WO2011114050A1 - Structure filtrante comprenant un materiau de bouchage - Google Patents

Structure filtrante comprenant un materiau de bouchage Download PDF

Info

Publication number
WO2011114050A1
WO2011114050A1 PCT/FR2011/050510 FR2011050510W WO2011114050A1 WO 2011114050 A1 WO2011114050 A1 WO 2011114050A1 FR 2011050510 W FR2011050510 W FR 2011050510W WO 2011114050 A1 WO2011114050 A1 WO 2011114050A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
structure according
composition
filtering
oxides
Prior art date
Application number
PCT/FR2011/050510
Other languages
English (en)
Inventor
Matthias Schumann
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to EP11713003A priority Critical patent/EP2547417A1/fr
Priority to JP2012557588A priority patent/JP2013522020A/ja
Priority to US13/635,699 priority patent/US20130011304A1/en
Priority to CN2011800145058A priority patent/CN102811789A/zh
Publication of WO2011114050A1 publication Critical patent/WO2011114050A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/244Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/10Exhaust treating devices having provisions not otherwise provided for for avoiding stress caused by expansions or contractions due to temperature variations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of optionally catalytic filtering structures, in particular used in an exhaust line of a diesel type internal combustion engine.
  • Catalytic filters for the treatment of gases and the removal of soot from a diesel engine are well known in the prior art. These structures all most often have a honeycomb structure, one of the faces of the structure allowing the admission of the exhaust gas to be treated and the other side the evacuation of the treated exhaust gas.
  • the structure comprises, between the intake and discharge faces, a set of adjacent ducts or channels of axes parallel to each other separated by porous walls.
  • the ducts are closed at one or the other of their ends to delimit inlet chambers opening on the inlet face and outlet chambers opening along the discharge face.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to pass through the sidewalls of the inlet channels to join the outlet channels. In this way, the particles or soot are deposited and accumulate on the porous walls of the filter body.
  • the particulate filter is subjected to a succession of filtration (soot accumulation) and regeneration (soot elimination) phases.
  • filtration phases the soot particles emitted by the engine are retained and are deposited inside the filter.
  • regeneration the soot particles are burned inside the filter, in order to restore its filtration properties.
  • the filters are porous ceramic material, for example cordierite or silicon carbide.
  • Silicon carbide filters made with these structures are for example described in patent applications EP 816 065, EP 1 142 619, EP 1 455 923 or WO 2004/090294 and WO 2004/065088, to which the skilled person For example, reference may be made for more details and details, both for the description of filters according to the present invention and for their method of production.
  • These filters advantageously have a high chemical inertness with respect to soot and hot gases but a coefficient of thermal expansion a little high, which leads, for the production of large filters, the need to assemble several monolithic elements by a cement joint or grouting in a filter block, in order to reduce their thermomechanical stresses. Due to the high mechanical strength of the recrystallized Si materials, it is possible to produce filters with thin filter walls and high porosity, with a very satisfactory filtration efficiency.
  • Cordierite filters have also been used for a long time because of their low cost. Due to the very low coefficient of thermal expansion of this material, in the normal operating temperature range of a filter it is possible to produce monolithic filters of larger size.
  • a material of the Titanate type of aluminum may also have an average coefficient of thermal expansion low, that is to say typically less than 2.5 ⁇ 10 -6 K -1 as measured according to the standards in force between 25 ° C and 1000 ° C.
  • This material is also characterized by higher refractoriness and corrosion resistance than cordierite. It thus makes it possible to produce monolithic filters of large size, provided however that the thermal stability of the aluminum titanate is controlled, in particular during the regeneration phases of the filter.
  • thermal stability is meant the capacity of an aluminum titanate material, at high temperature, not to decompose into two distinct phases of titanium dioxide T1O 2 and oxide of titanium.
  • aluminum AI 2 O 3 under normal conditions of use of a particulate filter.
  • Monolithic filters are thus described in the patent application WO 2004/011124, which proposes structures based on aluminum titanate for 60 to 90% by weight, reinforced with mullite, present at a level of 10 to 40% by weight. According to the authors, the filter thus obtained has improved durability. According to another embodiment, the patent application EP 1741684 describes a filter having a low coefficient of expansion and whose main phase of aluminum titanate is stabilized firstly by the substitution of a fraction of the Al atoms by Mg atoms.
  • the present invention is designed specifically to filters of which the filter walls are made of a material having a low coefficient of thermal expansion means, that is to say less than 2.5x10 -6 K -1, such as measured between 25 and 1100 ° C, and at least a portion of the channels is closed after sintering or cooking the honeycomb.
  • the object of the present invention is thus to provide a honeycomb filtering structure that makes it possible to respond to all of the problems previously described, and in particular to have improved stability of the plugs and their cohesion with the walls, particularly in during successive cycles of regeneration of the filter during its implementation in an automobile exhaust line.
  • the present invention thus relates to a filtering structure of particles-loaded gases, of the honeycomb type, comprising a set of longitudinal adjacent channels of mutually parallel axes separated by porous filtering walls. said channels being alternately plugged at one or other end of the structure so as to define inlet channels and outlet channels for the gas to be filtered, and to force said gas to pass through the walls porous separating the inlet and outlet channels, said structure being characterized in that:
  • the filtering walls of said honeycomb structure consist of a material having after firing an average coefficient of thermal expansion, measured between 25 and 1100 ° C, lower than 2.5.10 "6 K " 1 , and
  • the material constituting the plugs comprises:
  • a charge formed of refractory grains whose melting temperature is greater than 1300 ° C., or even greater than 1500 ° C. and whose median diameter is between 5 and 50 microns,
  • vitreous binder phase whose composition corresponds to the following formulation, in weight% of the oxides: Si0 2 : between 50 and 95%,
  • RO between 0.1 and 15%, where RO represents an alkaline earth oxide or the sum of the alkaline earth oxides in the glassy phase,
  • R 2 '0 between 0.1 and 10%, R 2 ' 0 representing an oxide of an alkali or the sum of the alkali oxides in the glassy phase,
  • the average coefficient of thermal expansion (TDC) of said material constituting the plugs, measured between 25 and 1100 ° C, without stress is at least equal to 4, 8.10 ⁇ 6 . K -1 , preferably at least equal to 5, 0.10 ⁇ 6 . K -1 .
  • the CTE coefficient is further lower than 10.10 -6 .K _1.
  • RO an alkaline earth oxide R preferably selected from the group consisting of Ca, Sr or Ba, or the sum in weight percentage of the oxides CaO, SrO or BaO, in the preceding formulation, if said phase vitreous contains more than one alkaline earth.
  • R 2 '0 is meant an oxide of an alkali R' preferably selected from the group consisting of Na, K, or the sum in weight percentage of the oxides Na 2 ⁇ 0 or K 2 O, in the previous formulation if said glassy phase comprises more than one alkali.
  • the coefficient of thermal expansion of the material constituting the walls is measured under air according to the dilatometry techniques well known to those skilled in the art, such as for example reported in standard NFB40308.
  • Thermal expansion expressed as a percentage, corresponds to an elongation (if the variation is positive) or to a shrinkage (if the variation is negative) of the material under the effect of the increase of the temperature.
  • the rate of increase is generally between 1 and 10 ° C / minute, preferably of the order of 5 ° C / minute.
  • the measurement is made typically with dilatometers well known to those skilled in the art such as those of the Adamel or Setaram type including in particular an enclosure for the rise in temperature, a pusher in contact with a test piece of the test material provided with a displacement sensor for recording the dimensional variations of the sample.
  • dilatometers well known to those skilled in the art
  • a pusher in contact with a test piece of the test material provided with a displacement sensor for recording the dimensional variations of the sample.
  • these faces should not show visible defects and the difference between any two measurements of length taken at the sliding foot between the contact face and the opposite face should be less than 0.2 mm typically for an average length of between 10 at 50mm.
  • the test piece is of square section, its diagonal being typically between 0.1 and 0.5 times its length.
  • the pusher is made of dense alumina so as to avoid any reaction with the material to be tested and the section of the end of the pusher in contact with the test piece is at least as large as that of the test piece in order to ensure contact with the entire face of the test piece on the side of the pusher.
  • the average coefficient of thermal expansion of said material constituting the plugs is preferably at least equal to 4.5.10 ⁇ 6 . K -1 , preferably at least equal to 5, 0.10 ⁇ 6 . K -1 .
  • Such a coefficient of thermal expansion of the sealing material, under a load of 0.1 MPa is measured under air, for example on a specimen of the sealing material after firing under the same conditions as previously described, the pressure exerted by the pusher on the specimen, ie the pressure calculated with respect to the contact face of the specimen being this time of 0.1 MPa.
  • the coefficient of thermal expansion under the load is determined in the same manner as previously described for the coefficient of thermal expansion in the absence of stress.
  • the reference state of the measurement is the starting state of the specimen under the load before warming up.
  • the dimensional variations under load are preferably measured on a structural sample in the direction of the largest dimension of the specimen.
  • a material is preferably chosen to constitute the plugs whose shrinkage, measured between 25 and 1100 ° C. and under a load of 0.1 MPa, is less than 2.5%, preferably less than 2, 0%.
  • the shrinkage under load of the plugging material can be easily determined by simple analysis of the dilatometric curve obtained by measuring the coefficient of thermal expansion under the previous load of the test piece and by direct reading of the shrinkage value after heating at 1100 ° C and return to ambient.
  • the shrinkage of the material conventionally represents the difference according to a dimension of the test piece of the ceramic material, preferably the largest, measured before and after the heat treatment, relative to the initial dimension of said specimen .
  • compositions of the vitreous binding phase can in particular vary in the following proportions, as a percentage by weight of the oxides:
  • CaO + Na 2 ⁇ 0 between 3 and 25%, for example between 10 and 20%,
  • AI 2 O 3 less than 15%, preferably less than 10%
  • B 2 O 3 less than 10%, preferably less than 5%
  • MgO less than 5%.
  • the vitreous binder phase can comprise, as a percentage by weight of the oxides:
  • Si0 2 between 70 and 85%, preferably between 75 and 80%,
  • B 2 O 3 between 1 and 10%, preferably between 1 and 5%,
  • AI2O3 between 4 and 10%
  • composition of the vitreous binder phase corresponds to the following formulation, in weight% of the oxides:
  • Si0 2 between 80 and 90%
  • CaO between 1 and 10%, preferably between 2 and 6% MgO: between 0.1 and 5%, preferably between 0.5 and 3% B 2 O 3 : less than 5%, preferably less than 2%
  • AI 2 O 3 less than 2%, preferably less than 1% SrO + BaO: less than 1%
  • the composition of the vitreous binder phase corresponds to the following formulation, in weight% of the oxides:
  • Si0 2 between 80 and 90%
  • Na 2 ⁇ 0 between 1 and 10%, preferably between 2 and 6%
  • K 2 0 between 1 and 10%, preferably between 1 and 5%
  • CaO between 1 and 10%, preferably between 2 and 6%
  • SrO + BaO between 3 and 10%, preferably between 5 and
  • the refractory grains consist of at least one material chosen from silicon carbide, alumina, zirconia, silica, titanium oxide, magnesia and aluminum titanate. , mullite, cordierite, aluminum titanate, preferably aluminum titanate or cordierite.
  • the capping material according to the invention can respond to all possible combinations between the different domains and initial values. and / or preferred constituents previously described and between the various possible combinations of the constituent elements of the capping material (composition of the grains and the glassy phase).
  • all the possible combinations of said constituents are not described in the present description but they must however be considered as envisaged by the applicant in the context of the present description (in particular of two, three combinations or more) .
  • the material constituting the plugs of the first end and the material constituting the plugs of the second end may have a different chemical composition.
  • the present invention also relates to a catalytic filter obtained from a structure as previously described and by deposition, preferably by impregnation, of at least one supported or preferably unsupported active catalytic phase, typically comprising at least one precious metal such as Pt and / or Rh and / or Pd and optionally an oxide such as CeC> 2, ZrC> 2, Ce0 2 ⁇ Zr0 2 for the treatment of polluting gases of CO or HC and / or NOx type and / or the combustion of soot.
  • a catalytic filter finds particular application as a catalytic support in an exhaust line of a diesel or gasoline engine or as a particulate filter in a diesel engine exhaust line.
  • the present invention relates to an exhaust line, comprising a filtering structure as previously described.
  • At least a part of the channels is closed after sintering or cooking of the honeycomb. not all channels are closed after sintering.
  • the inlet channels can be closed before sintering the structure while the outlet channels are closed after sintering of the structure.
  • material constituting the plugs means that at least one plug of the filtering structure is constituted by this material.
  • said walls comprise at least 50% by weight and preferably at least 70% by weight, or even at least 90 or even 98% by weight of said material.
  • median diameter, or ds o of a mixture of particles or of a set of grains, means the size dividing the particles of this mixture or the grains of this mixture into first and second equal populations. in volume, these first and second populations comprising only particles or grains having a size greater than or less than the median diameter respectively.
  • binder is conventionally meant within the meaning of the present invention a set of grains or particles characterized by a size distribution or grain diameter generally centered and distributed around a mean or median diameter.
  • grain or “particle” is meant a solid product individualized in a powder or a mixture of powders.
  • the present invention also relates to a method of manufacturing a structure as previously described, comprising the following main steps:
  • a conventional method of manufacturing a honeycomb structure according to the present invention is given below without it being considered as limiting a particular procedure.
  • the material constituting the walls of the structures obtained according to the invention preferably has an open porosity of between 20% and 65%, and preferably between 35% and 60%. Especially in the particle filter application, too low porosity leads to a too high pressure drop. Too high a porosity, however, leads to a level of mechanical resistance that is too low.
  • the median diameter dso, by volume, of the pores constituting the porosity of the material is preferably between 5 and 30 microns, preferably between 8 and 25 microns. In general, in the targeted applications, it is generally accepted that a too small pore diameter leads to excessive pressure loss, while too large median pore diameter leads to poor filtration efficiency.
  • the thickness of the walls is between 0.2 to 1.0 mm, preferably 0.2 to 0.5 mm.
  • the number of channels in the filter elements is preferably between 7.75 and 62 per cm 2 , said channels typically having a cross section of about 0.5 to 9 mm 2 .
  • said structure according to the invention can also be obtained from an initial mixture of grains based on aluminum titanate and / or cordierite.
  • the aluminum titanate or cordierite-based powder has a median diameter of less than 60 microns.
  • the walls of the structure are made of a porous ceramic material based on aluminum titanate.
  • Said porous walls may also incorporate other phases or elements in minor proportions, that is to say generally any addition known to stabilize the main phase of the aluminum titanate type.
  • the manufacturing method according to the invention most often comprises a step of kneading the initial mixture of powders into a homogeneous product in the form of a paste, a step of extruding a raw product shaped through a suitable die so as to obtain monoliths of the honeycomb type, a drying step of the monoliths obtained, possibly an assembly step and a cooking step carried out under air or in an oxidizing atmosphere at a temperature not exceeding 1800 ° C. preferably not exceeding 1650 ° C.
  • the capping step carried out after the cooking of the honeycomb monoliths, can be carried out according to the process described for example in US Pat. No. 4,557,773 or EP 1,500,482, for example.
  • Clogging mixtures are mixtures of particles, dry or moist, suitable for mass.
  • the caking or hardening of these mixtures after Clogging of the channels of the structure may result from drying or, for example, curing of a resin.
  • the heating makes it possible to accelerate the evaporation of the water or of the residual liquid after curing.
  • All the refractory powders conventionally used as filler in the capping material which comprise a mixture of refractory grains whose median diameter is between 5 and 50 microns, can be used, taking into account, of course, the composition of the material constituting the walls. filter.
  • the refractory powders may for example be powders based on silicon carbide and / or alumina and / or zirconia and / or silica and / or titanium oxide and / or magnesia or mixed powders, in particular aluminum titanate or mullite.
  • the refractory powders are molten products. The use of sintered products is also possible.
  • the refractory powders represent more than 50%, preferably more than 70% of the mass of the dry mineral material of the capping mixture.
  • the capping mixture comprises at least one aluminum titanate powder which is at least 50% preferably at least 80% by weight of the particulate mixture. Even more preferably, the aluminum titanate powder is the only refractory powder used in the capping mixture.
  • a vitreous binder phase around the grains previously described and constituting the filler of the clogging material can be obtained from the melting of the corresponding precursor oxides Si0 2 , RO, R ⁇ O, B 2 O 3 , etc. introduced in a mixture in the appropriate proportions with said grains. The whole is brought to a temperature sufficient to form an essentially vitreous phase coating the grains of the charge, thus forming the constituent material of the plugs.
  • a glass powder of the desired final composition that is to say as described above, directly in admixture with the filler, the assembly then being heated to obtain final capping material.
  • the glass powder then used is preferably of median diameter between 5 and 50 microns.
  • the corking mixture also preferably comprises a temporary binder and / or chemical to promote its implementation, in particular the rheology adapted according to the capping process used.
  • binders can be chosen from the following nonlimiting list:
  • thermosetting resins such as resins, especially thermosetting resins, that is to say formed of at least one polymer convertible by heat treatment (heat, radiation) or physico ⁇ chemical (catalysis, hardener) into infusible material and insoluble.
  • the thermosetting resins thus take their final form at the first hardening, the reversibility being impossible.
  • Thermosetting resins include in particular phenolic resins, silicone-based or epoxy resins, other temporary binders such as derivatives of cellulose or lignin, such as carboxymethylcellulose, dextrin, polyvinyl alcohols, polyethylene glycols,
  • chemical setting agents such as phosphoric acid, polyphosphates of alkali metals or alumino-phosphates, or sodium silicate and its derivatives,
  • inorganic binders such as silica gels or silica in colloidal form; binder based on silica gel and / or alumina and / or zirconium chemical setting agents, such as
  • Closures made by sealing the structure after firing may also include other organic additions such as lubricants or plasticizers.
  • the capping mixture may optionally comprise a pore-forming agent, for example chosen from cellulose derivatives, acrylic particles, graphite particles and their mixtures, incorporated into a particulate capping mixture in order to create porosity to relax the particles. constraints on the walls and / or possibly lighten the filter. However, the amount must not be too high, for example it must be less than 25% by weight relative to the mineral composition of the capping mixture in order to have a sufficient seal.
  • a pore-forming agent for example chosen from cellulose derivatives, acrylic particles, graphite particles and their mixtures
  • the invention relates to a honeycomb particle filter having a structure as previously described, suitable for filtering the exhaust gas of a motor vehicle.
  • a filter may comprise a single monolithic element or be obtained by the association, by bonding with a joint cement, of a plurality of monolithic elements in honeycomb.
  • Such a filter may optionally comprise an outer coating applied for example after firing the structure before or after plugging of the channels.
  • It preferably comprises particles and / or fibers of ceramic or of refractory material, chosen from oxides, in particular comprising Al 2 O 3 , SiO 2 , MgO, TiO 2 , ZrO 2 , Cr 2 O 3 or any one of their mixtures, or even among the non-oxides, such as SiC, aluminum and / or silicon nitride, aluminum oxynitride, etc.
  • Aluminum Titanate was prepared from the following raw materials:
  • titanium oxide in rutile form comprising more than 95% of TiO 2
  • the mixture of the initial reactive oxides was melted in an electric arc furnace, under air, with an electric oxidizing step.
  • the molten mixture was then cast into a CS mold so as to obtain rapid cooling.
  • the product obtained is crushed and sieved to obtain powders of different size fractions. More specifically, the grinding and the sieving are carried out under conditions allowing the final obtaining of two particle size fractions:
  • a particle size fraction characterized by a median diameter dso substantially equal to 50 microns referred to as the coarse fraction according to the present invention
  • a particle size fraction characterized by a median diameter dso substantially equal to 30 microns referred to as the intermediate fraction according to the present invention
  • the median diameter dso denotes the diameter of the particles, measured by sedigraphy, below which 50% by volume of the population is found.
  • Microprobe analysis shows that all the grains of the melt phase thus obtained have the following composition, as a percentage by weight of the oxides (Table 1):
  • powders are mixed according to the following composition:
  • the green microwave monoliths are then dried for a time sufficient to bring the water content not chemically bound to less than 1 ⁇ 6 by mass.
  • the dry raw monoliths are then cooked, without the channels being blocked, under air progressively until reaching a temperature of 1450 ° C which is maintained for 4 hours.
  • the baked monoliths are then capped at each of their ends, according to the classical chessboard configuration (every other channel), with a corking mixture corresponding to the following formulation (in parts by weight): 100 parts of a mixture of an aluminum titanate powder previously produced by electro-fusion, ground in such a way that its median grain diameter is equal to 30 ⁇ m,
  • the monoliths whose channels are alternately plugged in a conventional chessboard pattern, are then subjected to a heat treatment to a final temperature of 1100 ° C, which is maintained for 1 hour.
  • Example la The experimental protocol of Example la is identical to that of Example 1 but differs only in that the filler is a cordierite powder of substantially the same particle size.
  • the fired monoliths are plugged on the side of the end or the bearing face on the cooking medium using a corking mixture corresponding to the following formulation (in parts by weight):
  • the monoliths whose channels are alternately plugged in a conventional chessboard pattern, are then subjected to a heat treatment to a final temperature of 1100 ° C, which is maintained for 1 hour.
  • Example 2a differs from Example 2 only in that the load is this time obtained from the cordierite powder of Example 1a.
  • the cooked monoliths are plugged on the side of the end or of the support surface on the cooking support using a corking mixture corresponding to the following formulation (in parts weight):
  • the monoliths whose channels are alternately plugged in a conventional chessboard pattern, are then subjected to a heat treatment to a final temperature of 1100 ° C, which is maintained for 1 hour.
  • Example 3a differs from Example 3 only in that the load is this time obtained from the cordierite powder of Example 1a.
  • Example 4 and 4a are the load obtained from the cordierite powder of Example 1a.
  • the baked monoliths are plugged on the side of the end or of the support surface on the baking support using a corking mixture with a corking mixture corresponding to the following formulation (in parts weight):
  • Monoliths whose channels are alternately plugged according to a traditional chessboard diagram, are then subjected to a heat treatment up to a final temperature of 1100 ° C, which is maintained for 1 hour.
  • Example 4a differs from Example 4 only in that the load is this time obtained from the cordierite powder of Example 1a.
  • the average coefficient of thermal expansion of the material constituting the walls of the monolith was measured, on a bar of said fired material, of dimension lcm> ⁇ 2.5mm> ⁇ 2.5mm, under air at a rate of temperature rise of 5 ° C / min until reaching a temperature of 1100 ° C, using a Setaram dilatometer.
  • the determination of the coefficient of thermal expansion of the material constituting the walls is carried out from room temperature (25 ° C.) to 1100 ° C.
  • the coefficient of unloaded and underloaded thermal expansion of the sealing material was measured on a strip of dimensions 0.7 cm ⁇ 0.7 cm ⁇ 15 mm made with the sealing material, after the latter has undergone heat treatment beforehand. temperature of 1100 ° C, for 1 hour, so as to obtain a sintered sealing material representative of the plugs constituting the filters according to the preceding examples.
  • the measurement of the coefficient was made from the ambient temperature at 1100 ° C. according to a rate of rise in temperature of 5 ° C./min under air by means of a vertical dilatometer (of the Setaram type). Without load, the sensor represents a pressure of less than 0.05 MPa so as to ensure constant contact with the specimen during the test. When a load was applied, it corresponded to a stress of 0.1 MPa applied in a direction according to the largest dimension of the test piece.
  • the adhesion of the monolith plug was evaluated on the plugged structure after thermal treatment of plugs.
  • a first evaluation was made first on the initial filtering structure, before any thermal treatment, by observation, under a scanning electron microscope, of the cap / wall interface of the monolith on a polished sample, in a longitudinal section. It is notably noted the presence (or absence) of microcracks or discontinuity of the structure at said interface. All the samples according to Examples 1 to 4 and 4a indicate satisfactory adhesion initially (that is to say before thermal cycling), corresponding to a perfect continuity of material at the plug / wall interface.
  • the durability of the adhesion of the plugs to the monolith was then evaluated by subjecting the filters tested several thermal cycles, representative of the most stringent conditions of use of a filter arranged in an exhaust line. Each cycle corresponds to heating between 500 ° C and 1100 ° C with a ramp of 5 ° C / min and a return to 500 ° C. The cycle is repeated 10 times.
  • the filters according to Examples 1, 1a, 2a and 3a comprise plugs made of a material not in accordance with the present invention.
  • CDT coefficient of thermal expansion
  • the filters according to Examples 2, 3, 4 and 4a comprise plugs made of a material according to the present invention.
  • the coefficient of thermal expansion (CDT) of these materials, at ambient pressure is greater than 4.8> ⁇ 10 ⁇ 6 K -1 when the measurement is made without stress and greater than 4.5> ⁇ 10 ⁇ 6 K -1 under a load of 0.1 MPa.
  • glass formulation described in Examples 4 and 4a is particularly advantageous because it leads to a satisfactory adhesion after the durability test, regardless of the chemical nature of the load used (cordierite or aluminum titanate).

Abstract

Structure filtrante de gaz chargés en particules, du type en nid d'abeilles, ladite structure se caractérisant en ce que : a) les parois filtrantes de la dite structure en nid d'abeille sont constituées d'un matériau présentant après cuisson un coefficient de dilation thermique moyen, mesuré entre 25 et 1100 °C, inférieur à 2,5.10-6 K-1, et b) le matériau constituant les bouchons comprend : une charge formée de grains réfractaires dont la température de fusion est supérieure à 1500 °C et dont le diamètre médian est compris entre 5 et 50 microns, une phase liante vitreuse.

Description

STRUCTURE FILTRANTE COMPRENANT
UN MATERIAU DE BOUCHAGE L' invention se rapporte au domaine des structures filtrantes éventuellement catalytiques, notamment utilisées dans une ligne d'échappement d'un moteur à combustion interne du type diesel.
Les filtres catalytiques permettant le traitement des gaz et l'élimination des suies issues d'un moteur diesel sont bien connus de l'art antérieur. Ces structures présentent toutes le plus souvent une structure en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à traiter et l'autre face l'évacuation des gaz d'échappement traités. La structure comporte, entre les faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses. Les conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant.
De façon connue, durant son utilisation, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération (élimination des suies) . Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration.
Le plus souvent, les filtres sont en matière céramique poreuse, par exemple en cordiérite ou en carbure de silicium.
Des filtres en Carbure de Silicium réalisés avec ces structures sont par exemple décrits dans les demandes de brevets EP 816 065, EP 1 142 619, EP 1 455 923 ou encore WO 2004/090294 et WO 2004/065088, auquel l'homme du métier pourra par exemple se référer pour plus de précisions et de détails, tant pour la description de filtres selon la présente invention que pour leur procédé d'obtention. Ces filtres présentent avantageusement une forte inertie chimique vis à vis des suies et des gaz chauds mais un coefficient de dilatation thermique un peu élevé, qui conduit, pour la réalisation de filtres de grande taille, à la nécessité d'assembler plusieurs éléments monolithiques par un ciment de joint ou de jointoiement en un bloc filtrant, afin de réduire leurs contraintes thermomécaniques. En raison de la résistance mécanique élevée des matériaux en Sic recristallisé, il est possible de réaliser des filtres avec des parois filtrantes de faible épaisseur et une porosité élevée, avec une efficacité de filtration très satisfaisante.
Les filtres en cordiérite sont également utilisés depuis longtemps du fait de leur faible coût. Grâce au coefficient de dilatation thermique très faible de ce matériau, dans la gamme de température de fonctionnement normal d'un filtre il est possible de réaliser des filtres monolithiques de plus grande dimension.
Un matériau du type Titanate d'Aluminium peut aussi présenter un coefficient de dilation thermique moyen faible, c'est-à-dire typiquement inférieur à 2,5.10~6 K-1 tel que mesuré selon les normes en vigueur entre 25°C et 1000°C. Ce matériau se caractérise également par une réfractarité et une résistance à la corrosion supérieure à celle de la cordiérite. Il permet ainsi de réaliser des filtres monolithiques de grande taille à la condition cependant de maîtriser la stabilité thermique du titanate d' aluminium, notamment lors des phases de régénération du filtre. Par stabilité thermique, il est entendu, on entend la capacité d'un matériau à base de titanate d'aluminium, à haute température, à ne pas se décomposer en deux phases distinctes d'oxyde de titane T1O2 et d'oxyde d'aluminium AI2O3, dans les conditions normales d'utilisation d'un filtre à particules.
Des filtres monolithiques sont ainsi décrits dans la demande de brevet WO 2004/011124, qui propose des structures à base de titanate d'aluminium pour 60 à 90% poids, renforcé par de la mullite, présente à hauteur de 10 à 40% poids. Selon les auteurs, le filtre ainsi obtenu présente une durabilité améliorée. Selon une autre réalisation, la demande de brevet EP 1741684 décrit un filtre présentant un faible coefficient de dilatation et dont la phase principale en titanate d'aluminium est stabilisée d'une part par la substitution d'une fraction des atomes Al par des atomes Mg dans le réseau cristallin Al2Ti05 au sein d'une solution solide et d'autre part par substitution d'une fraction des atomes Al en surface de ladite solution solide par des atomes de Si, apportés dans la structure par une phase supplémentaire intergranulaire du type d' aluminosilicate de potassium et sodium, notamment de feldspath.
Ces structures monolithiques sont typiquement extrudées puis, avant leur cuisson, obturées à l'une et l'autre de leurs extrémités, le plus souvent par un matériau similaire voire identique à celui constituant les parois filtrantes, afin de délimiter des chambres d'entrée et des chambres de sortie comme décrit précédemment.
Il s'avère que le procédé d'obturation ou de bouchage avec les matériaux habituellement utilisés sur les deux faces d'une structure extrudée notamment de grande taille, conduit cependant à une fissuration des filtres notamment dans la zone correspondant à leur face d' appui sur le support de cuisson. Par grande taille, on entend en particulier des structures de diamètre supérieur à 100mm ou de section supérieure à 75 cm2. Sans que cela puisse être considéré comme définitivement compris, ces fissures seraient dues à des contraintes liées à la différence de retraits au sein de la structure entre les canaux bouchés à cru, c'est-à-dire avant la cuisson du filtre, et ceux non bouchés. Par le terme « retrait », il est entendu, au sens de la présente description, la différence, selon une dimension du filtre considéré, par exemple la longueur, de ladite dimension avant et après sa cuisson. Ce phénomène de retrait du matériau à base de titanate d' alumine est souvent rémanent à basse température, c'est-à-dire à une température inférieure à 400 °C, et notamment à l'ambiante.
Selon une autre alternative, il a été également proposé un procédé de bouchage ou d'obturation des canaux d'une structure déjà frittée. L'intérêt d'un tel procédé peut être d'économiser une opération de bouchage, notamment en cas de mise au rebut du filtre après cuisson, du fait de la présence de défauts liés à la cuisson ou aux étapes de procédé précédentes mais seulement révélés lors de la cuisson. En outre selon un autre avantage d'un tel procédé, la cuisson de structures céramiques de type nid d'abeille semble beaucoup plus homogène lorsque ses canaux ne sont pas bouchés. Le départ des gaz issus du déliantage pourrait être ainsi facilité, réduisant ainsi les risques de fissuration liés au déliantage. Un tel procédé permettrait au final d'obtenir, à partir d'un mélange de matériaux précurseurs initialement plus chargé en agent porogène, des structures finalement plus poreuses, et de réduire ainsi la perte de charge associé au filtre en fonctionnement dans une ligne d'échappement, voire d'intégrer plus facilement une fonction catalytique supplémentaire de dépollution des gaz d'échappement dans ledit filtre par dépôt d'un revêtement à base de métaux actifs.
Cependant les procédés décrits dans le domaine impliquant l'étape de bouchage après le frittage ou la cuisson de la structure s'avèrent également non satisfaisants, comme il a été observé par la demanderesse. En particulier, des fissures apparaissent encore entre les bouchons et les parois des canaux obturés pendant la cuisson supplémentaire desdits bouchons. Ce problème pourrait être cette fois attribué à une différence de comportement dilatométrique entre le matériau constituant le bouchon et celui des parois. Les solutions proposées à ce jour, consistent à adapter le mélange de bouchage à celui du matériau des parois, en particulier dans le sens d'une uniformisation des comportements dilatométriques des matériaux. Ainsi, dans les demandes US2006/0272306 et WO2009/073092, il est décrit comme principe fondamental l'obtention d'une courbe dilatométrique à la cuisson du matériau de bouchage proche de celle du matériau déjà fritté et constituant les parois de la structure. Les structures élaborées selon ces principes montrent une adhésion satisfaisante des bouchons aux parois après le premier traitement thermique de cuisson des bouchons, par exemple à 1000°C sous air. Il a cependant été trouvé par la demanderesse que l'adhésion des bouchons aux parois de la structure filtrante se dégrade fortement au fur et à mesure des cycles de combustion des suies dans le filtre en fonctionnement. Notamment des fissures sont apparues avec l'utilisation de tels matériaux de bouchage, par exemple après 10 cycles thermiques entre 500 et 1100°C, sur un filtre placé dans une ligne d'échappement d'un moteur Diesel. On a ainsi pu observer sur la très grande majorité des filtres étudiés une fissure entre le bouchon et la paroi comme cela sera illustré par la suite de la présente description. Ce phénomène peut conduire à une étanchéité insuffisante et par conséquent à un filtre qui présente une efficacité de filtration trop faible en fonctionnement. Si des bouchons sont détachés des parois de la structure lors du fonctionnement dans la ligne d'échappement, le filtre peut alors devenir inefficace et même devoir être changé.
La présente invention s'adresse tout particulièrement à des filtres dont les parois filtrantes sont constituées d'un matériau présentant un coefficient de dilation thermique moyen faible, c'est-à-dire inférieur à 2,5.10~6 K~ 1, tel que mesuré entre 25 et 1100°C , et dont au moins une partie des canaux est obturée après frittage ou cuisson du nid d'abeille. Le but de la présente invention est ainsi de fournir une structure filtrante en nid d'abeille permettant de répondre à l'ensemble des problèmes précédemment exposés, et en particulier présentant une stabilité améliorée des bouchons et de leur cohésion avec les parois, tout particulièrement au cours des cycles successifs de régénération du filtre lors de sa mise en œuvre dans une ligne d'échappement automobile.
Plus particulièrement, les recherches effectuées par le demandeur ont mis en évidence qu'au contraire des indications et principes fournis dans les documents déjà publiés, en particulier dans les demandes US2006/0272306 et WO2009/073092, pour obtenir une structure telle que précédemment décrite, il n'était pas opportun d'adapter le mélange de bouchage à celui du matériau des parois, dans le sens d'une uniformisation des coefficients de dilatation thermiques des matériaux, mais qu'au contraire une large différence entre lesdits coefficients, sous certaines conditions, pouvait permettre l'obtention d'une adhésion durable, dans les conditions d'utilisation classiques d'un filtre à particules.
Les recherches menées ont notamment démontré que d'autres paramètres pouvaient être pris en compte pour obtenir une structure filtrante obtenue par bouchage après cuisson répondant aux problèmes précédemment exposés.
Dans sa forme la plus générale, la présente invention se rapporte ainsi à une structure filtrante de gaz chargés en particules, du type en nid d'abeilles, comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure se caractérisant en ce que :
a) les parois filtrantes de la dite structure en nid d'abeille sont constituées d'un matériau présentant après cuisson un coefficient de dilation thermique moyen, mesuré entre 25 et 1100°C, inférieur à 2,5.10"6 K"1, et
b) le matériau constituant les bouchons comprend :
une charge formée de grains réfractaires dont la température de fusion est supérieure à 1300°C, voire supérieure à 1500°C et dont le diamètre médian est compris entre 5 et 50 microns,
une phase liante vitreuse dont la composition répond à la formulation suivante, en pourcentage poids des oxydes : Si02 : entre 50 et 95%,
RO : entre 0,1 et 15%, RO représentant un oxyde d'un alcalino-terreux ou la somme des oxydes d'alcalino- terreux dans la phase vitreuse,
R2'0 : entre 0,1 et 10%, R2'0 représentant un oxyde d'un alcalin ou la somme des oxydes d'alcalin dans la phase vitreuse,
AI2O3 : moins de 20%,
B2O3 : moins de 10%,
MgO : moins de 5%,
c) le coefficient de dilation thermique (CDT) moyen dudit matériau constituant les bouchons, mesuré entre 25 et 1100°C, sans contrainte est au moins égal à 4 , 8.10~6. K-1, de préférence au moins égal à 5 , 0.10~6. K-1. De préférence, le coefficient CDT est en outre inférieur à 10.10~6.K_1.
Dans la présente description, lorsqu'on parle de la mesure de coefficients de dilatation thermique, à défaut d'indication contraire, celle-ci est mesurée classiquement sans contrainte (ou charge) sur le matériau analysé.
Par RO, on entend un oxyde d'un alcalino-terreux R de préférence choisi dans le groupe constitué par Ca, Sr ou Ba, ou la somme en pourcentage poids des oxydes CaO, SrO ou BaO, dans la formulation précédente, si ladite phase vitreuse comprend plus d'un alcalino-terreux.
Par R2'0, on entend un oxyde d'un alcalin R' de préférence choisi dans le groupe constitué par Na, K, ou la somme en pourcentage poids des oxydes Na2<0 ou encore K2O, dans la formulation précédente, si ladite phase vitreuse comprend plus d'un alcalin.
Le coefficient de dilation thermique du matériau constituant les parois est mesuré sous air selon les techniques de dilatométrie bien connues de l'homme du métier, telles que par exemple reportée dans la norme NFB40308. L'expansion thermique, exprimée en pourcentage, correspond à un allongement (si la variation est positive) ou à un retrait (si la variation est négative) du matériau sous l'effet de l'accroissement de la température. La vitesse d'accroissement est généralement comprise entre 1 et 10°C/minute, de préférence de l'ordre de 5°C/ minute. La mesure est réalisée typiquement avec des dilatomètres bien connus de l'homme du métier tels que ceux de type Adamel ou Setaram comportant en particulier une enceinte pour la montée en température, un poussoir au contact d'une éprouvette du matériau à tester muni d'un capteur de déplacement permettant d'enregistrer les variations dimensionnelles de l'échantillon. Lorsqu' aucune contrainte n'est appliquée, seule une légère force est exercée sur le poussoir afin de maintenir le contact avec l' éprouvette, la pression sur l' éprouvette étant très inférieure à 0,05 MPa . L' éprouvette peut être usinée si nécessaire de manière à obtenir une planéité et un parallélisme de la face de contact et de la face opposée satisfaisants. Idéalement, ces faces ne doivent pas montrer de défauts visibles et la différence entre deux mesures quelconques de longueur prise au pied à coulisse entre la face de contact et la face opposée doit être inférieure à 0,2 mm typiquement pour une longueur moyenne comprise entre 10 à 50mm. De préférence l' éprouvette est de section carrée, sa diagonale étant comprise typiquement entre 0,1 et 0,5 fois sa longueur. De préférence le poussoir est en alumine dense de manière à éviter toute réaction avec le matériau à tester et la section de l'extrémité du poussoir au contact de l' éprouvette est au moins aussi grande que celle de l' éprouvette afin d'assurer un contact avec toute la face de l' éprouvette du coté du poussoir.
Selon un autre aspect possible de la présente invention, le coefficient de dilation thermique moyen dudit matériau constituant les bouchons, mesuré entre 25 et 1100°C et cette fois sous une charge de 0,1 MPa (MégaPascal) , est de préférence au moins égal à 4,5.10~6. K-1, de préférence au moins égal à 5 , 0.10~6. K-1.
Il a été trouvé dans la cadre de la présente invention qu'une pression de 0,1 MPa est apparue représentative de la contre-pression exercée par les parois de la structure sur le matériau de bouchon lorsque le filtre est soumis à une mise en température, notamment lors des phases de régénération subis par un filtre en service dans une ligne d'échappement. La mesure du coefficient de dilatation thermique sous une telle charge permet selon l'invention de sélectionner plus finement les matériaux aptes à entrer dans la constitution des matériaux selon l'invention. Un tel coefficient de dilatation thermique du matériau de bouchage, sous une charge de 0,1 MPa, est mesuré sous air, par exemple sur une éprouvette du matériau de bouchage après cuisson dans les mêmes conditions que précédemment décrites, la pression exercée par le poussoir sur l' éprouvette, c'est à dire la pression calculée par rapport à la face de contact de l' éprouvette étant cette fois de 0,lMPa. Le coefficient de dilatation thermique sous la charge est déterminé de la même manière que précédemment décrit pour le coefficient de dilatation thermique en l'absence de contrainte. L'état de référence de la mesure est l'état de départ de l' éprouvette sous la charge avant la mise en température. Afin d'obtenir la meilleure précision, les variations dimensionnelles sous la charge sont préférentiellement mesurées sur un échantillon de structure dans le sens de la plus grande dimension de 1 ' éprouvette .
Selon l'invention, on choisit de préférence un matériau pour constituer les bouchons dont le retrait, mesuré entre 25 et 1100°C et sous une charge de 0,1 MPa, est inférieur à 2,5%, de préférence inférieur à 2,0%. Le retrait sous charge du matériau de bouchage peut être facilement déterminé par la simple analyse de la courbe dilatométrique obtenu par la mesure du coefficient de dilatation thermique sous la charge précédente de l'éprouvette et par lecture directe de la valeur de retrait après un chauffage à 1100°C et retour à l'ambiante. Selon la présente invention, le retrait du matériau représente, de manière classique, la différence selon une dimension de l'éprouvette du matériau céramique, de préférence la plus grande, mesurée avant et après le traitement thermique, rapportée à la dimension initiale de ladite éprouvette.
Les constituants des compositions de la phase liante vitreuse selon les critères de la présente invention peuvent notamment varier dans les proportions suivantes, en pourcentage poids des oxydes:
S1O2 : entre 65 et 95%, de préférence entre 70 et 90%,
CaO : entre 0,5 et 15%,
Na20 : entre 0,05 et 10%,
CaO + Na2<0 : entre 3 et 25%, par exemple entre 10 et 20%,
AI2O3 : moins de 15 %, de préférence moins de 10%, B2O3 : moins de 10%, de préférence moins de 5%,
MgO : moins de 5%.
Notamment, selon une première réalisation de l'invention, la phase liante vitreuse peut comprendre, en pourcentage poids des oxydes:
Si02 : entre 70 et 85%, de préférence entre 75 et 80%,
B2O3 : entre 1 et 10%, de préférence entre 1 et 5%,
CaO : entre 5 et 15%,
AI2O3 : entre 4 et 10%,
SrO + BaO : inférieur à 1%.
Dans la formulation précédente, de bons résultats d'adhésion ont été obtenus notamment lorsque R'20, au sens précédemment décrit, est inférieur à 3%, voire inférieur à 1,5% ou même inférieur à 1%.
Selon une autre réalisation possible, la composition de la phase liante vitreuse répond à la formulation suivante, en pourcentage poids des oxydes :
Si02 : entre 80 et 90%
Na20 : entre 3 et 10%
CaO : entre 1 et 10%, de préférence entre 2 et 6% MgO : entre 0,1 et 5%, de préférence entre 0,5 et 3% B2O3 : inférieur à 5%, de préférence inférieur à 2%
AI2O3 : inférieur à 2%, de préférence inférieur à 1% SrO + BaO : inférieur à 1%
K2O : inférieur à 1%
Selon une troisième réalisation possible, la composition de la phase liante vitreuse répond à la formulation suivante, en pourcentage poids des oxydes :
Si02 : entre 80 et 90%
Na2<0 : entre 1 et 10%, de préférence entre 2 et 6% K20 : entre 1 et 10%, de préférence entre 1 et 5% CaO : entre 1 et 10%, de préférence entre 2 et 6%
SrO + BaO : entre 3 et 10%, de préférence entre 5 et
10%
B2O3 : inférieur à 5%, de préférence inférieur à 2% AI2O3 : inférieur à 3%, de préférence inférieur à 2%. Dans la structure filtrante selon l'invention, les grains réfractaires sont constitués par au moins un matériau choisi parmi le carbure de silicium, l'alumine, la zircone, la silice, l'oxyde de titane, la magnésie, le titanate d'aluminium, la mullite, la cordiérite, le titanate d' aluminium, de préférence parmi le titanate d'aluminium ou la cordiérite.
Il est bien évident que le matériau de bouchage selon l'invention peut répondre à toutes les combinaisons possibles entre les différents domaines et valeurs initiaux et/ou préférés des constituants précédemment décrits ainsi qu'entre les différentes combinaisons possibles des éléments constitutifs du matériau de bouchage (composition des grains et de la phase vitreuse) . Afin de ne pas alourdir inutilement la présente description, toutes les combinaisons possibles desdits constituants ne sont pas décrites dans la présente description mais elles doivent cependant être considérées comme envisagées par le demandeur dans le cadre de la présente description (notamment de deux, trois combinaisons ou plus) .
En outre, le matériau constituant les bouchons de la première extrémité et le matériau constituant les bouchons de la deuxième extrémité peuvent présenter une composition chimique différente.
La présente invention se rapporte également à un filtre catalytique obtenu à partir d'une structure telle que précédemment décrite et par dépôt, de préférence par imprégnation, d'au moins une phase catalytique active supportée ou de préférence non supportée, comprenant typiquement au moins un métal précieux tel que Pt et /ou Rh et/ou Pd et éventuellement un oxyde tel que CeC>2, ZrC>2, Ce02 ~Zr02 pour le traitement des gaz polluants du type CO ou HC et/ou NOx et/ou la combustion des suies. Un tel filtre trouve notamment son application comme support catalytique dans une ligne d'échappement d'un moteur diesel ou essence ou comme filtre à particules dans une ligne d'échappement d'un moteur diesel.
La présente invention se rapporte à une ligne d'échappement, comprenant une structure filtrante telle que précédemment décrite.
Dans la présente description, on donne les définitions suivantes :
On entend par « au moins une partie des canaux est obturée après frittage ou cuisson du nid d'abeille » que tous les canaux ne sont pas forcément obturés après frittage. Ainsi les canaux d'entrée peuvent être obturés avant frittage de la structure tandis que les canaux de sortie sont obturés après frittage de la structure.
On entend par « matériau constituant les bouchons », qu'au moins un bouchon de la structure filtrante est constitué par ce matériau.
Par l'expression «à base de », il est entendu que lesdites parois comprennent au moins 50% poids et de préférence au moins 70% poids, voire au moins 90 ou même 98% poids dudit matériau.
On entend au sens de la présente description par diamètre médian, ou ds o , d'un mélange de particules ou d'un ensemble de grains, la taille divisant les particules de ce mélange ou les grains de cet ensemble en première et deuxième populations égales en volume, ces première et deuxième populations ne comportant que des particules ou des grains présentant une taille supérieure, ou inférieure respectivement, à ce diamètre médian.
Par le terme «poudre», on entend classiquement au sens de la présente invention un ensemble de grains ou particules se caractérisant par une distribution de taille ou diamètre de grain en général centrée et répartie autour d'un diamètre moyen ou médian. Par les termes «grain» ou «particule», on entend un produit solide individualisé dans une poudre ou un mélange de poudres.
La présente invention se rapporte également à une méthode de fabrication d'une structure telle que précédemment décrite, comprenant les étapes principales suivantes :
a) préparation d'une composition à base du matériau constitutif de la structure et mise en forme, notamment par extrusion à travers une filière dudit matériau, d'une structure en nid d'abeille,
b) éventuellement séchage de ladite structure sous air selon une technique choisie parmi le séchage par air chaud, le séchage par séchage micro-onde, le séchage par lyophilisation à une température inférieure à 130°C ou une combinaison desdites techniques,
c) cuisson de ladite structure, comprenant éventuellement une étape initiale de déliantage,
d) préparation d'une composition pour l'obtention d'un matériau de bouchage tel que précédemment décrit et obturation par ladite composition, des canaux de ladite structure cuite,
e) traitement thermique de cuisson des bouchons disposés sur les extrémités de la structure cuite.
Un procédé classique de fabrication d'une structure en nid d'abeille selon la présente invention est donné ci- après sans que celui-ci puisse être considéré comme limitatif d'un mode opératoire particulier.
De façon générale, le matériau constituant les parois des structures obtenues selon l'invention présente de préférence une porosité ouverte comprise entre 20% et 65%, et de manière préférée entre 35% et 60%. Notamment dans l'application filtre à particules, une porosité trop faible conduit à une perte de charge trop élevée. Une porosité trop élevée conduit en revanche à un niveau de résistance mécanique trop faible. Le diamètre médian dso, en volume, des pores constituant la porosité du matériau est de préférence compris entre 5 et 30 microns, de préférence entre 8 et 25 microns. De manière générale, dans les applications visées, il est généralement admis qu'un trop faible diamètre des pores entraîne une trop forte perte de charge, tandis qu'un diamètre médian de pores trop important entraîne une mauvaise efficacité de filtration. Avantageusement, l'épaisseur des parois est comprise entre 0,2 à 1,0 mm, de préférence 0,2 et 0,5 mm. Le nombre de canaux dans les éléments filtrants est de préférence compris entre 7,75 et 62 par cm2, lesdits canaux ayant typiquement une section d'environ 0,5 à 9 mm2.
Par exemple, ladite structure selon l'invention peut également être obtenue à partir d'un mélange initial de grains à base de titanate d'aluminium et/ou de cordiérite. Avantageusement, selon ce mode la poudre à base de titanate d'aluminium ou de cordiérite présente un diamètre médian inférieur à 60 microns.
De préférence, les parois de la structure sont constituées d'un matériau céramique poreux à base de Titanate d'Aluminium. Lesdites parois poreuses peuvent également incorporer d'autres phases ou éléments en proportions minoritaires, c'est-à-dire d'une manière générale tout ajout connu pour stabiliser la phase principale du type titanate d'aluminium.
Le procédé de fabrication selon l'invention comprend le plus souvent classiquement une étape de malaxage du mélange initial de poudres en un produit homogène sous la forme d'une pâte, une étape d'extrusion d'un produit cru mis en forme à travers une filière appropriée de manière à obtenir des monolithes du type nid d'abeilles, une étape de séchage des monolithes obtenus, éventuellement une étape d'assemblage et une étape de cuisson réalisée sous air ou sous atmosphère oxydante à une température ne dépassant pas 1800°C, de préférence ne dépassant pas 1650°C.
L'étape de bouchage, effectuée après la cuisson des monolithes en nid d'abeille, peut être réalisée selon le procédé décrit par exemple dans US4557773 ou EP1500482 par exemple. Les mélanges de bouchage sont des mélanges de particules, secs ou humides, aptes à prendre en masse. La prise en masse ou durcissement de ces mélanges après obturation des canaux de la structure peut résulter d'un séchage ou, par exemple, du durcissement d'une résine. Le chauffage permet enfin d'accélérer 1 ' évaporation de l'eau ou du liquide résiduel après durcissement.
Toutes les poudres réfractaires classiquement utilisées comme charge dans le matériau de bouchage, qui comprennent un mélange de grains réfractaires dont le diamètre médian est compris entre 5 et 50 microns, peuvent être utilisées, en tenant compte bien entendu de la composition du matériau constituant les parois filtrantes. Les poudres réfractaires peuvent par exemple être des poudres à base carbure de silicium et/ou d'alumine et/ou de zircone et/ou de silice et/ou d'oxyde de titane et/ou de magnésie ou des poudres mixtes, notamment de titanate d'aluminium ou de mullite. De préférence, les poudres réfractaires sont des produits fondus. L'utilisation de produits frittés est également possible. De préférence, les poudres réfractaires représentent plus de 50 %, de préférence plus de 70 % de la masse de la matière minérale sèche du mélange de bouchage.
Dans un mode de réalisation préféré, le mélange de bouchage comprend au moins une poudre de titanate d'aluminium qui représente au moins 50% de préférence au moins 80% en masse du mélange particulaire . De manière encore plus préférée, la poudre de titanate d'aluminium est la seule poudre réfractaire utilisée dans le mélange de bouchage .
Une phase liante vitreuse autour des grains précédemment décrits et constituant la charge du matériau de bouchage peut être obtenue à partir de la fusion des oxydes précurseurs correspondants Si02, RO, R^O, B203, etc. introduits en mélange dans les proportions adéquates avec lesdits grains. L'ensemble est porté à une température suffisante pour former une phase essentiellement vitreuse nappant les grains de la charge, formant ainsi le matériau constitutif des bouchons. Alternativement, il est également possible d'utiliser une poudre de verre de la composition finale recherchée, c'est-à-dire telle que décrite précédemment, directement en mélange avec la charge, l'ensemble étant ensuite porté en température pour l'obtention du matériau de bouchage final. La poudre de verre alors utilisée est de préférence de diamètre médian compris entre 5 et 50 microns.
Le mélange de bouchage comporte par ailleurs de préférence un liant temporaire et/ou chimique afin de favoriser sa mise en œuvre, en particulier la rhéologie adaptée selon le procédé de bouchage utilisé.
Ces liants peuvent être choisis parmi la liste suivante non limitative :
-des liants temporaires organiques, tels que des résines, notamment des thermodurcissables , c'est-à-dire formées d'au moins un polymère transformable par traitement thermique (chaleur, radiation) ou physico¬ chimique (catalyse, durcisseur) en matériau infusible et insoluble. Les résines thermodurcissables prennent ainsi leur forme définitive au premier durcissement, la réversibilité étant impossible. Les résines thermodurcissables comprennent notamment les résines phénoliques, à base de silicone ou encore époxides, -d'autres liants temporaires tels que des dérivés de la cellulose ou de la lignone, comme la carboxyméthylcellulose, la dextrine, des polyvinyls alcools, des polyéthylènes glycols,
-des agents chimiques de prise tels que l'acide phosphorique, les polyphosphates de métaux alcalins ou les alumino-phosphates , ou le silicate de soude et ses dérivés ,
-des liants inorganiques, tels que les gels de silice ou la silice sous forme colloïdale ; des liant à base de gel de silice et/ou d'alumine et/ou de zircone des agents de prise chimiques, tels que l'acide
phosphorique, le monophosphate d ' aluminium, etc .
Les bouchons réalisés par obturation de la structure après cuisson peuvent aussi comprendre d'autres ajouts organiques tels que des lubrifiants ou des plastifiants.
Le mélange de bouchage peut éventuellement comporter un agent porogène, par exemple choisi parmi les dérivés de cellulose, les particules d'acrylique, les particules de graphite et leurs mélanges, incorporés dans un mélange particulaire de bouchage afin de créer de la porosité pour relaxer les contraintes sur les parois et/ou éventuellement alléger le filtre. Cependant la quantité ne doit pas être trop élevée, par exemple elle doit être inférieure à 25 % massique par rapport à la composition minérale du mélange de bouchage afin de présenter une étanchéité suffisante.
L' invention se rapporte à un filtre à particules en nid d'abeille présentant une structure telle que précédemment décrite, adapté pour la filtration de gaz d'échappement d'un véhicule automobile. Un tel filtre peut comprendre un seul élément monolithique ou être obtenu par l'association, par collage par un ciment de joint, d'une pluralité d'éléments monolithiques en nid d'abeille. Un tel filtre peut éventuellement comporter un revêtement externe appliqué par exemple après cuisson de la structure avant ou après bouchage des canaux. Il comprend de préférence des particules et/ou des fibres de céramique ou de matériau réfractaire, choisi parmi les oxydes, notamment comprenant A1203, Si02, MgO, Ti02 , Zr02, Cr203 ou l'un quelconque de leurs mélanges, voire parmi les non-oxydes, tels que le SiC, le nitrure d'aluminium et/ou de silicium, l'oxynitrure d'aluminium, etc.
L' invention et ses avantages seront mieux compris à la lecture des exemples non limitatifs qui suivent. Dans les exemples, tous les pourcentages sont donnés en poids, notamment des oxydes.
Exemples de réalisation :
a) réalisation d'une poudre de titanate d'aluminium électrofondue :
Dans tous les exemples les pourcentages sont donnés en poids. Dans une étape préliminaire, du Titanate d'Aluminium a été préparé à partir des matières premières suivantes :
- environ 40% poids d'alumine avec un taux de pureté en AI2O3 supérieur à 99,5% et de diamètre médian d5o de 90 μιτι, commercialisée sous la référence AR75 ® par la société Pechiney,
- environ 50% poids d'oxyde de titane sous forme rutile, comportant plus de 95% de T1O2,
- environ 1% de zircone présentant un diamètre médian dso d'environ 120 μιτι, commercialisée par la société Europe Minerais ,
environ 5~6 poids de silice avec un taux de pureté en S1O2 supérieur à 99,5% et de diamètre médian dso de l'ordre de 210 μιη, commercialisée par la société SIFRACO,
environ 4~6 poids d'une poudre de magnésie avec un taux de pureté en MgO supérieur à 98% et dont plus de 80% de particules présentant un diamètre compris entre 0,25 et 1 mm, commercialisée par la société Nedmag.
Le mélange des oxydes réactifs initiaux a été fondu dans un four à arcs électriques, sous air, avec une marche électrique oxydante. Le mélange fondu a ensuite été coulé en moule CS de façon à obtenir un refroidissement rapide. Le produit obtenu est broyé et tamisé pour obtenir des poudres de différentes fractions granulométriques . Plus précisément, le broyage et le tamisage sont réalisés dans des conditions permettant l'obtention au final de deux fractions granulométriques :
- une fraction granulométrique se caractérisant par un diamètre médian dso sensiblement égal à 50 microns, désignée sous le terme fraction grosse selon la présente invention,
une fraction granulométrique se caractérisant par un diamètre médian dso sensiblement égal à 30 microns, désignée sous le terme fraction intermédiaire selon la présente invention,
une fraction granulométrique se caractérisant par un diamètre médian dso sensiblement égal à 1,5 microns et désignée sous le terme fraction fine selon la présente invention .
Au sens de la présente description, le diamètre médian dso désigne le diamètre des particules, mesuré par sédigraphie, au dessous duquel se trouve 50% en volume de la population. L'analyse par microsonde montre que tous les grains de la phase fondue ainsi obtenue présentent la composition suivante, en pourcentage poids des oxydes (tableau 1):
Figure imgf000022_0001
Tab eau 1 b) fabrication des monolithes cuits
Dans un premier temps, on a synthétisé une série de monolithes crus secs de la manière suivante :
Dans un malaxeur, on mélange des poudres selon la composition suivante :
100 % d'un mélange de deux poudres de titanate d'aluminium réalisées précédemment par électrofusion, environ 75% d'une première poudre de diamètre médian de 50 ym et 25% d'une deuxième poudre de diamètre médian de 1,5 ym.
On ajoute, par rapport à la masse totale du mélange :
- 4% poids d'un liant organique du type cellulose,
- 15% poids d'un agent porogène,
- 5 % de plastifiant dérivé d' éthylène glycol,
- 2% de lubrifiant (huile) ,
- 0,1 % de surfactant,
- environ 20% d'eau environ de manière à obtenir, selon les techniques de l'art, une pâte homogène après malaxage dont la plasticité permet l'extrusion à travers une filière d'une structure en nid d'abeille qui après cuisson présente les caractéristiques dimensionnelles selon le tableau 2.
On sèche ensuite les monolithes crus obtenus par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 ~6 en masse .
Les monolithes crus secs sont ensuite cuits, sans que les canaux aient été bouchés, sous air progressivement jusqu'à atteindre une température de 1450°C qui est maintenue pendant 4 heures.
Figure imgf000023_0001
Tableau 2 Les caractéristiques de porosité ont été mesurées par des analyses par porosimétrie à haute pression de mercure, effectuées avec un porosimètre de type Micromeritics 9500. Exemple 1 et la :
Les monolithes cuits sont ensuite bouchés à chacune de leurs extrémités, selon la configuration classique en échiquier (un canal sur deux) , avec un mélange de bouchage répondant à la formulation suivante (en parties poids) : - 100 parties d'un mélange d'une poudre de Titanate d'Aluminium réalisées précédemment par électro-fusion, broyée de telle manière que son diamètre médian des grains soit égal à 30 ym,
- 31 parties de silice d'Elkem 971U,
- 25 parties de la poudre de verre sodo-borique FX300 commercialisée par la société Reidt dont le diamètre médian est de 22 ym et dont la composition chimique est donnée dans le tableau 3,
- 1,5 partie de liant organique du type cellulose,
- 0,6 partie de dispersant à base d'acide carboxylique,
- environ 45 parties d'eau.
Les monolithes dont les canaux sont alternativement bouchés selon un diagramme classique en échiquier, sont ensuite soumis à un traitement thermique jusqu'à une température finale de 1100°C, qui est maintenue pendant 1 heure .
Le protocole expérimental de l'exemple la est identique à celui de l'exemple 1 mais s'en distingue uniquement en ce que la charge est une poudre de cordiérite de sensiblement la même granulométrie .
Exemple 2 et 2a :
A la différence de l'exemple 1, les monolithes cuits sont bouchés du coté de l'extrémité ou de la face d'appui sur le support de cuisson à l'aide d'un mélange de bouchage répondant à la formulation suivante (en parties poids) :
100 parties d'un mélange de la poudre de titanate d'aluminium réalisée précédemment par électrofusion, de diamètre médian de 30 ym,
- 31 parties de silice d'Elkem 971U,
- 25 parties de la poudre de verre sodo-calcique ST300 commercialisée par la société Reidt dont le diamètre médian est de 22 ym et dont la composition chimique est donnée dans le tableau 3,
- 1,5 partie de liant organique du type cellulose,
- 0,6 partie de dispersant à base d'acide carboxylique,
- environ 45 parties d'eau.
Les monolithes dont les canaux sont alternativement bouchés selon un diagramme classique en échiquier, sont ensuite soumis à un traitement thermique jusqu'à une température finale de 1100°C, qui est maintenue pendant 1 heure .
L'exemple 2a ne se distingue de l'exemple 2 précédent qu'en ce que la charge est cette fois obtenue à partir de la poudre de cordiérite de l'exemple la.
Exemple 3 et 3a:
A la différence des exemples 1 et 2, les monolithes cuits sont bouchés du coté de l'extrémité ou de la face d'appui sur le support de cuisson à l'aide d'un mélange de bouchage répondant à la formulation suivante (en parties poids) :
100 parties d'un mélange de la poudre de titanate d'aluminium réalisée précédemment par électrofusion, de diamètre médian de 30 ym,
- 31 parties de silice d'Elkem 971U,
- 25 parties de la poudre de verre Baryum-Strontium-sodo- potassique N300 commercialisée par la société Reidt dont le diamètre médian est de 22 ym et dont la composition chimique est donnée dans le tableau 3,
- 1,5 partie de liant organique du type cellulose,
- 0,6 partie de dispersant à base d'acide carboxylique, - environ 45 parties d'eau.
Les monolithes dont les canaux sont alternativement bouchés selon un diagramme classique en échiquier, sont ensuite soumis à un traitement thermique jusqu'à une température finale de 1100°C, qui est maintenue pendant 1 heure.
L'exemple 3a ne se distingue de l'exemple 3 précédent qu'en ce que la charge est cette fois obtenue à partir de la poudre de cordiérite de l'exemple la. Exemple 4 et 4a :
A la différence des exemples précédents, les monolithes cuits sont bouchés du coté de l'extrémité ou de la face d'appui sur le support de cuisson à l'aide d'un mélange de bouchage avec un mélange de bouchage répondant à la formulation suivante (en parties poids) :
100 parties d'un mélange de la poudre de titanate d'aluminium réalisée précédemment par électrofusion, de diamètre médian de 30 ym,
- 31 parties de silice d'Elkem 971U,
- 25 parties de la poudre de verre calco-alumino-borique HK300 commercialisée par la société Reidt, dont le diamètre médian est de 22 ym et dont la composition chimique est donnée dans le tableau 3,
- 1,5 partie de liant organique du type cellulose,
- 0,6 partie de dispersant à base d'acide carboxylique,
- environ 45 parties d'eau.
Les monolithes dont les canaux sont alternativement bouchés selon un diagramme classique en échiquier, sont ensuite soumis à un traitement thermique jusqu'à une température finale de 1100°C, qui est maintenue pendant 1 heure .
L'exemple 4a ne se distingue de l'exemple 4 précédent qu'en ce que la charge est cette fois obtenue à partir de la poudre de cordiérite de l'exemple la.
Le coefficient de dilatation thermique moyen du matériau constituant les parois du monolithe a été mesuré, sur une barrette dudit matériau cuit, de dimension lcm><2 , 5mm><2 , 5mm, sous air selon une vitesse de montée en température de 5°C/min jusqu'à atteindre une température de 1100°C, au moyen d'un dilatomètre de type Setaram. La détermination du coefficient de dilatation thermique du matériau constituant les parois est effectuée de la température ambiante (25°C) à 1100°C.
Le coefficient de dilatation thermique moyen sans charge et sous charge du matériau de bouchage a été mesuré sur barrette de dimensions 0 , 7cmx 0 , 7cmx 15mm réalisée avec le matériau de bouchage, après que celui-ci ait subi au préalable un traitement thermique à une température de 1100°C, pendant 1 heure, de façon à obtenir un matériau de bouchage fritté représentatif des bouchons constituant les filtres selon les exemples précédents.
La mesure du coefficient a été faite de la température ambiante à 1100°C selon une vitesse de montée en température de 5°C/min sous air au moyen d'un dilatomètre vertical (de type Setaram) . Sans charge le capteur représente une pression inférieure à 0,05 MPa de manière à assurer un contact constant avec l'éprouvette pendant l'essai. Lorsqu'une charge a été appliquée, elle a correspondu à une contrainte de 0,1 MPa appliquée dans une direction selon la plus grande dimension de l'éprouvette.
L'adhésion du bouchon au monolithe a été évaluée sur la structure bouchée après traitement thermique des bouchons. Une première évaluation a été faite d'abord sur la structure filtrante initiale, avant tout traitement thermique, par observation, au microscope électronique à balayage, de l'interface bouchon/paroi du monolithe sur un échantillon poli, selon une coupe longitudinale. Il est notamment constaté la présence (ou l'absence) de microfissures ou de discontinuité de la structure à ladite interface. Tous les échantillons selon les exemples 1 à 4 et la à 4a indiquent une adhésion satisfaisante initialement (c'est-à-dire avant les cycles thermiques), correspondant à une parfaite continuité de matière à l'interface bouchon/paroi.
La durabilité de l'adhésion des bouchons au monolithe a ensuite été évaluée en faisant subir aux filtres testés plusieurs cycles thermiques, représentatifs des conditions d'utilisation les plus contraignantes d'un filtre disposé dans une ligne d'échappement. Chaque cycle correspond à un chauffage entre 500°C et 1100°C avec une rampe de 5°C/min et un retour à 500°C. Le cycle est répété 10 fois.
Tel que reporté dans le tableau 3, les filtres selon les exemples 1, la, 2a et 3a, comprennent des bouchons faits d'un matériau non conforme à la présente invention. Tout particulièrement, on peut voir dans les données reportées dans le tableau 3 que le coefficient de dilatation thermique (CDT) de ces matériaux, à la pression ambiante et sans contrainte, est inférieure à 4,8><10~6 K-1. De même, tous ces matériaux présentent, sous une charge de 0,1 MPa, une valeur du CDT inférieure à 4,5><10"6 K"1.
Après le test de durabilité, une observation au microscope électronique à balayage de l'interface canaux/bouchons des filtres selon les exemples 1, la, 2a, 3a non conformes, a mis en évidence la présence de fissures entre la paroi et le bouchon sur tous les échantillons testés .
Tel que reporté dans le tableau 3, les filtres selon les exemples 2, 3, 4 et 4a, comprennent des bouchons faits d'un matériau conforme à la présente invention. Tout particulièrement, on peut voir dans les données reportées dans le tableau 3 que le coefficient de dilatation thermique (CDT) de ces matériaux, à pression ambiante, est supérieur à 4,8><10~6 K-1 lorsque la mesure est effectuée sans contrainte et supérieur à 4,5><10~6 K-1 sous une charge de 0,1 MPa.
Après le test de durabilité, une observation au microscope électronique à balayage de l'interface canaux/bouchons des filtres selon les exemples 2, 3, 4 et 4a conformes à l'invention, a mis en évidence une continuité de matière entre la paroi et le bouchon sur tous les échantillons testés, c'est-à-dire une adhésion entre les bouchons et les parois. Tout particulièrement, seuls les monolithes selon l'invention, pour lesquels la composition du verre et la charge composant le matériau des bouchons ont été choisis pour obtenir un coefficient d'expansion thermique moyen, à la pression ambiante, supérieur à 4,8.10~6 K-1, présentent une adhésion tout à fait remarquable, après des recuits successifs.
On voit également que la formulation vitreuse décrite dans les exemples 4 et 4a est particulièrement avantageuse car elle conduit à une adhésion satisfaisante après le test de durabilité, quelque soit la nature chimique de la charge utilisée (cordiérite ou titanate d'aluminium).
Une formulation de bouchons selon les compositions décrites dans les documents antérieurs par exemple selon US2006/027306, se caractérisant par de faibles coefficients de dilatation thermique du matériau composant les bouchons, notamment proches de ceux du titanate d' aluminium constituant les parois de la structure, a également été soumise au test de durabilité décrit précédemment. Tel que reporté dans le tableau 3, une observation au microscope électronique a mis en évidence la présence de fissures entre les parois et les bouchons sur les échantillons testés .
Figure imgf000031_0001
*CaO + MgO ** Titanate d'aluminium Tableau 3

Claims

REVENDICATIONS
1. Structure filtrante de gaz chargés en particules, du type en nid d'abeilles, comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure se caractérisant en ce que :
a) les parois filtrantes de la dite structure en nid d'abeille sont constituées d'un matériau présentant après cuisson un coefficient de dilation thermique moyen, mesuré entre 25 et 1100°C, inférieur à 2,5.10"6 K"1, et
b) le matériau constituant les bouchons comprend :
- une charge formée de grains réfractaires dont la température de fusion est supérieure à 1500°C et dont le diamètre médian est compris entre 5 et 50 microns,
une phase liante vitreuse dont la composition répond à la formulation suivante, en pourcentage poids des oxydes correspondants :
Si02 : entre 50 et 95%,
RO : entre 0,1 et 15%, RO représentant un oxyde d'un alcalino-terreux ou la somme des oxydes d'alcalino- terreux dans la phase vitreuse,
R2' 0 : entre 0,1 et 10%, R2'0 représentant un oxyde d'un alcalin ou la somme des oxydes d'alcalin dans la phase vitreuse,
AI2O3 : moins de 20%,
B2O3 : moins de 10%,
MgO : moins de 5%.
2. Structure filtrante selon la revendication 1, dans laquelle le coefficient de dilation thermique moyen dudit matériau constituant les bouchons, mesuré entre 25 et 1100°C et sans contrainte, est au moins égal à 4 , 8.10~6. K-1, de préférence au moins égal à 5 , 0.10~6. K-1.
3. Structure filtrante selon l'une des revendications 1 ou 2, dans laquelle le coefficient de dilation thermique moyen dudit matériau constituant les bouchons, mesuré entre 25 et 1100°C sous une charge de 0,1 MPa, est au moins égal à 4 , 5.10~6. K-1, de préférence au moins égal à 5 , 0.10~6. K-1.
4. Structure filtrante selon l'une des revendications précédentes, dans laquelle le retrait du matériau constituant les bouchons, mesuré entre 25 et 1100°C sous une charge de 0,1 MPa, est inférieur à 2,5%, de préférence inférieur à 2,0%.
5. Structure filtrante selon l'une des revendications précédentes, dans laquelle la composition de la phase liante vitreuse répond à la formulation suivante, en pourcentage poids des oxydes :
S1O2 : entre 65 et 95%, de préférence entre 70 et 90%,
CaO : entre 0,5 et 15%,
Na20 : entre 0,05 et 10%,
CaO + Na20 : entre 3 et 25%,
AI2O3 : moins de 15 %, de préférence moins de 10%,
B2O3 : moins de 10%, de préférence moins de 5%,
MgO : moins de 5%.
6. Structure filtrante selon l'une des revendications précédentes, dans laquelle la composition de la phase liante vitreuse répond à la formulation suivante, en pourcentage poids des oxydes : S1O2 : entre 70 et 85%, de préférence entre 75 et 80%, B2O3 : entre 1 et 10%, de préférence entre 1 et 5%,
CaO : entre 5 et 15%,
AI2O3 : entre 4 et 10%,
SrO + BaO : inférieur à 1%.
7. Structure filtrante selon la revendication précédente, dans laquelle R' 2O est inférieur à 3%.
8. Structure filtrante selon l'une des revendications 1 à 4, dans laquelle la composition de la phase liante vitreuse répond à la formulation suivante, en pourcentage poids des oxydes :
Si02 : entre 80 et 90%
Na20 : entre 3 et 10%
CaO : entre 1 et 10%, de préférence entre 2 et 6%
MgO : entre 0,1 et 5%, de préférence entre 0,5 et 3% B2O3 : inférieur à 5%, de préférence inférieur à 2%
AI2O3 : inférieur à 2%, de préférence inférieur à 1% SrO + BaO : inférieur à 1%
K2O : inférieur à 1%
9. Structure filtrante selon l'une des revendications 1 à 5, dans laquelle la composition de la phase liante vitreuse répond à la formulation suivante, en pourcentage poids des oxydes :
Si02 : entre 80 et 90%
a20 : entre 1 et 10%, de préférence entre 2 et 6%
K20 : entre 1 et 10%, de préférence entre 1 et 5%
CaO : entre 1 et 10%, de préférence entre 2 et 6%
SrO + BaO : entre 3 et 10%, de préférence entre 5 et 10% B2O3 : inférieur à 5%, de préférence inférieur à 2%
AI2O3 : inférieur à 3%, de préférence inférieur à 2%.
10. Structure filtrante selon l'une des revendications précédentes, dans laquelle les grains réfractaires sont constitués par au moins un matériau choisi parmi le carbure de silicium, l'alumine, la zircone, la silice, l'oxyde de titane, la magnésie, le titanate d'aluminium, la mullite, la cordiérite, le titanate d'aluminium, de préférence parmi le titanate d'aluminium ou la cordiérite.
11. Structure filtrante selon l'une des revendications précédentes, dans laquelle les parois poreuses sont constituées d'un matériau à base de Titanate d'Aluminium ou de Cordiérite .
12. Structure filtrante selon l'une des revendications précédentes, dans laquelle le matériau constituant les bouchons de la première extrémité et le matériau constituant les bouchons de la deuxième extrémité présentent une composition chimique différente.
13. Structure filtrante selon l'une des revendications précédentes comprenant en outre une phase catalytique active supportée ou de préférence non supportée, comprenant typiquement au moins un métal précieux tel que Pt et/ou Rh et/ou Pd et éventuellement un oxyde tel que CeÛ2, rÛ2, Ce02~ Zr02.
14. Ligne d'échappement, comprenant une structure filtrante selon l'une des revendications précédentes.
15. Méthode de fabrication d'une structure selon l'une des revendications précédentes, comprenant les étapes principales suivantes : a) préparation d'une composition à base du matériau constitutif de la structure et mise en forme, notamment par extrusion à travers une filière dudit matériau, d'une structure en nid d'abeille,
b) éventuellement séchage de ladite structure sous air selon une technique choisie parmi le séchage par air chaud, le séchage par séchage micro-onde, le séchage par lyophilisation à une température inférieure à 130°C ou une combinaison desdites techniques,
c) cuisson de ladite structure, comprenant éventuellement une étape initiale de déliantage,
d) préparation d'une composition pour l'obtention d'un matériau de bouchage selon l'une des revendications 1 à 9 et obturation par ladite composition, des canaux de ladite structure cuite,
e) traitement thermique de cuisson des bouchons disposés sur les extrémités de la structure cuite.
PCT/FR2011/050510 2010-03-19 2011-03-15 Structure filtrante comprenant un materiau de bouchage WO2011114050A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11713003A EP2547417A1 (fr) 2010-03-19 2011-03-15 Structure filtrante comprenant un materiau de bouchage
JP2012557588A JP2013522020A (ja) 2010-03-19 2011-03-15 閉塞材料を有するフィルター材料
US13/635,699 US20130011304A1 (en) 2010-03-19 2011-03-15 Filtering structure, including plugging material
CN2011800145058A CN102811789A (zh) 2010-03-19 2011-03-15 包括封堵用材料的过滤结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051980 2010-03-19
FR1051980A FR2957529B1 (fr) 2010-03-19 2010-03-19 Structure filtrante comprenant un materiau de bouchage ameliore

