WO2011111419A1 - 膜-電極接合体製造装置及び膜-電極接合体の製造方法 - Google Patents

膜-電極接合体製造装置及び膜-電極接合体の製造方法 Download PDF

Info

Publication number
WO2011111419A1
WO2011111419A1 PCT/JP2011/050768 JP2011050768W WO2011111419A1 WO 2011111419 A1 WO2011111419 A1 WO 2011111419A1 JP 2011050768 W JP2011050768 W JP 2011050768W WO 2011111419 A1 WO2011111419 A1 WO 2011111419A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
electrode assembly
polymer electrolyte
solid polymer
electrolyte membrane
Prior art date
Application number
PCT/JP2011/050768
Other languages
English (en)
French (fr)
Inventor
脩治 木内
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP11753081.6A priority Critical patent/EP2530773B1/en
Priority to CN201180013022.6A priority patent/CN102823041B/zh
Priority to KR1020127026335A priority patent/KR101415129B1/ko
Priority to JP2012504345A priority patent/JP5751248B2/ja
Priority to US13/582,857 priority patent/US20130192750A1/en
Publication of WO2011111419A1 publication Critical patent/WO2011111419A1/ja
Priority to US15/291,209 priority patent/US20170032871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a membrane-electrode assembly (MEA) manufacturing apparatus and a method for manufacturing a membrane-electrode assembly.
  • MEA membrane-electrode assembly
  • Patent Document 1 discloses a technique using a hot press and a technique using a hot roll (thermocompression roll).
  • the method using the hot roll is to contact a long solid polymer electrolyte membrane and a long catalyst layer-supporting substrate carrying a catalyst layer disposed on both sides thereof, and perform thermocompression bonding with a pair of thermocompression-bonding rolls.
  • the solid polymer electrolyte membrane and the catalyst layer are integrally joined, and then the transfer substrate carrying the catalyst layer is peeled off from the catalyst layer using a pair of peeling rolls.
  • the method using the hot press is a method of transferring the catalyst layer supported on the catalyst layer supporting substrate to the solid polymer electrolyte membrane using the hot press.
  • the transfer method using the hot roll can transfer the catalyst layer to the solid polymer electrolyte membrane continuously, so the production speed is higher than the transfer method using the hot press. Can be improved.
  • the transfer method using the hot roll has a problem that the adhesion between the solid polymer electrolyte membrane and the catalyst layer is weak because the time for thermocompression bonding of the membrane-electrode assembly is short.
  • a solid polymer electrolyte membrane is preheated with a preheating heater before thermocompression bonding with a hot roll, and a membrane-electrode assembly with high adhesive strength is produced by thermocompression bonding.
  • the transfer substrate carrying the catalyst layer is cooled in advance, and the membrane-electrode assembly after thermocompression bonding is cooled in the same manner, so that the peel strength between the transfer substrate and the catalyst layer is reduced, which is better. Transcription.
  • the present invention has been made in view of the above points, and while using a hot roll technique, the adhesiveness between the solid polymer electrolyte membrane and the catalyst layer is high, and no wrinkles are formed. It is an object of the present invention to provide a membrane-electrode assembly manufacturing apparatus and a method for manufacturing a membrane-electrode assembly, which can manufacture a membrane-electrode assembly.
  • the invention according to claim 1 is a membrane-electrode assembly manufacturing apparatus for manufacturing a membrane-electrode assembly comprising a catalyst layer and a solid polymer electrolyte membrane, Preheating means for preheating the catalyst layer supporting substrate formed by supporting the catalyst layer on one surface of the transfer substrate and the solid polymer electrolyte membrane, the catalyst layer supporting substrate and the solid polymer electrolyte membrane, An apparatus for manufacturing a membrane-electrode assembly, comprising: a thermocompression bonding unit that forms an integrated bonding member by heating and pressurizing and a peeling unit that peels the transfer substrate from the bonding member.
  • the invention according to claim 2 further comprises temperature adjusting means for adjusting the temperature of the joining member before peeling the transfer substrate from the joining member.
  • temperature adjusting means for adjusting the temperature of the joining member before peeling the transfer substrate from the joining member.
  • the invention according to claim 3 is a means in which the peeling means moves the transfer substrate and the membrane electrode assembly in substantially opposite directions to peel the transfer substrate from the bonding member.
  • the invention according to claim 4 is the membrane-electrode assembly manufacturing apparatus according to claim 3, characterized in that the peeling means is also a means that doubles as the temperature adjusting means.
  • the invention according to claim 5 is characterized in that the preheating means preheats the catalyst layer-supporting substrate and the solid polymer electrolyte membrane in contact with each other. 4.
  • the invention according to claim 6 is the membrane-electrode assembly manufacturing apparatus according to claim 5, wherein the peeling means is means for peeling the transfer substrate from both surfaces of the joining member. It is.
  • the preheating means preliminarily lowers below the softening temperature of the solid polymer electrolyte membrane in a state where the catalyst layer-supporting substrate and the solid polymer electrolyte membrane are in contact with each other.
  • thermocompression bonding means heats and pressurizes the catalyst layer supporting substrate and the solid polymer electrolyte membrane in the vicinity of a softening temperature of the solid polymer electrolyte membrane,
  • the invention according to claim 9 is the second preheating means for preheating the joining member precursor to a temperature not lower than the glass transition temperature of the solid polymer electrolyte membrane and not higher than the thermal decomposition temperature.
  • the invention according to claim 10 is a membrane-electrode assembly manufacturing method for manufacturing a membrane-electrode assembly comprising a catalyst layer and a solid polymer electrolyte membrane, wherein the catalyst layer is disposed on one side of a transfer substrate.
  • a preheating step of preheating the catalyst layer-supporting substrate and the solid polymer electrolyte membrane that are supported on the catalyst layer, and the catalyst layer-supporting substrate and the solid polymer electrolyte membrane are integrated by heating and pressurizing.
  • a method for producing a membrane-electrode assembly comprising: a thermocompression bonding step for forming a bonding member; and a peeling step for peeling the transfer substrate from the bonding member.
  • the invention according to claim 11 further includes a temperature adjustment step of adjusting the temperature of the joining member before peeling the transfer substrate from the joining member.
  • the invention according to claim 12 is a process in which the peeling step peels the transfer base material from the joining member by moving the transfer base material and the membrane electrode assembly in substantially opposite directions. 12.
  • the invention according to claim 13 is the method for producing a membrane-electrode assembly according to claim 12, wherein the peeling step is a step also serving as the temperature adjustment step.
  • the invention according to claim 14 is characterized in that the preheating step is a step of preheating the catalyst layer-supporting substrate and the solid polymer electrolyte membrane in contact with each other. 13.
  • the invention according to claim 15 is the production of the membrane-electrode assembly according to claim 14, wherein the peeling step is a step of peeling the transfer substrate from both surfaces of the joining member. Is the method.
  • the invention according to claim 16 is characterized in that the preliminary heating step is performed in a state where the catalyst layer-supporting base material and the solid polymer electrolyte membrane are in contact with each other up to a softening temperature of the solid polymer electrolyte membrane or less.
  • thermocompression bonding step the catalyst layer-supporting substrate and the solid polymer electrolyte membrane are heated and pressurized near the softening temperature of the solid polymer electrolyte membrane, and the catalyst A first thermocompression bonding step of forming a joining member precursor in which the layer-supporting substrate and the solid polymer electrolyte membrane are integrated; and a temperature in the vicinity of the glass transition temperature of the solid polymer electrolyte membrane. 17.
  • the method for producing a membrane-electrode assembly according to claim 16 further comprising a second thermocompression bonding step in which a bonding member is formed by heating and pressurizing.
  • the joining member precursor is preliminarily kept to a temperature not lower than the glass transition temperature of the solid polymer electrolyte membrane and not higher than the thermal decomposition temperature.
  • the catalyst layer-supporting substrate and the solid polymer electrolyte membrane are preheated, and the solid polymer electrolyte membrane and the catalyst layer are stretched. Later, thermocompression bonding can prevent formation of wrinkles on the membrane-electrode assembly. And the adhesive strength of a solid polymer electrolyte membrane and a catalyst layer can be raised, and it can prevent that a catalyst layer peels from a solid polymer electrolyte membrane when peeling a transfer base material.
  • the preheating step of heating the catalyst layer-supporting substrate and the solid polymer electrolyte membrane is divided into two, By sandwiching the crimping step, a joining member precursor having no wrinkles can be produced. Thereafter, preheating 2 is performed, and thermocompression bonding is performed, thereby preventing formation of wrinkles on the membrane-electrode assembly and producing a bonding member having high adhesion strength between the solid polymer electrolyte membrane and the catalyst layer.
  • FIG. 1 is a schematic view of a membrane-electrode assembly manufacturing apparatus according to a first embodiment of the present invention. It is the schematic of the membrane-electrode assembly manufacturing apparatus of 2nd embodiment of this invention.
  • (A) is a schematic view of a membrane-electrode assembly.
  • (B) is the schematic of a joining member.
  • FIG. 3 is a manufacturing process diagram of the membrane-electrode assembly according to the first embodiment of the present invention. It is a manufacturing process figure of the membrane-electrode assembly of 2nd embodiment of this invention.
  • FIG. 3 is a schematic view of a configuration of a modification of the membrane-electrode assembly manufacturing apparatus according to the first embodiment of the present invention. It is the schematic of the structure of the modification of the membrane-electrode assembly manufacturing apparatus of 2nd embodiment of this invention.
  • FIG. 1 is a schematic diagram for explaining a membrane-electrode assembly manufacturing apparatus 20 according to a first embodiment of the present invention.
  • the membrane-electrode assembly manufacturing apparatus 20 includes an unwinding roller 22 for unwinding the solid polymer electrolyte membrane 10, a pair of tension removing rollers 24 for removing the tension of the unwound solid polymer electrolyte membrane 10, and a catalyst layer.
  • the unwinding roller 26 for unwinding the catalyst layer-supporting substrate 12 that supports the catalyst layer the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 in contact with the solid polymer electrolyte membrane 10 are in contact with each other.
  • FIG. 2 is a schematic diagram for explaining the membrane-electrode assembly manufacturing apparatus 20 of the second embodiment of the present invention.
  • the membrane-electrode assembly manufacturing apparatus 20 includes an unwinding roller 22 for unwinding the solid polymer electrolyte membrane 10, a pair of tension removing rollers 24 for removing the tension of the unwound solid polymer electrolyte membrane 10, and a catalyst layer.
  • the unwinding roller 26 for unwinding the catalyst layer-supporting substrate 12 that supports the catalyst layer the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 in contact with the solid polymer electrolyte membrane 10 are in contact with each other.
  • a preheating heater 27 that preheats to a softening temperature or lower, a pair of temporary pressure rollers 29 that heat and press the solid polymer electrolyte membrane 10 and the catalyst layer-supporting base material 12 to form a bonding member precursor 13, and bonding
  • a preheating heater 28 for raising the temperature of the member precursor 13 to a temperature equal to or higher than the glass transition temperature and lower than the thermal decomposition temperature, and a pair of thermocompression rollers that heat and press the bonding member precursor 13 to form the bonding member 14.
  • a temperature adjusting heater 44 for adjusting the temperature of the bonding member 14, a peeling roller 36 for peeling the transfer base material 16 from the bonding member 14, a peeling angle setting roller 38 for setting the peeling angle of the transfer base material 16, and transfer A winding roller 42 for winding the substrate 16 and a winding roller 40 for winding the membrane electrode assembly 18 from which the transfer substrate 16 has been peeled off are provided.
  • FIG. 2A is a schematic view of the membrane-electrode assembly 18.
  • FIG. 2B is a schematic view of the joining member 14.
  • the membrane-electrode assembly 18 includes a solid polymer electrolyte membrane 10 and catalyst layers 50 provided on both sides thereof as shown in FIG. 2 (a).
  • the membrane-electrode assembly 18 has a catalyst layer-supporting base material 12 on both sides of the solid polymer electrolyte membrane 10 and a surface on which the catalyst layer is supported on the solid polymer electrolyte membrane 10 side. After forming the bonding member 14 by bonding, the transfer substrate 16 is peeled off.
  • the solid polymer electrolyte membrane 10 is a polymer material that exhibits good proton conductivity in a wet state.
  • the catalyst layer carrying substrate 12 is formed by forming a catalyst layer 50 formed of powdered carbon carrying a catalyst made of platinum or an alloy of platinum and another metal and a resin on one surface of the transfer substrate 16.
  • a catalyst layer 50 formed of powdered carbon carrying a catalyst made of platinum or an alloy of platinum and another metal and a resin on one surface of the transfer substrate 16.
  • a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used as the polymer material constituting the solid polymer electrolyte membrane 10.
  • the fluoropolymer electrolyte include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., and Gore Select (registered trademark) manufactured by Gore. Etc. can be used.
  • electrolyte membranes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.
  • a Nafion (registered trademark) material manufactured by DuPont can be suitably used as the polymer electrolyte membrane.
  • electrolyte membranes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.
  • the thickness of the solid polymer electrolyte membrane 10 is about 10 ⁇ m or more and 300 ⁇ m or less.
  • the thing similar to the said polymeric material can be used.
  • the catalyst constituting the catalyst layer 50 includes iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium,
  • a metal such as aluminum or platinum and an alloy thereof, or an oxide or double oxide thereof can be used. Among these, platinum and platinum alloys are more preferable.
  • the powder carbon constituting the catalyst layer 50 is not particularly limited as long as it is in the form of fine particles and has conductivity and does not attack the catalyst. Specifically, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, or the like can be used.
  • the particle size of the powder carbon is preferably about 10 nm to 100 nm smaller than the catalyst.
  • the transfer substrate 16 is not particularly limited as long as the catalyst layer 50 can be formed on the surface thereof, and the formed catalyst layer 50 can be transferred to the solid polymer electrolyte membrane 10.
  • polyimide, polyethylene terephthalate, polypalvanic acid aramid, polyamide Polymer films such as (nylon), polysulfone, polyethersulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, polyacrylate, and polyethylene naphthalate can be used.
  • heat-resistant fluororesins such as ethylene tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroperfluoroalkyl vinyl ether copolymer, and polytetrafluoroethylene can be used.
  • the tension removing roller 24 rotates so as to synchronize with the transport speed of the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 by the rotation of the thermocompression roller 30. And when thermocompression bonding with the thermocompression-bonding roller 30, tension
  • the tension removing roller 24 also has a function of bringing the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 into contact with each other.
  • the preheating heater 27 is set within a range of 60 degrees or more and 120 degrees or less, which is equal to or lower than the softening temperature of the solid polymer electrolyte membrane 10 in a state where the solid polymer electrolyte membrane 10 and the catalyst layer supporting substrate 12 are in contact with each other. Can be heated to a certain temperature.
  • the pair of temporary pressure-bonding rollers 29 is provided with a heater 31B for heating the surface inside both of the temporary pressure-bonding rollers 29.
  • a pressure device 32 ⁇ / b> B that applies pressure between the temporary pressure-bonding rollers is attached to one temporary pressure-bonding roller 29.
  • the heater 31B is adjusted so that the surface of the temporary press roller 29 is in the range of 60 degrees to 120 degrees near the softening temperature of the solid polymer electrolyte membrane 10 to be pressed.
  • the pressure device 32B is adjusted so that the pressure applied between the thermocompression-bonding rollers 29 is in the range of 10 MPa to 100 MPa.
  • the temporary press roller 29 can be heated both vertically as shown in FIG.
  • the catalyst layer 50 and the solid polymer are preliminarily heated by the preheating heater 27 in a state where the solid polymer electrolyte membrane 10 and the catalyst layer supporting substrate 12 are in contact with each other, and are temporarily pressed by the temporary pressing roller 29.
  • the electrolyte membrane 10 can be made into a joining member precursor 13 having a stable shape without wrinkles.
  • the preheating heater 28 can heat the bonding member precursor 13 to a temperature set in the range of not less than the glass transition temperature of the solid polymer electrolyte membrane 10 and not more than the thermal decomposition temperature, specifically, not less than 80 degrees and not more than 140 degrees. It is like that.
  • the pair of thermocompression rollers 30 is provided with a heater 31 for heating the surface inside both thermocompression rollers 30.
  • a pressurizing device 32 that applies pressure between the thermocompression-bonding rollers is attached to one thermocompression-bonding roller 30.
  • the heater 31 is adjusted to be in the range of 80 degrees to 140 degrees near the glass transition temperature of the solid polymer electrolyte membrane 10 to be pressurized.
  • the pressure device 32 is adjusted so that the pressure applied between the thermocompression rollers 30 is in the range of 10 MPa to 100 MPa.
  • the thermocompression roller 30 can be heated up and down as shown in FIGS.
  • the catalyst layer 50 and the solid are obtained by preheating with the preheating heater 27 or 28 in the state where the solid polymer electrolyte membrane 10 and the catalyst layer supporting substrate 12 are in contact with each other and thermocompression bonding with the thermocompression roller 30.
  • the degree of adhesion with the polymer electrolyte membrane 10 can be improved.
  • the temperature adjusting heater 44 adjusts the joining member 14 to a temperature set within a range of 60 degrees to 120 degrees. Further, the temperature adjusting heater 44 can adjust the temperature from the temperature by thermocompression bonding to a temperature lower by about 20 degrees.
  • the positions and diameters of the peeling roller 36 and the peeling angle setting roller 38 are adjusted so that the transfer substrate 16 and the membrane-electrode assembly 18 to be peeled by the peeling roller 36 can be moved in substantially opposite directions.
  • the diameter of the peeling roller 36 is set to 30 mm or less, and the angle between the transfer substrate 16 to be peeled and the membrane-electrode assembly 18 is adjusted to be approximately 180 degrees.
  • FIG. 4 is a manufacturing process diagram of the first embodiment illustrating the manufacturing process of the membrane-electrode assembly 18.
  • FIG. 5 is a manufacturing process diagram of the second embodiment illustrating the manufacturing process of the membrane-electrode assembly 18.
  • the membrane-electrode assembly 18 is manufactured by first contacting the solid polymer electrolyte membrane 10 unwound from the unwinding roller 22 and the catalyst layer-supporting substrate 12 unwound from the unwinding roller 26 with the tension removing roller 24. And remove the tension.
  • step S10 The solid polymer electrolyte membrane 10 from which the tension has been removed and the catalyst layer-supporting base material 12 are in contact with each other and preheated by the preheater 27 (step S10).
  • This preheating is performed at a temperature set in a range of 60 degrees to 120 degrees.
  • the preheating in step S10 is hereinafter also referred to as a preheating step or a preheating step 1.
  • the pre-heating of the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 is performed in a state where both are brought into contact with each other by the tension removing roller 24. At this time, the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 that are in contact with each other are transported into the preheater 28. Preheating in a state where the solid polymer electrolyte membrane 10 and the catalyst layer carrying substrate 12 are in contact with each other means that the solid polymer electrolyte membrane 10 and the catalyst layer 50 carried on the catalyst layer carrying substrate 12 are in close contact with each other. This is to increase the adhesive strength between the solid polymer electrolyte membrane 10 and the catalyst layer 50 and to bond them together without any wrinkles.
  • the preheated solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 are heated and pressed (hot press) by a temporary press roller 29 having a heater 31B and a pressurizing device 32B while being in contact with each other.
  • the heated and pressurized solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 become the joining member precursor 13 (step S11).
  • the hot press of process S11 is also described as temporary press-bonding in this embodiment.
  • the temporary pressure bonding is performed at a temperature set within a range of the same temperature (60 degrees or more and 120 degrees or less) as the setting temperature of the preheating step 1.
  • the pressurization is performed at a pressure set within a range of 10 MPa to 100 MPa.
  • the bonding member precursor 13 is heated by the preheating heater 28 to a temperature not lower than the glass transition temperature of the solid polymer electrolyte membrane 10 and not higher than the thermal decomposition temperature (step S12).
  • the specific temperature not lower than the glass transition temperature and not higher than the thermal decomposition temperature is a temperature set in the range of not lower than 80 degrees and not higher than 140 degrees.
  • the preheating in step S12 is also referred to as preheating step 2. By performing Step S12, the adhesive strength between the solid polymer electrolyte membrane 10 and the catalyst layer 50 can be improved.
  • thermocompression bonding is performed at a temperature set within a range of 80 degrees to 140 degrees and a pressure set within a range of 10 MPa to 100 MPa. If the temperature is lower than the above range, the coupling between the solid polymer electrolyte membrane 10 and the catalyst layer 50 is poor and the membrane-electrode assembly cannot be produced.
  • the solid electrolyte membrane is deformed by heat and deteriorates. End up.
  • the membrane-electrode assembly cannot be produced.
  • the membrane-electrode assembly is deteriorated by the high pressure.
  • the temperature of the joining member 14 is adjusted by the temperature adjusting heater 44 to a temperature about 20 degrees lower than the temperature by thermocompression bonding (step S14). And the transfer base material 16 is peeled from the joining member 14 with the peeling roller 36 (process S15).
  • the membrane-electrode assembly 18 is produced.
  • the completed membrane-electrode assembly 18 is taken up by the take-up roller 42, and the separated transfer substrate 16 is taken up by the take-up roller 40.
  • the tension removing roller before hot pressing the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 is performed.
  • the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 are preliminarily brought into contact with each other, and then preheated by the preheater 27, whereby the adhesive strength between the solid polymer electrolyte membrane 10 and the catalyst layer 50 is obtained. Can be increased.
  • the preheating heater 27 preliminarily heats the softening temperature of the solid polymer electrolyte membrane 10 to be equal to or lower than that, and the temporary press-bonding roller 29 temporarily presses the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12.
  • the temperature of the joining member precursor 13 is raised from the glass transition temperature of the solid polymer electrolyte membrane 10 to the thermal decomposition temperature by the preheating heater 28 and is pressure-bonded by the thermocompression roller 30, whereby the polymer electrolyte membrane 10.
  • the bonding member 14 in which the catalyst layer 50 is strongly bonded.
  • the transfer substrate 16 is peeled from the bonding member 14, so that the membrane-electrode assembly 18 is cooled by the outside air or the like. Can be prevented.
  • the transfer substrate 16 is peeled from the bonding member 14, thereby generating a film caused by cooling with the outside air or the like The wrinkles of the electrode assembly 18 can be prevented.
  • the peeling roller 36 has a diameter of 30 mm or less, and the transfer base 16 and the membrane-electrode assembly 18 have an angle of about 180 degrees, thereby improving the peelability of the transfer base 16. Therefore, the membrane-electrode assembly 18 having a good shape can be manufactured.
  • the catalyst layer-supporting substrate 12 and the solid polymer electrolyte membrane 10 are brought into contact with each other by a tension removing roller 24 and preheated.
  • the substrate 12 and the solid polymer electrolyte membrane 10 may be performed separately.
  • preheating is preferably performed in a state where the catalyst layer-supporting substrate 12 and the solid polymer electrolyte membrane 10 are in contact with each other.
  • preheating is performed from both sides in a state where the solid polymer electrolyte membrane 10 and the catalyst layer supporting substrate 12 are in contact with each other.
  • Preheating may be performed only from one surface in a state where the material 12 is in contact with the material 12.
  • the set temperature of the preheater 27 is determined by the material of the solid polymer electrolyte membrane 10 and the catalyst layer-supporting base material 12, and may vary depending on the case. Is not limited to the temperature set in the range of 60 ° C. or more and 120 ° C. or less, and a temperature suitable for the material of the solid polymer electrolyte membrane 10 or the catalyst layer supporting substrate 12 may be set as appropriate. However, the set temperature of the preheating heater 27 is more preferably equal to or lower than the softening temperature of the solid polymer electrolyte membrane 10.
  • the set temperature of the preheater 28 is determined by the materials of the solid polymer electrolyte membrane 10 and the catalyst layer-supporting base material 12, so that Is not limited to the temperature set in the range of 80 degrees or more and 140 degrees or less, and may be set as appropriate to a temperature suitable for the material of the solid polymer electrolyte membrane 10 or the catalyst layer-supporting substrate 12.
  • the set temperature of the preheating heater 28 is more preferably not less than the glass transition temperature of the solid polymer electrolyte membrane 10 and not more than the thermal decomposition temperature.
  • the surface temperature or pressure of the temporary press roller 29 is determined by the material of the solid polymer electrolyte membrane 10 or the catalyst layer-supporting substrate 12, In some cases, the temperature is not limited to the temperature set in the range of 60 degrees to 120 degrees or the pressure set in the range of 10 MPa to 100 MPa, and the solid polymer electrolyte membrane 10 and the catalyst layer-supporting substrate 12 are not limited. What is necessary is just to set suitably the temperature or pressure which adapts to the material of this. However, the surface temperature of the temporary press roller 29 is more preferably in the vicinity of the softening temperature of the solid polymer electrolyte membrane 10.
  • the surface temperature or pressure of the thermocompression roller 30 is determined by the material of the solid polymer electrolyte membrane 10 or the catalyst layer-supporting substrate 12, In some cases, the temperature is not limited to the temperature set in the range of 80 degrees to 140 degrees or the pressure set in the range of 10 MPa to 100 MPa, and the solid polymer electrolyte membrane 10 or the catalyst layer-supporting substrate 12 is not limited. What is necessary is just to set suitably the temperature or pressure which adapts to the material of this. However, the surface temperature of the thermocompression roller 30 is more preferably in the vicinity of the glass transition temperature of the solid polymer electrolyte membrane 10.
  • the temperature of the bonding member 14 is adjusted by the temperature adjustment heater 44, but the conveyance time between the thermocompression roller 30 and the peeling roller 36 is shortened. Thus, the temperature of the joining member 14 may be kept high.
  • the temperature adjustment is performed from both surfaces of the bonding member 14, but the temperature adjustment may be performed from only one surface.
  • the peeling roller 36 has a diameter of 30 mm or less.
  • the adhesive strength between the catalyst layer 50 and the transfer substrate 16, the catalyst layer, and the solid polymer electrolyte membrane 10 are not limited. Depending on the size of the adhesive strength, a material having a diameter larger than 30 mm may be used.
  • the transfer base material 16 and the membrane-electrode assembly 18 separated by the separation roller 36 are adjusted so as to have an angle of about 180 degrees.
  • the angle may be adjusted to be other than 180 degrees.
  • the temperature of the bonding member 14 is adjusted by the temperature adjustment heater 44.
  • the heater is attached to the inside of the peeling roller 36 and the temperature is adjusted. Peeling may be performed at the same time.
  • the membrane-electrode assembly manufacturing apparatus 20 includes at least preheating means (for example, a preheating heater 27) that preheats the catalyst layer-supporting substrate 12 and the solid polymer electrolyte membrane 10. ), Thermocompression bonding means for forming the joining member 14 (for example, the thermocompression roller 30 corresponds to this), and peeling means for peeling the transfer substrate 16 from the joining member 14 (for example, the peeling roller 36). Is equivalent to this).
  • the temperature adjusting means for adjusting the temperature of the bonding member 14 for example, the temperature adjusting heater 44 corresponds to this
  • the bonding member precursor 13 are formed in these configurations.
  • the first thermocompression means for example, the provisional press roller 29 corresponds to this
  • the second preheating means for example, the preheating heater 28 for preheating the joining member precursor 13 correspond to this.
  • Etc. may be added alone or in combination.
  • the membrane-electrode assembly 18 formed by bonding the catalyst layer 50 to one surface of the solid polymer electrolyte membrane 10 is manufactured.
  • a membrane-electrode assembly 18B formed by bonding the catalyst layer 50 to both surfaces of the molecular electrolyte membrane 10 may be manufactured.
  • 6 and 7 are schematic views for explaining a membrane-electrode assembly manufacturing apparatus 20B which is a modification of the membrane-electrode assembly manufacturing apparatus 20 of the first embodiment and the second embodiment, respectively.
  • the membrane-electrode assembly manufacturing apparatus 20B includes a solid polymer electrolyte membrane 10 unwound from the unwinding roller 22 and two catalyst layer supporting groups unwound from the two unwinding rollers 26A and 26B.
  • the materials 12A and 12B are brought into contact by a tension removing roller 24 and the tension is removed.
  • the contacted solid polymer electrolyte membrane 10 and the catalyst layer supporting bases 12A and 12B are preheated by the preheating heater 27 and thermocompression bonded by the thermocompression roller 30 having the heater 31 and the pressure device 32. .
  • the contacted solid polymer electrolyte membrane 10 and the catalyst layer supporting bases 12A and 12B are preheated to a softening temperature or lower by a preheating heater 27, and temporarily heated by a temporary press roller 29 having a heater 31D and a pressurizing device 32D.
  • the bonded member precursor 13B is pressure-bonded. Thereafter, the joining member precursor 13 ⁇ / b> B is heated by the preheating heater 28 to a temperature not lower than the glass transition temperature of the solid polymer electrolyte membrane 10 and not higher than the thermal decomposition temperature.
  • the bonding member precursor 13B that has been heated is thermocompression bonded by a thermocompression roller 30 having a heater 31C and a pressurizing device 32C.
  • the joining member 14B joined by thermocompression is adjusted 20 degrees lower than the temperature of the thermocompression roller 30 by the temperature adjusting heater 44. Thereafter, the transfer base materials 16A and 16B are peeled from the joining member 14B by the two peeling rollers 36A and 36B and the two peeling angle setting rollers 38A and 38B, and the catalyst is joined to both surfaces of the solid polymer electrolyte membrane 10. Thus, the membrane-electrode assembly 18B is produced.
  • the membrane-electrode assembly 18B is wound around the winding roller 40, and the two transfer base materials 16A and 16B are wound around the winding rollers 42A and 42B, respectively.
  • the membrane-electrode assembly 18B in which the catalyst layer 50 is bonded to both surfaces of the solid polymer electrolyte membrane 10 in a good shape can be manufactured. .
  • the present invention can efficiently produce an excellent quality membrane-electrode assembly (MEA).
  • MEA membrane-electrode assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】ホットロールの手法を用いながら、固体高分子電解質膜と触媒層との接着性が高く、皺が入ることがない、高品質の膜-電極接合体を製造することができる、膜-電極接合体製造装置及び膜-電極接合体の製造方法を提供する。 【解決手段】触媒層を転写基材の一面に担持させてなる触媒層担持基材12と固体高分子電解質膜10とを予備加熱する予備加熱手段と、触媒層担持基材12と固体高分子電解質膜10とを加熱及び加圧して一体化した接合部材14を形成する熱圧着手段と、接合部材14から転写基材16を剥離する剥離手段とを備える。

Description

膜-電極接合体製造装置及び膜-電極接合体の製造方法
 本発明は、膜-電極接合体(MEA:membrane-electrode assembly)製造装置及び膜-電極接合体の製造方法に関する。
 従来、膜-電極接合体の製造方法としては、触媒層担持基材と固体高分子電解質膜をホットプレスなどで熱圧着した後、転写基材を剥離する方法が提案されている。
 例えば、特許文献1には、ホットプレスを用いる手法、及びホットロール(熱圧着ロール)を用いる手法が開示されている。上記ホットロールを用いる手法は、長尺の固体高分子電解質膜とその両側に配された触媒層を担持した長尺の触媒層担持基材とを接触させ、一対の熱圧着ロールで熱圧着することによって、固体高分子電解質膜と触媒層とを一体的に接合し、その後触媒層を担持している転写基材を一対の剥離ロールを用いて触媒層から剥離している。
 一方、上記ホットプレスを用いる手法は、ホットプレスを用いて固体高分子電解質膜に触媒層担持基材上に担持された触媒層を転写する手法である。上記2つの手法を比べると、ホットロールを用いて転写する手法の方が、固体高分子電解質膜への触媒層の転写が連続的に行えるので、ホットプレスを用いて転写する手法よりも製造速度を向上させることができる。
 上記ホットロールを用いて転写する手法は、前記膜-電極接合体を熱圧着する時間が短いため、固体高分子電解質膜と触媒層の接着が弱いという問題があった。この問題について、特許文献2では、ホットロールによる熱圧着前に予備加熱ヒーターによって固体高分子電解質膜を予備加熱し、熱圧着することで、接着強度の強い膜-電極接合体を作製している。また、触媒層を担持している転写基材を事前に冷却し、更に熱圧着後の膜-電極接合体も同様に冷却することで、転写基材と触媒層の剥離強度を落とし、より良好な転写を行っている。
特開平10-64574号公報 特開2001-196070号公報
 しかしながら、一般的な固体高分子電解質膜は、加熱により伸びが非常に大きくなる。熱圧着により伸張された固体高分子電解質膜と触媒層担持基材は、加熱がなくなることにより、外気による冷却で収縮が起こる。固体高分子電解質膜と触媒層担持基材は、熱による伸びが違うために、収縮の差により皺が発生する。冷却後に固体高分子電解質膜と触媒層担持基材を一体化した接合部材から触媒層担持基材を剥離すると、固体高分子電解質膜に皺が発生していることが確認されている。
 特に、一般的な固体高分子電解質膜は、軟化温度(ガラス転移温度より30度以上50度以下程度低い温度とする。)以上に加熱した場合、伸びが非常に大きくなる。予備加熱機構を備える製造装置の場合、予備加熱時に固体高分子電解質膜と触媒層担持基材が伸張し、伸張率の差によって製造した膜―電極接合体に皺が発生することが確認されている。膜-電極接合体に皺が入ることは、その後の製造工程に悪影響を与え、膜-電極接合体の品質を低下させる。
 本発明は、上記の点に鑑みてなされたものであって、ホットロールの手法を用いながら、固体高分子電解質膜と触媒層との接着性が高く、皺が入ることがない、高品質の膜-電極接合体を製造することができる、膜-電極接合体製造装置及び膜-電極接合体の製造方法を提供することを目的とする。
 上記の課題を解決するための手段として、請求項1に記載の発明は、触媒層と固体高分子電解質膜とからなる膜-電極接合体を製造する膜-電極接合体製造装置であって、前記触媒層を転写基材の一面に担持させてなる触媒層担持基材と前記固体高分子電解質膜とを予備加熱する予備加熱手段と、前記触媒層担持基材と前記固体高分子電解質膜とを加熱及び加圧して一体化した接合部材を形成する熱圧着手段と、前記接合部材から前記転写基材を剥離する剥離手段とを備えることを特徴とする膜-電極接合体製造装置である。
 また、請求項2に記載の発明は、前記接合部材から前記転写基材を剥離する前に、前記接合部材を温度調整する温度調整手段をさらに備えることを特徴とする請求項1に記載の膜-電極接合体製造装置である。
 また、請求項3に記載の発明は、前記剥離手段が、前記転写基材と前記膜電極接合体とを略反対の方向に移動させて、前記接合部材から前記転写基材を剥離する手段であることを特徴とする請求項2に記載の膜-電極接合体製造装置である。
 また、請求項4に記載の発明は、前記剥離手段が、前記温度調整手段を兼ねる手段であることを特徴とする請求項3に記載の膜-電極接合体製造装置である。
 また、請求項5に記載の発明は、前記予備加熱手段が、前記触媒層担持基材と前記固体高分子電解質膜とを接触させた状態で予備加熱する手段であることを特徴とする請求項4に記載の膜-電極接合体製造装置である。
 また、請求項6に記載の発明は、前記剥離手段が、前記接合部材の両面から前記転写基材を剥離する手段であることを特徴とする請求項5に記載の膜-電極接合体製造装置である。
 また、請求項7に記載の発明は、前記予備加熱手段が、前記触媒層担持基材と前記固体高分子電解質膜とを接触させた状態で、前記固体高分子電解質膜の軟化温度以下まで予備加熱する第1の予備加熱手段からなることを特徴とする請求項1に記載の膜-電極接合体製造装置である。
 また、請求項8に記載の発明は、前記熱圧着手段が、前記固体高分子電解質膜の軟化温度近傍で前記触媒層担持基材と前記固体高分子電解質膜とを加熱及び加圧し、前記触媒層担持基材と前記固体高分子電解質膜とが一体化した接合部材前駆体を形成する第1の熱圧着手段と、前記接合部材前駆体を前記固体高分子電解質膜のガラス転移温度近傍の温度で加熱及び加圧して接合部材を形成する第2の熱圧着手段とからなることを特徴とする請求項7に記載の膜-電極接合体製造装置である。
 また、請求項9に記載の発明は、前記接合部材前駆体を、前記固体高分子電解質膜のガラス転移温度以上であって、熱分解温度以下の温度まで予備加熱する第2の予備加熱手段をさらに備えることを特徴とする請求項8に記載の膜-電極接合体製造装置である。
 また、請求項10に記載の発明は、触媒層と固体高分子電解質膜とからなる膜-電極接合体を製造する膜-電極接合体製造方法であって、前記触媒層を転写基材の一面に担持させてなる触媒層担持基材と前記固体高分子電解質膜とを予備加熱する予備加熱工程と、前記触媒層担持基材と前記固体高分子電解質膜とを加熱及び加圧して一体化した接合部材を形成する熱圧着工程と、前記接合部材から前記転写基材を剥離する剥離工程とを備えることを特徴とする膜-電極接合体の製造方法である。
 また、請求項11に記載の発明は、前記接合部材から前記転写基材を剥離する前に、前記接合部材を温度調整する温度調整工程をさらに備えることを特徴とする請求項10に記載の膜-電極接合体の製造方法である。
 また、請求項12に記載の発明は、前記剥離工程が、前記転写基材と前記膜電極接合体とを略反対の方向に移動させて、前記接合部材から前記転写基材を剥離する工程であることを特徴とする請求項11に記載の膜-電極接合体の製造方法である。
 また、請求項13に記載の発明は、前記剥離工程が、前記温度調整工程を兼ねる工程であることを特徴とする請求項12に記載の膜-電極接合体の製造方法である。
 また、請求項14に記載の発明は、前記予備加熱工程が、前記触媒層担持基材と前記固体高分子電解質膜とを接触させた状態で予備加熱する工程であることを特徴とする請求項13に記載の膜-電極接合体の製造方法である。
 また、請求項15に記載の発明は、前記剥離工程が、前記接合部材の両面から前記転写基材を剥離する工程であることを特徴とする請求項14に記載の膜-電極接合体の製造方法である。
 また、請求項16に記載の発明は、前記予備加熱工程が、前記触媒層担持基材と前記固体高分子電解質膜とを接触させた状態で、前記固体高分子電解質膜の軟化温度以下まで予備加熱する第1の予備加熱工程からなることを特徴とする請求項10に記載の膜-電極接合体の製造方法である。
 また、請求項17に記載の発明は、前記熱圧着工程が、前記固体高分子電解質膜の軟化温度近傍で前記触媒層担持基材と前記固体高分子電解質膜とを加熱及び加圧し、前記触媒層担持基材と前記固体高分子電解質膜とが一体化した接合部材前駆体を形成する第1の熱圧着工程と、前記接合部材前駆体を前記固体高分子電解質膜のガラス転移温度近傍の温度で加熱及び加圧して接合部材を形成する第2の熱圧着工程とからなることを特徴とする請求項16に記載の膜-電極接合体の製造方法である。
 また、請求項18に記載の発明は、前記第1の熱圧着工程後、前記接合部材前駆体を、前記固体高分子電解質膜のガラス転移温度以上であって、熱分解温度以下の温度まで予備加熱する第2の予備加熱工程をさらに備えることを特徴とする請求項17に記載の膜電極接合体の製造方法である。
 本発明の膜-電極接合体製造装置及び膜-電極接合体製造方法によれば、触媒層担持基材と固体高分子電解質膜を予備加熱し、固体高分子電解質膜と触媒層を伸張させた後に熱圧着することにより、膜-電極接合体に皺が形成されることを防ぐことができる。そして、固体高分子電解質膜と触媒層の接着強度を高めて、転写基材を剥離する際に固体高分子電解質膜から触媒層が剥離するのを防止することができる。
 さらに、接合部材から転写基材を剥離する前に、接合部材の温度調整をすることにより、熱圧着後に接合部材が外気によって冷却されても、膜-電極接合体に皺が形成されることを防ぐとともに、固体高分子電解質膜と触媒層の接着強度を高めて、転写基材を剥離する際に固体高分子電解質膜から触媒層が剥離するのを防止できる。
 また、本発明の膜-電極接合体製造装置及び膜-電極接合体の製造方法によれば、触媒層担持基材と固体高分子電解質膜を加熱する予備加熱工程を2つに分割し、仮圧着工程を挟むことにより、皺のない接合部材前駆体を作製できる。その後に予備加熱2を行い、熱圧着することにより、膜-電極接合体に皺が形成されることを防ぐとともに、固体高分子電解質膜と触媒層の接着強度が高い接合部材が作製できる。
本発明の第一の実施形態の膜-電極接合体製造装置の概略図である。 本発明の第二の実施形態の膜-電極接合体製造装置の概略図である。 (a)は膜-電極接合体の概略図である。(b)は接合部材の概略図である。 本発明の第一の実施形態の膜-電極接合体の製造工程図である。 本発明の第二の実施形態の膜-電極接合体の製造工程図である。 本発明の第一の実施形態の膜-電極接合体製造装置の変形例の構成の概略図である。 本発明の第二の実施形態の膜-電極接合体製造装置の変形例の構成の概略図である。
(膜-電極接合体製造装置)
 次に、本発明の一実施形態を説明する。なお、本発明の実施形態は、以下に記す実施形態に限定されるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の実施形態の範囲に含まれるものである。
 図1は、本発明の第一の実施形態の膜-電極接合体製造装置20を説明するための概略図である。膜-電極接合体製造装置20は、固体高分子電解質膜10を巻き出す巻き出しローラー22と、巻き出された固体高分子電解質膜10の張力を除去する一対の張力除去ローラー24と、触媒層を一面に担持する触媒層担持基材12を巻き出す巻き出しローラー26と、固体高分子電解質膜10とこの固体高分子電解質膜10と接触する触媒層担持基材12とを接触させた状態で予備加熱する予備加熱ヒーター28と、固体高分子電解質膜10と触媒層担持基材12とを加熱及び加圧して接合部材14とする一対の熱圧着ローラー30と、接合部材14を温度調整する温度調整ヒーター44と、接合部材14から転写基材16を剥離する剥離ローラー36と、転写基材16の剥離角度を設定する剥離角度設定ローラー38と、転写基材16を巻き取る巻き取りローラー42と、転写基材16が剥離されてなる膜-電極接合体18を巻き取る巻き取りローラー40とを備える。
 図2は、本発明の第二の実施形態の膜-電極接合体製造装置20を説明するための概略図である。膜-電極接合体製造装置20は、固体高分子電解質膜10を巻き出す巻き出しローラー22と、巻き出された固体高分子電解質膜10の張力を除去する一対の張力除去ローラー24と、触媒層を一面に担持する触媒層担持基材12を巻き出す巻き出しローラー26と、固体高分子電解質膜10とこの固体高分子電解質膜10と接触する触媒層担持基材12とを接触させた状態で、軟化温度以下まで予備加熱する予備加熱ヒーター27と、固体高分子電解質膜10と触媒層担持基材12とを加熱及び加圧して接合部材前駆体13とする一対の仮圧着ローラー29と、接合部材前駆体13をガラス転移温度以上、熱分解温度以下まで昇温させる予備加熱ヒーター28と、接合部材前駆体13を加熱加圧して接合部材14とする一対の熱圧着ローラー30と、接合部材14を温度調整する温度調整ヒーター44と、接合部材14から転写基材16を剥離する剥離ローラー36と、転写基材16の剥離角度を設定する剥離角度設定ローラー38と、転写基材16を巻き取る巻き取りローラー42と、転写基材16が剥離されてなる膜電極接合体18を巻き取る巻き取りローラー40とを備える。
 図2(a)は、膜-電極接合体18の概略図である。また、図2(b)は、接合部材14の概略図である。図2(a)のように、膜-電極接合体18は、図2(a)のように、固体高分子電解質膜10と、その両面に設けられた触媒層50とからなる。膜-電極接合体18は、図2(b)のように、固体高分子電解質膜10の両面に、触媒層担持基材12を、触媒層が担持された面を固体高分子電解質膜10側にして貼り合わせて接合部材14を形成した後、転写基材16を剥離することによって形成される。
 固体高分子電解質膜10は、湿潤状態で良好なプロトン導電性を示す高分子材料である。触媒層担持基材12は、白金又は白金と他の金属との合金からなる触媒を担持した粉末カーボンと樹脂により形成された触媒層50を転写基材16の一面に形成したものである。
 以下、固体高分子電解質膜10及び触媒層担持基材12を構成する材料の具体例を挙げるが、本発明はこれらに限定されない。
 固体高分子電解質膜10を構成する高分子材料としては、具体的には、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などを用いることができる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質膜を用いることができる。中でも、高分子電解質膜としてデュポン社製Nafion(登録商標)系材料を好適に用いることができる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質膜を用いることができる。
 固体高分子電解質膜10の厚みは、10μm以上300μm以下程度に形成される。
 触媒層50を構成する樹脂としては、上記高分子材料と同様のものを用いることができる。
 また、触媒層50を構成する触媒としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素のほか、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属若しくは白金とこれらの合金、又はこれらの酸化物、複酸化物などを用いることができる。その中でも、白金や白金合金がより好ましい。また、触媒の粒径は、大きすぎると触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5nm以上20nm以下が好ましい。
 また、触媒層50を構成する粉末カーボンとしては、微粒子状で導電性を有し、触媒に侵さないものであれば特に限定されない。具体的には、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンなどを用いることができる。粉末カーボンの粒径は、触媒より小さい10nm以上100nm以下程度が好適に用いられる。
 転写基材16は、その表面に触媒層50を形成でき、形成した触媒層50を固体高分子電解質膜10に転写できれば、特に限定されないが、例えば、ポリイミド、ポリエチレンテレフタラート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアクリレート、ポリエチレンナフタレート等の高分子フィルムを用いることができる。また、エチレンテトラフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロパーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン等の耐熱性フッ素樹脂を用いることもできる。
 張力除去ローラー24は、熱圧着ローラー30の回転による固体高分子電解質膜10及び触媒層担持基材12の搬送速度と同期するよう回転する。そして、熱圧着ローラー30で熱圧着される際に、固体高分子電解質膜10及び触媒層担持基材12に張力が作用しないようにする。こうすることにより、固体高分子電解質膜10及び触媒層担持基材12の熱圧着の際の変形を抑制することができる。また、張力除去ローラー24は、固体高分子電解質膜10と触媒層担持基材12を接触させる機能も有する。
 予備加熱ヒーター27は、固体高分子電解質膜10と触媒層担持基材12とを接触させた状態で、固体高分子電解質膜10の軟化温度以下の60度以上120度以下の範囲内で設定された温度に加熱できるようになっている。
 一対の仮圧着ローラー29には、両方の仮圧着ローラー29の内部に、表面を加熱するヒーター31Bが設けられている。また、一方の仮圧着ローラー29には、仮圧着ローラー間に圧力を作用させる加圧装置32Bが取り付けられている。ヒーター31Bは、仮圧着ローラー29の表面が加圧される固体高分子電解質膜10の軟化温度近傍の60度以上120度以下の範囲内になるように調節されている。また、加圧装置32Bは、熱圧着ローラー29間に作用される圧力が10MPa以上100MPa以下の範囲内になるように調節されている。仮圧着ローラー29は、図2のように上下ともに加熱できるようになっている。このように、固体高分子電解質膜10と触媒層担持基材12を接触させた状態で予備加熱ヒーター27によって予備加熱し、仮圧着ローラー29によって仮圧着することで、触媒層50と固体高分子電解質膜10とを皺のない安定した形状を持つ接合部材前駆体13にすることができる。
 予備加熱ヒーター28は、接合部材前駆体13を固体高分子電解質膜10のガラス転移温度以上、熱分解温度以下、具体的には80度以上140度以下の範囲内で設定された温度に加熱できるようになっている。
 一対の熱圧着ローラー30には、両方の熱圧着ローラー30の内部に、表面を加熱するヒーター31が設けられている。また、一方の熱圧着ローラー30には、熱圧着ローラー間に圧力を作用させる加圧装置32が取り付けられている。ヒーター31は、加圧される固体高分子電解質膜10のガラス転移温度近傍の80度以上140度以下の範囲内になるように調節されている。また、加圧装置32は、熱圧着ローラー30間に作用される圧力が10MPa以上100MPa以下の範囲内になるよう調節されている。熱圧着ローラー30は、図1、2のように上下ともに加熱できるようになっている。このように、固体高分子電解質膜10と触媒層担持基材12を接触させた状態で予備加熱ヒーター27又は28によって予備加熱し、熱圧着ローラー30によって熱圧着することで、触媒層50と固体高分子電解質膜10との接着度を向上させることができる。
 温度調整ヒーター44は、接合部材14を60度以上120度以下の範囲内で設定された温度に調節するようになっている。また、温度調整ヒーター44は、熱圧着による温度から20度程度低い温度にまで温度調整することができる。
 剥離ローラー36、剥離角度設定ローラー38は、剥離ローラー36により剥離される転写基材16と膜-電極接合体18とを略反対の方向に移動できるように、その位置、直径が調節されている。例えば、剥離ローラー36を直径30mm以下とし、剥離される転写基材16と膜-電極接合体18との角度が略180度となるように調節される。
(膜-電極接合体の製造方法)
 次に、本実施形態の膜-電極接合体製造装置20により膜-電極接合体18が製造される各工程について説明する。
 図4は、膜-電極接合体18の製造の工程を例示する第一の実施形態の製造工程図である。また、図5は、膜-電極接合体18の製造の工程を例示する第二の実施形態の製造工程図である。膜-電極接合体18の製造は、まず、巻き出しローラー22から巻き出された固体高分子電解質膜10及び巻き出しローラー26から巻き出された触媒層担持基材12を張力除去ローラー24により接触させ、かつ張力を除去する。張力除去された固体高分子電解質膜10と触媒層担持基材12を接触させた状態で、予備加熱ヒーター27により予備加熱される(工程S10)。この予備加熱は、この予備加熱は、60度以上120度以下の範囲内で設定された温度によって行われる。また、工程S10の予備加熱を、以下、予備加熱工程又は予備加熱工程1とも記す。
 固体高分子電解質膜10及び触媒層担持基材12の予備加熱は、張力除去ローラー24によって両者を接触させた状態で行われる。このとき、互いに接している固体高分子電解質膜10と触媒層担持基材12は、予備加熱ヒーター28の内部に搬送される。固体高分子電解質膜10及び触媒層担持基材12を接触させた状態で予備加熱するのは、固体高分子電解質膜10と、触媒層担持基材12上に担持している触媒層50を密着させ、固体高分子電解質膜10と触媒層50との接着強度を高め、皺なく貼合せするためである。
 次に、予備加熱された固体高分子電解質膜10と触媒層担持基材12とは、互いに接触した状態のままヒーター31B及び加圧装置32Bを有する仮圧着ローラー29で加熱及び加圧(ホットプレス)される。加熱、加圧された固体高分子電解質膜10と触媒層担持基材12とは、接合部材前駆体13となる(工程S11)。なお、工程S11のホットプレスを、本実施形態では仮圧着とも記す。仮圧着は、予備加熱工程1の設定温度と同じ温度(60度以上120度以下)の範囲内で設定された温度によって行われる。加圧は、10MPa以上100MPa以下の範囲内で設定された圧力で行われる。この理由は、仮圧着を予備加熱工程1より低い温度で行うと、後工程にて固体高分子電解質膜10と触媒層50に皺が発生し、膜電極接合体を作製できないためである。また、予備加熱工程1の温度範囲より高い温度では、固体電解質膜が熱で変形し、皺が発生するためである。仮圧着の加圧についても、圧力が10MPa以上100MPa以下の範囲より低い場合、接着力が足りずに接合部材前駆体13が作製できず、10MPa以上100MPa以下の圧力範囲より高い場合、高圧力によって接合部材前駆体13が劣化してしまう。
 次に、接合部材前駆体13は、予備加熱ヒーター28によって固体高分子電解質膜10のガラス転移温度以上、熱分解温度以下まで昇温される(工程S12)。ガラス転移温度以上、熱分解温度以下の具体的な温度は、80度以上140度以下の範囲内で設定された温度である。また、工程S12の予備加熱を、予備加熱工程2とも記す。工程S12を行うことにより、固体高分子電解質膜10と触媒層50の接着強度を向上させることができる。
 次に、予備加熱され、接触させた状態の固体高分子電解質膜10及び触媒層担持基材12、又は接合部材前駆体13は、熱圧着ローラー30で加熱及び加圧(ホットプレス)されて接合部材14となる(工程S13)。なお、工程S13のホットプレスを、本実施形態では熱圧着とも記す。熱圧着は、80度以上140度以下の範囲内で設定された温度で、10MPa以上100MPa以下の範囲内で設定された圧力で行われる。上記範囲より低い温度では、固体高分子電解質膜10と触媒層50の結合が悪く、膜-電極接合体を作製できず、前記範囲より高い温度では、固体電解質膜が熱で変形し、劣化してしまう。また、圧力についても同様に、上記範囲より低い圧力の場合、膜-電極接合体が作製できず、上記範囲より高い圧力の場合、高圧力によって膜-電極接合体が劣化してしまう。
 接合部材14は、温度調整ヒーター44により、熱圧着による温度から20度程度低い温度にまで温度調整される(工程S14)。そして、剥離ローラー36により接合部材14から転写基材16が剥離される(工程S15)。以上の工程により、膜-電極接合体18が作製される。なお、完成した膜-電極接合体18は、巻き取りローラー42に巻き取られ、剥離した転写基材16は巻き取りローラー40に巻き取られる。
 以上説明した本実施形態の膜-電極接合体製造装置20及び膜-電極接合体の製造方法によれば、固体高分子電解質膜10及び触媒層担持基材12をホットプレスする前に張力除去ローラー24で固体高分子電解質膜10及び触媒層担持基材12を予備的に接触させ、その後、予備加熱ヒーター27によって予備加熱をすることにより、固体高分子電解質膜10と触媒層50との接着強度を高めることができる。
 特に、予備加熱ヒーター27によって固体高分子電解質膜10の軟化温度以下まで予備加熱し、仮圧着ローラー29によって仮圧着することにより、固体高分子電解質膜10と触媒層担持基材12とを皺がない接合部材前駆体13に加工することができる。さらに、接合部材前駆体13を予備加熱ヒーター28によって固体高分子電解質膜10のガラス転移温度以上、熱分解温度以下まで昇温し、熱圧着ローラー30で圧着することで、固体高分子電解質膜10と触媒層50の接着が強い接合部材14を作製することができる。
 また、触媒層担持基材12を温度調整ヒーター44により温度調整したあとに、接合部材14からの転写基材16の剥離を行うことで、外気等による冷却によって生じる膜-電極接合体18の皺を防ぐことができる。
 特に、触媒層担持基材12を温度調整ヒーター44により熱圧着ローラー30から20度低く温度調整した後に、接合部材14からの転写基材16の剥離を行うことで、外気等による冷却によって生じる膜電極接合体18の皺を防ぐことができる。
 また、剥離ローラー36を30mm以下の直径とすると共に、転写基材16と膜-電極接合体18とを略180度の角度を持つようにすることで、転写基材16の剥離性を向上させることができ、良好な形状の膜-電極接合体18を製造することができる。
 本実施形態である膜-電極接合体製造装置20では、触媒層担持基材12と固体高分子電解質膜10を張力除去ローラー24によって接触させ、予備加熱するが、この予備加熱は、触媒層担持基材12と固体高分子電解質膜10をそれぞれ別個に行われてもよい。ただし、本実施形態では、図1、2のように、触媒層担持基材12と固体高分子電解質膜10とが接触した状態で予備加熱されることが好ましい。なお、図1、2では、固体高分子電解質膜10と触媒層担持基材12とを接触させた状態で、両面から予備加熱を行っているが、固体高分子電解質膜10と触媒層担持基材12とを接触させた状態で、一方の面のみから予備加熱を行ってもよい。
 また、本実施形態である膜-電極接合体製造装置20では、予備加熱ヒーター27の設定温度は、固体高分子電解質膜10や触媒層担持基材12の材料によって定まるものであるから、場合によっては、上述の60度以上120度以下の範囲内で設定された温度に限られず、固体高分子電解質膜10や触媒層担持基材12の材料に適応する温度を適宜設定すればよい。但し、予備加熱ヒーター27の設定温度は、固体高分子電解質膜10の軟化温度以下であることがより好ましい。
 また、本実施形態である膜-電極接合体製造装置20では、予備加熱ヒーター28の設定温度は、固体高分子電解質膜10や触媒層担持基材12の材料によって定まるものであるから、場合によっては、上述の80度以上140度以下の範囲内で設定された温度に限られず、固体高分子電解質膜10や触媒層担持基材12の材料に適応する温度を適宜設定すればよい。但し、予備加熱ヒーター28の設定温度は、固体高分子電解質膜10のガラス転移温度以上熱分解温度以下であることがより好ましい。
 また、本実施形態である膜-電極接合体製造装置20では、仮圧着ローラー29の表面温度又は圧力は、固体高分子電解質膜10や触媒層担持基材12の材料によって定まるものであるから、場合によっては、上述の60度以上120度以下の範囲内で設定された温度又は10MPa以上100MPa以下の範囲内で設定された圧力に限られず、固体高分子電解質膜10や触媒層担持基材12の材料に適応する温度又は圧力を適宜設定すればよい。但し、仮圧着ローラー29の表面温度は、固体高分子電解質膜10の軟化温度近傍であることがより好ましい。
 また、本実施形態である膜-電極接合体製造装置20では、熱圧着ローラー30の表面温度又は圧力は、固体高分子電解質膜10や触媒層担持基材12の材料によって定まるものであるから、場合によっては、上述の80度以上140度以下の範囲内で設定された温度又は10MPa以上100MPa以下の範囲内で設定された圧力に限られず、固体高分子電解質膜10や触媒層担持基材12の材料に適応する温度又は圧力を適宜設定すればよい。但し、熱圧着ローラー30の表面温度は、固体高分子電解質膜10のガラス転移温度近傍であることがより好ましい。
 また、本実施形態である膜-電極接合体製造装置20では、温度調整ヒーター44により接合部材14を温度調整するものとしたが、熱圧着ローラー30と剥離ローラー36との搬送時間を短くすることで、接合部材14の温度を高いまま保つものとしてもよい。また、図1、2では、接合部材14の両面から温度調整を行っているが、一方の面のみから温度調整を行ってもよい。
 また、本実施形態である膜-電極接合体製造装置20では、剥離ローラー36を直径30mm以下としたが、触媒層50と転写基材16との接着強度と触媒層と固体高分子電解質膜10との接着強度との大小によっては、直径30mmより大きなものを用いるものとしてもよい。
 また、本実施形態である膜-電極接合体製造装置20では、剥離ローラー36により剥離される転写基材16と膜-電極接合体18とが略180度の角度を持つように調節してもよいが、転写基材16の剥離性を考慮して、180度以外の角度となるように調節してもよい。
 また、本実施形態である膜-電極接合体製造装置20では、接合部材14の温度が、温度調整ヒーター44によって調整されていたが、剥離ローラー36の内部にヒーターを取り付け、温度調整を行うと同時に剥離を行うようにしてもよい。
 また、本実施形態である膜-電極接合体製造装置20は、少なくとも、触媒層担持基材12と固体高分子電解質膜10とを予備加熱する予備加熱手段(例えば、予備加熱ヒーター27がこれに相当する。)と、接合部材14を形成する熱圧着手段(例えば、熱圧着ローラー30がこれに相当する。)と、接合部材14から転写基材16を剥離する剥離手段(例えば、剥離ローラー36がこれに相当する。)とを備えていればよい。
 さらに、本発明の効果をより発現させるために、これらの構成に、接合部材14を温度調整する温度調整手段(例えば、温度調整ヒーター44がこれに相当する。)、接合部材前駆体13を形成する第1の熱圧着手段(例えば、仮圧着ローラー29がこれに相当する。)、接合部材前駆体13を予備加熱する第2の予備加熱手段(例えば、予備加熱ヒーター28がこれに相当する。)などを単独又は複数組み合わせて追加してもよい。
(変形例)
 本実施形態である膜-電極接合体製造装置20では、固体高分子電解質膜10の一方の面に触媒層50を接合してなる膜-電極接合体18を製造するものとしたが、固体高分子電解質膜10の両面に触媒層50を接合してなる膜-電極接合体18Bを製造するものとしてもよい。
 図6、7は、それぞれ第一の実施形態、第二の実施形態の膜-電極接合体製造装置20の変形例である膜-電極接合体製造装置20Bを説明するための概略図である。膜-電極接合体製造装置20Bは、図示するように、巻き出しローラー22から巻き出された固体高分子電解質膜10と二つの巻き出しローラー26A、26Bから巻き出され2枚の触媒層担持基材12A、12Bは張力除去ローラー24により接触させ、かつ張力を除去する。
 次に、接触させた固体高分子電解質膜10と触媒層担持基材12A、12Bは、予備加熱ヒーター27により予備加熱され、ヒーター31及び加圧装置32を有する熱圧着ローラー30により熱圧着される。
 または、接触させた固体高分子電解質膜10と触媒層担持基材12A、12Bは、予備加熱ヒーター27によって軟化温度以下まで予備加熱され、ヒーター31D及び加圧装置32Dを有する仮圧着ローラー29によって仮圧着され、接合部材前駆体13Bとなる。その後、接合部材前駆体13Bは、予備加熱ヒーター28によって固体高分子電解質膜10のガラス転移温度以上熱分解温度以下にまで昇温される。昇温された接合部材前駆体13Bは、ヒータ31C及び加圧装置32Cを有する熱圧着ローラー30により熱圧着される。
 熱圧着により接合された接合部材14Bは、温度調整ヒーター44によって熱圧着ローラー30の温度から20度低く調整される。その後、転写基材16A,16Bが、二つの剥離ローラー36A,36Bと、二つの剥離角度設定ローラー38A,38Bにより、接合部材14Bから剥離されて、固体高分子電解質膜10の両面に触媒が接合された膜-電極接合体18Bが作製される。なお、膜-電極接合体18Bは、巻き取りローラー40に巻き取られ、2枚の転写基材16A、16Bは、それぞれ巻き取りローラー42A,42Bに巻き取られる。
 以上説明した変形例の膜-電極接合体製造装置20Bによれば、固体高分子電解質膜10の両面に触媒層50が良好な形状で接合された膜-電極接合体18Bを製造することができる。
 本発明は、優れた品質の膜-電極接合体(MEA)を効率的に製造することができる。
10 固体高分子電解質膜
12,12A,12B 触媒層担持基材
13,13B 接合部材前駆体
14,14B 接合部材
16,16A,16B 転写基材
18,18B 膜-電極接合体
20,20,20B 膜-電極接合体製造装置
22 巻き出しローラー
24 張力除去ローラー
26,26A,26B 巻き出しローラー
27,28 予備加熱ヒーター
29 仮圧着ローラー
30 熱圧着ローラー
31,31B、31C,31D ヒーター
32,32B,32C,32D 加圧装置
36,36A,36B 剥離ローラー
38,38A,38B 剥離角度設定ローラー
40 巻き取りローラー
42,42A,42B 巻き取りローラー
44 温度調整ヒーター
50 触媒層

Claims (18)

  1.  触媒層と固体高分子電解質膜とからなる膜-電極接合体を製造する膜-電極接合体製造装置であって、
     前記触媒層を転写基材の一面に担持させてなる触媒層担持基材と前記固体高分子電解質膜とを予備加熱する予備加熱手段と、
     前記触媒層担持基材と前記固体高分子電解質膜とを加熱及び加圧して一体化した接合部材を形成する熱圧着手段と、
     前記接合部材から前記転写基材を剥離する剥離手段と
    を備えることを特徴とする膜-電極接合体製造装置。
  2.  前記接合部材から前記転写基材を剥離する前に、前記接合部材を温度調整する温度調整手段をさらに備えることを特徴とする請求項1に記載の膜-電極接合体製造装置。
  3.  前記剥離手段が、前記転写基材と前記膜電極接合体とを略反対の方向に移動させて、前記接合部材から前記転写基材を剥離する手段であることを特徴とする請求項2に記載の膜-電極接合体製造装置。
  4.  前記剥離手段が、前記温度調整手段を兼ねる手段であることを特徴とする請求項3に記載の膜-電極接合体製造装置。
  5.  前記予備加熱手段が、前記触媒層担持基材と前記固体高分子電解質膜とを接触させた状態で予備加熱する手段であることを特徴とする請求項4に記載の膜-電極接合体製造装置。
  6.  前記剥離手段が、前記接合部材の両面から前記転写基材を剥離する手段であることを特徴とする請求項5に記載の膜-電極接合体製造装置。
  7.  前記予備加熱手段が、前記触媒層担持基材と前記固体高分子電解質膜とを接触させた状態で、前記固体高分子電解質膜の軟化温度以下まで予備加熱する第1の予備加熱手段からなることを特徴とする請求項1に記載の膜-電極接合体製造装置。
  8.  前記熱圧着手段が、前記固体高分子電解質膜の軟化温度近傍で前記触媒層担持基材と前記固体高分子電解質膜とを加熱及び加圧し、前記触媒層担持基材と前記固体高分子電解質膜とが一体化した接合部材前駆体を形成する第1の熱圧着手段と、前記接合部材前駆体を前記固体高分子電解質膜のガラス転移温度近傍の温度で加熱及び加圧して接合部材を形成する第2の熱圧着手段とからなることを特徴とする請求項7に記載の膜-電極接合体製造装置。
  9.  前記接合部材前駆体を、前記固体高分子電解質膜のガラス転移温度以上であって、熱分解温度以下の温度まで予備加熱する第2の予備加熱手段をさらに備えることを特徴とする請求項8に記載の膜-電極接合体製造装置。
  10.  触媒層と固体高分子電解質膜とからなる膜-電極接合体を製造する膜-電極接合体製造方法であって、
     前記触媒層を転写基材の一面に担持させてなる触媒層担持基材と前記固体高分子電解質膜とを予備加熱する予備加熱工程と、
     前記触媒層担持基材と前記固体高分子電解質膜とを加熱及び加圧して一体化した接合部材を形成する熱圧着工程と、
     前記接合部材から前記転写基材を剥離する剥離工程と
    を備えることを特徴とする膜-電極接合体の製造方法。
  11.  前記接合部材から前記転写基材を剥離する前に、前記接合部材を温度調整する温度調整工程をさらに備えることを特徴とする請求項10に記載の膜-電極接合体の製造方法。
  12.  前記剥離工程が、前記転写基材と前記膜電極接合体とを略反対の方向に移動させて、前記接合部材から前記転写基材を剥離する工程であることを特徴とする請求項11に記載の膜-電極接合体の製造方法。
  13.  前記剥離工程が、前記温度調整工程を兼ねる工程であることを特徴とする請求項12に記載の膜-電極接合体の製造方法。
  14.  前記予備加熱工程が、前記触媒層担持基材と前記固体高分子電解質膜とを接触させた状態で予備加熱する工程であることを特徴とする請求項13に記載の膜-電極接合体の製造方法。
  15.  前記剥離工程が、前記接合部材の両面から前記転写基材を剥離する工程であることを特徴とする請求項14に記載の膜-電極接合体の製造方法。
  16.  前記予備加熱工程が、前記触媒層担持基材と前記固体高分子電解質膜とを接触させた状態で、前記固体高分子電解質膜の軟化温度以下まで予備加熱する第1の予備加熱工程からなることを特徴とする請求項10に記載の膜-電極接合体の製造方法。
  17.  前記熱圧着工程が、前記固体高分子電解質膜の軟化温度近傍で前記触媒層担持基材と前記固体高分子電解質膜とを加熱及び加圧し、前記触媒層担持基材と前記固体高分子電解質膜とが一体化した接合部材前駆体を形成する第1の熱圧着工程と、前記接合部材前駆体を前記固体高分子電解質膜のガラス転移温度近傍の温度で加熱及び加圧して接合部材を形成する第2の熱圧着工程とからなることを特徴とする請求項16に記載の膜-電極接合体の製造方法。
  18.  前記第1の熱圧着工程後、前記接合部材前駆体を、前記固体高分子電解質膜のガラス転移温度以上であって、熱分解温度以下の温度まで予備加熱する第2の予備加熱工程をさらに備えることを特徴とする請求項17に記載の膜電極接合体の製造方法。
PCT/JP2011/050768 2010-03-08 2011-01-18 膜-電極接合体製造装置及び膜-電極接合体の製造方法 WO2011111419A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11753081.6A EP2530773B1 (en) 2010-03-08 2011-01-18 Method for manufacturing membrane electrode assembly
CN201180013022.6A CN102823041B (zh) 2010-03-08 2011-01-18 膜电极组件制造装置和膜电极组件的制造方法
KR1020127026335A KR101415129B1 (ko) 2010-03-08 2011-01-18 막-전극 접합체 제조 장치 및 막-전극 접합체의 제조 방법
JP2012504345A JP5751248B2 (ja) 2010-03-08 2011-01-18 膜−電極接合体製造装置及び膜−電極接合体の製造方法
US13/582,857 US20130192750A1 (en) 2010-03-08 2011-01-18 "membrane-electrode assembly producing apparatus and membrane-electrode assembly producing method"
US15/291,209 US20170032871A1 (en) 2010-03-08 2016-10-12 Membrane-electrode assembly producing apparatus and membrane-electrode assembly producing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-050339 2010-03-08
JP2010050339 2010-03-08
JP2010217811 2010-09-28
JP2010-217811 2010-09-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/582,857 A-371-Of-International US20130192750A1 (en) 2010-03-08 2011-01-18 "membrane-electrode assembly producing apparatus and membrane-electrode assembly producing method"
US15/291,209 Division US20170032871A1 (en) 2010-03-08 2016-10-12 Membrane-electrode assembly producing apparatus and membrane-electrode assembly producing method

Publications (1)

Publication Number Publication Date
WO2011111419A1 true WO2011111419A1 (ja) 2011-09-15

Family

ID=44563249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050768 WO2011111419A1 (ja) 2010-03-08 2011-01-18 膜-電極接合体製造装置及び膜-電極接合体の製造方法

Country Status (6)

Country Link
US (2) US20130192750A1 (ja)
EP (1) EP2530773B1 (ja)
JP (1) JP5751248B2 (ja)
KR (1) KR101415129B1 (ja)
CN (1) CN102823041B (ja)
WO (1) WO2011111419A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169771A (ja) * 2012-02-23 2013-09-02 Toyota Motor Corp フィルム状の被圧着物の圧着装置と燃料電池用の膜電極接合体の製造方法
US20140048201A1 (en) * 2012-08-15 2014-02-20 Gtat Corporation Bonding of thin lamina
JP2014160601A (ja) * 2013-02-20 2014-09-04 Toyota Motor Corp 接合装置
US9070801B2 (en) 2008-02-05 2015-06-30 Gtat Corporation Method to texture a lamina surface within a photovoltaic cell
JP2015144123A (ja) * 2013-12-26 2015-08-06 トヨタ自動車株式会社 補強型電解質膜の製造方法、シート
JP2016122585A (ja) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 補強型電解質膜の製造方法
WO2017086304A1 (ja) * 2015-11-19 2017-05-26 東レ株式会社 高分子電解質膜を含む接合体の製造方法および製造装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2869955A1 (en) 2012-04-17 2013-10-24 3M Innovative Properties Company Apparatus and method
KR101619573B1 (ko) * 2013-12-19 2016-05-10 현대자동차주식회사 연료전지용 전극막 접합체 제조방법
JP6098949B2 (ja) * 2014-12-12 2017-03-22 トヨタ自動車株式会社 電解質膜巻回体
JP6094828B2 (ja) 2014-12-12 2017-03-15 トヨタ自動車株式会社 膜電極接合体の製造方法及び製造装置
KR101724139B1 (ko) * 2016-09-28 2017-04-19 (주)디엠티 연료전지용 단위셀 스택형성장치
JP6673241B2 (ja) 2017-02-02 2020-03-25 トヨタ自動車株式会社 帯状の部材の貼り合わせ方法、および、帯状の部材の貼り合わせ装置
CN107694823A (zh) * 2017-11-20 2018-02-16 湖州中洲电磁线有限公司 一种漆包线涂蜡装置
CN110380064B (zh) * 2018-04-14 2022-01-04 无锡先导智能装备股份有限公司 膜电极组件制造方法及装置
KR20200053915A (ko) * 2018-11-09 2020-05-19 현대자동차주식회사 연료전지용 막-전극 어셈블리의 열처리 장치
CN110176574B (zh) * 2019-06-14 2021-09-10 合肥国轩高科动力能源有限公司 一种锂离子电池负极极片的预锂方法
CN110890556A (zh) * 2019-12-17 2020-03-17 佛山市清极能源科技有限公司 一种质子交换膜燃料电池ccm的生产装置及方法
CN111477885B (zh) * 2020-04-10 2021-07-23 武汉理工氢电科技有限公司 一种3ccm的生产方法
CN115249552A (zh) * 2021-04-27 2022-10-28 泰科电子(上海)有限公司 对柔性扁平电缆进行连续热压的热压机械和方法
CN115832338B (zh) * 2023-02-17 2023-09-19 山东华滋自动化技术股份有限公司 膜电极一体化热转印分切设备及其热转印分切工艺
CN118283858B (zh) * 2024-06-04 2024-08-16 浙江大华技术股份有限公司 一种银纳米线加热装置及其制备方法和摄像设备

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064574A (ja) 1996-08-26 1998-03-06 Fuji Electric Co Ltd 固体高分子電解質型燃料電池の製造方法
JP2000182632A (ja) * 1998-12-11 2000-06-30 Toshiba Corp 固体高分子電解質燃料電池用電極の製造方法
JP2001196070A (ja) 2000-01-12 2001-07-19 Toyota Motor Corp 接合体製造装置および接合体製造方法
JP2003132899A (ja) * 2001-10-30 2003-05-09 Matsushita Electric Ind Co Ltd 燃料電池用電極の形成方法及びその形成装置
JP2003257438A (ja) * 2002-03-05 2003-09-12 Toyota Motor Corp 触媒層転写用ロールプレス装置
WO2004051776A1 (ja) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. 固体高分子電解質膜、当該膜を用いた固体高分子型燃料電池、およびその製造方法
WO2005063466A1 (ja) * 2003-12-26 2005-07-14 Kaneka Corporation フレキシブル積層板の製造方法
JP2005217278A (ja) * 2004-01-30 2005-08-11 Murata Mfg Co Ltd 積層セラミック電子部品の製造方法
JP2005302589A (ja) * 2004-04-14 2005-10-27 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材前駆体シート状物の製造方法
JP2006134611A (ja) * 2004-11-02 2006-05-25 Toyota Motor Corp 接合体製造装置及び接合体製造方法
JP2006203221A (ja) * 2003-07-29 2006-08-03 Kyocera Corp メッキ膜の製造方法及び電子部品の製造方法
JP2009037916A (ja) * 2007-08-02 2009-02-19 Toyota Motor Corp 一対の加熱加圧ロール、燃料電池用触媒層連続転写ロールプレス装置、該燃料電池用触媒層連続転写ロールプレス装置によって作製された燃料電池用膜−電極接合体(mea)、及び該燃料電池用触媒層連続転写ロールプレス装置を用いた燃料電池用膜−電極接合体(mea)の製造方法
JP2009054600A (ja) * 2008-11-05 2009-03-12 Dainippon Printing Co Ltd 触媒層−電解質膜積層体の製造方法
JP2009134953A (ja) * 2007-11-29 2009-06-18 Toyota Motor Corp フレーム付き膜電極接合体および燃料電池セルの連続製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444732A (en) * 1967-06-06 1969-05-20 Albert L Robbins Method and apparatus for determining optimum bonding parameters for thermoplastic material
KR100659133B1 (ko) * 2006-02-08 2006-12-19 삼성에스디아이 주식회사 촉매 코팅 전해질막, 이를 포함하는 연료전지 및 상기 촉매코팅 전해질막의 제조방법
CN101842444B (zh) * 2007-11-01 2013-06-05 富士胶片株式会社 颜料分散组合物、着色固化性组合物、滤色器及其制造方法
JP2010055922A (ja) * 2008-08-28 2010-03-11 Toppan Printing Co Ltd 膜電極接合体の製造装置及び製造方法
JP4683147B2 (ja) * 2009-01-09 2011-05-11 富士電機リテイルシステムズ株式会社 飲料抽出装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064574A (ja) 1996-08-26 1998-03-06 Fuji Electric Co Ltd 固体高分子電解質型燃料電池の製造方法
JP2000182632A (ja) * 1998-12-11 2000-06-30 Toshiba Corp 固体高分子電解質燃料電池用電極の製造方法
JP2001196070A (ja) 2000-01-12 2001-07-19 Toyota Motor Corp 接合体製造装置および接合体製造方法
JP2003132899A (ja) * 2001-10-30 2003-05-09 Matsushita Electric Ind Co Ltd 燃料電池用電極の形成方法及びその形成装置
JP2003257438A (ja) * 2002-03-05 2003-09-12 Toyota Motor Corp 触媒層転写用ロールプレス装置
WO2004051776A1 (ja) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. 固体高分子電解質膜、当該膜を用いた固体高分子型燃料電池、およびその製造方法
JP2006203221A (ja) * 2003-07-29 2006-08-03 Kyocera Corp メッキ膜の製造方法及び電子部品の製造方法
WO2005063466A1 (ja) * 2003-12-26 2005-07-14 Kaneka Corporation フレキシブル積層板の製造方法
JP2005217278A (ja) * 2004-01-30 2005-08-11 Murata Mfg Co Ltd 積層セラミック電子部品の製造方法
JP2005302589A (ja) * 2004-04-14 2005-10-27 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材前駆体シート状物の製造方法
JP2006134611A (ja) * 2004-11-02 2006-05-25 Toyota Motor Corp 接合体製造装置及び接合体製造方法
JP2009037916A (ja) * 2007-08-02 2009-02-19 Toyota Motor Corp 一対の加熱加圧ロール、燃料電池用触媒層連続転写ロールプレス装置、該燃料電池用触媒層連続転写ロールプレス装置によって作製された燃料電池用膜−電極接合体(mea)、及び該燃料電池用触媒層連続転写ロールプレス装置を用いた燃料電池用膜−電極接合体(mea)の製造方法
JP2009134953A (ja) * 2007-11-29 2009-06-18 Toyota Motor Corp フレーム付き膜電極接合体および燃料電池セルの連続製造方法
JP2009054600A (ja) * 2008-11-05 2009-03-12 Dainippon Printing Co Ltd 触媒層−電解質膜積層体の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070801B2 (en) 2008-02-05 2015-06-30 Gtat Corporation Method to texture a lamina surface within a photovoltaic cell
JP2013169771A (ja) * 2012-02-23 2013-09-02 Toyota Motor Corp フィルム状の被圧着物の圧着装置と燃料電池用の膜電極接合体の製造方法
US20140048201A1 (en) * 2012-08-15 2014-02-20 Gtat Corporation Bonding of thin lamina
JP2014160601A (ja) * 2013-02-20 2014-09-04 Toyota Motor Corp 接合装置
JP2015144123A (ja) * 2013-12-26 2015-08-06 トヨタ自動車株式会社 補強型電解質膜の製造方法、シート
JP2016122585A (ja) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 補強型電解質膜の製造方法
WO2017086304A1 (ja) * 2015-11-19 2017-05-26 東レ株式会社 高分子電解質膜を含む接合体の製造方法および製造装置

Also Published As

Publication number Publication date
JP5751248B2 (ja) 2015-07-22
EP2530773A4 (en) 2014-07-23
CN102823041B (zh) 2016-05-18
CN102823041A (zh) 2012-12-12
JPWO2011111419A1 (ja) 2013-06-27
EP2530773B1 (en) 2018-12-05
KR101415129B1 (ko) 2014-07-04
US20130192750A1 (en) 2013-08-01
US20170032871A1 (en) 2017-02-02
EP2530773A1 (en) 2012-12-05
KR20130001264A (ko) 2013-01-03

Similar Documents

Publication Publication Date Title
JP5751248B2 (ja) 膜−電極接合体製造装置及び膜−電極接合体の製造方法
JP5439867B2 (ja) 膜電極接合体の製造方法及び製造装置
EP3056344B1 (en) Sheet for thin layer transfer, electrode catalyst layer-carrying sheet for thin layer transfer, method for producing sheet for thin layer transfer, and method for producing membrane electrode assembly.
JP6641812B2 (ja) 膜電極接合体の製造方法
JP2009152166A (ja) 複合型電解質膜、膜電極接合体、燃料電池、及びのこれらの製造方法
JP5304132B2 (ja) 膜電極接合体の製造方法
KR20090043765A (ko) 연료 전지용 막-전극 어셈블리의 제조 장치 및 그 제조방법
JP2010198948A (ja) 膜電極接合体及びその製造方法並びに固体高分子形燃料電池
JP6098949B2 (ja) 電解質膜巻回体
JP2015035256A (ja) 膜電極接合体の製造方法及び製造装置
JP2016076366A (ja) 燃料電池膜−電極接合体の製造方法及び膜−電極接合体
JP2016162650A (ja) 燃料電池単セルの製造方法
JP2008159377A (ja) 燃料電池用電極の接合装置及びその接合方法
JP6859881B2 (ja) 膜電極接合体の製造方法
JP5304125B2 (ja) 膜電極接合体の製造方法および膜電極接合体並びに固体高分子形燃料電池
JP5240348B2 (ja) 膜電極接合体の製造方法
JP2019053822A (ja) 触媒転写方法
JP2020027792A (ja) 燃料電池用セルの接合体の製造装置
JP6094828B2 (ja) 膜電極接合体の製造方法及び製造装置
JP6550917B2 (ja) 膜−電極接合体の製造方法および膜−電極接合体
JP2016122585A (ja) 補強型電解質膜の製造方法
JP6561800B2 (ja) 膜電極接合体の製造方法
JP3392760B2 (ja) 耐薬品性シートの製造方法
JP2014086324A (ja) 接合装置および接合方法
WO2020026796A1 (ja) 膜・触媒接合体の製造方法、及び製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013022.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753081

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504345

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011753081

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13582857

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127026335

Country of ref document: KR

Kind code of ref document: A