WO2011111585A1 - 無線電力伝送用磁気素子及び電力供給装置 - Google Patents

無線電力伝送用磁気素子及び電力供給装置 Download PDF

Info

Publication number
WO2011111585A1
WO2011111585A1 PCT/JP2011/054770 JP2011054770W WO2011111585A1 WO 2011111585 A1 WO2011111585 A1 WO 2011111585A1 JP 2011054770 W JP2011054770 W JP 2011054770W WO 2011111585 A1 WO2011111585 A1 WO 2011111585A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
power transmission
wireless power
conductor
magnetic element
Prior art date
Application number
PCT/JP2011/054770
Other languages
English (en)
French (fr)
Inventor
畑中 武蔵
満 本上
壮宗 田中
真弥 井上
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to DK11753244.0T priority Critical patent/DK2546843T3/en
Priority to KR1020127026202A priority patent/KR20130014546A/ko
Priority to US13/583,525 priority patent/US9390849B2/en
Priority to CN201180013298.4A priority patent/CN102792401B/zh
Priority to EP11753244.0A priority patent/EP2546843B1/en
Publication of WO2011111585A1 publication Critical patent/WO2011111585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas

Definitions

  • the present invention relates to a magnetic element for wireless power transmission and a power supply device that transmit power in a non-contact manner by electromagnetic induction.
  • Patent Document 1 by embedding a spiral-type planar coil on one surface of a magnetic layer, disposing a magnetic window at the center of the planar coil, and configuring at least a part of the magnetic window with a magnetic material, Proposals have been made that can realize high transmission efficiency and miniaturization.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic element and a power supply device for wireless power transmission that can supply power with high transmission efficiency.
  • the present invention is a magnetic element for wireless power transmission that induces an induced electromotive force by magnetic coupling,
  • a magnetic element for wireless power transmission that induces an induced electromotive force by magnetic coupling
  • a cross section that matches the magnetic coupling direction a plurality of conductor portions in which an alternating current flows in the same direction, and a magnetic body portion provided in one or more gaps between the conductor portions, the magnetic coupling direction They are arranged in parallel in the orthogonal direction, and either one of the conductor portion and the magnetic body portion has a protruding region protruding in the magnetic coupling direction than the other.
  • the magnetic field generated by the flow of alternating current to the conductor part generates an induced current by interlacing with another conductor part, and this induced current acts as a resistance to the conductor in the protruding region. It can suppress by the magnetic body part provided in the clearance gap between parts. As a result, due to the high magnetic flux density and the reduction of the resistance due to the induced current, it is possible to supply and receive power with high transmission efficiency when used on either the magnetic coupling side or the magnetic coupling side.
  • protruding regions in the present invention may be disposed on both sides in the magnetic coupling direction.
  • positioned at the other side of the magnetic coupling direction can exhibit the same function as the magnetic body provided in the arrangement direction of the conductor part arrange
  • the protruding region in the present invention may be arranged in the whole arrangement direction of the conductor portions.
  • the protruding region is present in the entire arrangement direction of the conductor portions, it is possible to supply and receive power with higher transmission efficiency.
  • the magnetic part in the present invention may be made of a soft magnetic material.
  • the soft magnetic material may be a metallic magnetic material.
  • the metallic magnetic material may be an amorphous magnetic material.
  • the magnetic element for wireless power transmission includes a long conductor portion, a long magnetic body portion arranged in parallel along the longitudinal direction of the conductor portion, the conductor portion, and the magnetic member.
  • One of the body portions has a protruding region in which one end in the width direction protrudes from the other end in the width direction.
  • the magnetic field generated by the flow of alternating current to the conductor part generates an induced current by interlacing with another conductor part, and the phenomenon in which this induced current acts as a resistance is observed along the conductor part. Can be suppressed by the magnetic body portions arranged in parallel. As a result, due to the high magnetic flux density and the reduction of the resistance due to the induced current, it is possible to supply and receive power with high transmission efficiency when used on either the magnetic coupling side or the magnetic coupling side.
  • the conductor portion and the magnetic body portion may be joined so that at least a part thereof is integrated in an electrically insulated state.
  • the conductor portion and the magnetic body portion are integrated by bonding, so that even when the conductor portion and the magnetic body portion receive external force such as vibration or impact, the conductor portion and Since the positional relationship of the magnetic part and the form of the protruding region can be maintained in the initial state, the initial high transmission efficiency can be maintained over a long period of time. Also, when the conductor part generates heat, the heat of the conductor part is efficiently transferred to the magnetic body part through the part where the conductor part is integrally joined. Can do. Thereby, the electric energy which supplies with electricity can be increased rather than the case where the conductor part and the magnetic body part are separated.
  • the transmission amount can be increased while preventing overheating of the conductor portion with a simple configuration in which at least a part of the conductor portion and the magnetic body portion are integrated. Furthermore, since the handling is facilitated by the integration of the conductor portion and the magnetic body portion, the assembling work and storage in various devices are facilitated.
  • the conductor portion has a coating made of an electrical insulator, and the magnetic body portion is joined to the coating so as to be integrated with the conductor portion. May be. That is, the conductor part may have a coating made of an electrical insulator, and the magnetic part may be bonded to the coating.
  • a magnetic part having excellent thermal conductivity can be easily obtained, and the conductor part and the magnetic part can be easily integrated.
  • the power supply apparatus of the present invention has a plurality of the above-described wireless power transmission magnetic elements, and these wireless power transmission magnetic elements are arranged on the same plane.
  • the magnetic element 1 for wireless power transmission is configured to cause an induced electromotive force by magnetic coupling, and can be used for both power feeding and power receiving.
  • the power supply apparatus 10 having a transmission power of about 0.1 W to 500 W and a transmission distance of 1 mm to 10 cm can be exemplified.
  • the magnetic element 1 for wireless power transmission is embedded in a body, a power supply device 10 used for a wall-mounted device such as a wall-mounted thin TV, a power supply device 10 used for a mounting device such as a personal computer or a mouse.
  • the magnetic element 1 for wireless power transmission can also be applied to the power supply device 10 that exceeds the above transmission power and transmission distance, for example, a power supply device 10 such as a robot or an electric vehicle.
  • wall-mounted devices such as flat-screen TVs that are placed on or contacted with the power supply device 10 described above, mounted devices such as personal computers and mice, and small medical devices such as pacemakers embedded in the body.
  • the wireless power transmission magnetic element 1 can be applied to a robot, an electric vehicle, or the like.
  • the conductor portion 2 and the magnetic body portion 3 adjacent to the conductor portion 2 are orthogonal to the magnetic coupling direction in a cross section coinciding with the magnetic coupling direction. Are arranged in parallel in the direction.
  • the wireless power transmission magnetic element 1 has a protruding region 61 in which one of the conductor portion 2 and the magnetic body portion 3 protrudes in the magnetic coupling direction more than the other.
  • the wireless power transmission magnetic element 1 includes a long conductor portion 2, a long magnetic body portion 3 arranged in parallel along the longitudinal direction of the conductor portion 2, the conductor portion 2, and One of the magnetic body portions 3 has a protruding region 61 in which one end in the width direction protrudes from the other end in the width direction.
  • the “magnetic coupling direction” is, for example, magnetically coupled to the magnetic coupling side (feeding side) as in the case where the central portions of the magnetic elements 1 for wireless power transmission having the same size are arranged to face each other.
  • the side (power receiving side) is opposed to the strongest magnetically coupled to each other, the center portion of the side to be magnetically coupled and the side to be magnetically coupled in the positional relationship that generates the largest induced electromotive force It is a direction to connect.
  • the “orthogonal direction” is almost perpendicular.
  • the wireless power transmission magnetic element 1 configured as described above has a protrusion in which one of the conductor portion 2 and the magnetic body portion 3 protrudes in the magnetic coupling direction more than the other.
  • the magnetic field ineffective for magnetic coupling around the conductor portion 2 is reduced and the spread of the entire magnetic field is suppressed as compared with the case where such a protruding region 61 is not provided. Is possible.
  • the magnetic flux density at the time of magnetic coupling can be increased.
  • even when the magnetic element 1 for wireless power transmission is used on either the magnetic coupling side or the magnetic coupling side, it is possible to supply and receive power with high transmission efficiency due to high magnetic flux density.
  • the wireless power transmission magnetic element 1 has a configuration in which a plurality of conductor portions 2 are arranged in parallel in a cross section that coincides with the magnetic coupling direction, and a plurality of conductor portions 2 in which an alternating current flows in the same direction.
  • the magnetic part 3 is provided in one or more gaps.
  • the magnetic body portions 3 are provided in all the gaps between the conductor portions 2 and the conductor portions 2 and the magnetic body portions 3 are alternately arranged.
  • a configuration in which an alternating current flows through the plurality of conductor portions 2 in the same direction is such that the long conductor portion 2 and the magnetic body portion 3 are wound from the inner peripheral side to the outer peripheral side.
  • annular form from which the radius which matched the center point differs is illustrated.
  • the magnetic element 1 for wireless power transmission has a conductor assembly 6 as shown in FIG.
  • the conductor assembly portion 6 has a flat outer shape, and has a front surface 6a and a back surface 6b that can be a magnetic open surface facing a power receiving side or power supply side device.
  • the conductor assembly 6 can be formed with an arbitrary surface shape.
  • the conductor assembly portion 6 may have a polygonal surface shape such as a triangle or a quadrangle in top view, or may have an elliptical or circular surface shape.
  • the conductor assembly portion 6 includes a long conductor portion 2 and a long magnetic body portion 3.
  • the conductor portion 2 and the magnetic body portion 3 are formed in a spiral shape with a gap at a constant interval from the inner peripheral side to the outer peripheral side.
  • the conductor assembly portion 6 has a plurality of conductor portions 2 and a plurality of magnetic body portions 3 in a longitudinal section (AA 'line arrow cross section / BB' line arrow cross section) coinciding with the magnetic coupling direction. Are alternately arranged in parallel in a direction perpendicular to the magnetic coupling direction.
  • a core portion made of a magnetic material may be disposed on the inner peripheral side of the conductor assembly portion 6.
  • the magnetic field can be concentrated on the inner peripheral side of the conductor assembly 6.
  • the magnetic element 1 for wireless power transmission may have a form in which the conductor assembly 6 is exposed to the outside, but in order to protect the surface, an insulating resin such as an epoxy resin or a polyimide resin, or a non-magnetic material such as glass.
  • a coating film of a protective material made of an electrical insulator may be provided on the front surface 6 a and the back surface 6 b of the conductor assembly portion 6.
  • the magnetic part 3 is made of a material having a high magnetic permeability. That is, the magnetic body portion 3 may be made of a soft magnetic material.
  • the soft magnetic material may be a metal-based magnetic material.
  • the metallic magnetic material may be an amorphous magnetic material.
  • the magnetic body portion 3 is formed using a magnetic powder such as ferrite, sendust, amorphous (amorphous), or a magnetic material having fine crystals, which is solidified with a resin, or a rapid solidification method. It is formed by using a magnetic film formed by vapor deposition such as sputtering or vapor deposition or plating on a thin ribbon obtained by the above method or an insulating film.
  • Examples of amorphous include Co-based amorphous and Fe-based amorphous, and examples of magnetic materials having fine crystals include Fe-based magnetic materials having fine crystals of 300 angstroms (0.03 ⁇ m) or less.
  • Examples of the magnetic film formed by vapor deposition or plating include soft magnetic films such as CoZrNb, CoZrNbTa, FeBN, CoFeB—SiO, CoFeAlO, CoAlPdO, CoFeMn, CoFeN, and FeNi.
  • the magnetic body portion 3 has a width that matches the magnetic coupling direction and a thickness that matches the direction orthogonal to the magnetic coupling direction (radial direction of the conductor assembly portion 6).
  • the conductor portion 2 has one end portion and the other end portion in the longitudinal direction connected to a pair of terminals (not shown). Each terminal is connected to the power supply device 8 when the magnetic element 1 for wireless power transmission is applied to a power supply device such as the power supply device 10.
  • the power supply device 8 can supply AC power to the conductor portion 2 at an arbitrary frequency.
  • each terminal is connected to a rectifier.
  • the rectifier is used for smoothing AC power formed by electromagnetic induction into DC power to charge a battery, or for operating a drive device.
  • the conductor portion 2 is preferably formed of a metal material such as Cu or Al.
  • the conductor portion 2 can be formed by vapor phase growth, plating, or etching.
  • the conductor portion 2 has a width that matches the magnetic coupling direction and a thickness that matches the direction orthogonal to the magnetic coupling direction (radial direction of the conductor assembly portion 6).
  • the magnetic body portion 3 when the magnetic body portion 3 is obtained by solidifying a powder of a magnetic material such as ferrite or amorphous with a resin, that is, when the magnetic body portion 3 has an insulating property, the magnetic body portion 3 and the conductor portion. 2 may be arranged in contact.
  • an insulating layer needs to be disposed between the magnetic body portion 3 and the conductor portion 2. Examples of the insulating layer include an insulating resin such as polyethylene terephthalate and an inorganic insulating material such as an oxide.
  • the wireless power transmission magnetic element 1 has a protruding region 61 in which one of the width direction end of the magnetic body portion 3 and the width direction end of the conductor portion 2 protrudes from the other.
  • the protruding region 61 is set on the entire surface 6 a of the conductor assembly 6.
  • region 61 may be set to either one of the surface 6a and the back surface 6b of the conductor assembly part 6, and may be set to a part of surface 6a and the back surface 6b.
  • the protruding region 61 may be set to at least a part of at least one of the front surface 6 a and the back surface 6 b of the conductor assembly portion 6.
  • the end of the magnetic body portion 3 in the width direction protrudes beyond the end of the conductor portion 2 in the width direction, so that the surface of the magnetic body portion 3 and the side surface of the protruding magnetic body portion 3 are external. It is preferable to be exposed. That is, it is preferable that the exposed area of the magnetic body portion 3 is increased in the protruding region 61.
  • the magnetic body portion 3 being a material having a high magnetic permeability, it is easily affected by a magnetic field due to a large exposed area, and as shown in FIG. It is possible to prevent a decrease in the generation efficiency of the magnetic field due to the generation of the induced current due to the magnetic field intermingling between the two.
  • the end portion in the width direction of the conductor portion 2 may protrude beyond the end portion in the width direction of the magnetic body portion 3. Even in this case, the magnetic body portion 3 between the adjacent conductor portions 2 and 2 can prevent a decrease in magnetic field generation efficiency due to generation of an induced current in each conductor portion 2 and 2.
  • the protrusion length of the magnetic body part 3 or the conductor part 2 is preferably such that Dm / d is 0.2 to 3.0, where Dm is the width of the magnetic body part 3 and d is the width of the conductor part 2. If the protrusion length is too small, it will be difficult to exert the effect of preventing the reduction of the magnetic field generation efficiency. If the protrusion length is excessive, mechanical problems such as contact between the protrusions will occur. It is.
  • the wireless power transmission magnetic element 1 configured as described above is applied for power feeding.
  • the wireless power transmission magnetic element 1 is provided in a power supply apparatus 10 as shown in FIG.
  • the power supply device 10 is formed in a sheet shape so that one or more devices 9 that operate by cordless power supply such as a mobile phone or a personal computer can be placed thereon.
  • a large number of magnetic elements 1 for wireless power transmission are arranged on the entire surface of the power supply device 10.
  • the wireless power transmission magnetic element 1 is formed by an etching process or a printing process in which a liquid material is jetted.
  • the magnetic element 1 for wireless power transmission is preferably arranged in a plane with a uniform distribution density as in a matrix arrangement.
  • electric power can be supplied with high transmission efficiency evenly in the entire power supply apparatus 10.
  • the power supply device 10 may include a plurality of placement areas in which the distribution density of the wireless power transmission magnetic element 1 is changed.
  • the power supply amount can be adjusted depending on the place where the device 9 is placed. For example, if the device 9 is a light-emitting device capable of dimming, the amount of light emission can be adjusted by changing the placement location.
  • the magnetic element 1 for wireless power transmission is set so that the surface 6a serving as a magnetic emission surface (magnetic open surface) is aligned with the upper surface (mounting surface) of the power supply device 10.
  • the magnetic open surface means a surface on the power feeding side or the power receiving side, and is at least one of the front surface 6a and the back surface 6b of the magnetic element 1 for wireless power transmission.
  • the power supply apparatus 10 includes a placement layer 101 that directly contacts the device 9 and fixes and holds the conductor portion 2 and the magnetic body portion 3, a support layer 103 on which the wireless power transmission magnetic element 1 is formed, A shielding layer 104 provided on the lower surface of the support layer 103 and a protective layer 105 provided on the lower surface of the shielding layer 104 are provided.
  • the mounting layer 101, the support layer 103, and the protective layer 105 are formed of a nonmagnetic synthetic resin or the like.
  • the shielding layer 104 is formed of at least one of a conductive material and a magnetic material, and prevents leakage of a magnetic field from the lower side (back side) of the power supply device 10.
  • the support layer 103 is provided with a sheet-like power circuit board (not shown). The power supply circuit board enables high-frequency AC power from the power supply device 8 to be supplied to each wireless power transmission magnetic element 1.
  • each wireless power transmission magnet Element 1 when the power supply device 8 is connected to the power supply device 10 in which the magnetic element 1 for wireless power transmission is incorporated and a high-frequency alternating current (alternating current power) is supplied, each wireless power transmission magnet Element 1 generates an alternating magnetic field.
  • each wireless power transmission magnetic element 1 is magnetic in one or more gaps between a plurality of conductor portions 2 in which an alternating current flows in the same direction in a cross section that coincides with the magnetic coupling direction.
  • the body part 3 is provided, and one of the conductor part 2 and the magnetic body part 3 has a protruding region 61 that protrudes in the magnetic coupling direction from the other. Therefore, as shown in FIG.
  • each wireless power transmission magnetic element 1 reduces the magnetic field ineffective for magnetic coupling around the conductor portion 2 as compared with the case where the protruding region 61 is not provided. It is possible to suppress the spread of the magnetic field. As a result, each magnetic element for wireless power transmission 1 can increase the magnetic flux density toward the device 9 placed on the power supply device 10. Thereby, the power supply device 10 including a large number of magnetic elements 1 for wireless power transmission can supply power to the device 9 with high transmission efficiency.
  • each of the wireless power transmission magnetic elements 1 the magnetic field generated by the flow of the alternating current to the conductor portion 2 is interlaced with other adjacent conductor portions 2. By doing so, an induced current is generated.
  • the phenomenon in which the induced current acts as a resistance is suppressed by the magnetic body portion 3 provided in the gap between the conductor portions 2 and 2 in the protruding region 61. Accordingly, power can be supplied with high transmission efficiency due to the high magnetic flux density and the reduction in resistance due to the induced current.
  • the power supply device 10 including these wireless power transmission magnetic elements 1 is supplied with AC power.
  • An alternating magnetic field having a frequency corresponding to the frequency is output over the entire surface. Therefore, when the device 9 that operates using the induced electromotive force is placed on the power supply device 10, as shown in FIG. 2, the coil built in the device 9 is magnetically coupled to the alternating magnetic field. Inductive electromotive force is generated. Then, the AC power is rectified and supplied to the control chip or the like.
  • the device 9 may include the wireless power transmission magnetic element 1 for power reception. In this case, power supply and power reception can be performed with higher efficiency.
  • the wireless power transmission magnetic element 1 of the present embodiment has been described with respect to the configuration in which the protruding region 61 is disposed on the surface 6a of the conductor assembly 6 as shown in FIGS.
  • the present invention is not limited to this. That is, as shown in FIG. 5, the magnetic element 1 for wireless power transmission may have the protruding regions 61 disposed on the front surface 6a and the back surface 6b. In this case, as shown in FIG. 6, the wireless power transmission magnetic element 1 can increase the magnetic flux density in the magnetic coupling direction.
  • the protruding region 61 may be disposed only on the back surface 6b opposite to the magnetic open surface. Even in this case, as shown in FIG. 8, the wireless power transmission magnetic element 1 can increase the magnetic flux density in the magnetic coupling direction.
  • the protruding region 61 may be disposed only on the inner peripheral side of the conductor assembly portion 6. In the magnetic element 1 for wireless power transmission, the protruding region 61 may be arranged only on the outer peripheral side of the conductor assembly 6.
  • the magnetic element 1 for wireless power transmission has a protruding region 61 whose protruding length is reduced from the inner peripheral side to the outer peripheral side so that the protruding area of the magnetic body portion 3 on the inner peripheral side of the conductor assembly 6 is maximized. You may do it.
  • a plurality of magnetic body portions 3, 3 may be disposed with a gap between the conductor portions 2, 2, or a plurality of conductor portions 2 may be disposed with a gap between the magnetic body portions 3, 3. It may be.
  • the wireless power transmission magnetic element 1 may be a combination of the above configurations.
  • the magnetic element for wireless power transmission 201 includes a conductor layer 202 through which an alternating current flows and a magnetic layer 203 arranged in parallel to the longitudinal direction of the conductor layer 202.
  • the laminated body 204 is provided with the wound body 206, and the end portion in the width direction of the magnetic layer 203 has a protruding region 261 that protrudes from the end portion in the width direction of the conductor layer 202. Note that the protruding region 261 only needs to protrude either from the width direction end of the magnetic layer 203 or the width direction end of the conductor layer 202 from the other.
  • the wireless power transmission magnetic element 201 has a wound body 206.
  • the wound body 206 has a cylindrical outer shape, and has a side peripheral surface 206a and end surfaces 206b and 206b that are disposed at both ends of the side peripheral surface 206a and can be magnetic open surfaces.
  • the wound body 206 can be formed in an arbitrary outer shape, and may be, for example, a polygonal prism shape having an end face 206b such as a triangle or a quadrangle.
  • the wound body 206 is formed by winding the strip-shaped laminated body 204 a plurality of times. As a result, the wound body 206 has a configuration in which a plurality of stacked bodies 204 are arranged in parallel to each other in the radial direction in the longitudinal section in the axial direction (cross section taken along line A-A ′).
  • the laminate 204 is wound around the outer peripheral surface of a cylindrical core member 207.
  • the core member 207 may be a non-magnetic material or a magnetic material, but is a magnetic material in that the magnetic field can be concentrated on the inner peripheral side of the wound body 206 on which the core member 207 is disposed. Preferably there is.
  • the laminated body 204 may be wound in a hollow shape without the core member 207.
  • the winding shape may be any winding shape such as a circle, an ellipse, and a rectangle.
  • the laminate 204 includes a conductor layer 202 and a magnetic layer 203.
  • the conductor layer 202 and the magnetic layer 203 are arranged in parallel to each other.
  • the laminate 204 includes a magnetic sheet 41 having a magnetic layer 203 interposed between protective sheets 411 and 412 of polyethylene terephthalate (PET), polyimide (PI).
  • PET polyethylene terephthalate
  • PI polyimide
  • a conductor sheet 43 having a conductor layer 202 formed on a base material 431 made of polyimide).
  • the wireless power transmission magnetic element 201 may have a form in which the wound body 206 is exposed to the outside, but in order to protect the surface, an insulating resin such as an epoxy resin or a polyimide resin, or a non-magnetic material such as glass.
  • an insulating resin such as an epoxy resin or a polyimide resin
  • a non-magnetic material such as glass.
  • a coating film of a protective material made of an electrical insulator may be provided on the side peripheral surface 206a and the end surface 206b of the wound body 206.
  • the magnetic element 201 for wireless power transmission may be filled with a protective material between the magnetic layers 203 and 203 in order to prevent contact and deformation between the magnetic layers 203 and 203 adjacent in the radial direction. .
  • the magnetic layer 203 is made of the same material as that of the magnetic part 3 in the first embodiment.
  • the magnetic layer 203 is formed in a strip shape having a width perpendicular to the longitudinal direction that is the winding direction (circumferential direction) of the wound body 206 and a thickness that matches the radial direction of the wound body 206.
  • the thickness of the magnetic layer 203 is preferably 100 ⁇ m or less. In terms of magnetic properties, there is no problem even if it exceeds 100 ⁇ m, but considering the winding, the thickness of the magnetic layer is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the lower limit value of the thickness of the magnetic layer 203 is preferably 0.1 ⁇ m or more.
  • the thickness is less than 0.1 ⁇ m, the magnetic layer is thin and sufficient magnetic properties may not be obtained. Moreover, it is preferable that the thickness of the thin magnetic layer is 0.1 ⁇ m or more because manufacturing management becomes complicated. Considering the thickness of such a magnetic layer, an amorphous material capable of obtaining a ribbon (ribbon) by a rapid solidification method is a preferable material. In particular, if it is Co-based amorphous, the magnetic properties are also good.
  • the conductor layer 202 is formed of the same material as that of the conductor portion 2 in the first embodiment.
  • the conductor layer 202 is preferably formed of a metal material such as Cu or Al.
  • the shape of the conductor layer 202 may be a thin film (ribbon shape) or a thin film such as vapor phase growth or plating.
  • the wireless power transmission magnetic element 201 has a protruding region 261.
  • the protruding region 261 is set on all of both end faces 206 b and 206 b of the wound body 206.
  • region 261 may be set to either one end surface 206b * 206b of the wound body 206, and may be set to a part of end surface 206b.
  • the protruding region 261 may be set to at least a part of at least one of the end surfaces 206b and 206b of the wound body 206.
  • the wireless power transmission magnetic element 201 configured as described above is provided in a power supply apparatus 210 as shown in FIG.
  • the power supply device 210 is formed in a sheet shape or a flat plate shape so that one or more devices 9 that operate by cordless power supply such as a mobile phone or a personal computer can be placed.
  • Numerous wireless power transmission magnetic elements 201 are embedded in the entire surface of the power supply apparatus 210.
  • the wireless power transmission magnetic element 201 is set such that one end face 206b serving as a magnetic emission surface (magnetic open surface) is an upper surface.
  • the power supply device 210 includes a mounting layer 101 that is in direct contact with the device 9, a holding layer 102 that fixes and holds the side peripheral surface 206 a of the wireless power transmission magnetic element 201, and a wireless power transmission magnetic element 201.
  • the support layer 103 that supports the end surface 206 b serving as the lower surface, the shielding layer 104 provided on the lower surface of the support layer 103, and the protective layer 105 provided on the lower surface of the magnetic layer 104 are provided.
  • the mounting layer 101, the holding layer 102, the support layer 103, and the protective layer 105 are formed of a nonmagnetic synthetic resin or the like.
  • the shielding layer 104 is formed of at least one of a conductive material and a magnetic material, and prevents leakage of a magnetic field from the lower side of the power supply device 210. Further, between the shielding layer 104 and the support layer 103, a sheet-like circuit board (not shown) connected to the inner peripheral side and the outer peripheral side of the conductor layer 202 in each wireless power transmission magnetic element 201 is provided. Yes. The circuit board enables high-frequency AC power from the power supply device 8 to be supplied to each wireless power transmission magnetic element 201.
  • the magnetic element 1 (201) for wireless power transmission in the first embodiment (second embodiment) described above at least a part of the conductor portion 2 (conductor layer 202) and the magnetic body portion 3 (magnetic body layer 203) is included. You may join so that it may integrate in an electrically insulated state.
  • the electrically insulated state can be realized by interposing an insulator between the conductor portion 2 (conductor layer 202) and the magnetic body portion 3 (magnetic body layer 203).
  • a method of interposing an insulator a method in which a film made of an insulating material is deposited or plated on at least one of the conductor 2 (conductor layer 202) and the magnetic body 3 (magnetic layer 203) is joined.
  • a method of sandwiching an insulating sheet between the conductor 2 (conductor layer 202) and the magnetic body 3 (magnetic layer 203) can be mentioned.
  • the insulator and the magnetic part 3 (magnetic layer 203) have higher thermal conductivity than that of the air layer.
  • the conductor part 2 (conductor layer 202) and a magnetic body are obtained by integrating at least one part of the conductor part 2 (conductor layer 202) and the magnetic body part 3 (magnetic body layer 203). Even when the portion 3 (magnetic material layer 203) receives external force such as vibration or impact, the positional relationship between the conductor portion 2 (conductor layer 202) and the magnetic material portion 3 (magnetic material layer 203) or the protruding region 61 (261) Thus, the initial high transmission efficiency can be maintained over a long period of time.
  • the conductor 2 (conductor layer 202) generates heat
  • the heat of the conductor 2 (conductor layer 202) is efficiently applied to the magnetic body 3 (magnetic layer 203) via the part where the heat is integrally joined. Therefore, the heat of the conductor 2 (conductor layer 202) can be efficiently radiated in the magnetic body 3 (magnetic layer 203).
  • the electric energy to supply can be increased.
  • the magnetic element 1 (201) for wireless power transmission in the above-described first embodiment (second embodiment) has a film in which the conductor portion 2 (conductor layer 202) is made of an electrical insulator, and the magnetic portion 3 ( The magnetic layer 203) may be bonded to the coating so as to be integrated with the conductor 2 (conductor layer 202). That is, the conductor portion 2 (conductor layer 202) may have a coating made of an electrical insulator, and the magnetic body portion 3 (magnetic layer 203) may be bonded to this coating.
  • the magnetic element 1 (201) for wireless power transmission is obtained easily. be able to. Moreover, an effect equivalent to the roll coil which is the wound shape in the above-described embodiment can be obtained.
  • the transmission state of the wireless power transmission magnetic element 201 having the protruding region 261 is measured as Examples 1 to 3, and the transmission state of the wireless power transmission magnetic element not having the protruding region 261 is measured as Comparative Examples 1 and 2. did.
  • Example 1 Specifically, as shown in FIG. 10, an 18 ⁇ m magnetic layer 203 made of an amorphous magnetic alloy mainly composed of iron is interposed between protective sheets 411 and 412 made of 50 ⁇ m polyethylene terephthalate. A magnetic sheet 41 was prepared. Moreover, the conductor sheet 43 in which the conductor layer 202 made of a 35 ⁇ m copper foil was formed on a 25 ⁇ m polyimide substrate 431 was prepared.
  • the magnetic sheet 41 was cut into a width of 7 mm and a length of 300 mm. Further, the conductor sheet 43 was cut into a width of 5 mm and a length of 300 mm. The magnetic sheet 41 and the conductor sheet 43 were laminated so that one end in the width direction was aligned and the other end of the magnetic sheet 41 protruded from the conductor sheet 43 by 2 mm. And both sheets 41 * 43 were joined by the adhesive layer of 20 micrometers, and it was set as the laminated body 204.
  • a wound body 206 having a protruding region 261 on one side was formed.
  • One end of the signal line was connected to the inner peripheral end and the outer peripheral end of the conductor layer 202 in the wound body 206, respectively.
  • wound bodies 206 and 206 are prepared, and the wound bodies 206 and 206 are placed on the left and right so that the 2 mm portions of the magnetic sheets 41 and 41 in these wound bodies 206 and 206 face each other. Arranged symmetrically. That is, the wound bodies 206 and 206 are arranged so that the protruding regions 261 face each other. At this time, the distance at which the conductor layers 202 face each other was 5 mm. In addition, the wound bodies 206 and 206 were held so that the axis of the wound bodies 206 and 206 were concentric.
  • S-parameter insertion loss S21 was measured.
  • S21 represents a signal that passes through the terminal 2 when a signal is input from the terminal 1, and is displayed in decibels. The larger the numerical value, the higher the transmission efficiency.
  • Example 2 Prepare the two wound bodies 206 and 206 that are the same as in the first embodiment, and make the wound bodies 206 and 206 symmetrically so that the portions of the wound bodies 206 and 206 that are aligned at one end face each other. Arranged. That is, the wound bodies 206 and 206 are arranged so that the protruding regions 261 do not face each other. At this time, the distance at which the conductor layers 202 face each other was 5 mm. And the insertion loss (S21) of S parameter was measured on the same conditions as Example 1 with the measurement frequency of 300 kHz, 500 kHz, and 1000 kHz.
  • Example 3 Next, the same magnetic sheet 41 as in Example 1 was cut into a width of 9 mm and a length of 300 mm. Further, the same conductor sheet 43 as in Example 1 was cut into a width of 5 mm and a length of 300 mm. And the laminated body 204 was formed by aligning the center of the magnetic sheet 41 and the conductor sheet 43, and laminating
  • Two wound bodies 206 and 206 were prepared, and the wound bodies 206 and 206 were arranged symmetrically so that one ends of these wound bodies 206 and 206 face each other. At this time, the distance at which the conductor layers 202 face each other was 5 mm. And the insertion loss (S21) of S parameter was measured on the same conditions as Example 1 with the measurement frequency of 300 kHz, 500 kHz, and 1000 kHz.
  • the magnetic element 100 for wireless power transmission without the protruding region 261 was created. That is, the same magnetic sheet 41 and conductor sheet 43 as in Example 1 were cut into a width of 5 mm and a length of 300 mm. And the laminated body 204 was formed by laminating
  • the laminated body 204 was wound around a winding core member 207 made of cork having a diameter of 13 mm.phi.
  • the wound bodies 206 and 206 were arranged symmetrically so that one ends of the two wound bodies 206 and 206 face each other. At this time, the distance at which the conductor layers 202 face each other was 5 mm. And the insertion loss (S21) of S parameter was measured on the same conditions as Example 1 with the measurement frequency of 300 kHz, 500 kHz, and 1000 kHz.
  • the magnetic element 100 for wireless power transmission without the magnetic layer 203 was produced. That is, instead of the magnetic sheet 41 of Example 1, a laminate 204 using the protective sheet 411 having the same thickness was formed.
  • the laminated body 204 was wound around a winding core member 207 made of cork having a diameter of 13 mm.phi.
  • the wound bodies 206 and 206 were arranged symmetrically so that one ends of the two wound bodies 206 and 206 face each other. At this time, the interval between the wound bodies 206 and 206 was set to a distance of 5 mm.
  • the insertion loss (S21) of S parameter was measured on the same conditions as Example 1 with the measurement frequency of 300 kHz, 500 kHz, and 1000 kHz.
  • the transmission efficiency is higher in Examples 1 to 3 in which the protruding regions 261 exist than in Comparative Example 1 in which the protruding regions 261 do not exist and Comparative Example 2 in which the magnetic layer 203 does not exist. It has been found. From this, it has been clarified that the wireless power transmission magnetic element 201 is provided with the protruding region 261 in which the magnetic layer 203 protrudes in the width direction rather than the conductor layer 202, thereby increasing the transmission efficiency.
  • the transmission efficiency of the third embodiment including the wound body 206 having the protruding regions 261 on both sides is higher than that of the first and second embodiments including the wound body 206 having the protruding regions 261 on only one side. It has been found. Furthermore, it has been found that the transmission efficiency is higher in Example 2 in which the protruding regions 261 are not opposed to each other than in Example 1 in which the protruding regions 261 are opposed. As a result, it is important to increase the transmission efficiency that the protruding regions 261 exist on both sides including the magnetic open surface, and the transmission efficiency is improved even if the protruding regions 261 are not arranged on the magnetic open surface side. Became clear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Soft Magnetic Materials (AREA)
  • Near-Field Transmission Systems (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

無線電力伝送用磁気素子1は、磁気結合方向に一致する断面において、導体部2と、導体部2に隣接された磁性体部3とが、磁気結合方向に対して直交方向に並列配置されており、導体部2及び磁性体部3の何れか一方が他方よりも磁気結合方向に突出された突出領域61を有している。

Description

無線電力伝送用磁気素子及び電力供給装置
 本発明は、電磁誘導作用により非接触で電力を伝送する無線電力伝送用磁気素子及び電力供給装置に関する。
 近年、電動歯ブラシやコードレス電話のように、コードレスの給電により作動する機器が増えつつある。また、壁掛けテレビやパーソナルコンピュータについても、コードレスの給電により作動する機器が開発されつつある。従って、従来から、高い伝送効率で給電を行うことが可能な無線電力伝送用磁気素子や電力供給装置が開発及び提案されている。例えば特許文献1においては、磁性層の片面に、スパイラル型の平面コイルを埋設すると共に、平面コイルの中心部に磁性窓を配置し、磁性窓の少なくとも一部を磁性体で構成することによって、高い伝送効率と小型化とを実現可能にしたものが提案されている。
特開2004-47700号公報
 しかしながら、大きな消費電力を含む各種の機器に対して電力を供給するためには、上記従来の構成以外においても、高い伝送効率による給電が要望されている。
 本発明は、上記の問題を鑑みてされたものであり、高い伝送効率による給電が可能な無線電力伝送用磁気素子及び電力供給装置を提供することを目的とする。
 本発明は、磁気結合により誘導起電力を引き起こす無線電力伝送用磁気素子であって、
 前記磁気結合方向に一致する断面において、交流電流が同一方向に流通する複数の導体部と、これら導体部間の1以上の隙間に設けられた磁性体部とが、前記磁気結合方向に対して直交方向に並列配置されており、前記導体部及び前記磁性体部の何れか一方が他方よりも前記磁気結合方向に突出された突出領域を有する。
 上記の構成によれば、突出領域が設けられていない場合と比較して、導体部周辺における磁気結合にとって無効な磁界を減少させると共に、全体的な磁界の広がりを抑制することが可能になり、結果として、磁束密度を高めることができる。また、導体部への交流電流の流通により生成された磁界が、他の導体部に対して錯交することにより誘導電流を発生させ、この誘導電流が抵抗として作用する現象を、突出領域における導体部間の隙間に設けられた磁性体部により抑制することができる。これにより、高い磁束密度と誘導電流による抵抗の低減とによって、磁気結合させる側と磁気結合される側との何れの側に用いられた場合でも、高い伝送効率による給電及び受電が可能になる。
 また、本発明における前記突出領域は、前記磁気結合方向の両側に配置されていてもよい。
 上記の構成によれば、磁気結合方向の他方側に配置された突出領域が並列配置された導体部の配列方向に設けられた磁性体と同一機能を発揮させることが可能になるため、一層高い伝送効率による給電及び受電が可能になる。
 また、本発明における前記突出領域は、前記導体部の配列方向の全体に配置されていてもよい。
 上記の構成によれば、突出領域が導体部の配列方向の全体に存在することによって、一層高い伝送効率による給電及び受電が可能になる。
 また、本発明における前記磁性体部は、軟磁性材料により形成されていてもよい。軟磁性材料は、金属系磁性材料であってもよい。金属系磁性材料は、アモルファス磁性材であってもよい。
 上記の構成によれば、突出領域による一層高い伝送効率による給電及び受電が可能になる。
 また、本発明の無線電力伝送用磁気素子は、長尺状の導体部と、前記導体部の長手方向に沿うように並列配置された長尺状の磁性体部と、前記導体部及び前記磁性体部の何れか一方の幅方向端部が他方の幅方向端部よりも突出された突出領域とを有する。
 上記の構成によれば、突出領域が設けられていない場合と比較して、導体部周辺における磁気結合にとって無効な磁界を減少させると共に、全体的な磁界の広がりを抑制することが可能になり、結果として、磁束密度を高めることができる。また、導体部への交流電流の流通により生成された磁界が、他の導体部に対して錯交することにより誘導電流を発生させ、この誘導電流が抵抗として作用する現象を、導体部に沿って並列配置された磁性体部により抑制することができる。これにより、高い磁束密度と誘導電流による抵抗の低減とによって、磁気結合させる側と磁気結合される側との何れの側に用いられた場合でも、高い伝送効率による給電及び受電が可能になる。
 また、本発明の無線電力伝送用磁気素子において、前記導体部と前記磁性体部とは、少なくとも一部が電気的絶縁状態で一体化するように接合されていてもよい。
 上記の構成によれば、導体部と磁性体部との少なくとも一部が接合により一体化されることによって、導体部及び磁性体部が振動や衝撃等の外力を受けた場合でも、導体部及び磁性体部の位置関係や突出領域の形態を初期状態に維持することができるため、初期の高い伝送効率を長期間に亘って維持することができる。また、導体部が発熱したときに、導体部の熱が一体的に接合された部位を介して磁性体部に効率的に移動するため、磁性体部において導体部の熱を効率良く放熱することができる。これにより、導体部と磁性体部とが離間されている場合よりも通電する電力量を増大することができる。この結果、導体部と磁性体部との少なくとも一部を一体化しただけの簡単な構成で、導体部の過熱を防止しつつ伝送量を高めることができる。さらに、導体部と磁性体部との一体化により取り扱いが容易になるため、各種機器への組み込み作業や保管が容易になる。
 また、本発明の無線電力伝送用磁気素子において、前記導体部は、電気的絶縁体からなる被膜を有し、前記磁性体部は、前記導体部と一体化するように前記皮膜に接合されていてもよい。即ち、前記導体部が電気的絶縁体からなる被膜を有し、該皮膜に前記磁性体部が接合されていてもよい。
 上記の構成によれば、絶縁皮膜が形成されたコイル等の一般的な部材を導体部に用いることができるため、容易に無線電力伝送用磁気素子を得ることができる。
 上記の構成によれば、熱伝導性に優れた磁性体部を容易に得ることができると共に、導体部と磁性体部とを容易に一体化することができる。
 また、本発明の電力供給装置は、上記の無線電力伝送用磁気素子を複数有し、これら無線電力伝送用磁気素子を同一平面上に位置するように配置している。
 上記の構成によれば、無線電力伝送用磁気素子の高さを最小厚みとするシート状やマット状、板状の電力供給装置を形成することができる。また、多数の無線電力伝送用磁気素子が平面的に配置されることによって、電力供給装置内の任意の場所において、同一条件で電力受信装置に給電することができる。
 本発明によると、高い伝送効率による給電が可能になる。
本発明の第1の実施形態に係る無線電力伝送用磁気素子及び電力供給装置の説明図である。 磁場の状態を示す説明図である。 磁場の状態を示す説明図である。 磁場の状態を示す説明図である。 無線電力伝送用磁気素子の断面図である。 磁場の状態を示す説明図である。 無線電力伝送用磁気素子の断面図である。 磁場の状態を示す説明図である。 本発明の第2の実施形態に係る無線電力伝送用磁気素子及び電力供給装置の説明図である。 無線電力伝送用磁気素子の構成を示す説明図である。 無線電力伝送用磁気素子の構成を示す説明図である。 実施例1~3と比較例1・2の測定結果を示す説明図である。
(実施形態1)
 以下、本発明の好適な第1の実施形態について、図面を参照しつつ説明する。
(無線電力伝送用磁気素子1)
 図1に示すように、無線電力伝送用磁気素子1は、磁気結合により誘導起電力を引き起こすように構成されており、給電用及び受電用の何れにも用いることができる。給電用としては、送電電力が0.1W~500W程度で送電距離が1mm~10cmの電力供給装置10を例示することができる。例えば、無線電力伝送用磁気素子1は、壁掛け用薄型テレビ等の壁掛け型の機器に用いられる電力供給装置10、パーソナルコンピュータやマウス等の載置型の機器に用いられる電力供給装置10、体内に埋め込まれるペースメーカ等の小型医療機器に用いられる電力供給装置10に適用可能である。尚、無線電力伝送用磁気素子1は、上記の送電電力及び送電距離を超えた電力供給装置10、例えば、ロボットや電気自動車等の電力供給装置10に適用することも可能である。
 一方、受電用としては、上記の電力供給装置10に載置や接触される薄型テレビ等の壁掛け型の機器、パーソナルコンピュータやマウス等の載置型の機器、体内に埋め込まれるペースメーカ等の小型医療機器を例示することができる。さらに、無線電力伝送用磁気素子1は、ロボットや電気自動車等に適用することも可能である。
 上記の用途に用いられる無線電力伝送用磁気素子1は、磁気結合方向に一致する断面において、導体部2と、導体部2に隣接された磁性体部3とが、磁気結合方向に対して直交方向に並列配置されている。そして、無線電力伝送用磁気素子1は、導体部2及び磁性体部3の何れか一方が他方よりも磁気結合方向に突出された突出領域61を有している。換言すれば、無線電力伝送用磁気素子1は、長尺状の導体部2と、導体部2の長手方向に沿うように並列配置された長尺状の磁性体部3と、導体部2及び磁性体部3の何れか一方の幅方向端部が他方の幅方向端部よりも突出された突出領域61とを有している。
 ここで、『磁気結合方向』とは、例えば、同一サイズの無線電力伝送用磁気素子1の中心部同士が対向配置された場合のように、磁気結合させる側(給電側)と磁気結合される側(受電側)とを対向配置したときに最も強く磁気結合することによって、最も大きな誘導起電力を発生する位置関係となった場合における磁気結合させる側と磁気結合される側との中心部同士を結ぶ方向である。また、『直交方向』は、ほぼ直交するという程度である。
 上記のように構成された無線電力伝送用磁気素子1は、図2及び図3に示すように、導体部2及び磁性体部3の何れか一方が他方よりも磁気結合方向に突出された突出領域61を有することによって、このような突出領域61が設けられていない場合と比較して、導体部2周辺における磁気結合にとって無効な磁界を減少させると共に、全体的な磁界の広がりを抑制することが可能になっている。これにより、磁気結合時における磁束密度を高めることが可能になっている。さらに、無線電力伝送用磁気素子1は、磁気結合させる側と磁気結合される側との何れの側に用いられた場合でも、高い磁束密度により高い伝送効率による給電及び受電が可能になる。
 また、無線電力伝送用磁気素子1は、磁気結合方向に一致する断面において、複数の導体部2が並列配置された構成にされており、交流電流が同一方向に流通する複数の導体部2間の1以上の隙間に、磁性体部3が設けられている。尚、無線電力伝送用磁気素子1は、導体部2間の全ての隙間に磁性体部3が設けられ、導体部2と磁性体部3とが交互に配置されていることが好ましい。磁気結合方向に一致する断面において、複数の導体部2に交流電流が同一方向に流通する構成としては、長尺の導体部2及び磁性体部3が内周側から外周側にかけて巻回されていたり、複数の導体部2及び磁性体部3が中心点を一致した半径の異なる環状に形成されている構成が例示される。
 上記の構成の場合には、図4に示すように、導体部2への交流電流の流通により生成された磁界が、並列配置された他の導体部2に対して錯交することにより誘導電流を発生させ、この誘導電流が抵抗として作用する現象を、突出領域61における導体部2間の隙間に設けられた磁性体部3により抑制することができる。これにより、高い磁束密度と誘導電流による抵抗の低減とによって、磁気結合させる側と磁気結合される側との何れの側に用いられた場合でも、高い伝送効率による給電及び受電が可能になる。
 詳細に説明すると、無線電力伝送用磁気素子1は、図1に示すように、導体集合部6を有している。導体集合部6は、平板形状の外形を有しており、受電側や給電側の機器に対向する磁気開放面となり得る表面6a及び裏面6bを有している。尚、導体集合部6は、任意の表面形状で形成することが可能である。例えば、導体集合部6は、上面視が三角形や四角形等の多角形の表面形状であってもよいし、楕円形状や円形状の表面形状であってもよい。
 導体集合部6は、長尺の導体部2と長尺の磁性体部3とを有している。これらの導体部2及び磁性体部3は、内周側から外周側にかけて一定間隔の隙間をあけて渦巻き状に形成されている。これにより、導体集合部6は、磁気結合方向に一致した縦断面(A-A’線矢視断面・B-B’線矢視断面)において、複数の導体部2と複数の磁性体部3とが磁気結合方向に対して直交方向に交互に並列配置された構成にされている。
 尚、導体集合部6の内周側には、磁性体からなる芯部が配置されていてもよい。この場合には、導体集合部6の内周側に磁場を集中させることができる。また、無線電力伝送用磁気素子1は、導体集合部6が外部に露出した形態であってもよいが、表面を保護するために、エポキシ樹脂やポリイミド樹脂等の絶縁樹脂、ガラス等の非磁性で且つ電気的絶縁体からなる保護材の被膜が導体集合部6の表面6aや裏面6bに設けられていてもよい。
(磁性体部3)
 磁性体部3は、高透磁率の材料により形成されている。即ち、磁性体部3は、軟磁性材料により形成されていてもよい。軟磁性材料は、金属系磁性材料であってもよい。金属系磁性材料は、アモルファス磁性材であってもよい。具体的には、磁性体部3は、フェライト、センダスト、アモルファス(非晶質)、微細結晶を有する磁性材料等の磁性粉末を樹脂で固めたものを用いて形成されたり、或いは、急冷凝固法等によって得られた薄帯、絶縁フィルム上にスパッタや蒸着等の気相成長またはメッキにより成膜した磁性膜を用いて形成されている。また、アモルファスは、Co系アモルファス、Fe系アモルファスが挙げられ、微細結晶を有する磁性材料は、300オングストローム(0.03μm)以下の微細結晶を有するFe系磁性材料が挙げられる。また、気相成長またはメッキによる磁性膜としては、CoZrNb系、CoZrNbTa系、FeBN系、CoFeB-SiO系、CoFeAlO系、CoAlPdO系、CoFeMn系、CoFeN系、FeNi系等の軟磁性膜が挙げられる。
 磁性体部3は、磁気結合方向に一致する幅と、磁気結合方向に直交する方向(導体集合部6の半径方向)に一致する厚みとを有している。
(導体部2)
 導体部2は、長手方向の一端部と他端部とが図示しない一対の端子にそれぞれ接続されている。各端子は、無線電力伝送用磁気素子1が電力供給装置10等の給電装置に適用される場合、電源装置8に接続される。電源装置8は、任意の周波数で交流電力を導体部2に供給可能にしている。一方、無線電力伝送用磁気素子1が受電装置に適用される場合には、各端子が整流装置に接続される。整流装置は、電磁誘導により形成された交流電力を直流電力に平滑化してバッテリを充電したり、駆動機器の作動に用いられる。
 導体部2は、Cu、Al等の金属材料で形成されていることが好ましい。導体部2は、気相成長やメッキ、エッチングにより形成することができる。導体部2は、磁気結合方向に一致する幅と、磁気結合方向に直交する方向(導体集合部6の半径方向)に一致する厚みとを有している。
 尚、上述の磁性体部3が、フェライト、アモルファス等の磁性材料の粉末を樹脂で固めたもの、即ち、磁性体部3が絶縁性を具備している場合は、磁性体部3と導体部2とを接触状態で配置してもよい。一方、アモルファスだけを固めたもののように磁性体部3が導電性を有している場合は、磁性体部3と導体部2の間に絶縁層を配置する必要がある。絶縁層は、ポリエチレンテレフタラート等の絶縁性樹脂、酸化物等の無機絶縁材料などが挙げられる。
(突出領域61)
 無線電力伝送用磁気素子1は、磁性体部3の幅方向端部と導体部2の幅方向端部との何れか一方が他方よりも突出された突出領域61を有している。突出領域61は、導体集合部6の表面6aの全部に設定されている。尚、突出領域61は、導体集合部6の表面6a及び裏面6bの何れか一方に設定されていてもよいし、表面6a及び裏面6bの一部に設定されていてもよい。換言すれば、突出領域61は、導体集合部6の表面6a及び裏面6bの少なくとも一方における少なくとも一部に設定されていればよい。
 突出領域61は、磁性体部3の幅方向端部が導体部2の幅方向端部よりも突出されることによって、磁性体部3の表面と、突出した磁性体部3の側面とが外部に露出した状態にされていることが好ましい。即ち、突出領域61は、磁性体部3の露出面積が増大されていることが好ましい。この場合には、磁性体部3が高透磁率の材料であることに加えて、大きな露出面積により磁界の影響を受け易くされていると共に、図4に示すように、隣接する導体部2・2間で磁界が錯交することによる誘導電流の発生に起因する磁界の発生効率の低下を防止することが可能になる。尚、突出領域61は、導体部2の幅方向端部が磁性体部3の幅方向端部よりも突出されていてもよい。この場合においても、隣接する導体部2・2間の磁性体部3が、各導体部2・2における誘導電流の発生に起因する磁界の発生効率の低下を防止することが可能になる。
 磁性体部3又は導体部2の突出長は、磁性体部3の幅をDm、導体部2の幅をdとすると、Dm/dが0.2~3.0であることが好ましい。突出長が過小であると、磁界の発生効率の低下の防止という効果を発揮させ難くなるからであり、突出長が過大であると、突出部同士の接触等の機械的な問題が発生するからである。
(電力供給装置10)
 上記のように構成された無線電力伝送用磁気素子1が給電用に適用された場合を説明する。無線電力伝送用磁気素子1は、図1に示すように、電力供給装置10に備えられている。電力供給装置10は、携帯電話やパーソナルコンピュータ等のコードレスの給電により作動する1以上の機器9を載置可能にシート状に形成されている。電力供給装置10の全面には、多数の無線電力伝送用磁気素子1が配置されている。尚、無線電力伝送用磁気素子1は、エッチング処理や液状の材料を噴射する印刷処理により形成されている。
 無線電力伝送用磁気素子1は、マトリックス状の配置形態のように、均一な分布密度で平面的に配置されていることが好ましい。この場合には、電力供給装置10の全体において均等に高い伝送効率で電力を供給することができる。また、電力供給装置10は、無線電力伝送用磁気素子1の分布密度を変更した複数の載置領域を備えていてもよい。この場合には、機器9の載置場所により給電量を調整することが可能になる。例えば、機器9が調光可能な発光装置であれば、発光量を載置場所の変更で調整することができる。
 また、無線電力伝送用磁気素子1は、磁気的な放出面(磁気開放面)となる表面6aが電力供給装置10の上面(載置面)に一致する向きとなるように設定されている。尚、磁気開放面は、給電側や受電側の面を意味し、無線電力伝送用磁気素子1の表面6a及び裏面6bの少なくとも一方である。
 電力供給装置10は、機器9に直接的に接触すると共に導体部2及び磁性体部3を固定及び保持する載置層101と、無線電力伝送用磁気素子1が形成された支持層103と、支持層103の下面に設けられた遮蔽層104と、遮蔽層104の下面に設けられた保護層105とを有している。載置層101、支持層103及び保護層105は、非磁性の合成樹脂等により形成されている。また、遮蔽層104は、導電材料及び磁性材料の少なくとも一方により形成されており、電力供給装置10の下側(裏面側)からの磁場の漏洩を防止するようになっている。さらに、支持層103には、図示しないシート状の電源回路基板が設けられている。電源回路基板は、電源装置8からの高周波の交流電力を各無線電力伝送用磁気素子1に供給可能にしている。
(動作)
 上記の構成において、無線電力伝送用磁気素子1が組み込まれた電力供給装置10に対して電源装置8が接続され、高周波の交流電流(交流電力)が供給されると、各無線電力伝送用磁気素子1が交番磁場を生成する。この際、図2に示すように、各無線電力伝送用磁気素子1は、磁気結合方向に一致する断面において、交流電流が同一方向に流通する複数の導体部2間の1以上の隙間に磁性体部3が設けられ、導体部2及び磁性体部3の何れか一方が他方よりも磁気結合方向に突出された突出領域61を有している。従って、図3に示すように、各無線電力伝送用磁気素子1は、突出領域61が設けられていない場合と比較して、導体部2周辺における磁気結合にとって無効な磁界を減少させると共に、全体的な磁界の広がりを抑制することが可能になる。この結果、各無線電力伝送用磁気素子1は、電力供給装置10に載置された機器9に向かう磁束密度を高めることが可能になる。これにより、多数の無線電力伝送用磁気素子1を備えた電力供給装置10は、機器9に対して高い伝送効率で電力を給電することができる。
 また、図4に示すように、各無線電力伝送用磁気素子1の内部においては、導体部2への交流電流の流通により生成された磁界が、隣接する他の導体部2に対して錯交することにより誘導電流を発生させる。ところが、誘導電流が抵抗として作用する現象は、突出領域61における導体部2・2間の隙間に設けられた磁性体部3により抑制される。これにより、高い磁束密度と誘導電流による抵抗の低減とによって、高い伝送効率による給電が可能になる。
 このようにして全ての無線電力伝送用磁気素子1において、磁場が表面6aである磁気開放面から放出されると、これらの無線電力伝送用磁気素子1を備えた電力供給装置10は、交流電力の周波数に対応した周波数の交番磁場を面全体において出力する。従って、誘導起電力を利用して作動する機器9が電力供給装置10に載置されると、図2に示すように、機器9に内蔵されたコイルが磁気結合して交番磁場と鎖交し、誘導起電力が発生する。そして、交流状態の電力が整流され、制御チップ等に供給される。尚、機器9は、無線電力伝送用磁気素子1を受電用として備えていてもよく、この場合には、一層高い効率で給電及び受電を行うことが可能になる。
(変形例)
 以上のように、本実施形態の無線電力伝送用磁気素子1は、図1及び図3に示すように、突出領域61が導体集合部6の表面6aに配置された構成について説明しているが、これに限定されるものではない。即ち、無線電力伝送用磁気素子1は、図5に示すように、突出領域61が表面6aと裏面6bとに配置されていてもよい。この場合には、図6に示すように、無線電力伝送用磁気素子1は、磁気結合方向における磁束密度を高めることが可能になる。
 また、図7に示すように、無線電力伝送用磁気素子1は、磁気開放面とは反対側となる裏面6bにだけ突出領域61が配置されていてもよい。この場合においても、図8に示すように、無線電力伝送用磁気素子1は、磁気結合方向における磁束密度を高めることが可能になる。
 また、無線電力伝送用磁気素子1は、突出領域61が導体集合部6の内周側にだけ配置されていてもよい。無線電力伝送用磁気素子1は、突出領域61が導体集合部6の外周側にだけ配置されていてもよい。無線電力伝送用磁気素子1は、導体集合部6の内周側における磁性体部3の突出面積が最大となるように、内周側から外周側にかけて突出長が減少された突出領域61を有していてもよい。さらに、導体部2・2間に複数の磁性体部3・3が隙間をあけて配置されていてもよいし、磁性体部3・3間に複数の導体部2が隙間をあけて配置されていてもよい。尚、無線電力伝送用磁気素子1は、上記の構成を任意に組み合わせたものでもよい。
(実施形態2)
 以下、本発明の好適な第2の実施形態について、図面を参照しつつ説明する。尚、第1の実施形態と同一の部材には同一の符号を付記して、その説明を省略する。
(無線電力伝送用磁気素子201)
 図9に示すように、本実施形態に係る無線電力伝送用磁気素子201は、交流電流が流通する導体層202と、導体層202の長手方向に平行に配置された磁性体層203とを有した積層体204の巻回体206を備えていると共に、磁性体層203の幅方向端部が導体層202の幅方向端部よりも突出された突出領域261を有している。尚、突出領域261は、磁性体層203の幅方向端部及び導体層202の幅方向端部の何れか一方が他方よりも突出されていればよい。
 詳細に説明すると、無線電力伝送用磁気素子201は、巻回体206を有している。巻回体206は、円柱形状の外形を有しており、側周面206aと、側周面206aの両端に配置され、磁気開放面となり得る端面206b・206bとを有している。尚、巻回体206は、任意の外形形状で形成することが可能であり、例えば、三角形や四角形等の端面206bを有した多角形の角柱形状等であってもよい。巻回体206は、薄帯状の積層体204が複数回数で巻回されることにより形成されている。これにより、巻回体206は、軸方向の縦断面(A-A’線矢視断面)において、複数の積層体204が半径方向に互いに平行に配置された構成にされている。
 積層体204は、円筒形状の巻芯部材207の外周面に巻回されている。巻芯部材207は、非磁性体及び磁性体の何れであってもよいが、巻芯部材207が配置された巻回体206の内周側に磁場を集中させることができる点で磁性体であることが好ましい。尚、積層体204は、巻芯部材207の存在しない中空状に巻回されていてもよい。また、巻回の形状は、円形、楕円形、長方形等の任意の巻形状であってよい。
 積層体204は、導体層202と磁性体層203とを有している。導体層202及び磁性体層203は、互いに平行に配置されている。具体的には、図10に示すように、積層体204は、ポリエチレンテレフタラート(PET:Polyethylene Terephthalate)の保護シート411・412間に磁性体層203を介装した磁性シート41と、ポリイミド(PI:polyimide)製の基材431に導体層202が形成された導体シート43とを有している。
 尚、無線電力伝送用磁気素子201は、巻回体206が外部に露出した形態であってもよいが、表面を保護するために、エポキシ樹脂やポリイミド樹脂等の絶縁樹脂、ガラス等の非磁性で且つ電気的絶縁体からなる保護材の被膜が巻回体206の側周面206aや端面206bに設けられていてもよい。さらに、無線電力伝送用磁気素子201は、半径方向に隣接する磁性体層203・203同士の接触や変形を防止するため、これら磁性体層203・203間に保護材が充填されていてもよい。
(磁性体層203)
 磁性体層203は、第1の実施形態における磁性体部3と同様の材料により形成されている。磁性体層203は、巻回体206の巻方向(周方向)である長手方向に直交する幅と、巻回体206の半径方向に一致する厚みとを有した帯状に形成されている。磁性体層203の厚みは、100μm以下が好ましい。磁気特性と言う点では100μmを超えても問題はないが、巻回することを考慮すると磁性体層の厚みは100μm以下が好ましく、さらには50μm以下が好ましい。また、磁性体層203の厚みの下限値は、0.1μm以上が好ましい。0.1μm未満では、磁性層が薄く充分な磁気特性が得られない恐れがあるからである。また、薄い磁性層を均一に作製するのは製造上の管理が煩雑になることから0.1μm以上が好ましい。このような磁性層の厚みを考慮すると、急冷凝固法により薄帯(リボン)を得ることのできるアモルファスが好ましい材料となる。特にCo系アモルファスであれば磁気特性も良好である。
(導体層202)
 導体層202は、第1の実施形態における導体部2と同様の材料により形成されている。導体層202は、Cu、Al等の金属材料で形成されていることが好ましい。導体層202の形態は、薄帯状(リボン状)の他、気相成長やメッキ等の薄膜であってもよい。
(突出領域261)
 無線電力伝送用磁気素子201は、突出領域261を有している。突出領域261は、巻回体206の両端面206b・206bの全部に設定されている。尚、突出領域261は、巻回体206の何れか一方の端面206b・206bに設定されていてもよいし、端面206bの一部に設定されていてもよい。換言すれば、突出領域261は、巻回体206の少なくとも一方の端面206b・206bの少なくとも一部に設定されていればよい。
(電力供給装置210)
 上記のように構成された無線電力伝送用磁気素子201は、図9に示すように、電力供給装置210に備えられている。電力供給装置210は、携帯電話やパーソナルコンピュータ等のコードレスの給電により作動する1以上の機器9を載置可能にシート状や平板状に形成されている。電力供給装置210の全面には、多数の無線電力伝送用磁気素子201が埋め込まれている。無線電力伝送用磁気素子201は、磁気的な放出面(磁気開放面)となる一方の端面206bが上面となるように設定されている。
 電力供給装置210は、機器9に直接的に接触する載置層101と、無線電力伝送用磁気素子201の側周面206aを固定及び保持する保持層102と、無線電力伝送用磁気素子201の下面となる端面206bを支持する支持層103と、支持層103の下面に設けられた遮蔽層104と、磁性体層104の下面に設けられた保護層105とを有している。載置層101、保持層102、支持層103及び保護層105は、非磁性の合成樹脂等により形成されている。また、遮蔽層104は、導電材料及び磁性材料の少なくとも一方により形成されており、電力供給装置210の下側からの磁場の漏洩を防止するようになっている。さらに、遮蔽層104と支持層103との間には、各無線電力伝送用磁気素子201における導体層202の内周側と外周側とに接続された図示しないシート状の回路基板が設けられている。回路基板は、電源装置8からの高周波の交流電力を各無線電力伝送用磁気素子201に供給可能にしている。
 尚、上記した実施形態1(実施形態2)における無線電力伝送用磁気素子1(201)は、導体部2(導体層202)と磁性体部3(磁性体層203)との少なくとも一部が電気的絶縁状態で一体化するように接合されていてもよい。
 ここで、電気的絶縁状態は、導体部2(導体層202)及び磁性体部3(磁性体層203)間に絶縁物を介在することで実現することができる。絶縁物を介在させる方法としては、導体部2(導体層202)及び磁性体部3(磁性体層203)の少なくとも一方に絶縁材料からなる皮膜を蒸着処理やメッキ処理したものを接合する方法や、導体部2(導体層202)及び磁性体部3(磁性体層203)間に絶縁シートを挟み込む方法を挙げることができる。また、絶縁物及び磁性体部3(磁性体層203)は、熱伝導率が空気層の熱伝導率よりも高いことは勿論である。
 上記の構成によれば、導体部2(導体層202)と磁性体部3(磁性体層203)との少なくとも一部が一体化されることによって、導体部2(導体層202)及び磁性体部3(磁性体層203)が振動や衝撃等の外力を受けた場合でも、導体部2(導体層202)及び磁性体部3(磁性体層203)の位置関係や突出領域61(261)の形態を初期状態に維持することができるため、初期の高い伝送効率を長期間に亘って維持することができる。
 また、導体部2(導体層202)が発熱したときに、導体部2(導体層202)の熱が一体的に接合された部位を介して磁性体部3(磁性体層203)に効率的に移動するため、磁性体部3(磁性体層203)において導体部2(導体層202)の熱を効率良く放熱することができる。これにより、導体部2(導体層202)と磁性体部3(磁性体層203)とが離間されている場合よりも、通電する電力量を増大することができる。この結果、導体部2(導体層202)と磁性体部3(磁性体層203)との少なくとも一部を一体化しただけの簡単な構成で、導体部2(導体層202)の過熱を防止しつつ伝送量を高めることができる。さらに、導体部2(導体層202)と磁性体部3(磁性体層203)との一体化により取り扱いが容易になるため、各種機器への組み込み作業や保管が容易になる。
 また、上記した実施形態1(実施形態2)における無線電力伝送用磁気素子1(201)は、導体部2(導体層202)が電気的絶縁体からなる被膜を有し、磁性体部3(磁性体層203)が導体部2(導体層202)と一体化するように皮膜に接合されていてもよい。即ち、導体部2(導体層202)が電気的絶縁体からなる被膜を有し、この皮膜に磁性体部3(磁性体層203)が接合されていてもよい。
 上記の構成によれば、絶縁皮膜が形成されたコイル等の一般的な部材を導体部2(導体層202)に用いることができるため、容易に無線電力伝送用磁気素子1(201)を得ることができる。また、上記した実施形態例における巻回した形状であるロール状コイルと同等の効果を得ることができる。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態に限定されず、その他の実施形態にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 突出領域261を備えた無線電力伝送用磁気素子201の伝送状態を実施例1~3として測定すると共に、突出領域261を備えない無線電力伝送用磁気素子の伝送状態を比較例1・2として測定した。
(実施例1)
 具体的には、図10に示すように、50μmのポリエチレンテレフタラートからなる保護シート411・412間に、鉄を主成分としたアモルファス磁性合金製からなる18μmの磁性体層203が介装された磁性シート41を準備した。また、25μmのポリイミド製の基材431に、35μmの銅箔からなる導体層202が形成された導体シート43を準備した。
 次に、磁性シート41を幅7mm×長さ300mmに切り出した。また、導体シート43を幅5mm×長さ300mmに切り出した。磁性シート41と導体シート43との幅方向の一端を揃え、磁性シート41の他端が導体シート43から2mm出るように積層した。そして、両シート41・43を20μmの接着層で接合して積層体204とした。積層体204の基材431側に粘着剤を塗布することによって、20μmの粘着層42を形成し、径13mmφのコルクからなる巻芯部材207に、6.5回の巻回数で巻き付けることによって、一方側に突出領域261が存在する巻回体206を形成した。巻回体206における導体層202の内周側端部と外周側端部とに信号線の一端をそれぞれ接続した。
 この後、2個の巻回体206・206を準備し、これらの巻回体206・206における磁性シート41・41の2mm出た部分同士が向い合うように、巻回体206・206を左右対称に配置した。即ち、突出領域261同士が対向するように巻回体206・206を配置した。この際、導体層202同士が対向する間隔は、5mmの距離とした。また、巻回体206・206の軸芯が同芯となるように、巻回体206・206を保持した。この後、巻回体206・206に接続された信号線の他端をネットワークアナライザ(アジレント・テクノロジー株式会社製)の端子1及び端子2にそれぞれ接続し、300kHz、500kHz、及び1000kHzの測定周波数でSパラメータの挿入損失(S21)を測定した。ここで、『S21』は、端子1から信号を入力したときの端子2を通過する信号を表しており、デシベル表示され、数値が大きいほど伝送効率が高いことを表す。
(実施例2)
 実施例1と同一の2個の巻回体206・206を準備し、これらの巻回体206・206における一端を揃えた部分同士が向い合うように、巻回体206・206を左右対称に配置した。即ち、突出領域261同士が対向しないように巻回体206・206を配置した。この際、導体層202同士が対向する間隔は、5mmの距離とした。そして、実施例1と同一の条件で、300kHz、500kHz、及び1000kHzの測定周波数でSパラメータの挿入損失(S21)を測定した。
(実施例3)
 次に、実施例1と同一の磁性シート41を幅9mm×長さ300mmに切り出した。また、実施例1と同一の導体シート43を幅5mm×長さ300mmに切り出した。そして、磁性シート41と導体シート43との中心を揃え、磁性シート41の両端が銅箔から2mm出るように積層することにより積層体204を形成した。積層体204を径13mmφのコルクからなる巻芯部材207に、6.5回の巻回数で巻き付けることによって、両側に突出領域261が存在する巻回体206を形成した。
 2個の巻回体206・206を準備し、これらの巻回体206・206における一端同士が向い合うように、巻回体206・206を左右対称に配置した。この際、導体層202同士が対向する間隔は、5mmの距離とした。そして、実施例1と同一の条件で、300kHz、500kHz、及び1000kHzの測定周波数でSパラメータの挿入損失(S21)を測定した。
(比較例1)
 次に、突出領域261が存在しない無線電力伝送用磁気素子100を作成した。即ち、実施例1と同一の磁性シート41及び導体シート43を幅5mm×長さ300mmに切り出した。そして、磁性シート41と導体シート43との両端面が同一となるように積層することにより積層体204を形成した。積層体204を径13mmφのコルクからなる巻芯部材207に、6.5回の巻回数で巻き付けることにより巻回体206とした。2個の巻回体206・206における一端同士が向い合うように、巻回体206・206を左右対称に配置した。この際、導体層202同士が対向する間隔は、5mmの距離とした。そして、実施例1と同一の条件で、300kHz、500kHz、及び1000kHzの測定周波数でSパラメータの挿入損失(S21)を測定した。
(比較例2)
 次に、図11に示すように、磁性体層203が存在しない無線電力伝送用磁気素子100を作成した。即ち、実施例1の磁性シート41の代わりに、同一厚みの保護シート411を用いた積層体204を形成した。積層体204を径13mmφのコルクからなる巻芯部材207に、6.5回の巻回数で巻き付けることにより巻回体206とした。2個の巻回体206・206における一端同士が向い合うように、巻回体206・206を左右対称に配置した。この際、巻回体206・206の間隔は、5mmの距離とした。そして、実施例1と同一の条件で、300kHz、500kHz、及び1000kHzの測定周波数でSパラメータの挿入損失(S21)を測定した。
(実施例1~3と比較例1・2の測定結果)
 上記のようにしてSパラメータの挿入損失(S21)を測定した結果を表1に示すと共に図12に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の測定結果によれば、突出領域261の存在しない比較例1及び磁性体層203の存在しない比較例2に比べて、突出領域261の存在する実施例1~3の方が伝送効率が高いことが判明した。このことから、無線電力伝送用磁気素子201は、導体層202よりも磁性体層203が幅方向に突出された突出領域261を備えることによって、伝送効率が高まることが明らかになった。
 また、両側に突出領域261が存在する巻回体206を備えた実施例3が、一方側にだけ突出領域261が存在する巻回体206を備えた実施例1・2よりも伝送効率が高いことが判明した。さらに、突出領域261を対向させていない実施例2が、突出領域261を対向させている実施例1よりも、伝送効率が高いことが判明した。これにより、突出領域261が磁気開放面を含む両側に存在することが伝送効率を高める上で重要であると共に、突出領域261が磁気開放面側に配置されていなくても、伝送効率が高まることが明らかになった。
1 無線電力伝送用磁気素子
2 導体部
3 磁性体部
6 導体集合部
8 電源装置
9 機器
10 電力供給装置
61 突出領域
201 無線電力伝送用磁気素子
202 導体層
203 磁性体層
204 積層体
                                                                                

Claims (15)

  1.  磁気結合により誘導起電力を引き起こす無線電力伝送用磁気素子であって、
     前記磁気結合方向に一致する断面において、交流電流が同一方向に流通する複数の導体部と、これら導体部間の1以上の隙間に設けられた磁性体部とが、前記磁気結合方向に対して直交方向に並列配置されており、
     前記導体部及び前記磁性体部の何れか一方が他方よりも前記磁気結合方向に突出された突出領域を有することを特徴とする無線電力伝送用磁気素子。
  2.  前記突出領域は、前記磁気結合方向の両側に配置されていることを特徴とする請求項1に記載の無線電力伝送用磁気素子。
  3.  前記突出領域は、前記導体部の配列方向の全体に配置されていることを特徴とする請求項2に記載の無線電力伝送用磁気素子。
  4.  前記磁性体部は、軟磁性材料により形成されていることを特徴とする請求項3に記載の無線電力伝送用磁気素子。
  5.  前記軟磁性材料は、金属系磁性材料であることを特徴とする請求項4に記載の無線電力伝送用磁気素子。
  6.  前記金属系磁性材料は、アモルファス磁性材であることを特徴とする請求項5に記載の無線電力伝送用磁気素子。
  7.  前記導体部と前記磁性体部とは、少なくとも一部が電気的絶縁状態で一体化するように接合されていることを特徴とする請求項4に記載の無線電力伝送用磁気素子。
  8.  前記導体部が電気的絶縁体からなる被膜を有し、該皮膜に前記磁性体部が接合されていることを特徴とする請求項7に記載の無線電力伝送用磁気素子。
  9.  前記突出領域は、前記導体部の配列方向の全体に配置されていることを特徴とする請求項1に記載の無線電力伝送用磁気素子。
  10.  前記磁性体部は、アモルファス磁性材により形成されていることを特徴とする請求項1に記載の無線電力伝送用磁気素子。
  11.  前記導体部と前記磁性体部とは、電気的絶縁状態で一体化するように接合されていることを特徴とする請求項1に記載の無線電力伝送用磁気素子。
  12.  長尺状の導体部と、
     前記導体部の長手方向に沿うように並列配置された長尺状の磁性体部と、
     前記導体部及び前記磁性体部の何れか一方の幅方向端部が他方の幅方向端部よりも突出された突出領域とを有することを特徴とする無線電力伝送用磁気素子。
  13.  前記導体部と前記磁性体部とは、少なくとも一部が電気的絶縁状態で一体化するように接合されていることを特徴とする請求項12に記載の無線電力伝送用磁気素子。
  14.  前記導体部が電気的絶縁体からなる被膜を有し、該皮膜に前記磁性体部が接合されていることを特徴とする請求項13に記載の無線電力伝送用磁気素子。
  15.  請求項1乃至14の何れか1項に記載の無線電力伝送用磁気素子を複数有し、これら無線電力伝送用磁気素子を同一平面上に位置するように配置したことを特徴とする電力供給装置。
PCT/JP2011/054770 2010-03-09 2011-03-02 無線電力伝送用磁気素子及び電力供給装置 WO2011111585A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK11753244.0T DK2546843T3 (en) 2010-03-09 2011-03-02 Magnetic element for wireless power transfer and power supply arrangement
KR1020127026202A KR20130014546A (ko) 2010-03-09 2011-03-02 무선 전력 전송용 자기 소자 및 전력 공급 장치
US13/583,525 US9390849B2 (en) 2010-03-09 2011-03-02 Magnetic element for wireless power transmission and power supply device
CN201180013298.4A CN102792401B (zh) 2010-03-09 2011-03-02 无线电力传输用磁元件和电力供给装置
EP11753244.0A EP2546843B1 (en) 2010-03-09 2011-03-02 Magnetic element for wireless power transmission and power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-052049 2010-03-09
JP2010052049 2010-03-09

Publications (1)

Publication Number Publication Date
WO2011111585A1 true WO2011111585A1 (ja) 2011-09-15

Family

ID=44563389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054770 WO2011111585A1 (ja) 2010-03-09 2011-03-02 無線電力伝送用磁気素子及び電力供給装置

Country Status (7)

Country Link
US (1) US9390849B2 (ja)
EP (1) EP2546843B1 (ja)
JP (1) JP5364745B2 (ja)
KR (1) KR20130014546A (ja)
CN (1) CN102792401B (ja)
DK (1) DK2546843T3 (ja)
WO (1) WO2011111585A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080785A (ja) * 2011-10-03 2013-05-02 Nissan Motor Co Ltd 非接触給電装置
JP2013243250A (ja) * 2012-05-21 2013-12-05 Kobe Steel Ltd 非接触給電用コイル
EP2728968A1 (en) * 2012-01-05 2014-05-07 Nitto Denko Corporation Wireless power supply-type light-emitting element, and light-emitting device
JP2015109061A (ja) * 2013-10-23 2015-06-11 東芝テック株式会社 チェックアウト端末

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204440A (ja) 2011-03-24 2012-10-22 Nitto Denko Corp 無線電力伝送用磁気素子及びその製造方法
WO2013019122A1 (en) * 2011-07-08 2013-02-07 Auckland Uniservices Limited Interoperability of magnetic structures for inductive power transfer systems
JP5965148B2 (ja) * 2012-01-05 2016-08-03 日東電工株式会社 無線電力伝送を用いたモバイル端末用受電モジュール及び当該モバイル端末用受電モジュールを備えたモバイル端末用充電池
JP2015015452A (ja) * 2013-06-06 2015-01-22 Tdk株式会社 ワイヤレス電力伝送用コイル装置
US9123466B2 (en) 2013-11-11 2015-09-01 Eaton Corporation Wireless power transfer systems containing foil-type transmitter and receiver coils
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
WO2015161053A1 (en) * 2014-04-16 2015-10-22 Witricity Corporation Wireless energy transfer for mobile device applications
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
JP6365108B2 (ja) * 2014-08-20 2018-08-01 Tdk株式会社 コイルユニット
JP6365109B2 (ja) * 2014-08-20 2018-08-01 Tdk株式会社 コイルユニット
JP6365110B2 (ja) * 2014-08-20 2018-08-01 Tdk株式会社 コイルユニット
CN104682576B (zh) * 2015-03-01 2017-08-29 华南理工大学 添加自适应双端阻抗变换网络的谐振式无线电能传输系统
CN108292552B (zh) * 2015-10-26 2020-11-06 鲲腾科技有限公司 具有自闭合磁路的磁结构
KR20170058704A (ko) * 2015-11-19 2017-05-29 삼성전자주식회사 전자 장치 및 그의 액세서리 장치
DE102016103042A1 (de) * 2016-02-22 2017-08-24 Ipt Technology Gmbh Spuleneinheit einer Vorrichtung zur induktiven Übertragung elektrischer Energie
JP7131815B2 (ja) * 2018-09-14 2022-09-06 国立大学法人信州大学 ワイヤレス電力伝送コイルユニット

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390371U (ja) * 1989-12-28 1991-09-13
JPH11176677A (ja) * 1997-12-09 1999-07-02 Tokin Corp コードレスパワーステーション
JP2004047700A (ja) 2002-07-11 2004-02-12 Jfe Steel Kk 非接触充電器用平面磁気素子
JP2006217731A (ja) * 2005-02-03 2006-08-17 Tokyo Univ Of Science 非接触電力供給システム
WO2009081934A1 (ja) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. 平面コイル及びこれを用いた非接触電力伝送機器
JP2010041906A (ja) * 2008-07-10 2010-02-18 Nec Tokin Corp 非接触電力伝送装置、軟磁性体シート及びそれを用いたモジュール
WO2011030539A1 (ja) * 2009-09-11 2011-03-17 パナソニック株式会社 電磁誘導コイルユニットおよび電磁誘導装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120724Y2 (ja) * 1980-12-05 1986-06-21
US5062197A (en) * 1988-12-27 1991-11-05 General Electric Company Dual-permeability core structure for use in high-frequency magnetic components
US5198647A (en) * 1989-11-28 1993-03-30 Mitsubishi Denki Kabushiki Kaisha Plural-coil non-contact ic card having pot cores and shielding walls
JPH0982553A (ja) * 1995-09-12 1997-03-28 Sanyo Electric Co Ltd コイルの巻回方法及びコイル
JP2000150238A (ja) * 1998-11-13 2000-05-30 Alps Electric Co Ltd 平面型磁気素子及び平面型磁気素子の製造方法
JP2000200725A (ja) * 1998-12-29 2000-07-18 Tokin Corp 非接触電力伝送装置
JP2003173921A (ja) * 2001-12-07 2003-06-20 Kawasaki Steel Corp 非接触充電器用の平面磁気素子
JP2007081239A (ja) * 2005-09-15 2007-03-29 Toshiba Corp 磁気デバイスおよびそれを用いたスイッチング電源
JP4960710B2 (ja) * 2007-01-09 2012-06-27 ソニーモバイルコミュニケーションズ株式会社 無接点電力伝送コイル、携帯端末及び端末充電装置、平面コイルの磁性体層形成装置及び磁性体層形成方法
JP2008294385A (ja) * 2007-04-24 2008-12-04 Panasonic Electric Works Co Ltd 非接触電力伝送機器及びその受電用コイルブロックの製造方法
JP5118394B2 (ja) * 2007-06-20 2013-01-16 パナソニック株式会社 非接触電力伝送機器
KR20100051095A (ko) 2007-08-07 2010-05-14 에모리 유니버시티 π-알릴 전이금속 착화합물 형성을 통한 합성 뉴클레오사이드의 제조

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390371U (ja) * 1989-12-28 1991-09-13
JPH11176677A (ja) * 1997-12-09 1999-07-02 Tokin Corp コードレスパワーステーション
JP2004047700A (ja) 2002-07-11 2004-02-12 Jfe Steel Kk 非接触充電器用平面磁気素子
JP2006217731A (ja) * 2005-02-03 2006-08-17 Tokyo Univ Of Science 非接触電力供給システム
WO2009081934A1 (ja) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. 平面コイル及びこれを用いた非接触電力伝送機器
JP2010041906A (ja) * 2008-07-10 2010-02-18 Nec Tokin Corp 非接触電力伝送装置、軟磁性体シート及びそれを用いたモジュール
WO2011030539A1 (ja) * 2009-09-11 2011-03-17 パナソニック株式会社 電磁誘導コイルユニットおよび電磁誘導装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546843A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080785A (ja) * 2011-10-03 2013-05-02 Nissan Motor Co Ltd 非接触給電装置
EP2728968A1 (en) * 2012-01-05 2014-05-07 Nitto Denko Corporation Wireless power supply-type light-emitting element, and light-emitting device
EP2728968A4 (en) * 2012-01-05 2014-05-21 Nitto Denko Corp WIRELESS POWER SUPPLY TYPE LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
US9030098B2 (en) 2012-01-05 2015-05-12 Nitto Denko Corporation Wireless electric power supply type light-emitting element and light-emitting device
JP2013243250A (ja) * 2012-05-21 2013-12-05 Kobe Steel Ltd 非接触給電用コイル
JP2015109061A (ja) * 2013-10-23 2015-06-11 東芝テック株式会社 チェックアウト端末

Also Published As

Publication number Publication date
EP2546843A4 (en) 2014-06-11
US9390849B2 (en) 2016-07-12
DK2546843T3 (en) 2016-03-21
CN102792401B (zh) 2016-06-29
JP5364745B2 (ja) 2013-12-11
JP2011211176A (ja) 2011-10-20
EP2546843B1 (en) 2016-01-20
US20130002041A1 (en) 2013-01-03
CN102792401A (zh) 2012-11-21
KR20130014546A (ko) 2013-02-07
EP2546843A1 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5364745B2 (ja) 無線電力伝送用磁気素子及び電力供給装置
US10218222B2 (en) Non-contact charging module having a wireless charging coil and a magnetic sheet
KR102553219B1 (ko) 차량용 무선전력 송신모듈
JP5839257B2 (ja) コイル部品並びにそれを用いた給電装置及び充電装置
JP5917496B2 (ja) 磁性シートとそれを用いた非接触受電装置、電子機器および非接触充電装置
EP2980949A1 (en) Thin-film coil component and charging apparatus and method for manufacturing the component
JP2010041906A (ja) 非接触電力伝送装置、軟磁性体シート及びそれを用いたモジュール
KR20160089425A (ko) 무선 충전 코일
TW201112569A (en) Electronic device having an inductive receiver coil with ultra-thin shielding layer and method
WO2017038797A1 (ja) フレキシブルプリント配線板及び非接触充電システム
KR101878353B1 (ko) 무선전력 송신장치 및 이를 구비한 무선 충전장치
JP2013175621A (ja) 磁性シート、伝送コイル部品及び非接触充電装置
JP6032528B2 (ja) 伝送コイル部品及び非接触充電装置
JP5709042B2 (ja) コイル部品並びにそれを用いた受電装置及び給電装置
EP3016203A1 (en) Receiving antenna and wireless power receiving apparatus comprising same
WO2019111848A1 (ja) コイルモジュール
JP5700289B2 (ja) 伝送コイル装置並びにそれを用いた受電装置及び給電装置
JP6048787B2 (ja) 磁性シート、伝送コイル部品及び非接触充電装置
WO2016158272A1 (ja) コイル、アンテナ装置、非接触給電モジュール、電子機器および非接触給電システム
WO2017047498A1 (ja) フレキシブルプリント配線板及び非接触充電システム
KR101878354B1 (ko) 무선충전용 방열유닛 및 이를 구비한 무선전력 수신장치
JP6066256B2 (ja) 磁性シート、伝送コイル部品及び非接触充電装置
US12081041B2 (en) Shielding structures for wireless charging systems
KR20180128539A (ko) 무선전력 송신모듈
TW201616524A (zh) 薄膜線圈元件、充電裝置以及製作元件的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013298.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13583525

Country of ref document: US

Ref document number: 2011753244

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127026202

Country of ref document: KR

Kind code of ref document: A