06 西安理工大学 一种孔结构可控的多孔陶瓷的制备方法
KR20110025327A (ko) 2009-09-04 2011-03-10 중앙대학교 산학협력단 골세포 및 연골세포 공동 배양용 이중 스캐폴드
KR101141547B1 (ko) 2009-12-30 2012-05-03 차의과학대학교 산학협력단 구조틀 표면 상에 히아루론산 또는 그의 염 및 피브리노오겐이 코팅되어 형성된 코팅층을 포함하는 조직재생용 구조체
US20120089238A1 (en) * 2010-10-06 2012-04-12 Hyun-Wook Kang Integrated organ and tissue printing methods, system and apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2548588A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889471A (zh) * 2011-10-18 2014-06-25 浦项工科大学校产学协力团 膜式人造支架及其制造方法
EP2769743A4 (en) * 2011-10-18 2015-06-17 Postech Acad Ind Found ARTIFICIAL DIAPHRAGM CELL SCAFFOLD AND METHOD FOR THE PRODUCTION THEREOF
US9439764B2 (en) 2011-10-18 2016-09-13 Postech Academy-Industry Foundation Membrane-type artificial scaffold and method for fabricating same

Also Published As

Publication number Publication date
KR101067827B1 (ko) 2011-09-27
US20120329156A1 (en) 2012-12-27
CN102781486A (zh) 2012-11-14
EP2548588A2 (en) 2013-01-23
JP2013512950A (ja) 2013-04-18
EP2548588B1 (en) 2017-05-17
CN102781486B (zh) 2014-06-25
US9018008B2 (en) 2015-04-28
WO2011115381A3 (ko) 2012-01-12
EP2548588A4 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
KR101067827B1 (ko) 3차원 인공 지지체 및 그 제조방법
CA2173318C (en) Preparation of medical devices by solid free-form fabrication methods
Hutmacher Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives
US6139574A (en) Vascularized tissue regeneration matrices formed by solid free form fabrication techniques
US6261493B1 (en) Fabrication of tissue products with additives by casting or molding using a mold formed by solid free-form methods
US5518680A (en) Tissue regeneration matrices by solid free form fabrication techniques
US6341952B2 (en) Fabrication of tissue products with additives by casting or molding using a mold formed by solid free-form methods
KR101269127B1 (ko) 멤브레인형 인공 지지체 및 이의 제조 방법
KR101360942B1 (ko) 세포가 담지된 생체적합성 고분자-천연생체적합성 재료 하이브리드 구조체 및 그 제조방법
WO2018026172A1 (ko) 통합형 3차원 세포 프린팅 기술을 이용한 세포 배양체 및 이의 제조방법
CN101884574A (zh) 一种组织工程用三维多孔支架的制备方法及设备
KR101387159B1 (ko) 이중 기공을 가지는 스캐폴드 제조 방법 및 이를 이용하여 제조된 스캐폴드
WO2018081554A1 (en) 3d printing of fibrous structures
KR20130120572A (ko) 세포가 포함된 다공성 3차원 구조체 및 이의 제조방법
Chua et al. Rapid prototyping in tissue engineering: a state-of-the-art report
KR101387161B1 (ko) 복합 기공을 가지는 스캐폴드 제조 방법 및 이를 이용하여 제조된 스캐폴드
KR101242672B1 (ko) 인공 지지체 및 그 제조 방법
Wiesmann et al. Scaffold structure and fabrication
Chen et al. A multi-material bioprinting platform towards stratified articular cartilage tissue fabrication
CN214209031U (zh) 生物降解性三维人工支承体
Zahid et al. 3-D Bioprinted Nanobiomaterials: A Cutting Edge in Tissue Engineering and Tumor Therapy.
Vozzi et al. Rapid Prototyping: Tissue Engineering
Bajpai et al. Macroporous Polymeric Materials: Synthetic Strategies and Morphological Characterizations

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011573.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756512

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13511188

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012543032

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011756512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011756512

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE