WO2011111190A1 - バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム - Google Patents

バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム Download PDF

Info

Publication number
WO2011111190A1
WO2011111190A1 PCT/JP2010/054023 JP2010054023W WO2011111190A1 WO 2011111190 A1 WO2011111190 A1 WO 2011111190A1 JP 2010054023 W JP2010054023 W JP 2010054023W WO 2011111190 A1 WO2011111190 A1 WO 2011111190A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
hot water
biomass
hydrothermal decomposition
decomposition apparatus
Prior art date
Application number
PCT/JP2010/054023
Other languages
English (en)
French (fr)
Inventor
稔 源田
良介 上原
英夫 鈴木
寺倉 誠一
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44237056&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011111190(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/132,040 priority Critical patent/US9102956B2/en
Priority to PCT/JP2010/054023 priority patent/WO2011111190A1/ja
Priority to CA2741598A priority patent/CA2741598C/en
Priority to JP2010536274A priority patent/JP4699567B1/ja
Priority to BRPI1006883-0A priority patent/BRPI1006883B1/pt
Publication of WO2011111190A1 publication Critical patent/WO2011111190A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention provides a biomass hydrothermal decomposition apparatus capable of efficiently hydrothermally decomposing biomass raw materials and a temperature control method thereof, and an organic raw material such as alcohols, petroleum substitutes or amino acids using the same.
  • the present invention relates to a system for manufacturing an organic raw material using a biomass raw material that can be manufactured well.
  • Patent Document 1 and Patent Document 2 Conventionally, after saccharification treatment of biomass such as wood with dilute sulfuric acid and concentrated sulfuric acid, solid-liquid separation, neutralization of the liquid phase, and production technology such as ethanol used as a raw material for ethanol fermentation have been put into practical use ( Patent Document 1 and Patent Document 2). Moreover, chemical industrial raw material production (for example, lactic acid fermentation etc.) is also considered using sugar as a starting material.
  • the biomass refers to the accumulation of organisms incorporated into the material circulation system of the earth biosphere or organic substances derived from the organisms (see JIS K 3600 1258).
  • sugarcane, corn, etc. which are currently used as alcohol raw materials, are originally provided for food.
  • it is effective food products to make these edible resources long-term and stable for industrial use. From the viewpoint of life cycle, it is not preferable.
  • Cellulose resources vary from 38 to 50% for cellulose, 23 to 32% for hemicellulose components, and 15 to 22% for lignin components that do not become fermentation raw materials.
  • the raw materials are assumed to be fixed, and there is no disclosure of production system technology considering the versatility of raw materials.
  • Patent Documents 1 to 3 a phenomenon occurs in which the side reaction product causes enzyme saccharification inhibition and the saccharide yield decreases. Therefore, the enzyme saccharification inhibitor is removed and enzyme saccharification mainly by cellulose is performed.
  • the proposal of the hydrothermal decomposition apparatus which improves property was made first (patent documents 4 and 5).
  • JP-T 9-507386 Japanese National Patent Publication No. 11-506934 JP 2005-168335 A JP 2009-183805 A JP 2009-183154 A
  • FIG. 10 shows a schematic diagram of a vertical apparatus for hydrothermally decomposing biomass according to a conventional example with hot water.
  • biomass (solid) 11 is supplied into the apparatus main body 42 from the lower side, moved upward by the conveying screw 43 provided inside, and from the upper side.
  • Biomass solid content (hot water insoluble content) 17 is discharged outside.
  • pressurized hot water (hereinafter, also referred to as “hot water”) 15 is supplied into the apparatus main body 42 from the upper side, is in contact with the biomass 11, and the hot water discharge liquid 16 is exposed to the outside from the lower side. It is discharged. Therefore, in the apparatus main body 42, the temperature gradually decreases from the hot water 15 supply side (upper side) toward the lower side (biomass supply side).
  • FIG. 11 shows the state of decomposition of biomass by hot water.
  • the biomass (cellulosic material) contains hemicellulose and lignin in addition to cellulose.
  • cellulose has a structure in which hemicellulose is bundled and lignin is adhered.
  • Biomass is divided into a hot water insoluble part (solid part) and a hot water soluble part after hydrothermal decomposition.
  • the biomass raw material 11 is hydrothermally decomposed at a high temperature (180 to 240 ° C.) by the pressurized hot water 15 to dissolve the hemicellulose on the hot water side, and to decompose and dissolve the lignin. Hemicellulose and the like are dissolved on the water side. In the state of the hot water-solubilized hemicellulose after being solubilized in hot water, there is a problem that excessive decomposition occurs at a high temperature (180 to 240 ° C.).
  • the present invention is a hydrothermal process of biomass capable of suppressing the excessive decomposition of hemicellulose in a hydrothermal solubilized part in a hydrothermal decomposition process of biomass capable of separating a cellulose-based component from a biomass raw material.
  • a decomposition apparatus, a temperature control method, and an organic raw material manufacturing system using a biomass raw material are provided.
  • the first invention of the present invention for solving the above-mentioned problem is to supply a solid biomass raw material from one side of the apparatus main body and supply pressurized hot water from the other side,
  • the biomass is hydrothermally decomposed while facing each other, the hot water dissolving component is dissolved in the hot water, the pressurized hot water is discharged from one side of the apparatus main body, and the biomass raw material is discharged from the other side.
  • a biomass hydrothermal decomposition apparatus which is formed from the other side of the apparatus main body to one side, and maintains an supply temperature of pressurized hot water for a certain period of time, and an effective reaction area for hydrothermal decomposition, and an effective reaction area
  • the biomass hydrothermal decomposition apparatus has a temperature drop region in which the temperature is rapidly lowered to a temperature at which the hot water-dissolved component is not excessively decomposed immediately after the completion.
  • the supply temperature of the pressurized hot water is any one of 180 ° C. to 240 ° C., and the temperature at which the hot water-soluble component is not excessively decomposed is 140 ° C. or less.
  • the temperature drop region is a temperature range that drops to 140 ° C. or less from the temperature at which the pressurized hot water is supplied.
  • the third invention is the biomass hydrothermal decomposition apparatus according to the first invention, wherein the temperature drop region comprises at least two stages.
  • the supply temperature of the pressurized hot water is any one of 180 ° C. to 240 ° C., and the temperature at which the hot water-soluble component is not excessively decomposed is 140 ° C. or less.
  • the first temperature drop region is a temperature range that falls from the temperature at which the pressurized hot water is supplied to 180 ° C., and the second temperature drop region falls from 180 ° C. to 140 ° C. or less. It exists in the hydrothermal decomposition apparatus of biomass characterized by being a temperature range.
  • the fifth invention is the biomass hydrothermal decomposition apparatus according to any one of the first to fourth inventions, wherein the hydrothermal decomposition apparatus is an inclined or vertical apparatus.
  • 6th invention is the pretreatment apparatus which pre-processes a biomass raw material, the biomass hydrothermal decomposition apparatus of any one of 1st thru
  • a second enzyme decomposing apparatus for enzymatically decomposing the hemicellulose component in the hot water discharge liquid into a sugar liquid containing pentose, and the second enzymatic decomposition
  • a fermentation apparatus for producing any one of alcohols, petroleum substitutes or amino acids by fermentation treatment using the sugar solution obtained in the apparatus, In the manufacturing system.
  • An eighth invention is the sulfuric acid decomposing apparatus according to the sixth invention, wherein the hemicellulose component in the hot water effluent discharged from the hydrothermal decomposing apparatus is decomposed by sulfuric acid to be decomposed into a second sugar liquid containing pentose. And a second fermentation apparatus for producing any one of alcohols, petroleum substitutes or amino acids by fermentation using the second sugar solution obtained by the sulfuric acid decomposition apparatus.
  • a second fermentation apparatus for producing any one of alcohols, petroleum substitutes or amino acids by fermentation using the second sugar solution obtained by the sulfuric acid decomposition apparatus.
  • the ninth aspect of the invention supplies a solid biomass raw material from one side of the apparatus main body, supplies pressurized hot water from the other side, hydrothermally decomposes the biomass while making both face to face each other, Dissolve in hot water, discharge pressurized hot water from one side of the device body to the outside, and use a biomass hydrothermal decomposition device to discharge biomass raw material from the other side to the outside, from the other side of the device body It is formed toward the side, and the temperature of the pressurized hot water is maintained for a certain period of time, and the temperature is controlled in the effective reaction area where hydrothermal decomposition is performed.
  • the temperature control method of the biomass hydrothermal decomposition apparatus is characterized in that the temperature is controlled in a temperature drop region where the temperature is rapidly lowered to a temperature.
  • the supply temperature of the pressurized hot water is any one of 180 ° C. to 240 ° C., and the temperature at which the hot water-dissolved component is not excessively decomposed is 140 ° C. or less.
  • the temperature drop region is a temperature range that drops from a temperature at which pressurized hot water is supplied to 140 ° C. or less.
  • the eleventh invention is the temperature control method for a biomass hydrothermal decomposition apparatus according to the ninth invention, wherein the temperature drop region comprises at least two stages.
  • the supply temperature of the pressurized hot water is any one of 180 ° C. to 240 ° C., and the temperature at which the hot water-soluble component is not excessively decomposed is 140 ° C. or less.
  • the first temperature drop region is a temperature range that falls from the temperature at which the pressurized hot water is supplied to 180 ° C., and the second temperature drop region falls from 180 ° C. to 140 ° C. or less. It exists in the temperature control method of the hydrothermal decomposition apparatus of the biomass characterized by being in a temperature range.
  • pressurized hot water is supplied and the biomass hydrothermal decomposition reaction is maintained at a predetermined temperature for a predetermined time to efficiently perform hydrothermal decomposition and hydrothermal decomposition into a solubilized component.
  • the excessive decomposition of the hot water-solubilized hemicellulose it is possible to significantly suppress the excessive decomposition of the hemicellulose by providing a region where the temperature is rapidly decreased from the hydrothermal decomposition temperature to a temperature at which the excessive decomposition does not proceed. it can.
  • the excessive decomposition of hemicellulose which is a solubilized component of hot water, is suppressed, thereby reducing the decrease in the yield of C5 sugar.
  • FIG. 1 is a schematic diagram of a hydrothermal decomposition apparatus and temperature distribution according to the first embodiment.
  • FIG. 2 is a schematic diagram of another hydrothermal decomposition apparatus and temperature distribution according to the first embodiment.
  • FIG. 3 is a schematic diagram of another hydrothermal decomposition apparatus and temperature distribution according to the first embodiment.
  • FIG. 4 is a schematic diagram of the hydrothermal decomposition apparatus according to the second embodiment.
  • FIG. 5 is a schematic diagram of another hydrothermal decomposition apparatus according to the third embodiment.
  • FIG. 6 is a schematic diagram of an alcohol production system that is an organic raw material using a biomass raw material according to Example 4.
  • FIG. 7 is a schematic diagram of an alcohol production system that is an organic material using a biomass material according to the fifth embodiment.
  • FIG. 8 is a schematic diagram of another alcohol production system that is an organic raw material using the biomass raw material according to the fifth embodiment.
  • FIG. 9 is a graph showing the relationship between the xylose reduction rate in the hot water-soluble content and the decomposition time.
  • FIG. 10 is a schematic view of a vertical apparatus for hydrothermally decomposing biomass according to a conventional example with hot water.
  • FIG. 11 is a diagram showing a state of decomposition of biomass by hot water.
  • FIG. 1 is a conceptual diagram illustrating a biomass hydrothermal decomposition apparatus and temperature distribution according to a first embodiment.
  • the biomass hydrothermal decomposition apparatus according to the present embodiment supplies a solid biomass raw material 11 from one side of the apparatus main body 42 by a conveying screw 43 and supplies pressurized hot water 15 from the other side.
  • the biomass raw material 11 is hydrothermally decomposed while the two are opposed to each other in the apparatus main body 42, the hot water-dissolved component (hemicellulose component) is dissolved in the hot water, and heat is applied from one side of the apparatus main body 42.
  • the hot water-dissolved component hemicellulose component
  • a biomass hydrothermal decomposition apparatus that discharges water as hot water discharge liquid 16 and discharges biomass solids (hot water insoluble matter) 17 from the other side to the outside.
  • An effective reaction region that is formed from the other side of the apparatus main body 42 toward one side, maintains the supply temperature (180 to 240 ° C., for example, 200 ° C.) of the pressurized hot water 15 for a certain period of time, and hydrothermally decomposes ( Immediately after completion of the thermal decomposition region (A) and the effective reaction region A, a temperature drop region (for example, a rapid drop from 200 ° C. to 140 ° C.) to a temperature at which the hot water-dissolved component does not excessively decompose (eg, 140 ° C.) Dissolved hemicellulose overdecomposition suppression region) B.
  • a temperature drop region for example, a rapid drop from 200 ° C. to 140 ° C.
  • pressurized hot water is supplied and the hydrothermal decomposition reaction of the biomass is maintained at a predetermined temperature (for example, 200 ° C.) for a predetermined time to efficiently perform the hydrothermal decomposition and hydrolyze and solubilize.
  • a predetermined temperature for example, 200 ° C.
  • the temperature is rapidly decreased by the cooling 45 by the cooling means from the hydrothermal decomposition temperature (200 ° C.) to the temperature at which the excessive decomposition does not proceed (140 ° C.).
  • examples of the cooling 45 include a direct cooling method for directly supplying a refrigerant (cold water), an indirect cooling method using a cooling jacket, and the like.
  • the reason why the temperature is lowered to 140 ° C. or lower is that the temperature range of 180 ° C. to 140 ° C. is a region where hemicellulose, which is a hot water solubilizing component, is excessively decomposed as shown in FIG.
  • FIG. 9 hot water in which hemicellulose is once dissolved from biomass is used, and the decomposition state of the hemicellulose solubilized in hot water at each temperature is confirmed.
  • the reduction rate of what was converted into C5 sugar (xylose) is shown.
  • the discharge temperature of the hot water discharge liquid 16 discharged from the apparatus main body is 140 ° C. or less due to cooling, it may be discharged immediately, but for example, a cooling region for cooling to about 100 to 120 ° C. C may be sent to the next process.
  • reaction time in the temperature control of the effective reaction region (hydrothermal decomposition region) A is preferably 20 minutes or less and 5 to 15 minutes. This is because if the reaction is carried out for a long time, hemicellulose dissolved in hot water remains, and the ratio of the excessively decomposed product increases, which is not preferable.
  • the reaction pressure is preferably such that a higher pressure of 0.1 to 0.5 MPa is applied to the saturated vapor pressure of water at each temperature of the reaction temperature (180 to 240 ° C.) of the apparatus main body 42A.
  • the control means controls the solubilized hemicellulose dissolved in the hot water in as short a time as possible.
  • the control for changing the temperature from the effective reaction region (hydrothermal decomposition region) A to the temperature drop region (dissolved hemicellulose overdecomposition suppression region) B is effective in a linear state as shown in the temperature distribution diagram on the right side of FIG. It is desirable to draw a temperature curve from the reaction region (hydrothermal decomposition region) A so that the temperature changes in a substantially rectangular shape.
  • the pressurized hot water 15 and the biomass raw material 11 are made to face each other, and the biomass raw material 11 is washed by the pressurized hot water 15 on the upper end side where the biomass solid content 17 is discharged. Even in the presence of excessively decomposed components, the removal effect to the outside in the solid state is reduced by the cleaning effect, the biomass solid content 17 becomes pure, and a crude raw material of hexose that hardly causes reaction inhibition is obtained. Can do.
  • the effective reaction region (hydrothermal decomposition region) A is 180 ° C. or higher (for example, 200 ° C.)
  • the effective reaction region temperature is maintained at 200 ° C. for a predetermined time, and then 200 ° C. to 180 ° C.
  • a first temperature drop region B 1 for lowering the temperature to 0 ° C. and a second temperature drop region (falling to 180 to 140 ° C.) B 2 for cooling to a temperature that does not immediately cause excessive decomposition may be provided.
  • a hemicellulose component is saccharified to 5 monosaccharides, some types of sugars such as arabinose and xylose dissolve at a temperature lower than 200 ° C.
  • hemicellulose components that change to arabinose dissolve even at a low temperature (180 ° C), so these components are first dissolved at around 180 ° C, and then the hemicellulose component that changes to xylose is dissolved at a high temperature (200 ° C). You may make it make it.
  • the hemicellulose dissolved in the pressurized hot water is less excessively decomposed because the pressurized hot water flowing downward immediately after dissolution passes through the temperature drop region (dissolved hemicellulose overdecomposed region) B in a short time. Become.
  • a temperature drop region (200 ° C.) is maintained for a predetermined time, then the temperature is lowered to 180 ° C. with a gentle curve, and then immediately cooled to a temperature that does not excessively decompose ( It may be lowered to 180-140 ° C.) B.
  • FIG. 4 is a schematic diagram illustrating a biomass hydrothermal decomposition apparatus according to a second embodiment.
  • the biomass hydrothermal decomposition apparatus 41 ⁇ / b> A includes a biomass supply apparatus 31 that supplies the biomass raw material 11 from a normal pressure to a pressurized pressure, and a supplied biomass raw material (in this embodiment, For example, the straw 11 is gradually transported from the lower end side into the vertical apparatus main body (hereinafter referred to as “apparatus main body”) 42 ⁇ / b> A by the transport screw 43, and the upper end side is different from the supply location of the biomass raw material 11.
  • apparatus main body the vertical apparatus main body
  • the pressurized hot water 15 is supplied to the inside of the apparatus main body 42A, and the biomass raw material 11 and the pressurized hot water 15 are hydrothermally decomposed while facing each other, and the lignin component and the hemicellulose component are transferred into the pressurized hot water 15.
  • the hydrothermal decomposition apparatus 41A obtained by separating the lignin component and the hemicellulose component from the biomass raw material 11 and the biomass from the upper end side of the apparatus main body 42A Those having a shape component 17 under pressure and biomass discharger 51 to withdraw under normal pressure.
  • reference numeral 54 denotes a dehydrating liquid
  • 55 denotes pressurized nitrogen.
  • the biomass raw material 11 and the pressurized hot water 15 are opposed to each other inside the apparatus, and as a result, cellulose (enzymatic saccharification is achieved by enzymatic saccharification).
  • cellulose enzymatic saccharification is achieved by enzymatic saccharification.
  • by-products lignin component, hemicellulose component
  • the biomass solid content 17 mainly composed of cellulose can be obtained.
  • a temperature jacket which is a temperature adjustment device of the apparatus main body 41A, is divided into a plurality of 45a to 45f, and is constituted by heat medium supply parts 45a to 45d and refrigerant supply parts 45e to 45f. Then, by supplying a heat medium having a predetermined temperature in the heat medium supply units 45a to 45d, temperature control is performed to maintain a predetermined temperature (for example, 200 ° C.) to which the pressurized hot water 15 is supplied, and hydrothermal decomposition is performed. I try to do it efficiently.
  • a predetermined temperature for example, 200 ° C.
  • the refrigerant is supplied from the hydrothermal decomposition temperature (200 ° C.) by supplying the refrigerant at a predetermined temperature in the refrigerant supply units 45e to 45f. Since the temperature is controlled so as to rapidly decrease the temperature to a temperature at which the excessive decomposition does not proceed (140 ° C.), the excessive decomposition of hemicellulose, which is a hot water solubilizing component, is suppressed. As a result, the decrease in the yield of C5 sugar is small.
  • cellulose can be efficiently saccharified into the first sugar solution containing hexose, and various organic raw materials (for example, alcohols) can be efficiently produced using the sugar solution as a starting point. it can.
  • the hemicellulose component in the hot water discharge liquid 16 discharged from the hydrothermal decomposition apparatus 41A is saccharified into a second sugar liquid containing pentose, and various organic raw materials (for example, alcohols) are used based on the sugar liquid. ) Can be produced efficiently.
  • the biomass raw material 11 is supplied from the lower end side, but the present invention is not limited to this, and conversely, the biomass raw material 11 may be supplied from the upper end side.
  • the pressurized hot water 15 is supplied from the lower end side.
  • the biomass supply device 31 that supplies from the normal pressure to the pressurization include pump means such as a piston pump or a slurry pump.
  • the hydrothermal decomposition apparatus 41A is a vertical apparatus as shown in FIG. 4, but the present invention is not limited to this, and an inclined or horizontal hydrothermal decomposition apparatus. It is good.
  • the reason why the hydrothermal decomposition apparatus is of the inclined type or vertical type is that gas generated in the hydrothermal decomposition reaction, gas introduced into the raw material, and the like can be quickly released from above, which is preferable. Moreover, since the decomposition product is extracted with the pressurized hot water 15, the concentration of the extract increases from the top to the bottom in terms of extraction efficiency, which is preferable.
  • the solid content can be conveyed by the solid-liquid counterflow.
  • Solid-liquid separation can be performed in the apparatus main body 42A.
  • the mixing of the solid surface and the pressurized hot water 15 in the solid proceeds and the reaction is promoted.
  • a scraper (not shown) for preventing the hot water discharge liquid 16 from being blocked off may be provided on the conveying screw 43.
  • the temperature adjusting device has been described by taking the temperature jacket as an example, but the present invention is not limited to this, and for example, a method of injecting cold water, a temperature adjusting method by external heat exchange, etc. Can be applied.
  • FIG. 5 is a schematic diagram illustrating another biomass hydrothermal decomposition apparatus according to the third embodiment.
  • the biomass hydrothermal decomposition apparatus 41 ⁇ / b> B according to the present embodiment includes a biomass supply apparatus 60 that supplies a biomass raw material (for example, straw etc. in the present embodiment) 11 from normal pressure to pressurized pressure.
  • a biomass raw material for example, straw etc. in the present embodiment
  • the biomass raw material 11 is gradually moved from one of the upper and lower end sides (the lower end side in this embodiment) to the inside of a vertical apparatus main body (hereinafter referred to as “apparatus main body”) 42B in a consolidated state, and
  • apparatus main body vertical apparatus main body
  • the pressurized hot water 15 is supplied into the apparatus main body 42B from the end side (the upper end side in this embodiment) different from the supply of the biomass raw material 11, and the biomass raw material 11 and the pressurized hot water 15 are brought into contact with each other while facing the water.
  • a hydrothermal decomposition apparatus 41B formed by pyrolysis, transferring the lignin component and hemicellulose component into the pressurized hot water 15 and separating the lignin component and hemicellulose component from the biomass raw material 11; Those having a biomass discharger 51 to withdraw under normal pressure biomass solids 17 from pressure from the supply side of the pressurized hot water 15 of the apparatus main body 42B.
  • Reference numerals V 11 to V 15 denote ON-OFF valves.
  • Examples of the biomass supply device 60 that supplies from the normal pressure to the pressurized pressure include pump means such as a piston pump or a slurry pump.
  • a fixed stirring means 61 for stirring the biomass raw material 11 in a so-called plug flow compaction state is provided inside the apparatus main body 42B, and stirring is performed when the biomass raw material 11 fed into the device moves in the axial direction. Stir by action.
  • the flow of the pressurized hot water 15 and the biomass raw material 11 in the apparatus main body 42B of the hydrothermal decomposition apparatus 41B is a so-called counter flow in which the biomass raw material 11 and the pressurized hot water 15 face each other. It is preferable to stir and flow in
  • the hydrothermal decomposition apparatus 41B is a plug flow type hydrothermal decomposition, the structure is simple, and the biomass raw material 11 which is a solid moves in parallel with the tube center axis while being stirred perpendicularly to the tube center axis. It will be.
  • the pressurized hot water 15 hot water, a solution in which a decomposition product is dissolved moves while oozing between solid particles in a counter flow with respect to the solid.
  • a uniform flow of the pressurized hot water 15 can be realized. This is because when the solid biomass raw material 11 is decomposed by the pressurized hot water 15, the decomposition product is dissolved on the hot water side. In the vicinity of the decomposition part, the viscosity is high, and hot water moves preferentially to the vicinity of the undecomposed part, and the undecomposed part is subsequently decomposed, resulting in a uniform hot water flow and uniform decomposition. Become.
  • the solid density on the outlet side of the biomass raw material 11 is reduced in the apparatus main body 42B compared to the inlet side of the biomass raw material 11, and in addition, decomposition occurs. Since the biomass solid content 17 is reduced by this, the proportion of the pressurized hot water 15 increases and the liquid residence time increases, so that the decomposition components in the liquid are excessively decomposed, so that at least the fixed stirring means 61 is provided. I have to.
  • the temperature jacket which is a temperature adjustment device of the apparatus main body 41A, is divided into a plurality of 45a to 45f, and is constituted by heat medium supply parts 45a to 45d and refrigerant supply parts 45e to 45f. Then, by supplying a heat medium having a predetermined temperature in the heat medium supply units 45a to 45d, temperature control is performed to maintain a predetermined temperature (for example, 200 ° C.) to which the pressurized hot water 15 is supplied, and hydrothermal decomposition is performed. I try to do it efficiently.
  • a predetermined temperature for example, 200 ° C.
  • the refrigerant is supplied from the hydrothermal decomposition temperature (200 ° C.) by supplying the refrigerant at a predetermined temperature in the refrigerant supply units 45e to 45f. Since the temperature is controlled so as to rapidly decrease the temperature to a temperature at which the excessive decomposition does not proceed (140 ° C.), the excessive decomposition of hemicellulose, which is a hot water solubilizing component, is suppressed. As a result, the decrease in the yield of C5 sugar is small.
  • the temperature adjusting device has been described by taking the temperature jacket as an example, but the present invention is not limited to this, and for example, a method of injecting cold water, a temperature adjusting method by external heat exchange, etc. Can be applied.
  • FIG. 6 is a conceptual diagram illustrating an organic raw material manufacturing system using a biomass raw material according to an example.
  • an alcohol production system 10 ⁇ / b> A using a biomass raw material according to the present embodiment includes a pretreatment device 12 for pulverizing the biomass raw material 11, and a preheated biomass pulverized product 13 with pressurized hot water.
  • the first alcohol fermentation apparatus 21-1 for producing ethanol is purified to be separated into the target product ethanol 23 and residue 24-1 And a purifier 25-1.
  • the hydrothermal decomposition apparatus 41A as shown in FIG. 4 by adopting a counter flow, the lignin component and the hemicellulose component are transferred into the pressurized hot water 15 on the liquid side, and the biomass on the solid side Cellulose remains in the solid content 17, and the first sugar solution (6-carbon sugar) 20-1 is obtained by the first enzymatic decomposition apparatus 19-1 for enzymatic saccharification.
  • a fermentation process according to hexose (fermentation according to the final product: in this embodiment, the ethanol 23 is obtained by fermentation using the first alcohol fermentation apparatus 21-1) can be constructed.
  • ethanol as an alcohol was exemplified as what is obtained by fermentation treatment.
  • the present invention is not limited to this, and petroleum substitutes or foods and feeds that are raw materials for chemical products other than alcohols.
  • Amino acids as raw materials can be obtained by a fermentation apparatus.
  • a chemical product based on a sugar solution for example, LPG, automatic fuel, jet fuel for aircraft, kerosene, diesel oil, various heavy oils, fuel gas, naphtha, naphtha decomposition product ethylene glycol, ethanolamine
  • examples include alcohol ethoxylate, vinyl chloride polymer, alkylaluminum, PVA, vinyl acetate emulsion, polystyrene, polyethylene, polypropylene, polycarbonate, MMA resin, nylon, and polyester. Therefore, the biomass-derived sugar liquid can be efficiently used as a substitute for a chemical product derived from crude oil, which is a depleted raw material, and as a raw material for producing the substitute.
  • FIG. 7 is a conceptual diagram showing an organic raw material alcohol production system using a biomass raw material according to the present embodiment.
  • the alcohol production system 10B using the biomass raw material according to the present embodiment includes the alcohol production system 10A shown in FIG. 6 in the hot water discharge liquid 16 discharged from the hydrothermal decomposition apparatus 41A.
  • the transferred hemicellulose component is enzymatically treated to provide a second enzyme decomposing apparatus 19-2 for enzymatic decomposition into a second sugar solution 20-2 containing pentose.
  • the enzyme decomposing apparatus, the alcohol fermentation apparatus, and the refining apparatus are separately provided in two units (the first enzyme decomposing apparatus 19-1, the second enzyme decomposing apparatus 19-2, the first alcohol fermenting apparatus 21-1, and the first decomposing apparatus). 2 alcohol fermentation apparatus 21-2, first purification apparatus 25-1, and second purification apparatus 25-2). Then, an ethanol degradation process, an alcohol fermentation process and a purification process corresponding to the first sugar liquid (hexose sugar) 20-1 and the second sugar liquid (pentose sugar) 20-2 are performed, and ethanol 23 Like to get.
  • the second sugar solution (pentose) 20-2 obtained by the second enzyme decomposing apparatus 19-2 using the second enzyme 18-2 is used to produce the second After obtaining the second alcohol fermentation broth 22-2 by the fermentation treatment by the alcohol fermentation apparatus 21-2, the ethanol 23 can be produced by the second purification apparatus 25-2.
  • Reference numeral 24-2 is a residue.
  • the hot water discharge liquid is not necessarily processed in a separate system.
  • the processes after the enzyme decomposing apparatus are shared, the processes after the alcohol fermentation apparatus are shared, or the processes after the purification apparatus are shared as appropriate. Changes can be made.
  • FIG. 8 it is a conceptual diagram which shows the alcohol manufacturing system of the organic raw material using the biomass raw material which concerns on the modification of a present Example.
  • the alcohol production system 10C using the biomass raw material according to the present embodiment is the same as the alcohol production system 10A shown in FIG. 6, in which the lignin component and the hemicellulose component are transferred in the hydrothermal decomposition apparatus 41A.
  • the pressurized hot water 15 is discharged to the outside as a hot water discharge liquid 16, sulfuric acid 71 is supplied to the hot water discharge liquid 16, and the hemicellulose component in the hot water discharge liquid 16 is decomposed with sulfuric acid to pentose.
  • a second alcohol fermentation apparatus 21-2 for producing ethanol A second alcohol fermentation liquid 22-2 that is purified and separated into the target product ethanol 23 and second residue 24-2. It is intended to and a purification device 25-2.
  • the ethanol 23 can be produced by fermentation using the second sugar liquid (pentose) 20-2 obtained by the sulfuric acid decomposition apparatus 73.
  • the sulfuric acid concentration is 0.1 to 5 wt%, preferably 1 to 4 wt%
  • the decomposition temperature is 100 to 140 ° C., preferably about 120 ° C.
  • the decomposition time is 30 minutes to 3 hours, preferably about 1 hour. This is because if it is out of the above range, good hemicellulose cannot be decomposed.
  • the cellulose component in the hydrothermal decomposition apparatus 41A, the cellulose component is retained in the biomass solids 17 in advance, and the hot water discharge liquid 16 of the hemicellulose component transferred to the pressurized hot water 13 side is sulfuric acid at low temperature conditions.
  • the structure of the sulfuric acid facility can be simplified and the amount of sulfuric acid used can be greatly reduced (0.6 to 0.9 times the amount of conventional sulfuric acid used).
  • the sulfuric acid recovery / separation equipment is also small, and the equipment is made compact.
  • the decomposition with sulfuric acid is a low temperature of 140 ° C. or lower, it is not necessary to use a conventional high-temperature (180 ° C.) acid-resistant facility, and the equipment cost can be reduced.
  • the hydrothermal decomposition apparatus 41A (41B)
  • cellulose remains in the solid biomass solids 17 on the solid side
  • the first enzymatic decomposition apparatus 19- of enzymatic saccharification 1 is used to obtain the first sugar liquid (6-carbon sugar) 20-1, and in the pressurized hot water 15 on the liquid side, the hemicellulose component soluble in the pressurized hot water 15 is separated as the hot water discharge liquid 16.
  • the second sugar solution (5-carbon sugar) 20-2 is obtained by the second enzymatic decomposition apparatus 19-2 or the sulfuric acid decomposition apparatus 73 for enzymatic saccharification, both can be efficiently separated and each saccharified. It becomes.
  • the fermentation Fermentation according to the final product: example: ethanol fermentation
  • process according to hexose and pentose can be constructed.
  • the side reaction component that becomes an inhibitor in the enzymatic saccharification reaction to obtain hexose, and the lignin component that is soluble in pressurized hot water are used as the pressurized hot water 15. Therefore, the biomass solid content 17 mainly composed of cellulose is obtained, and the saccharification reaction yield of hexose in the subsequent saccharification reaction is improved.
  • the hemicellulose component contained in the separated hot water discharge liquid 16 is then saccharified in the second enzymatic decomposition apparatus 19-2 to obtain a sugar liquid containing pentose.
  • ethanol 23 can be obtained by fermentation individually and efficiently.
  • the inside of the reaction apparatus is formed from the other side of the apparatus main body 42 to one side, and the supply temperature (180 to 240 ° C., for example, 200 ° C.) of the pressurized hot water 15 is kept constant.
  • An effective reaction region that is maintained for a period of time and hydrothermally decomposed (hydrothermal decomposition region A and immediately after the completion of effective reaction region A, the temperature is rapidly lowered (for example, 200 ° C.) to a temperature at which the hot water dissolved component is not excessively decomposed (for example, 140 ° C.
  • a temperature drop region (dissolved hemicellulose hyperdegradation suppression region) B that rapidly decreases from 140 ° C. to 140 ° C., the hemicellulose overdecomposition is suppressed, and as a result, the decrease in the yield of C5 sugar is suppressed. Can do.
  • the cellulose-based component and the hemicellulose component are transferred to the pressurized hot water from the biomass raw material and separated from each other, and the excessive decomposition of the hemicellulose is suppressed.
  • Production of sugar liquid (6-carbon sugar liquid, 5-carbon sugar liquid) and efficient production of various organic raw materials (for example, alcohols, petroleum substitutes, amino acids, etc.) based on the sugar liquid It becomes possible to provide an organic raw material manufacturing system using a biomass raw material that can be produced.
  • a cellulose-based component is separated from a biomass raw material by a hydrothermal decomposition apparatus to efficiently produce a sugar solution, and various organic (for example, Alcohols, petroleum substitutes, amino acids, etc.) can be efficiently produced.
  • various organic for example, Alcohols, petroleum substitutes, amino acids, etc.

Abstract

 装置本体42の一方側から固体のバイオマス原料11を供給すると共に、他方側から加圧熱水15を供給させ、両者を対向接触させつつバイオマス原料11を水熱分解させ、熱水溶解成分を熱水中に溶解させ、装置本体42の一方側から加圧熱水を熱水排出液16として外部に排出すると共に、他方側からバイオマス固形分(熱水不可溶分)17を外部に排出させるバイオマスの水熱分解装置であって、装置本体42の他方側から一方側に向かって形成され、加圧熱水15の供給温度(例えば200℃)を一定時間保持し、水熱分解させる有効反応領域Aと、有効反応領域Aが終了した直後に、熱水溶解成分が過分解しない温度(例えば140℃)まで温度を急降下(例えば200℃から140℃まで急降下)させる温度降下領域Bとを有する。

Description

バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
 本発明は、バイオマス原料を効率よく水熱分解することができるバイオマスの水熱分解装置及びその温度制御方法、並びにそれを用いた例えばアルコール類、石油代替品類、又はアミノ酸類等の有機原料を効率よく製造することができるバイオマス原料を用いた有機原料の製造システムに関する。
 従来、希硫酸、濃硫酸による木材等のバイオマスの糖化処理後、固液分離し、液相を中和処理し、エタノール発酵等の原料として利用するエタノール等の製造技術が実用化されている(特許文献1、特許文献2)。
 また、糖を出発原料として、化学工業原料生産(例えば乳酸発酵等)も考えられる。
 ここで、バイオマスとは、地球生物圏の物質循環系に組み込まれた生物体又は生物体から派生する有機物の集積をいう(JIS K 3600 1258参照)。
 ここで、現在アルコール原料として用いられているサトウキビ、トウモロコシ等は本来食用に供されるものであるが、これらの食用資源を長期的、安定的に工業用利用資源とすることは、有効食料品のライフサイクルの観点から、好ましくない。
 このため、将来的に有用な資源と考えられる草本系バイオマスや木質系バイオマスのようなセルロース系資源を有効活用するのは、重要な課題である。
 また、セルロース系資源では、セルロースは38~50%、ヘミセルロース成分が23~32%と様々で、発酵原料にならないリグニン成分も15~22%とそれぞれ異なっている。多くの課題を抱えたままの工業化研究のため、原料は固定的に想定されており、原料の汎用性を考慮した生産システムの技術の開示は未だないのが現状である。
 さらに、元来、澱粉原料に較べて発酵原料に不利な方法で、ごみ問題、地球温暖化防止対応などを目標に考えるのであるから、原料を固定的に考えた生産システムでは意味が薄れる。広く一般の廃棄物に適用できなければならない。酵素糖化法そのものも、効率が悪すぎて、将来課題とされているのが現状である。酸処理による糖化率も、過剰反応による糖の過分解などで、およそ75%(糖化可能成分基準)前後とかなり小さい値となっている。従って、セルロース系資源に対して、エタノール生産収率はおよそ25%に止まっている(非特許文献1、特許文献3)。
 なお、特許文献1乃至3の従来の技術では、副反応生成物が酵素糖化阻害を引起し糖収率が減少する現象が起きていたので、酵素糖化阻害物質を除去し、セルロース主体による酵素糖化性を高める水熱分解装置の提案を先にした(特許文献4及び5)。
特表平9-507386号公報 特表平11-506934号公報 特開2005-168335号公報 特開2009-183805号公報 特開2009-183154号公報
日経バイオビジネス、p.52、2002年9月
 前述した特許文献4及び5における水熱分解装置では、バイオマスと加圧熱水とを対向接触するように供給して、内部熱交換で水熱反応させているが、内部温度において温度分布が発生している。
 図10に、従来例によるバイオマスを熱水で水熱分解する垂直型の装置の模式図を示す。
 図10に示すように、垂直型の水熱分解装置では、バイオマス(固体)11を下部側から装置本体42内部に供給し、内部に設けた搬送スクリュー43により上方側に移動させ、上部側からバイオマス固形分(熱水不可溶分)17を外部に排出させている。
 これに対し、加圧熱水(以下、「熱水」ともいう)15は上部側から装置本体42の内部に供給し、バイオマス11と対向接触し、下部側から熱水排出液16を外部に排出させている。よって、装置本体42内においては、熱水15を供給する側(上部側)から下部側(バイオマスの供給側)に向かって徐々に温度が降下している。
 図11にバイオマスの熱水による分解の様子を示す。
 図11に示すように、バイオマス(セルロース系原料)には、セルロース以外にヘミセルロースやリグニンが含まれており、具体的にはセルロースをヘミセルロースが束ね、リグニンが接着している構造を有している。
 バイオマスは水熱分解後には、熱水不溶分(固形分)と熱水可溶分とに分けられることとなる。
 よって、バイオマス原料11が加圧熱水15により高温(180~240℃)の温度域で水熱分解され、熱水側にヘミセルロースを溶解させると共に、リグニンも分解・溶解させており、その結果熱水側にはヘミセルロース等が溶解されることとなる。
 熱水に可溶化された後の熱水可溶化ヘミセルロースの状態では、高温(180~240℃)の温度域では過分解が生じる、という問題がある。
 すなわち、バイオマス原料11が内部に投入されて、加圧熱水15に接触した直後において、全てのヘミセルロースが可溶化する場合には、可溶化ヘミセルロースは対向接触の作用により熱水排出液16として、外部に直ちに排出されるので、過分解時間は短い。しかし、加圧熱水15中をバイオマス原料が上昇し、バイオマス固形分17として排出される近傍で可溶化された場合には、熱水排出液16として装置下部側から外部に排出されるまで長い間高温の熱水と接触しているので、過分解が進行することとなり、さらに問題となる。
 このヘミセルロースの過分解は、C5糖の原料となるヘミセルロースの収率が低下するので、熱水可溶化分のヘミセルロースの過分解を抑制して、プラント運転効率の向上を図ることが切望されている。
 また、熱水中への過分解物の混入は、後流側設備におけるC5糖の発酵及びアルコールの発酵の発酵阻害要因となるので、この阻害物の発生を阻止することも必要となる。
 本発明は、前記課題に鑑み、バイオマス原料からセルロース主体の成分を分離することができるバイオマスの水熱分解処理において、熱水可溶化分のヘミセルロースの過分解を抑制することができるバイオマスの水熱分解装置及び温度制御方法、バイオマス原料を用いた有機原料の製造システムを提供する。
 上述した課題を解決するための本発明の第1の発明は、装置本体の一方側から固体のバイオマス原料を供給すると共に、他方側から加圧熱水を供給させ、装置本体内にて両者を対向接触させつつバイオマスを水熱分解させ、熱水溶解成分を熱水中に溶解させ、装置本体の一方側から加圧熱水を外部に排出すると共に、他方側からバイオマス原料を外部に排出させるバイオマスの水熱分解装置であって、装置本体の他方側から一方側に向かって形成され、加圧熱水の供給温度を一定時間保持し、水熱分解させる有効反応領域と、有効反応領域が終了した直後に、熱水溶解成分が過分解しない温度まで温度を急降下させる温度降下領域とを有することを特徴とするバイオマスの水熱分解装置にある。
 第2の発明は、第1の発明において、前記加圧熱水の供給温度が180℃乃至240℃のいずれか一の所定温度であり、前記熱水溶解成分が過分解しない温度が140℃以下であり、前記温度降下領域は、加圧熱水が供給された温度から、140℃以下まで降下する温度範囲であることを特徴とするバイオマスの水熱分解装置にある。
 第3の発明は、第1の発明において、前記温度降下領域が少なくとも2段階からなることを特徴とするバイオマスの水熱分解装置にある。
 第4の発明は、第3の発明において、前記加圧熱水の供給温度が180℃乃至240℃のいずれか一の所定温度であり、前記熱水溶解成分が過分解しない温度が140℃以下であり、第1の温度降下領域は、加圧熱水が供給された温度から、180℃まで降下する温度範囲であると共に、第2の温度降下領域は、180℃から140℃以下まで降下する温度範囲であることを特徴とするバイオマスの水熱分解装置にある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記水熱分解装置が、傾斜型又は垂直型の装置であることを特徴とするバイオマスの水熱分解装置にある。
 第6の発明は、バイオマス原料を前処理する前処理装置と、第1乃至5のいずれか一つの発明のバイオマス水熱分解装置と、前記バイオマス水熱分解装置から排出されるバイオマス固形分中のセルロースを酵素処理して6炭糖を含む糖液に酵素分解する第1の酵素分解装置と、該第1の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システムにある。
 第7の発明は、第6の発明において、熱水排出液中のヘミセルロース成分を酵素処理して5炭糖を含む糖液に酵素分解する第2の酵素分解装置と、該第2の酵素分解装置で得られた糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システムにある。
 第8の発明は、第6の発明において、前記水熱分解装置から排出される熱水排出液中のヘミセルロース成分を硫酸分解して5炭糖を含む第2の糖液に分解する硫酸分解装置と、硫酸分解装置で得られた第2の糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する第2の発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システムにある。
 第9の発明は、装置本体の一方側から固体のバイオマス原料を供給すると共に、他方側から加圧熱水を供給させ、両者を対向接触させつつバイオマスを水熱分解させ、熱水溶解成分を熱水中に溶解させ、装置本体の一方側から加圧熱水を外部に排出すると共に、他方側からバイオマス原料を外部に排出させるバイオマスの水熱分解装置を用い、装置本体の他方側から一方側に向かって形成され、加圧熱水の供給温度を一定時間保持し、水熱分解させる有効反応領域で温度制御すると共に、有効反応領域が終了した直後に、熱水溶解成分が過分解しない温度まで温度を急降下させる温度降下領域で温度制御することを特徴とするバイオマスの水熱分解装置の温度制御方法にある。
 第10の発明は、第9の発明において、前記加圧熱水の供給温度が180℃乃至240℃のいずれか一の所定温度であり、前記熱水溶解成分が過分解しない温度が140℃以下であり、前記温度降下領域は、加圧熱水が供給された温度から、140℃以下まで降下する温度範囲であることを特徴とするバイオマスの水熱分解装置の温度制御方法にある。
 第11の発明は、第9の発明において、前記温度降下領域が少なくとも2段階からなることを特徴とするバイオマスの水熱分解装置の温度制御方法にある。
 第12の発明は、第11の発明において、前記加圧熱水の供給温度が180℃乃至240℃のいずれか一の所定温度であり、前記熱水溶解成分が過分解しない温度が140℃以下であり、第1の温度降下領域は、加圧熱水が供給された温度から、180℃まで降下する温度範囲であると共に、第2の温度降下領域は、180℃から140℃以下まで降下する温度範囲であることを特徴とするバイオマスの水熱分解装置の温度制御方法にある。
 本発明によれば、加圧熱水を供給して所定時間バイオマスの水熱分解反応を所定の温度で維持し、水熱分解を効率よく行うと共に、水熱分解して、可溶化分となった熱水可溶化ヘミセルロースの過分解を抑制させるために、水熱分解温度から過分解が進行しない温度まで、急激に温度降下させる領域を設けることにより、ヘミセルロースの過分解を大幅に抑制することができる。この結果、熱水可溶化分であるヘミセルロースの過分解が抑制され、これによりC5糖の収率の低下が少ないものとなる。
図1は、実施例1に係る水熱分解装置及び温度分布の模式図である。 図2は、実施例1に係る他の水熱分解装置及び温度分布の模式図である。 図3は、実施例1に係る他の水熱分解装置及び温度分布の模式図である。 図4は、実施例2に係る水熱分解装置の概略図である。 図5は、実施例3に係る他の水熱分解装置の概略図である。 図6は、実施例4に係るバイオマス原料を用いた有機原料であるアルコール製造システムの概略図である。 図7は、実施例5に係るバイオマス原料を用いた有機原料であるアルコール製造システムの概略図である。 図8は、実施例5に係るバイオマス原料を用いた有機原料である他のアルコール製造システムの概略図である。 図9は、熱水可溶分中のキシロース減少率と分解時間との関係を示す図である。 図10は、従来例に係るバイオマスを熱水で水熱分解する垂直型の装置の模式図である。 図11は、バイオマスの熱水による分解の様子を示す図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明に係る実施例に係るバイオマスの水熱分解装置について、図面を参照して説明する。
 図1は、実施例1に係るバイオマスの水熱分解装置及び温度分布を示す概念図である。
 図1に示すように、本実施例に係るバイオマスの水熱分解装置は、装置本体42の一方側から固体のバイオマス原料11を搬送スクリュー43により供給すると共に、他方側から加圧熱水15を供給させ、装置本体42内にて両者を対向接触させつつバイオマス原料11を水熱分解させ、熱水溶解成分(ヘミセルロース成分)を熱水中に溶解させ、装置本体42の一方側から加圧熱水を熱水排出液16として外部に排出すると共に、他方側からバイオマス固形分(熱水不可溶分)17を外部に排出させるバイオマスの水熱分解装置であって、バイオマスの水熱分解装置の装置本体42の他方側から一方側に向かって形成され、加圧熱水15の供給温度(180~240℃、例えば200℃)を一定時間保持し、水熱分解させる有効反応領域(水熱分解領域)Aと、有効反応領域Aが終了した直後に、熱水溶解成分が過分解しない温度(例えば140℃)まで温度を急降下(例えば200℃から140℃まで急降下)させる温度降下領域(溶解ヘミセルロース過分解抑制領域)Bとを有するものである。
 本発明では、加圧熱水を供給して所定時間バイオマスの水熱分解反応を所定の温度(例えば200℃)で維持し、水熱分解を効率よく行うと共に、水熱分解して、可溶化分となった熱水可溶化ヘミセルロースの過分解を抑制させるために、水熱分解温度(200℃)から過分解が進行しない温度(140℃)まで、冷却手段による冷却45により急激に温度降下させる領域を設けることにで、過分解を大幅に抑制することができる。
 この結果、熱水可溶化成分であるヘミセルロースの過分解が抑制される。これによりC5糖の収率の低下が少ないものとなる。
 ここで、冷却45としては、冷媒(冷水)を直接供給する直接冷却方法や、冷却ジャケットを用いた間接冷却方法等を例示することができる。
 ここで、140℃以下まで温度降下させる理由は、180℃~140℃の温度範囲は、図9に示すように、熱水可溶化成分であるヘミセルロースが過分解する領域であるからである。
 図9においては、バイオマスから一度ヘミセルロースを溶解させた熱水を用い、各温度において、熱水に可溶化したヘミセルロースの時間の経過による分解状態を確認したものである。なお、ヘミセルロースを直接測定することができないので、C5糖(キシロース)に変換したものの減少率を示している。
 前述したように、熱水に可溶化された後の熱水可溶化ヘミセルロースの状態(いわゆる裸の状態)では、140℃以上の温度域において過分解が生じるので、本発明のように、速やかに140℃以下まで急冷する必要がある。
 また、装置本体から排出する熱水排出液16の排出温度は、冷却により140℃以下となっていれば、直ぐに排出してもよいが、例えば約100~120℃程度まで除冷却する除冷領域Cを有し、次工程に送るようにしてもよい。
 また、有効反応領域(水熱分解領域)Aの温度制御における反応時間は、20分以下、5分~15分とするのが好ましい。これはあまり長く反応を行うと熱水中を溶解したヘミセルロースが留まり、過分解物の割合が増大し、好ましくないからである。
 反応圧力は、装置本体42Aの反応温度(180~240℃)の各温度の水の飽和蒸気圧に、更に0.1~0.5MPaの高い圧力を加えることとするのが好ましい。
 このように、本発明においては、バイオマス原料11からヘミセルロース成分を熱水により剥ぎ取る領域である有効反応領域(水熱分解領域)Aで温度を制御すると共に、この有効反応領域Aを過ぎた後、直ちに冷却させる温度降下領域(溶解ヘミセルロース過分解抑制領域)Bで急冷する温度制御を行うように、図示しない制御手段で制御しているので、熱水に溶解した可溶化ヘミセルロースが極力短い時間で過分解温度領域を通過させ、熱水可溶成分であるヘミセルロース成分の過分解を大幅に抑制するようにしている。
 この有効反応領域(水熱分解領域)Aから、温度降下領域(溶解ヘミセルロース過分解抑制領域)Bへの温度変化させる制御は、図1の右側の温度分布図に示すように、直線状態の有効反応領域(水熱分解領域)Aから略矩形状の温度変化となるような温度曲線を描くことが望ましい。
 また、加圧熱水15とバイオマス原料11とは、対向接触させており、バイオマス固形分17が排出される上端部側では、加圧熱水15にバイオマス原料11が洗浄されることとなり、仮に過分解成分が存在する場合においても、その洗浄効果により固体状態での外部への持ち出しが削減され、バイオマス固形分17は純粋なものとなり、反応阻害が起こりにくい6炭糖の粗原料を得ることができる。
 図2に示すように、有効反応領域(水熱分解領域)Aが180℃以上である場合(例えば200℃)、この200℃において有効反応領域温度を所定時間維持し、その後、200℃から180℃まで温度を低下させる第1の温度降領域B1と、その後直ちに過分解しない温度まで冷却させる第2の温度降下領域(180~140℃へ降下)B2とを設けるようにしてもよい。
 これは、例えばヘミセルロース成分でも5単糖へ糖化した際、アラビノース、キシロースといった種類の異なる糖においては、200℃よりも低い温度で溶解するものがある。よって、アラビノースに変化するヘミセルロース成分では低い温度(180℃)でも溶解するので、先ず180℃近傍にてこれらの成分を溶解させた後に、キシロースに変化するヘミセルロース成分を高い温度(200℃)で溶解させるようにしてもよい。
 なお、加圧熱水に溶解されたヘミセルロースは、溶解直後に下方側に流れる加圧熱水が温度降下領域(溶解ヘミセルロース過分解領域)Bを短い時間で通過するので、過分解が少ないものとなる。
 図3に示すように、加圧熱水の供給温度(200℃)を所定時間維持し、その後なだらかな曲線で温度を180℃まで低下させ、その後直ちに過分解しない温度まで冷却させる温度降下領域(180~140℃へ降下)Bとするようにしてもよい。
 次に、本発明に係るバイオマスの水熱分解装置の具体例について、図面を参照して説明する。
 図4は、実施例2に係るバイオマスの水熱分解装置を示す概略図である。
 図4に示すように、本実施例に係るバイオマスの水熱分解装置41Aは、バイオマス原料11を常圧下から加圧下に供給するバイオマス供給装置31と、供給されたバイオマス原料(本実施例では、例えば麦わら等)11を、下端部側から垂直型装置本体(以下「装置本体」という)42Aの内部に搬送スクリュー43により徐々に搬送すると共に、前記バイオマス原料11の供給箇所とは異なる上端部側から加圧熱水15を装置本体42A内部に供給し、バイオマス原料11と加圧熱水15とを対向接触させつつ水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料11中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解装置41Aと、装置本体42Aの上端部側からバイオマス固形分17を加圧下から常圧下に抜出すバイオマス抜出装置51とを具備するものである。なお、図中、符号54は脱水液、55は加圧窒素を各々図示する。
 このような水熱分解装置41Aを用いることにより、装置内部において、バイオマス原料11と加圧熱水15とが対向接触されることとなり、この結果、目的成分であるセルロース(酵素糖化により6炭糖液となる)を生成する水熱反応以外の副反応物(リグニン成分、ヘミセルロース成分)を加圧熱水15中に移行させることにより、セルロース主体のバイオマス固形分17を得ることができる。
 この際、装置本体41Aの温度調整装置である温度ジャケットを複数45a~45fに分割し、熱媒供給部45a~45dと、冷媒供給部45e~45fとから構成している。
 そして、熱媒供給部45a~45dにおいて所定温度の熱媒を供給することにより、加圧熱水15が供給された所定の温度(例えば200℃)を維持する温度制御を行い、水熱分解を効率よく行うようにしている。
 その後、冷媒により可溶化分となった熱水可溶化ヘミセルロースの過分解を抑制させるために、冷媒供給部45e~45fにおいて所定温度の冷媒を供給することにより、水熱分解温度(200℃)から過分解が進行しない温度(140℃)まで、急激に温度降下させように温度制御しているので、熱水可溶化成分であるヘミセルロースの過分解が抑制される。これによりC5糖の収率の低下が少ないものとものとなる。
 その結果、バイオマス固形分17では、セルロースを効率よく6炭糖を含む第1の糖液に糖化させて、該糖液を基点として、各種有機原料(例えばアルコール類)を効率よく製造することができる。
 一方、水熱分解装置41Aから排出された熱水排出液16中のヘミセルロース成分は、5炭糖を含む第2の糖液に糖化させ、該糖液を基点として、各種有機原料(例えばアルコール類)を効率よく製造することができる。
 なお、本実施例では、バイオマス原料11を下端部側から供給しているが、本発明はこれに限定されるものではなく、これとは逆に上端部側から供給するようにしてもよく、この際には、加圧熱水15は下端部側から供給する。
 前記常圧下から加圧下に供給するバイオマス供給装置31としては、例えばピストンポンプ又はスラリーポンプ等のポンプ手段を挙げることができる。
 また、水熱分解装置41Aは、本実施例では、図4に示すように垂直型の装置としているが、本発明はこれに限定されるものではなく、傾斜型や水平型の水熱分解装置としてもよい。
 ここで、水熱分解装置を傾斜型又は垂直型とするのは、水熱分解反応において発生したガスや原料中に持ち込まれたガス等が上方から速やかに抜けることができ好ましいからである。また、加圧熱水15で分解生成物を抽出するので、抽出効率の点において上方から下方に向かって抽出物の濃度が高まることとなり、好ましいものとなる。
 本実施例に係る水熱分解装置41Aでは、前記搬送スクリュー43を設けることにより、1)固液カウンターフローでの固形分の搬送が可能となる。2)装置本体42A内で固液の分離が可能となる。3)装置本体42A内で固体表面、固体中の加圧熱水15の混合が進み反応が促進される。
 また、前記搬送スクリュー43に熱水排出液16の抜出し孔の閉塞を防止するスクレーパー(図示せず)を設けるようにしてもよい。
 また、本実施例では温度調節装置について温度ジャケットを例にして説明したが、本発明はこれに限定されるものではなく、例えば冷水を注入する方法や、外部熱交換による温度調整方法等を適宜適用することができる。
 次に、本発明に係るバイオマスの水熱分解装置の他の実施例について、図面を参照して説明する。
 図5は、実施例3に係る他のバイオマスの水熱分解装置を示す概略図である。
 図5に示すように、本実施例に係るバイオマスの水熱分解装置41Bは、バイオマス原料(本実施例では、例えば麦わら等)11を常圧下から加圧下に供給するバイオマス供給装置60と、供給されたバイオマス原料11を、上下のいずれかの端部側(本実施例では下端側)から垂直型装置本体(以下「装置本体」という)42Bの内部を圧密状態で徐々に移動させると共に、前記バイオマス原料11の供給とは異なる端部側(本実施例では上端側)から加圧熱水15を装置本体42B内部に供給し、バイオマス原料11と加圧熱水15とを対向接触させつつ水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を移行し、バイオマス原料11中からリグニン成分及びヘミセルロース成分を分離してなる水熱分解装置41Bと、該装置本体42Bの加圧熱水15の供給部側からバイオマス固形分17を加圧下から常圧下に抜出すバイオマス抜出装置51とを具備するものである。なお、符号V11~V15はON-OFF弁を示す。
 前記常圧下から加圧下に供給するバイオマス供給装置60としては、例えばピストンポンプ又はスラリーポンプ等のポンプ手段を挙げることができる。
 本実施例では、前記装置本体42B内部にバイオマス原料11をいわゆるプラグフローの圧密状態で撹拌する固定撹拌手段61を設けており、内部に送り込まれるバイオマス原料11を軸方向に移動する際に、撹拌作用により撹拌するようにしている。
 この固定撹拌手段61を設けることにより、装置本体42B内で固体表面、固体中の加圧熱水15の混合が進み反応が促進される。
 ここで、本発明では、水熱分解装置41Bの装置本体42B内の加圧熱水15とバイオマス原料11との流動は、バイオマス原料11と加圧熱水15とを対向接触させる、いわゆるカウンターフローで撹拌・流動するようにすることが好ましい。
 水熱分解装置41Bは、プラグフロー型による水熱分解であるので、構造が簡易であり、固体であるバイオマス原料11は、管中心軸と垂直に攪拌されながら、管中心軸と平行に移動することとなる。一方加圧熱水15(熱水、分解物が溶解した液)は、固体に対しカウンターフローにて固体粒子間に滲みながら移動する。
 また、プラグフローでは、加圧熱水15の均一な流れを実現することができる。なぜならば、固体のバイオマス原料11が加圧熱水15により分解すると、分解物が熱水側に溶解する。分解部近傍は高粘度となり、未分解部近傍へ優先的に熱水が移動し、未分解部が続いて分解することとなり、均一な熱水の流れになり、均一な分解が実現することとなる。
 また、水熱分解装置41Bにおける装置本体42B内面の管壁の抵抗により、装置本体42B内において、バイオマス原料11の入口側に比べ、バイオマス原料11の出口側の固体密度が減少し、加えて分解によりバイオマス固形分17が減少するため、加圧熱水15の占める割合が増加し、液滞留時間が増加することにより、液中の分解成分が過分解するので、少なくとも固定撹拌手段61を設けるようにしている。
 この際、装置本体41Aの温度調整装置である温度ジャケットを複数45a~45fに分割し、熱媒供給部45a~45dと、冷媒供給部45e~45fとから構成している。
 そして、熱媒供給部45a~45dにおいて所定温度の熱媒を供給することにより、加圧熱水15が供給された所定の温度(例えば200℃)を維持する温度制御を行い、水熱分解を効率よく行うようにしている。
 その後、冷媒により可溶化分となった熱水可溶化ヘミセルロースの過分解を抑制させるために、冷媒供給部45e~45fにおいて所定温度の冷媒を供給することにより、水熱分解温度(200℃)から過分解が進行しない温度(140℃)まで、急激に温度降下させように温度制御しているので、熱水可溶化成分であるヘミセルロースの過分解が抑制される。これによりC5糖の収率の低下が少ないものとものとなる。
 また、本実施例では温度調節装置について温度ジャケットを例にして説明したが、本発明はこれに限定されるものではなく、例えば冷水を注入する方法や、外部熱交換による温度調整方法等を適宜適用することができる。
 本発明による実施例4に係るバイオマス原料を用いた有機原料であるアルコールの製造システムについて、図面を参照して説明する。
 図6は、実施例に係るバイオマス原料を用いた有機原料の製造システムを示す概念図である。
 図6に示すように、本実施例に係るバイオマス原料を用いたアルコールの製造システム10Aは、バイオマス原料11を例えば粉砕処理する前処理装置12と、前処理したバイオマス粉砕物13を加圧熱水15と対向接触させつつ水熱分解し、加圧熱水15中にリグニン成分及びヘミセルロース成分を移行し、バイオマス固体中からリグニン成分及びヘミセルロース成分を分離してなる図4に示す水熱分解装置41Aと、前記水熱分解装置41Aから排出されるバイオマス固形分17中のセルロースを酵素処理して6炭糖を含む糖液に第1の酵素(セルラーゼ)18-1で酵素分解する第1の酵素分解装置19-1と、第1の酵素分解装置19-1で得られた第1の糖液(6炭糖)20-1を用いて、発酵処理によりアルコール類(本実施の形態ではエタノール)を製造する第1のアルコール発酵装置21-1と、第1のアルコール発酵液22-1を精製して目的生成物のエタノール23と残渣24-1とに分離処理する第1の精製装置25-1とを具備するものである。
 本発明によれば、図4に示すような水熱分解装置41Aにおいて、カウンターフローを採用することにより、液体側の加圧熱水15中にリグニン成分及びヘミセルロース成分を移行させ、固体側のバイオマス固形分17にはセルロースがとどまることとなり、酵素糖化の第1の酵素分解装置19-1により第1の糖液(6炭糖)20-1を得ることとなる。
 そして、6炭糖に応じた発酵(最終製品に応じた発酵:本実施例では第1のアルコール発酵装置21-1を用いてエタノール23を発酵により求める)プロセスを構築することができる。
 本実施例では、発酵処理により求めるものとして、アルコール類のエタノールを例示したが、本発明はこれに限定されるものではなく、アルコール類以外の、化成品原料となる石油代替品類又は食品・飼料原料となるアミノ酸類を発酵装置により得ることができる。
 ここで、糖液を基点とした化成品としては、例えばLPG、自動用燃料、航空機用ジェット燃料、灯油、ディーゼル油、各種重油、燃料ガス、ナフサ、ナフサ分解物であるエチレングリコール、エタノールアミン、アルコールエトキシレート、塩ビポリマー、アルキルアルミニウム、PVA、酢酸ビニルエマルジョン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、MMA樹脂、ナイロン、ポリエステル等を挙げることができる。よって、枯渇原料である原油由来の化成品の代替品及びその代替品製造原料としてバイオマス由来の糖液を効率的に利用することができる。
 本発明による実施例5に係るバイオマス原料を用いた有機原料であるアルコール製造システムについて、図面を参照して説明する。
 図7は、本実施例に係るバイオマス原料を用いた有機原料のアルコール製造システムを示す概念図である。
 図7に示すように、本実施例に係るバイオマス原料を用いたアルコールの製造システム10Bは、図6に示すアルコール製造システム10Aにおいて、水熱分解装置41Aから排出される熱水排出液16中に移行されたヘミセルロース成分を酵素処理して5炭糖を含む第2の糖液20-2に酵素分解する第2の酵素分解装置19-2を設けてなるものである。
 なお、酵素分解装置、アルコール発酵装置、精製装置は、それぞれ別途2機(第1の酵素分解装置19-1、第2の酵素分解装置19-2、第1のアルコール発酵装置21-1、第2のアルコール発酵装置21-2、第1の精製装置25-1、第2の精製装置25-2)設置している。そして、第1の糖液(6炭糖)20-1、第2の糖液(5炭糖)20-2に応じた酵素分解工程、アルコール発酵工程及び精製工程を行うようにして、エタノール23を得るようにしている。
 そして、本実施例では、第2の酵素18-2を用いた第2の酵素分解装置19-2で得られた第2の糖液(5炭糖)20-2を用いて、第2のアルコール発酵装置21-2による発酵処理により、第2のアルコール発酵液22-2を得た後、第2の精製装置25-2によりエタノール23を製造することができる。なお、符号24-2は残渣である。
 なお、熱水排出液は必ずしも別系統において処理するものではなく、例えば酵素分解装置以降の工程を共通化したり、アルコール発酵装置以降の工程を共通化したり、あるいは精製装置以降を共通化する等適宜変更を行うことができる。
 図8に、本実施例の変形例に係るバイオマス原料を用いた有機原料のアルコール製造システムを示す概念図である。
 図8に示すように、本実施例に係るバイオマス原料を用いたアルコールの製造システム10Cは、図6に示すアルコール製造システム10Aにおいて、前記水熱分解装置41A内において、リグニン成分及びヘミセルロース成分が移行された加圧熱水15を熱水排出液16として外部に排出し、該熱水排出液16に硫酸71を供給して、熱水排出液16中のヘミセルロース成分を硫酸分解して5炭糖を含む第2の糖液20-2に分解する硫酸分解装置73と、得られた第2の糖液(5炭糖)20-2を用いて、発酵処理によりアルコール類(本実施の形態ではエタノール)を製造する第2のアルコール発酵装置21-2と、第2のアルコール発酵液22-2を精製して目的生成物のエタノール23と第2の残渣24-2とに分離処理する第2の精製装置25-2とを具備するものである。
 そして、本実施例では、硫酸分解装置73で得られた第2の糖液(5炭糖)20-2を用いて、発酵処理によりエタノール23を製造することができる。
 ここで、本発明における硫酸分解処置装置での分解条件としては、硫酸濃度が0.1~5重量%、好ましくは1~4重量%とし、分解温度が100~140℃、好ましくは約120℃前後とし、分解時間としては、30分から3時間、好ましくは1時間前後としている。これは、上記範囲外であると、良好なヘミセルロースの分解を行うことができないからである。
 従来において、バイオマス原料をそのまま硫酸分解するような場合には、1重量%の硫酸を用いて、約180℃という高温で10分程度の分解処理を行っているが、硫酸が後流側のセルロースの酵素糖化の際に阻害物質として働くので、6炭糖の収率が低下していた。
 これに対して、本発明では、水熱分解装置41Aにおいて、予めセルロース成分をバイオマス固形分17に留まらせ、加圧熱水13側に移行したヘミセルロース成分の熱水排出液16を低温条件で硫酸処理するので、硫酸設備の構造が簡略化できると共に、硫酸の使用量が大幅に低減(従来硫酸使用量の0.6~0.9倍)されることとなる。その結果、硫酸の廃棄処理(石膏処理)量が低減するので、硫酸回収分離設備も小型のものとなり、設備のコンパクト化を図ることとなる。
 また、硫酸での分解は、140℃以下の低温であるので、従来のような高温(180℃)用の耐酸設備とする必要がなく、設備コストの低廉を図ることもできる。
 本発明によれば、水熱分解装置41A(41B)において、カウンターフローを採用することにより、固体側のバイオマス固形分17では、セルロースがとどまることとなり、酵素糖化の第1の酵素分解装置19-1により第1の糖液(6炭糖)20-1を得ると共に、液体側の加圧熱水15では、その加圧熱水15に可溶したヘミセルロース成分を熱水排出液16として分離し、別途酵素糖化の第2の酵素分解装置19-2又は硫酸分解装置73により第2の糖液(5炭糖)20-2を得るので、両者を効率よく分離して各々糖化することが可能となる。そして、6炭糖、5炭糖に応じた発酵(最終製品に応じた発酵:例:エタノール発酵)プロセスを構築することができる。
 このように、水熱分解装置41Aにおけるカウンターフローを採用することによって6炭糖を得る酵素糖化反応において阻害物質となる副反応成分や加圧熱水に可溶なリグニン成分を加圧熱水15側に移行させるため、セルロース主体のバイオマス固形分17となり、その後の糖化反応における6炭糖の糖化反応収率が向上する。
 一方、分離された熱水排出液16に含まれるヘミセルロース成分は、その後第2の酵素分解装置19-2において糖化され、5炭糖を含む糖液を得ることができる。
 そして、6炭糖、5炭糖の各々に適した酵母等を用いることでエタノール23を効率的に個別に発酵により求めることができるものとなる。
 さらに、この水熱分解反応の際、反応装置内部において、装置本体42の他方側から一方側に向かって形成され、加圧熱水15の供給温度(180~240℃、例えば200℃)を一定時間保持し、水熱分解させる有効反応領域(水熱分解領域Aと、有効反応領域Aが終了した直後に、熱水溶解成分が過分解しない温度(例えば140℃)まで温度を急降下(例えば200℃から140℃まで急降下)させる温度降下領域(溶解ヘミセルロース過分解抑制領域)Bとを有することにより、ヘミセルロースの過分解が抑制され、この結果、これによりC5糖の収率の低下を抑制することができる。
 このように、本発明によれば、バイオマス原料からセルロース主体の成分とヘミセルロース成分を加圧熱水に移行させて両者を分離すると共に、ヘミセルロースの過分解を抑制し、各々に適した効率的な糖液(6炭糖液、5炭糖液)の製造を行うと共に、該糖液を基点として、各種有機原料(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができるバイオマス原料を用いた有機原料の製造システムを提供することが可能となる。
 以上のように、本発明によれば、水熱分解装置により、バイオマス原料からセルロース主体の成分を分離し、効率的な糖液の製造を行うと共に、該糖液を基点として、各種有機(例えばアルコール類、石油代替品類、又はアミノ酸類等)を効率よく製造することができる。
 11 バイオマス原料
 12 前処理装置
 13 バイオマス粉砕物
 15 加圧熱水
 16 熱水排出液
 17 バイオマス固形分
 18 酵素
 19-1 第1の酵素分解装置
 19-2 第2の酵素分解装置
 20-1 第1の糖液(6炭糖)
 20-2 第2の糖液(5炭糖)
 23 エタノール
 41A、41B 水熱分解装置
 42 装置本体
 43 搬送スクリュー

Claims (12)

  1.  装置本体の一方側から固体のバイオマス原料を供給すると共に、他方側から加圧熱水を供給させ、装置本体内にて両者を対向接触させつつバイオマスを水熱分解させ、熱水溶解成分を熱水中に溶解させ、装置本体の一方側から加圧熱水を外部に排出すると共に、他方側からバイオマス原料を外部に排出させるバイオマスの水熱分解装置であって、
     装置本体の他方側から一方側に向かって形成され、加圧熱水の供給温度を一定時間保持し、水熱分解させる有効反応領域と、
     有効反応領域が終了した直後に、熱水溶解成分が過分解しない温度まで温度を急降下させる温度降下領域とを有することを特徴とするバイオマスの水熱分解装置。
  2.  請求項1において、
     前記加圧熱水の供給温度が180℃乃至240℃のいずれか一の所定温度であり、
     前記熱水溶解成分が過分解しない温度が140℃以下であり、
     前記温度降下領域は、加圧熱水が供給された温度から、140℃以下まで降下する温度範囲であることを特徴とするバイオマスの水熱分解装置。
  3.  請求項1において、
     前記温度降下領域が少なくとも2段階からなることを特徴とするバイオマスの水熱分解装置。
  4.  請求項3において、
     前記加圧熱水の供給温度が180℃乃至240℃のいずれか一の所定温度であり、
     前記熱水溶解成分が過分解しない温度が140℃以下であり、
     第1の温度降下領域は、加圧熱水が供給された温度から、180℃まで降下する温度範囲であると共に、
     第2の温度降下領域は、180℃から140℃以下まで降下する温度範囲であることを特徴とするバイオマスの水熱分解装置。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記水熱分解装置が、傾斜型又は垂直型の装置であることを特徴とするバイオマスの水熱分解装置。
  6.  バイオマス原料を前処理する前処理装置と、
     請求項1乃至5のいずれか一つのバイオマス水熱分解装置と、
     前記バイオマス水熱分解装置から排出されるバイオマス固形分中のセルロースを酵素処理して6炭糖を含む糖液に酵素分解する第1の酵素分解装置と、
     該第1の酵素分解装置で得られた第1の糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する第1の発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システム。
  7.  請求項6において、
     熱水排出液中のヘミセルロース成分を酵素処理して5炭糖を含む糖液に酵素分解する第2の酵素分解装置と、
     該第2の酵素分解装置で得られた第2の糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する第2の発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システム。
  8.  請求項6において、

     前記水熱分解装置から排出される熱水排出液中のヘミセルロース成分を硫酸分解して5炭糖を含む第2の糖液に分解する硫酸分解装置と、
     硫酸分解装置で得られた第2の糖液を用いて、発酵処理によりアルコール類、石油代替品類又はアミノ酸類のいずれか一つを製造する第2の発酵装置とを具備することを特徴とするバイオマス原料を用いた有機原料の製造システム。
  9.  装置本体の一方側から固体のバイオマス原料を供給すると共に、他方側から加圧熱水を供給させ、両者を対向接触させつつバイオマスを水熱分解させ、熱水溶解成分を熱水中に溶解させ、装置本体の一方側から加圧熱水を外部に排出すると共に、他方側からバイオマス原料を外部に排出させるバイオマスの水熱分解装置を用い、
     装置本体の他方側から一方側に向かって形成され、加圧熱水の供給温度を一定時間保持し、水熱分解させる有効反応領域で温度制御すると共に、
     有効反応領域が終了した直後に、熱水溶解成分が過分解しない温度まで温度を急降下させる温度降下領域で温度制御することを特徴とするバイオマスの水熱分解装置の温度制御方法。
  10.  請求項9において、
     前記加圧熱水の供給温度が180℃乃至240℃のいずれか一の所定温度であり、
     前記熱水溶解成分が過分解しない温度が140℃以下であり、
     前記温度降下領域は、加圧熱水が供給された温度から、140℃以下まで降下する温度範囲であることを特徴とするバイオマスの水熱分解装置の温度制御方法。
  11.  請求項9において、
     前記温度降下領域が少なくとも2段階からなることを特徴とするバイオマスの水熱分解装置の温度制御方法。
  12.  請求項11において、
     前記加圧熱水の供給温度が180℃乃至240℃のいずれか一の所定温度であり、
     前記熱水溶解成分が過分解しない温度が140℃以下であり、
     第1の温度降下領域は、加圧熱水が供給された温度から、180℃まで降下する温度範囲であると共に、
     第2の温度降下領域は、180℃から140℃以下まで降下する温度範囲であることを特徴とするバイオマスの水熱分解装置の温度制御方法。
PCT/JP2010/054023 2010-03-10 2010-03-10 バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム WO2011111190A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/132,040 US9102956B2 (en) 2010-03-10 2010-03-10 Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
PCT/JP2010/054023 WO2011111190A1 (ja) 2010-03-10 2010-03-10 バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
CA2741598A CA2741598C (en) 2010-03-10 2010-03-10 Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass material
JP2010536274A JP4699567B1 (ja) 2010-03-10 2010-03-10 バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
BRPI1006883-0A BRPI1006883B1 (pt) 2010-03-10 2010-03-10 Equipamento de decomposição hidrotérmica de biomassa, método de controle de temperatura da mesma, e sistema de produção de matéria-prima orgânica usando material de biomassa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054023 WO2011111190A1 (ja) 2010-03-10 2010-03-10 バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム

Publications (1)

Publication Number Publication Date
WO2011111190A1 true WO2011111190A1 (ja) 2011-09-15

Family

ID=44237056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054023 WO2011111190A1 (ja) 2010-03-10 2010-03-10 バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム

Country Status (5)

Country Link
US (1) US9102956B2 (ja)
JP (1) JP4699567B1 (ja)
BR (1) BRPI1006883B1 (ja)
CA (1) CA2741598C (ja)
WO (1) WO2011111190A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404355B2 (en) 2010-12-09 2013-03-26 Virdia Ltd Methods and systems for processing lignocellulosic materials and related compositions
WO2013076789A1 (ja) * 2011-11-21 2013-05-30 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法
JPWO2013076789A1 (ja) * 2011-11-21 2015-04-27 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法
US9115467B2 (en) 2010-08-01 2015-08-25 Virdia, Inc. Methods and systems for solvent purification
US9410216B2 (en) 2010-06-26 2016-08-09 Virdia, Inc. Sugar mixtures and methods for production and use thereof
US9476106B2 (en) 2010-06-28 2016-10-25 Virdia, Inc. Methods and systems for processing a sucrose crop and sugar mixtures
US9493851B2 (en) 2012-05-03 2016-11-15 Virdia, Inc. Methods for treating lignocellulosic materials
US9512495B2 (en) 2011-04-07 2016-12-06 Virdia, Inc. Lignocellulose conversion processes and products
US9617608B2 (en) 2011-10-10 2017-04-11 Virdia, Inc. Sugar compositions
US9631246B2 (en) 2012-05-03 2017-04-25 Virdia, Inc. Methods for treating lignocellulosic materials
US9663836B2 (en) 2010-09-02 2017-05-30 Virdia, Inc. Methods and systems for processing sugar mixtures and resultant compositions
US11078548B2 (en) 2015-01-07 2021-08-03 Virdia, Llc Method for producing xylitol by fermentation
US11091815B2 (en) 2015-05-27 2021-08-17 Virdia, Llc Integrated methods for treating lignocellulosic material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524351B2 (ja) 2008-02-01 2010-08-18 三菱重工業株式会社 バイオマス原料を用いた有機原料の製造システム及び方法
JP4427583B2 (ja) 2008-02-01 2010-03-10 三菱重工業株式会社 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP4699566B1 (ja) * 2010-03-10 2011-06-15 三菱重工業株式会社 バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
JP5854586B2 (ja) 2010-07-06 2016-02-09 三菱重工メカトロシステムズ株式会社 糖液を用いた発酵システム及び方法
WO2012004895A1 (ja) 2010-07-09 2012-01-12 三菱重工業株式会社 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
BRPI1009203B1 (pt) 2010-07-09 2020-10-06 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Sistema de decomposição hidrotérmica da biomassa e método de produção da solução de sacarídeo empregando material de biomassa
CA2791665C (en) 2011-01-13 2016-03-15 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Saccharide-solution producing apparatus, fermentation system, saccharide-solution producing method, and fermentation method
BR112014021043B1 (pt) 2012-03-29 2021-08-03 Mitsubishi Power Environmental Solutions, Ltd Sistema para processamento de biomassa e método para produção de solução de sacarídeo usando matéria-prima de biomassa
JP5999759B2 (ja) * 2012-06-21 2016-09-28 月島機械株式会社 バイオマスの処理方法
BR112015000255B1 (pt) 2012-07-11 2019-09-17 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Sistema de produção de solução de sacarídeo utilizando uma matéria-prima de biomassa e método para produzir uma solução de sacarídeo usando uma matéria-prima de biomassa
CN110393608B (zh) 2013-03-15 2023-02-17 心脏结构导航公司 导管引导式瓣膜置换装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170601A (ja) * 1999-12-17 2001-06-26 Noritsu Koki Co Ltd バイオマス系廃棄物処理方法
JP2005205252A (ja) * 2004-01-20 2005-08-04 Kobe Steel Ltd バイオマスを含む高濃度スラリー、および高濃度スラリーの製造方法、並びにバイオマス燃料の製造方法
JP2006068399A (ja) * 2004-09-03 2006-03-16 Mitsubishi Heavy Ind Ltd 水熱分解装置及び方法
JP2007112880A (ja) * 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ 燃料化装置及び燃料の製造方法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985728A (en) 1974-01-02 1976-10-12 Westvaco Corporation Carboxymethylated materials derived from wood molasses and process for making same
US4152197A (en) 1974-09-23 1979-05-01 Mo Och Domsjo Ab Process for preparing high-yield cellulose pulps by vapor phase pulping an unpulped portion of lignocellulosic material and a partially chemically pulped portion
DE3379063D1 (en) 1982-07-05 1989-03-02 Erne Fittings Gmbh & Co Process and apparatus for the preparation of cellulose, simple sugars and soluble lignine from vegetable biomasse
HU197774B (en) 1983-02-16 1989-05-29 Laszlo Paszner Organic solvent process for the hydrolytic saccharification of vegetable materials of starch type
US4746401A (en) * 1983-09-29 1988-05-24 Georgia Tech Research Corp. Process for extracting lignin from lignocellulosic material using an aqueous organic solvent and an acid neutralizing agent
DE3716434C1 (de) 1987-05-16 1988-12-08 Hans-Georg Huber Vorrichtung zum Entfernen von Rechen- und/oder Siebgut aus in einem Gerinne stroemender Fluessigkeit
US5411594A (en) 1991-07-08 1995-05-02 Brelsford; Donald L. Bei hydrolysis process system an improved process for the continuous hydrolysis saccharification of ligno-cellulosics in a two-stage plug-flow-reactor system
SE469536B (sv) 1991-12-05 1993-07-19 Vattenfall Energisyst Ab Saett och anordning foer inmatning av fragmenterat material till behaallare under tryck
US5348871A (en) 1992-05-15 1994-09-20 Martin Marietta Energy Systems, Inc. Process for converting cellulosic materials into fuels and chemicals
US5424417A (en) 1993-09-24 1995-06-13 Midwest Research Institute Prehydrolysis of lignocellulose
EP0741794B1 (en) 1993-12-23 2004-08-11 Controlled Environmental Systems Corporation Commercial ethanol production process
EP0832276B1 (en) 1995-06-07 2005-03-02 Arkenol, Inc. Method of strong acid hydrolysis
US6022419A (en) 1996-09-30 2000-02-08 Midwest Research Institute Hydrolysis and fractionation of lignocellulosic biomass
US6419788B1 (en) * 2000-08-16 2002-07-16 Purevision Technology, Inc. Method of treating lignocellulosic biomass to produce cellulose
JP3802325B2 (ja) 2000-08-23 2006-07-26 信行 林 植物系バイオマスの加圧熱水分解方法とそのシステム
JP4348898B2 (ja) 2002-04-24 2009-10-21 株式会社Ihi 有機物の処理方法及び処理装置
JP2004105855A (ja) 2002-09-18 2004-04-08 Kurita Water Ind Ltd 食品廃棄物の処理方法および装置
JP2005027541A (ja) 2003-07-09 2005-02-03 Toshiba Corp 単糖類及び/又はオリゴ糖類の製造方法及び木質成分の分離方法
US7504245B2 (en) 2003-10-03 2009-03-17 Fcstone Carbon, Llc Biomass conversion to alcohol using ultrasonic energy
NZ548251A (en) 2003-12-01 2008-07-31 Swetree Technologies Ab Fermentation process, starter culture and growth medium
JP2005168335A (ja) 2003-12-09 2005-06-30 National Institute Of Advanced Industrial & Technology 各種リグノセルロース資源からのエタノール生産システム
JP2005229821A (ja) 2004-02-17 2005-09-02 Jgc Corp バイオマスから単糖を製造する方法及び単糖製造装置
JP2006036977A (ja) 2004-07-28 2006-02-09 Jgc Corp バイオマスの改質方法および改質装置
JP5126728B2 (ja) 2004-11-12 2013-01-23 独立行政法人産業技術総合研究所 リグノセルロース系バイオマス処理方法
JP2006223152A (ja) 2005-02-16 2006-08-31 Hitachi Zosen Corp セルロース溶剤による溶解と加水分解の組合せによるバイオマス処理方法
JP2006289164A (ja) 2005-04-06 2006-10-26 Agri Future Joetsu Co Ltd バイオマス由来成分が分散した液状組成物、その製造方法及びこの液状組成物から製造される製品
BR122014013416B1 (pt) 2005-07-19 2018-03-06 Inbicon A/S Método para conversão de uma matéria-prima de um material celulósico, o material celulósico compreendendo pelo menos celulose, lignina, hemicelulose e cinzas, no qual o material celulósico é submetido a um pré-tratamento hidrotérmico contínuo sem adição de ácidos ou bases ou outros produtos químicos, que devem ser recuperados, e no qual são produzidas uma fração líquida e uma fração sólida de fibra, a fração sólida de fibra sendo submetida a liquefação enzimática
CA2651628C (en) 2006-05-08 2015-01-06 Biojoule Ltd. Process for the production of biofuel from plant materials
JP2007301472A (ja) 2006-05-11 2007-11-22 Oji Paper Co Ltd バイオマス連続的加圧熱水処理方法
CN101522760A (zh) 2006-08-07 2009-09-02 艾米塞莱克斯能源公司 从生物质中回收全纤维素和近天然木质素的方法
JP4565164B2 (ja) 2006-08-31 2010-10-20 独立行政法人産業技術総合研究所 糖製造方法、エタノール製造方法及び乳酸製造方法
JP2008104452A (ja) 2006-09-29 2008-05-08 Kumamoto Univ アルコール生産システムおよびアルコール生産方法
US20080299628A1 (en) 2007-05-31 2008-12-04 Lignol Energy Corporation Continuous counter-current organosolv processing of lignocellulosic feedstocks
JP2008278825A (ja) 2007-05-11 2008-11-20 Chuo Kakoki Kk バイオエタノールの製造方法
JP4427584B2 (ja) 2008-02-01 2010-03-10 三菱重工業株式会社 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP4524351B2 (ja) 2008-02-01 2010-08-18 三菱重工業株式会社 バイオマス原料を用いた有機原料の製造システム及び方法
CA2654306C (en) 2008-02-01 2013-10-15 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus and method
JP4427583B2 (ja) 2008-02-01 2010-03-10 三菱重工業株式会社 バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
CA2660990C (en) 2008-02-01 2014-01-14 Mitsubishi Heavy Industries, Ltd. Biomass hydrothermal decomposition apparatus, method thereof, and organic material production system using biomass material
WO2009102609A1 (en) 2008-02-12 2009-08-20 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Thermochemical treatment of lignocellulosics for the production of ethanol
EP2274433B1 (en) 2008-04-03 2012-05-16 Cellulose Sciences International, Inc. Highly disordered cellulose
US7931784B2 (en) 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials
JP5233452B2 (ja) 2008-07-08 2013-07-10 王子ホールディングス株式会社 糖化発酵システム
WO2010038302A1 (ja) 2008-10-02 2010-04-08 三菱重工業株式会社 バイオマス原料を用いた有機原料の製造システム及び方法
WO2010060052A2 (en) 2008-11-21 2010-05-27 North Carolina State University Production of ethanol from lignocellulosic biomass using green liquor pretreatment
CA2701194A1 (en) 2009-04-23 2010-10-23 Greenfield Ethanol Inc. Separation of reactive cellulose from lignocellulosic biomass with high lignin content
CA2755981C (en) 2009-08-24 2015-11-03 Abengoa Bioenergy New Technologies, Inc. Method for producing ethanol and co-products from cellulosic biomass
US8597431B2 (en) 2009-10-05 2013-12-03 Andritz (Usa) Inc. Biomass pretreatment
CN102725415A (zh) 2009-10-13 2012-10-10 普渡研究基金会 由木质纤维生物质生产乙醇并回收可燃燃料材料
WO2012004895A1 (ja) 2010-07-09 2012-01-12 三菱重工業株式会社 バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
BRPI1009203B1 (pt) 2010-07-09 2020-10-06 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Sistema de decomposição hidrotérmica da biomassa e método de produção da solução de sacarídeo empregando material de biomassa
EP2785853A2 (en) 2011-12-02 2014-10-08 BP Corporation North America Inc. Compositions and methods for biomass liquefaction
WO2014159309A1 (en) 2013-03-12 2014-10-02 Butamax Advanced Biofuels Llc Processes and systems for the production of alcohols

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170601A (ja) * 1999-12-17 2001-06-26 Noritsu Koki Co Ltd バイオマス系廃棄物処理方法
JP2005205252A (ja) * 2004-01-20 2005-08-04 Kobe Steel Ltd バイオマスを含む高濃度スラリー、および高濃度スラリーの製造方法、並びにバイオマス燃料の製造方法
JP2006068399A (ja) * 2004-09-03 2006-03-16 Mitsubishi Heavy Ind Ltd 水熱分解装置及び方法
JP2007112880A (ja) * 2005-10-19 2007-05-10 National Univ Corp Shizuoka Univ 燃料化装置及び燃料の製造方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10752878B2 (en) 2010-06-26 2020-08-25 Virdia, Inc. Sugar mixtures and methods for production and use thereof
US9410216B2 (en) 2010-06-26 2016-08-09 Virdia, Inc. Sugar mixtures and methods for production and use thereof
US9963673B2 (en) 2010-06-26 2018-05-08 Virdia, Inc. Sugar mixtures and methods for production and use thereof
US9476106B2 (en) 2010-06-28 2016-10-25 Virdia, Inc. Methods and systems for processing a sucrose crop and sugar mixtures
US10760138B2 (en) 2010-06-28 2020-09-01 Virdia, Inc. Methods and systems for processing a sucrose crop and sugar mixtures
US11242650B2 (en) 2010-08-01 2022-02-08 Virdia, Llc Methods and systems for solvent purification
US9115467B2 (en) 2010-08-01 2015-08-25 Virdia, Inc. Methods and systems for solvent purification
US10240217B2 (en) 2010-09-02 2019-03-26 Virdia, Inc. Methods and systems for processing sugar mixtures and resultant compositions
US9663836B2 (en) 2010-09-02 2017-05-30 Virdia, Inc. Methods and systems for processing sugar mixtures and resultant compositions
US8404355B2 (en) 2010-12-09 2013-03-26 Virdia Ltd Methods and systems for processing lignocellulosic materials and related compositions
US10876178B2 (en) 2011-04-07 2020-12-29 Virdia, Inc. Lignocellulosic conversion processes and products
US11667981B2 (en) 2011-04-07 2023-06-06 Virdia, Llc Lignocellulosic conversion processes and products
US9512495B2 (en) 2011-04-07 2016-12-06 Virdia, Inc. Lignocellulose conversion processes and products
US9617608B2 (en) 2011-10-10 2017-04-11 Virdia, Inc. Sugar compositions
US9845514B2 (en) 2011-10-10 2017-12-19 Virdia, Inc. Sugar compositions
US9976194B2 (en) 2011-10-10 2018-05-22 Virdia, Inc. Sugar compositions
US10041138B1 (en) 2011-10-10 2018-08-07 Virdia, Inc. Sugar compositions
JPWO2013076789A1 (ja) * 2011-11-21 2015-04-27 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法
WO2013076789A1 (ja) * 2011-11-21 2013-05-30 三菱重工メカトロシステムズ株式会社 糖液製造装置、発酵システム、糖液製造方法及び発酵方法
US9493851B2 (en) 2012-05-03 2016-11-15 Virdia, Inc. Methods for treating lignocellulosic materials
US9783861B2 (en) 2012-05-03 2017-10-10 Virdia, Inc. Methods for treating lignocellulosic materials
US11053558B2 (en) 2012-05-03 2021-07-06 Virdia, Llc Methods for treating lignocellulosic materials
US9650687B2 (en) 2012-05-03 2017-05-16 Virdia, Inc. Methods for treating lignocellulosic materials
US9631246B2 (en) 2012-05-03 2017-04-25 Virdia, Inc. Methods for treating lignocellulosic materials
US11078548B2 (en) 2015-01-07 2021-08-03 Virdia, Llc Method for producing xylitol by fermentation
US11091815B2 (en) 2015-05-27 2021-08-17 Virdia, Llc Integrated methods for treating lignocellulosic material

Also Published As

Publication number Publication date
JPWO2011111190A1 (ja) 2013-06-27
CA2741598A1 (en) 2011-09-10
US20120021503A1 (en) 2012-01-26
US9102956B2 (en) 2015-08-11
BRPI1006883B1 (pt) 2021-06-29
BRPI1006883A2 (pt) 2017-02-14
CA2741598C (en) 2013-04-30
JP4699567B1 (ja) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4699567B1 (ja) バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
JP4436429B1 (ja) バイオマス原料を用いた有機原料の製造システム及び方法
JP4699566B1 (ja) バイオマスの水熱分解装置及びその温度制御方法、バイオマス原料を用いた有機原料の製造システム
JP4427583B2 (ja) バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP4524351B2 (ja) バイオマス原料を用いた有機原料の製造システム及び方法
JP4427584B2 (ja) バイオマスの水熱分解装置及び方法、バイオマス原料を用いた有機原料の製造システム
JP4764527B1 (ja) バイオマスの処理システム及びバイオマス原料を用いた糖液生産方法
CA2660990C (en) Biomass hydrothermal decomposition apparatus, method thereof, and organic material production system using biomass material
CA2654306C (en) Biomass hydrothermal decomposition apparatus and method
JP2009183806A (ja) バイオマスの水熱分解反応システム及びそれを用いた有機原料の製造システム
JP5517565B2 (ja) バイオマス原料を用いた有機原料の製造システム
JP2010082620A5 (ja)
JP5517560B2 (ja) バイオマス原料を用いた有機原料の製造システム
WO2012005246A1 (ja) 糖液を用いた発酵システム及び方法
JP2010029862A5 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010536274

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2741598

Country of ref document: CA

Ref document number: 13132040

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006883

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10847420

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1006883

Country of ref document: BR

Free format text: SOLICITA-SE APRESENTAR UMA PROCURACAO VALIDA PARA O PEDIDO INTERNACIONAL PCT/JP2010/054023, UMA VEZ QUE OS PODERES CONFERIDOS NA PROCURACAO PRESENTE NA PETICAO 020110075228 E LIMITADA SOMENTE PARA O PCT/JP2009/053066. ALEM DISSO, APRESENTE, NO PRAZO DE 60 (SESSENTA) DIAS, NOVAS FOLHAS DE DESENHOS COM O TEXTO TRADUZIDO PARA O PORTUGUES, ADAPTADO A NORMA VIGENTE, CONFORME DETERMINA O ATO NORMATIVO 128/97 NO ITEM 9.2.1

ENP Entry into the national phase

Ref document number: PI1006883

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110630