WO2011030539A1 - 電磁誘導コイルユニットおよび電磁誘導装置 - Google Patents

電磁誘導コイルユニットおよび電磁誘導装置 Download PDF

Info

Publication number
WO2011030539A1
WO2011030539A1 PCT/JP2010/005494 JP2010005494W WO2011030539A1 WO 2011030539 A1 WO2011030539 A1 WO 2011030539A1 JP 2010005494 W JP2010005494 W JP 2010005494W WO 2011030539 A1 WO2011030539 A1 WO 2011030539A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
electromagnetic induction
magnetic body
coil unit
induction coil
Prior art date
Application number
PCT/JP2010/005494
Other languages
English (en)
French (fr)
Inventor
宮下 功寛
藤田 篤志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011530747A priority Critical patent/JPWO2011030539A1/ja
Priority to US13/393,135 priority patent/US20120154101A1/en
Priority to EP10815139A priority patent/EP2477197A1/en
Priority to CN2010800377864A priority patent/CN102483981A/zh
Publication of WO2011030539A1 publication Critical patent/WO2011030539A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/365Coil arrangements using supplementary conductive or ferromagnetic pieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1245Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements
    • H05B6/1254Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements using conductive pieces to direct the induced magnetic field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to an electromagnetic induction device that uses the principle of electromagnetic induction, and in particular, an electromagnetic induction coil used in, for example, an induction heating device, a wireless tag, and a non-contact charging device used in general homes, restaurants, factories, and the like. It is about the unit.
  • the heating coil used in the conventional induction heating cooker is generally composed of a litz wire made by twisting several dozen thin copper wires.
  • a simple and low-cost coil configuration that does not use a litz wire a configuration using a flat coil that can be manufactured by punching a metal plate has been studied (for example, see Patent Document 2).
  • the heating coil is composed of a litz wire in the conventional induction heating cooker as described above, there is a problem that the manufacturing cost increases because the thin enameled wire is twisted together. In the case of a flat coil, the manufacturing is easy and the cost is low. However, the coil loss is larger than that of a litz wire, so the heating coil generates more heat and the efficiency decreases. There was a problem with the aspect. Therefore, in an induction heating cooker, it has not been put to practical use to use a flat coil as a heating coil.
  • the present invention reduces the coil loss and realizes high power transmission efficiency in the electromagnetic induction coil used in the electromagnetic induction device using the principle of electromagnetic induction. To provide a highly reliable electromagnetic induction coil unit capable of reducing costs, and to provide an electromagnetic induction device capable of efficiently transmitting power using this electromagnetic induction coil unit and having reduced manufacturing costs. With the goal.
  • the present invention has the following configuration in order to solve the problems in the conventional electromagnetic induction device and achieve the above object.
  • the electromagnetic induction coil unit according to the first aspect of the present invention is formed of a coil formed of a spiral conductor and a spiral magnetic body, and sandwiches at least a part of the spiral conductor of the coil. And a partition wall magnetic body.
  • the electromagnetic induction coil unit according to the first aspect of the present invention configured as described above can reduce coil loss and achieve high power transmission efficiency.
  • the partition magnetic body according to the first aspect may be arranged so as to sandwich a conductor having a predetermined length from the central axis side end of the coil. Good.
  • the electromagnetic induction coil unit according to the second aspect of the present invention configured as described above can achieve high power transmission efficiency with reduced coil loss.
  • the electromagnetic induction coil unit according to the third aspect of the present invention is provided with a dielectric for holding the coil in the first or second aspect.
  • the electromagnetic induction coil unit according to the third aspect of the present invention thus configured is easy to manufacture, can provide a highly reliable electromagnetic induction coil unit, and can be easily assembled to the electromagnetic induction device. Shall.
  • the electromagnetic induction coil unit according to the fourth aspect of the present invention may further include an outer peripheral partition magnetic body disposed so as to cover the outer periphery of the coil according to the first or second aspect.
  • the electromagnetic induction coil unit according to the fourth aspect of the present invention configured as described above can prevent a leakage of a magnetic field to the outside and provide a highly reliable electromagnetic induction coil unit.
  • the partition magnetic body in the first or second aspect is preferably composed of a magnetic body having a relative permeability of 5 or more and 1000 or less.
  • the electromagnetic induction coil unit according to the fifth aspect of the present invention configured as described above can reliably suppress an increase in coil resistance value due to the proximity effect, and can realize high power transmission efficiency.
  • the partition magnetic body according to the second aspect is 25% to 75% of the total number of turns of the coil from the center side end of the coil. You may arrange
  • the electromagnetic induction coil unit according to the sixth aspect of the present invention configured as described above can suppress an increase in coil resistance value due to the proximity effect, and can realize high power transmission efficiency.
  • the electromagnetic induction coil unit according to a seventh aspect of the present invention is the electromagnetic induction coil unit according to the first or second aspect, wherein the dimension of the partition magnetic body in the central axis direction of the coil is larger than the dimension of the coil in the central axis direction. It is preferable that the surface facing the central axis direction of the coil be arranged 1.5 mm or more inside from the surface facing the central axis direction of the partition magnetic body.
  • the electromagnetic induction coil unit according to the seventh aspect of the present invention configured as described above can reliably suppress an increase in coil resistance value due to the proximity effect and achieve high power transmission efficiency.
  • the electromagnetic induction coil unit according to the eighth aspect of the present invention may have a multiple structure in which the partition magnetic body in the first or second aspect has a gap penetrating in the central axis direction of the coil.
  • the electromagnetic induction coil unit according to the eighth aspect of the present invention configured as described above can increase the magnetic shielding effect by the partition wall magnetic body.
  • the electromagnetic induction coil unit according to the ninth aspect of the present invention may have a multilayer structure in which the coils according to the first or second aspect are stacked in the central axis direction of the coils.
  • the electromagnetic induction coil unit according to the ninth aspect of the present invention thus configured has high output and can realize high power transmission efficiency.
  • the electromagnetic induction coil unit according to the tenth aspect of the present invention may be configured to have a parallel capacitance by adding a dielectric to the coil in the first or second aspect.
  • the electromagnetic induction coil unit according to the tenth aspect of the present invention configured as described above can prevent the influence of the loss of the lead wire connected to the electromagnetic induction coil unit.
  • the electromagnetic induction coil unit according to the eleventh aspect of the present invention may have a configuration in which a parallel capacitor is connected to both ends of the coil in the first or second aspect.
  • the electromagnetic induction coil unit according to the eleventh aspect of the present invention configured as described above can prevent the influence of the loss of the lead wire connected to the electromagnetic induction coil unit.
  • An electromagnetic induction device includes the electromagnetic induction coil unit according to the first to eleventh aspects, an inverter circuit that supplies high-frequency power to the coil of the electromagnetic induction coil unit, and the coil. And a matching circuit for matching with the inverter circuit.
  • the electromagnetic induction device configured as described above is a device with high power transmission efficiency and reduced manufacturing cost.
  • the figure which shows schematic structure of the electromagnetic induction apparatus of Embodiment 1 which concerns on this invention The perspective view which shows the structure of the electromagnetic induction coil unit used for the induction heating apparatus of Embodiment 1 which concerns on this invention.
  • the top view which shows the structure of the electromagnetic induction coil unit used for the induction heating apparatus of Embodiment 1 which concerns on this invention.
  • Sectional drawing of the electromagnetic induction coil unit used for the induction heating apparatus of Embodiment 1 which concerns on this invention The graph which shows the relationship of the relative magnetic permeability of a partition magnetic body, the resistance value [m (ohm)] of a coil, and power transmission efficiency [%] in the induction heating apparatus of Embodiment 1 which concerns on this invention.
  • the graph which shows the relationship between the number of turns from the center of a partition magnetic body, the coil resistance value [m ⁇ ], and the power transmission efficiency [%] in the induction heating apparatus according to the first embodiment of the present invention.
  • the graph which shows the relationship between the distance [mm] of a coil and a to-be-heated material, the resistance value [m (ohm)] of a coil, and power transmission efficiency [%] in the induction heating apparatus of Embodiment 1 which concerns on this invention.
  • the circuit diagram which shows an example of a structure of the matching circuit connected to the coil of the electromagnetic induction coil unit in the induction heating apparatus of Embodiment 1 which concerns on this invention The circuit diagram which shows another structural example of the matching circuit in Embodiment 1 which concerns on this invention
  • the circuit diagram which shows another structure of the matching circuit in Embodiment 1 which concerns on this invention Sectional drawing which shows the structure of the electromagnetic induction coil unit in the electromagnetic induction apparatus of Embodiment 2 which concerns on this invention.
  • an electromagnetic induction coil unit is used as a heating coil in an induction heating apparatus as an embodiment of the electromagnetic induction coil unit of the present invention
  • the electromagnetic induction coil unit of the present invention is not limited to the configuration used as the heating coil of the induction heating device described in the following embodiment, but is equivalent to the technical idea described in the following embodiment. It is used as an electromagnetic induction coil unit of an electromagnetic induction device configured based on the technical idea of the above and the technical common sense in this technical field.
  • FIG. 1 is a diagram showing a schematic configuration of an induction heating apparatus as an electromagnetic induction apparatus according to Embodiment 1 using an electromagnetic induction coil unit of the present invention.
  • an induction heating apparatus according to Embodiment 1 includes a top plate 104 on which an object to be heated 105 is placed, an electromagnetic induction coil unit 100 as a heating coil disposed immediately below a heating region in the top plate 104, An inverter circuit 107 that supplies high-frequency power to the electromagnetic induction coil unit 100, a matching circuit 112 that matches impedances of the electromagnetic induction coil unit 100 and the inverter circuit 107, and a control unit 108 that drives and controls the inverter circuit 107 are provided. ing.
  • the induction heating apparatus includes a temperature sensor 109 that detects infrared rays emitted from the object to be heated 105 and detects the temperature of the object to be heated 105, an operation unit 110 provided on the top plate 104, and the like.
  • the component provided in the general induction heating apparatus of this is provided.
  • the control unit 108 drives and controls the inverter circuit 107 to supply a high-frequency current to the electromagnetic induction coil unit 100. Then, the object to be heated 105 is heated to a desired state.
  • FIG. 2 is a perspective view showing a configuration of the electromagnetic induction coil unit 100 used in the induction heating apparatus according to the first embodiment of the present invention.
  • Arrows X, Y, and Z shown in FIG. 2 are coordinate axes that indicate the three-axis directions of the X axis, the Y axis, and the Z axis in FIG.
  • FIG. 3 is a plan view showing the configuration of the electromagnetic induction coil unit 100, and shows the electromagnetic induction coil unit 100 in the XY axis plane.
  • FIG. 4 is a cross-sectional view of the electromagnetic induction coil unit 100 and the like in the Z-axis direction.
  • the electromagnetic induction coil unit 100 has a conductor 101 having a substantially planar spiral shape, for example, a coil 101 formed of a copper material.
  • the coil 101 does not have to be a single wire having a rectangular cross section as shown in FIG. 4, and various shapes such as a round shape and an elliptical shape can be applied.
  • the coil 101 is not limited to a single wire, and may be configured as a litz wire that twists a single wire.
  • the coil 101 is supplied with high-frequency power from the inverter circuit 107 and generates a high-frequency magnetic field.
  • the coil 101 that generates a magnetic field inductively heats the object to be heated 105 via the top plate 104 made of an electrical insulating material.
  • the electromagnetic induction coil unit 100 is provided with a partition magnetic body 102, an outer peripheral partition magnetic body 103, and a dielectric 106.
  • the partition magnetic body 102 is a magnetic body (phyllite) having a substantially planar spiral shape, and is disposed between conductors in the spiral coil 101.
  • the peripheral partition wall magnetic body 103 is a magnetic body (ferrite) disposed so as to cover the periphery of the coil 101.
  • the dielectric 106 is made of a dielectric material having a relative dielectric constant exceeding 1, and is attached to the coil 101. As shown in the sectional view of FIG. 4, the dielectric 106 according to the first embodiment will be described as an example in which it is mounted so as to cover the entire coil 101. However, the dielectric 106 does not need to cover the entire coil 101. Any configuration is possible as long as the dielectric 106 is attached to a part of the coil 101 and can maintain the shape of the coil 101. For example, a configuration in which the coil is placed on the spirally formed dielectric 106 or a configuration in which a part of the coil 101 is sandwiched by the dielectric 106 may be used.
  • the coil 101 is a spiral conductor, when a current is passed through the coil 101, a magnetic field is concentrated near the central axis of the coil 101. For this reason, in the vicinity of the central axis of the coil 101, a proximity effect occurs due to the influence of the magnetic field distribution generated by the coil 101. Specifically, the current distribution of the conductor cross section (Z-axis direction cross section) in the coil 101 is biased toward the central axis, and the resistance value of the coil 101 increases. By inserting the partition magnetic body 102 between the conductors of the coil 101, the magnetic field concentrates on the partition magnetic body 102, so that the current flowing through the coil 101 is not affected by the magnetic field distribution generated by the coil 101. Thereby, a proximity effect is suppressed and an increase in the resistance value of the coil 101 can be prevented. That is, the partition magnetic body 102 functions as a magnetic shield.
  • FIG. 5 is a graph showing the relationship between the relative magnetic permeability of the partition wall magnetic body 102, the resistance value [m ⁇ ] of the coil 101, and the power transmission efficiency [%].
  • the graph shown in FIG. 5 is a calculation result when the number of turns of the coil 101 is five. In the calculation at this time, the partition wall magnetic body 102 is inserted in all regions (inter-conductor regions) of the coil 101.
  • the power transmission efficiency is the ratio of the power transmitted to the heated object 105 to the input power to the coil 101.
  • the power transmission efficiency at the relative permeability of the partition wall magnetic body 102 is indicated by a white circle ( ⁇ )
  • the resistance value of the coil 101 at the relative permeability of the partition wall magnetic body 102 is indicated by a cross ( ⁇ ).
  • the partition magnetic body 102 is inserted along the inner side of the coil 101 by a predetermined length in the direction from the central axis end side of the coil 101 to the outer side.
  • the partition magnetic body 102 is inserted from the central axis of the coil 101 to the region between the conductors up to 3 windings of the coil 101.
  • the partition magnetic body 102 has a spiral shape of three turns.
  • FIG. 6 is a graph showing the relationship between the number of turns from the center of the partition wall magnetic body 102, the resistance value [m ⁇ ] of the coil 101, and the power transmission efficiency [%].
  • the graph shown in FIG. 6 is an experimental result when the number of turns of the coil 101 is 19.
  • the power transmission efficiency in the graph illustrated in FIG. 6 is the same as the power transmission efficiency illustrated in FIG. 5, and is the ratio of the power transmitted to the object to be heated 105 to the input power to the coil 101.
  • the power transmission efficiency at the number of turns of the partition wall magnetic body 102 is indicated by a white circle ( ⁇ )
  • the resistance value of the coil 101 at the number of turns of the partition wall magnetic body 102 is indicated by a cross ( ⁇ ).
  • the resistance value of the coil 101 decreases as the number of turns increases, and the power transmission efficiency increases.
  • the power transmission efficiency is maximized when the number of turns of the partition magnetic body 102 is 10 which is about half of the number of turns (19) of the coil 101.
  • the number of turns of the partition magnetic body 102 exceeds 10
  • the magnetic coupling with the object to be heated 105 for example, a pan
  • the power transmission efficiency is gradually lowered.
  • the partition magnetic body 102 be inserted into the inter-conductor region from the central axis of the coil 101 to a quarter (25%) to three-quarters (75%) of the number of turns of the coil 101. Understandable. In particular, it is more preferable to insert the partition wall magnetic body 102 from the central axis of the coil 101 to the vicinity of the inter-conductor region that is half the number of turns of the coil 101, that is, from 40% to 60% of the number of turns of the coil 101.
  • FIG. 7 is a graph showing the relationship between the distance [mm] between the coil 101 and the object to be heated 105, the resistance value [m ⁇ ] of the coil 101, and the power transmission efficiency [%].
  • the number of turns of the coil 101 is 5, and the distance E (see FIG. 4) between the surface of the partition wall magnetic body 102 (the surface facing the top plate 104) and the object to be heated 105 is 4.
  • This is a calculation result when the distance F between the surface of the coil 101 (surface facing the top plate 104) and the object to be heated 105 is changed (1 to 10 mm) while being fixed at 5 mm. In the calculation at this time, the partition wall magnetic body 102 is inserted in all regions of the coil 101.
  • the power transmission efficiency is the ratio of the power transmitted to the object to be heated 105 to the input power to the coil 101.
  • the power transmission efficiency at the distance between the coil 101 and the object to be heated 105 is indicated by a white circle ( ⁇ )
  • the resistance value of the coil 101 at the distance between the coil 101 and the object to be heated 105 is indicated by a cross ( ⁇ ).
  • the distance between the coil 101 and the object to be heated 105 becomes shorter than 10 mm, the mutual magnetic coupling becomes stronger and the power transmission efficiency increases.
  • the distance E (see FIG. 4) between the partition wall magnetic body 102 and the object 105 to be heated is fixed at 4.5 mm. It can be understood that it is preferable to dispose 1.5 mm or more from the surface of 102. Therefore, as shown in FIG.
  • the thickness dimension A of the partition magnetic body 102 is set larger than the thickness dimension D of the coil 101.
  • the distance B between the surface of the partition wall magnetic body 102 (surface facing the top plate 104) and the surface of the coil 101 (surface facing the top plate 104) is preferably set to 1.5 mm or more.
  • the thickness is preferably 1.5 mm or more.
  • the structure of the partition wall magnetic body 102 is formed in a spiral shape from a ferrite material, and is disposed along the inner portion of the coil 101 by a predetermined number of turns from the central axis end side of the coil 101. As shown in FIG. 4, it is preferable that the thickness dimension A (length in the central axis direction) of the partition magnetic body 102 is larger than the thickness dimension D (length in the central axis direction) of the coil 101.
  • the body 102 is preferably disposed close to the top plate 104.
  • the partition wall magnetic body 102 By providing the partition wall magnetic body 102 in this way, the effect of suppressing the proximity effect is strengthened, and the distance E from the object to be heated 105 is shortened, so that the magnetic coupling with the object to be heated 105 is strengthened and the power transmission efficiency is improved. To rise.
  • the distance G between the conductors of the coil 101 in which the partition magnetic body 102 is not inserted be as short as possible. Since the proximity effect works strongly in the vicinity of the central axis of the coil 101, the proximity effect is suppressed by inserting the partition magnetic body 102. However, since the proximity effect is weak in the coil 101 in the outer region where the partition magnetic body 102 is not inserted, the distance G between the conductors can be shortened. Further, the conductor cross-sectional area of the coil 101 in the outer region where the partition magnetic body 102 is not inserted may be widened. Thus, by configuring the conductor cross-sectional area in the outer region of the coil 101 to be wide, the resistance value of the coil 101 is reduced and the power transmission efficiency is increased.
  • the magnetic field is diluted by the partition wall magnetic body 102, so that the current flowing through the side surface of the coil 101 becomes very small.
  • the current flowing through the coil 101 flows in a concentrated manner on the front and back surfaces of the coil 101, and high power transmission efficiency can be exhibited.
  • the coil 101 of the electromagnetic induction coil unit 100 in the induction heating apparatus of the first embodiment has been described with reference to an example of a single wire having a rectangular conductor cross section as shown in FIGS. 2 to 4, but the present invention has such a shape. It is not limited to the above, and includes any conductor cross-sectional shape such as a round shape or an elliptical shape.
  • the coil in the electromagnetic induction coil unit of the present invention is not limited to a single wire, and may have a twisted wire structure such as a litz wire formed by twisting a plurality of single wires.
  • the number of turns of the coil in the electromagnetic induction coil unit of the present invention is not limited to the number of turns described in the first embodiment, and is appropriately set according to the specifications of the apparatus in which the electromagnetic induction coil unit is used.
  • the coil (101) of the electromagnetic induction coil unit according to the present invention there is no need to limit the shape and structure, etc., by inserting a partition wall magnetic body between the conductors of the coil (101). This is because the proximity effect is suppressed.
  • the frequency of the current input to the coil (101) does not affect the suppression of the proximity effect by the partition wall magnetic body (102). This is because the proximity effect depends on the distance between the conductors and not on the frequency.
  • the loss of the magnetic material generally increases as the frequency increases, it is desirable to use the magnetic material at a frequency that does not affect the loss.
  • the impedance of the coil 101 in the first embodiment will be described.
  • the real part of the impedance of the coil 101 is very small because the number of turns of the coil 101 is small or the like, the lead wire connecting the coil 101 and the inverter circuit 107, and the contact between the lead wire and the terminal connecting the coil 101
  • the influence of the resistance and the contact resistance of the terminal connecting the lead wire and the inverter circuit is increased, and the power transmission efficiency is deteriorated. This is because the rate at which the high frequency power output from the inverter circuit 107 is input to the coil 101 decreases.
  • the impedance of the coil 101 matches the output impedance of the inverter circuit 107, the power that can be supplied to the coil 101 is maximized.
  • FIG. 8 is a circuit diagram showing an example of the configuration of the matching circuit 112 inserted between the coil 101 of the electromagnetic induction coil unit 100 and the inverter circuit 107 in the induction heating apparatus of the first embodiment.
  • This matching circuit 112 is an example in which the frequency is 23 kHz, the impedance ZL of the coil 101 is 0.3 + j1.5 ⁇ , and the output impedance of the inverter circuit 107 is 1 ⁇ .
  • a matching circuit 112 having a parallel capacitance Cp of 2.2 ⁇ F is connected to the coil 101. As a result, the impedance is converted to 1 + j2.7 ⁇ . Thereafter, a 2.6 ⁇ F series capacitor Cs is inserted between the matching circuit 112 and the inverter circuit 107.
  • the coil 101 and the inverter circuit 107 can be matched.
  • the matching circuit 112 of the parallel capacitor Cp By connecting the matching circuit 112 of the parallel capacitor Cp to the coil 101, the influence of the lead wire 111 can be prevented by increasing the impedance real part of the coil 101 without loss.
  • FIG. 9 and 10 are circuit diagrams showing another configuration example of the matching circuit.
  • the series capacitor Cs may be inserted between the lead wire 111 and the parallel capacitor Cp.
  • a series capacitor Cs may be inserted between the coil 101 and the parallel capacitor Cp as in the matching circuit 112B shown in FIG.
  • the dielectric 106 is attached to the coil 101, so that it is possible to intentionally increase the parasitic capacitance generated between the conductors of the coil 101.
  • a parallel capacitor can be added to the inside of the structure of the electromagnetic induction coil unit 100. As a result, the number of parts as a matching circuit can be reduced.
  • the electromagnetic induction coil unit 100 in the electromagnetic induction device of the first embodiment parameters such as the magnetic permeability, dimensions, and insertion region of the partition wall magnetic body 102 inserted into the coil 101 are set to optimum values.
  • the proximity effect can be effectively suppressed, coil loss can be reduced, and high power transmission efficiency can be realized.
  • the electromagnetic induction coil unit 100 in the electromagnetic induction device of Embodiment 1 can achieve high power transmission efficiency, it is possible to simplify the coil structure and achieve further reduction in manufacturing cost. be able to.
  • the electromagnetic induction device according to the first embodiment is a highly reliable device having high power transmission efficiency with reduced manufacturing costs.
  • FIG. 11 is a cross-sectional view showing a configuration of electromagnetic induction coil unit 100A in the electromagnetic induction device according to the second embodiment of the present invention.
  • the electromagnetic induction device of the second embodiment is different from the induction heating device of the first embodiment described above in the configuration of the electromagnetic induction coil unit 100A, and the other points are the same as those of the induction heating device of the first embodiment. . Therefore, in the description of the second embodiment, components having the same functions and configurations as those of the first embodiment are denoted by the same reference numerals, and the description of the first embodiment is applied to the description.
  • the coil 101A, the partition magnetic body 102A, the outer peripheral partition magnetic body 103, and the dielectric 106 are provided in the same manner as the electromagnetic induction coil unit 100 according to the first embodiment.
  • the electromagnetic induction coil unit 100A in the second embodiment only the configurations of the coil 101A and the partition wall magnetic body 102A are different, and the other configurations are the same.
  • the substantially planar spiral coil 101A has a multilayer structure in which a plurality of coiled bodies are stacked in the vertical direction (the central axis direction of the coil 101A).
  • the partition wall magnetic body 102A is configured by superposing a plurality of substantially planar spiral magnetic bodies, and has a gap between the magnetic bodies. That is, the partition wall magnetic body 102A in the second embodiment has a multiple structure in which spiral magnetic bodies are stacked, and is inserted between the conductors of the coil 101A as in the first embodiment.
  • the magnetic permeability of the partition wall magnetic body 102A, the number of turns of the coil 101A, and the positional relationship between the partition wall magnetic body 102A and the coil 101A in the electromagnetic induction coil unit 100A of Embodiment 2 are the same as those in the induction heating apparatus of Embodiment 1 described above. This is the same as the electromagnetic induction coil unit 100.
  • the coil 101A has a two-layer structure and the partition wall magnetic body 102A has a triple structure, but the present invention is limited to this structure. Instead, it is set as appropriate according to the specifications of the induction heating device. Therefore, in the following description, the coil 101A has a multilayer structure with two or more layers, and the partition magnetic body 102A has a multiple structure with two or more layers.
  • the partition magnetic body 102A has a multiple structure having a gap penetrating in the central axis direction of the coil 101A.
  • the partition wall magnetic body 102A has a multi-layer structure having voids, the magnetic shielding effect is increased and the effect of suppressing the proximity effect is strengthened.
  • the resistance value of the coil 101A was greatly reduced and the power transmission efficiency was increased by introducing a gap.
  • the coil 101A in the second embodiment has a multilayer structure
  • the current flowing in the cross section of the coil 101A becomes very small due to the skin effect.
  • the current flowing through the side surface of the coil 101A is very small because the magnetic field is diluted by the partition magnetic body 102A.
  • the current flowing through the coil 101A is concentrated on the front and back surfaces of the coil 101A.
  • the coil 101A has a multi-layer structure, current flows in a concentrated manner on the surface of the uppermost layer (the upper surface of the uppermost layer in FIG. 11) and the back surface of the lowermost layer (the lower surface of the lowermost layer in FIG. 11). . Therefore, even if it has a multilayer structure like the coil 101A of the second embodiment, the power transmission efficiency hardly changes.
  • the conditions such as the magnetic permeability, size, and insertion region of the partition wall magnetic body 102A inserted between the conductors of the coil 101A are as described above. The same conditions as those described in Embodiment 1 are applied. Therefore, in the electromagnetic induction coil unit 100A in the induction heating apparatus of the second embodiment, the proximity is achieved by setting various parameters such as the magnetic permeability, dimensions, and insertion region of the partition magnetic body 102A inserted into the coil 101A to optimum values. The effect can be effectively suppressed, coil loss can be reduced, and high power transmission efficiency can be realized.
  • the electromagnetic induction coil unit 100A in the electromagnetic induction device of the second embodiment can achieve high power transmission efficiency, the coil structure can be simplified and the manufacturing cost can be reduced. As a result, the electromagnetic induction device according to the second embodiment is a highly reliable device with reduced manufacturing cost and high power transmission efficiency.
  • the electromagnetic induction coil unit of the electromagnetic induction device of the present invention can be applied to a non-contact type charging device.
  • an electromagnetic induction device is used in a non-contact charging device used for charging a secondary battery of an electric vehicle (EV), and the electromagnetic induction coil described in the above embodiment is used as the electromagnetic induction device. Units can be used.
  • FIG. 12 is a diagram showing a vehicle 200 equipped with a non-contact charging device having an electromagnetic induction coil unit of the present invention and a parking lot.
  • the vehicle 200 shown in FIG. 12 is an electric vehicle (EV) and is a diagram illustrating a state where the vehicle 200 is stopped in a parking lot. As shown in FIG.
  • EV electric vehicle
  • the first electromagnetic induction coil unit 100B is provided at the lower part of the main body of the vehicle 200, and the second electromagnetic induction coil unit 100C is provided in the parking area of the parking lot where the vehicle 200 is parked. ing.
  • the second electromagnetic induction coil unit 100 ⁇ / b> C protrudes from the parking surface so as to be disposed in the vicinity of the first electromagnetic induction coil unit 100 ⁇ / b> B of the vehicle 200.
  • the second electromagnetic induction coil unit 100C moves up to a position close to the first electromagnetic induction coil unit 100B when the vehicle 200 stops in a predetermined parking area and becomes in a chargeable state. You may comprise.
  • the electromagnetic induction coil units (100B, 100C) provided in the vehicle 200 and the parking area have the same configuration as the electromagnetic induction coil unit described in the first embodiment or the second embodiment.
  • at least one of the two electromagnetic induction coil units (100B, 100C) shown in FIG. 12 may have the same configuration as the electromagnetic induction coil unit described in the first embodiment or the second embodiment.
  • the electromagnetic induction coil unit of the electromagnetic induction device of the present invention is applied to a non-contact type charging device, and each parameter such as permeability, dimension, insertion region, etc. of the partition wall magnetic body inserted into the coil is optimized.
  • the proximity effect can be effectively suppressed, coil loss can be reduced, and high power transmission efficiency can be realized.
  • the electromagnetic induction coil unit of the present invention is not limited to induction heating devices used in general homes, restaurants, factories, etc., but is applicable to all electromagnetic induction devices using the principle of electromagnetic induction, such as wireless tags and non-contact charging devices. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

 コイル損失を低減し、高い電力伝送効率を実現して、製造コストが低減された電磁誘導コイルユニットおよび電磁誘導装置を提供するために、螺旋状の導体で形成されたコイル(101)と、螺旋状の磁性体で形成され、コイル(101)の螺旋状の導体の少なくとも一部を挟むように配置された隔壁磁性体(102)と、を備えている。

Description

電磁誘導コイルユニットおよび電磁誘導装置
 本発明は、電磁誘導の原理を利用する電磁誘導装置に関し、特に、例えば一般家庭、レストランおよび工場などで使用される誘導加熱装置、無線タグ、および非接触型充電装置などに用いられる電磁誘導コイルユニットに関するものである。
 近年、誘導加熱調理器に代表される誘導加熱装置が一般家庭に普及している。従来の誘導加熱調理器に用いられている加熱コイルは、表皮効果を軽減し、加熱コイルの損失を抑えるため、細い銅線を数十本程度撚りあわせたリッツワイヤで構成することが一般的に行われていた(例えば、特許文献1参照)。また、リッツワイヤを用いない簡易で低コストであるコイル構成としては、金属板を打抜くことにより製作できる平板コイルを用いた構成が検討されている(例えば、特許文献2参照)。
特開平9-245949号公報 特開2002-75613号公報
 しかしながら、上記のように従来の誘導加熱調理器において加熱コイルがリッツワイヤで構成されている場合には、細いエナメル線を撚りあわせて製造するため、製造コストが高くなるという課題があった。また、平板コイルの場合には、製造が容易であり低コストであるが、リッツワイヤで構成された場合に比べるとコイル損失が大きいため、加熱コイルの発熱が大きくなり、効率が低下するという性能面での課題があった。したがって、誘導加熱調理器においては、平板コイルを加熱コイルとして使用することは実用化されていなかった。
 本発明は、前記の従来の電磁誘導装置における課題に鑑み、電磁誘導の原理を利用した電磁誘導装置に用いられる電磁誘導コイルにおいて、コイル損失を低減し、高い電力伝送効率を実現して、製造コストを低減することができる信頼性の高い電磁誘導コイルユニットを提供するとともに、この電磁誘導コイルユニットを用いて効率高く電力伝送することができ、製造コストが低減された電磁誘導装置を提供することを目的とする。
 本発明は従来の電磁誘導装置における課題を解決して前記の目的を達成するために以下の構成を有する。
 本発明に係る第1の態様の電磁誘導コイルユニットは、螺旋状の導体で形成されたコイルと、螺旋状の磁性体で形成され、前記コイルの螺旋状の導体の少なくとも一部を挟むように配置された隔壁磁性体と、を備えている。このように構成された本発明に係る第1の態様の電磁誘導コイルユニットは、コイル損失が低減され、高い電力伝送効率を実現することができる。
 本発明に係る第2の態様の電磁誘導コイルユニットにおいては、前記の第1の態様における前記隔壁磁性体を前記コイルの中心軸側端部から所定長さの導体を挟むように配置してもよい。このように構成された本発明に係る第2の態様の電磁誘導コイルユニットは、コイル損失が低減され、高い電力伝送効率を実現することができる。
 本発明に係る第3の態様の電磁誘導コイルユニットは、前記の第1または第2の態様において、前記コイルを保持する誘電体が設けられている。このように構成された本発明に係る第3の態様の電磁誘導コイルユニットは、製造が容易となり、信頼性の高い電磁誘導コイルユニットを提供することができるとともに、電磁誘導装置に対するアセンブリを容易なものとする。
 本発明に係る第4の態様の電磁誘導コイルユニットにおいては、前記の第1または第2の態様における前記コイルの外周を覆うように配置された外周隔壁磁性体を更に備えた構成としてもよい。このように構成された本発明に係る第4の態様の電磁誘導コイルユニットは、外部への磁界の漏洩が防止され、信頼性の高い電磁誘導コイルユニットを提供することができる。
 本発明に係る第5の態様の電磁誘導コイルユニットにおいて、前記の第1または第2の態様における前記隔壁磁性体は、比透磁率が5以上1000以下の磁性体で構成することが好ましい。このように構成された本発明に係る第5の態様の電磁誘導コイルユニットは、近接効果によるコイル抵抗値の増大を確実に抑制し、高い電力伝送効率を実現することができる。
 本発明に係る第6の態様の電磁誘導コイルユニットにおいては、前記の第2の態様における前記隔壁磁性体を、前記コイルの中心側端部から前記コイルの全巻き数の25%から75%までの導体を挟むように配置してもよい。このように構成された本発明に係る第6の態様の電磁誘導コイルユニットは、近接効果によるコイル抵抗値の増大を抑制し、高い電力伝送効率を実現することができる。
 本発明に係る第7の態様の電磁誘導コイルユニットは、前記の第1または第2の態様において、前記コイルの中心軸方向における前記隔壁磁性体の寸法が、前記コイルの中心軸方向の寸法より大きく、前記隔壁磁性体における前記中心軸方向で対向する面から1.5mm以上内側に前記コイルにおける前記中心軸方向で対向する面を配置する構成とすることが好ましい。このように構成された本発明に係る第7の態様の電磁誘導コイルユニットは、近接効果によるコイル抵抗値の増大を確実に抑制し、高い電力伝送効率を実現することができる。
 本発明に係る第8の態様の電磁誘導コイルユニットは、前記の第1または第2の態様における前記隔壁磁性体が、前記コイルの中心軸方向に貫通する空隙を持つ多重構造としてもよい。このように構成された本発明に係る第8の態様の電磁誘導コイルユニットは、隔壁磁性体による磁気シールド効果を増大させることができる。
 本発明に係る第9の態様の電磁誘導コイルユニットは、前記の第1または第2の態様における前記コイルが、前記コイルの中心軸方向に積層された多層構造としてもよい。このように構成された本発明に係る第9の態様の電磁誘導コイルユニットは、高出力を有するとともに、高い電力伝送効率を実現することができる。
 本発明に係る第10の態様の電磁誘導コイルユニットは、前記の第1または第2の態様において、前記コイルに誘電体を付加して並列容量を有する構成としてもよい。このように構成された本発明に係る第10の態様の電磁誘導コイルユニットは、当該電磁誘導コイルユニットに接続されたリード線の損失の影響を防ぐことができる。
 本発明に係る第11の態様の電磁誘導コイルユニットは、前記の第1または第2の態様において、前記コイルの両端に並列容量を接続した構成としてもよい。このように構成された本発明に係る第11の態様の電磁誘導コイルユニットは、当該電磁誘導コイルユニットに接続されたリード線の損失の影響を防ぐことができる。
 本発明に係る第12の態様の電磁誘導装置は、前記の第1乃至第11の態様における電磁誘導コイルユニットと、前記電磁誘導コイルユニットのコイルに高周波電力を供給するインバータ回路と、前記コイルと前記インバータ回路との間の整合をとる整合回路と、を具備する。このように構成された本発明に係る第12の態様の電磁誘導装置は、電力伝送効率が高く製造コストが低減された装置となる。
 本発明によれば、コイル損失が低減され、高い電力伝送効率が実現されて、製造コストが低減された信頼性の高い電磁誘導コイルユニットを提供することができるとともに、電力伝送効率が高く製造コストが低減された電磁誘導装置を提供することができる。
本発明に係る実施の形態1の電磁誘導装置の概略構成を示す図 本発明に係る実施の形態1の誘導加熱装置に用いられている電磁誘導コイルユニットの構成を示す斜視図 本発明に係る実施の形態1の誘導加熱装置に用いられている電磁誘導コイルユニットの構成を示す平面図 本発明に係る実施の形態1の誘導加熱装置に用いられている電磁誘導コイルユニットの断面図 本発明に係る実施の形態1の誘導加熱装置における、隔壁磁性体の比透磁率、コイルの抵抗値[mΩ]、および電力伝送効率[%]の関係を示すグラフ 本発明に係る実施の形態1の誘導加熱装置における、隔壁磁性体の中心からの巻き数、コイルの抵抗値[mΩ]、および電力伝送効率[%」の関係を示すグラフ 本発明に係る実施の形態1の誘導加熱装置における、コイルと被加熱物の距離[mm]、コイルの抵抗値[mΩ]、および電力伝送効率[%]の関係を示すグラフ 本発明に係る実施の形態1の誘導加熱装置における電磁誘導コイルユニットのコイルに接続される整合回路の構成の一例を示す回路図 本発明に係る実施の形態1における整合回路の別の構成例を示す回路図 本発明に係る実施の形態1における整合回路の別の構成を示す回路図 本発明に係る実施の形態2の電磁誘導装置における電磁誘導コイルユニットの構成を示す断面図 本発明の電磁誘導コイルユニットを有する非接触型充電装置が装備された車両などを示す図
 以下、本発明の電磁誘導コイルユニットに係る実施の形態として電磁誘導コイルユニットを加熱コイルとして誘導加熱装置に用いた例について、添付の図面を参照しながら説明する。なお、本発明の電磁誘導コイルユニットは、以下の実施の形態に記載した誘導加熱装置の加熱コイルとして用いた構成に限定されるものではなく、以下の実施の形態において説明する技術的思想と同等の技術的思想及び当技術分野における技術常識に基づいて構成される電磁誘導装置の電磁誘導コイルユニットとして用いられるものである。
 (実施の形態1)
 図1は本発明の電磁誘導コイルユニットを用いた実施の形態1の電磁誘導装置としての誘導加熱装置の概略構成を示す図である。図1において、実施の形態1の誘導加熱装置は、被加熱物105を載置するトッププレート104と、トッププレート104における加熱領域の直下に配置された加熱コイルとしての電磁誘導コイルユニット100と、電磁誘導コイルユニット100に高周波電力を供給するインバータ回路107と、電磁誘導コイルユニット100とインバータ回路107とのインピーダンスを整合させる整合回路112と、インバータ回路107を駆動制御する制御部108と、を備えている。また、実施の形態1の誘導加熱装置は、被加熱物105から放射された赤外線を検出して当該被加熱物105の温度を検知する温度センサ109、トッププレート104に設けられた操作部110などの一般的な誘導加熱装置に設けられている構成要素が備えられている。温度センサ109からの検知信号、操作部110から操作信号、およびインバータ回路107の出力信号などに基づいて制御部108は、インバータ回路107を駆動制御して電磁誘導コイルユニット100に高周波電流を供給し、被加熱物105を所望の状態に加熱する。
 図2は本発明に係る実施の形態1の誘導加熱装置に用いられている電磁誘導コイルユニット100の構成を示す斜視図である。図2に示す矢印X、YおよびZは、図2におけるX軸、Y軸およびZ軸の3軸方向を示す座標軸である。図3は電磁誘導コイルユニット100の構成を示す平面図であり、X-Y軸面における電磁誘導コイルユニット100を示している。図4は電磁誘導コイルユニット100などのZ軸方向の断面図である。
 電磁誘導コイルユニット100は実質的に平面的な螺旋状の形状を有する導体、例えば銅材により形成されたコイル101を有している。なお、コイル101は、図4に示すように断面が矩形状の単線でなくてもよく、断面が丸形状、楕円形状などの各種形状が適用できる。また、コイル101は単線に限定されるものでもなく、単線を撚り合わせるリッツワイヤのような構成でもよい。
 コイル101はインバータ回路107からの高周波電力が供給されて、高周波の磁界を発生する。このように磁界を発生したコイル101により、電気絶縁材により構成されたトッププレート104を介して被加熱物105が誘導加熱される。
 図4に示すように、電磁誘導コイルユニット100にはコイル101の他に、隔壁磁性体102、外周隔壁磁性体103、および誘電体106が設けられている。隔壁磁性体102は、実質的に平面的な螺旋状の形状を有する磁性体(フィライト)であり、螺旋状のコイル101における導体間に挿入されて配置されている。外周隔壁磁性体103は、コイル101の周囲を覆うように配置された磁性体(フェライト)である。外周隔壁磁性体103を設けることにより、コイル101の外部への磁界の漏洩が防止されている。
 誘電体106は、比誘電率が1を超える誘電材料により形成されており、コイル101に装着されている。実施の形態1における誘電体106においては、図4の断面図に示すように、コイル101の全てを覆うように装着した例で説明するが、誘電体106がコイル101の全てを覆う必要は無く、誘電体106がコイル101の一部に装着されてコイル101の形状を保持できる構成であればよい。例えば、螺旋状に形成された誘電体106の上に載置する構成や、コイル101の一部を誘電体106で挟着するような構成でもよい。
 以上のように構成された本発明に係る実施の形態1の誘導加熱装置における電磁誘導コイルユニットの動作について説明する。
 コイル101は螺旋状の導体であるため、コイル101に電流を流すとコイル101の中心軸付近に磁界の集中が生じる。このため、コイル101の中心軸付近ではコイル101により生じる磁界分布の影響を受けて近接効果が発生する。具体的には、コイル101における導体断面(Z軸方向断面)の電流分布は中心軸側に偏った形となり、コイル101の抵抗値が増大する。隔壁磁性体102をコイル101の導体間に挿入することにより、磁界が隔壁磁性体102に集中するため、コイル101に流れる電流はコイル101の発生する磁界分布の影響を受けない。これにより、近接効果が抑制され、コイル101の抵抗値増大を防ぐことができる。つまり、隔壁磁性体102が磁気シールドとして機能する。
 [隔壁磁性体102の透磁率]
 次に、隔壁磁性体102の詳細について説明する。
 最初に、隔壁磁性体102の透磁率について説明する。図5は隔壁磁性体102の比透磁率、コイル101の抵抗値[mΩ]、および電力伝送効率[%]の関係を示すグラフである。図5に示すグラフはコイル101の巻き数を5とした場合の計算結果である。このときの計算においては、隔壁磁性体102がコイル101の全ての領域(導体間領域)に挿入されている。
 図5に示すグラフにおいて、電力伝送効率はコイル101への入力電力に対する、被加熱物105に伝わった電力の割合である。図5に示すグラフにおいて、隔壁磁性体102の比透磁率における電力伝送効率を白丸(○)で示し、隔壁磁性体102の比透磁率におけるコイル101の抵抗値をクロス(×)で示す。
 図5のグラフに示すように、隔壁磁性体102の比透磁率を1から上昇させていくと、近接効果が隔壁磁性体102により軽減されて、コイル101の抵抗値が減少し、電力伝送効率は上昇する。比透磁率が100付近においては、電力伝送効率が最大となる。しかし、比透磁率が100を超えると被加熱物105、例えば鍋との磁気結合が弱まるため、徐々に電力伝送効率は低下していく。電力伝送効率を90%以上確保するためには、隔壁磁性体102の比透磁率を5以上1000以下の範囲に設定する必要がある。
 [隔壁磁性体102を挿入すべき領域]
 次に、隔壁磁性体102を挿入すべき領域について説明する。図2および図3に示すように、隔壁磁性体102はコイル101の中心軸端部側から外側の方向に所定の長さだけコイル101の内側に沿って挿入されている。図2および図3に示した電磁誘導コイルユニット100の場合、隔壁磁性体102はコイル101の中心軸からコイル101の巻き数が3までの導体間の領域まで挿入されている。このとき、隔壁磁性体102は3回巻きの螺旋形状となる。図6は隔壁磁性体102の中心からの巻き数、コイル101の抵抗値[mΩ]、および電力伝送効率[%」の関係を示すグラフである。図6に示すグラフは、コイル101の巻き数を19とした場合の実験結果である。図6に示すグラフにおける電力伝送効率は、図5に示した電力伝送効率と同じであり、コイル101への入力電力に対する、被加熱物105に伝わる電力の割合である。図6においては、隔壁磁性体102の巻き数における電力伝送効率を白丸(○)で示し、隔壁磁性体102の巻き数におけるコイル101の抵抗値をクロス(×)で示す。
 図6のグラフに示すように、隔壁磁性体102の巻き数がゼロから10までの領域においては、巻き数が増加するにつれてコイル101の抵抗値が減少し、電力伝送効率は上昇した。図6に示すグラフにおいては、隔壁磁性体102の巻き数がコイル101の巻き数(19)の約半分である10のとき電力伝送効率が最大となった。しかし、隔壁磁性体102の巻き数が10を超えると、被加熱物105、例えば鍋との磁気結合が弱まり、徐々に電力伝送効率が低下していく。この結果から、隔壁磁性体102はコイル101の中心軸からコイル101の巻き数の4分の1(25%)から4分の3(75%)までの導体間領域に挿入したほうが好ましいことが理解できる。特に、隔壁磁性体102はコイル101の中心軸からコイル101の巻数の半分の導体間領域近傍、すなわちコイル101の巻数の40%から60%までの領域まで挿入することがさらに好ましい。
 [隔壁磁性体102の寸法]
 次に、隔壁磁性体102の寸法について説明する。図7はコイル101と被加熱物105との距離[mm]、コイル101の抵抗値[mΩ]、および電力伝送効率[%]の関係を示すグラフである。図7に示すグラフは、コイル101の巻き数を5とし、隔壁磁性体102の表面(トッププレート104に対向する面)と被加熱物105との間の距離E(図4参照)を4.5mmで固定し、コイル101の表面(トッププレート104に対向する面)と被加熱物105との間の距離Fを変化(1~10mm)させた場合の計算結果である。このときの計算においては、隔壁磁性体102がコイル101の全ての領域に挿入されている。
 図7に示すグラフにおいて、電力伝送効率はコイル101への入力電力に対する、被加熱物105に伝わった電力の割合である。図7においては、コイル101と被加熱物105の距離における電力伝送効率を白丸(○)で示し、コイル101と被加熱物105の距離におけるコイル101の抵抗値をクロス(×)で示す。
 図7のグラフに示すように、コイル101と被加熱物105の距離が10mmより短くなるに従い、互いの磁気結合が強まり電力伝送効率が上昇する。しかし、コイル101と被加熱物105の距離が6mmより短くなると、隔壁磁性体102の磁気シールドによる近接効果の抑制効果が徐々に失われて、電力伝送効率が悪化していく。したがって、隔壁磁性体102により近接効果を抑制するためには、隔壁磁性体102と被加熱物105の距離E(図4参照)が4.5mmで固定されているので、コイル101は隔壁磁性体102の表面から1.5mm以上内側に配置することが好ましいことが理解できる。したがって、図4に示すように、隔壁磁性体102の厚み寸法Aは、コイル101の厚み寸法Dより大きく設定される。また、隔壁磁性体102の表面(トッププレート104に対向する面)とコイル101の表面(トッププレート104に対向する面)との距離Bを1.5mm以上に設定することが好ましい。隔壁磁性体102の裏面(表面とは逆側の面)とコイル101の裏面(表面とは逆側の面)との距離Cにおいても、隔壁磁性体102により近接効果を抑制するためには、同様に1.5mm以上とすることが好ましいことが理解できる。
[隔壁磁性体102の構造]
 次に、隔壁磁性体102の構造について説明する。隔壁磁性体102の構造は、フェライト材により螺旋状に形成されており、コイル101の中心軸端部側から所定の巻き数のだけ、コイル101の内側部分に沿って配設されている。図4に示すように、隔壁磁性体102の厚み寸法A(中心軸方向の長さ)は、コイル101の厚み寸法D(中心軸方向の長さ)に比して大きいほうが好ましく、また隔壁磁性体102はトッププレート104に近づけて配置することが好ましい。このように隔壁磁性体102を設けることにより、近接効果の抑制効果が強まり、また被加熱物105との距離Eが短縮されるため、被加熱物105との磁気結合が強まり、電力伝送効率が上昇する。
 [コイル101の構造]
 コイル101の構造について説明する。図4において、隔壁磁性体102が挿入されていないコイル101の導体間の距離Gは、できるだけ短くしたほうが好ましい。コイル101の中心軸付近は近接効果が強く働くため、隔壁磁性体102を挿入して近接効果が抑制されている。しかし、隔壁磁性体102が挿入されていない外側領域のコイル101は近接効果が弱いため、導体間の距離Gを短くすることが可能である。また、隔壁磁性体102が挿入されていない外側領域のコイル101の導体断面積を広く構成してもよい。このように、コイル101の外側領域における導体断面積を広く構成することにより、コイル101の抵抗値が低下し、電力伝送効率が上昇する。
 実施の形態1の誘導加熱装置における電磁誘導コイルユニット100においては、隔壁磁性体102により磁界が希薄となるため、コイル101の側面に流れる電流は非常に小さくなる。この結果、コイル101に流れる電流はコイル101の表面と裏面に集中して流れ、高い電力伝送効率を発揮することができる。
 実施の形態1の誘導加熱装置における電磁誘導コイルユニット100のコイル101は、図2から図4に示したような導体断面が矩形状の単線の例で説明したが、本発明はこのような形状に限定されるものではなく、丸形状、楕円形状などのいずれの導体断面形状をも含むものである。
 また、本発明の電磁誘導コイルユニットにおけるコイルは単線に限定されるものでもなく、複数の単線を撚り合わせて形成するリッツワイヤのような撚り線構造でもよい。
