WO2011114605A1 - イオン液体を用いたリチウム二次電池 - Google Patents

イオン液体を用いたリチウム二次電池 Download PDF

Info

Publication number
WO2011114605A1
WO2011114605A1 PCT/JP2011/000198 JP2011000198W WO2011114605A1 WO 2011114605 A1 WO2011114605 A1 WO 2011114605A1 JP 2011000198 W JP2011000198 W JP 2011000198W WO 2011114605 A1 WO2011114605 A1 WO 2011114605A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium secondary
secondary battery
active material
ionic liquid
Prior art date
Application number
PCT/JP2011/000198
Other languages
English (en)
French (fr)
Inventor
敏規 杉本
哲也 東崎
恵理子 石古
通之 河野
石川 正司
Original Assignee
第一工業製薬株式会社
学校法人関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社, 学校法人関西大学 filed Critical 第一工業製薬株式会社
Priority to EP11755798.3A priority Critical patent/EP2549577B1/en
Priority to US13/635,837 priority patent/US9225037B2/en
Priority to CN2011800146351A priority patent/CN103119773A/zh
Priority to CA2792747A priority patent/CA2792747C/en
Priority to KR1020127026008A priority patent/KR101798259B1/ko
Priority to JP2012505462A priority patent/JP5702362B2/ja
Publication of WO2011114605A1 publication Critical patent/WO2011114605A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery using an ionic liquid as a flame retardant non-aqueous electrolyte, and more particularly to a lithium secondary battery using a non-aqueous electrolyte containing a bis (fluorosulfonyl) imide anion.
  • Lithium secondary batteries are small and lightweight rechargeable batteries that have a large storage capacity per unit volume or unit weight and are widely used in mobile phones, notebook computers, personal digital assistants (PDAs), video cameras, digital cameras, It is indispensable for each portable device which is small and light and consumes a relatively large amount of power.
  • PDAs personal digital assistants
  • the development of medium- or large-sized lithium batteries to be mounted on electric bicycles and electric vehicles has been promoted, and the development is expected as a means for reducing the environmental load.
  • a non-aqueous solvent used in a non-aqueous electrolyte of a lithium secondary battery a polar aprotic organic solvent that easily dissolves a lithium salt and is difficult to electrolyze is used. Since the point is very low, there is a risk of ignition or explosion due to heat generation at the time of overcharge or short circuit, and there is a big problem regarding the safety of the battery. Particularly in recent years, with the development of smaller and lighter electronic devices and the development of electric vehicles, the development of large-capacity, high-power lithium secondary batteries has become an urgent task, and safety issues have become an increasingly important solution. . For this reason, various studies have been made on the use of flame retardant ionic liquids as non-aqueous electrolytes for lithium secondary batteries.
  • an ionic liquid containing bis (fluorosulfonyl) imide anion (FSI anion) as an anion component has a lower viscosity than other ionic liquids, has high performance even during high rate charge / discharge, and has a high energy density. Since it is high voltage and nonflammable, it is possible to provide a lithium battery with excellent safety by using this ionic liquid as a solvent for a non-aqueous electrolyte (Patent Document 1).
  • a lithium battery using a combination of a normal graphitizable carbon electrode and an ionic liquid has higher internal resistance and inferior output characteristics as compared with an organic solvent battery, and deposition of lithium and decomposition products on the negative electrode surface As a result, the life characteristics tend to be low due to the above, and the practical level has not yet been reached.
  • the present invention has been made in view of the above-mentioned problem of improving safety which is strongly demanded for lithium secondary batteries, and has flame retardancy that combines battery performance superior to conventional batteries and high safety.
  • An object is to provide a lithium secondary battery.
  • the lithium secondary battery of the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, a separator provided between the positive electrode and the negative electrode, and a non-aqueous electrolyte containing a lithium salt, and solves the above-described problems. Therefore, the positive electrode contains a positive electrode active material represented by the following general formula (1), and the non-aqueous electrolyte uses an ionic liquid containing a bis (fluorosulfonyl) imide anion as an anion component as a solvent.
  • the above-described lithium secondary battery of the present invention can have a fully charged voltage of 4.4 V or higher and a discharge average voltage of 4.0 V or higher.
  • the lithium secondary battery of the present invention has problems such as short circuit, ignition, and explosion of the battery, which may be caused by poor use environment of the battery or increase in internal temperature in the event of an accident due to the use of the flame retardant ionic liquid.
  • the battery is excellent in safety with no danger of ignition or explosion even during overcharging or heat generation during short circuit.
  • an ionic liquid containing bis (fluorosulfonyl) imide anion as an anionic component as the ionic liquid and using a lithium manganese nickel-based composite oxide in which the atomic ratio of manganese to nickel is a predetermined ratio for the positive electrode
  • a lithium manganese nickel-based composite oxide in which the atomic ratio of manganese to nickel is a predetermined ratio for the positive electrode thus, it has excellent potential flatness and excellent charge / discharge characteristics in a high potential portion.
  • the ionic liquid contained in the lithium secondary battery of the present invention contains a bis (fluorosulfonyl) imide anion as an anion component as described above. It should be noted that other anion components such as a bis (trifluoromethylsulfonyl) imide anion may be included as long as they are within the scope of the present invention.
  • N, P, S, O, C, Si, or two or more types of elements is included in a structure, it is a chain
  • Specific examples of cations containing nitrogen elements include alkylammonium such as trimethyl-N-propylammonium and triethylammonium, imidazolium such as ethylmethylimidazolium and butylmethylimidazolium, and N-methyl-N-propylpyrrolidi.
  • Preferred examples include pyrrolidinium such as nitrogen and piperidinium such as N-methyl-N-propylpiperidinium.
  • lithium salt dissolved in the ionic liquid as the supporting electrolyte for the nonaqueous electrolytic solution a lithium salt that is usually used as an electrolyte for a nonaqueous electrolytic solution can be used without any particular limitation.
  • Such lithium salts include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiBC 4 O 8 and the like.
  • Such a lithium salt is usually contained in the ionic liquid at a concentration of 0.1 to 2.0 mol / kg, preferably 0.3 to 1.5 mol / kg.
  • the positive electrode used in the present invention uses a spinel-type composite oxide containing lithium, manganese, and nickel as the positive electrode active material.
  • a preferred specific example is LiNi 0.5 Mn 1.5 O 4 .
  • Al, Ca, Fe, and Cu may be included as long as they do not deviate from the object of the present invention.
  • the method for preparing such a lithium manganese nickel composite oxide positive electrode material is not particularly limited, and can be produced by a known method such as a composite carbonate method.
  • the lithium secondary battery of the present invention can be manufactured according to the conventional lithium secondary battery as follows except that the positive electrode active material and the non-aqueous electrolyte are used.
  • the positive electrode was obtained by mixing the positive electrode active material with a conductive agent component, adding the powder mixture to a binder and dispersing the mixture, and adding a dispersion medium as necessary to dilute to a desired concentration. It is obtained by applying a paint to the surface of a positive electrode current collector such as an aluminum foil and drying it. Thereafter, roll press processing or the like is performed as necessary to obtain a predetermined press density.
  • the thickness of the positive electrode mixture layer containing the positive electrode active material and the conductive agent formed on the surface of the positive electrode current collector is sufficient for the electron conductivity of the positive electrode mixture layer itself even in charge / discharge at a high rate of current. In order to maintain the thickness, it is preferably 50 ⁇ m or less per side, more preferably 10 to 50 ⁇ m. If the thickness of the positive electrode mixture layer becomes too thick, the electron conductivity in the thickness direction of the positive electrode mixture layer is lowered and the resistance is increased, so that the life characteristics may be remarkably lowered during high-rate charge / discharge.
  • the negative electrode can be used without particular limitation as long as it can insert / extract metallic lithium or lithium ions, and a known material such as an alloy, silicon, or hard carbon can be used.
  • a material obtained by mixing a negative electrode active material and a binder and applied to a current collector can be used.
  • the negative electrode active material a known active material can be used without particular limitation.
  • carbon materials such as natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, metallic materials such as metallic lithium and alloys, tin compounds, lithium transition metal nitrides, crystalline metal oxides, amorphous metals An oxide, a conductive polymer, etc. can be mentioned.
  • an electron conductive material that does not adversely affect the battery performance can be used without any particular limitation.
  • carbon black such as acetylene black and kettin black is used, but natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon whisker, carbon fiber and metal (copper, nickel, aluminum,
  • a conductive material such as silver, gold, etc.) powder, metal fiber, or conductive ceramic material may be used. These can be included as a mixture of two or more.
  • the addition amount is preferably 1 to 30% by weight, particularly 2 to 20% by weight, based on the amount of the active material.
  • any electronic conductor can be used as long as it does not adversely affect the constructed battery.
  • a positive electrode current collector aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., in addition to aluminum for the purpose of improving adhesiveness, conductivity, and oxidation resistance.
  • a material obtained by treating the surface of copper or copper with carbon, nickel, titanium, silver or the like can be used.
  • molded bodies such as a film form, a sheet form, a net form, the punched or expanded thing, a lath body, a porous body, and a foam other than foil shape, are also used.
  • the thickness is not particularly limited, but a thickness of 1 to 100 ⁇ m is usually used.
  • PVDF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • PFMV perfluoromethyl vinyl ether
  • TFE tetrafluoroethylene
  • PVDF copolymer resins such as polytetrafluoroethylene (PTFE) and fluororubber, styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPDM) styrene-acrylonitrile copolymer, etc.
  • CMC carboxymethyl cellulose
  • thermoplastic resins such as polyimide resin
  • the addition amount is preferably 1 to 30% by weight, particularly 2 to 20% by weight, based on the amount of the active material.
  • a porous film is used, and a microporous polymer film or a nonwoven fabric is preferably used.
  • a porous film made of a polyolefin polymer is preferable.
  • polyethylene, polypropylene microporous film, porous polyethylene film and polypropylene multilayer film, polyester fiber, aramid fiber, nonwoven fabric made of glass fiber, etc., and silica, alumina, titania on their surface The thing to which ceramic fine particles, such as these, were made to adhere is mentioned.
  • the lithium secondary battery of the present invention can be formed into a cylindrical shape, a coin shape, a rectangular shape, or any other shape, and the basic configuration of the battery is the same regardless of the shape, and the design can be changed according to the purpose. Can be implemented.
  • a disc-shaped negative electrode, a separator, a disc-shaped positive electrode, and a stainless steel plate are stacked and stored in a coin-type battery can, and a non-aqueous electrolyte is injected and sealed. Is done.
  • Example 1 ⁇ Preparation of positive electrode> 100 g of LiNi 0.5 Mn 1.5 O 4 which is a positive electrode active material, 7.8 g of carbon black (trade name Super-P, manufactured by Timcal) as a conductive agent, 3.3 g of PVDF as a binder, and a dispersion medium 38.4 g of N-methyl-2-pyrrolidone (NMP) was mixed with a planetary mixer to prepare a positive electrode coating solution having a solid content of 56%.
  • NMP N-methyl-2-pyrrolidone
  • This coating solution was coated on an aluminum foil having a thickness of 20 ⁇ m with a coating machine, dried at 130 ° C., and then subjected to a roll press treatment to obtain a positive electrode having a positive electrode active material weight of 7.5 mg / cm 2 .
  • MPPy N-methyl-N-propyl-pyrrolidinium
  • Example 2 to 9, Comparative Examples 1 to 9 In the same manner as in Example 1, except that the positive electrode active material, the negative electrode active material, the solvent of the nonaqueous electrolytic solution (ionic liquid other than Comparative Example 3) and the supporting electrolyte (lithium salt) shown in Table 1 were used. A lithium secondary battery for testing was prepared. In Example 5, two types of solvents were used, and in Example 6, two types of negative electrode active materials were used. Therefore, their blending ratio is shown in parentheses in each column of Table 1.
  • the initial discharge capacity at 20 ° C. and the capacity retention rate at the 20th cycle were measured as performance tests.
  • the measuring method is as follows. The results are shown in Table 1.
  • ⁇ Discharge capacity per weight of positive electrode active material The initial discharge capacity was measured at 25 ° C. using a charge / discharge test apparatus. Charging is performed at a current value of 0.1 C up to 4.8 V C.V. C. -C. V. (Constant current / Constant voltage). When the charging time reaches 17 hours or reaches a current value of 0.05 C, the charging is terminated. C. (Constant current). By dividing the obtained measured value of the initial discharge capacity by the weight of the positive electrode active material, the discharge capacity per weight of the positive electrode active material was determined.
  • the charging time was 12 hours or when the current value reached 0.05 C, charging was terminated.
  • Discharge was performed at a current value of 0.1 C up to 3.0 V C.V. C. (Constant current).
  • the discharge capacity at the first cycle and the discharge capacity at the 20th cycle are measured, and the ratio of the discharge capacity at the 20th cycle based on the discharge capacity at the 1st cycle is “the discharge capacity maintenance rate (%) at the 20th cycle”.
  • the discharge capacity maintenance rate (%) at the 20th cycle was calculated.
  • the lithium secondary battery of the present invention can be used for various portable devices such as a mobile phone, a notebook computer, a personal digital assistant (PDA), a video camera, and a digital camera. Furthermore, it is useful as a medium-sized or large-sized lithium battery mounted on an electric bicycle or an electric vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

従来の電池よりも優れた電池性能と高い安全性を持ち合わせた難燃性のリチウム二次電池を提供する。リチウム二次電池において、下記一般式(1)で表される正極活物質を含む正極と、ビス(フルオロスルホニル)イミドアニオンをアニオン成分として含むイオン液体を溶媒として用いた非水電解液を用いる。 LiNiMn (1) 但し、式(1)中、x,yは、x+y=2であり、かつx:y=27.5:72.5~22.5:77.5である関係を満たす数である。

Description

イオン液体を用いたリチウム二次電池
 本発明は、難燃性の非水電解液としてイオン液体を用いたリチウム二次電池に関し、より詳しくはビス(フルオロスルホニル)イミドアニオンを含有する非水電解液を用いたリチウム二次電池に関する。
 リチウム二次電池は、小型軽量の充電可能な電池で、単位容積あるいは単位重量あたり蓄電容量が大きく、携帯電話、ノートパソコン、携帯情報端末(PDA)、ビデオカメラ、デジタルカメラなどに広く利用され、小型軽量で比較的電力消費の大きな各携帯型機器には必要不可欠なものとなっている。また、近年では電動自転車や電動自動車に搭載する中型もしくは大型のリチウム電池の開発が進められており、環境負荷を低減させる手段としてもその開発に期待が寄せられている。
 従来、リチウム二次電池の非水電解液に使用される非水溶媒としては、リチウム塩を溶解しやすく、かつ電気分解しにくい極性非プロトン性の有機溶媒が使用されているが、これらは引火点が非常に低いために、過充電時や短絡時の発熱による引火や爆発などのおそれがあり、電池の安全性について大きな問題を抱えている。特に近年では電子機器の小型・軽量化や電動自動車の開発に伴って、大容量、高出力のリチウム二次電池の開発が急務となり、安全性の問題はますます重要な解決課題となっている。このため、リチウム二次電池の非水電解液に難燃性のイオン液体を使用することが種々検討されている。
 特に、ビス(フルオロスルホニル)イミドアニオン(FSIアニオン)をアニオン成分として含むイオン液体は、他のイオン液体と比較して粘度が低く、高率の充放電時においても高い性能を持ち、高エネルギー密度、高電圧である上に不燃性であるため、このイオン液体を非水電解液の溶媒に用いることにより、安全性に優れるリチウム電池を提供することが可能である(特許文献1)。
 しかしながら、通常の黒鉛化性炭素電極とイオン液体の組み合わせを用いたリチウム電池は、有機溶媒系の電池と比較すると、内部抵抗が高く、出力特性に劣り、負極表面でのリチウム及び分解物の析出等に起因して寿命特性が低い傾向があり、実用化レベルには至っていないのが現状である。
 このため、難燃性のイオン液体を使用したリチウム二次電池に関し、新たな電池構成材料の開発や添加物の検討による電池性能の向上が模索されている。
特開2007-207675号公報
 本発明は、リチウム二次電池に強く要求されている安全性の向上という上記課題に鑑みてなされたものであり、従来の電池よりも優れた電池性能と高い安全性を兼ね備えた難燃性のリチウム二次電池を提供することを目的とする。
 本発明のリチウム二次電池は、正極、負極、前記正極と負極との間に設けたセパレータ、及びリチウム塩を含む非水電解液からなるリチウム二次電池であって、上記の課題を解決するために、正極が下記一般式(1)で表される正極活物質を含み、非水電解液がビス(フルオロスルホニル)イミドアニオンをアニオン成分として含むイオン液体を溶媒として用いたものとする。
 LiNiMn   (1)
 但し、式(1)中、x,yは、x+y=2であり、かつx:y=27.5:72.5~22.5:77.5である関係を満たす数である。
 上記した本発明のリチウム二次電池は、満充電時の電圧が4.4V以上であり、放電平均電圧が4.0V以上であるものとすることができる。
 本発明のリチウム二次電池は、難燃性のイオン液体を用いたことにより、電池の使用環境の悪さや事故の際の内部温度上昇によってもたらされるおそれのある電池の短絡、発火、爆発といった問題を解決し、過充電時や短絡時の発熱時においても引火や爆発の危険性のない安全性に優れる電池となる。
 また、上記イオン液体としてビス(フルオロスルホニル)イミドアニオンをアニオン成分として含むイオン液体を用い、かつマンガンとニッケルの原子比が所定の割合であるリチウムマンガンニッケル系複合酸化物を正極に用いたことにより、優れた電位平坦性を有し、かつ、高電位部分の充放電特性が優れるものとなる。
 本発明のリチウム二次電池に含まれるイオン液体は、上記の通りビス(フルオロスルホニル)イミドアニオンをアニオン成分として含む。なお、本発明の目的から外れない範囲であればビス(トリフルオロメチルスルホニル)イミドアニオン等の他のアニオン成分を含んでいてもよい。
 カチオン成分としては、特に制限されるものではないが、N、P、S、O、C、Siのいずれか、もしくは2種類以上の元素を構造中に含み、鎖状、または5員環や6員環などの環状構造を骨格に有する化合物を用いることができる。具体的には窒素元素を含むカチオンの例として、トリメチル-N-プロピルアンモニウム、トリエチルアンモニウムなどのアルキルアンモニウム、エチルメチルイミダゾリウム、ブチルメチルイミダゾリウムなどのイミダゾリウム、N-メチル-N-プロピルピロリジニウムなどのピロリジニウム、N-メチル-N-プロピルピペリジニウムなどのピペリジニウムが好ましい例として挙げられる。
 本発明において、非水電解液の支持電解質として上記イオン液体に溶解されるリチウム塩は、非水電解液用電解質として通常使用されているリチウム塩を、特に限定されることなく使用することができる。そのようなリチウム塩としては、LiPF,LiBF,LiClO,LiAsF,LiCFSO,LiC(CFSO,LiN(CFSO,LiN(FSO,LiBC等が挙げられる。
 このようなリチウム塩は、通常、0.1~2.0mol/kg、好ましくは0.3~1.5mol/kgの濃度で、イオン液体中に含まれていることが望ましい。
 次に、本発明で用いる正極は、リチウム、マンガン、ニッケルを含むスピネル型複合酸化物を正極活物質として用いたものであり、この複合酸化物においてはニッケルとマンガンとの原子比がNi:Mn=27.5:72.5~22.5:77.5であることが好ましく、Ni:Mn=25:75であることがより好ましい。好ましい具体例としては、LiNi0.5Mn1.5が挙げられる。但し、本発明の目的から外れない範囲であれば、Al,Ca,Fe,Cuを含んでいてもよい。このようなリチウムマンガンニッケル系複合酸化物正極材料の調製方法は特に制限されるものではなく、複合炭酸塩法などの公知の方法で製造することができる。
 上記イオン液体を用いた非水電解液とこれら複合酸化物を正極材料とする正極とを併用することで、従来から使用されているリチウム金属酸化物を主体とした正極活物質を用いた電池と比較して、充放電サイクル特性が向上し、かつ高電位領域での繰り返し充放電による電圧低下が少なく、高容量を維持できるものとなる。
 本発明のリチウム二次電池は、上記正極活物質と非水電解液を用いる以外は、以下のように従来のリチウム二次電池に準じて製造することができる。
 正極は上記正極活物質を導電剤成分と混合し、この粉体混合物をバインダーに添加して分散させ、必要に応じて分散媒を加えて所望の濃度に希釈した正極塗料となし、得られた塗料をアルミ箔等の正極集電体の表面に塗布し、乾燥させることにより得られる。その後、必要に応じて所定のプレス密度となるようロールプレス処理等を行う。
 上記正極集電体の表面に形成される正極活物質及び導電剤を含有する正極合材層の厚みは、正極合材層自体の電子伝導性を高レートの電流での充放電においても十分に維持するために、片面あたり50μm以下であることが好ましく、10~50μmであることがより好ましい。正極合材層厚みが厚くなりすぎると、正極合材層の厚み方向での電子伝導性が低下し、抵抗が大きくなるため、高レートな充放電において寿命特性が著しく低下するおそれがある。
 負極は、金属リチウムまたはリチウムイオンを挿入/脱離することができるものであれば特に限定なく使用でき、合金系、シリコン系、ハードカーボン等、公知の材料を用いることができる。
 具体的には、負極活物質と結着剤とを混合して得られた材料が集電体に塗布されてなるものを用いることができる。
 負極活物質としては、公知の活物質を特に限定なく用いることができる。たとえば、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素などの炭素材料、金属リチウムや合金、スズ化合物などの金属材料、リチウム遷移金属窒化物、結晶性金属酸化物、非晶質金属酸化物、導電性ポリマーなどを挙げることができる。
 正極及び負極に用いられる導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料を特に制限なく使用することができる。通常、アセチレンブラックやケッチンブラック等のカーボンブラックが使用されるが、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、アルミニウム、銀、金等)粉末、金属繊維、導電性セラミックス材料等の導電性材料でもよい。これらは2種類以上の混合物として含ませることができる。その添加量は活物質量に対して1~30重量%が好ましく、特に2~20重量%が好ましい。
 電極活物質の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でも使用可能である。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。また、負極用集電体としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al-Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。
 これらの集電体材料は表面を酸化処理することも可能である。また、その形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体等の成形体も用いられる。厚みは特に限定はないが、1~100μmのものが通常用いられる。
 上記活物質を正極や負極に結着させるバインダーとしては、ポリフッ化ビニリデン(PVDF)、PVDFとヘキサフルオロプロピレン(HFP)やパーフルオロメチルビニルエーテル(PFMV)及びテトラフルオロエチレン(TFE)との共重合体などのPVDF共重合体樹脂、ポリテトラフルオロエチレン(PTFE)、フッ素ゴムなどのフッ素系樹脂や、スチレン-ブタジエンゴム(SBR)、エチレン-プロピレンゴム(EPDM)スチレン-アクリロニトリル共重合体などのポリマーが挙げられ、カルボキシメチルセルロース(CMC)等の多糖類、ポリイミド樹脂等の熱可塑性樹脂などを併用することができるが、これらに限定されるものではない。また、これらは2種類以上を混合して用いてもよい。その添加量としては、活物質量に対して1~30重量%が好ましく、特に2~20重量%が好ましい。
 また、セパレータとしては、多孔性の膜が使用され、微多孔性ポリマーフィルムや不織布が好適に使用される。特に、ポリオレフィンポリマーからなる多孔性フィルムが好ましい。具体的には、ポリエチレン、ポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたものが挙げられる。
 本発明のリチウム二次電池は、円筒型、コイン型、角型、その他任意の形状に形成することができ、電池の基本構成は形状によらず同じであり、目的に応じて設計変更して実施することができる。例えば、円筒型では、負極集電体に負極活物質を塗布してなる負極と、正極集電体に正極活物質を塗布してなる正極とを、セバレータを介して捲回した捲回体を電池缶に収納し、非水電解液を注入し、上下に絶縁板を載置した状態で密封して得られる。また、コイン型リチウム二次電池に適用する場合では、円盤状負極、セパレータ、円盤状正極、およびステンレスの板が積層された状態でコイン型電池缶に収納され、非水電解液が注入され密封される。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、特に指定した以外は配合比及び「%」は重量基準とする。
[実施例1]
<正極の作製>
 正極活物質であるLiNi0.5Mn1.5を100g、導電剤としてカーボンブラック(Timcal社製、商品名Super-P)を7.8g、バインダーとしてPVDFを3.3g、分散媒としてN-メチル-2-ピロリドン(NMP)を38.4g、それぞれを遊星型ミキサーで混合し、固形分56%の正極塗工液を調製した。この塗工液を塗工機で厚み20μmのアルミニウム箔上にコーティングし、130℃で乾燥後ロールプレス処理を行い、正極活物質重量7.5mg/cmの正極を得た。
<負極の作製>
 負極活物質であるグラファイトを100g、導電剤としてカーボンブラック(Timcal社製、商品名Super-P)を0.55g、バインダーとしてPVDF8.7g、分散媒としてNMPを79.1g、それぞれ遊星型ミキサーで混合し、固形分58%の負極塗工液を調製した。この塗工液を厚み10μmの電解銅箔上にコーティングし、130℃で乾燥後ロールプレス処理を行い、負極活物質重量3.2mg/cmの負極を得た。
<リチウム二次電池の作製>
 上記により得られた正極、負極間に、セパレータとして厚み40μmのポリエチレン系セパレータを挟んだ構造の積層体を作成し、端子を取り出すためのタブリードを溶接したのち、折り返したアルミラミネート包材に入れ、正極面積18cm、負極面積19.84cmのリチウム二次電池を作製した。電解液としてN-メチル-N-プロピル-ピロリジニウム(MPPy)-FSI溶媒に1.2mol/kgのLiTFSIを溶解した溶液を注入した後、開放部のアルミラミネートをヒートシーラーで封止し、試験用のリチウム二次電池を作製した。
[実施例2~9、比較例1~9]
 正極活物質、負極活物質、非水電解液の溶媒(比較例3以外はイオン液体)及び支持電解質(リチウム塩)として表1に示したものを用いた以外は実施例1と同様にして、試験用のリチウム二次電池を作製した。なお、実施例5では2種の溶媒を使用し、実施例6では2種の負極活物質を使用しているので、それらの配合比を表1の各欄の括弧内に示す。
 上記各実施例及び比較例で作製したリチウム二次電池について、性能試験として20℃における初期放電容量及び20サイクル目の容量保持率を測定した。測定方法は以下の通りである。結果を表1に示す。
<正極活物質重量当り放電容量>
 充放電試験装置を用いて、25℃で初期放電容量を測定した。充電は、電流値0.1Cで4.8VまでC.C.-C.V.(定電流・定電圧)で行い、充電時間17時間もしくは0.05Cの電流値となったら充電終了とし、放電は電流値0.1Cで3.0VまでC.C.(定電流)で行なった。得られた初期放電容量の測定値を正極活物質の重量で除することにより、正極活物質重量当り放電容量を求めた。
<放電平均電圧>
 充放電装置(製品名:ACD-10APS、アスカ電子(株)製)にて測定した。
<20サイクル目の容量保持率>
 電流値0.1Cで4.8VまでC.C.-C.V.(定電流・定電圧)で行い、充電時間12時間もしくは0.05Cの電流値となったら充電終了とした。放電は電流値0.1Cで3.0VまでC.C.(定電流)の条件で行った。1サイクル目の放電容量及び20サイクル目の放電容量を測定し、1サイクル目の放電容量を基準とした20サイクル目の放電容量の割合である「20サイクル目の放電容量維持率(%)」を算出した。
Figure JPOXMLDOC01-appb-T000001
 本発明のリチウム二次電池は、携帯電話、ノートパソコン、携帯情報端末(PDA)、ビデオカメラ、デジタルカメラなどの各種の携帯型機器に使用することができる。さらに、電動自転車や電動自動車に搭載する中型ないし大型のリチウム電池としても有用である。

Claims (2)

  1.  正極、負極、前記正極と負極との間に設けたセパレータ、及びリチウム塩を含む非水電解液からなるリチウム二次電池であって、
     前記正極が下記一般式(1)で表される正極活物質を含み、
     前記非水電解液がビス(フルオロスルホニル)イミドアニオンをアニオン成分として含むイオン液体を溶媒として用いたものであることを特徴とするリチウム二次電池。
     LiNiMn   (1)
     但し、式(1)中、x,yは、x+y=2であり、かつx:y=27.5:72.5~22.5:77.5である関係を満たす数である。
  2.  満充電時の電圧が4.4V以上であり、放電平均電圧が4.0V以上であることを特徴とする、請求項1に記載のリチウム二次電池。
PCT/JP2011/000198 2010-03-19 2011-01-17 イオン液体を用いたリチウム二次電池 WO2011114605A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11755798.3A EP2549577B1 (en) 2010-03-19 2011-01-17 Lithium secondary battery using ionic liquid
US13/635,837 US9225037B2 (en) 2010-03-19 2011-01-17 Lithium secondary battery using ionic liquid
CN2011800146351A CN103119773A (zh) 2010-03-19 2011-01-17 使用离子液体的锂二次电池
CA2792747A CA2792747C (en) 2010-03-19 2011-01-17 Lithium secondary battery using ionic liquid
KR1020127026008A KR101798259B1 (ko) 2010-03-19 2011-01-17 이온액체를 이용한 리튬이차전지
JP2012505462A JP5702362B2 (ja) 2010-03-19 2011-01-17 イオン液体を用いたリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-064172 2010-03-19
JP2010064172 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011114605A1 true WO2011114605A1 (ja) 2011-09-22

Family

ID=44648721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000198 WO2011114605A1 (ja) 2010-03-19 2011-01-17 イオン液体を用いたリチウム二次電池

Country Status (7)

Country Link
US (1) US9225037B2 (ja)
EP (1) EP2549577B1 (ja)
JP (1) JP5702362B2 (ja)
KR (1) KR101798259B1 (ja)
CN (1) CN103119773A (ja)
CA (1) CA2792747C (ja)
WO (1) WO2011114605A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579610A (zh) * 2013-11-15 2014-02-12 合肥国轩高科动力能源股份公司 锂离子电池正极材料镍锰酸锂的制备方法
JP2015144108A (ja) * 2013-12-27 2015-08-06 旭硝子株式会社 リチウムイオン二次電池正極用の表面修飾リチウム含有複合酸化物
JP2019046746A (ja) * 2017-09-06 2019-03-22 学校法人 関西大学 電解液および当該電解液を用いた蓄電デバイス
JP2019114531A (ja) * 2017-12-22 2019-07-11 ベレノス・クリーン・パワー・ホールディング・アーゲー リチウム金属二次電池のための液体電解質組成物及びかかる液体電解質組成物を有するリチウム金属二次電池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400674B2 (en) * 2014-05-09 2019-09-03 United Technologies Corporation Cooled fuel injector system for a gas turbine engine and method for operating the same
US11038165B2 (en) * 2014-05-29 2021-06-15 Sila Nanotechnologies, Inc. Ion permeable composite current collectors for metal-ion batteries and cell design using the same
KR102280684B1 (ko) * 2014-08-27 2021-07-22 삼성전자주식회사 리튬공기전지 및 이의 제조방법
JP6592891B2 (ja) * 2014-12-22 2019-10-23 日清紡ホールディングス株式会社 二次電池用電解液および二次電池
JP6558694B2 (ja) * 2015-09-02 2019-08-14 国立大学法人 東京大学 二次電池用難燃性電解液、及び当該電解液を含む二次電池
ES2981729T3 (es) * 2016-02-19 2024-10-10 Solvay Specialty Polymers It Disposición multicapa
FR3064403B1 (fr) 2017-03-23 2019-05-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nouveaux electrolytes a base de liquides ioniques utilisables pour des dispositifs de stockage electrochimique
KR102259744B1 (ko) 2018-03-06 2021-06-02 주식회사 엘지에너지솔루션 비수 전해액 및 이를 포함하는 리튬 이차 전지
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
US11664536B2 (en) * 2020-01-09 2023-05-30 Battelle Memorial Institute Electrolytes for lithium batteries with carbon and/or silicon anodes
US11705580B2 (en) * 2020-01-09 2023-07-18 Battelle Memorial Institute Electrolytes for lithium-ion batteries operating at extreme conditions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066341A (ja) * 2004-08-30 2006-03-09 Toshiba Corp 非水電解質二次電池
JP2007207675A (ja) 2006-02-03 2007-08-16 Dai Ichi Kogyo Seiyaku Co Ltd イオン性液体を用いたリチウム二次電池
JP2008511967A (ja) * 2004-09-01 2008-04-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド 溶融塩電解質と高電圧正極活物質とを有する電池
JP2009004289A (ja) * 2007-06-25 2009-01-08 Panasonic Corp 非水電解質二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103009B (zh) * 2005-01-12 2012-06-06 大塚化学株式会社 季铵盐、电解质、电解液以及电化学装置
US8486565B2 (en) * 2007-03-28 2013-07-16 Asahi Kasei Chemicals Corporation Electrode, and lithium ion secondary battery, electric double layer capacitor and fuel cell using the same
JP5256481B2 (ja) * 2007-04-04 2013-08-07 一般財団法人電力中央研究所 非水電解質二次電池
CN101546649A (zh) * 2008-03-28 2009-09-30 富士重工业株式会社 电极的制造方法、蓄电装置及中间层叠材料
JP5141572B2 (ja) * 2009-01-22 2013-02-13 ソニー株式会社 非水電解液二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066341A (ja) * 2004-08-30 2006-03-09 Toshiba Corp 非水電解質二次電池
JP2008511967A (ja) * 2004-09-01 2008-04-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド 溶融塩電解質と高電圧正極活物質とを有する電池
JP2007207675A (ja) 2006-02-03 2007-08-16 Dai Ichi Kogyo Seiyaku Co Ltd イオン性液体を用いたリチウム二次電池
JP2009004289A (ja) * 2007-06-25 2009-01-08 Panasonic Corp 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2549577A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579610A (zh) * 2013-11-15 2014-02-12 合肥国轩高科动力能源股份公司 锂离子电池正极材料镍锰酸锂的制备方法
JP2015144108A (ja) * 2013-12-27 2015-08-06 旭硝子株式会社 リチウムイオン二次電池正極用の表面修飾リチウム含有複合酸化物
JP2019046746A (ja) * 2017-09-06 2019-03-22 学校法人 関西大学 電解液および当該電解液を用いた蓄電デバイス
JP2019114531A (ja) * 2017-12-22 2019-07-11 ベレノス・クリーン・パワー・ホールディング・アーゲー リチウム金属二次電池のための液体電解質組成物及びかかる液体電解質組成物を有するリチウム金属二次電池

Also Published As

Publication number Publication date
EP2549577A1 (en) 2013-01-23
CA2792747A1 (en) 2011-09-22
KR20130059323A (ko) 2013-06-05
US9225037B2 (en) 2015-12-29
CN103119773A (zh) 2013-05-22
EP2549577B1 (en) 2019-03-13
EP2549577A4 (en) 2014-11-05
JPWO2011114605A1 (ja) 2013-06-27
JP5702362B2 (ja) 2015-04-15
CA2792747C (en) 2017-11-07
US20130017456A1 (en) 2013-01-17
KR101798259B1 (ko) 2017-11-15

Similar Documents

Publication Publication Date Title
JP5702362B2 (ja) イオン液体を用いたリチウム二次電池
JP5329310B2 (ja) イオン液体を用いたリチウム二次電池
EP3435450B1 (en) Surface-coated cathode active material particles and secondary battery comprising the same
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
JP5726707B2 (ja) リチウム二次電池
JP3218982B2 (ja) 非水電解液とリチウム二次電池
JP2011515812A (ja) リチウム電池用正極材料
JP6304746B2 (ja) リチウムイオン二次電池
JP5191931B2 (ja) イオン液体を用いたリチウム二次電池
JP2008097879A (ja) リチウムイオン二次電池
JP2009026542A (ja) リチウム二次電池
JP2004327422A (ja) 異性モルフォロジーを有するリチウム2次電池用複合高分子電解質およびその製造方法
CN111052486B (zh) 非水电解质二次电池
JP2002237331A (ja) リチウム二次電池
JP2003007303A (ja) 非水電解質電池
JP6980256B2 (ja) 電解液および当該電解液を用いた蓄電デバイス
CN111656593A (zh) 非水电解质二次电池、电解液和非水电解质二次电池的制造方法
JP7371970B1 (ja) リチウム二次電池
JP7347768B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2023132195A (ja) 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法
JP2022150408A (ja) リチウムイオン二次電池
JP2017182946A (ja) リチウム二次電池用電解液およびこれを備えるリチウム二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014635.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505462

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011755798

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2792747

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13635837

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127026008

Country of ref document: KR

Kind code of ref document: A