WO2011115306A1 - Feed-use-efficiency improver for ruminant animals - Google Patents

Feed-use-efficiency improver for ruminant animals Download PDF

Info

Publication number
WO2011115306A1
WO2011115306A1 PCT/JP2011/057270 JP2011057270W WO2011115306A1 WO 2011115306 A1 WO2011115306 A1 WO 2011115306A1 JP 2011057270 W JP2011057270 W JP 2011057270W WO 2011115306 A1 WO2011115306 A1 WO 2011115306A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
ruminant
utilization efficiency
improving
bacillus subtilis
Prior art date
Application number
PCT/JP2011/057270
Other languages
French (fr)
Japanese (ja)
Inventor
久雄 板橋
寛和 今林
博 宮崎
Original Assignee
カルピス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルピス株式会社 filed Critical カルピス株式会社
Priority to JP2012505790A priority Critical patent/JPWO2011115306A1/en
Publication of WO2011115306A1 publication Critical patent/WO2011115306A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system

Definitions

  • the present invention relates to feed utilization efficiency and milk yield improvement of an animal having a ruminant stomach (hereinafter referred to as “ruminant animal”). More specifically, in ruminants such as cattle, sheep and goats, rumen fermentation, generally referred to as rumen fermentation (hereinafter also referred to as “lumen fermentation”), and useful bacteria in the body are improved. Improving the feed digestibility and reducing energy loss, improving the feed utilization efficiency, and as a result, improving the feed utilization efficiency of ruminants that can produce healthy livestock with improved milk yield, The present invention relates to a method for improving feed utilization efficiency, a breeding method, and a ruminant feed.
  • ruminant animal More specifically, in ruminants such as cattle, sheep and goats, rumen fermentation, generally referred to as rumen fermentation (hereinafter also referred to as “lumen fermentation”), and useful bacteria in the body are improved. Improving the feed digestibility and reducing energy loss, improving the feed utilization efficiency, and as a result, improving the
  • the feed digestibility referred to in the present invention is usually referred to as DM (DRY MATTER) digestibility.
  • feed digestibility (%) “1- (feces solid weight) / ( Feed solids weight) ” ⁇ 100.
  • This DM digestibility does not reflect the components that are decomposed and discharged as gas, the components discharged into urine, etc. (loss components). In this invention, the whole efficiency including these loss components (energy loss) is called feed utilization efficiency.
  • Ruminants have special digestion and absorption mechanisms and energy metabolism mechanisms different from those of monogastric animals such as pigs. Therefore, breeding and management require special knowledge and techniques. And in ruminant animals, such as cattle, sheep, and goats, where milk is also a commodity, poor health and reduced milk yield due to illness are serious economic problems for dairy farmers. Moreover, even if the animal is in good physical condition, it is preferable that the amount of milk per head increases because this will lead to an increase in the income of dairy farmers. Furthermore, it is more preferable if such an effect can be obtained efficiently with less bait.
  • microorganisms in the rumen or rumen (bacteria and protozoa (protozoa is called protozoa or protozoa); hereinafter also referred to as “microorganisms in rumen”) produce essential amino acids. Therefore, there has been no need to supplement the feed with essential amino acids and the like.
  • microorganisms in rumen bacteria and protozoa (protozoa is called protozoa or protozoa); hereinafter also referred to as “microorganisms in rumen”
  • protein and essential amino acids need to be supplied for stable production of high milk yield and health maintenance.
  • dairy cows have tried to add cereals, fish meal, blood meal, etc., which are protein sources, as well as various nutrients as feed additives. There was a problem of load on the product, and sufficient effects could not be obtained.
  • Patent Document 2 As a method for increasing milk yield, addition of a protected amino acid that is not decomposed in rumen to the feed has been studied (Patent Document 2), but the adjustment of the addition time is complicated, and the absorption of the protected amino acid is poor. The effect was not sufficient.
  • Patent Document 1 a liquid composition containing an amino acid is orally administered to ruminants (Patent Document 1), but there are problems with the degradation, administration method, and feeding method of amino acids in the liquid composition. .
  • bacillus subtilis is administered to domestic animals to suppress the growth of pathogenic bacteria in the domestic animals, and further to improve the weight gain and feed requirement of the animals.
  • Patent Document 3 the effect of increasing the weight of a combination feed for young pigs containing live cells of Bacillus subtilis C-3102 as an active ingredient is known (Patent Document 3), and further, Bacillus subtilis JA-ZK.
  • a feed additive comprising a strain as an active ingredient is capable of suppressing the growth of pathogenic bacteria in a domestic animal, improving the weight of the animal, and improving the feed demand rate (Patent Document 4), and Bacillus subtilis (Bacillus).
  • subtilis Using an inhibitor containing C-3102 strain and Bacillus subtilis AT-3 strain containing Bacillus subtilis as an active ingredient, mainly in the body of birds
  • Salmonella Salmonella
  • Patent Documents 5 and 6 there is no specific disclosure about use as a feed utilization efficiency improving agent or a milk yield improving agent for ruminants having a unique digestion and absorption mechanism different from pigs and birds.
  • bacteria other than the microorganisms in the rumen grow abnormally, and this can move into the blood and cause gastrointestinal tract diseases, liver disorders, musculoskeletal disorders, reproductive disorders, heat stroke, mastitis, dermatitis, etc. There was a problem.
  • Non-Patent Document 1 The specific digestion and absorption mechanism and energy metabolism mechanism of ruminants such as cattle are well-known technical matters (Non-Patent Document 1), and their features will be briefly described here.
  • monogastric animals such as pigs and horses
  • the ingested feed is sequentially decomposed by enzymes secreted by itself when it is sequentially transported to the oral cavity, esophagus, stomach, small intestine, and large intestine (for example, starch is converted into glucose). Absorbed) from the digestive tract wall.
  • Monogastric animals such as pigs, including humans, are called sugar animals because they seek sugar as an energy source.
  • ruminants such as cattle have different digestion and absorption mechanisms than monogastric animals.
  • the rumen fermentation is called rumen fermentation, which is characterized by the production of volatile fatty acids (VFA) from carbohydrate sources such as plant fibers and the resynthesis of proteins. Once swallowed, the roughage is returned to the mouth and re-chewed (rubbed), and again undergoes rumen fermentation in the rumen.
  • the rumen is called a so-called “continuous fermentation tank” and is home to a wide variety of anaerobic microorganisms (bacteria and protozoa), and ruminants live with these microorganisms to digest carbohydrates. Microorganisms decompose these to produce volatile fatty acids (VFA) such as acetic acid, propionic acid and butyric acid.
  • VFA volatile fatty acids
  • fatty acids are absorbed directly from the rumen wall and used as raw materials for milk components and other final digested products, and more than 60% of the energy consumed by body tissues and about half of the fuel used to assemble milk components in the breast. It is a source of vitality to cover.
  • VFA volatile fatty acids
  • the most energy efficient is propionic acid. Ruminants such as cows are called fat-proof animals that seek energy sources from fatty acids.
  • protein in feed is hardly digested in the stomach and is carried to the intestine, where it is decomposed into amino acids by the action of the digestive enzyme of the animal itself and then absorbed.
  • ruminants such as cattle are decomposed into amino acids and then into ammonia by the action of the proteolytic enzymes of the microorganisms in the rumen, and the microorganisms are newly made amino acids necessary for themselves, that is, microorganisms with high nutritional value.
  • Synthesize body protein bacterial protein, insect protein).
  • the resulting “microbial protein” is transported along with the stomach contents to the fourth and subsequent stomachs, and follows the process of being decomposed and absorbed into amino acids mainly in the small intestine, as in monogastric animals.
  • a bypass protein that is transported to the small intestine without being decomposed by microorganisms in the lumen and digested there.
  • This is called metabolic protein together with microbial protein, but these are converted to amino acids in the small intestine and absorbed.
  • the rumen is a so-called live fermentation device that supplies the necessary energy sources, while methane, carbon dioxide, nitrogen and small amounts of oxygen, hydrogen, hydrogen sulfide, etc. are byproducts of the fermentation. Most of them are released into the atmosphere as gas without being used, resulting in energy loss.
  • the nutrient in feed is discharged
  • one-third of the nitrogen ingested from the feed is excreted in feces and one-third in urine, and the rest is transferred into milk or accumulated in the body.
  • microbial organisms that improve rumen fermentation, increase and activate rumen microorganisms, improve energy-efficient propionic acid production, and have a high nutritional protein source. It is important to improve protein synthesis, improve feed digestibility, reduce energy loss, and increase feed utilization efficiency, and development of such effective ruminant feed utilization improvement agents is required.
  • an object of the present invention is to provide a feed utilization efficiency improving agent for ruminants.
  • an object of the present invention is to provide a feed utilization efficiency improving agent for ruminant-containing solid feed.
  • this invention aims at providing the usage method of a feed utilization efficiency improving agent characterized by using a feed utilization efficiency improving agent as a milk yield improving agent.
  • Another object of the present invention is to provide a method for breeding ruminants, characterized in that a feed utilization efficiency improving agent is fed directly to ruminants or added to feed.
  • the inventors of the present application have improved the specific digestive absorption mechanism and energy metabolism mechanism of ruminants by using viable cells of Bacillus subtilis as an active ingredient. Rumen fermentation of ruminants is improved to promote the increase and / or activation of microorganisms in rumen, increase the production of propionic acid in rumen, synthesis of microbial protein, and increase useful bacteria in the body It is confirmed by animal experiments etc. that the digestion and absorption efficiency is improved, the digestibility of the feed, in particular, the digestibility of the feed containing solids is improved, and the energy loss is reduced.
  • a utilization efficiency improving agent, a method for improving ruminant feed utilization efficiency, a ruminant breeding method, and a ruminant feed were completed.
  • the gist of the present invention is the ruminant feed utilization efficiency improving agent described in (1) to (9) below and the ruminant feed utilization efficiency improving method described in (10) to (18) below.
  • a feed utilization efficiency improver for ruminants comprising viable cells of Bacillus subtilis as an active ingredient.
  • the feed utilization efficiency improving agent for ruminants according to (1) wherein the feed utilization efficiency improvement is accompanied by an improvement in feed digestibility.
  • feed utilization efficiency improving agent for ruminants according to (1) which is accompanied by at least one increase in useful bacteria in the body.
  • the feed utilization efficiency improving agent for ruminants according to (4) wherein useful bacteria are lactobacilli and bifidobacteria.
  • the gist of the present invention is the ruminant breeding method described in the following (19) to (23) and the ruminant feed described in the following (24) to (28).
  • a ruminant breeding method comprising feeding a ruminant having a ruminant function after the late weaning period with live cells of Bacillus subtilis directly or added to a feed.
  • the present invention can provide an improving agent that has the effect of improving the specific digestion and absorption mechanism and the general energy metabolism mechanism of ruminants.
  • the present invention improves rumen fermentation of ruminants without using antibiotics, special amino acids, etc., promotes the increase and / or activation of microorganisms in rumen, and produces propionic acid in rumen, microorganisms Improve body protein synthesis, further reduce harmful bacteria in the body and increase useful bacteria to improve digestion and absorption efficiency, improve the digestibility of feed, especially the feed containing solids, It is possible to provide a feed utilization efficiency improving agent and a milk yield improving agent for ruminants characterized by reducing energy loss.
  • ruminants which are domestic animals, directly or after being added to feed
  • rumen fermentation of ruminants is improved and synthesis of microbial protein in the rumen is improved, so that the highly toxic ammonia concentration in the rumen fluid
  • digestion and absorption efficiency is improved, and it is possible to nurture livestock with improved health and milk quality.
  • the feed utilization efficiency can be improved, that is, the digestibility of the feed can be improved and energy loss can be reduced, so that the amount of feed fed can be reduced. It is advantageous in that it improves productivity and is economically advantageous, and can improve the quantity and quality of livestock emissions and contribute to environmental improvement.
  • FIG. 6 is a diagram showing a change (decrease) in ammonia nitrogen concentration in the rumen liquid of Test Example 4. It is a figure which shows the change (increase) of the number of protozoa in the rumen liquid of Test Example 5. It is a figure which shows the change (decrease of harmful bacteria and increase of useful bacteria) of various microbes in the feces of Experimental example 6.
  • FIG. 6 is a diagram showing a change (decrease) in ammonia nitrogen concentration in the rumen liquid of Test Example 4. It is a figure which shows the change (increase) of the number of protozoa in the rumen liquid of Test Example 5. It is a figure which shows the change (decrease of harmful bacteria and increase of useful bacteria) of various microbes in the feces of Experimental example 6.
  • the viable cell contained as an essential active ingredient is Bacillus subtilis, and its bacteriological properties are described in Birge's Manual of Bacteriology Vol. 11 (1986).
  • Bacillus subtilis any known Bacillus subtilis can be used, and for example, Bacillus subtilis C-3102 and the like are preferable.
  • a liquid medium or a solid medium containing a carbon source, a nitrogen source, an inorganic substance or the like that is usually used for microbial culture can be used as a medium.
  • the carbon source may be any carbon source that can assimilate Bacillus subtilis, for example, glucose, fructose, sucrose, starch, molasses, etc.
  • the nitrogen source for example, peptone, casein hydrolyzate, meat extract, An ammonium sulfate etc. can be mentioned.
  • salts such as phosphoric acid, potassium, magnesium, calcium, sodium, iron and manganese, vitamins, amino acids, surfactants and the like can be added as necessary.
  • the culture conditions are preferably aerobic conditions, and it is preferable to use, for example, an aeration and agitation liquid culture using a jar fermenter, a shelf-type solid culture, or an automatic koji culture apparatus as the culture apparatus.
  • the culture temperature is preferably 20 to 50 ° C., particularly preferably 30 to 45 ° C.
  • the culture time is preferably 12 hours to 7 days
  • the culture pH is preferably 5 to 9, particularly preferably 6 to 8.
  • the culture itself, the concentrate thereof, or the cells isolated therefrom can be used as active ingredients as they are.
  • the active ingredient contains, for example, 10 to 10 12 cells / g, preferably 10 6 to 10 11 viable cells of Bacillus subtilis C-3102 (FERM BP-1096), that is, spores and / or vegetative cells. It is good to contain pieces / g.
  • the active ingredient can be used as it is as an improving agent.
  • the excipient is not particularly limited, and for example, calcium carbonate, defatted rice sugar, corn grits, corn flour, bran, nonfat dry milk and the like can be used.
  • the administration form of the feed utilization efficiency improving agent for ruminants of the present invention is not particularly limited, and may be given to ruminants as it is, but is preferably added to and mixed with a known feed as a powder, particularly a fine powder. Can be used.
  • the addition amount of the improving agent of the present invention when added to a known feed varies depending on the type of livestock, age, etc., but for example, Bacillus subtilis C-3102 (FERM BP-1096) after being added to the feed It is preferable to add and mix so that the number of viable bacteria is 10 3 to 10 9 cells / g, particularly 10 4 to 10 8 cells / g.
  • the effective intake of the ruminant feed utilization efficiency improving agent of the present invention varies depending on the type of ruminant, age, and the like.
  • the viable count of Bacillus subtilis C-3102 (FERM BP-1096) is 1 It is preferable to ingest at 10 ⁇ 10 6 / Kg ⁇ day or more, particularly 5 ⁇ 10 6 to 1 ⁇ 10 8 / Kg ⁇ day.
  • the administration time varies depending on the type of ruminant, age, etc., but continuous administration is preferred. For example, in the case of cows, it is particularly effective to administer to a weaning period using a solid-containing feed or to a growing cow after weaning.
  • the stomach of the cow is not differentiated and there is a lumen Is not developed.
  • the entrance of the lumen is closed and the lumen does not enter, so that it flows downward, and it is in the same state as monogastric animals like humans and pigs.
  • the entrance to the lumen opens in response.
  • the improving agent of the present invention is used. Giving and improving rumen fermentation and promoting the increase and activation of microorganisms such as protozoa in the rumen can be said to have a great effect on the subsequent growth.
  • the kind of ruminant subject to the present invention is not particularly limited, but preferably, it is a ruminant whose milk is a commercial product, such as cows, sheep, goats, and the like, and is raised as livestock. .
  • the feed utilization efficiency improving agent of the present invention can also be used as a milk yield improving agent, but the target is not limited to dairy cows and the like. The details and effects of the present invention will be described below with reference to examples and test examples, but the present invention is not limited to these examples.
  • a medium is prepared by dissolving 200 g of soybean peptone, 10 g of dipotassium phosphate and 200 g of molasses in 10 liters of tap water, and further adjusting the pH of the medium to 7.5 by adding a 1N aqueous sodium hydroxide solution.
  • the fermenter was charged and sterilized at 121 ° C. for 15 minutes. Subsequently, it was cooled to 37 ° C., 100 ml of a culture solution of Bacillus subtilis C-3102 (FERM BP-1096) that had been pre-cultured in advance was ingested, and aeration and shaking culture was performed at 37 ° C. for 40 hours.
  • the obtained culture solution is centrifuged to collect the cells and dried, and then mixed with 180 g of calcium carbonate to obtain a ruminant feed utilization improving agent (hereinafter referred to as “improving agent 1”). 200 g was produced.
  • the viable cell count of Bacillus subtilis C-3102 (FERM BP-1096) in the improving agent 1 obtained was 1 ⁇ 10 10 cells / g.
  • the samples added with 30 ppm, 60 ppm, and 90 ppm were obtained by adding 3 ⁇ 10 5 cells / g, 6 ⁇ 10 5 cells / g, and 9 ⁇ 10 5 cells / g to the substrate (mixed feed), respectively. Become. A substrate alone (no addition of 1 improver) was used as a control. (Test method): The above culture solution was placed in the bottle of each sample, the gas was replaced, and the anaerobic culture was performed at 39 ° C for 6 hours. After 6 hours, pH, methane gas, hydrogen gas and the like were measured.
  • Volatile fatty acids are an energy source used to assemble milk components in the breast (see Non-Patent Document 1).
  • Propionic acid is the most energy-efficient acid among volatile fatty acids and absorbs from rumen. It is known as a good acid. Therefore, it can be said that the result of Test Example 1 suggests improvement of rumen fermentation by the improving agent of the present invention, improvement of feed utilization efficiency, and improvement of milk yield. Next, the actual cow was raised and the effect was confirmed.
  • Test Example 4 ⁇ Reduction of ammonia nitrogen concentration in rumen solution (improvement of microbial protein synthesis)> The test was conducted under the above test conditions, and each rumen solution was collected on the last day of each of the control period 1, the test period, and the control period 2, and the ammonia nitrogen concentration (mg / dl) in the liquid was measured. Average values for the control period (1, 2) and the test period were obtained. The results are shown in Table 4 and FIG.
  • Test Example 5 ⁇ Increase and / or activation of microorganisms in rumen> The test was conducted under the test conditions described above, and the three test cows were treated with 0 hour before feeding, 2 hours after feeding, and 5 hours after feeding on the last day of each of control period 1, test period, and control period 2. The rumen fluid is collected, the number of protozoa (protozoa) in the fluid is measured, and all the measured values at each time in the control period 1 and 2 and all the measured values at each time in the test period are summed up to obtain an average value. I put it out. The results are shown in Table 5 and FIG.
  • the average value of the summary of the number of protozoa is 3.5 ⁇ 10 5 cells / ml in the control period and 4.3 ⁇ 10 5 cells / ml in the test period, and the average number of protozoa in the test period using the improving agent 1 The value was high.
  • Microorganisms in the rumen are involved in rumen fermentation and decompose proteins, as well as new microbial proteins with high nutritional value (bacterial proteins, parasite proteins, using ammonia, which is a degradation product of the protein source) ), And protozoa, etc., is transported to the 4th and subsequent stomachs together with the stomach contents as microbial protein, and is digested and absorbed in the small intestine.
  • Test Example 6 ⁇ About reduction of harmful bacteria and increase of useful bacteria> Perform the test under the above test conditions, collect fresh feces of each cow in the latter half of each of the control period 1, test period, and control period 2, and culture and measure the flora in the feces using the modified Mitsuoka method. The average value was obtained for each period. The results are shown in Table 6 and FIG. In the table, ND indicates the detection limit (2.30 CFU / g) or less, and (fraction) below the numerical value (average value ⁇ standard deviation) indicates the detection rate.
  • bifidobacteria are below the detection limit (ND) in both the control period 1 and the control period 2 and increase significantly only in the test period.
  • ND detection limit
  • lactobacilli and bifidobacteria maintain a good intestinal environment, improve absorbability, and help maintain health, but these bacteria are not used as feed additives from outside. It is said that there are many problems, such as being troublesome (for example, refer Unexamined-Japanese-Patent No. 2009-45).
  • Test example 7 ⁇ Methane gas generation amount> The test was conducted under the above test conditions, and the methane gas generation amount (L / DMI / day) was measured with a hood-type breathing test apparatus on the last day of each of the control period 1, the test period, and the control period 2, Average values for the control period (1, 2) and the test period were obtained. The results are shown in Table 7.
  • the present invention can provide an improving agent capable of improving the specific digestion and absorption mechanism and the general energy metabolism mechanism of ruminants, it has great industrial applicability.
  • the present invention improves rumen fermentation of ruminants without using antibiotics, special amino acids, etc., promotes the increase and / or activation of rumen microorganisms, and produces propionic acid in the rumen. Characterized by improving protein production, further reducing harmful bacteria in the body and increasing useful bacteria, improving the digestibility of feeds, especially feeds containing solids, and reducing energy loss
  • the feed utilization efficiency improving agent and milk yield improving agent for ruminants can be provided, and thus the industrial applicability is great.
  • the improving agent of the present invention By feeding the improving agent of the present invention directly or by adding it to the feed, rumen fermentation of ruminants is improved and synthesis of bacterial proteins in the rumen is improved. Therefore, highly toxic ammonia in the rumen fluid As the concentration decreases and harmful bacteria in the body decrease and useful bacteria increase, healthy animals with improved milk yield and quality can be bred, productivity is improved, and economic contributions are made. The above applicability is great. Furthermore, by feeding the improving agent of the present invention directly or by adding it to the feed, the feed utilization efficiency can be improved, that is, the digestibility of the feed can be improved and the energy loss can be reduced. It is possible to improve productivity and productivity, as well as improve the quantity and quality of livestock and contribute to environmental improvement.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Provided is a feed-use-efficiency improver for ruminant animals, such as cows, sheep, and goats, which exerts an effect of being able to grow healthy livestock in which the rumen fermentation is improved without using antibiotic substances or special amino acids, the number of useful bacteria in the body is increased, the feed digestibility is improved, energy loss is reduced, and the feed-use efficiency and milk yield are ameliorated. Also provided are a method for improving the feed-use efficiency for ruminant animals, a method for farming ruminant animals, and a feed for ruminant animals. Specifically, provided are a feed-use-efficiency improver for ruminant animals, a method for improving the feed-use efficiency of ruminant animals, a method for farming ruminant animals, and a feed for ruminant animals, wherein the living cells of Bacillus subtilis are used as the active ingredient.

Description

反芻動物の飼料利用効率改善剤Improving feed utilization efficiency for ruminants
 本発明は、反芻胃を有する動物(以下、「反芻動物」という。)の飼料利用効率および乳量改善に関する。より詳細には、牛、めん羊、山羊のような反芻動物において、一般にルーメン発酵と呼ばれる第一胃内の発酵(以下、「ルーメン発酵」ともいう。)を改善し、かつ、体内の有用菌を増加させ、飼料消化率を向上させるとともにエネルギー損失を減少して、飼料利用効率を改善し、結果として乳量が改善した健康な家畜を育成できる効果を奏する反芻動物の飼料利用効率改善剤、飼料利用効率改善の方法、飼育方法、および反芻動物用飼料に関する。 The present invention relates to feed utilization efficiency and milk yield improvement of an animal having a ruminant stomach (hereinafter referred to as “ruminant animal”). More specifically, in ruminants such as cattle, sheep and goats, rumen fermentation, generally referred to as rumen fermentation (hereinafter also referred to as “lumen fermentation”), and useful bacteria in the body are improved. Improving the feed digestibility and reducing energy loss, improving the feed utilization efficiency, and as a result, improving the feed utilization efficiency of ruminants that can produce healthy livestock with improved milk yield, The present invention relates to a method for improving feed utilization efficiency, a breeding method, and a ruminant feed.
 なお、本発明でいう飼料消化率とは、通常DM(DRY MATTER)消化率と言われるものであり、具体的には、飼料消化率(%)=「1−(糞固形物重量)/(飼料固形物重量)」×100で表されるものである。このDM消化率には、飼料成分のうち、分解されガスとして排出された成分や、尿中に排出された成分等(ロス成分)は反映されない。本発明では、それらロス成分(エネルギー損失)をも含めた全体の効率を飼料利用効率という。 The feed digestibility referred to in the present invention is usually referred to as DM (DRY MATTER) digestibility. Specifically, feed digestibility (%) = “1- (feces solid weight) / ( Feed solids weight) ”× 100. This DM digestibility does not reflect the components that are decomposed and discharged as gas, the components discharged into urine, etc. (loss components). In this invention, the whole efficiency including these loss components (energy loss) is called feed utilization efficiency.
 反芻動物は、豚などの単胃動物とは異なる特殊な消化吸収機構やエネルギー代謝機構を有するので、その飼育、管理には特別な知識や技術を要するものである。
 そして、牛、めん羊、山羊のように乳も商品となる反芻動物においては、体調不良や病気による乳量低下は、酪農農家にとって深刻な経済問題である。また、動物の体調が良好な場合であっても、一頭当たりの乳量が増加すれば、酪農家の収入増加につながるため好ましい。さらに、そのような効果が、より少ない餌により、効率よく得られればより好ましいものである。
Ruminants have special digestion and absorption mechanisms and energy metabolism mechanisms different from those of monogastric animals such as pigs. Therefore, breeding and management require special knowledge and techniques.
And in ruminant animals, such as cattle, sheep, and goats, where milk is also a commodity, poor health and reduced milk yield due to illness are serious economic problems for dairy farmers. Moreover, even if the animal is in good physical condition, it is preferable that the amount of milk per head increases because this will lead to an increase in the income of dairy farmers. Furthermore, it is more preferable if such an effect can be obtained efficiently with less bait.
 従来、反芻動物の場合には、その第一胃即ちルーメンの中の微生物(細菌とプロトゾア(プロトゾアは原生動物又は原虫と言われる);以下「ルーメン内微生物」ともいう。)が必須アミノ酸を産生するため、飼料に必須アミノ酸等を補給する必要性はないとされてきた。しかし、近年、高乳量の安定な生産や健康維持のために蛋白質や必須アミノ酸の一定量の補給が必要と考えられるようになってきた。例えば、乳牛においては、飼料の添加物として種々の栄養素と共に蛋白源である穀類や魚粉や血粉などの添加が試みられていたが、これらは牛自身の嗜好およびそれら蛋白源の摂取による牛の代謝に及ぼす負荷の問題があり、十分な効果が得られなかった。さらに、乳量を増大させる方法として、ルーメン内では分解されない保護アミノ酸の飼料への添加が検討されている(特許文献2)が、添加時期の調節等が煩雑であり、保護アミノ酸の吸収が悪く効果も十分でなかった。他に、アミノ酸を含有する液状組成物を反芻動物に経口投与することが知られている(特許文献1)が、液状組成物中のアミノ酸の分解、投与方法、飼養方法などに問題があった。 Conventionally, in the case of ruminants, microorganisms in the rumen or rumen (bacteria and protozoa (protozoa is called protozoa or protozoa); hereinafter also referred to as “microorganisms in rumen”) produce essential amino acids. Therefore, there has been no need to supplement the feed with essential amino acids and the like. However, in recent years, it has been considered that a certain amount of protein and essential amino acids need to be supplied for stable production of high milk yield and health maintenance. For example, dairy cows have tried to add cereals, fish meal, blood meal, etc., which are protein sources, as well as various nutrients as feed additives. There was a problem of load on the product, and sufficient effects could not be obtained. Furthermore, as a method for increasing milk yield, addition of a protected amino acid that is not decomposed in rumen to the feed has been studied (Patent Document 2), but the adjustment of the addition time is complicated, and the absorption of the protected amino acid is poor. The effect was not sufficient. In addition, it is known that a liquid composition containing an amino acid is orally administered to ruminants (Patent Document 1), but there are problems with the degradation, administration method, and feeding method of amino acids in the liquid composition. .
 また、バチルス・ズブチリスを飼育動物に投与することで、飼育動物体内の病原性細菌の増殖を抑制することや、さらには該動物の体重増加、及び飼料要求率を改善することは知られており、例えば、バチルス・ズブチリス(Bacillus subtilis)C−3102株の生菌体を有効成分とする幼豚用配合飼料による増体効果等が知られ(特許文献3)、さらに、バチルス・サブチルスJA‐ZK株を有効成分とする飼料添加剤が、飼育動物体内の病原性細菌増殖抑制や該動物の体重増加、及び飼料要求率の改善効果が得られること(特許文献4)や、バチルス・ズブチリス(Bacillus subtilisC−3102株やバチルス・サブチリスを含む枯草菌AT−3株を有効成分とする抑制剤を用い、主に鳥類の体内に存在するサルモネラ菌等の有害細菌の繁殖を抑える方法(特許文献5、6)などが知られている。しかし、いずれにも、豚や鳥などとは異なる特異な消化吸収機構を有する反芻動物の飼料利用効率改善剤や乳量改善剤として使用することについての具体的開示はない。 In addition, it is known that bacillus subtilis is administered to domestic animals to suppress the growth of pathogenic bacteria in the domestic animals, and further to improve the weight gain and feed requirement of the animals. For example, the effect of increasing the weight of a combination feed for young pigs containing live cells of Bacillus subtilis C-3102 as an active ingredient is known (Patent Document 3), and further, Bacillus subtilis JA-ZK. A feed additive comprising a strain as an active ingredient is capable of suppressing the growth of pathogenic bacteria in a domestic animal, improving the weight of the animal, and improving the feed demand rate (Patent Document 4), and Bacillus subtilis (Bacillus). subtilis ) Using an inhibitor containing C-3102 strain and Bacillus subtilis AT-3 strain containing Bacillus subtilis as an active ingredient, mainly in the body of birds There are known methods for suppressing the growth of harmful bacteria such as Salmonella (Patent Documents 5 and 6). However, there is no specific disclosure about use as a feed utilization efficiency improving agent or a milk yield improving agent for ruminants having a unique digestion and absorption mechanism different from pigs and birds.
 この牛などの反芻動物に、発酵が進んだ飼料や発酵しやすい飼料を与えて、飼料消化を高める試みもあるが、発酵しやすい飼料等を一度に大量に給餌すると、ルーメン内において急激発酵が起こりやすく、ルーメン内環境が酸性化し、微生物による発酵効率の低下や異常を引き起すとともに大量のガスが発生し、結果としてエネルギー損失が増大する。この一時的なルーメンアシドーシスの発生は、食欲も低下させる。そして、このような現象は、第一胃(ルーメン)胃液のpHの異常、胃壁の損傷、アミン類等の異常な代謝産物の産生、異常な発酵熱等を引き起こし、正常な消化や、吸収を阻害する。更に、ルーメン内微生物以外の細菌が異常増殖し、これが血中へ移行して消化管疾患、肝障害、運動器疾患、繁殖障害、熱射病、乳房炎、皮膚炎等の原因となることもあり、問題であった。 Although there are attempts to increase the digestion of feed by feeding fermented feed or easily fermented feed to ruminants such as cattle, if a large amount of easily fermented feed is fed at once, rapid fermentation occurs in the lumen. It tends to occur, the environment in the lumen is acidified, causing a decrease in fermentation efficiency and abnormalities due to microorganisms, and a large amount of gas is generated, resulting in an increase in energy loss. This temporary occurrence of rumen acidosis also reduces appetite. This phenomenon causes abnormal rumen gastric fluid pH, damage to the stomach wall, production of abnormal metabolites such as amines, abnormal heat of fermentation, etc., resulting in normal digestion and absorption. Inhibit. In addition, bacteria other than the microorganisms in the rumen grow abnormally, and this can move into the blood and cause gastrointestinal tract diseases, liver disorders, musculoskeletal disorders, reproductive disorders, heat stroke, mastitis, dermatitis, etc. There was a problem.
 さて、牛などの反芻動物の特異な消化吸収機構やエネルギー代謝機構は周知の技術的事項である(非特許文献1)が、その特徴をここで簡単に説明する。
 豚、馬などの単胃動物では、摂取された飼料は、口腔、食道、胃、小腸、大腸と順次輸送される際に、自身から分泌される酵素により順次分解され(例えばデンプンなどはブドウ糖になる)、消化管壁から吸収される。人間も含め豚などの単胃動物はエネルギー源を糖に求めていることから糖動物と言われる。
 一方、牛などの反芻動物は、単胃動物と違った消化・吸収の仕組みがある。第1胃内の発酵はルーメン発酵と言われるが、その特徴は、植物繊維などの炭水化物源からの揮発性脂肪酸(VFA)の生成と蛋白質の再合成である。一度飲み込んだ粗飼料は再び口にもどされ再咀嚼(反芻)され、再び第一胃のルーメン発酵をうける。第一胃はいわゆる「連続発酵タンク」とよばれ、多種多様の嫌気性微生物(細菌とプロトゾア(原生動物))が生息しており、反芻動物はこれら微生物と共生し、炭水化物の消化に当たっては、微生物がこれらを分解して酢酸、プロピオン酸、酪酸などの揮発性脂肪酸(VFA)を産生する。これらの脂肪酸はルーメン壁から直接吸収され、最終消化産物である乳成分などの原料となるほか、体組織で消費するエネルギーの6割以上、乳房で乳成分の組立に使われる燃料の約半分を賄う活力源となっている。揮発性脂肪酸(VFA)のうち、最もエネルギー効率が高いのがプロピオン酸である。そして、牛などの反芻動物は脂肪酸にエネルギー源を求める脂防酸動物と呼ばれている。
The specific digestion and absorption mechanism and energy metabolism mechanism of ruminants such as cattle are well-known technical matters (Non-Patent Document 1), and their features will be briefly described here.
In monogastric animals such as pigs and horses, the ingested feed is sequentially decomposed by enzymes secreted by itself when it is sequentially transported to the oral cavity, esophagus, stomach, small intestine, and large intestine (for example, starch is converted into glucose). Absorbed) from the digestive tract wall. Monogastric animals such as pigs, including humans, are called sugar animals because they seek sugar as an energy source.
On the other hand, ruminants such as cattle have different digestion and absorption mechanisms than monogastric animals. The rumen fermentation is called rumen fermentation, which is characterized by the production of volatile fatty acids (VFA) from carbohydrate sources such as plant fibers and the resynthesis of proteins. Once swallowed, the roughage is returned to the mouth and re-chewed (rubbed), and again undergoes rumen fermentation in the rumen. The rumen is called a so-called “continuous fermentation tank” and is home to a wide variety of anaerobic microorganisms (bacteria and protozoa), and ruminants live with these microorganisms to digest carbohydrates. Microorganisms decompose these to produce volatile fatty acids (VFA) such as acetic acid, propionic acid and butyric acid. These fatty acids are absorbed directly from the rumen wall and used as raw materials for milk components and other final digested products, and more than 60% of the energy consumed by body tissues and about half of the fuel used to assemble milk components in the breast. It is a source of vitality to cover. Of the volatile fatty acids (VFA), the most energy efficient is propionic acid. Ruminants such as cows are called fat-proof animals that seek energy sources from fatty acids.
 また、蛋白質については、豚などの単胃動物では、飼料の蛋白質は胃では殆ど消化されず腸に運ばれ、そこで動物自身がもつ消化酵素の働きでアミノ酸に分解されてから吸収される。一方、牛などの反芻動物では、ルーメン内微生物の蛋白分解酵素の作用でアミノ酸に、ついでアンモニアに分解され、さらに微生物はこのアンモニアを材料として新たに自らに必要なアミノ酸、つまり栄養価値の高い微生物体蛋白質(菌体蛋白質、虫体蛋白質)を合成する。こうしてできた「微生物体蛋白質」は胃内容物と共に第4胃以降へ運ばれ、単胃動物と同じく、主に小腸でアミノ酸に分解され吸収される過程をたどる。ここで牛などの蛋白質の消化・吸収にはもう一つのルートがあり、ルーメン内で微生物によって分解されないまま小腸に運ばれ、そこで消化されるバイパス蛋白質である。これは微生物体蛋白質と共に代謝蛋白質と呼ばれるが、これらは小腸でアミノ酸にされて吸収される。 As for protein, in monogastric animals such as pigs, protein in feed is hardly digested in the stomach and is carried to the intestine, where it is decomposed into amino acids by the action of the digestive enzyme of the animal itself and then absorbed. On the other hand, ruminants such as cattle are decomposed into amino acids and then into ammonia by the action of the proteolytic enzymes of the microorganisms in the rumen, and the microorganisms are newly made amino acids necessary for themselves, that is, microorganisms with high nutritional value. Synthesize body protein (bacterial protein, insect protein). The resulting “microbial protein” is transported along with the stomach contents to the fourth and subsequent stomachs, and follows the process of being decomposed and absorbed into amino acids mainly in the small intestine, as in monogastric animals. Here, there is another route for digestion and absorption of proteins such as cattle, which is a bypass protein that is transported to the small intestine without being decomposed by microorganisms in the lumen and digested there. This is called metabolic protein together with microbial protein, but these are converted to amino acids in the small intestine and absorbed.
 このように、第一胃(ルーメン)は、いわゆる生きた発酵装置であり、必要なエネルギー源を供給するが、一方メタンや炭酸ガス、窒素および少量の酸素、水素、硫化水素などが発酵の副産物として生成され、その殆どは利用されることなくガスとして大気中に放出され、エネルギー損失となる。また、第一胃での発酵が不十分な場合、飼料中の栄養分は、糞中に窒素などの有機物やミネラル類などの無機物として利用されることなく排出される。さらに、飼料から摂取された窒素の3分の1が糞に、3分の1が尿に排出され、残りが乳中に移行または体に蓄積されるといわれる。
 したがって、乳量が増大した健康な家畜の育成には、ルーメン発酵を改善して、ルーメン微生物の増加や活性化、エネルギー効率が高いプロピオン酸生産の向上や栄養価値の高い蛋白源である微生物体蛋白質合成の向上、飼料消化率の向上およびエネルギー損失を低減し、飼料利用効率を高めることが重要であり、そのような有効な反芻動物の飼料利用効率の改善剤の開発が求められている。
Thus, the rumen is a so-called live fermentation device that supplies the necessary energy sources, while methane, carbon dioxide, nitrogen and small amounts of oxygen, hydrogen, hydrogen sulfide, etc. are byproducts of the fermentation. Most of them are released into the atmosphere as gas without being used, resulting in energy loss. Moreover, when fermentation in a rumen is inadequate, the nutrient in feed is discharged | emitted without being utilized as organic substances, such as nitrogen, and inorganic substances, such as minerals, in feces. Furthermore, it is said that one-third of the nitrogen ingested from the feed is excreted in feces and one-third in urine, and the rest is transferred into milk or accumulated in the body.
Therefore, for the cultivation of healthy livestock with increased milk yield, microbial organisms that improve rumen fermentation, increase and activate rumen microorganisms, improve energy-efficient propionic acid production, and have a high nutritional protein source. It is important to improve protein synthesis, improve feed digestibility, reduce energy loss, and increase feed utilization efficiency, and development of such effective ruminant feed utilization improvement agents is required.
特開平2−255047号公報JP-A-2-255047 特開平6−237701号公報JP-A-6-237701 特開昭62−232343号公報JP-A-62-2232343 特開2008−187929号公報JP 2008-187929 A 特開平5−146260号公報JP-A-5-146260 特開平11−332555号公報JP-A-11-332555
 かかる状況に鑑み、本発明は、反芻動物の飼料利用効率改善剤を提供することを目的とする。特に、本発明は、反芻動物の固形物含有飼料での飼料利用効率改善剤を提供することを目的とする。さらに、本発明は、飼料利用効率改善剤を乳量改善剤として用いることを特徴とする飼料利用効率改善剤の使用方法を提供することを目的とする。また、本発明は、飼料利用効率改善剤を反芻動物に直接または飼料に添加して給与することを特徴とする、反芻動物の飼育方法を提供することを目的とする。 In view of this situation, an object of the present invention is to provide a feed utilization efficiency improving agent for ruminants. In particular, an object of the present invention is to provide a feed utilization efficiency improving agent for ruminant-containing solid feed. Furthermore, this invention aims at providing the usage method of a feed utilization efficiency improving agent characterized by using a feed utilization efficiency improving agent as a milk yield improving agent. Another object of the present invention is to provide a method for breeding ruminants, characterized in that a feed utilization efficiency improving agent is fed directly to ruminants or added to feed.
 本願発明者らは、鋭意研究の結果、バチルス・ズブチリス(Bacillus subtilis)の生菌体を有効成分として用いることにより、反芻動物の特異な消化吸収機構やエネルキー代謝機構全般が改善されること、すなわち、反芻動物のルーメン発酵が改善されてルーメン内微生物の増加および/または活性化が促進され、かつルーメン内のプロピオン酸の生成、微生物体蛋白質の合成が向上し、さらに、体内の有用菌が増加し消化吸収効率が向上し、飼料の消化率、特に固形物を含有する飼料の消化率が向上し、エネルギー損失が減少することを動物実験等により確認して、本願発明である反芻動物の飼料利用効率改善剤、反芻動物の飼料利用効率改善の方法、反芻動物の飼育方法、および反芻動物用飼料を完成させた。 As a result of diligent research, the inventors of the present application have improved the specific digestive absorption mechanism and energy metabolism mechanism of ruminants by using viable cells of Bacillus subtilis as an active ingredient. Rumen fermentation of ruminants is improved to promote the increase and / or activation of microorganisms in rumen, increase the production of propionic acid in rumen, synthesis of microbial protein, and increase useful bacteria in the body It is confirmed by animal experiments etc. that the digestion and absorption efficiency is improved, the digestibility of the feed, in particular, the digestibility of the feed containing solids is improved, and the energy loss is reduced. A utilization efficiency improving agent, a method for improving ruminant feed utilization efficiency, a ruminant breeding method, and a ruminant feed were completed.
 本発明は、以下の(1)ないし(9)に記載の反芻動物の飼料利用効率改善剤、および以下の(10)ないし(18)に記載の反芻動物の飼料利用効率改善の方法を要旨とする。
(1)バチルス・ズブチリス(Bacillus subtilis)の生菌体を有効成分として含有することを特徴とする反芻動物の飼料利用効率改善剤。
(2)飼料利用効率改善が、飼料消化率向上を伴うものである(1)に記載の反芻動物の飼料利用効率改善剤。
(3)飼料利用効率改善が、ルーメン発酵改善を伴うものである(1)または(2)に記載の反芻動物の飼料利用効率改善剤。
(4)飼料利用効率改善が、ルーメン内微生物の増殖促進および/または活性化促進、ルーメン内のプロピオン酸の生成の向上、ルーメン内の微生物体蛋白質の生成の向上、体内の有害菌の減少、および体内の有用菌の増加の少なくとも一つを伴うものである(1)に記載の反芻動物の飼料利用効率改善剤。
(5)有用菌が、乳酸桿菌およびビフィズス菌である(4)に記載の反芻動物の飼料利用効率改善剤。
(6)飼料利用効率改善が、乳量の改善効果を発揮させる(1)または(2)に記載の反芻動物の飼料利用効率改善剤。
(7)バチルス・ズブチリス(Bacillus subtilis)がバチルス・ズブチリスC−3102(FERM BP−1096)である(1)または(2)に記載の反芻動物の飼料利用効率改善剤。
(8)反芻動物が、離乳後期以降の反芻胃機能が備わった動物であることを特徴とする(1)または(2)に記載の反芻動物の飼料利用効率改善剤。
(9)反芻動物が、牛、めん羊、山羊のいずれかである(1)または(2)に記載の反芻動物の飼料利用効率改善剤。
(10)バチルス・ズブチリス(Bacillus subtilis)の生菌体を直接または飼料に添加して給与することを特徴とする反芻動物の飼料利用効率改善の方法。
(11)バチルス・ズブチリス(Bacillus subtilis)の生菌数が、体重あたり1×10個/Kg・日以上となるように給与する(10)に記載の反芻動物の飼料利用効率改善の方法。
(12)飼料に添加して給与する場合、バチルス・ズブチリス(Bacillus subtilis)の生菌数が、飼料中10~10個/gとなるように添加する(10)または(11)に記載の反芻動物の飼料利用効率改善の方法。
(13)バチルス・ズブチリス(Bacillus subtilis)がバチルス・ズブチリスC−3102(FERM BP−1096)である、(10)または(11)に記載の反芻動物の飼料利用効率改善の方法。
(14)飼料利用効率改善が、飼料消化率向上、ルーメン内微生物の増殖促進および/または活性化促進、ルーメン内のプロピオン酸の生成の向上、ルーメン内の微生物体蛋白質の生成の向上、体内の有害菌の減少、および体内の有用菌の増加の少なくとも一つを伴うものである(10)に記載の反芻動物の飼料利用効率改善の方法。
(15)有用菌が、乳酸桿菌およびビフィズス菌である(14)に記載の反芻動物の飼料利用効率改善の方法。
(16)飼料利用効率改善が、乳量の改善効果を発揮させる(10)または(11)に記載の反芻動物の飼料利用効率改善の方法。
(17)反芻動物が、離乳後期以降の反芻胃機能が備わった動物であることを特徴とする(10)または(11)に記載の反芻動物の飼料利用効率改善の方法。
(18)反芻動物が、牛、めん羊、山羊のいずれかである請求項10または(11)に記載の反芻動物の飼料利用効率改善の方法。
The gist of the present invention is the ruminant feed utilization efficiency improving agent described in (1) to (9) below and the ruminant feed utilization efficiency improving method described in (10) to (18) below. To do.
(1) A feed utilization efficiency improver for ruminants comprising viable cells of Bacillus subtilis as an active ingredient.
(2) The feed utilization efficiency improving agent for ruminants according to (1), wherein the feed utilization efficiency improvement is accompanied by an improvement in feed digestibility.
(3) The feed utilization efficiency improving agent for ruminants according to (1) or (2), wherein the feed utilization efficiency improvement is accompanied by an improvement in rumen fermentation.
(4) Improving feed utilization efficiency promotes growth and / or activation of microorganisms in rumen, improves production of propionic acid in rumen, improves production of microbial protein in rumen, reduces harmful bacteria in the body, And the feed utilization efficiency improving agent for ruminants according to (1), which is accompanied by at least one increase in useful bacteria in the body.
(5) The feed utilization efficiency improving agent for ruminants according to (4), wherein useful bacteria are lactobacilli and bifidobacteria.
(6) The ruminant feed utilization efficiency improving agent according to (1) or (2), wherein the feed utilization efficiency improvement exhibits an effect of improving milk yield.
(7) The feed utilization efficiency improver for ruminants according to (1) or (2), wherein Bacillus subtilis is Bacillus subtilis C-3102 (FERM BP-1096).
(8) The ruminant feed utilization efficiency improving agent according to (1) or (2), wherein the ruminant is an animal having a ruminant function after the late weaning period.
(9) The feed utilization efficiency improving agent for ruminants according to (1) or (2), wherein the ruminant is any of cattle, sheep and goats.
(10) A method for improving feed utilization efficiency of ruminants, characterized in that live cells of Bacillus subtilis are fed directly or added to the feed.
(11) The method for improving ruminant feed utilization efficiency according to (10), wherein the viable count of Bacillus subtilis is 1 × 10 6 / Kg · day or more per body weight.
(12) When added to feed and fed, added so that the viable count of Bacillus subtilis is 10 3 to 10 9 cells / g in the feed (10) or (11) To improve the efficiency of feed use in ruminants.
(13) The method for improving the feed utilization efficiency of ruminants according to (10) or (11), wherein the Bacillus subtilis is Bacillus subtilis C-3102 (FERM BP-1096).
(14) Improving feed utilization efficiency improves feed digestibility, promotes proliferation and / or activation of microorganisms in rumen, improves production of propionic acid in rumen, improves production of microbial protein in rumen, The method for improving ruminant feed utilization efficiency according to (10), which is accompanied by at least one of a decrease in harmful bacteria and an increase in useful bacteria in the body.
(15) The method for improving feed utilization efficiency of ruminants according to (14), wherein useful bacteria are lactobacilli and bifidobacteria.
(16) The method for improving ruminant feed utilization efficiency according to (10) or (11), wherein the feed utilization efficiency improvement exhibits an effect of improving milk yield.
(17) The method for improving the feed utilization efficiency of ruminants according to (10) or (11), wherein the ruminant is an animal having a ruminant function after the weaning period.
(18) The method for improving feed utilization efficiency of ruminants according to (10) or (11), wherein the ruminant is a cow, sheep or goat.
 さらに、本発明は、以下の(19)ないし(23)に記載の反芻動物の飼育方法、および以下の(24)ないし(28)に記載の反芻動物用飼料を要旨とする。
(19)離乳後期以降の反芻胃機能が備わった反芻動物に、バチルス・ズブチリス(Bacillus subtilis)の生菌体を直接または飼料に添加して給与することを特徴とする反芻動物の飼育方法。
(20)反芻動物が、牛、めん羊、山羊のいずれかである(19)に記載の反芻動物の飼育方法。
(21)バチルス・ズブチリス(Bacillus subtilis)の生菌数が、体重あたり1×10個/Kg・日以上となるように給与する(19)または(20)に記載の反芻動物の飼育方法。
(22)飼料に添加して給与する場合、バチルス・ズブチリス(Bacillus subtilis)の生菌数が、飼料中10~10個/gとなるように添加する(19)または(20)に記載の反芻動物の飼育方法。
(23)バチルス・ズブチリス(Bacillus subtilis)がバチルス・ズブチリスC−3102(FERM BP−1096)である(19)または(20)に記載の反芻動物の飼育方法。
(24) バチルス・ズブチリス(Bacillus subtilis)の生菌体を有効成分とし、生菌数が飼料中10~10個/gとなるように配合し、かつ該生菌数が、体重あたり1×10個/Kg・日以上となるように給与する飼料であることを特徴とする、離乳後期以降の反芻胃機能が備わった反芻動物に用いる飼料利用効率の改善効果および/または乳量の改善効果を発揮させるための反芻動物用飼料。
(25)反芻動物が牛、めん羊または山羊である(24)に記載の反芻動物用飼料。
(26)バチルス・ズブチリス(Bacillus subtilis)がバチルス・ズブチリスC−3102(FERM BP−1096)である(24)または(25)に記載の反芻動物用飼料。
(27)飼料消化率向上、ルーメン内微生物の増殖促進および/または活性化促進、ルーメン内のプロピオン酸の生成の向上、ルーメン内の微生物体蛋白質の生成の向上、体内の有害菌の減少、および体内の有用菌の増加の少なくとも一を伴う飼料である(24)に記載の反芻動物用飼料。
(28)有用菌が、乳酸桿菌およびビフィズス菌である(27)に記載の反芻動物用飼料。
Furthermore, the gist of the present invention is the ruminant breeding method described in the following (19) to (23) and the ruminant feed described in the following (24) to (28).
(19) A ruminant breeding method comprising feeding a ruminant having a ruminant function after the late weaning period with live cells of Bacillus subtilis directly or added to a feed.
(20) The method of raising a ruminant according to (19), wherein the ruminant is a cow, a sheep or a goat.
(21) The ruminant breeding method according to (19) or (20), wherein the viable count of Bacillus subtilis is 1 × 10 6 / Kg · day or more per body weight.
(22) When added to feed and fed, added so that the viable count of Bacillus subtilis is 10 3 to 10 9 / g in the feed (19) or (20) How to breed ruminants.
(23) The method for raising a ruminant according to (19) or (20), wherein the Bacillus subtilis is Bacillus subtilis C-3102 (FERM BP-1096).
(24) A viable cell of Bacillus subtilis is used as an active ingredient, and the viable cell count is 10 3 to 10 9 / g in the feed, and the viable cell count is 1 per body weight. × 10 6 feeds / Kg · day or more feed, improved feed utilization efficiency and / or milk yield for ruminants with rumen function after late weaning Ruminant feed for improving effects.
(25) The ruminant feed according to (24), wherein the ruminant is a cow, sheep or goat.
(26) The ruminant animal feed according to (24) or (25), wherein the Bacillus subtilis is Bacillus subtilis C-3102 (FERM BP-1096).
(27) Improving feed digestibility, promoting proliferation and / or activation of microorganisms in rumen, improving production of propionic acid in rumen, improving production of microbial protein in rumen, reducing harmful bacteria in the body, and The ruminant feed according to (24), wherein the feed is accompanied by at least one increase in useful bacteria in the body.
(28) The ruminant feed according to (27), wherein the useful bacteria are lactobacilli and bifidobacteria.
 本発明は、反芻動物の特異な消化吸収機構やエネルギー代謝機構全般を改善することができる効果を奏する改善剤を提供することができる。
 本発明は、抗生物質や特殊なアミノ酸等を用いることなく、反芻動物のルーメン発酵を改善して、ルーメン内微生物の増加および/または活性化を促進し、かつルーメン内のプロピオン酸の生成、微生物体蛋白質の合成を向上し、さらに、体内の有害菌を減少させかつ有用菌を増加させて消化吸収効率を向上し、飼料の消化率、特に固形物を含有する飼料の消化率を向上させ、エネルギー損失を低減することを特徴とする反芻動物の飼料利用効率改善剤や乳量改善剤を提供することができる。
 本発明の改善剤を家畜である反芻動物に、直接、または飼料に添加して給与することにより、飼料利用効率や乳量が改善した健康な家畜を育成できる効果を奏する。
 本発明の改善剤を直接、または飼料に添加して給与することにより、反芻動物のルーメン発酵を改善してルーメン内の微生物体蛋白質の合成が向上するので、ルーメン液中の毒性の強いアンモニア濃度が減少し、また、体内の有害菌が減少しかつ有用菌が増加するので、消化吸収効率が向上し、健康で乳質の改善した家畜を育成できる効果を奏する。
 本発明の改善剤を直接、または飼料に添加して給与することにより、飼料利用効率の向上、すなわち飼料の消化率の向上とエネルギー損失の低減ができるので、与える飼料量を少なくすることができ、生産性が向上し経済的にも有利であるうえ、家畜の排出物量と質を改善でき、環境改善にも貢献することができるという効果を奏する。
INDUSTRIAL APPLICABILITY The present invention can provide an improving agent that has the effect of improving the specific digestion and absorption mechanism and the general energy metabolism mechanism of ruminants.
The present invention improves rumen fermentation of ruminants without using antibiotics, special amino acids, etc., promotes the increase and / or activation of microorganisms in rumen, and produces propionic acid in rumen, microorganisms Improve body protein synthesis, further reduce harmful bacteria in the body and increase useful bacteria to improve digestion and absorption efficiency, improve the digestibility of feed, especially the feed containing solids, It is possible to provide a feed utilization efficiency improving agent and a milk yield improving agent for ruminants characterized by reducing energy loss.
By feeding the improving agent of the present invention to ruminants, which are domestic animals, directly or after being added to feed, it is possible to grow healthy livestock with improved feed utilization efficiency and milk yield.
By feeding the improving agent of the present invention directly or added to the feed, rumen fermentation of ruminants is improved and synthesis of microbial protein in the rumen is improved, so that the highly toxic ammonia concentration in the rumen fluid In addition, since harmful bacteria in the body are reduced and useful bacteria are increased, digestion and absorption efficiency is improved, and it is possible to nurture livestock with improved health and milk quality.
By feeding the improving agent of the present invention directly or by adding to the feed, the feed utilization efficiency can be improved, that is, the digestibility of the feed can be improved and energy loss can be reduced, so that the amount of feed fed can be reduced. It is advantageous in that it improves productivity and is economically advantageous, and can improve the quantity and quality of livestock emissions and contribute to environmental improvement.
試験例2の飼料消化率の変化(向上)を示す図である。It is a figure which shows the change (improvement) of the feed digestibility of Test Example 2. 試験例3のルーメン液中のプロピオン酸モル比率の変化(増加)を示す図である。It is a figure which shows the change (increase) of the propionic acid molar ratio in the rumen liquid of Test Example 3. 試験例4のルーメン液中のアンモニア態窒素濃度の変化(減少)を示す図である。FIG. 6 is a diagram showing a change (decrease) in ammonia nitrogen concentration in the rumen liquid of Test Example 4. 試験例5のルーメン液中のプロトゾア数の変化(増加)を示す図である。It is a figure which shows the change (increase) of the number of protozoa in the rumen liquid of Test Example 5. 試験例6の糞中の種々の菌数の変化(有害菌の減少及び有用菌の増加)を示す図である。It is a figure which shows the change (decrease of harmful bacteria and increase of useful bacteria) of various microbes in the feces of Experimental example 6. FIG.
本発明において、必須の有効成分として含有させる生菌体は、バチルス・ズブチリス(Bacillus subtilis)であって、その菌学的性質はバージーズ・マニュアル・オブ・バクテリオロジーVol.11(1986)に記載されている。本発明においては、公知のいずれのバチルス・ズブチリスを用いることができ、例えば、バチルス・ズブチリスC−3102等が好ましく挙げられる。
 公知菌であるバチルス・ズブチリス(Bacillus subtilis)C−3102菌株は、1985年12月25日に、日本国茨城県つくば市東1丁目1番地1つくばセンター中央第6(郵便番号305−5866)[寄託時;日本国茨城県筑波郡谷田部町東1丁目1番地3(郵便番号305)]の独立行政法人産業技術総合研究所特許生物寄託センター[寄託時;通商産業省工業技術院微生物工業技術研究所]に寄託番号 微工研菌寄第8584号として原寄託し、1986年6月28日に、同機関にて寄託番号FERM BP−1096(移管時;微工研条寄第1096号)として国際寄託に移管した。なお、バチルス・ズブチリスC−3102(FERM BP−1096)の菌学的性質は、既に公開されている(特許文献3)。
In the present invention, the viable cell contained as an essential active ingredient is Bacillus subtilis, and its bacteriological properties are described in Birge's Manual of Bacteriology Vol. 11 (1986). In the present invention, any known Bacillus subtilis can be used, and for example, Bacillus subtilis C-3102 and the like are preferable.
A known strain, Bacillus subtilis C-3102 strain, was established on December 25, 1985, 1-1-1 Higashi 1-chome, Tsukuba, Ibaraki, Japan (Postal code 305-5866) [deposited] 1; 1-3 Higashi 1-chome Yatabe-cho, Tsukuba-gun, Ibaraki, Japan (Postal Code: 305)] National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center [At the time of deposit; Deposited under the original deposit number as Makukenken Beverage Deposit No. 8584, and deposited on June 28, 1986 at the same organization as Deposit No. FERM BP-1096 (at the time of transfer; Transferred to. In addition, the mycological property of Bacillus subtilis C-3102 (FERM BP-1096) has already been disclosed (Patent Document 3).
 前記バチルス・ズブチリスを培養するには、培地として微生物培養に通常使用される炭素源、窒素源、無機物等を含む液体培地又は固体培地を用いることができる。炭素源としては、バチルス・ズブチリスが資化可能な炭素源であればよく、例えばグルコース、フルクトース、スークロース、スターチ、糖蜜等を、また窒素源としては、例えばペプトン、カゼイン加水分解物、肉エキス、硫安等を挙げることができる。更に、必要に応じて燐酸、カリウム、マグネシウム、カルシウム、ナトリウム、鉄およびマンガン等の塩類、ビタミン類、アミノ酸類、界面活性剤等を添加することもできる。培養条件としては、好気的条件下にて行うのが好ましく、培養装置として例えばジャーファーメンターによる通気撹拌液体培養、棚式固体培養、自動製麹培養装置等を用いるのが好ましい。培養温度は20~50℃、特に30~45℃が好ましく、培養時間は12時間~7日間、培養pHは5~9、特に好ましくは6~8が好適である。 For culturing the Bacillus subtilis, a liquid medium or a solid medium containing a carbon source, a nitrogen source, an inorganic substance or the like that is usually used for microbial culture can be used as a medium. The carbon source may be any carbon source that can assimilate Bacillus subtilis, for example, glucose, fructose, sucrose, starch, molasses, etc., and the nitrogen source, for example, peptone, casein hydrolyzate, meat extract, An ammonium sulfate etc. can be mentioned. Furthermore, salts such as phosphoric acid, potassium, magnesium, calcium, sodium, iron and manganese, vitamins, amino acids, surfactants and the like can be added as necessary. The culture conditions are preferably aerobic conditions, and it is preferable to use, for example, an aeration and agitation liquid culture using a jar fermenter, a shelf-type solid culture, or an automatic koji culture apparatus as the culture apparatus. The culture temperature is preferably 20 to 50 ° C., particularly preferably 30 to 45 ° C., the culture time is preferably 12 hours to 7 days, and the culture pH is preferably 5 to 9, particularly preferably 6 to 8.
 前記培養された培養物は、培養物自体、その濃縮物又はそれから分離した菌体をそのまま有効成分とすることができる。この際有効成分中には、例えばバチルス・ズブチリスC−3102(FERM BP−1096)株の生菌体、即ち芽胞及び/又は栄養細胞を10~1012個/g、好ましくは10~1011個/g含有するのが良い。 In the cultured culture, the culture itself, the concentrate thereof, or the cells isolated therefrom can be used as active ingredients as they are. In this case, the active ingredient contains, for example, 10 to 10 12 cells / g, preferably 10 6 to 10 11 viable cells of Bacillus subtilis C-3102 (FERM BP-1096), that is, spores and / or vegetative cells. It is good to contain pieces / g.
 そして、本発明の反芻動物の飼料利用効率、乳量改善剤を調製するには、好ましくは例えば前記有効成分をそのまま若しくは必要に応じて賦形剤等を添加し、乾燥又は製剤化する方法等により得ることができるが、前記有効成分をそのまま改善剤とすることもできる。該賦形剤は特に限定されず、例えば炭酸カルシウム、脱脂米糖、コーングリッツ、コーンフラワー、ふすま、脱脂粉乳等を用いることができる。 And in order to prepare the feed utilization efficiency of the ruminant of the present invention, and a milk yield improving agent, preferably, for example, a method of drying or formulating the active ingredient as it is or adding an excipient or the like as necessary However, the active ingredient can be used as it is as an improving agent. The excipient is not particularly limited, and for example, calcium carbonate, defatted rice sugar, corn grits, corn flour, bran, nonfat dry milk and the like can be used.
 本発明の反芻動物の飼料利用効率改善剤の投与形態は特に限定されず、そのまま反芻動物に与えても良いが、好適には粉末、特に微粉末等として、公知の飼料に添加・混合して使用することができる。公知の飼料へ添加混合する際の本発明の改善剤の添加量は、家畜の種類、日齢等により異なるが、例えば飼料へ添加した後のバチルス・ズブチリスC−3102(FERM BP−1096)の生菌数が、10~10個/g、特に10~10個/gとなるように添加・混合するのが好ましい。 The administration form of the feed utilization efficiency improving agent for ruminants of the present invention is not particularly limited, and may be given to ruminants as it is, but is preferably added to and mixed with a known feed as a powder, particularly a fine powder. Can be used. The addition amount of the improving agent of the present invention when added to a known feed varies depending on the type of livestock, age, etc., but for example, Bacillus subtilis C-3102 (FERM BP-1096) after being added to the feed It is preferable to add and mix so that the number of viable bacteria is 10 3 to 10 9 cells / g, particularly 10 4 to 10 8 cells / g.
 また本発明の反芻動物の飼料利用効率改善剤の有効摂取量は、反芻動物の種類、日齢等により異なるが、例えばバチルス・ズブチリスC−3102(FERM BP−1096)の生菌数が、1×10個/Kg・日以上、特に5×10~1×10個/Kg・日となるように摂取するのが好ましい。更に投与時期も、反芻動物の種類、日齢等により異なるが、連続投与するのが好ましい。例えば、牛の場合には、固形物含有飼料を用いる離乳期、または離乳後の育成牛に投与するのが特に効果的である。仔牛、特に哺乳中の(濃厚飼料、租飼料、他の固形飼料等の固形物を食べていない)仔牛では、牛の胃は分化しておらず、ルーメン(となる部位)は存在しているが発達していない。しかも、ミルクや液もののみを摂取する場合は、ルーメンの入口が閉じ、ルーメンにはモノが入らない状態で下に流れるようになっており、人間や豚と同様の単胃動物と同じ状態になっているのであるが、固形物を食べ始めると、それに反応してルーメンの入口が開くのである。このように、固形物を食べ始めることにより、反芻による消化(分解)力の強化が必要となり、第一胃(ルーメン)が発達していくものであるから、この時期に本発明の改善剤を与えてルーメン発酵を改善、調整し、ルーメン内のプロトゾアなどの微生物の増加、活性化を促進させることはその後の成長に大きな効果を奏するといえる。 The effective intake of the ruminant feed utilization efficiency improving agent of the present invention varies depending on the type of ruminant, age, and the like. For example, the viable count of Bacillus subtilis C-3102 (FERM BP-1096) is 1 It is preferable to ingest at 10 × 10 6 / Kg · day or more, particularly 5 × 10 6 to 1 × 10 8 / Kg · day. Furthermore, the administration time varies depending on the type of ruminant, age, etc., but continuous administration is preferred. For example, in the case of cows, it is particularly effective to administer to a weaning period using a solid-containing feed or to a growing cow after weaning. In calves, especially calves that are suckling (not eating solids such as concentrates, rations, and other solid feeds), the stomach of the cow is not differentiated and there is a lumen Is not developed. Moreover, when only milk or liquid foods are consumed, the entrance of the lumen is closed and the lumen does not enter, so that it flows downward, and it is in the same state as monogastric animals like humans and pigs. However, when you start eating solids, the entrance to the lumen opens in response. In this way, by starting to eat solids, it is necessary to strengthen the digestion (decomposition) power by rumination, and the rumen develops. At this time, the improving agent of the present invention is used. Giving and improving rumen fermentation and promoting the increase and activation of microorganisms such as protozoa in the rumen can be said to have a great effect on the subsequent growth.
 本発明の対象となる反芻動物の種類としては、特に限定されないが、例えば好ましくは牛、めん羊、山羊等のように乳が商品となる反芻動物であって家畜として飼育されるものが挙げられる。なお、本発明の飼料利用効率改善剤は、乳量改善剤としても使用できるものであるが、対象が乳牛等に限られるものではない。
 以下に本発明の詳細および効果を、実施例および試験例により説明するが、本発明はこれらの実施例等によってなんら限定されるものではない。
The kind of ruminant subject to the present invention is not particularly limited, but preferably, it is a ruminant whose milk is a commercial product, such as cows, sheep, goats, and the like, and is raised as livestock. . The feed utilization efficiency improving agent of the present invention can also be used as a milk yield improving agent, but the target is not limited to dairy cows and the like.
The details and effects of the present invention will be described below with reference to examples and test examples, but the present invention is not limited to these examples.
(生菌末および飼料利用効率改善剤の製造)
 水道水10リットルに、大豆ペプトン200g、リン酸2カリウム10g及び糖蜜200gを溶解させて培地を調製し、更に1N水酸化ナトリウム水溶液を添加して培地のpHを7.5に調整した後、ジャーファーメンターに仕込み、121℃、15分間滅菌した。次いで、37℃まで冷却して、予め前培養しておいたバチルス・ズブチリスC−3102(FERM BP−1096)の培養液100mlを摂取し、37℃で40時間通気振盪培養を行った。次に得られた培養液を遠心分離して菌体を収集し、乾燥させた後、炭酸カルシウム180gを混合して反芻動物の飼料利用効率改善剤(以下、「改善剤1」と言う)を200g製造した。得られた改善剤1中のバチルス・ズブチリスC−3102(FERM BP−1096)の生菌数は、1×1010個/gであった。
(Production of live bacteria powder and feed utilization efficiency improver)
A medium is prepared by dissolving 200 g of soybean peptone, 10 g of dipotassium phosphate and 200 g of molasses in 10 liters of tap water, and further adjusting the pH of the medium to 7.5 by adding a 1N aqueous sodium hydroxide solution. The fermenter was charged and sterilized at 121 ° C. for 15 minutes. Subsequently, it was cooled to 37 ° C., 100 ml of a culture solution of Bacillus subtilis C-3102 (FERM BP-1096) that had been pre-cultured in advance was ingested, and aeration and shaking culture was performed at 37 ° C. for 40 hours. Next, the obtained culture solution is centrifuged to collect the cells and dried, and then mixed with 180 g of calcium carbonate to obtain a ruminant feed utilization improving agent (hereinafter referred to as “improving agent 1”). 200 g was produced. The viable cell count of Bacillus subtilis C-3102 (FERM BP-1096) in the improving agent 1 obtained was 1 × 10 10 cells / g.
(I)イン ビトロ(In vitro)試験;試験例1
実施例1で得られた改善剤1を用いて以下に示す試験条件でイン ビトロ試験を行なった。
(培養液):泌乳牛より、朝の給餌前にルーメン液をカテーテルを用いて採取し、濾過後のルーメン液とバッファーを1:2の割合で希釈し培養液を調製した。
(基質):濃厚飼料(森永乳業製「乳牛用配合飼料」)と乾草(スーダングラス)を1:1で混合した飼料を調製し、基質とした。
(試験試料):基質に改善剤1をそれぞれ30ppm、60ppm、90ppmを添加した血清びん(60ml容)を用意した。この30ppm、60ppm、90ppmを添加した試料は、それぞれ基質(混合飼料)に生菌を、3×10個/g、6×10個/g、9×10個/g添加したものになる。基質のみ(改善剤1無添加)のものを対照とした。
(試験方法):各試料のびんに上記培養液を入れ、ガス置換し、39℃で、6時間嫌気培養した。6時間後にpH、メタンガス、水素ガス等について測定をおこなった。
(I) In vitro test; Test Example 1
An in vitro test was performed using the improver 1 obtained in Example 1 under the test conditions shown below.
(Culture solution): A rumen solution was collected from lactating cows using a catheter before feeding in the morning, and the filtrate and buffer solution after filtration were diluted at a ratio of 1: 2 to prepare a culture solution.
(Substrate): A feed prepared by mixing a concentrated feed (Morinaga Milk Industry's “mixed feed for dairy cattle”) and hay (Sudangrass) at a ratio of 1: 1 was prepared and used as a substrate.
(Test sample): Serum bottles (60 ml) each containing 30 ppm, 60 ppm, and 90 ppm of improver 1 were prepared. The samples added with 30 ppm, 60 ppm, and 90 ppm were obtained by adding 3 × 10 5 cells / g, 6 × 10 5 cells / g, and 9 × 10 5 cells / g to the substrate (mixed feed), respectively. Become. A substrate alone (no addition of 1 improver) was used as a control.
(Test method): The above culture solution was placed in the bottle of each sample, the gas was replaced, and the anaerobic culture was performed at 39 ° C for 6 hours. After 6 hours, pH, methane gas, hydrogen gas and the like were measured.
(結果)
 pH値、メタンガス発生量は、対照と各試料において変化はなかった。
 水素ガス発生量に関しては、変化があり、改善剤1の添加量に反比例して発生量が減少する傾向がみられた。結果を表1に示す。
(result)
The pH value and the amount of methane gas generated did not change between the control and each sample.
There was a change in the amount of hydrogen gas generated, and there was a tendency that the amount generated decreased in inverse proportion to the amount of improver 1 added. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(結果の検討)
 pH値が変化しなかったことは、改善剤1の添加で、過度の発酵がなく、揮発性脂肪酸(VFA)の産生バランスが崩れなかったこと、ルーメンアシドーシスの発生の心配がないことを示唆する。そして、反芻動物がルーメン発酵により、炭水化物源を分解し揮発性脂肪酸(VFA)にする際に、ギ酸、酢酸、酪酸の生成の際には水素ガスが発生するが、プロピオン酸生成の際には水素が消費されるという技術常識からみて、この試験例1での水素ガスに関する結果(改善剤添加により水素ガス発生量が減少する)は、揮発性脂肪酸のうち、プロピオン酸生成の割合が増えたことを示唆する。
 揮発性脂肪酸は乳房で乳成分の組立に使われるエネルギー源あり(非特許文献1参照)、このプロピオン酸は、揮発性脂肪酸のうち、最もエネルギー効率が高い酸であり、しかもルーメンからの吸収が良い酸として知られているものである。
 したがって、この試験例1の結果は、本発明の改善剤のルーメン発酵改善やそれによる飼料利用効率の改善および乳量改善を示唆するものと言える。
 次に実際の牛を飼育して、その効果を確認した。
(Examination of results)
The fact that the pH value did not change suggests that, with the addition of the improver 1, there was no excessive fermentation, the production balance of volatile fatty acids (VFA) was not lost, and there was no concern about the occurrence of rumen acidosis. . When ruminant ferments rumen fermentation to decompose carbohydrate sources into volatile fatty acids (VFA), hydrogen gas is generated when formic acid, acetic acid, and butyric acid are generated, but when propionic acid is generated. From the technical common sense that hydrogen is consumed, the result of hydrogen gas in Test Example 1 (the amount of hydrogen gas generated decreases due to the addition of an improving agent) is that the proportion of propionic acid produced in volatile fatty acids increased. I suggest that.
Volatile fatty acids are an energy source used to assemble milk components in the breast (see Non-Patent Document 1). Propionic acid is the most energy-efficient acid among volatile fatty acids and absorbs from rumen. It is known as a good acid.
Therefore, it can be said that the result of Test Example 1 suggests improvement of rumen fermentation by the improving agent of the present invention, improvement of feed utilization efficiency, and improvement of milk yield.
Next, the actual cow was raised and the effect was confirmed.
(II)イン ビボ(In vivo)試験;試験例2~7
実施例1で得られた改善剤1を用いて以下に示す試験条件でイン ビボ試験(動物実験)を行なった。
(試験牛):平均体重約160Kg、日齢約4ケ月齢の育成牛4頭(黒毛和牛の雄:2頭、ホルスタインの雄:2頭)
(基本飼料):濃厚飼料(森永乳業製「乳牛用配合飼料」)と乾草(スーダングラス)を、「濃厚飼料:乾草=1:1.5」で混合した飼料。
(試験期飼料):基本飼料に対して改善剤1を100ppm添加した飼料(飼料へ添加した生菌数は10個/gとなる)。
(試験方法):各試験牛に2週間基本飼料を連続給与(対照期1)、その後2週間試験期飼料を連続給与(試験期)、後にまた2週間基本飼料を連続給与(対照期2)した。
(II) In vivo test; Test Examples 2 to 7
Using the improving agent 1 obtained in Example 1, an in vivo test (animal experiment) was conducted under the test conditions shown below.
(Test cattle): 4 breeding cows with an average weight of about 160 kg and an age of about 4 months (2 Japanese black cattle males, 2 Holstein males)
(Basic feed): A feed obtained by mixing a concentrated feed ("Mixed feed for dairy cattle" manufactured by Morinaga Milk Industry) and hay (Sudangrass) in "concentrated feed: hay = 1: 1.5".
(Test period feed): A feed in which 100 ppm of the improver 1 was added to the basic feed (the number of viable bacteria added to the feed was 10 6 / g).
(Test method): Each test cow was fed with basic feed continuously for 2 weeks (control period 1), followed by continuous feed for 2 weeks test period (test period), and then again with basic feed for 2 weeks (control period 2) did.
(1)試験例2<飼料消化率の向上について>
 上記の試験条件で試験を行い、対照期1、試験期、対照期2の各期後半に各牛の糞(全量)を採取し、糞を完全に乾燥させ、その重量(糞固形物重量)を測定した。
 また、基本飼料、試験期飼料も完全に乾燥させ、その重量(飼料固形物重量)を測定した。(全糞採取法)
 飼料消化率(%)=「1−(糞固形物重量)/(飼料固形物重量)」×100
として対照期(1、2)と試験期のそれぞれの平均消化率を出した。値は平均値±標準偏差で示した(以下の試験例においても同様)。この消化率は通常DM(DRY MATTER)消化率と言われるものである。結果を表2および図1に示す。
(1) Test example 2 <Improvement of feed digestibility>
The test was conducted under the above test conditions, and the feces (total amount) of each cow was collected in the latter half of each of the control period 1, the test period, and the control period 2, and the feces were completely dried, and the weight (feces solid weight) Was measured.
Moreover, the basic feed and the test feed were completely dried, and their weight (feed solid weight) was measured. (Total fecal collection method)
Feed digestibility (%) = “1- (feces solid weight) / (feed solid weight)” × 100
The average digestibility for each of the control period (1, 2) and the test period was calculated. The value was expressed as an average value ± standard deviation (the same applies to the following test examples). This digestibility is usually called DM (DRY MATTER) digestibility. The results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(結果の検討)
 飼料消化率(%)は、対照期1、2の平均が58.6%、試験期の平均が62.3%であり、飼料消化率は改善剤1を使用した試験期において、有意(p<0.05)に向上したことが認められた。これにより、本発明の飼料利用効率改善剤を添加した飼料により、飼料消化率が向上することが確認された。
 飼料消化率の向上は、飼料の有効利用を示すものであり、乳房で乳成分の組立に使われるエネルギー源の増加を示すものであるから、本結果は、本発明の飼料利用効率改善剤の使用により飼料利用効率および乳量が改善されることを示すと言える。
(Examination of results)
The feed digestibility (%) was 58.6% in the control periods 1 and 2 and 62.3% in the test period, and the feed digestibility was significant (p) in the test period in which the improving agent 1 was used. <0.05). Thereby, it was confirmed that the feed digestibility is improved by the feed to which the feed utilization efficiency improving agent of the present invention is added.
Since the improvement in feed digestibility indicates the effective use of feed and the increase in energy sources used for the assembly of milk components in the breast, this result indicates that the feed utilization efficiency improving agent of the present invention It can be said that the use improves feed utilization efficiency and milk yield.
(2)試験例3<ルーメン液中のプロピオン酸モル比率増加について>
 上記の試験条件で試験を行い、対照期1、試験期、対照期2の各期の最終日にそれぞれのルーメン液を採取し、液中の各揮発性脂肪酸(VFA)を分析し、総揮発性脂肪酸量(mM)、総揮発性脂肪酸に対する酢酸、プロピオン酸、酪酸の各モル比率(mol%)をそれぞれ計算し各平均値を出した。結果を表3に示し、そのうちのプロピオン酸モル比率に係る結果を図2に示す。
(2) Test Example 3 <Increase in Propionic Acid Molar Ratio in Rumen Solution>
The test is performed under the above test conditions, and each rumen solution is collected on the last day of each of the control period 1, the test period, and the control period 2, and each volatile fatty acid (VFA) in the liquid is analyzed to determine the total volatilization. The respective fatty acid amounts (mM) and the molar ratios (mol%) of acetic acid, propionic acid and butyric acid to the total volatile fatty acids were calculated, and the respective average values were obtained. The results are shown in Table 3, and the results relating to the propionic acid molar ratio are shown in FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(結果の検討)
 ルーメン液中の総揮発性脂肪酸量、酢酸モル比率については、対照期と試験期での変化率は小さく、有意な差は認められなかった。
 一方、ルーメン液中のプロピオン酸モル比率は、対照期1、2の平均が17.0%、試験期の平均が18.3%であり、改善剤1を使用した試験期において有意(p<0.001)に増加したことが確認された。また、酪酸モル比率は、対照期1、2の平均が12.4%、試験期の平均が9.7%であり、改善剤1を使用した試験期において有意(p<0.001)に減少したことが確認された。
 この結果は、イン ビトロ試験(試験例1)の結果と整合するものと言える。
 本発明の飼料利用効率改善剤の使用により、ルーメン発酵を改善、調整し、過度の揮発性脂肪酸量は生成しないが、その脂肪酸の組成を良好な組成に変化させるというこの結果は驚くべきものである。
 揮発性脂肪酸(VFA)はルーメン壁から直接吸収され、乳牛などにおいて最終消化産物である乳成分などの原料となるほか、体組織で消費するエネルギーの6割以上、乳房で乳成分の組立に使われる燃料の約半分を賄う活力源となっていることは技術常識であり(非特許文献1参照)、揮発性脂肪酸(VFA)のうち、最もエネルギー効率が高いのがプロピオン酸であり、ルーメンからの吸収も良い酸であることから、本結果(プロピオン酸モル比率増加)は、本発明の飼料利用効率改善剤の使用により飼料利用効率が改善され、その結果乳量が改善されることを示すと言える。
(Examination of results)
Regarding the total amount of volatile fatty acids and the molar ratio of acetic acid in the rumen solution, the rate of change between the control period and the test period was small, and no significant difference was observed.
On the other hand, the propionic acid molar ratio in the rumen solution was 17.0% in the mean of the control periods 1 and 2 and 18.3% in the test period, and was significant in the test period using the improving agent 1 (p < It was confirmed that it increased to 0.001). The butyric acid molar ratio was 12.4% in the mean of the control periods 1 and 2 and 9.7% in the mean of the test period, and significantly (p <0.001) in the test period using the improving agent 1 It was confirmed that it decreased.
This result is consistent with the result of the in vitro test (Test Example 1).
The use of the feed utilization efficiency improving agent of the present invention improves and regulates rumen fermentation and does not produce an excessive amount of volatile fatty acids, but this result of changing the fatty acid composition to a good composition is surprising. is there.
Volatile fatty acids (VFA) are absorbed directly from the rumen wall and used as raw materials for milk components, which are the final digestion products in dairy cows, and more than 60% of the energy consumed by body tissues is used to assemble milk components in the breast. It is technical common sense that it is a vitality source that covers about half of the fuel produced (see Non-Patent Document 1), and among volatile fatty acids (VFA), the most energy efficient is propionic acid. The results (increased propionic acid molar ratio) show that feed utilization efficiency is improved by using the feed utilization efficiency improving agent of the present invention, and the milk yield is improved as a result. It can be said.
(3)試験例4<ルーメン液中のアンモニア態窒素濃度の減少(微生物体蛋白質合成の向上)について>
 上記の試験条件で試験を行い、対照期1、試験期、対照期2の各期の最終日にそれぞれのルーメン液を採取し、液中のアンモニア態窒素濃度(mg/dl)を測定し、対照期(1、2)と試験期のそれぞれの平均値を出した。結果を表4および図3に示す。
(3) Test Example 4 <Reduction of ammonia nitrogen concentration in rumen solution (improvement of microbial protein synthesis)>
The test was conducted under the above test conditions, and each rumen solution was collected on the last day of each of the control period 1, the test period, and the control period 2, and the ammonia nitrogen concentration (mg / dl) in the liquid was measured. Average values for the control period (1, 2) and the test period were obtained. The results are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(結果の検討)
 ルーメン液中のアンモニア態窒素濃度(mg/dl)は、対照期1、2の平均が5.7、試験期の平均が2.5であり、改善剤1を使用した試験期においてアンモニア態窒素濃度が有意(p<0.001)に減少したことが確認された。
 牛などの反芻動物において、飼料中の蛋白源は、ルーメン内微生物の蛋白分解酵素の作用でアミノ酸に、ついでアンモニアに分解され、さらに微生物はこのアンモニアを材料として新たに栄養価値の高い微生物体蛋白質を合成することは技術常識である(非特許文献1参照)から、本結果(アンモニア態窒素濃度の減少)は、ルーメン内微生物による栄養価値の高い微生物体蛋白質の合成が向上したことを示すものであり、飼料から摂取された窒素の利用効率の向上(エネルギー損失の減少)を示すものである。微生物体蛋白質は小腸において分解吸収され、乳成分の原料などになるものである。さらに、体内にアンモニア量が多いと、アンモニアの強い毒性が中毒を招来することも知られていることから、本発明の改善剤の使用により、アンモニアが有意に減少するので、健康が向上し吸収力も向上すると言える。
 したがって、本結果は、本発明の飼料利用効率改善剤の使用により飼料利用効率が改善され、その結果乳量が改善されることを示すと言える。
(Examination of results)
The ammonia nitrogen concentration (mg / dl) in the rumen fluid was 5.7 in the control periods 1 and 2 and 2.5 in the test period, and the ammonia nitrogen in the test period in which the improver 1 was used. It was confirmed that the concentration decreased significantly (p <0.001).
In ruminants such as cattle, the protein source in the feed is broken down into amino acids and then into ammonia by the action of the proteolytic enzymes of the microorganisms in the rumen. It is technical common sense (see Non-Patent Document 1), and this result (decrease in ammonia nitrogen concentration) shows that the synthesis of microbial protein with high nutritional value by microorganisms in rumen has been improved. It shows an improvement in utilization efficiency (reduction in energy loss) of nitrogen taken from feed. Microbial protein is decomposed and absorbed in the small intestine and becomes a raw material for milk components. Furthermore, it is known that when the amount of ammonia in the body is large, the strong toxicity of ammonia leads to poisoning, so the use of the improving agent of the present invention significantly reduces ammonia, improving health and absorption. It can be said that power also improves.
Therefore, it can be said that this result shows that feed utilization efficiency is improved by using the feed utilization efficiency improving agent of the present invention, and as a result, milk yield is improved.
(4)試験例5<ルーメン内微生物の増加および/または活性化について>
 上記試験条件で試験を行い、試験牛3頭について、対照期1、試験期、対照期2の各期の最終日に、それぞれの、給餌前0時間、給餌後2時間、給餌後5時間に、ルーメン液を採取し、液中のプロトゾア(原生動物)の数を測定し、対照期1、2の各時間の測定値すべてと試験期の各時間の測定値すべてをそれぞれまとめて平均値を出した。結果を表5および図4に示す。
(4) Test Example 5 <Increase and / or activation of microorganisms in rumen>
The test was conducted under the test conditions described above, and the three test cows were treated with 0 hour before feeding, 2 hours after feeding, and 5 hours after feeding on the last day of each of control period 1, test period, and control period 2. The rumen fluid is collected, the number of protozoa (protozoa) in the fluid is measured, and all the measured values at each time in the control period 1 and 2 and all the measured values at each time in the test period are summed up to obtain an average value. I put it out. The results are shown in Table 5 and FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(結果の検討)
 プロトゾア数のまとめの平均値は、対照期が3.5×10個/ml、試験期が4.3×10個/mlであり、改善剤1を使用した試験期のプロトゾア数の平均値が高い値であった。
 ルーメン内微生物(細菌とプロトゾア)は、ルーメン発酵に関与し、蛋白質を分解するとともに、蛋白源の分解物であるアンモニアを材料として新たに栄養価値の高い微生物体蛋白質(菌体蛋白質、虫体蛋白質)を合成し、さらにプロトゾア等は微生物体蛋白質として胃内容物と共に第4胃以降へ運ばれ小腸で消化吸収される仕組みになっているのであるから、プロトゾア数のルーメン液中の変動は大きいものであるが、少なくともこの試験例5の結果は、上記試験例2の飼料消化率の向上や試験例4の微生物体蛋白質合成の向上などと合わせみると、本発明の飼料利用効率改善剤使用によるルーメン内微生物の増加および/または活性化の促進を示すものといえる。
(Examination of results)
The average value of the summary of the number of protozoa is 3.5 × 10 5 cells / ml in the control period and 4.3 × 10 5 cells / ml in the test period, and the average number of protozoa in the test period using the improving agent 1 The value was high.
Microorganisms in the rumen (bacteria and protozoa) are involved in rumen fermentation and decompose proteins, as well as new microbial proteins with high nutritional value (bacterial proteins, parasite proteins, using ammonia, which is a degradation product of the protein source) ), And protozoa, etc., is transported to the 4th and subsequent stomachs together with the stomach contents as microbial protein, and is digested and absorbed in the small intestine. However, when at least the results of Test Example 5 are combined with the improvement of the feed digestibility of Test Example 2 and the improvement of microbial protein synthesis of Test Example 4, the use of the feed utilization efficiency improving agent of the present invention is It can be said to show an increase in the microorganisms in the lumen and / or promotion of activation.
(5)試験例6<有害菌の減少及び有用菌の増加について>
 上記の試験条件で試験を行い、対照期1、試験期、対照期2の各期後半に各牛の新鮮な糞を採取し、糞中の菌叢を光岡法変法にて培養、測定し、各々の期について平均値を出した。結果を表6および図5に示す。なお、表中のNDは、検出限界(2.30CFU/g)以下を示し、数値(平均値±標準偏差)の下の(分数)は検出率を示す。
(5) Test Example 6 <About reduction of harmful bacteria and increase of useful bacteria>
Perform the test under the above test conditions, collect fresh feces of each cow in the latter half of each of the control period 1, test period, and control period 2, and culture and measure the flora in the feces using the modified Mitsuoka method. The average value was obtained for each period. The results are shown in Table 6 and FIG. In the table, ND indicates the detection limit (2.30 CFU / g) or less, and (fraction) below the numerical value (average value ± standard deviation) indicates the detection rate.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(結果の検討)
 糞中菌叢の各菌種の菌数の変化は、(i)有害菌である大腸菌群の菌数は、対照期1に比し、試験期および対照期2において減少した、(ii)有用菌である乳酸桿菌、ビフィズス菌の菌数は、対照期1に比し、試験期において増加し、その後の対照期2において減少した。特に試験期おけるビフィズス菌の増加は顕著であった。
 試験期においてだけ、即ち、本発明の飼料利用効率改善剤の使用期においてだけ、有用菌である乳酸桿菌、ビフィズス菌が増加するという本結果は、驚くべきことである。特にビフィズス菌は、対照期1、対照期2とも検出限界以下(ND)であり、試験期だけに顕著に増加していることは、注目すべきことである。
 従来から、バチルス・ズブチリスを飼育動物に投与することで、飼育動物体内の病原性細菌の増殖を抑制することは知られていた(特許文献4~6参照)が、有用菌が増加することは知られていなかった。また、乳酸桿菌、ビフィズス菌が、腸内環境を良好に保ち、吸収力を向上させ、健康維持に役立つこと自体は周知であるが、それらの菌を外部から飼料添加物として用いることには扱いが面倒であるなど問題が多いとされている(例えば特開2009−45号公報参照)。したがって、外部からの有用菌の投与ではなく、本発明の改善剤を使用することにより、体内の有用菌を増加できることは、驚くべき効果であり、これにより、健康が向上し吸収力も向上する。したがって、本結果(有害菌の減少及び有用菌の増加)は、本発明の飼料利用効率改善剤の使用により飼料利用効率が改善され、その結果乳量が改善されることを示すと言える。
(Examination of results)
Changes in the number of bacterial species in the faecal flora (i) The number of coliform bacteria, which are harmful bacteria, decreased in the test period and the control period 2 compared to the control period 1, (ii) useful The number of lactobacilli and bifidobacteria, which are fungi, increased in the test period and decreased in the subsequent control period 2 as compared with the control period 1. In particular, the increase in bifidobacteria during the test period was significant.
This result that the useful bacteria such as lactobacilli and bifidobacteria increase only in the test period, that is, only in the use period of the feed utilization efficiency improving agent of the present invention is surprising. In particular, it is noteworthy that bifidobacteria are below the detection limit (ND) in both the control period 1 and the control period 2 and increase significantly only in the test period.
Conventionally, it has been known that bacillus subtilis is administered to domestic animals to suppress the growth of pathogenic bacteria in the domestic animals (see Patent Documents 4 to 6). It was not known. In addition, it is well known that lactobacilli and bifidobacteria maintain a good intestinal environment, improve absorbability, and help maintain health, but these bacteria are not used as feed additives from outside. It is said that there are many problems, such as being troublesome (for example, refer Unexamined-Japanese-Patent No. 2009-45). Therefore, it is a surprising effect that the useful bacteria in the body can be increased by using the improving agent of the present invention instead of the administration of useful bacteria from the outside, thereby improving the health and improving the absorbability. Therefore, it can be said that this result (decrease in harmful bacteria and increase in useful bacteria) shows that the use efficiency of the feed is improved by using the feed efficiency improving agent of the present invention, and as a result, the milk yield is improved.
(6)試験例7<メタンガス発生量について>
 上記の試験条件で試験を行い、対照期1、試験期、対照期2の各期の最終日に、それぞれのメタンガス発生量(L/DMI/day)をフード式呼吸試験装置にて測定し、対照期(1、2)と試験期のそれぞれの平均値を出した。結果を表7に示す。
(6) Test example 7 <Methane gas generation amount>
The test was conducted under the above test conditions, and the methane gas generation amount (L / DMI / day) was measured with a hood-type breathing test apparatus on the last day of each of the control period 1, the test period, and the control period 2, Average values for the control period (1, 2) and the test period were obtained. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(結果の検討)
 メタン発生量は、対照期1、2の平均値と試験期の平均値において、有意な変化は認められなかった。
 通常メタンは、発生ガス中の30%を占め、飼料として摂取したエネルギーの約5~8%が有効に利用されることなくメタンとして大気中に放出されるといわれている。
 上記試験例2(飼料消化率の向上)などからみて、試験期(本発明の飼料利用効率改善剤使用期)では、飼料の分解率が向上しているといえるのであるが、それにもかかわらず、メタン発生率が増加しないという本結果は、エネルギー損失が抑えられて飼料利用効率が改善されたことを示すものであり、結果として乳量が改善されることを示すものと言える。
(Examination of results)
The methane generation amount did not change significantly between the average values in the control periods 1 and 2 and the average value in the test period.
Normally, methane accounts for 30% of the generated gas, and it is said that about 5 to 8% of the energy ingested as feed is released into the atmosphere as methane without being effectively used.
In view of the test example 2 (improvement of feed digestibility) and the like, it can be said that the decomposition rate of the feed is improved in the test period (use period of the feed utilization efficiency improving agent of the present invention). This result that the methane generation rate does not increase indicates that the energy loss is suppressed and the feed utilization efficiency is improved, and as a result, the milk yield is improved.
 本発明は、反芻動物の特異な消化吸収機構やエネルギー代謝機構全般を改善することができる効果を奏する改善剤を提供することができるので、産業上の利用可能性が大きいものである。
 本発明は、抗生物質や特殊なアミノ酸等を用いることなく、反芻動物のルーメン発酵を改善して、ルーメン微生物の増加および/または活性化を促進し、かつルーメン内のプロピオン酸の生成、微生物体蛋白質の生成を向上し、さらに、体内の有害菌を減少させかつ有用菌を増加させ、飼料の消化率、特に固形物を含有する飼料の消化率を向上させ、エネスギー損失を減少させることを特徴とする反芻動物の飼料利用効率改善剤や乳量改善剤を提供することができるので、産業上の利用可能性が大である。
 この本発明の改善剤を直接、または飼料に添加して給与することにより、反芻動物のルーメン発酵を改善してルーメン内の菌体蛋白質の合成が向上するので、ルーメン液中の毒性の強いアンモニア濃度が減少し、また、体内の有害菌が減少しかつ有用菌が増加するので、健康で乳量や乳質の改善した家畜を育成でき、生産性が向上し経済的にも貢献するので、産業上の利用可能性が大である。
 さらに、本発明の改善剤を直接、または飼料に添加して給与することにより、飼料利用効率の向上、すなわち飼料の消化率の向上とエネルギー損失の低減ができるので、与える飼料量を少なくすることができ、生産性が向上し経済的にも有利であるうえ、家畜の排出物量と質を改善でき、環境改善にも貢献する。
INDUSTRIAL APPLICABILITY Since the present invention can provide an improving agent capable of improving the specific digestion and absorption mechanism and the general energy metabolism mechanism of ruminants, it has great industrial applicability.
The present invention improves rumen fermentation of ruminants without using antibiotics, special amino acids, etc., promotes the increase and / or activation of rumen microorganisms, and produces propionic acid in the rumen. Characterized by improving protein production, further reducing harmful bacteria in the body and increasing useful bacteria, improving the digestibility of feeds, especially feeds containing solids, and reducing energy loss The feed utilization efficiency improving agent and milk yield improving agent for ruminants can be provided, and thus the industrial applicability is great.
By feeding the improving agent of the present invention directly or by adding it to the feed, rumen fermentation of ruminants is improved and synthesis of bacterial proteins in the rumen is improved. Therefore, highly toxic ammonia in the rumen fluid As the concentration decreases and harmful bacteria in the body decrease and useful bacteria increase, healthy animals with improved milk yield and quality can be bred, productivity is improved, and economic contributions are made. The above applicability is great.
Furthermore, by feeding the improving agent of the present invention directly or by adding it to the feed, the feed utilization efficiency can be improved, that is, the digestibility of the feed can be improved and the energy loss can be reduced. It is possible to improve productivity and productivity, as well as improve the quantity and quality of livestock and contribute to environmental improvement.

Claims (28)

  1.  バチルス・ズブチリス(Bacillus subtilis)の生菌体を有効成分として含有することを特徴とする反芻動物の飼料利用効率改善剤。 A feed utilization improving agent for ruminants comprising viable cells of Bacillus subtilis as an active ingredient.
  2.  飼料利用効率改善が、飼料消化率向上を伴うものである請求項1に記載の反芻動物の飼料利用効率改善剤。 The feed utilization efficiency improving agent for ruminants according to claim 1, wherein the feed utilization efficiency improvement is accompanied by an improvement in feed digestibility.
  3.  飼料利用効率改善が、ルーメン発酵改善を伴うものである請求項1または2に記載の反芻動物の飼料利用効率改善剤。 The feed utilization efficiency improving agent for ruminants according to claim 1 or 2, wherein the feed utilization efficiency improvement is accompanied by rumen fermentation improvement.
  4.  飼料利用効率改善が、ルーメン内微生物の増殖促進および/または活性化促進、ルーメン内のプロピオン酸の生成の向上、ルーメン内の微生物体蛋白質の生成の向上、体内の有害菌の減少、および体内の有用菌の増加の少なくとも一つを伴うものである請求項1に記載の反芻動物の飼料利用効率改善剤。 Improving feed utilization efficiency can promote the growth and / or activation of microorganisms in the rumen, improve the production of propionic acid in the rumen, improve the production of microbial protein in the rumen, reduce harmful bacteria in the body, and The feed utilization efficiency improving agent for ruminants according to claim 1, which is accompanied by at least one increase in useful bacteria.
  5.  有用菌が、乳酸桿菌およびビフィズス菌である請求項4に記載の反芻動物の飼料利用効率改善剤。 The useful utilization improving agent for ruminants according to claim 4, wherein the useful bacteria are lactobacilli and bifidobacteria.
  6.  飼料利用効率改善が、乳量の改善効果を発揮させる請求項1または2に記載の反芻動物の飼料利用効率改善剤。 The feed utilization efficiency improving agent for ruminants according to claim 1 or 2, wherein the feed utilization efficiency improvement exerts an effect of improving milk yield.
  7.  バチルス・ズブチリス(Bacillus subtilis)がバチルス・ズブチリスC−3102(FERM BP−1096)である請求項1または2に記載の反芻動物の飼料利用効率改善剤。 The feed utilization efficiency improver for ruminants according to claim 1 or 2, wherein the Bacillus subtilis is Bacillus subtilis C-3102 (FERM BP-1096).
  8.  反芻動物が、離乳後期以降の反芻胃機能が備わった動物であることを特徴とする請求項1または2に記載の反芻動物の飼料利用効率改善剤。 3. The ruminant feed utilization efficiency improving agent according to claim 1 or 2, wherein the ruminant is an animal having a ruminant function after the late weaning period.
  9.  反芻動物が、牛、めん羊、山羊のいずれかである請求項1または2に記載の反芻動物の飼料利用効率改善剤。 The ruminant feed utilization efficiency improving agent according to claim 1 or 2, wherein the ruminant is a cow, sheep or goat.
  10.  バチルス・ズブチリス(Bacillus subtilis)の生菌体を直接または飼料に添加して給与することを特徴とする反芻動物の飼料利用効率改善の方法。 A method for improving the feed utilization efficiency of ruminants, characterized by feeding live cells of Bacillus subtilis directly or by adding to the feed.
  11.  バチルス・ズブチリス(Bacillus subtilis)の生菌数が、体重あたり1×10個/Kg・日以上となるように給与する請求項10に記載の反芻動物の飼料利用効率改善の方法。 The method for improving feed utilization efficiency of ruminants according to claim 10, wherein the number of viable bacteria of Bacillus subtilis is 1 × 10 6 / Kg · day or more per body weight.
  12.  飼料に添加して給与する場合、バチルス・ズブチリス(Bacillus subtilis)の生菌数が、飼料中10~10個/gとなるように添加する請求項10または11に記載の反芻動物の飼料利用効率改善の方法。 The feed for ruminants according to claim 10 or 11, wherein the feed is added so that the viable count of Bacillus subtilis is 10 3 to 10 9 / g in the feed when fed in addition to the feed. How to improve usage efficiency.
  13.  バチルス・ズブチリス(Bacillus subtilis)がバチルス・ズブチリスC−3102(FERM BP−1096)である、請求項10または11に記載の反芻動物の飼料利用効率改善の方法。 The method for improving ruminant feed utilization efficiency according to claim 10 or 11, wherein the Bacillus subtilis is Bacillus subtilis C-3102 (FERM BP-1096).
  14.  飼料利用効率改善が、飼料消化率向上、ルーメン内微生物の増殖促進および/または活性化促進、ルーメン内のプロピオン酸の生成の向上、ルーメン内の微生物体蛋白質の生成の向上、体内の有害菌の減少、および体内の有用菌の増加の少なくとも一つを伴うものである請求項10に記載の反芻動物の飼料利用効率改善の方法。 Improving feed utilization efficiency improves feed digestibility, promotes growth and / or activation of microorganisms in rumen, improves production of propionic acid in rumen, improves production of microbial protein in rumen, The method for improving the ruminant feed utilization efficiency according to claim 10, which is accompanied by at least one of a decrease and an increase of useful bacteria in the body.
  15.  有用菌が、乳酸桿菌およびビフィズス菌である請求項14に記載の反芻動物の飼料利用効率改善の方法。 The method for improving ruminant feed utilization efficiency according to claim 14, wherein useful bacteria are lactobacilli and bifidobacteria.
  16.  飼料利用効率改善が、乳量の改善効果を発揮させる請求項10または11に記載の反芻動物の飼料利用効率改善の方法。 12. The method for improving ruminant feed utilization efficiency according to claim 10 or 11, wherein the feed utilization efficiency improvement exerts an effect of improving milk yield.
  17.  反芻動物が、離乳後期以降の反芻胃機能が備わった動物であることを特徴とする請求項10または11に記載の反芻動物の飼料利用効率改善の方法。 The method for improving the ruminant feed utilization efficiency according to claim 10 or 11, wherein the ruminant is an animal having a ruminant function after the late weaning period.
  18.  反芻動物が、牛、めん羊、山羊のいずれかである請求項10または11に記載の反芻動物の飼料利用効率改善の方法。 The method for improving the efficiency of ruminant feed utilization according to claim 10 or 11, wherein the ruminant is a cow, sheep or goat.
  19.  離乳後期以降の反芻胃機能が備わった反芻動物に、バチルス・ズブチリス(Bacillus subtilis)の生菌体を直接または飼料に添加して給与することを特徴とする反芻動物の飼育方法。 A ruminant breeding method comprising feeding ruminants having a ruminant function after the late weaning period with live cells of Bacillus subtilis directly or added to feed.
  20.  反芻動物が、牛、めん羊、山羊のいずれかである請求項19に記載の反芻動物の飼育方法。 The method for raising a ruminant according to claim 19, wherein the ruminant is a cow, a sheep, or a goat.
  21.  バチルス・ズブチリス(Bacillus subtilis)の生菌数が、体重あたり1×10個/Kg・日以上となるように給与する請求項19または20に記載の反芻動物の飼育方法。 21. The method of breeding ruminants according to claim 19 or 20, wherein the viable count of Bacillus subtilis is 1 × 10 6 / Kg · day or more per body weight.
  22.  飼料に添加して給与する場合、バチルス・ズブチリス(Bacillus subtilis)の生菌数が、飼料中10~10個/gとなるように添加する請求項19または20に記載の反芻動物の飼育方法。 21. Breeding of ruminants according to claim 19 or 20, wherein when the feed is added to the feed, the viable count of Bacillus subtilis is 10 3 to 10 9 / g in the feed. Method.
  23.  バチルス・ズブチリス(Bacillus subtilis)がバチルス・ズブチリスC−3102(FERM BP−1096)である請求項19または20に記載の反芻動物の飼育方法。 21. The ruminant breeding method according to claim 19 or 20, wherein the Bacillus subtilis is Bacillus subtilis C-3102 (FERM BP-1096).
  24.  バチルス・ズブチリス(Bacillus subtilis)の生菌体を有効成分とし、生菌数が飼料中10~10個/gとなるように配合し、かつ該生菌数が、体重あたり1×10個/Kg・日以上となるように給与する飼料であることを特徴とする、離乳後期以降の反芻胃機能が備わった反芻動物に用いる飼料利用効率の改善効果および/または乳量の改善効果を発揮させるための反芻動物用飼料。 A viable cell of Bacillus subtilis is used as an active ingredient, and the viable cell count is 10 3 to 10 9 / g in the feed, and the viable cell count is 1 × 10 6 per body weight. The feed utilization efficiency and / or the milk yield improvement effect used for ruminants with ruminant function after the weaning phase, characterized in that the feed is fed at a rate of at least individual / Kg · day. Ruminant animal feed to demonstrate.
  25.  反芻動物が牛、めん羊または山羊である請求項24に記載の反芻動物用飼料。 25. The ruminant feed according to claim 24, wherein the ruminant is a cow, sheep or goat.
  26.  バチルス・ズブチリス(Bacillus subtilis)がバチルス・ズブチリスC−3102(FERM BP−1096)である請求項24または25に記載の反芻動物用飼料。 The feed for ruminants according to claim 24 or 25, wherein the Bacillus subtilis is Bacillus subtilis C-3102 (FERM BP-1096).
  27.  飼料消化率向上、ルーメン内微生物の増殖促進および/または活性化促進、ルーメン内のプロピオン酸の生成の向上、ルーメン内の微生物体蛋白質の生成の向上、体内の有害菌の減少、および体内の有用菌の増加の少なくとも一を伴う飼料である請求項24に記載の反芻動物用飼料。 Improve feed digestibility, promote the growth and / or activation of microorganisms in rumen, improve the production of propionic acid in rumen, improve the production of microbial protein in rumen, reduce harmful bacteria in the body, and useful in the body The ruminant feed according to claim 24, wherein the feed is accompanied by at least one increase in fungi.
  28.  有用菌が、乳酸桿菌およびビフィズス菌である請求項27に記載の反芻動物用飼料。 The feed for ruminants according to claim 27, wherein the useful bacteria are lactobacilli and bifidobacteria.
PCT/JP2011/057270 2010-03-17 2011-03-17 Feed-use-efficiency improver for ruminant animals WO2011115306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505790A JPWO2011115306A1 (en) 2010-03-17 2011-03-17 Improving feed utilization efficiency for ruminants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010087314 2010-03-17
JP2010-087314 2010-03-17

Publications (1)

Publication Number Publication Date
WO2011115306A1 true WO2011115306A1 (en) 2011-09-22

Family

ID=44649384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057270 WO2011115306A1 (en) 2010-03-17 2011-03-17 Feed-use-efficiency improver for ruminant animals

Country Status (4)

Country Link
JP (1) JPWO2011115306A1 (en)
AR (1) AR080587A1 (en)
TW (1) TW201136528A (en)
WO (1) WO2011115306A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147469A (en) * 2012-01-20 2013-08-01 Calpis Co Ltd Intestinal butyric acid production bacterium increasing agent
WO2014185516A1 (en) 2013-05-17 2014-11-20 カルピス株式会社 Preventive or therapeutic agent for ruminant animal mastitis
WO2016060935A2 (en) 2014-10-08 2016-04-21 Novozymes A/S Compositions and methods of improving the digestibility of animal feed
CN105724760A (en) * 2016-02-19 2016-07-06 中国农业科学院饲料研究所 Crop straw-fermented feed and preparation method and application thereof
JP2017226649A (en) * 2016-06-15 2017-12-28 アサヒグループホールディングス株式会社 Bone metabolism improver
WO2019013382A1 (en) * 2017-07-12 2019-01-17 씨제이제일제당(주) Feed additive containing bacillus subtilis and bacillus licheniformis, feed composition containing additive, and method for preparing feed additive
WO2019027073A1 (en) * 2017-08-04 2019-02-07 씨제이제일제당(주) Feedstuff additive containing bacillus subtilis and bacillus licheniformis, feedstuff composition containing same additive, and preparation method for same feedstuff additive
CN109640687A (en) * 2016-06-29 2019-04-16 株式会社目立康 The agent of livestock feed improved efficiency, the domestic animal method for promoting the method for breeding of weight gain feed, domestic animal and methane being inhibited to generate
CN110169501A (en) * 2019-05-09 2019-08-27 河北冀丰动物营养科技有限责任公司 A kind of young age ruminant milk powder
WO2019183511A1 (en) * 2018-03-23 2019-09-26 Purina Animal Nutrition Llc Methods of feeding animals feed products containing direct-fed microbials
CN110637919A (en) * 2019-09-18 2020-01-03 新和县园邦城农业发展有限公司 Novel straw composite feed of yellow mealworm sand and ghost
CN114916611A (en) * 2022-07-20 2022-08-19 山东益得来生物科技有限公司 Jerusalem artichoke probiotic agent for promoting gastrointestinal health of fattening sheep
WO2023222664A1 (en) 2022-05-17 2023-11-23 Chr. Hansen A/S A mixture of probiotic strains to improve health and growth performance of ruminants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6434409B2 (en) * 2013-08-09 2018-12-05 アサヒカルピスウェルネス株式会社 Cultivation method of crops using Bacillus bacteria

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075238A (en) * 1983-09-29 1985-04-27 Toshio Tsubaki Feed for domestic animals
JPS6486842A (en) * 1987-09-30 1989-03-31 Calpis Food Ind Co Ltd Feed additive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075238A (en) * 1983-09-29 1985-04-27 Toshio Tsubaki Feed for domestic animals
JPS6486842A (en) * 1987-09-30 1989-03-31 Calpis Food Ind Co Ltd Feed additive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISSAN JOHO, SEIKINZAI (PROBIOTICS) NO KATSUYO O!, no. 34, August 2006 (2006-08-01), pages 1 - 2, Retrieved from the Internet <URL:http://www.nissangosei.co.jp/nissan/034.pdf> *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147469A (en) * 2012-01-20 2013-08-01 Calpis Co Ltd Intestinal butyric acid production bacterium increasing agent
US10251918B2 (en) 2013-05-17 2019-04-09 Asahi Calpis Wellness Co., Ltd. Preventive or therapeutic agent for ruminant animal mastitis
CN105358166B (en) * 2013-05-17 2019-11-12 朝日可尔必思健康株式会社 The prophylactic or therapeutic agent of mazoitis for ruminant
AU2014266266B2 (en) * 2013-05-17 2019-05-16 Asahi Biocycle Co., Ltd. Preventive or therapeutic agent for ruminant animal mastitis
CN105358166A (en) * 2013-05-17 2016-02-24 可尔必思株式会社 Preventive or therapeutic agent for ruminant animal mastitis
JPWO2014185516A1 (en) * 2013-05-17 2017-02-23 アサヒカルピスウェルネス株式会社 Prophylactic or therapeutic agent for ruminant mastitis
WO2014185516A1 (en) 2013-05-17 2014-11-20 カルピス株式会社 Preventive or therapeutic agent for ruminant animal mastitis
WO2016060935A2 (en) 2014-10-08 2016-04-21 Novozymes A/S Compositions and methods of improving the digestibility of animal feed
CN105724760A (en) * 2016-02-19 2016-07-06 中国农业科学院饲料研究所 Crop straw-fermented feed and preparation method and application thereof
JP2017226649A (en) * 2016-06-15 2017-12-28 アサヒグループホールディングス株式会社 Bone metabolism improver
CN109640687A (en) * 2016-06-29 2019-04-16 株式会社目立康 The agent of livestock feed improved efficiency, the domestic animal method for promoting the method for breeding of weight gain feed, domestic animal and methane being inhibited to generate
WO2019013382A1 (en) * 2017-07-12 2019-01-17 씨제이제일제당(주) Feed additive containing bacillus subtilis and bacillus licheniformis, feed composition containing additive, and method for preparing feed additive
KR101934400B1 (en) * 2017-07-12 2019-03-25 씨제이제일제당 주식회사 Feed additive comprising Bacillus subtilis and Bacillus licheniformis, a feed composition comprising the feed additive and a method for producing the feed additive
JP2019524049A (en) * 2017-07-12 2019-09-05 シージェイ チェイルジェダン コーポレーションCj Cheiljedang Corporation Feed additive containing Bacillus subtilis and Bacillus licheniformis, feed composition containing the additive, and method for producing the feed additive
US11638432B2 (en) 2017-07-12 2023-05-02 Cj Cheiljedang Corporation Feed additive comprising Bacillus subtilis and Bacillus licheniformis, a feed composition comprising the feed additive and a method for producing the feed additive
WO2019027073A1 (en) * 2017-08-04 2019-02-07 씨제이제일제당(주) Feedstuff additive containing bacillus subtilis and bacillus licheniformis, feedstuff composition containing same additive, and preparation method for same feedstuff additive
WO2019183511A1 (en) * 2018-03-23 2019-09-26 Purina Animal Nutrition Llc Methods of feeding animals feed products containing direct-fed microbials
CN110169501A (en) * 2019-05-09 2019-08-27 河北冀丰动物营养科技有限责任公司 A kind of young age ruminant milk powder
CN110637919A (en) * 2019-09-18 2020-01-03 新和县园邦城农业发展有限公司 Novel straw composite feed of yellow mealworm sand and ghost
WO2023222664A1 (en) 2022-05-17 2023-11-23 Chr. Hansen A/S A mixture of probiotic strains to improve health and growth performance of ruminants
CN114916611A (en) * 2022-07-20 2022-08-19 山东益得来生物科技有限公司 Jerusalem artichoke probiotic agent for promoting gastrointestinal health of fattening sheep
CN114916611B (en) * 2022-07-20 2022-10-18 山东益得来生物科技有限公司 Jerusalem artichoke probiotic agent for promoting gastrointestinal health of fattening sheep

Also Published As

Publication number Publication date
TW201136528A (en) 2011-11-01
JPWO2011115306A1 (en) 2013-07-04
AR080587A1 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2011115306A1 (en) Feed-use-efficiency improver for ruminant animals
CN104000041B (en) Milk cow fermentation concentrate supplement and preparation method thereof
CN102972638B (en) Animal feed additive and preparation method thereof
KR102255611B1 (en) Method for preparing fermented total mixed ration using microbial strain complex
RU2412612C1 (en) Method for production of &#34;ferm km&#34; probiotic fodder additive for domestic animals and birds
CN105076753A (en) Method for preparing cattle and sheep feed by fermenting bagasse
CN102406051B (en) Production method, using method and production equipment of high-activity nonreactive feed
CN109601738A (en) A kind of drinking water type acidulant and its preparation method and application
CN108813123A (en) It is a kind of improve intestine of young pigs health enteral nutrition packet and application
CN102172266B (en) Additive for increasing feed intake of nursing sow and application thereof
CN104012803A (en) Preparation method of fermented feed capable of preventing cow mastitis
CN108041256A (en) A kind of milk cow forage grass of fermented type and preparation method thereof
CN109924360A (en) One boar fermentation compound feed and preparation method thereof
CN107373132A (en) Enzyme preparation live pig mixed feed
RU2347807C1 (en) Escherichia coli-lysine producer strain, method of making feed additive, containing this strain, composition, obtained using this method and method of monogastric animals and birds
CN104886391A (en) Biological fermentation feed for reducing odor of pig manure and preparation method of biological fermentation feed
KR101142887B1 (en) method for breeding cattle using fodder fermented with loess
CN109170149A (en) A method of microecological fermented forage is produced using antibiotic milk
CN104839441A (en) Lactobacillus straw powder biological complete feed and preparation method thereof
RU2378000C2 (en) Method for production of therapeutic additive
RU2441393C2 (en) Method of digestive process formation in fore-stomach of a calf
RU2352137C1 (en) Biologically active feed additive for cattle and method of obtaining it
CN105248883A (en) Method for degrading harmful residue in aquatic and poultry animal bodies by using short chain fatty acid
RU2654342C1 (en) Method of feeding calves
RU2819790C1 (en) Feed additive for farm animals and birds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505790

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756488

Country of ref document: EP

Kind code of ref document: A1