 さらに、本発明の電磁誘導コイルユニットにおけるコイルの巻き数は、実施の形態1において説明した巻き数に限定されるものではなく、電磁誘導コイルユニットが用いられる装置の仕様などに応じて適宜設定される。なお、実施の形態1におけるコイル101の形状は円形の場合について説明したが、本発明におけるコイルの形状は円形のコイルに限定されるものではなく、四角形、三角形などの多角形を含むものである。
 上記のように、本発明における電磁誘導コイルユニットのコイル(101)において、形状および構造などを限定する必要がないのは、コイル(101)の導体間に隔壁磁性体を挿入することによりコイルにおける近接効果が抑制されるためである。
 また、コイル(101)に入力する電流の周波数は、隔壁磁性体(102)による近接効果の抑制には影響しない。これは近接効果が導体間の距離に依存し、周波数には依存しないためである。ただし、磁性体は一般的に周波数が高くなるほど損失が大きくなるため、損失の影響がない範囲の周波数で使用することが望ましい。
 次に、実施の形態1におけるコイル101のインピーダンスについて説明する。コイル101の巻き数が少ないなどの理由でコイル101のインピーダンスの実部が非常に小さい場合、コイル101とインバータ回路107との間を接続するリード線、リード線とコイル101を接続する端子の接触抵抗、およびリード線とインバータ回路を接続する端子の接触抵抗などの影響が大きくなり、電力伝送効率が悪化する。これは、インバータ回路107から出力された高周波電力がコイル101に入力される割合が低下するためである。コイル101のインピーダンスがインバータ回路107の出力インピーダンスと整合しているとき、コイル101に供給できる電力は最大となる。
 したがって、コイル101のインピーダンスをインバータ回路107の出力インピーダンスの実部と同程度まで大きくする必要がある。
 図8は実施の形態1の誘導加熱装置における電磁誘導コイルユニット100のコイル101とインバータ回路107との間に挿入される整合回路112の構成の一例を示す回路図である。この整合回路112は、周波数を23kHz、コイル101のインピーダンスZLを0.3+j1.5Ω、インバータ回路107の出力インピーダンスを1Ωとした場合の例である。2.2μFの並列容量Cpを有する整合回路112をコイル101に接続する。これにより、インピーダンスは1+j2.7Ωへ変換される。その後に2.6μFの直列容量Csを整合回路112とインバータ回路107との間に挿入する。これにより、コイル101とインバータ回路107との間の整合を取ることができる。コイル101に並列容量Cpの整合回路112を接続することにより、コイル101のインピーダンス実部を損失することなく大きくすることにより、リード線111の影響を防ぐことができる。
 図9および図10は、整合回路の別の構成例を示す回路図である。図9に示す整合回路112Aのように、直列容量Csをリード線111と並列容量Cpとの間に挿入してもよい。また、図10に示す整合回路112Bのように、直列容量Csをコイル101と並列容量Cpとの間に挿入してもよい。
 なお、図4に示したように、電磁誘導コイルユニット100においては誘電体106がコイル101に装着されているため、コイル101の導体間に発生する寄生容量を意図的に増加させる構成が可能となり、電磁誘導コイルユニット100の構造の内部に並列容量を付加することが可能である。その結果、整合回路としての部品点数の削減が可能となる。
 以上のように、実施の形態1の電磁誘導装置における電磁誘導コイルユニット100において、コイル101に挿入される隔壁磁性体102の透磁率、寸法、挿入領域などの各パラメータを最適な値に設定することにより、近接効果を効果的に抑制し、コイル損失を低減し、高い電力伝送効率を実現することができる。また、実施の形態1の電磁誘導装置における電磁誘導コイルユニット100は、高い電力伝送効率を実現することができるため、コイル構造の簡素化を図ることが可能となり、製造コストのさらなる低減を達成することができる。この結果、実施の形態1の電磁誘導装置は、製造コストが抑制された、高い電力伝送効率を有する信頼性の高い装置となる。
 (実施の形態2)
 次に、本発明の電磁誘導コイルユニットを用いた実施の形態2の電磁誘導装置を添付の図11を参照して説明する。図11は本発明に係る実施の形態2の電磁誘導装置における電磁誘導コイルユニット100Aの構成を示す断面図である。
 実施の形態2の電磁誘導装置において前述の実施の形態1の誘導加熱装置と異なる点は、電磁誘導コイルユニット100Aの構成であり、その他の点は実施の形態1の誘導加熱装置と同じである。したがって、実施の形態2の説明において前述の実施の形態1と同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1における説明を適用する。
 実施の形態2における電磁誘導コイルユニット100Aにおいては、実施の形態1における電磁誘導コイルユニット100と同様に、コイル101A、隔壁磁性体102A、外周隔壁磁性体103および誘電体106が設けられている。実施の形態2における電磁誘導コイルユニット100Aにおいては、コイル101Aおよび隔壁磁性体102Aの構成が異なるのみであり、その他の構成は同じである。
[隔壁磁性体102Aの構造]
 実施の形態2における隔壁磁性体102Aの構造について説明する。
 図11に示すように、実質的に平面的な螺旋状のコイル101Aは、上下方向(コイル101Aの中心軸方向)において複数のコイル状体が積層された多層構造である。隔壁磁性体102Aは、実質的に平面的な螺旋状の磁性体が複数重ね合わされて構成され、各磁性体の間に空隙を有している。すなわち、実施の形態2における隔壁磁性体102Aは螺旋状の磁性体を重ねた多重構造を有しており、前述の実施の形態1と同様にコイル101Aの導体間に挿入されている。実施の形態2の電磁誘導コイルユニット100Aおける隔壁磁性体102Aの透磁率、コイル101Aの巻き数、および隔壁磁性体102Aとコイル101Aとの位置関係は、前述の実施の形態1の誘導加熱装置における電磁誘導コイルユニット100と同じである。
 なお、図11に示す電磁誘導コイルユニット100Aおいては、コイル101Aが2層構造であり、隔壁磁性体102Aが3重構造の例を示しているが、本発明はこの構成に限定されるものではなく、誘導加熱装置の仕様などに応じて適宜設定される。したがって、以下の説明においては、コイル101Aは2層以上の多層構造であり、隔壁磁性体102Aは2重以上の多重構造とする。
 図11に示すように、隔壁磁性体102Aはコイル101Aの中心軸方向に貫通する空隙を有する多重構造である。このように、隔壁磁性体102Aが空隙を有する多重構造とすることにより、磁気シールド効果が増大し、近接効果の抑制効果が強まる。コイル101Aの巻き数を5として計算した結果、空隙を入れることにより、コイル101Aの抵抗値が大幅に低下し、電力伝送効率が上昇した。
 また、実施の形態2におけるコイル101Aは多層構造であるため、コイル101Aの断面内部に流れる電流は表皮効果により非常に小さくなる。コイル101Aの側面に流れる電流は、隔壁磁性体102Aにより磁界が希薄となるため、非常に小さくなる。この結果、コイル101Aに流れる電流はコイル101Aの表面と裏面に集中して流れる。コイル101Aは多層構造であるため、電流は最も上の層の表面(図11における最上層の上側面)と、最も下の層の裏面(図11における最下層の下側面)に集中して流れる。したがって、実施の形態2のコイル101Aのように多層構造としても電力伝送効率はほとんど変化することがない。
 なお、実施の形態2の誘導加熱装置における電磁誘導コイルユニット100Aにおいて、コイル101Aの導体間に挿入される隔壁磁性体102Aの透磁率、寸法、挿入領域などの各条件に関しては、前述の実施の形態1において説明した条件と同じ条件が適用される。したがって、実施の形態2の誘導加熱装置における電磁誘導コイルユニット100Aにおいて、コイル101Aに挿入される隔壁磁性体102Aの透磁率、寸法、挿入領域などの各種パラメータを最適な値に設定することによって近接効果を効果的に抑制し、コイル損失を低減し、高い電力伝送効率を実現できる。また、実施の形態2の電磁誘導装置における電磁誘導コイルユニット100Aは、高い電力伝送効率を実現することができるため、コイル構造の簡素化を図り、製造コストの低減を図ることができる。この結果、実施の形態2の電磁誘導装置は、製造コストが抑制され、高い電力伝送効率を有する信頼性の高い装置となる。
 なお、本発明の電磁誘導装置の電磁誘導コイルユニットは非接触型充電装置に適用することができる。例えば、電気自動車(EV)の二次電池の充電用として利用される非接触型充電装置には電磁誘導装置が用いられており、その電磁誘導装置に前述の実施の形態において説明した電磁誘導コイルユニットを用いることができる。図12は本発明の電磁誘導コイルユニットを有する非接触型充電装置が装備された車両200および駐車場を示す図である。図12に示す車両200は電気自動車(EV)であり駐車場に停車している状態を示す図である。図12に示すように、車両200の本体下部に第1の電磁誘導コイルユニット100Bが設けられており、車両200が駐車する駐車場の駐車領域には第2の電磁誘導コイルユニット100Cが設けられている。第2の電磁誘導コイルユニット100Cは、車両200の第1の電磁誘導コイルユニット100Bと近接して配置されるように、駐車面上から突設されている。なお、第2の電磁誘導コイルユニット100Cは、車両200が所定の駐車領域に停車して充電可能な状態となったときに上昇して、第1の電磁誘導コイルユニット100Bに近接する位置に移動するよう構成してもよい。
 図12において、車両200および駐車領域に設けられている電磁誘導コイルユニット(100B,100C)が前述の実施の形態1または実施の形態2においてそれぞれ説明した電磁誘導コイルユニットと同じ構成である。なお、図12に示す2つの電磁誘導コイルユニット(100B,100C)において、少なくとも一方が前述の実施の形態1または実施の形態2においてそれぞれ説明した電磁誘導コイルユニットと同じ構成でもよい。
 上記のように、本発明の電磁誘導装置の電磁誘導コイルユニットを非接触型充電装置に適用して、コイルに挿入される隔壁磁性体の透磁率、寸法、挿入領域などの各パラメータを最適な値とすることにより、近接効果を効果的に抑制し、コイル損失を低減し、高い電力伝送効率を実現することができる。
 本発明の電磁誘導コイルユニットは、一般家庭、レストラン、または工場などで使用される誘導加熱装置に限らず、無線タグ、非接触型充電装置など電磁誘導の原理を用いたあらゆる電磁誘導装置に適用できる。
 101 コイル
 102 隔壁磁性体
 103 外周隔壁磁性体
 104 トッププレート
 105 被加熱物
 106 誘電体

Claims (12)

  1.  螺旋状の導体で形成されたコイルと、
     螺旋状の磁性体で形成され、前記コイルの螺旋状の導体の少なくとも一部を挟むように配置された隔壁磁性体と、
    を備えた電磁誘導コイルユニット。
  2.  前記隔壁磁性体が前記コイルの中心軸側端部から所定長さの導体を挟むように配置された請求項1に記載の電磁誘導コイルユニット。
  3.  前記コイルを保持する誘電体が設けられた請求項1または2に記載の電磁誘導コイルユニット。
  4.  前記コイルの外周を覆うように配置された外周隔壁磁性体を更に備えた請求項1または2に記載の電磁誘導コイルユニット。
  5.  前記隔壁磁性体は、比透磁率が5以上1000以下の磁性体で構成された請求項1または2に記載の電磁誘導コイルユニット。
  6.  前記隔壁磁性体は、前記コイルの中心側端部から前記コイルの全巻き数の25%から75%までの導体を挟むように配置された請求項2に記載の電磁誘導コイルユニット。
  7.  前記コイルの中心軸方向における前記隔壁磁性体の寸法は、前記コイルの中心軸方向の寸法より大きく、
     前記隔壁磁性体における前記中心軸方向で対向する面から1.5mm以上内側に前記コイルにおける前記中心軸方向で対向する面が配置されている請求項1または2に記載の電磁誘導コイルユニット。
  8.  前記隔壁磁性体は、前記コイルの中心軸方向に貫通する空隙を持つ多重構造を有する請求項1または2に記載の電磁誘導コイルユニット。
  9.  前記コイルは、前記コイルの中心軸方向に積層された多層構造を有する請求項1または2に記載の電磁誘導コイルユニット。
  10.  前記コイルに誘電体を付加して並列容量を有する構成とした請求項1または2に記載の電磁誘導コイルユニット。
  11.  前記コイルの両端に並列容量が接続された構成を持つ請求項1または2に記載の電磁誘導コイルユニット。
  12.  請求項1乃至11のいずれか一項に記載の電磁誘導コイルユニットと、
     前記電磁誘導コイルユニットのコイルに高周波電力を供給するインバータ回路と、
     前記コイルと前記インバータ回路との間の整合をとる整合回路と、
    を具備する電磁誘導装置。
PCT/JP2010/005494 2009-09-11 2010-09-08 電磁誘導コイルユニットおよび電磁誘導装置 WO2011030539A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011530747A JPWO2011030539A1 (ja) 2009-09-11 2010-09-08 電磁誘導コイルユニットおよび電磁誘導装置
US13/393,135 US20120154101A1 (en) 2009-09-11 2010-09-08 Electromagnetic induction coil unit and electromagnetic induction device
EP10815139A EP2477197A1 (en) 2009-09-11 2010-09-08 Electromagnetic induction coil unit and electromagnetic induction device
CN2010800377864A CN102483981A (zh) 2009-09-11 2010-09-08 电磁感应线圈单元以及电磁感应装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009210081 2009-09-11
JP2009-210081 2009-09-11

Publications (1)

Publication Number Publication Date
WO2011030539A1 true WO2011030539A1 (ja) 2011-03-17

Family

ID=43732219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005494 WO2011030539A1 (ja) 2009-09-11 2010-09-08 電磁誘導コイルユニットおよび電磁誘導装置

Country Status (5)

Country Link
US (1) US20120154101A1 (ja)
EP (1) EP2477197A1 (ja)
JP (1) JPWO2011030539A1 (ja)
CN (1) CN102483981A (ja)
WO (1) WO2011030539A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111585A1 (ja) * 2010-03-09 2011-09-15 日東電工株式会社 無線電力伝送用磁気素子及び電力供給装置
JPWO2013001636A1 (ja) * 2011-06-30 2015-02-23 トヨタ自動車株式会社 送電装置、受電装置、および電力伝送システム
JP2016091838A (ja) * 2014-11-06 2016-05-23 日立アプライアンス株式会社 誘導加熱調理器
KR20200126760A (ko) * 2019-04-30 2020-11-09 에스케이씨 주식회사 자성 패드, 이의 제조방법 및 이를 포함하는 무선 충전 소자

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073517A1 (ja) * 2010-12-02 2012-06-07 パナソニック株式会社 誘導加熱コイルおよび誘導加熱装置
JP6016951B2 (ja) * 2013-02-06 2016-10-26 三菱電機株式会社 誘導加熱コイルおよびこれを用いた誘導加熱装置
US10645763B2 (en) * 2013-02-19 2020-05-05 Illinois Tool Works Inc. Induction heating head
JP2014166070A (ja) * 2013-02-26 2014-09-08 Toyota Motor Corp 送電装置、受電装置および電力伝送システム
ITTO20130430A1 (it) 2013-05-28 2014-11-29 Illinois Tool Works Dispositivo per il pre-riscaldamento ad induzione e la saldatura testa a testa di lembi adiacenti di almeno un elemento da saldare
CN106455711B (zh) * 2014-02-28 2019-09-20 奥驰亚客户服务有限责任公司 电子蒸汽吐烟装置及其部件
US10863591B2 (en) 2014-05-16 2020-12-08 Illinois Tool Works Inc. Induction heating stand assembly
US11076454B2 (en) 2014-05-16 2021-07-27 Illinois Tool Works Inc. Induction heating system temperature sensor assembly
US11197350B2 (en) 2014-05-16 2021-12-07 Illinois Tool Works Inc. Induction heating system connection box
US11510290B2 (en) 2014-05-16 2022-11-22 Illinois Tool Works Inc. Induction heating system
US9913320B2 (en) 2014-05-16 2018-03-06 Illinois Tool Works Inc. Induction heating system travel sensor assembly
TWI660685B (zh) * 2014-05-21 2019-06-01 瑞士商菲利浦莫里斯製品股份有限公司 電熱式氣溶膠產生系統及用於此系統中之匣筒
TWI661782B (zh) 2014-05-21 2019-06-11 瑞士商菲利浦莫里斯製品股份有限公司 電熱式氣溶膠產生系統、電熱式氣溶膠產生裝置及產生氣溶膠之方法
CN105792402A (zh) * 2014-12-23 2016-07-20 佛山市顺德区美的电热电器制造有限公司 电磁线圈盘及具有该电磁线圈盘的电炊具
WO2016125724A1 (ja) * 2015-02-02 2016-08-11 株式会社村田製作所 電流検出素子および電力伝送システム
CN107068360A (zh) * 2017-01-06 2017-08-18 南通华为电力设备有限公司 大面积磁场均衡阵列式线圈及调节步骤及其无线充电装置
KR102052806B1 (ko) * 2017-12-26 2019-12-09 삼성전기주식회사 코일 부품 및 코일 부품의 제조 방법
CN110021814B (zh) 2018-01-08 2024-01-30 弗莱克斯有限公司 平面天线
CN114171293B (zh) * 2020-09-10 2024-04-23 北京小米移动软件有限公司 线圈组件及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111400A (ja) * 1987-10-26 1989-04-28 Kawasaki Steel Corp 磁気シールド構造体
JPH09245949A (ja) 1996-03-12 1997-09-19 Hitachi Home Tec Ltd 誘導加熱調理器
JP2002043044A (ja) * 2000-07-21 2002-02-08 Matsushita Electric Ind Co Ltd 誘導加熱装置用加熱コイル
JP2002075613A (ja) 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd 誘導加熱装置用加熱コイル
JP2002299023A (ja) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd 誘導加熱装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2569499Y (zh) * 2002-08-07 2003-08-27 株洲时代新材料科技股份有限公司 电磁加热平板用电磁加热线圈
CN201007545Y (zh) * 2007-01-25 2008-01-16 肖曾祥 电磁感应加热装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111400A (ja) * 1987-10-26 1989-04-28 Kawasaki Steel Corp 磁気シールド構造体
JPH09245949A (ja) 1996-03-12 1997-09-19 Hitachi Home Tec Ltd 誘導加熱調理器
JP2002043044A (ja) * 2000-07-21 2002-02-08 Matsushita Electric Ind Co Ltd 誘導加熱装置用加熱コイル
JP2002075613A (ja) 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd 誘導加熱装置用加熱コイル
JP2002299023A (ja) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd 誘導加熱装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111585A1 (ja) * 2010-03-09 2011-09-15 日東電工株式会社 無線電力伝送用磁気素子及び電力供給装置
JP2011211176A (ja) * 2010-03-09 2011-10-20 Nitto Denko Corp 無線電力伝送用磁気素子及び電力供給装置
US9390849B2 (en) 2010-03-09 2016-07-12 Nitto Denko Corporation Magnetic element for wireless power transmission and power supply device
JPWO2013001636A1 (ja) * 2011-06-30 2015-02-23 トヨタ自動車株式会社 送電装置、受電装置、および電力伝送システム
JP2016091838A (ja) * 2014-11-06 2016-05-23 日立アプライアンス株式会社 誘導加熱調理器
KR20200126760A (ko) * 2019-04-30 2020-11-09 에스케이씨 주식회사 자성 패드, 이의 제조방법 및 이를 포함하는 무선 충전 소자
KR102204236B1 (ko) * 2019-04-30 2021-01-18 에스케이씨 주식회사 자성 패드, 이의 제조방법 및 이를 포함하는 무선 충전 소자

Also Published As

Publication number Publication date
CN102483981A (zh) 2012-05-30
JPWO2011030539A1 (ja) 2013-02-04
US20120154101A1 (en) 2012-06-21
EP2477197A1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2011030539A1 (ja) 電磁誘導コイルユニットおよび電磁誘導装置
US11025070B2 (en) Device having a multimode antenna with at least one conductive wire with a plurality of turns
US9948129B2 (en) Single structure multi mode antenna for wireless power transmission using magnetic field coupling having an internal switch circuit
EP3657519A1 (en) Single layer multi mode antenna for wireless power transmission using magnetic field coupling
US10063100B2 (en) Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
TWI649980B (zh) 用於高效率無線通信之多層導線結構
CN108140478B (zh) 线圈装置
KR101474149B1 (ko) 차폐 부재, 차폐 부재의 제조 방법 및 이를 구비하는 무접점 전력 전송 장치
US9941743B2 (en) Single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
JP2014112728A (ja) 薄膜コイル及びこれを備える電子機器
US20140197694A1 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
US11205848B2 (en) Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
US9941590B2 (en) Single structure multi mode antenna for wireless power transmission using magnetic field coupling having magnetic shielding
US9941729B2 (en) Single layer multi mode antenna for wireless power transmission using magnetic field coupling
TW201436494A (zh) 用於高效率無線通信之多層多匝結構
US9960629B2 (en) Method of operating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US9960628B2 (en) Single structure multi mode antenna having a single layer structure with coils on opposing sides for wireless power transmission using magnetic field coupling
JP5646688B2 (ja) 非接触給電システム
KR20160140502A (ko) 무선전력 전송용 안테나유닛 및 이를 포함하는 무선전력 송신모듈
EP3069357B1 (en) Wireless power transfer systems containing foil-type transmitter and receiver coils
JPH11186086A (ja) 非接触式電力伝送装置用渦巻型コイルの製造方法
JP2016004990A (ja) 共振器
WO2016026095A1 (zh) 薄型高效率无线充电线圈及其无线充电系统
JP2022022950A (ja) コイル、送電装置及び受電装置並びに電力伝送システム
JP2016010168A (ja) 共振器及び無線給電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037786.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530747

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13393135

Country of ref document: US

Ref document number: 2010815139

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE