WO2011111391A1 - ステンレスの不動態化方法 - Google Patents

ステンレスの不動態化方法 Download PDF

Info

Publication number
WO2011111391A1
WO2011111391A1 PCT/JP2011/001400 JP2011001400W WO2011111391A1 WO 2011111391 A1 WO2011111391 A1 WO 2011111391A1 JP 2011001400 W JP2011001400 W JP 2011001400W WO 2011111391 A1 WO2011111391 A1 WO 2011111391A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
treatment
nitric acid
molybdenum
acid
Prior art date
Application number
PCT/JP2011/001400
Other languages
English (en)
French (fr)
Inventor
義明 井田
文幸 津高
克久 杉本
Original Assignee
マルイ鍍金工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルイ鍍金工業株式会社 filed Critical マルイ鍍金工業株式会社
Priority to JP2012504338A priority Critical patent/JP5527860B2/ja
Priority to CN201180010016.5A priority patent/CN102762769B/zh
Publication of WO2011111391A1 publication Critical patent/WO2011111391A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates

Definitions

  • the present invention relates to the passivation of stainless steel.
  • JP-A-64-4494 discloses a method for obtaining a high pitting corrosion potential by combining three-stage electrolytic treatment and electroless treatment.
  • JP-A-57-26196 discloses electrolysis or electroless treatment in a solution containing phosphoric acid and molybdic acid.
  • the object to be processed is subjected to anodic electropolishing in the first step to remove dirt, and in the second step, the object to be processed is subjected to cathodic electrolytic treatment to electrodeposit molybdenum.
  • the pitting potential is 1000 mV or less, which is not sufficient.
  • JP-A-64-4494 discloses that chromic acid or molybdic acid is added to chromic acid after electroless treatment of stainless steel in a solution in which at least one of sulfuric acid, phosphoric acid, nitric acid and molybdate is added to chromic acid.
  • An invention for cathodic electrolysis with an added aqueous solution is disclosed.
  • spray spraying is used as a treatment method. With this method, it is difficult to control the temperature during treatment, and the treatment becomes uneven. There are disadvantages such as the acid being easily scattered.
  • the cathodic electrolysis treatment in the second step is an essential requirement, this also includes a double step in which molybdenum is laminated on the workpiece surface by electrodeposition and then the laminate is oxidized. It will be.
  • JP-A-57-26196 discloses electrolysis or electroless treatment in a solution containing phosphoric acid and molybdic acid. Although electroless treatment (see Table 3 and Example 3) is disclosed here, it is not intended to obtain a high pitting corrosion potential, and the effect of pitting corrosion potential is not disclosed. Is unknown.
  • molybdenum is electrodeposited on the surface of the object to be processed by cathodic electrolysis to form a passive film.
  • Cathodic electrolytic treatment has a basic problem that the uniformity of characteristics cannot be ensured unless the temperature, concentration, and current density of the solution are strictly controlled, and the characteristic varies depending on the part of the workpiece with unevenness. is there. Accordingly, it is not preferable to use electrolytic treatment for a workpiece having a large area or a workpiece having a complicated shape from the viewpoint of the quality and uniformity of each product or portion.
  • the present invention has been proposed in view of the above-mentioned conventional circumstances, and without using a cathodic electrolytic treatment, a passive film is formed on the surface of stainless steel in a state containing molybdenum that enhances the ability to suppress pitting corrosion by chlorine ions against scratches. It is intended to form.
  • the present invention employs the following steps.
  • Stainless steel is electropolished in a mixed solution of phosphoric acid and sulfuric acid (anodic electrolytic treatment) to clean the stainless steel surface and to elute iron to form a chromium-rich passivated film.
  • an electroless treatment is performed in a nitric acid solution of sodium molybdate at a predetermined temperature and a predetermined concentration for a predetermined time, thereby forming a passive film containing a metal molybdenum compound on the stainless steel surface.
  • a chromium-rich passivated film is formed on the stainless steel surface by the electropolishing treatment, and a passive film containing a metal molybdenum compound is formed on the stainless steel surface by a nitric acid solution of sodium molybdate used for the electroless treatment. be able to.
  • a passive film containing molybdenum can be formed on the stainless steel surface without using cathodic electrolysis, and a high pitting corrosion potential can be obtained, and stainless steel with high regenerating ability can be realized with an inexpensive raw material. .
  • FIG. 1 is a distribution diagram of the pitting corrosion potential of one embodiment of the present invention.
  • FIG. 2 is a distribution diagram of the pitting corrosion potential of the comparative example.
  • FIG. 3 is a distribution diagram of the pitting potential of another embodiment of the present invention.
  • FIG. 4 is an XPS analysis diagram of one embodiment of the present invention.
  • FIG. 5 is an XPS analysis diagram of another embodiment of the present invention.
  • FIG. 6 is an XPS analysis diagram of still another embodiment of the present invention.
  • FIG. 7 is a diagram showing a composition obtained by treatment of a comparative example of the present invention.
  • FIG. 8 is a diagram showing the composition by the treatment of the present invention.
  • FIG. 9 is a diagram showing the results of a corrosion resistance test in steam.
  • FIG. 10 is a diagram showing the results of a corrosion resistance test in salt water.
  • stainless steel is electropolished in a mixed solution of phosphoric acid and sulfuric acid (anodic electrolysis) to remove and clean non-metallic inclusions on the surface of the stainless steel, and iron is eluted, and chromium is applied to the surface. Forms a rich passivation film.
  • the stainless steel turned into chromium chromium is subjected to electroless treatment in a nitric acid solution of sodium molybdate at a predetermined temperature and a predetermined concentration for a predetermined time, thereby forming a passive film containing a metal molybdenum compound.
  • the ratio of phosphoric acid and sulfuric acid is 50% to 90%: 10% to 50% (volume%).
  • the phosphoric acid concentration is lower than this, the glossiness is lowered, and when it is higher than this, the cost is increased.
  • the electropolishing treatment is performed at a temperature of 30 ° C. to 80 ° C. and a current of 1 A to 20 A / dm 2 for 30 seconds to 20 minutes. If the temperature is lower than 30 ° C., the dissolution rate of iron is not sufficient, and if it is higher than 80 ° C., the odor of sulfuric acid becomes strong, causing problems in workability. If the current density is less than 1 A / dm 2 , the dissolution rate of iron is not sufficient, and if it is greater than 20 A / dm 2 , the uniformity of the current density is lowered, resulting in a deterioration in quality. Furthermore, the temperature, current density, and time are matters that should be determined relatively, but to the extent that the elution of iron is not excessively large and is too small, it does not hinder the subsequent electroless treatment. The range of the degree.
  • the nitric acid solution used for the electroless treatment is 10 to 60% by weight. If the concentration is lower than 10% by weight, an oxidizing action cannot be obtained at a sufficient rate. On the other hand, if it is higher than 60% by weight, the oxidizing power is too strong and a good passivation film cannot be obtained.
  • the concentration of sodium molybdate added to nitric acid is determined by the relative relationship with the solution temperature and processing time, and is in the range of 0.05 M to 0.5 M / L. When sodium molybdate is 0.05 M / L or less, sufficient resistance to chloride ions cannot be obtained, and at the same time, the variation in pitting potential increases.
  • the electroless treatment is performed at a temperature in the range of 20 to 80 ° C.
  • the temperature is 20 ° C. or lower, a sufficient reaction rate cannot be obtained, and a passivation film containing metal molybdenum is not formed.
  • the temperature is 80 ° C. or higher, a nitric acid odor is generated in the atmosphere, resulting in workability problems.
  • solution group I 10%, 30%, and 50% concentration nitric acid
  • solution group II a solution in which 0.1 mol of sodium molybdate was added to 30% concentration nitric acid
  • solution group III A 0.1 M aqueous solution of sodium molybdate
  • each concentration is 10%, 30%, 50%.
  • the concentration is 10% (experiment number (3)). Slightly, the range was widened.
  • FIG. 4 shows the analysis results of the elemental analysis XPS of the sample according to Experiment 16 according to the present invention, and Table 2 shows specific numerical values (unit A ⁇ C% (atomic percentage)).
  • Table 2 shows specific numerical values (unit A ⁇ C% (atomic percentage)).
  • the sputtering time is shown in the left column of the table. According to Table 2, molybdenum is observed near the surface (see the Mo3d column), and correspondingly, a molybdenum peak is observed in FIG. 4 (see the Mo1 column).
  • ESCA5600Ci made by ULVAC-PHI Co., Ltd. was used as an elemental analysis device.
  • the vertical axis in FIG. 4 is the number of sputtering times, about 0.1 minute, and accordingly, a value corresponding to a numerical value of 1 min or less in Table 2 appears as a peak below the Mo1 column.
  • Figure 5 shows the addition of 0.1M sodium molybdate to 30% nitric acid and 2 hours at 25 ° C (experiment number (13)).
  • Figure 6 shows the addition of 0.1M sodium molybdate to 30% nitric acid. It is XPS data when electroless treatment (not shown in Table 1) is performed for 7 hours at °C. In the case of 40 ° C. for 7 hours, a molybdenum peak is observed, and in the case of 25 ° C. for 2 hours, a slight peak is also recognized, and it can be understood that molybdenum is incorporated into the stainless steel surface simultaneously with the oxidation treatment.
  • the raw material (state not subjected to electrolytic polishing treatment) is directly passivated with nitric acid (for example, 30% nitric acid solution), or the raw material not subjected to electrolytic polishing treatment is added to nitric acid and molybdic acid (for example, 30% nitric acid solution).
  • nitric acid for example, 30% nitric acid solution
  • molybdic acid for example, 30% nitric acid solution
  • FIG. 7 shows the results when stainless steel (SUS304) was electropolished (8 V, 10 minutes, 10 A / dm 2 ) + electroless treatment with 30% nitric acid (60 ° C, 2 hours) (sample of experiment number (6)).
  • FIG. 8 shows electroless polishing (8 V, 10 minutes, 10 A / dm 2 ) + 30% nitric acid + 0.1 M molybdic acid electroless treatment (60 ° C., 2 hours) (experiment number (14 ) Sample)).
  • T.A. (Min) is the sputtering time and corresponds to the distance in the depth direction from the surface. The relationship between the sputtering time and the depth is about 1.5 nm / min.
  • the oxide film (the position of ST time, which is about half of the rise of oxygen (position of ST 2 min.)) Is the present invention (FIG. 8).
  • the position is 1.8 min.
  • the oxide film of the present invention is about twice as deep as the comparative example.
  • the chromium concentration is higher to a distance deeper than the surface as compared with the comparative example (FIG. 7).
  • Molybdenum has a very small proportion, so it cannot be confirmed from FIG. 8, but it is contained to some extent from Table 2 (sample of experiment number (16)) or from FIGS. 4 to 6. I understand that.
  • the sample was electropolished (8 V, 10 minutes, 10 A / dm 2 ) + 30% nitric acid (40 ° C, 7 hours: sample corresponding to Fig. 6).
  • Sputtering time was 1 min and oxygen was 33.45%.
  • the results of 32.36% for chromium, 3.77% for oxygen with a sputtering time of 2 min, and 10.8% for chromium were obtained, and considering the results shown in FIG. 8, the treatment of the present invention has stability. I can understand that.
  • FIG. 9 Sample: Electropolishing (8V, 10 minutes, current 10A / dm 2 ) + Electroless treatment with 30% nitric acid (60 ° C, 2 hours) (Comparative example, upper part of Fig. 9: Experiment number (6)), Electropolishing Treatment (8 V, 10 minutes, current 10 A / dm 2 ) + electroless treatment (60 ° C., 2 hours) with 30% nitric acid + 0.1 M molybdic acid (the present invention, FIG. 9 lower row: experiment number (14)). It is a test result about a plurality of samples (5 samples) about each test. In FIG. 9, the voltage (horizontal axis) at which the current (vertical axis) suddenly rises is the pitting corrosion potential.
  • the comparative product shows a sample in which the current rises at several hundred mV or less, but it can be understood that the present invention stably shows a pitting potential of 1000 mV or more.
  • a corrosion resistance test was also performed on the same sample used for the steam treatment in a state of being immersed in salt water (concentration: 3.5%) (FIG. 10).
  • a sample showing a pitting potential lower than 1000 mV is already observed after 10 days of immersion, but the product of the present invention shows 1000 mV or more in any sample when immersed for 10 days.
  • the stability can be maintained for a considerably long time (100 days in this experiment).
  • “no treatment” means that the product is not exposed to a steam atmosphere or is not immersed in salt water, and as shown in Table 1, here, the product of the present invention is more stable than the nitric acid-treated product. It can be understood that the nature is high.
  • a chromium-rich passivated film can be formed on the stainless steel surface by electropolishing, and a passivated film can be formed on the stainless steel surface by nitric acid used for electroless treatment.
  • nitric acid used for electroless treatment In addition to being able to penetrate molybdenum.
  • the present invention has great industrial applicability because the formation of the passive film on the stainless steel surface and the molybdenum content can be simultaneously processed without electrolysis.

Abstract

孔食抑制能力を高めるモリブデンを含んだ不動態膜をステンレス表面に形成する。ステンレスをリン酸と硫酸の混合液中で電解研磨処理し、次いで、モリブデン酸ナトリウムの硝酸溶液中で、所定温度、所定濃度の下で所定時間無電解処理する。前記電解研磨処理によって、ステンレス表面にクロムリッチな不動態化皮膜を形成するとともに、無電解処理に用いた硝酸によってステンレス表面に金属モリブデン化合物を含有させた不動態皮膜を形成することができる。これによって、陰極電解処理によらないでステンレス表面に、モリブデンを含有した不動態皮膜を形成することができ、高い孔食電位を得るとともに、再生能力の高いステンレスを安価な原料で実現できることができる。

Description

ステンレスの不動態化方法
 本発明はステンレスの不動態化に関するものである。
 ステンレス表面に酸化膜を形成し、不動態化することによって、高い孔食電位をもたせ、耐食性、耐腐食性を向上させることは従来より知られている。また、ステンレスにモリブデンを合金として含ませることよって、塩化物イオンによる孔食を抑制するとともに、傷に対する皮膜の再生能力が向上することも従来より知られた技術である。
 原料として最初からモリブデンを数%以下含ませて溶解し、モリブデンを合金化したステンレスもあるが、値段が高くなる欠点がある。モリブデンを含まないステンレスにモリブデンを含ませるためには、モリブデン塩を含む溶液中でステンレスを陰極として電解処理をする方法が採られる。当該陰極処理の例としては、例えば特開005-298939号公報、特開平07-188976号公報、特開昭64-4494、特開昭57-26196号公報に開示されている。
 但し、これら公報に開示の方法は電解処理によって、当該ステンレスの表面に金属モリブデン化合物を形成する手法が採用され、不動態化皮膜は別の工程で形成するようになっている。
 その内、特開昭64-4494には、3段階の電解処理と無電解処理を組み合わせて高い孔食電位を得る方法が開示されている。また、特開昭57-26196号公報には、リン酸とモリブデン酸を含む溶液中での電解あるいは無電解処理が開示されている。
特開2005-298939号公報 特開平07-188976号公報 特開昭64-4494号公報 特開昭57-26196号公報
 特開2005-298939号公報では、硝酸とモリブデン酸ナトリウムの溶液中でステンレスを陰極とした電解処理をし、当該ステンレス表面に金属モリブデン化合物を形成し、その後、定電位処理によって、酸化物皮膜を形成するようになっている。ここで定電位処理の意味は明確ではないが、酸化物皮膜を形成するためには被処理物が溶液から電子を受ける必要があることから、被処理物(ステンレス)を陽極に配置した処理を意味するものと解される。すなわち、ここではモリブデンの被処理物への電着と酸化処理(不動態化処理)とで種類の異なる電解処理を用いていることになる。
 特開平07-188976号公報では、第1工程で被処理物を陽極電解研磨して汚れを除去し、第2工程で被処理物を陰極電解処理しモリブデンを電着する処理を行っているが、孔食電位は1000mV以下であり、充分とは言いがたい。
 また、特開昭64-4494にはクロム酸に硫酸、リン酸、硝酸、モリブデン酸塩のうちの少なくとも一種を添加した溶液中でステンレスを無電解処理した後、クロム酸又はこれにモリブデン酸を添加した水溶液で陰極電解処理する発明が開示されている。この発明では、第3工程で無電解処理をしているものの、処理方法として、スプレー噴霧を用いており、この方法であると、処理時の温度コントロールが難しいこと、処理が不均一になること、酸が飛散しやすいこと等の欠点がある。加えて、第2工程での陰極電解処理を必須要件とすることから、ここでもモリブデンを電着によって被加工物表面に積層した後、当該積層物を酸化するという2重の工程よりなっていることになる。
 更に、特開昭57-26196号公報には、リン酸とモリブデン酸を含む溶液中での電解あるいは無電解処理が開示されている。ここでは無電解処理(第3表、第3例参照)が開示されているが、高い孔食電位を得ることを目的とするものではなく、孔食電位については開示されていないので、その効果は不明である。
 更に、上記いずれの方法においても、陰極電解処理によって、モリブデンを被処理物表面に電着し、不動態皮膜を形成するようになっている。
 陰極電解処理は、溶液の温度、濃度、電流密度を厳密に管理しなければ特性の均一性を確保できず、また、凹凸がある被加工物では、部分によって特性が異なるという基本的な問題がある。従って、面積の大きな被加工物あるいは、形状の複雑な被加工物については、品質の製品ごと、あるいは部分ごとの均一性、安定性という観点からは電解処理を用いることは好ましくない。
 本発明は上記従来の事情に鑑みて提案されたものであり、陰極電解処理を使用しないでかつ傷に対する塩素イオンによる孔食抑制能力を高めるモリブデンを含んだ状態でステンレスの表面に不動態膜を形成することを目的とするものである。
 上記目的を達成するために、本発明は以下のステップを採用している。
 ステンレスをリン酸と硫酸の混合液中で電解研磨処理(陽極電解処理)して、ステンレス表面を清浄化するとともに、鉄分を溶出させ、クロムリッチな不動態化皮膜を形成する。
 ついで、モリブデン酸ナトリウムの硝酸溶液中で、所定温度、所定濃度の下で所定時間無電解処理することによって、ステンレス表面に金属モリブデン化合物を含有させた不動態膜を形成する。
 前記電解研磨処理によって、ステンレス表面にクロムリッチな不動態化皮膜を形成するとともに、無電解処理に用いたモリブデン酸ナトリウムの硝酸溶液によってステンレス表面に金属モリブデン化合物を含有させた不動態皮膜を形成することができる。これによって、陰極電解処理によらないでステンレス表面に、モリブデンを含有した不動態皮膜を形成することができ、高い孔食電位を得るとともに、再生能力の高いステンレスを安価な原料で実現できることができる。
図1は本発明の1実施例の孔食電位の分布図。 図2は比較例の孔食電位の分布図。 図3は本発明の他の実施例の孔食電位の分布図。 図4は本発明の1実施例のXPS解析図。 図5は本発明の他の1実施例のXPS解析図。 図6は本発明の更に他の1実施例のXPS解析図。 図7は本発明の比較例の処理による組成を表す図。 図8は本発明の処理による組成を表す図。 図9は蒸気中の耐食試験結果を示す図。 図10は、塩水中の耐食試験の結果を示す図。
 本発明は、ステンレスをリン酸と硫酸の混合液中で電解研磨処理(陽極電解処理)して、ステンレス表面の非金属介在物を除去して清浄化するとともに、鉄分を溶出させ、表面にクロムリッチな不動態化皮膜を形成する。次いで、当該クロムチッリになったステンレスをモリブデン酸ナトリウムの硝酸溶液中で、所定温度、所定濃度の下で所定時間無電解処理することによって、金属モリブデン化合物を含有させた不動態膜を形成する。
 前記電解研磨処理は、85重量%のリン酸と、98%の硫酸を用いた場合、リン酸と硫酸の比が、50%~90%:10%~50%(容量%)である。リン酸濃度がこれより少ないと光沢性低下の状態となり、これ以上大きいとコスト高となる。
 前記電解研磨処理は、温度30℃~80℃の下で、1A~20A/dm2の電流で、30秒~20分で行われる。温度が30℃より低いと、鉄分の溶解速度が充分でなく、また、80℃より高いと、硫酸臭が強くなり、作業性に問題が生じることになる。電流密度が1A/dm2より少ないと、鉄分の溶解速度は充分でなく、また、20A/dm2より大きいと、電流密度の均一性が低下することで品質の低下となる。更に、上記温度と電流密度と時間は相対的に決定されるべき事項であるが、鉄分の溶出が大きくなり過ぎない程度、また、少なすぎて、後の無電解処理に支障を来たさない程度の範囲となる。
 上記無電解処理に使用する硝酸溶液は、10~60重量%である。10重量%より濃度が低いと充分な速度での酸化作用を得ることができない。逆に60重量%より濃いと、酸化力が強すぎて良好な不動態化皮膜ができない。硝酸に添加するモリブデン酸ナトリウムの濃度は溶液温度、処理時間との相対的な関係で決定されるが、0.05M~0.5M/Lの範囲である。モリブデン酸ナトリウムが0.05M/L以下であると充分な塩化物イオンに対する抵抗性が得られないと同時に、孔食電位のばらつきが大きくなる。逆に、モリブデン酸ナトリウムが0.5M/L以上であると、塩化物イオンに対する抵抗性は充分高くなるが、添加量にみあう孔食電位の向上は得られない。更に、無電解処理は温度20~80℃の範囲で行われる。温度が20℃以下の場合は充分な反応速度が得られず、金属モリブデンの含有した不動態化皮膜は形成されない。温度が80℃以上であると、雰囲気に硝酸臭が立ち作業性の問題が生じる。
 素材はそれ自体は、モリブデンを含んでいないステンレスSUS304を用いた。この素材を、85重量%リン酸と98%硫酸の混合溶液(リン酸:硫酸=50%:50%(容量%))の溶液中で温度30℃の下、電流10A/dm2で10分電解研磨して、以下の実験のための試料を作成した。
 ついで、表1に示すように、10%、30%、50%濃度の硝酸(溶液群I)を用意するとともに、30%濃度の硝酸にモリブデン酸ナトリウムを0.1モル添加した溶液(溶液群II)と、0.1Mモリブデン酸ナトリウム水溶液(溶液群III)を用意する。
 これら、各溶液群に対して前記電解研磨した試料を、それぞれ、温度25℃、2時間、7時間、温度60℃、2時間、7時間の無電解処理を施し、孔食電位を測定する。
 以上の結果を表1に示す。表1(単位mV)中、Averageが複数回の実験の孔食電位の平均値、Lowerが下限値、Upperが上限値である。尚、以下レンジと称しているのは、複数回の実験のLowerとUpperの差を意味する。また、試料数は各試験とも5である。
 電解研磨後に、濃度30%の硝酸に0.1Mのモリブデン酸ナトリウムを添加した溶液で無電解処理した場合、孔食電位は、図1に示すように、広い範囲(60℃、2時間、25℃、7時間)で高く(1000mV程度)しかもばらつきレンジの少ない安定した孔食電位を得ることができた(実験番号(14),(15)参照)。
 これに対して、図2(a),(b),(c)に示すように、硝酸による酸化処理で1000mV程度の孔食電位を得ようとすると、各濃度10%、30%、50%とも、25℃、7時間の場合にのみ(実験番号(3),(7),(11))、レンジ幅の少ない結果を得ることができ、その中濃度10%(実験番号(3))はやや、レンジに広がりが見られた。
 さらに、本願発明に係る30%硝酸溶液にモリブデン酸ナトリウムを添加(処理時間2時間)した、温度60℃の場合に1000mV前後の孔食電位を得ようとすると、図3に示すように、モリブデン酸ナトリウムの濃度が0.05M/L~0.2 M/L(0.05M/L、0.2 M/Lは表1になし、0.1 M/Lは実験番号(16)まで、安定した孔食電位を得ることができるのに対して、硝酸のみの処理では、各処理で孔食電位のばらつきができた(実験番号(6)、(8)参照)。
 図4は本発明による実験16に係る試料の元素解析XPSの解析結果であり、表2はその具体的な数値(単位A・C%(アトミックパーセント))である。表2中、表の左端縦欄にスパッタ時間を表している。表2によると、表面付近にモリブデンが認められ(Mo3d欄参照)、これに対応して、図4にモリブデンのピークが認められる(Mo1欄参照)。尚、元素解析装置としてアルバックファイ株式会社製のESCA5600Ciを用いた。図4の縦軸はスパッタの回数で、1回、0.1分程度、従って、表2の、1min以下の数値に対応する値が、Mo1欄の下側にピークとして現れている。
 図5は、30%硝酸に0.1Mモリブデン酸ナトリウムを添加し、25℃の下で、2時間(実験番号(13))、図6は 30%硝酸に0.1Mモリブデン酸ナトリウムを添加し、40℃の下で7時間の無電解処理(表1になし)した場合のXPSのデータである。40℃、7時間の場合はモリブデンのピークが認められ、25℃、2時間の場合にも僅かにピークが認められ、モリブデンが酸化処理と同時にステンレスの表面に取り込まれていることが理解できる。
 尚、素材(電解研磨処理されない状態)を直接硝酸(例えば硝酸30%溶液)で不動態化すること、あるいは電解研磨処理をしない素材を硝酸にモリブデン酸を添加した液(例えば硝酸30%溶液に0.1M/Lのモリブデン酸を添加)で不動態化した試料についても孔食電位を測定する実験をしたが、数百mV以下の孔食電位しか得られず、本願の電解研磨処理が重要であることが理解できる。
 更に、前記電解研磨処理をした試料を0.1モリブデン酸水溶液(溶液群III:硝酸なし)で無電解処理して、上記各試料と同様の試験をした場合には、孔食電位が低く、満足できる不動態膜が形成されていないことが理解できる(実験番号(17)~(20))。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図7は、ステンレス(SUS304)を電解研磨(8V、10分、10A/dm2)+30%硝酸での無電解処理(60℃、2時間)(実験番号(6)の試料)をしたときのXPSの分析結果、図8(本願発明)は電解研磨(8V、10分、10A/dm2)+30%硝酸+0.1Mモリブデン酸への無電解処理(60℃、2時間)(実験番号(14)の試料)の分析結果である。
 両図とも縦軸のA・C%はアトミック%、横軸のS.T.(min)はスパッタ時間で、表面よりの深さ方向の距離に対応している。尚、スパッタ時間と深さの関係は1.5nm/分程度となる。
 酸素(黒四角)の挙動から理解できるように、酸化皮膜(酸素の立ち上がり(S.T.O.2minの位置)数値から約半減したS.T.時間の位置)は、本発明(図8)では、1.8minの位置になっているが、比較例(図7)では1min以下になっており、酸化皮膜が本願発明品は比較例より倍程度深くなっている。
 次いで、クロム(黒三角)の挙動から理解できるように、本発明(図8)では、比較例(図7)より、表面より深い距離までクロム濃縮が高くなっている。
 モリブデンは全体に占める割合が極めて小さいので、図8からは確認することはできないが、表2(実験番号(16)の試料)、あるいは図4~図6から、ある程度の深さまで含有されていることが理解できる。
 尚、電解研磨(8V、10分、10A/dm2)+30%硝酸での無電解処理(40℃、7時間:図6に対応の試料)の試料で、スパッタ時間が1minで酸素が33.45%、クロムが32.36%、スパッタ時間が2minで酸素が3.77%、クロムが10.8%、との結果を得ており、図8に示した結果と合わせて考慮すると、本願発明の処理が安定性を持っていることを理解できる。
 上記の組成の相違が、表1で示した孔食電位の高さと安定性に繋がっており、また、以下に説明する蒸気(121℃)に晒されたとき、あるいは塩水に浸漬したときの安定性に繋がるものと考えられる。
 ところで、医薬や食品業界では、滅菌や殺菌のために、ステンレス容器を純水蒸気洗浄を行うことがあり、その時にルージュと呼ばれる変色(高温による酸化皮膜や鉄分から由来する鉄の腐食性生物)が生ずることがある。
 そこで、蒸気処理による耐食性評価試験をして、その結果を図9に示した。試料は、電解研磨処理(8V、10分、電流10A/dm2)+30%硝酸での無電解処理(60℃、2時間)(比較例、図9上段:実験番号(6))、電解研磨処理(8V、10分、電流10A/dm2)+30%硝酸+0.1Mモリブデン酸での無電解処理(60℃、2時間)(本願発明、図9下段:実験番号(14))である。各試験について複数の試料(5試料)についての試験結果である。図9において、電流(縦軸)が急激に立ち上がっている電圧(横軸)が孔食電位である。
 121℃で2時間までの蒸気処理で、比較品は数百mV以下で電流が立ち上がる試料が見られるが、本願発明は安定して1000mV以上の孔食電位をしめしていることが理解できる。
 素材そのままの試料、電解研磨処理のみをした試料についても、蒸気中での耐食試験を試みたが、素材そのままの試料では、そもそも孔食電位があるのかどうかも定かでなく、電解研磨処理のみをした試料では平均が数百mVであり、本願発明あるいは硝酸処理品より遥かに能力が劣る結果であった。
 蒸気処理に使用したと同様の試料で、塩水(濃度3.5%)に浸漬した状態での耐食性試験も行った(図10)。硝酸のみでの処理では10日間の浸漬で既に1000mVより低い孔食電位を示す試料も見られるが、本願発明品は、10日間の浸漬ではいずれの試料でも1000mV以上を示している。また、相当長時間(本実験では100日)に渡って安定性を維持できることが理解できる。
 尚、図9、図10中「処理なし」は蒸気雰囲気に晒さない、あるいは塩水に浸漬しないことを意味し、表1で示したと同様、ここでも、硝酸処理品より本願発明品の方が安定性が高いことが理解できる。
 以上説明したように、本発明によると、電解研磨処理によって、ステンレス表面をクロムリッチな不動態化皮膜を形成することができるとともに、無電解処理に用いた硝酸によってステンレス表面に不動態皮膜を形成することに加えて、モリブデンを浸透させることができる。これによって、陰極電解処理によらないでステンレス表面に金属モリブデン化合物を含有させた不動態皮膜を形成することができ、高い孔食電位を得るとともに、再生能力の高いステンレスを安価な原料で実現できることができる。
産業状の利用可能性
 以上説明したように本発明は、ステンレス表面の不動態皮膜の形成とモリブデンの含有とを無電解で同時に処理できるので、産業上の利用可能性は大きい。

Claims (5)

  1.  ステンレスをリン酸と硫酸の混合液中で電解研磨処理するステップ、
    モリブデン酸ナトリウムの硝酸溶液中で、所定温度、所定濃度の下で所定時間無電解処理するステップ、
    よりなるステンレスの不動態化方法。
  2. 前記電解研磨処理における、リン酸と硫酸の比が、85重量%のリン酸と、98%の硫酸を用いた場合、リン酸:硫酸=50~90:10~50容量%である請求項1に記載のステンレスの不動態化方法。
  3. 前記電解研磨処理が、温度30℃~80℃の下で、1A~20A/dm2の電流で、30秒~20分である、請求項1に記載のステンレスの不動態化方法。
  4. 前記無電解処理に使用する硝酸溶液が、10~60重量%、モリブデン酸ナトリウムが0.05M~0.5M/Lである請求項1に記載のステンレスの不動態化方法。
  5. 前記無電解処理が温度20~80℃である請求項1に記載のステンレスの不動態化方法。
PCT/JP2011/001400 2010-03-12 2011-03-10 ステンレスの不動態化方法 WO2011111391A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012504338A JP5527860B2 (ja) 2010-03-12 2011-03-10 ステンレスの不動態化方法
CN201180010016.5A CN102762769B (zh) 2010-03-12 2011-03-10 不锈钢的钝化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-056706 2010-03-12
JP2010056706 2010-03-12

Publications (1)

Publication Number Publication Date
WO2011111391A1 true WO2011111391A1 (ja) 2011-09-15

Family

ID=44563222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001400 WO2011111391A1 (ja) 2010-03-12 2011-03-10 ステンレスの不動態化方法

Country Status (3)

Country Link
JP (1) JP5527860B2 (ja)
CN (1) CN102762769B (ja)
WO (1) WO2011111391A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103703A1 (ja) * 2012-12-28 2014-07-03 マルイ鍍金工業株式会社 ステンレス鋼の不動態化方法
JP2014214349A (ja) * 2013-04-25 2014-11-17 株式会社Ihi ステンレス鋼部品の不動態化処理方法
JP2016000857A (ja) * 2014-05-21 2016-01-07 マルイ鍍金工業株式会社 ステンレス鋼の不動態化方法
JP2017531092A (ja) * 2014-08-18 2017-10-19 イーファウアー シュメッツ ゲゼル シャフト ミット ベシュレンクテル ハフツングIva Schmetz Gmbh 窒化炉用レトルトの製造方法およびそのレトルト
JP2020002393A (ja) * 2018-06-25 2020-01-09 マルイ鍍金工業株式会社 ステンレスの表面処理方法
CN114107970A (zh) * 2021-11-29 2022-03-01 深圳市诚达科技股份有限公司 一种不锈钢表面抗腐蚀膜层的常温制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543937B (zh) * 2015-12-23 2018-01-16 江门市安诺特炊具制造有限公司 一种不锈钢炊具电解钝化液及其钝化处理工艺
CN106435585B (zh) * 2016-08-16 2019-07-12 深圳市诚达科技股份有限公司 一种不锈钢件的表面cts抗腐蚀处理方法
CN106086996B (zh) * 2016-08-24 2017-12-26 厦门双瑞船舶涂料有限公司 一种修复已生锈不锈钢钝化状态的复合表面处理方法
CN106835241A (zh) * 2016-12-26 2017-06-13 安徽宝恒新材料科技有限公司 一种耐磨型不锈钢的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153247A (ja) * 1989-11-10 1991-07-01 Fuji Photo Film Co Ltd 感光材料処理装置
JPH09250000A (ja) * 1996-03-14 1997-09-22 Okuno Chem Ind Co Ltd ステンレス鋼電解研摩液用添加剤およびステンレス鋼電解研摩液
JP2002081451A (ja) * 2000-05-31 2002-03-22 Nsk Ltd 転がり支持装置
JP2005089804A (ja) * 2003-09-16 2005-04-07 Kyodo Yushi Co Ltd 水素含有環境下で使用されるトライボロジー金属部材及び潤滑剤
JP2007516772A (ja) * 2003-12-30 2007-06-28 ボストン サイエンティフィック リミテッド 金属合金の洗浄および研磨方法、ならびにそれにより洗浄または研磨された製品
JP2008091225A (ja) * 2006-10-03 2008-04-17 Nisshin Steel Co Ltd 固体高分子型燃料電池用セパレータ及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847477B2 (ja) * 1980-07-24 1983-10-22 日本金属株式会社 ステンレス鋼の表面処理方法
JP4777098B2 (ja) * 2006-03-07 2011-09-21 日本ペイント株式会社 新規な複合化成皮膜を含む複層塗膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153247A (ja) * 1989-11-10 1991-07-01 Fuji Photo Film Co Ltd 感光材料処理装置
JPH09250000A (ja) * 1996-03-14 1997-09-22 Okuno Chem Ind Co Ltd ステンレス鋼電解研摩液用添加剤およびステンレス鋼電解研摩液
JP2002081451A (ja) * 2000-05-31 2002-03-22 Nsk Ltd 転がり支持装置
JP2005089804A (ja) * 2003-09-16 2005-04-07 Kyodo Yushi Co Ltd 水素含有環境下で使用されるトライボロジー金属部材及び潤滑剤
JP2007516772A (ja) * 2003-12-30 2007-06-28 ボストン サイエンティフィック リミテッド 金属合金の洗浄および研磨方法、ならびにそれにより洗浄または研磨された製品
JP2008091225A (ja) * 2006-10-03 2008-04-17 Nisshin Steel Co Ltd 固体高分子型燃料電池用セパレータ及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103703A1 (ja) * 2012-12-28 2014-07-03 マルイ鍍金工業株式会社 ステンレス鋼の不動態化方法
JPWO2014103703A1 (ja) * 2012-12-28 2017-01-12 マルイ鍍金工業株式会社 ステンレス鋼の不動態化方法
JP2014214349A (ja) * 2013-04-25 2014-11-17 株式会社Ihi ステンレス鋼部品の不動態化処理方法
JP2016000857A (ja) * 2014-05-21 2016-01-07 マルイ鍍金工業株式会社 ステンレス鋼の不動態化方法
JP2017531092A (ja) * 2014-08-18 2017-10-19 イーファウアー シュメッツ ゲゼル シャフト ミット ベシュレンクテル ハフツングIva Schmetz Gmbh 窒化炉用レトルトの製造方法およびそのレトルト
US10294537B2 (en) 2014-08-18 2019-05-21 Iva Schmetz Gmbh Method for producing a retort for a nitriding furnace and retort
JP2020002393A (ja) * 2018-06-25 2020-01-09 マルイ鍍金工業株式会社 ステンレスの表面処理方法
JP7108291B2 (ja) 2018-06-25 2022-07-28 マルイ鍍金工業株式会社 ステンレスの表面処理方法
CN114107970A (zh) * 2021-11-29 2022-03-01 深圳市诚达科技股份有限公司 一种不锈钢表面抗腐蚀膜层的常温制备方法
CN114107970B (zh) * 2021-11-29 2024-04-12 深圳市诚达科技股份有限公司 一种不锈钢表面抗腐蚀膜层的常温制备方法

Also Published As

Publication number Publication date
CN102762769B (zh) 2014-10-29
CN102762769A (zh) 2012-10-31
JPWO2011111391A1 (ja) 2013-06-27
JP5527860B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5527860B2 (ja) ステンレスの不動態化方法
US10738383B2 (en) Method for nickel-free phosphating metal surfaces
JP7066707B2 (ja) コーティングされていない鋼ストリップをめっき層で電気めっきする方法
JP6505498B2 (ja) ステンレス鋼の不動態化方法
JP6855833B2 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
TWI452181B (zh) 在氧化、電解酸浴中之不銹鋼酸漬法
JP6105167B2 (ja) 高クロムフェライト系ステンレス冷延鋼板の酸洗方法
JP6167411B2 (ja) 耐塩素孔食性及び耐全面腐食性及び防錆性に優れたステンレス鋼の表面改質処理方法
EP3106544A2 (en) Continuous trivalent chromium plating method
Mohan et al. Electropolishing of stainless steel—a review
EP1233084A2 (en) "Anodizing process, with low environmental impact, for a workpiece of aluminium or aluminium alloys"
CN104520473A (zh) 用于制造奥氏体不锈钢冷轧钢板的高速酸洗方法
JP2007270356A (ja) バレル式電解クロメート処理
JP6852454B2 (ja) Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法
US3632490A (en) Method of electrolytic descaling and pickling
JP5686608B2 (ja) 陽極酸化皮膜の封孔処理方法
JP2001226790A (ja) アルミニウム材用酸性洗浄液およびその洗浄方法
US9487882B2 (en) Titanium material and method for producing titanium material
JP5073998B2 (ja) 銀器類の改良方法
Singh et al. The electrochemical behaviour of nitrogen-containing austenitic stainless steel in methanolic solution
El Warraky et al. Copper redeposition and surface enrichment during the dissolution of Al‐Cu alloys in different concentrations of NaCl solution. Part 1–electrochemical measurements
KR20140017323A (ko) 내식성 향상을 위한 오스테나이트계 스테인리스 냉연강판의 고속 산세 프로세스
JP6260413B2 (ja) 錫亜鉛めっき鋼板とその製造方法
Andreeva et al. Study of the Chemical Formation of Cerium Oxide Conversion Layers on Aluminium AD-3
JP2023175315A (ja) ステンレス鋼の不動態化処理液及び不動態化処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010016.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504338

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753054

Country of ref document: EP

Kind code of ref document: A1