Publications (1)

Publication Number Publication Date
WO2011114050A1 true WO2011114050A1 (fr) 2011-09-22

Family

ID=42979810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050510 WO2011114050A1 (fr) 2010-03-19 2011-03-15 Structure filtrante comprenant un materiau de bouchage

Country Status (6)

Country Link
US (1) US20130011304A1 (fr)
EP (1) EP2547417A1 (fr)
JP (1) JP2013522020A (fr)
CN (1) CN102811789A (fr)
FR (1) FR2957529B1 (fr)
WO (1) WO2011114050A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634163A1 (fr) * 2010-10-26 2013-09-04 Sumitomo Chemical Company Limited Matériau d'étanchéité et procédé de fabrication d'un corps cuit en céramique nid d'abeille

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2466571B1 (es) * 2014-03-12 2015-03-16 Likuid Nanotek, S.L. Membrana cerámica de filtración
JP6684257B2 (ja) 2017-09-27 2020-04-22 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058876A (ja) 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
JP6726148B2 (ja) * 2017-09-27 2020-07-22 イビデン株式会社 排ガス浄化用ハニカム触媒
JP6698602B2 (ja) 2017-09-27 2020-05-27 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058875A (ja) 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
EP3810312A4 (fr) 2018-06-25 2022-04-13 2599218 Ontario Inc. Membranes en graphène et procédés de fabrication de membranes en graphène
FR3088831B1 (fr) * 2018-11-27 2020-12-04 Tech Avancees Et Membranes Industrielles Procédé de fabrication par addition de matière de supports inorganiques de filtration à partir d’un filament thermofusible et membrane obtenue
CN111035994B (zh) * 2019-12-23 2022-03-22 东营俊富净化科技有限公司 一种低阻过滤材料制备方法
US11332374B2 (en) * 2020-03-06 2022-05-17 2599218 Ontario Inc. Graphene membrane and method for making graphene membrane
WO2023219023A1 (fr) * 2022-05-09 2023-11-16 Agc株式会社 Verre, feuille de verre et procédé de fabrication de feuille de verre

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677498A2 (fr) * 1994-04-12 1995-10-18 Corning Incorporated Procédé d'obturation sélective de bouts ouverts d'une structure céramique en nid d'abeilles
KR20080046029A (ko) * 2006-11-21 2008-05-26 주식회사 엘지화학 허니콤 필터용 세라믹 밀봉재
WO2009017642A1 (fr) * 2007-07-31 2009-02-05 Corning Incorporated Compositions pour l'application à des corps en nid d'abeilles en céramique
US20090142544A1 (en) * 2007-11-30 2009-06-04 Earl David A Honeycomb Cement With Ceramic-Forming Crystallizable Glass And Method Therefor
WO2010072971A1 (fr) * 2008-12-23 2010-07-01 Saint-Gobain Centre De Recherches Et D'etudes Europeen Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712785B2 (ja) * 1996-06-03 2005-11-02 松下電器産業株式会社 排ガスフィルタ及び排ガス浄化装置
EP0955084B1 (fr) * 1998-04-27 2006-07-26 Corning Incorporated Procédé pour le dépôt d'échantillons biologiques avec un réservoir capillaire refilé
JP4455708B2 (ja) * 2000-01-17 2010-04-21 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4394343B2 (ja) * 2002-12-11 2010-01-06 日本碍子株式会社 炭化珪素質多孔体及びその製造方法、並びにハニカム構造体
JP4302973B2 (ja) * 2002-12-19 2009-07-29 日本碍子株式会社 ハニカム構造体、これを用いた触媒体、触媒担持フィルタ、及びこれらの製造方法
JP5005917B2 (ja) * 2003-03-25 2012-08-22 日本碍子株式会社 目封止ハニカム構造体の製造方法
JP4495152B2 (ja) * 2004-03-31 2010-06-30 日本碍子株式会社 ハニカム構造体及びその製造方法
US7071135B2 (en) * 2004-09-29 2006-07-04 Corning Incorporated Ceramic body based on aluminum titanate and including a glass phase
US20060272306A1 (en) * 2005-06-01 2006-12-07 Kirk Brian S Ceramic wall flow filter manufacture
WO2007054697A1 (fr) * 2005-11-10 2007-05-18 The Morgan Crucible Company Plc Fibres resistantes aux temperatures elevees
JP2010522106A (ja) * 2007-03-20 2010-07-01 コーニング インコーポレイテッド セラミック・フィルタのための低収縮率施栓用混合物、栓を施されたハニカム・フィルタおよびその製造方法
JP5587173B2 (ja) * 2007-03-31 2014-09-10 コーニング インコーポレイテッド 押出体および流体処理方法
WO2009061397A2 (fr) * 2007-11-05 2009-05-14 Corning Incorporated Compositions de ciment à faible expansion pour monolithes céramiques
US8182603B2 (en) * 2007-11-30 2012-05-22 Corning Incorporated Cement compositions for applying to ceramic honeycomb bodies
US9828298B2 (en) * 2007-11-30 2017-11-28 Corning Incorporated Cement compositions for applying to honeycomb bodies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677498A2 (fr) * 1994-04-12 1995-10-18 Corning Incorporated Procédé d'obturation sélective de bouts ouverts d'une structure céramique en nid d'abeilles
KR20080046029A (ko) * 2006-11-21 2008-05-26 주식회사 엘지화학 허니콤 필터용 세라믹 밀봉재
WO2009017642A1 (fr) * 2007-07-31 2009-02-05 Corning Incorporated Compositions pour l'application à des corps en nid d'abeilles en céramique
US20090142544A1 (en) * 2007-11-30 2009-06-04 Earl David A Honeycomb Cement With Ceramic-Forming Crystallizable Glass And Method Therefor
WO2010072971A1 (fr) * 2008-12-23 2010-07-01 Saint-Gobain Centre De Recherches Et D'etudes Europeen Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634163A1 (fr) * 2010-10-26 2013-09-04 Sumitomo Chemical Company Limited Matériau d'étanchéité et procédé de fabrication d'un corps cuit en céramique nid d'abeille
EP2634163A4 (fr) * 2010-10-26 2014-04-16 Sumitomo Chemical Co Matériau d'étanchéité et procédé de fabrication d'un corps cuit en céramique nid d'abeille

Also Published As

Publication number Publication date
EP2547417A1 (fr) 2013-01-23
FR2957529A1 (fr) 2011-09-23
FR2957529B1 (fr) 2012-04-06
CN102811789A (zh) 2012-12-05
JP2013522020A (ja) 2013-06-13
US20130011304A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2011114050A1 (fr) Structure filtrante comprenant un materiau de bouchage
EP2303796B1 (fr) Grains fondus d&#39;oxydes comprenant al, ti, mg et zr et produits ceramiques comportant de tels grains
WO2009156652A1 (fr) Structure en nid d&#39;abeille a base de titanate d&#39;aluminium
WO2010001066A2 (fr) Structure poreuse du type titanate d&#39;alumine
WO2010109120A1 (fr) Procede et support pour la cuisson d&#39;une structure en nid d&#39;abeille
EP2459498A1 (fr) Grains fondus d&#39;oxydes comprenant al, ti et produits ceramiques comportant de tels grains
FR2947260A1 (fr) Grains fondus d&#39;oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains
WO2010072971A1 (fr) Structure filtrante dont les faces d&#39;entree et de sortie presentent un materiau de bouchage different
FR2931366A1 (fr) Filtre composite sic-vitroceramique
FR2933398A1 (fr) Grains fondus d&#39;oxydes comprenant al, ti et mg et produits ceramiques comportant de tels grains
EP2303797A2 (fr) Melange de grains pour la synthese d&#39;une structure poreuse du type titanate d&#39;alumine
WO2011157939A1 (fr) Filtre catalytique pour la filtration d&#39;un gaz comprenant un ciment de joint incorporant un materiau geopolymere
WO2011036396A1 (fr) Structure poreuse du type titanate d&#39;alumine
FR2931697A1 (fr) Filtre ou support catalytique a base de carbure de silicium et de titanate d&#39;aluminium
WO2010040941A1 (fr) Dispositifs de filtration de particules
EP1910249A2 (fr) Procede de preparation d&#39;une structure poreuse utilisant des agents porogenes a base de silice
WO2010112778A2 (fr) Structure filtrante a base de sic a proprietes thermomecaniques ameliorees
FR2951652A1 (fr) Corps filtrant assemble a resistance thermique specifique variable selon la longueur.
FR2931698A1 (fr) Structure en nid d&#39;abeille a base de titanate d&#39;aluminium.
FR2954175A1 (fr) Structure filtrante assemblee
FR2950341A1 (fr) Structure poreuse du type titanate d&#39;alumine
WO2011051901A1 (fr) Corps filtrant assemblé à résistance thermique spécifique variable

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014505.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11713003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011713003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13635699

Country of ref document: US

Ref document number: 2012557588

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE