WO2011110685A1 - Procede de fabrication d'un assemblage metallique ayant une feuille d'aluminium traitee thermiquement pour obtenir de l'alumine alpha et une autre feuille avec des irregularites de surface que s'y incrustent lors du colaminage. - Google Patents

Procede de fabrication d'un assemblage metallique ayant une feuille d'aluminium traitee thermiquement pour obtenir de l'alumine alpha et une autre feuille avec des irregularites de surface que s'y incrustent lors du colaminage. Download PDF

Info

Publication number
WO2011110685A1
WO2011110685A1 PCT/EP2011/053747 EP2011053747W WO2011110685A1 WO 2011110685 A1 WO2011110685 A1 WO 2011110685A1 EP 2011053747 W EP2011053747 W EP 2011053747W WO 2011110685 A1 WO2011110685 A1 WO 2011110685A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sheet
aluminum
foil
aluminum foil
Prior art date
Application number
PCT/EP2011/053747
Other languages
English (en)
Inventor
Laurent Prevond
Nicolas Collard
Renaud Caplain
Pierre Francois
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Cnam - Conservatoire National Des Arts Et Metiers
Ecole Normale Superieure De Cachan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs), Cnam - Conservatoire National Des Arts Et Metiers, Ecole Normale Superieure De Cachan filed Critical Centre National De La Recherche Scientifique (Cnrs)
Priority to ES11707438.5T priority Critical patent/ES2665779T3/es
Priority to US13/634,017 priority patent/US10392687B2/en
Priority to EP11707438.5A priority patent/EP2544890B1/fr
Priority to JP2012556540A priority patent/JP5824466B2/ja
Publication of WO2011110685A1 publication Critical patent/WO2011110685A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • B21D47/04Making rigid structural elements or units, e.g. honeycomb structures composite sheet metal profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]

Definitions

  • the invention generally relates to the manufacture of aluminum-metal assemblies.
  • the invention relates to the manufacture of a set
  • Aluminum is a malleable, paramagnetic, low density, highly conductive metal with oxidation resistance properties.
  • This natural alumina layer has a thickness generally ranging from one to three micrometers.
  • alumina is very insulating, as opposed to aluminum, and forms a barrier preventing in particular the wetting of aluminum on another metal (for example on iron, steel or copper).
  • equilibrium diagrams show that aluminum alloys with ferromagnetic materials are possible, but these alloys are only likely to form predetermined, mechanically brittle, and paramagnetic compounds.
  • An object of the invention is therefore to provide a method of manufacturing a low cost, reproducible metal assembly, involving low energy expenditure and to obtain a metal assembly which is lightweight while having high rigidity and the case good corrosion resistance.
  • the invention provides a method of manufacturing a metal assembly comprising a first aluminum-based sheet and at least one second metal sheet, comprising the steps of:
  • the rolling mill comprises at least one cylinder whose outer rolling surface is provided with reliefs.
  • the duration of the heat treatment of the aluminum foil is between about twenty minutes and about two hours
  • the reliefs are furrows or crosses
  • the grooves are rectilinear, toothed, crenated, and / or sinuous,
  • the reliefs extend in a general direction parallel to and / or transverse to the rolling direction of the sheets in the rolling mill;
  • the external rolling surface of two complementary rolls of the rolling mill has identical reliefs in phase opposition during the roll-over
  • the metal foil is constituted by one of the elements of the following group: a metal grid, a metal foil, a metal foam, a metallic honeycomb structure, metal cables, or a rough metal foil,
  • the metal foil is made of one of the following group of materials: steel, iron, nickel, cobalt, copper, metal of cubic face-centered crystallographic structure, or their alloys,
  • the metal foil is an additional aluminum foil, said method further comprising, prior to the step of bonding the foils, the following steps:
  • the step of assembling the sheets is carried out by riveting, spot welding, prelining of a sheet head, self-piercing screw, electron beam welding, bonding and / or clamping,
  • an additional metal sheet is glued together with the aluminum and metal foils,
  • the aluminum foil and the metal foil are firstly rolled in a rolling mill to obtain a planar assembly, said planar assembly then being colaminated with the additional metal foil in the rolling mill (s) with reliefs in order to get the metal assembly, it furthermore comprises a step of applying a layer of powder on the aluminum foil prior to the roll-forming step,
  • the aluminum foil and the powder are rolled together in a rolling mill to obtain a planar assembly, said planar assembly then being colaminated with the metal foil in the rolling mill comprising at least one roll whose external rolling surface is provided with reliefs to obtain the metal assembly,
  • the powder is applied between the aluminum foil and the metal foil prior to the roll-forming step, the assembly comprising the aluminum foil, the powder and the metal foil then being colaminated in the rolling mill, and
  • the invention proposes a method for manufacturing a heat exchanger, comprising a step of forming an aluminum foil with at least one metal foil according to a process according to the invention in a rolling mill. comprising a first cylinder whose outer rolling surface has grooves extending longitudinally to the rolling direction, and a second roll whose outer rolling surface is smooth or has grooves in phase opposition with the grooves of the first roll.
  • Some preferred but non-limiting aspects of the method of manufacturing a heat exchanger are the following:
  • the metal sheet is a sheet of copper, iron or steel, and
  • the metal foil is an additional aluminum foil
  • the method further comprises, prior to the step of bonding the foils, the following steps:
  • FIG. 1 is a cross-sectional view of a first example of a metal assembly that can be manufactured according to a method according to the invention
  • FIG. 2 is a longitudinal sectional view of the metal assembly example of FIG. 1,
  • FIG. 3 is a cross-sectional view of a second example of a metal assembly that can be manufactured according to a method according to the invention
  • FIG. 4 is a cross-sectional view of a third example of a metal assembly that can be manufactured according to a method according to the invention.
  • FIG. 5 is a cross-sectional view of a fourth example of a metal assembly that can be manufactured according to a method according to the invention.
  • Figure 6 is a cross-sectional view of a fifth example of a metal assembly that can be manufactured according to a method according to the invention.
  • a metal assembly comprising at least one aluminum sheet 10 and a metal sheet 20 shaped and forming a coherent stack.
  • This method comprises a heat treatment step of the aluminum foil followed by a rolling step in a rolling mill comprising rolls, the outer surface of at least one of the cylinders not being smooth but provided with reliefs.
  • an allotropic transformation of the oxide layer present at the surface of the aluminum foil 10 is carried out.
  • the aluminum foil 10 is carried at a temperature of between about 80% and 100% of the melting temperature of its constituent material for a sufficiently long time to stabilize and homogenize said layer. This step is preferably carried out in a dry atmosphere.
  • the aluminum foil 10 is heated to a temperature of between 93% and 98% of the melting temperature, more preferably still at a temperature of the order of 95% (+/- 1%).
  • the aluminum foil 10 can, moreover, be made of pure aluminum, or an aluminum alloy.
  • the invention is more particularly suitable for aluminum sheets having good thermal conduction, and can be brought to a uniform temperature throughout its volume.
  • it may be an aluminum foil made in the 1000 series of the international nomenclature (A5 to A9, ).
  • the aluminum foil may be a food aluminum foil having a thickness between 5 and 20 microns heated between 500 ° C and 660 ° C.
  • the duration of the heat treatment is then between about twenty minutes and about two hours, preferably about thirty minutes.
  • the duration of the heat treatment is then preferably of the order of 45 minutes.
  • the thickness of the aluminum foil 10 is limited by the rolling conditions to a few millimeters. But in any case, the duration of the heat treatment preferably does not exceed two hours.
  • the durations indicated above are of course orders of magnitude, and can be extended according to the conditions of realization of the heat treatment, more particularly according to the type and the initial quality of the aluminum used, the characteristics of the oven and the humidity residual ambient. Indeed, the alpha alumina layer can degrade if the treatment time is too prolonged under bad conditions.
  • the heat treatment is preferably carried out in a dry atmosphere, for example by preheating the oven so as to eliminate the residual moisture and thus avoid the hydroxidation of the alpha alumina layer. It is then possible to increase the duration of the heat treatment up to for example four hours without damaging the aluminum foil 10.
  • the implementation of an oven using the external atmosphere in the oven for ventilation may also give a layer of alpha hydroxide alumina, and therefore of lower quality.
  • a controlled atmosphere furnace is therefore used if it is desired to increase the duration of the heat treatment.
  • the quality of the alpha alumina layer can also depend on the type of aluminum in the sheet 10 and the quality of the oven: the more pure the aluminum (like the aluminum A9) and the less the oven is polluted, the more the Heat treatment of the aluminum foil can be extended without risk of damaging the alpha alumina layer.
  • the heat treatment of an aluminum foil made of an alloy A5 in a "polluted" oven for four hours gives a layer of alpha alumina which, although it is stabilized, is bad. quality and shows green and black traces due to the interaction of the different materials constituting the alloy A5 with the metals of the furnace.
  • the aluminum foil 10 is cooled.
  • the final cooling temperature may, for example, be the temperature of the room in which the process is implemented, typically about twenty degrees. However, it is possible to further cool the aluminum foil 10 (for example up to zero degrees Celsius), or less cool (for example up to sixty degrees Celsius).
  • An aluminum foil 10 having a lower tensile strength than the aluminum foil is then obtained before heat treatment (between 15 and 20 MPa, instead of about 60 before heat treatment).
  • the heat treatment makes it possible to increase the grain size of the aluminum, thus facilitating its subsequent work.
  • the aluminum foil 10 is stuck with the selected metal foil in the rolling mill.
  • the metal foil 20 must have certain physical properties to guarantee its coherent assembly with the aluminum foil 10 according to the method of the invention.
  • At least one of the faces of the metal foil 20 must have surface irregularities 21 of a depth greater than or equal to the thickness of the alpha alumina layer created during the heat treatment of the foil.
  • the thickness of the alumina layer remains generally constant equal to 5 microns (within 1-2 microns), regardless of the thickness of the aluminum foil 10, and this even if the heat treatment is continued beyond the time necessary to stabilize it. Nevertheless, beyond a few hours (usually four hours), the heat treatment becomes a "homogenization" treatment: the alpha alumina layer is degraded and the grains constituting it are no longer in the same plane, so its final thickness is modified and has black and green effects.
  • the metal sheet 20 may be a deployed (or, more generally, a grid), honeycomb structure, the surface irregularities 21 then being formed by the through holes or obstructions present in the sheet 20
  • deployed is meant here a lattice made in one piece by cutting and drawing laminated metal, while grid means for example a sheet made by weaving son.
  • It may also be a metal foam whose pores 21 are preferably open and have a diameter greater than or equal to 5 microns, or a metal sheet whose surface roughness is greater than or equal to at 5 microns.
  • metal sheets are of course usable, as long as the surface irregularities 21 are sufficiently large.
  • the metal sheet may also receive a wet or dry surface treatment, in particular to increase the corrosion resistance of the metal sheet 20 as well as certain of its physical characteristics, such as its electrical conductivity, its magnetic permeability, and to modify its coefficient. friction.
  • the metal foil 20 must also be less ductile than the aluminum foil 10 after heat treatment, so as to allow the interpenetration of the aluminum in the surface irregularities 21 of the metal foil 20 during the bonding step .
  • It may for example be made of steel, iron, nickel, cobalt, copper, a metal of crystallographic structure face-centered cubic (gold, copper, silver, etc.), or their alloys.
  • an aluminum sheet identical or similar to the first aluminum sheet and having undergone the heat treatment satisfies the requirements for use as a metal sheet in the manufacturing process.
  • the heat treatment makes it possible on the one hand to create and stabilize on the surface a layer of alpha alumina having a roughness of about 5 microns in thickness (and therefore a sufficiently irregular surface) and on the other hand to make the sheet substantially as ductile as the first sheet of aluminum.
  • the metal assembly 1 consisting of the aluminum foil 10 and the metal foil 20 may delaminate, while by performing only one pass, the aluminum foil 10 interpenetrates the metal sheet 20 so as to form a coherent metal assembly 1.
  • Coiling can in particular be carried out at a speed of between 0.1 km / h and 3 km / h, with, for example, a rolling reduction rate of between 2 and 10 approximately.
  • a speed of between 0.1 km / h and 3 km / h with, for example, a rolling reduction rate of between 2 and 10 approximately.
  • the spot welding of the sheets becomes possible thanks to the heat treatment undergone by the aluminum foil 10, and more particularly thanks to the allotropic transformation and the stabilization of the coating layer. 'oxide.
  • the outer surface of at least one roll of the rolling mill comprises reliefs.
  • the reliefs have the form of grooves, extending parallel or transverse to the rolling direction, crosses, etc.
  • the grooves may be rectilinear (crenellated cylinders) or otherwise non-rectilinear (including grooves, serrations, sinuous or a combination of these patterns), uniform (U-shaped walls of constant width) or non-uniform (U-shaped walls of variable width along the surface of the cylinder), etc.
  • the reliefs may also be identical and in opposition of phase.
  • a metal assembly is then obtained comprising tubes 30 welded together, as illustrated in FIG. 6 appended hereto. Such an assembly can then be used in particular in the manufacture of a heat exchanger.
  • these metal assemblies exhibit high rigidity in the rolling direction, low density and increased resistance to corrosion (by the use of aluminum).
  • the choice of reliefs is guided by the application of the metal assembly.
  • the implementation of reliefs and materials for the metal sheet 20 extending in a given general direction stiffens the metal assembly in this direction.
  • the cylinders are crenellated, the reliefs then being rectilinear grooves parallel to the rolling direction, the bonding gives a high rigidity to the final metal assembly in this direction.
  • the use of reliefs having two directions of extension, such as toothed, sinusoidal or crenated grooves, or even crosses makes it possible to obtain stiffened metal assemblies both in the directions parallel and transverse to the rolling direction.
  • the final thickness of the metal assembly depends on the initial thicknesses of the aluminum and metal sheets, the reliefs of the rolls and the stresses applied in the rolling mill.
  • the alpha alumina layer also acts as a lubricant during the bonding of the metal assembly 1, and substantially increases the corrosion resistance of the aluminum.
  • a metallic assembly 1 having remarkable properties such as increased resistance to corrosion and tensile stresses, a ratio of high strength to mechanical strength, and a wider operating temperature range than that of pure aluminum are then obtained. (Between about -200 ° C and + 200 ° C for an aluminum-iron assembly), or a conductivity similar to the conductivity of aluminum before heat treatment.
  • the metal assembly 1 may further receive surface treatments, be stamped or shaped, welded, etc. like any other conventional metal sheet.
  • the metal assembly may comprise several different or identical metal sheets. These leaves are then preferably colaminated directly together, in one pass and cold.
  • the metal assembly may be reinforced by the addition of a layer of metal powder that is spread between two sheets before bonding, for example between two sheets of aluminum. It will be noted that such a metal layer 20 meets the requirements for surface irregularities 21 if its particle size is greater than or equal to the thickness of the alumina layer of the aluminum foil 10.
  • the metal powder may be a powder of steel, iron, nickel, cobalt, copper, a metal of cubic face-centered crystallographic structure (gold, copper, silver, etc.), or in their alloys.
  • the steps of heating, cooling and bonding remain the same as in the general manufacturing process described above.
  • the method may further comprise an additional step of heating the steel foil to a temperature between 70% and 98% of its temperature. melting, for example 1100 ° C, for a time depending on the thickness of the sheet, typically for 30 minutes for a sheet one millimeter thick.
  • the heating time depends on the density, the heat capacity, the thermal conductivity and the thickness of the steel sheet 20.
  • the aluminum foil 10 is made of a 1000 series alloy and the steel foil 20 is a low-alloy steel sheet of XC10.
  • the steel is then cooled to the cooling temperature of the aluminum foil. Again, as for the aluminum foil 10, the cooling time and the final temperature of the cooled steel are not critical parameters.
  • the steel sheet 20 is then mechanically or chemically etched so as to remove the oxide layer present on the surface which could prevent the formation of a coherent metal assembly 1.
  • the etching is carried out by sandblasting. Since the surface of the metal foil should not be regular, the sanding size does not matter. On the other hand, it is necessary to control the sandblasting pressure in order to avoid intrusions of grains of abrasives into the metal.
  • the etching is carried out by acid attack (for example with hydrochloric acid), by brushing with iron straw, or any other known technique.
  • the steel sheet 20 thus obtained is then stained with the heat treated aluminum foil, preferably cold and in one passes, in a rolling mill of which at least one of the cylinders has an outer surface provided with reliefs.
  • the metal assembly 1 thus obtained then has unexpected properties.
  • the metal assembly 1 combines some of the specific properties of aluminum and steel taken separately. Thus, it was found that the metal assembly 1 was ferromagnetic, and was able to attract magnets and keep them in contact with its outer surface, while having good electrical conductivity and low density.
  • the relative magnetic permeability of the assembly is of the order of 300, its conductivity is close to that of aluminum (of the order of 4.6 ⁇ 10 8 ohm -1 m -1 ), its tensile strength is of the order of 10 MPa (which is important for a sheet 10 of such a small thickness, about 100 microns), while its density is of the order of 4.7.
  • the assembly 1 can be rolled successively (successfully rolling bonding) to mechanically multiply the number of layers from a single initial assembly.
  • This multilayer then has characteristics even greater than the initial assembly in particular in terms of mechanical strength (traction / tearing) and magnetic by a better distribution in the thickness.
  • the first rollovers are carried out in a rolling mill with smooth rolls, and only the last roll forming is carried out with one or more rolls whose surface has reliefs.
  • the metal foil 20 is made of steel, it is possible to use only a two-roll mill instead of a conventional four-roll mill (or more) because assembly 1 remains sufficiently aligned during rolling.
  • the heat treatment of the metal foil 20 is not necessary for all materials. It aims to mechanically soften the material constituting it.
  • the step of heating the metal sheet 20 is optional, as well as its surface etching.
  • the aluminum foil 10 is directly heat treated according to the process according to the invention, without having previously undergone a pre-rolling step. Indeed, such a pre-rolling could lead to primary or secondary recrystallizations of aluminum and make it more difficult are later cross-laminating.
  • the metal sheet 20 may be a copper foil 20, more particularly a grid or a deployed. he is then sufficient, after heat treatment of the aluminum foil, to colaminate in a single pass and cold in the rolling mill (s) relief (s) aluminum foil and copper foil, choosing the reliefs appropriate according to the industrial application of the assembly, to obtain the metal assembly.
  • This metal assembly then has many properties of interest, typically its excellent conductivity (improved compared to the original aluminum foil due to the presence of the copper foil), low density, excellent corrosion resistance, high high rigidity in the main direction of the reliefs, etc. which makes it particularly suitable for the manufacture of electrodes for fuel cells for example, or any other metal assembly requiring excellent conductivity and corrosion resistance while being lightweight and rigid. It is also possible to produce such electrodes in a rolling mill with one of the cylinders is smooth, only the rolling surface of the corresponding cylinder being provided with reliefs.
  • the assembly may further comprise a second copper foil, disposed on the free face of the aluminum foil and coiled together with the other sheets, to further improve the conductivity of the final assembly.
  • the method according to the invention also makes it possible to produce an assembly formed of two aluminum sheets that interpenetrate each other.
  • the metal foil 20 is here the additional aluminum foil.
  • the method of manufacturing a metal assembly 1 of two aluminum sheets simply comprises an additional step of heating and cooling the metal sheet (here the additional aluminum foil) with respect to the general process according to the invention. 'invention.
  • the two aluminum foils are heat treated, simultaneously or successively, and then cooled, in accordance with the first two stages (heating then cooling) of the general process which were previously detailed.
  • the two sheets of aluminum are then glued, preferably cold and in a single pass, so as to obtain a metal assembly 1 comprising two aluminum sheets which interpenetrate, and having reliefs complementary to the reliefs of (the) cylinder (s).
  • This metal assembly 1 has in particular increased mechanical characteristics and the same properties as each sheet of aluminum taken separately following its respective heat treatment. In particular, it has increased corrosion resistance (especially in 68% nitric acid), can be spot welded, used in a wider range of temperatures, and so on.
  • the additional aluminum foil 10 ' is heated and then cooled, in accordance with the first two stages of the process, and then the aluminum foil 10 is foamed directly, the metal foil (s) 20 and the additional aluminum foil 10 ', preferably cold and in one pass, so as to form the final relief metal assembly comprising at least three layers.
  • the process by coiling the additional heat-treated aluminum foil according to the first two process steps with the metal assembly obtained according to the previously described method.
  • it will then be preferred to colaminate the base metal assembly 1 (comprising the aluminum foil 10 and the metal foil 20) in a rolling mill with smooth rolls in order to obtain a coherent planar assembly, and not to colaminate in the rolling mill (s) with reliefs that the final metal assembly 1.
  • the metal assembly 1 is made with a sheet 20 of steel, iron or any other material stated above, it is necessary, prior to bonding, to wear the metal assembly 1 at a temperature between 80% and 100 % of the melting temperature of the aluminum foil according to the first step of the process described above, for several minutes, for example about thirty minutes.
  • the metal assembly 1 further comprises a metal powder layer.
  • the metal layer is enclosed between at least two sheets, typically between two sheets of aluminum, between an aluminum foil and a metal foil (as shown in FIG. 5) or two aluminum sheets and a foil metallic.
  • the powder layer is stained with an aluminum foil in a rolling mill and then only in the rolling mill (s) with reliefs, so as to obtain a coherent metal assembly comprising only the aluminum foil and the metal powder, or where appropriate further comprising a metal foil 20, and having the complementary reliefs of the rolls of the rolling mill.
  • the method may then further comprise an additional heat treatment step of the metal powder 22 prior to the bonding step.
  • the metal powders may have of the order of 15% by weight of water, which can become troublesome especially when aging treatments, saturated steam causing delamination of the leaves.
  • the degree of hydration of the powder 22 is sufficiently low (typically less than 1% of surface water and water bound) to reduce the saturation vapor at the interfaces when bonding with the aluminum foil 10.
  • the heating time preferably under vacuum, again depends on the density, the heat capacity, the thermal conductivity and the thickness of the metal layer 20.
  • the heat treatment lasts between about thirty minutes and two hours at 300 ° C, so as to completely dry the powder 22. Nevertheless, a partial drying at 120 ° C for about 60 minutes under vacuum may be sufficient for some types of powders 22 little hydrophilic.
  • a dehydrated alumina powder generally comprises only 4% of surface water and 10% of bound water.
  • a simple heat pretreatment sufficiently reduces its degree of hydration to obtain good results when bonding with the aluminum foil 10 and limit the risk of delamination.
  • the metal powder layer 20 thus obtained is then stained with the heat-treated aluminum foil, preferably cold and in one pass in a rolling mill, or between two sheets in the rolling mill (s). landforms.
  • This step of bonding the aluminum foil 10 with the metal powder and, if appropriate, the additional metal foils is preferably carried out following the dehydration of the powder 22, for example in the following minutes, in order to avoid recovery. of the powder 22. If necessary, a new heat treatment is possible in order to dehydrate the powder 22 again. Again, the roll-over is preferably done cold and in one pass.
  • the amount of powder may be variable depending on the desired application. It is indeed possible to apply a very thin layer of powder, a discontinuous layer of powder, a complete layer, or even several thicknesses of powders. The result obtained then depends on the ratio between the particle size of the powder 22 and the quantity of powder 22 applied.
  • a very thin layer having a minimum thickness of the order of five microns, will include, for example, atomized powder 22 having a ball effect which makes it difficult to roll over.
  • a thick layer which may be up to two millimeters thick, will comprise, for example, angular powder which is easy to colaminate.
  • the metal assembly 1 thus obtained then has unexpected properties, including good mechanical characteristics compared to an aluminum sheet alone, and a high stability over time.
  • the metal assembly 1 combines some properties specific to aluminum and the constituent metal of the powder taken separately.
  • the metal assembly 1 was ferromagnetic, and was able to attract magnets and keep them in contact with its outer surface, while having good conductivity electric and low density.
  • the method according to the invention therefore makes it possible to manufacture sandwiches comprising at least one metal assembly and an additional sheet, metal or aluminum.
  • a metal sheet in particular a deployed sheet
  • metal powder in particular nickel powder
  • the thickness of the resulting sandwich groove has a thickness of about 0.8 mm, a relative magnetic permeability of about 100, a density of 3.2 and an electrical conductivity of about 4.4 10 8 Ohm " 1. m- 1 .
  • the patterns are longitudinal grooves (having a width in the plane of the assembly (in the direction transverse to the rolling direction, corresponding to the main direction of the grooves) of the order of 2 mm for a height of the order of 1 .5 mm):
  • the longitudinal tensile strength (that is to say in the main direction of the grooves) of the sandwich is of the order of three times that of a sheet of aluminum of the same thickness and untreated, which is typically between 25 and 80 MPa depending on its metallurgical state, and - the bending resistance along a transverse axis to the grooves is at least five to ten times greater than that of an aluminum sheet of the same size and untreated is of the order of 60 MPa according to its metallurgical state
  • a sandwich 2 comprising two aluminum sheets 10, 10 'enclosing a steel sheet 20 has surprising corrosion resistance properties and a high resistance to delamination.
  • the immersion of such a sandwich 2 in a bath of liquid nitrogen at 77 K (-196 ° C) showed that the sandwich 2 remained coherent despite the different expansion coefficients of aluminum and steel .
  • the sandwich 2 according to the invention is capable of withstanding a 68% concentrated nitric acid attack for several days. Only the metal foil 20 is etched if the blanks of the sandwich 2 are not protected, i.e. if the metal foil 20 enclosed by the aluminum foils 10, 10 'is in contact with the acid.
  • sealing of the metal central portion 20 of the sandwich is easier to obtain when it comprises powder. It is enough in effect of not putting powder on the edges of the aluminum sheets 10, 10 'during the bonding. Any delamination by oxidation of the metallic central part is then avoided.
  • the sandwiches may also be made with several types of different metal foils and / or metal powder, in order to cumulate certain properties of interest.
  • a metal assembly 1 comprising a sheet of steel with a metal assembly 1 comprising a nickel sheet makes it possible to obtain a sandwich comprising at the same time aluminum, steel and nickel, in order to adapt the conductivity, the magnetic permeability, and the density, for example to the desired application.
  • the method according to the invention makes it possible to obtain metal assemblies 1 and sandwiches of metal sheets which can be easily recovered by melting. Indeed, it is possible to separate and recover by gravity the component of the metal assembly 1 having the lowest melting temperature. In the case of a mixed sandwich, comprising more than one different material for the metal sheets, it is then sufficient to repeat the operation until only one type of material remains.
  • the process has a low energy cost thanks to the cold roll-forming step and the reduced duration of the heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Metal Rolling (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un assemblage métallique comprenant une feuille d'aluminium et au moins une feuille métallique, comprenant les étapes consistant à : - traiter thermiquement une feuille d'aluminium (10) en la portant à une température comprise entre 80% et 100% de la température de fusion du matériau la constituant pendant une durée suffisante pour créer et stabiliser une couche d'alumine alpha en surface de ladite feuille d'aluminium (10), puis en la laissant refroidir; - prévoir une feuille métallique (20) ayant une ductilité inférieure ou égale à la ductilité de la feuille d'aluminium (10) après refroidissement, ladite feuille (20) présentant des irrégularités de surface (21) d'une profondeur supérieure ou égale à l'épaisseur de la couche d'alumine alpha; et - colaminer dans un laminoir la feuille d'aluminium (10) et la feuille métallique (20) afin d'obtenir l'assemblage métallique (1), caractérisé en ce que le laminoir comprend au moins un cylindre dont la surface externe de laminage est pourvue de reliefs.

Description

PROCEDE DE FABRICATION D'UN ASSEMBLAGE METALLIQUE AYANT UNE FEUILLE D'ALUMINIUM TRAITEE THERMIQUEMENT POUR OBTENIR DE L'ALUMINE ALPHA ET UNE AUTRE FEUILLE AVEC DES IRREGULARITES DE SURFACE QUE S'Y INCRUSTENT LORS DU COLAMINAGE .
L'invention concerne de manière générale la fabrication d'assemblages aluminium-métal.
5 Plus précisément, l'invention concerne la fabrication d'un ensemble
comprenant une feuille d'aluminium et une feuille métallique assemblées et mises en forme de manière à obtenir un assemblage métallique ayant une bonne cohésion.
L'aluminium est un métal malléable, paramagnétique, de faible 10 densité, très conducteur et ayant des propriétés de résistance à l'oxydation
remarquables.
Lors de son oxydation avec l'air, il se forme très rapidement en surface une couche fine d'alumine qui permet de le protéger contre la progression de l'oxydation. Cette couche d'alumine naturelle a une épaisseur 15 allant généralement d'un à trois micromètres.
Néanmoins, l'alumine est très isolante, par opposition à l'aluminium, et forme une barrière empêchant notamment le mouillage de l'aluminium sur un autre métal (par exemple sur du fer, de l'acier ou du cuivre).
Certaines applications nécessitent cependant des matériaux ayant à 20 la fois des propriétés de l'aluminium, notamment sa conductivité, sa faible
densité, etc. mais aussi des propriétés supplémentaires telles que le magnétisme, la résistance à la rupture, la capacité à être soudé, la rigidité, que peuvent présenter notamment l'acier ou le nickel.
Or la fabrication d'un assemblage comprenant de l'aluminium et du fer 25 est très problématique car ces deux matériaux sont difficiles à allier.
Typiquement, les diagrammes d'équilibre montrent que les alliages aluminium avec des matériaux ferromagnétiques sont possibles, mais ces alliages sont uniquement susceptibles de former des composés prédéterminés, mécaniquement fragiles, et paramagnétiques.
30 La fabrication et la mise en forme de assemblages métalliques
comprenant une feuille (ou tôle) d'aluminium et une feuille (ou tôle) réalisée dans un autre métal, notamment du nickel, du cuivre, du cobalt, ou même de l'aluminium, intéresse également les industriels. En effet, la réalisation de assemblages métalliques légères et rigides nécessite actuellement des assemblages par soudure, collage, etc. qui ne sont pas réalisables aisément avec tous types de métaux, et en particulier avec de l'aluminium.
Par exemple, dans le cas des échangeurs thermiques, on cherche à obtenir des assemblages métalliques rigides, résistantes à la corrosion et de faible densité à moindre coût. Or l'utilisation de plaques d'aluminium du commerce n'est pas adaptée étant données leur malléabilité, et leur assemblage avec d'autres métaux (sous forme de plaque, de poudre, etc.) est rendue difficile par la présence en surface de la couche d'alumine.
De nombreux procédés de fabrication d'assemblages métalliques à base d'aluminium ont été développés, mais tous ont l'inconvénient d'être longs et difficiles à mettre en œuvre, nécessitent la plupart du temps des installations spécifiques et ont un coût énergétique élevé.
Un objectif de l'invention est donc de proposer un procédé de fabrication d'un assemblage métallique de faible coût, reproductible, impliquant de faibles dépenses énergétiques et permettant d'obtenir un assemblage métallique qui soit léger tout en ayant une grande rigidité et le cas échéant une bonne résistance à la corrosion.
Pour cela, l'invention propose un procédé de fabrication d'un assemblage métallique comprenant une première feuille à base d'aluminium et au moins une deuxième feuille métallique, comprenant les étapes consistant à :
- traiter thermiquement la feuille d'aluminium en la portant à une température comprise entre 80% et 100% de la température de fusion du matériau la constituant pour créer et stabiliser une couche d'alumine alpha par transformation allotropique de la couche d'oxyde présente en surface de ladite feuille d'aluminium, puis en la laissant refroidir ;
- prévoir une feuille métallique ayant une ductilité inférieure ou égale à la ductilité de la feuille d'aluminium après refroidissement, ladite feuille présentant des irrégularités de surface d'une profondeur supérieure ou égale à l'épaisseur de la couche d'alumine alpha ; et
- colaminer dans un laminoir la feuille d'aluminium et la feuille métallique (20) afin d'obtenir l'assemblage métallique,
dans lequel le laminoir comprend au moins un cylindre dont la surface externe de laminage est pourvue de reliefs.
Certains aspects préférés mais non limitatifs du procédé de fabrication selon l'invention sont les suivants :
- le colaminage est réalisé à froid,
- le colaminage est réalisé en une seule passe,
- la durée du traitement thermique de la feuille d'aluminium est comprise entre une vingtaine de minutes et environ deux heures,
- les reliefs sont des sillons ou des croix,
- les sillons sont rectilignes, dentés, crénelés, et/ou sinueux,
- les reliefs s'étendent dans une direction générale parallèle et/ou transverse à la direction de laminage des feuilles dans le laminoir,
- la surface externe de laminage de deux cylindres complémentaires du laminoir présente des reliefs identiques en opposition de phase lors du colaminage,
- seule la surface de l'un des cylindres est pourvue de reliefs, le cylindre en regard étant lisse,
- la feuille métallique est constituée par l'un des éléments du groupe suivant : une grille métallique, un déployé métallique, une mousse métallique, une structure métallique en nids d'abeilles, des câbles métalliques, ou une feuille métallique rugueuse,
- la feuille métallique est réalisée dans l'un des matériaux du groupe suivant : acier, fer, nickel, cobalt, cuivre, métal de structure cristallographique cubique à faces centrées, ou leurs alliages,
- il comprend en outre les étapes suivantes préalablement à l'étape de colaminage des feuilles: - chauffer la feuille métallique à une température comprise entre environ 70% et 98% de la température de fusion du métal la constituant pendant une durée déterminée en fonction de l'épaisseur de la feuille ; et
- laisser refroidir la feuille jusqu'à température ambiante,
- il comprend en outre une étape au cours de laquelle la feuille métallique est décapée entre les étapes de refroidissement et de colaminage,
- la feuille métallique est une feuille d'aluminium supplémentaire, ledit procédé comprenant en outre, préalablement à l'étape de colaminage des feuilles, les étapes suivantes :
- porter la feuille d'aluminium supplémentaire à une température comprise entre 80% et 100% de la température de fusion du matériau la constituant pendant une durée suffisante pour créer et stabiliser une couche d'alumine alpha à la surface de ladite feuille d'aluminium ; et
- laisser refroidir la feuille d'aluminium supplémentaire,
- il comprend en outre une étape au cours de laquelle la feuille métallique reçoit un traitement de surface,
- il comprend en outre une étape d'assemblage des feuilles d'aluminium et métallique(s) préalablement à leur colaminage,
- l'étape d'assemblage des feuilles est réalisé par rivetage, soudure par point, prélaminage d'une tête des feuilles, vis auto-perforante, soudage par faisceau d'électron, collage et/ou bridage,
- on colamine en outre une feuille métallique supplémentaire avec les feuilles d'aluminium et métallique,
- les deux feuilles métalliques et la feuille d'aluminium sont colaminées simultanément en une seule étape,
- la feuille d'aluminium et la feuille métallique sont d'abord colaminées dans un laminoir à cylindres lisses afin d'obtenir un assemblage plan, ledit assemblage plan étant ensuite colaminé avec la feuille métallique supplémentaire dans le laminoir à cylindre(s) à reliefs afin d'obtenir l'assemblage métallique, - il comprend en outre une étape d'application d'une couche de poudre sur la feuille d'aluminium préalablement à l'étape de colaminage,
- la feuille d'aluminium et la poudre sont colaminées dans un laminoir à cylindres lisses afin d'obtenir un assemblage plan, ledit assemblage plan étant ensuite colaminé avec la feuille métallique dans le laminoir comprenant au moins un cylindre dont la surface externe de laminage est pourvue de reliefs afin d'obtenir l'assemblage métallique,
- la poudre est appliquée entre la feuille d'aluminium et la feuille métallique préalablement à l'étape de colaminage, l'assemblage comprenant la feuille d'aluminium, la poudre et la feuille métallique étant ensuite colaminé dans le laminoir, et
- il comprenant en outre une étape supplémentaire de déshydratation de la poudre métallique préalablement à son application sur la feuille d'aluminium.
Selon un deuxième aspect, l'invention propose un procédé de fabrication d'un échangeur thermique, comprenant une étape de mise en forme d'une feuille d'aluminium avec au moins une feuille métallique selon un procédé conforme à l'invention dans un laminoir comprenant un premier cylindre dont la surface externe de laminage présente des sillons s'étendant longitudinalement à la direction de laminage, et un deuxième cylindre dont la surface externe de laminage est lisse ou présente des sillons en opposition de phase avec les sillons du premier cylindre.
Certains aspects préférés mais non limitatifs du procédé de fabrication d'un échangeur thermique sont les suivants :
- la feuille métallique est une feuille de cuivre, de fer ou d'acier, et
- la feuille métallique est une feuille d'aluminium supplémentaire, et le procédé comprend en outre, préalablement à l'étape de colaminage des feuilles, les étapes suivantes :
- porter la feuille d'aluminium supplémentaire à une température comprise entre 80% et 100% de la température de fusion du matériau la constituant pendant une durée suffisante pour créer et stabiliser une couche d'alumine alpha à la surface de ladite feuille d'aluminium ; et
laisser refroidir la feuille d'aluminium supplémentaire. D'autres caractéristiques, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemple, non limitatifs et sur lesquels :
La figure 1 est une vue en coupe transversale d'un premier exemple d'assemblage métallique pouvant être fabriqué selon un procédé conforme à l'invention,
La figure 2 est une vue en coupe longitudinale de l'exemple d'assemblage métallique de la figure 1 ,
La figure 3 est une vue en coupe transversale d'un deuxième exemple d'assemblage métallique pouvant être fabriqué selon un procédé conforme à l'invention,
La figure 4 est une vue en coupe transversale d'un troisième exemple d'assemblage métallique pouvant être fabriqué selon un procédé conforme à l'invention,
La figure 5 est une vue en coupe transversale d'un quatrième exemple d'assemblage métallique pouvant être fabriqué selon un procédé conforme à l'invention, et
La figure 6 est une vue en coupe transversale d'un cinquième exemple d'assemblage métallique pouvant être fabriqué selon un procédé conforme à l'invention.
Nous allons tout d'abord décrire un procédé général de fabrication d'un assemblage métallique conforme à l'invention, comprenant au moins une feuille d'aluminium 10 et une feuille métallique 20 mises en formes et formant un empilement cohérent. Ce procédé comprend une étape de traitement thermique de la feuille d'aluminium suivie d'une étape de colaminage dans un laminoir comprenant des cylindres, la surface externe d'au moins l'un des cylindres n'étant pas lisse mais pourvue de reliefs.
Selon une première étape, on effectue une transformation allotropique de la couche d'oxyde présente en surface de la feuille d'aluminium 10.
Pour cela, on porte la feuille d'aluminium 10 à une température comprise entre environ 80% et 100% de la température de fusion de son matériau constitutif pendant une durée suffisamment importante pour stabiliser et homogénéiser ladite couche. Cette étape est réalisée de préférence en ambiance sèche.
De préférence, on chauffe la feuille d'aluminium 10 à une température comprise entre 93% et 98% de la température de fusion, plus préférentiellement encore à une température de l'ordre de 95% (+/- 1 %).
Par feuille on comprendra ici une tôle mince (ayant quelques millimètres d'épaisseur), une feuille (ayant quelques microns d'épaisseur), etc. ou toute forme sensiblement plane pouvant être laminée.
La feuille d'aluminium 10 peut, par ailleurs, être réalisée dans de l'aluminium pur, ou dans un alliage d'aluminium.
Néanmoins, l'invention est plus particulièrement adaptée aux tôles d'aluminium ayant une bonne conduction thermique, et pouvant être portées à une température uniforme dans tout son volume. Typiquement, il peut s'agir d'une feuille d'aluminium réalisée dans la série 1000 de la nomenclature internationale (A5 à A9, ...).
Par exemple, la feuille d'aluminium peut être un papier aluminium alimentaire ayant une épaisseur comprise entre 5 et 20 microns chauffée entre 500°C et 660°C.
Pour ces deux exemples de feuille d'aluminium 10, la durée du traitement thermique est alors comprise entre une vingtaine de minutes et environ deux heures, de préférence une trentaine de minutes. Dans le cas de feuilles d'aluminium 10 d'épaisseur plus importante, typiquement 12 mm, la durée du traitement thermique est alors de préférence de l'ordre de 45 minutes.
Comme nous l'avons dit plus haut, l'épaisseur de la feuille d'aluminium 10 est limitée par les conditions de laminage à quelques millimètres. Mais dans tous les cas, la durée du traitement thermique ne dépasse de préférence pas deux heures.
Les durées indiquées ci-dessus sont bien entendu des ordres de grandeur, et peuvent être prolongées selon les conditions de réalisation du traitement thermique, plus particulièrement selon le type et la qualité initiale de l'aluminium utilisé, les caractéristiques du four et l'humidité résiduelle ambiante. En effet, la couche d'alumine alpha peut se dégrader si la durée de traitement est trop prolongée dans de mauvaises conditions.
Le traitement thermique est réalisé de préférence en ambiance sèche, par exemple en préchauffant le four de manière à éliminer l'humidité résiduelle et ainsi éviter l'hydroxydation de la couche d'alumine alpha. Il est alors possible d'augmenter la durée du traitement thermique jusqu'à par exemple quatre heures sans endommager la feuille d'aluminium 10.
La mise en œuvre d'un four utilisant l'atmosphère extérieure au four pour la ventilation, risque également de donner une couche d'alumine alpha hydroxydée, et donc de moins bonne qualité. De préférence, on utilise donc un four à atmosphère contrôlée si l'on souhaite augmenter la durée du traitement thermique.
La qualité de la couche d'alumine alpha peut également dépendre du type d'aluminium de la feuille 10 et de la qualité du four : plus l'aluminium est pur (comme l'aluminium A9) et moins le four est pollué, plus le traitement thermique de la feuille d'aluminium peut être prolongé sans risquer d'endommager la couche d'alumine alpha.
Par exemple, le traitement thermique d'une feuille d'aluminium constitué d'un alliage A5 dans un four "pollué" pendant quatre heures donne une couche d'alumine alpha qui, bien qu'elle soit stabilisée, est de mauvaise qualité et présente des traces vertes et noires dues à l'interaction des différents matériaux constituant l'alliage A5 avec les métaux du four.
Dans une deuxième étape, on refroidit la feuille d'aluminium 10.
Il faut en effet distinguer le temps nécessaire pour refroidir la feuille d'aluminium 10 et le temps de séjour à la température de stabilisation de la couche d'alumine qui doit être considéré comme essentiel. Le temps de refroidissement et la température finale après refroidissement ne sont en effet pas des caractéristiques déterminantes per se, tant que l'on réduit suffisamment la température de la feuille d'aluminium 10 pour permettre son « laminage à froid » (voir plus loin dans la description).
Il est en effet possible de laisser refroidir la feuille 10 lentement à l'air ou rapidement (par exemple par une trempe), sans que cela n'ait d'influence sur le résultat obtenu.
La température finale de refroidissement peut, par exemple, être la température de la pièce dans laquelle est mis en œuvre le procédé, typiquement une vingtaine de degrés. Il est cependant possible de refroidir davantage la feuille d'aluminium 10 (par exemple jusqu'à zéro degrés Celsius), ou de moins la refroidir (par exemple jusqu'à une soixantaine de degrés Celsius).
On obtient alors une feuille d'aluminium 10 ayant une résistance à la rupture moins importante que la feuille d'aluminium avant traitement thermique (entre 15 et 20 MPa, au lieu d'une soixantaine avant traitement thermique). Le traitement thermique permet en effet d'augmenter la taille du grain de l'aluminium, facilitant ainsi son travail ultérieur.
Dans une dernière étape, on colamine la feuille d'aluminium 10 avec la feuille métallique 20 choisie dans le laminoir.
Il n'est pas nécessaire de mettre en œuvre le colaminage immédiatement après le traitement thermique. Par exemple, il est possible de laisser quelques heures voire quelques semaines s'écouler entre le traitement thermique et le colaminage des feuilles. La feuille métallique 20 doit présenter quant à elle certaines propriétés physiques pour garantir son assemblage cohérent avec la feuille d'aluminium 10 selon le procédé de l'invention.
En particulier, au moins l'une des faces de la feuille métallique 20 doit présenter des irrégularités de surface 21 d'une profondeur supérieure ou égale à l'épaisseur de la couche d'alumine alpha créée lors du traitement thermique de la feuille d'aluminium 10, i.e. typiquement de l'ordre de 5 microns.
Il est important de noter que l'épaisseur de la couche d'alumine reste globalement constante égale à 5 microns (à 1 -2 microns près), quelle que soit l'épaisseur de la feuille d'aluminium 10, et ce même si l'on poursuit le traitement thermique au-delà de la durée nécessaire pour la stabiliser. Néanmoins, au-delà de quelques heures (généralement quatre heures), le traitement thermique devient un traitement "d'homogénéisation" : la couche d'alumine alpha se dégrade et les grains la constituant ne sont plus dans un même plan, de sorte son épaisseur finale est modifiée et qu'elle présente des effets noirs et verts.
Par exemple, la feuille métallique 20 peut être un déployé (ou, de manière plus générale, une grille), une structure en nids d'abeilles, les irrégularités de surface 21 étant alors formées par les trous traversants ou obstrués présents dans la feuille 20. Par déployé on entend ici un treillis réalisé d'une seule pièce par découpage et étirage de métal laminé, tandis que par grille on entend par exemple une feuille réalisée par tissage de fils.
Il peut également s'agir d'une mousse métallique dont les pores 21 sont de préférence ouverts et ont un diamètre supérieur ou égal à 5 microns, ou encore d'une feuille métallique dont les rugosités de surface sont d'une taille supérieure ou égale à 5 microns.
D'autres types de feuilles métalliques sont bien entendu utilisables, tant que les irrégularités de surface 21 sont de taille suffisamment importante. Par exemple, il est possible de traiter une feuille métallique 20 à surface lisse de manière à la rendre suffisamment irrégulière pour pouvoir être utilisée dans l'invention, par brossage à la paille de fer, par sablage, par traitement chimique, etc.
La feuille métallique peut également recevoir un traitement de surface par voie humide ou sèche notamment pour augmenter la tenue à la corrosion de la feuille métallique 20 ainsi que certaines de ses caractéristiques physiques, telles que sa conductivité électrique, sa perméabilité magnétique, et modifier son coefficient de frottement.
Par exemple, il est possible d'effectuer un dépôt de nickel sur une feuille métallique 20 en acier afin d'en augmenter la résistance à la corrosion.
La feuille métallique 20 doit en outre être moins ductile que la feuille d'aluminium 10 après traitement thermique, de manière à permettre l'interpénétration de l'aluminium dans les irrégularités de surface 21 de la feuille métallique 20 lors de l'étape de colaminage. Elle peut par exemple être réalisée dans de l'acier, du fer, du nickel, du cobalt, du cuivre, un métal de structure cristallographique cubique à faces centrées (or, cuivre, argent, etc.), ou leurs alliages.
On notera qu'une feuille d'aluminium identique ou similaire à la première feuille d'aluminium et ayant subi le traitement thermique répond bien aux exigences requises pour être utilisée en tant que feuille métallique dans le procédé de fabrication. En effet, le traitement thermique permet d'une part de créer et stabiliser en surface une couche d'alumine alpha ayant une rugosité d'environ 5 microns d'épaisseur (et donc une surface suffisamment irrégulière) et d'autre part de rendre la feuille sensiblement aussi ductile que la première feuille d'aluminium.
Le colaminage de la feuille d'aluminium 10 avec la feuille métallique
20 peut alors être effectué à chaud ou à froid, en une ou plusieurs passes. Cependant, les inventeurs ont remarqué à cet égard que le colaminage à froid (i.e. à température ambiante, sans nouvelle chauffe des feuilles, par exemple entre environ 0°C et 60°C) en une seule passe permettait d'obtenir de bien meilleurs résultats. En effet, en effectuant plusieurs passes, l'assemblage métallique 1 constitué par la feuille d'aluminium 10 et la feuille métallique 20 risque de se délaminer, tandis qu'en n'effectuant qu'une seule passe, la feuille d'aluminium 10 interpénètre la feuille métallique 20 de manière à former un assemblage métallique 1 cohérent.
Le colaminage peut notamment être effectué à une vitesse comprise entre 0,1 km/h et 3 km/h, avec, par exemple, un taux de réduction de laminage compris entre 2 et 10 environ. Préalablement au colaminage, il est possible d'assembler la feuille d'aluminium 10 et la feuille métallique 20 afin d'éviter que l'assemblage métallique 1 ne se déforme ou qu'il ne dérive lors du colaminage, par exemple par rivetage des feuilles 10 et 20, soudure par points, prélaminage de la tête de l'assemblage 1 , vis auto-perforantes, soudage par faisceau d'électron, ou tout système de collage ou de bridage conventionnel.
Contrairement aux préjugés existant dans le domaine de la métallurgie, la soudure par points des feuilles devient en effet possible grâce au traitement thermique subi par la feuille d'aluminium 10, et plus particulièrement grâce à la transformation allotropique et à la stabilisation de la couche d'oxyde.
Par ailleurs, comme vu précédemment, la surface externe d'au moins un cylindre du laminoir comprend des reliefs.
Par exemple, les reliefs ont la forme de sillons, s'étendant parallèlement ou transversalement à la direction de laminage, des croix, etc.
Les sillons peuvent être rectilignes (cylindres crénelés) ou au contraire non rectilignes (notamment des sillons dentés, crénelés, sinueux ou une combinaison de ces motifs), uniformes (parois en U de largeur constante) ou non uniformes (parois en U de largeur variable le long de la surface du cylindre), etc.
Lorsque deux cylindres adjacents du laminoir sont pourvus de reliefs, ceux-ci peuvent être identiques et en phase, de sorte que les parties saillantes des reliefs soient en regard lors du laminage de l'assemblage. Typiquement, pour des reliefs en forme de sillons rectilignes s'étendant parallèlement à la direction de laminage, on obtient alors un assemblage métallique dans lequel la feuille d'aluminium et la feuille métallique sont assemblées et forment entre elles des sillons s'étendant dans la direction de laminage (voir notamment les figures 1 et 2 annexées).
En variante, les reliefs peuvent également être identiques et en opposition de phase. Pour des reliefs en forme de sillons rectilignes s'étendant parallèlement à la direction de laminage, on obtient alors un assemblage métallique comprenant des tubes 30 soudés ensembles, comme illustré sur la figure 6 annexée. Un tel d'assemblage peut alors notamment être mis en œuvre dans la fabrication d'un échangeur thermique.
De manière générale, ces assemblages métalliques présentent une grande rigidité dans la direction du laminage, une faible densité et une résistance accrue à la corrosion (de par l'utilisation d'aluminium).
Plus généralement, le choix des reliefs est guidé par l'application de l'assemblage métallique. En effet, la mise en œuvre de reliefs et des matériaux pour la feuille métallique 20 s'étendant dans une direction générale donnée rigidifie l'assemblage métallique dans cette direction. Par exemple, lorsque les cylindres sont crénelés, les reliefs étant alors des sillons rectilignes parallèles à la direction de laminage, le colaminage confère une grande rigidité à l'assemblage métallique final dans cette direction. Par ailleurs, la mise en œuvre de reliefs ayant deux directions d'extension, tels que des sillons dentés, sinusoïdaux ou crénelés, ou encore des croix, permet d'obtenir des assemblages métalliques rigidifiés à la fois dans les directions parallèle et transverse à la direction de laminage.
L'épaisseur finale de l'assemblage métallique dépend des épaisseurs initiales des feuilles d'aluminium et métallique, des reliefs des cylindres ainsi que des contraintes appliquées dans le laminoir.
La couche d'alumine alpha joue en outre un rôle de lubrifiant lors du colaminage de l'assemblage métallique 1 , et permet d'augmenter sensiblement la résistance à la corrosion de l'aluminium. On obtient alors un assemblage métallique 1 présentant des propriétés remarquables telles qu'une résistance accrue à la corrosion et aux efforts de traction, un rapport résistance mécanique sur poids élevé, une gamme de température d'utilisation plus étendue que celle de l'aluminium pur (entre environ -200°C et +200°C pour un assemblage aluminium-fer), ou encore une conductivité semblable à la conductivité de l'aluminium avant traitement thermique. L'assemblage métallique 1 peut en outre recevoir des traitements de surface, être embouti ou mis en forme, soudé, etc. comme toute autre tôle métallique conventionnelle.
Enfin, l'assemblage métallique peut comprendre plusieurs feuilles métalliques différentes ou identiques. Ces feuilles sont alors de préférence colaminées directement ensemble, en une seule passe et à froid.
En variante, l'assemblage métallique peut être renforcé par l'ajout d'une couche de poudre métallique que l'on étale entre deux feuilles avant le colaminage, par exemple entre deux feuilles d'aluminium. On remarquera qu'une telle couche métallique 20 répond aux conditions posées quant aux irrégularités de surface 21 si sa granulométrie est supérieure ou égale à l'épaisseur de la couche d'alumine de la feuille d'aluminium 10.
La poudre métallique peut être une poudre d'acier, de fer, de nickel, de cobalt, de cuivre, d'un métal de structure cristallographique cubique à faces centrées (or, cuivre, argent, etc.), ou dans leurs alliages.
Nous allons, à présent, décrire des procédés de fabrication conformes à l'invention de manière plus détaillée, en prenant des exemples de feuilles métalliques et de reliefs pouvant être utilisés. Les exemples qui vont suivre ne sont cependant aucunement limitatifs et ne sont donnés qu'à titre d'illustration.
On notera par ailleurs que, quel que soit l'exemple de procédé décrit dans ce qui suit, les étapes de chauffe, de refroidissement et de colaminage restent les mêmes que dans le cadre du procédé de fabrication général précédemment décrit. Pour un assemblage métallique 1 comprenant une feuille d'aluminium 10 et une feuille d'acier 20, le procédé peut en outre comprendre une étape supplémentaire de chauffe de la feuille d'acier à une température comprise entre 70% et 98% de sa température de fusion, par exemple 1 100 °C, pendant une durée dépendant de l'épaisseur de la feuille, typiquement pendant 30 minutes pour une feuille 20 d'un millimètre d'épaisseur.
Le temps de chauffe dépend de la masse volumique, de la capacité thermique, de la conductivité thermique et de l 'épaisseur de la feuille d'acier 20.
Dans cet exemple de réalisation, la feuille d'aluminium 10 est réalisée dans un alliage série 1000 et la feuille d'acier 20 est une feuille d'acier faiblement allié de XC10.
L'acier est alors refroidi jusqu'à la température de refroidissement de la feuille d'aluminium. A nouveau, comme pour la feuille d'aluminium 10, la durée du refroidissement et la température finale de l'acier refroidi ne sont pas des paramètres déterminants.
On décape alors mécaniquement ou chimiquement la feuille d'acier 20 de manière à ôter la couche d'oxydes présente en surface qui pourrait empêcher la formation d'un assemblage métallique 1 cohérent.
Selon une forme de réalisation, le décapage est réalisé par sablage. Etant donné que la surface de la feuille métallique 20 ne doit pas être régulière, la granulométrie du sablage n'a pas d'importance. Il faut en revanche contrôler la pression du sablage afin d'éviter les intrusions de grains d'abrasifs dans le métal.
En variante, le décapage est réalisé par attaque acide (par exemple avec de l'acide chlorhydrique), par brossage à la paille de fer, ou toute autre technique connue.
La feuille d'acier 20 ainsi obtenue est alors colaminée avec la feuille d'aluminium 10 traitée thermiquement, de préférence à froid et en une seule passe, dans un laminoir dont au moins l'un des cylindres présente une surface externe pourvue de reliefs.
L'assemblage métallique 1 ainsi obtenu présente alors des propriétés inattendues.
D'une part, l'assemblage métallique 1 cumule certaines des propriétés propres à l'aluminium et à l'acier pris séparément. Ainsi, il a été constaté que l'assemblage métallique 1 était ferromagnétique, et était capable d'attirer des aimants et de les maintenir en contact avec sa surface extérieure, tout en ayant une bonne conductivité électrique et une faible densité.
Par exemple, pour un assemblage métallique 1 comprenant un papier aluminium alimentaire de titre A5 et un déployé en nickel d'une épaisseur d'environ 1 mm, la perméabilité magnétique relative de l'assemblage est de l'ordre de 300, sa conductivité est proche de celle de l'aluminium (de l'ordre de 4,6 10+8 Ohm"1. m"1), sa résistance mécanique à la traction est de l'ordre de 10 MPa (ce qui est important pour une feuille 10 de si faible épaisseur, environ 100 microns), tandis que sa densité est de l'ordre de 4,7.
De la sorte, il devient possible d'utiliser l'assemblage métallique 1 aluminium-nickel obtenu selon le procédé de l'invention afin de réaliser des blindages électromagnétiques souples, légers et mécaniquement résistants suivant les épaisseurs choisies pour les feuilles d'aluminium 10 et métallique 20.
De plus, l'assemblage 1 peut subir un laminage successif (successfully rolling bonding) permettant de multiplier mécaniquement le nombre de couches à partir d'un seul assemblage initial. Ce multicouche possède alors des caractéristiques encore supérieures à l'assemblage initial notamment en termes de résistance mécanique (traction / déchirement) et magnétique par une meilleure répartition dans l'épaisseur.
De préférence, dans le cas d'un laminage successif, les premiers colaminages sont réalisés dans un laminoir à cylindres lisses, et seul le dernier colaminage est réalisé avec un ou plusieurs cylindres dont la surface présente des reliefs. Par ailleurs, dans l'exemple de réalisation où la feuille métallique 20 est en acier, il est possible de n'utiliser qu'un laminoir à deux cylindres au lieu d'un laminoir conventionnel à quatre cylindres (ou plus), car l'assemblage 1 reste suffisamment aligné au cours du laminage.
D'autre part, des tests effectués sur un tel assemblage métallique 1 ont permis de constater qu'il résistait à la corrosion et au délaminage dans une ambiance en phase vapeur d'eau saturante à 210°C pendant 12 heures. De même, les assemblages obtenus ont résisté à des températures de 77K (environ -196°C) sans se délaminer.
Des essais ont également montré que les feuilles d'aluminium obtenues suite au traitement thermique mis en œuvre dans la première étape du procédé selon l'invention présentaient une plus large gamme de températures d'utilisation (entre environ -200°C et +200°C, au lieu de -200°C et +150°C pour les tôles seules),
On notera cependant que le traitement thermique de la feuille métallique 20 n'est pas nécessaire pour tous les matériaux. Il a pour objectif d'adoucir mécaniquement le matériau la constituant.
Par exemple, dans le cadre de la fabrication d'un assemblage métallique 1 formé d'une feuille d'aluminium 10 interpénétrant une feuille 20 de nickel, de cuivre, d'or, ou de tout autre matériau cubique à faces centrées, l'étape de chauffe de la feuille métallique 20 est optionnelle, ainsi que son décapage en surface.
Par ailleurs, selon une forme de réalisation préférée, la feuille d'aluminium 10 est directement traitée thermiquement conformément au procédé conforme à l'invention, sans avoir subi au préalable une étape de pré-laminage. En effet, un tel pré-laminage pourrait conduire à des recristallisations primaires ou secondaires de l'aluminium et rendre plus difficile sont colaminage ultérieur. Selon une deuxième forme de réalisation, la feuille métallique 20 peut être une feuille de cuivre 20, plus particulièrement une grille ou un déployé. Il suffit alors, après traitement thermique de la feuille d'aluminium, de colaminer en une seule passe et à froid dans le laminoir à cylindre(s) à relief(s) la feuille d'aluminium et la feuille de cuivre, en choisissant les reliefs appropriés en fonction de l'application industrielle de l'assemblage, pour obtenir l'assemblage métallique.
Cet assemblage métallique présente alors de nombreuses propriétés d'intérêt, typiquement son excellente conductivité (améliorée par rapport à la feuille d'aluminium initiale de par la présence de la feuille de cuivre), une faible densité, une excellente résistance à la corrosion, une grande rigidité dans la direction principale des reliefs, etc. ce qui la rend particulièrement adaptée à la fabrication d'électrodes pour pile à combustible par exemple, ou de tout autre assemblage métallique nécessitant une excellente conductivité et résistance à la corrosion tout en étant léger et rigide. Il est par ailleurs possible de réaliser de telles électrodes dans un laminoir dont l'un des cylindres est lisse, seule la surface de laminage du cylindre correspondant étant pourvue de reliefs.
L'assemblage peut en outre comporter une deuxième feuille de cuivre, disposée sur la face libre de la feuille d'aluminium et colaminée en même temps que les autres feuilles, afin d'améliorer encore la conductivité de l'assemblage final.
Selon une troisième forme de réalisation, et comme nous l'avons indiqué précédemment, le procédé selon l'invention permet également de réaliser un assemblage formé de deux feuilles d'aluminium qui s'interpénétrent. La feuille métallique 20 est donc ici la feuille d'aluminium supplémentaire.
Grâce à cette forme de réalisation, il devient donc possible de souder ensemble deux feuilles d'aluminium, ce qui n'était pas envisageable selon les techniques de soudage conventionnelles, notamment à cause de la barrière formée par la couche d'alumine. Pour cela, le procédé de fabrication d'un assemblage métallique 1 de deux feuilles d'aluminium comprend simplement une étape supplémentaire de chauffe et de refroidissement de la feuille métallique (ici la feuille d'aluminium supplémentaire) par rapport au procédé général conforme à l'invention.
Plus précisément, les deux feuilles d'aluminium sont traitées thermiquement, simultanément ou successivement, puis refroidies, conformément aux deux premières étapes (chauffe puis refroidissement) du procédé général qui ont été précédemment détaillées.
On colamine ensuite les deux feuilles d'aluminium, de préférence à froid et en une seule passe, de manière à obtenir un assemblage métallique 1 comprenant deux feuilles d'aluminium qui s'interpénétrent, et présentant des reliefs complémentaire des reliefs du (des) cylindre(s).
Cet assemblage métallique 1 présente notamment des caractéristiques mécaniques accrues et les mêmes propriétés que chaque feuille d'aluminium prise séparément suite à son traitement thermique respectif. En particulier, il présente une résistance à la corrosion accrue (notamment dans l'acide nitrique à 68%), peut être soudé par points, utilisé dans une plus large gamme de températures, etc.
Selon une quatrième forme de réalisation, il est possible de souder une feuille d'aluminium additionnelle 10' à un assemblage métallique obtenu selon le procédé précédemment décrit.
Pour cela, on chauffe la feuille d'aluminium additionnelle 10' puis on la refroidit, conformément aux deux premières étapes du procédé, puis on colamine directement la feuille d'aluminium 10, la(les) feuille(s) métallique(s) 20 et la feuille d'aluminium additionnelle 10', de préférence à froid et en une seule passe, de manière à formée l'assemblage métallique final à reliefs comprenant au moins trois couches.
En variante, on peut aussi réitérer le procédé en colaminant la feuille d'aluminium additionnelle traitée thermiquement selon les deux premières étapes du procédé avec l'assemblage métallique obtenu selon le procédé préalablement décrit. Dans ce cas, on préférera alors colaminer l'assemblage métallique 1 de base (comprenant la feuille d'aluminium 10 et la feuille métallique 20) dans un laminoir à cylindres lisses afin d'obtenir un assemblage cohérent plan, et de ne colaminer dans le laminoir à cylindre(s) à reliefs que l'assemblage métallique final 1 .
On peut ainsi obtenir par exemple un assemblage comprenant une feuille de cuivre 20 ou un déployé en acier 20 entre deux feuilles d'aluminium 10,10', comme illustré sur la figure 3, obtenu par colaminage simultané des feuilles 10, 10' et 20 avec le déployé 20 en une seule étape ou en réitérant les étapes du procédé.
Dans le cas où l'assemblage métallique 1 est réalisé avec une feuille 20 d'acier, de fer ou tout autre matériau énoncé précédemment, on doit, préalablement au colaminage, porter l'assemblage métallique 1 à une température comprise entre 80% et 100% de la température de fusion de la feuille d'aluminium conformément à la première étape du procédé précédemment décrit, pendant plusieurs minutes, par exemple une trentaine de minutes.
En réitérant ces étapes de chauffe, refroidissement et colaminage, on peut ainsi obtenir des sandwiches comprenant plus de deux assemblages métalliques 1 . Le nombre d'assemblage métalliques 1 empilés et le choix de la (ou des) feuille(s) métallique(s) 20, 20' dépend bien entendu des propriétés souhaitées pour le sandwich 2 et améliorent la résistance à la traction (par exemple, la résistance à la rupture est environ plus de trois fois plus élevée pour un assemblage aluminium-fer par rapport à de l'aluminium seul), typiquement de 50 à 150 MPa.
En variante, il est également possible de colaminer simultanément, en une seule passe et à froid dans le laminoir à cylindre(s) à reliefs, l'ensemble des feuilles constituant l'assemblage métallique final 1 . Pour cela, on applique le traitement thermique à l'ensemble des feuilles d'aluminium conformément aux premières étapes du procédé général précédemment décrit, ainsi que le cas échéant les traitements thermique, de surface, etc. aux feuilles métalliques, puis on colamine à froid et en une seule passe dans le laminoir à cylindre(s) à reliefs l'empilement constituant l'assemblage métallique que l'on souhaite réaliser.
Selon une cinquième forme de réalisation, l'assemblage métallique 1 comporte en outre une couche de poudre métallique. De préférence, la couche métallique est enfermée entre au moins deux feuilles, typiquement entre deux feuilles d'aluminium, entre une feuille d'aluminium et une feuille métallique (comme illustré sur la figure 5) ou encore deux feuilles d'aluminium et une feuille métallique.
En variante, la couche de poudre est colaminée avec une feuille d'aluminium dans un laminoir à cylindres lisses puis seulement dans le laminoir à cylindre(s) à reliefs, de manière à obtenir un assemblage métallique cohérent ne comportant que la feuille d'aluminium et la poudre métallique, ou le cas échéant comprenant en outre une feuille métallique 20, et présentant les reliefs complémentaires des cylindres du laminoir.
Le procédé peut alors comporter en outre une étape supplémentaire de traitement thermique de la poudre métallique 22 préalablement à l'étape de colaminage.
En effet, des essais ont démontré que la déshydratation des poudres 22 permettait d'améliorer la cohésion de l'assemblage métallique 1 obtenu. En effet, la surface spécifique des éléments constitutifs de la poudre 22 est supérieure à celle des feuilles d'aluminium et métalliques. Ainsi, le niveau d'hydratation peut devenir important quant au résultat final obtenu, en particulier lorsque l'assemblage 1 est utilisé à des températures supérieures à 100°C, la vapeur d'eau créant des points de délamination par surpression locale interne.
En effet, généralement, les poudres métalliques peuvent présenter de l'ordre de 15% en poids d'eau, ce qui peut devenir gênant notamment lors de traitements de vieillissement, la vapeur saturante provoquant le délaminage des feuilles.
Pour de meilleurs résultats, il est donc préférable de réaliser le traitement thermique de la couche 20 de poudre métallique de sorte que le degré d'hydratation de la poudre 22 soit suffisamment faible (typiquement inférieur à 1 % d'eau superficielle et d'eau liée) pour réduire la vapeur saturante aux interfaces lors du colaminage avec la feuille d'aluminium 10.
Le temps de chauffe, de préférence sous vide, dépend à nouveau de la masse volumique, de la capacité thermique, de la conductivité thermique et de l 'épaisseur de la couche métallique 20.
Par exemple, dans le cas d'une couche 20 de poudre de fer, le traitement thermique dure entre environ trente minutes et deux heures à 300°C, de manière à sécher totalement la poudre 22. Néanmoins, un séchage partiel à 120°C pendant une soixantaine de minutes sous vide peut suffire pour certains types de poudres 22 peu hydrophiles.
Par exemple, une poudre d'alumine déshydratée ne comprend généralement que 4% d'eau superficielle et 10% d'eau liée. De la sorte, un simple prétraitement thermique permet de réduire suffisamment son degré d'hydratation pour obtenir de bons résultats lors du colaminage avec la feuille d'aluminium 10 et limiter les risques de délaminage.
La couche 20 de poudre métallique ainsi obtenue est alors colaminée avec la feuille d'aluminium 10 traitée thermiquement, de préférence à froid et en une seule passe dans un laminoir à cylindres lisses, ou entre deux feuilles dans le laminoir à cylindre(s) à reliefs.
Cette étape de colaminage de la feuille d'aluminium 10 avec la poudre métallique et le cas échéant les feuilles métalliques additionnelles est de préférence réalisée consécutivement à la déshydratation de la poudre 22, par exemple dans les minutes qui suivent, afin d'éviter la reprise d'humidité de la poudre 22. Le cas échéant, un nouveau traitement thermique est possible afin de déshydrater à nouveau la poudre 22. A nouveau, le colaminage est effectué de préférence à froid et en une seule passe.
Par ailleurs, la quantité de poudre peut être variable en fonction de l'application désirée. Il est en effet possible d'appliquer une très fine couche de poudre, une couche discontinue de poudre, une couche complète, voire plusieurs épaisseurs de poudres. Le résultat obtenu dépend alors du rapport entre la granulométrie de la poudre 22 et la quantité de poudre 22 appliquée. Une couche très fine, présentant une épaisseur minimale de l'ordre de cinq microns, comprendra par exemple de la poudre 22 atomisée présentant un effet de bille qui rend le colaminage difficile. Au contraire, une couche épaisse, pouvant avoir jusqu'à deux millimètres d'épaisseur, comprendra par exemple de la poudre 22 angulaire qui est facile à colaminer.
L'assemblage métallique 1 ainsi obtenu présente alors des propriétés inattendues, notamment de bonnes caractéristiques mécaniques par rapport à une feuille d'aluminium seule, et une grande stabilité dans le temps.
En effet, l'assemblage métallique 1 cumule certaines des propriétés propres à l'aluminium et au métal constitutif de la poudre pris séparément. Ainsi, dans le cas d'une poudre de fer, il a été constaté que l'assemblage métallique 1 était ferromagnétique, et était capable d'attirer des aimants et de les maintenir en contact avec sa surface extérieure, tout en ayant une bonne conductivité électrique et une faible densité.
Le procédé selon l'invention permet donc de fabriquer des sandwiches comprenant au moins un assemblage métallique et une feuille additionnelle, métallique ou en aluminium.
Il peut s'agir d'un empilement comprenant, par exemple : une feuille métallique (notamment un déployé) et de la poudre métallique (notamment de la poudre de nickel) emprisonnées entre deux feuilles d'aluminium, une feuille d'aluminium emprisonnée entre deux feuilles métalliques (notamment deux grilles de cuivre), etc. Par exemple, pour un sandwich métallique 2 comprenant deux tôles d'aluminium de titre A5 de 0,8 millimètres d'épaisseur (10) et (10') renfermant un déployé d'acier XC10 d'épaisseur 0,8mm (20'), l'épaisseur du sillon du sandwich obtenu a une épaisseur d'environ 0,8 millimètres, une perméabilité magnétique relative d'environ 100, une densité de 3,2 et une conductivité électrique d'environ 4,4 10+8 Ohm"1. m"1. Par ailleurs, lorsque les motifs sont des sillons longitudinaux (ayant une largeur dans le plan de l'assemblage (dans le sens transversal à la direction de laminage, correspondant à la direction principale des sillons) de l'ordre de 2 mm pour une hauteur de l'ordre de 1 .5 mm) :
- la résistance mécanique à la traction longitudinale (c'est-à-dire dans la direction principale des sillons) du sandwich est de l'ordre du triple de celle d'une tôle d'aluminium de même épaisseur et non traitée, qui est généralement comprise entre 25 et 80 MPa suivant son état métallurgique, et - la résistance à la flexion selon un axe transversal aux sillons est d'au moins cinq à dix fois supérieure à celle d'une tôle d'aluminium de même encombrement et non traitée est de l'ordre de 60 MPa suivant son état métallurgique
Avantageusement, un sandwich 2 comprenant deux feuilles d'aluminium 10, 10' renfermant une feuille d'acier 20 présente des propriétés de résistance à la corrosion surprenantes et une importante résistance au délaminage. Ainsi, l'immersion d'un tel sandwich 2 dans un bain d'azote liquide à 77 K (-196°C) a montré que le sandwich 2 restait cohérent malgré les coefficients de dilatation différents de l'aluminium et de l'acier.
Par ailleurs, le sandwich 2 selon l'invention est capable de résister à une attaque d'acide nitrique concentré à 68% pendant plusieurs jours. Seule la feuille métallique 20 est attaquée si les flans du sandwich 2 ne sont pas protégés, c'est-à-dire si la feuille métallique 20 renfermée par les feuilles d'aluminium 10, 10' est en contact avec l'acide.
L'étanchéité de la partie centrale métallique 20 du sandwich est en revanche plus facile à obtenir lorsqu'il comprend de la poudre. Il suffit en effet de ne pas mettre de poudre sur les bords des feuilles d'aluminium 10, 10' lors du colaminage. On évite alors tout délaminage par oxydation de la partie centrale métallique.
Les sandwiches peuvent en outre être réalisés avec plusieurs types de feuilles métalliques différentes et/ou de la poudre métallique, afin de cumuler certaines propriétés d'intérêt. Par exemple, la fabrication d'un assemblage métallique 1 comprenant une feuille d'acier avec un assemblage métallique 1 comprenant une feuille de nickel permet d'obtenir un sandwich comprenant à la fois de l'aluminium, de l'acier et du nickel, afin d'adapter la conductivité, la perméabilité magnétique, et la densité, par exemple à l'application désirée.
Avantageusement, le procédé selon l'invention permet d'obtenir des assemblages métalliques 1 et sandwiches de feuilles métalliques récupérables facilement par fusion. En effet, il est possible de séparer et récupérer par gravité le composant de l'assemblage métallique 1 ayant la température de fusion la plus basse. Dans le cas d'un sandwich mixte, comprenant plus d'un matériau différent pour les feuilles métalliques, il suffit alors de réitérer l'opération jusqu'à ce qu'il ne reste plus qu'un type de matériau.
Par ailleurs, le procédé a un faible coût énergétique grâce à l'étape de colaminage à froid et la durée réduite du traitement thermique.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un assemblage métallique comprenant une première feuille à base d'aluminium et au moins une deuxième feuille métallique, comprenant les étapes consistant à :
- traiter thermiquement la feuille d'aluminium (10) en la portant à une température comprise entre 80% et 100% de la température de fusion du matériau la constituant pour créer et stabiliser une couche d'alumine alpha par transformation allotropique de la couche d'oxyde présente en surface de ladite feuille d'aluminium (10), puis en la laissant refroidir ;
- prévoir une feuille métallique (20) ayant une ductilité inférieure ou égale à la ductilité de la feuille d'aluminium (10) après refroidissement, ladite feuille (20) présentant des irrégularités de surface (21 ) d'une profondeur supérieure ou égale à l'épaisseur de la couche d'alumine alpha ; et
- colaminer dans un laminoir la feuille d'aluminium (10) et la feuille métallique (20) afin d'obtenir l'assemblage métallique (1 ),
caractérisé en ce que le laminoir comprend au moins un cylindre dont la surface externe de laminage est pourvue de reliefs.
2. Procédé selon la revendication 1 , dans lequel le colaminage est réalisé à froid.
3. Procédé selon l'une des revendications 1 et 2, dans lequel le colaminage est réalisé en une seule passe.
4. Procédé selon l'une des revendications 1 à 3, dans lequel la durée du traitement thermique de la feuille d'aluminium (10) est comprise entre une vingtaine de minutes et environ deux heures.
5. Procédé selon l'une des revendications 1 à 4, dans lequel les reliefs sont des sillons ou des croix.
6. Procédé selon la revendication 5, dans lequel les sillons sont rectilignes, dentés, crénelés, et/ou sinueux.
7. Procédé selon l'une des revendications 1 à 6, dans lequel les reliefs s'étendent dans une direction générale parallèle et/ou transverse à la direction de laminage des feuilles dans le laminoir.
8. Procédé selon l'une des revendications 1 à 7, dans lequel la surface externe de laminage de deux cylindres complémentaires du laminoir présente des reliefs identiques en opposition de phase lors du colaminage.
9. Procédé selon l'une des revendications 1 à 7, dans lequel seule la surface de l'un des cylindres est pourvue de reliefs, le cylindre en regard étant lisse.
10. Procédé selon l'une des revendications 1 à 9, dans lequel la feuille métallique (20) est constituée par l'un des éléments du groupe suivant : une grille métallique, un déployé métallique, une mousse métallique, une structure métallique en nids d'abeilles, des câbles métalliques, ou une feuille métallique rugueuse.
1 1 . Procédé selon l'une des revendications 1 à 10, dans lequel la feuille métallique (20) est réalisée dans l'un des matériaux du groupe suivant : acier, fer, nickel, cobalt, cuivre, métal de structure cristallographique cubique à faces centrées, ou leurs alliages.
12. Procédé selon la revendication 1 1 , comprenant en outre les étapes suivantes préalablement à l'étape de colaminage des feuilles (10, 20) :
- chauffer la feuille métallique (20) à une température comprise entre environ 70% et 98% de la température de fusion du métal la constituant pendant une durée déterminée en fonction de l'épaisseur de la feuille ; et
- laisser refroidir la feuille (20) jusqu'à température ambiante.
13. Procédé selon la revendication 12, comprenant en outre une étape au cours de laquelle la feuille métallique (20) est décapée entre les étapes de refroidissement et de colaminage.
14. Procédé selon l'une des revendications 1 à 10, dans lequel la feuille métallique (20) est une feuille d'aluminium supplémentaire, ledit procédé comprenant en outre, préalablement à l'étape de colaminage des feuilles, les étapes suivantes :
- porter la feuille d'aluminium supplémentaire (20) à une température comprise entre 80% et 100% de la température de fusion du matériau la constituant pendant une durée suffisante pour créer et stabiliser une couche d'alumine alpha à la surface de ladite feuille d'aluminium ; et
- laisser refroidir la feuille d'aluminium supplémentaire (20).
15. Procédé selon l'une des revendications 1 à 14, comprenant en outre une étape au cours de laquelle la feuille métallique (20) reçoit un traitement de surface.
16. Procédé selon l'une des revendications 1 à 15, comprenant en outre une étape d'assemblage des feuilles d'aluminium (10, 10') et métallique(s) (20, 20') préalablement à leur colaminage.
17. Procédé selon la revendication 16, dans lequel l'étape d'assemblage des feuilles (10, 10', 20, 20') est réalisé par rivetage, soudure par point, prélaminage d'une tête des feuilles (10, 10', 20, 20'), vis auto- perforante, soudage par faisceau d'électron, collage et/ou bridage.
18. Procédé selon l'une des revendications 1 à 17, dans lequel on colamine en outre une feuille métallique supplémentaire avec les feuilles d'aluminium (10) et métallique (20).
19. Procédé selon la revendication 18, dans lequel les deux feuilles métalliques (20, 20', 10') et la feuille d'aluminium (10) sont colaminées simultanément en une seule étape.
20. Procédé selon la revendication 18, dans lequel la feuille d'aluminium (10) et la feuille métallique (20) sont d'abord colaminées dans un laminoir à cylindres lisses afin d'obtenir un assemblage plan, ledit assemblage plan étant ensuite colaminé avec la feuille métallique supplémentaire (10', 20') dans le laminoir à cylindre(s) à reliefs afin d'obtenir l'assemblage métallique.
21 . Procédé selon l'une des revendications 1 à 20, comprenant en outre une étape d'application d'une couche de poudre sur la feuille d'aluminium préalablement à l'étape de colaminage.
22. Procédé selon la revendication 21 , dans lequel la feuille d'aluminium et la poudre sont colaminées dans un laminoir à cylindres lisses afin d'obtenir un assemblage plan, ledit assemblage plan étant ensuite colaminé avec la feuille métallique dans le laminoir comprenant au moins un cylindre dont la surface externe de laminage est pourvue de reliefs afin d'obtenir l'assemblage métallique.
23. Procédé selon la revendication 21 , dans lequel la poudre est appliquée entre la feuille d'aluminium et la feuille métallique préalablement à l'étape de colaminage, l'assemblage comprenant la feuille d'aluminium, la poudre et la feuille métallique étant ensuite colaminée dans le laminoir.
24. Procédé selon l'une des revendications 21 à 23, comprenant en outre une étape supplémentaire de déshydratation de la poudre métallique (22) préalablement à son application sur la feuille d'aluminium.
25. Procédé de fabrication d'un échangeur thermique, caractérisé en ce qu'il comprend une étape de mise en forme d'une feuille d'aluminium avec au moins une feuille métallique selon un procédé de fabrication selon l'une des revendications 1 à 24 dans un laminoir comprenant un premier cylindre dont la surface externe de laminage présente des sillons s'étendant longitudinalement à la direction de laminage, et un deuxième cylindre dont la surface externe de laminage est lisse ou présente des sillons en opposition de phase avec les sillons du premier cylindre.
26. Procédé selon la revendication 25, dans lequel la feuille métallique (20) est une feuille de cuivre, de fer ou d'acier.
27. Procédé selon l'une des revendications 25 et 26, dans lequel la feuille métallique est une feuille d'aluminium supplémentaire, et le procédé comprend en outre, préalablement à l'étape de colaminage des feuilles, les étapes suivantes :
- porter la feuille d'aluminium supplémentaire (20) à une température comprise entre 80% et 100% de la température de fusion du matériau la constituant pendant une durée suffisante pour créer et stabiliser une couche d'alumine alpha à la surface de ladite feuille d'aluminium ; et
- laisser refroidir la feuille d'aluminium supplémentaire (20).
PCT/EP2011/053747 2010-03-12 2011-03-11 Procede de fabrication d'un assemblage metallique ayant une feuille d'aluminium traitee thermiquement pour obtenir de l'alumine alpha et une autre feuille avec des irregularites de surface que s'y incrustent lors du colaminage. WO2011110685A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES11707438.5T ES2665779T3 (es) 2010-03-12 2011-03-11 Procedimiento de fabricación de un ensamblaje metálico que tiene una hoja de aluminio tratada térmicamente para obtener alúmina alfa y otra hoja con irregularidades de superficie que se incrustan en la misma en la colaminación
US13/634,017 US10392687B2 (en) 2010-03-12 2011-03-11 Method for manufacturing a metal assembly having a sheet of thermally treated aluminum to obtain alpha alumina and another sheet having surface irregularities that become embedded in said surface during roll bonding
EP11707438.5A EP2544890B1 (fr) 2010-03-12 2011-03-11 Procede de fabrication d'un assemblage metallique ayant une feuille d'aluminium traitee thermiquement pour obtenir de l'alumine alpha et une autre feuille avec des irregularites de surface que s'y incrustent lors du colaminage.
JP2012556540A JP5824466B2 (ja) 2010-03-12 2011-03-11 αアルミナを得るために熱処理されたアルミニウムシートと、接合圧延により表面に埋め込まれる、凹凸を表面に有する他のシートとを具備する金属集成体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051808A FR2957280B1 (fr) 2010-03-12 2010-03-12 Procede de fabrication d'un complexe metallique
FR1051808 2010-03-12

Publications (1)

Publication Number Publication Date
WO2011110685A1 true WO2011110685A1 (fr) 2011-09-15

Family

ID=42752438

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2011/053748 WO2011110686A1 (fr) 2010-03-12 2011-03-11 Procédé de fabrication d'un assemblage métallique
PCT/EP2011/053747 WO2011110685A1 (fr) 2010-03-12 2011-03-11 Procede de fabrication d'un assemblage metallique ayant une feuille d'aluminium traitee thermiquement pour obtenir de l'alumine alpha et une autre feuille avec des irregularites de surface que s'y incrustent lors du colaminage.
PCT/EP2011/053749 WO2011110687A1 (fr) 2010-03-12 2011-03-11 Procédé de fabrication d'un assemblage métallique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053748 WO2011110686A1 (fr) 2010-03-12 2011-03-11 Procédé de fabrication d'un assemblage métallique

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053749 WO2011110687A1 (fr) 2010-03-12 2011-03-11 Procédé de fabrication d'un assemblage métallique

Country Status (6)

Country Link
US (3) US9371575B2 (fr)
EP (3) EP2544890B1 (fr)
JP (3) JP5897476B2 (fr)
ES (1) ES2665779T3 (fr)
FR (1) FR2957280B1 (fr)
WO (3) WO2011110686A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002482A1 (fr) * 2013-02-25 2014-08-29 Commissariat Energie Atomique Procede de realisation de couches minces structurees en 3d
US20150075756A1 (en) * 2012-03-28 2015-03-19 Carrier Corporation Surface treatment for corrosion resistance of aluminum

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957280B1 (fr) * 2010-03-12 2012-07-13 Centre Nat Rech Scient Procede de fabrication d'un complexe metallique
DE102015203104A1 (de) * 2015-02-20 2016-08-25 Technische Universität Dresden Verfahren zur Verbindung von Bauteilen aus metallischen offenporösen Werkstoffen
US11135635B2 (en) * 2016-04-05 2021-10-05 Robert Bosch Gmbh Process for blanking of metal parts
CN106064516B (zh) * 2016-06-01 2018-05-15 广东谷菱电气有限公司 一种将铜箔加工成铜板的压融工艺
JP6438562B1 (ja) * 2017-06-13 2018-12-12 東洋鋼鈑株式会社 圧延接合体及びその製造方法
DE102018100765A1 (de) * 2018-01-15 2019-07-18 Atlas Elektronik Gmbh Unterwasservorrichtung zum Einsatz unter Wasser mit einer Energieerzeugungseinrichtung
DE102018203390A1 (de) * 2018-03-07 2019-09-12 Robert Bosch Gmbh Elektrische Vorrichtung, Verfahren zur Herstellung einer elektrischen Vorrichtung
DE102018212110A1 (de) * 2018-07-20 2020-01-23 Alantum Europe Gmbh Offenporiger Metallkörper mit einer Oxidschicht und Verfahren zu dessen Herstellung
JP7169521B2 (ja) * 2019-02-28 2022-11-11 トヨタ自動車株式会社 密閉型電池および組電池
CN112522694B (zh) * 2020-11-17 2021-12-07 东北大学 一种基于快速传热的泡沫铝夹芯板表面黑化发泡方法
CN112622365B (zh) * 2020-12-01 2022-08-30 无锡市世达精密焊管制造有限公司 一种采用铝合金的铝铜复合板及其制备方法
CN114713626B (zh) * 2022-04-20 2024-10-15 郑州轻工业大学 一种用于金属丝网卷叠制造多孔金属的装置及制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263801A (ja) * 1997-03-19 1998-10-06 Furukawa Electric Co Ltd:The 熱交換器のフィン用部分クラッド条材とその製造方法及びこの条材を用いた一体型熱交換器
GB2326117A (en) * 1997-06-09 1998-12-16 Atd Corp Flexible corrugated multilayer metal sheet shields and method of making
US6096145A (en) * 1997-12-18 2000-08-01 Texas Instruments Incorporated Method of making clad materials using lead alloys and composite strips made by such method

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340027A (en) * 1963-10-23 1967-09-05 Olin Mathieson Composite aluminum sheet
US3884731A (en) * 1964-07-02 1975-05-20 Reynolds Metals Co Metal composite and method of producing the same
US3470607A (en) * 1966-05-11 1969-10-07 Olin Mathieson Process for obtaining composite article
US3425113A (en) * 1966-09-21 1969-02-04 Reynolds Metals Co Method of making composite sheet structures with internal passages by roll bonding
US3781971A (en) * 1970-08-19 1974-01-01 Olin Corp Method of producing a mechanical joint between metal sheets
US3873392A (en) * 1971-06-14 1975-03-25 Ethyl Corp Pressure contouring and bonding of metal foams
JPS5532346A (en) * 1978-08-28 1980-03-07 Hitachi Maxell Ltd Electrode
DE3327657A1 (de) * 1983-07-30 1985-02-07 Kolbenschmidt AG, 7107 Neckarsulm Verfahren zur herstellung von aluminium-verbundwerkstoffen
GB2167850B (en) * 1984-12-04 1988-02-17 Sanden Corp Aluminum heat exchanger
US4711009A (en) * 1986-02-18 1987-12-08 W. R. Grace & Co. Process for making metal substrate catalytic converter cores
JPS63157774A (ja) * 1986-12-20 1988-06-30 Sumitomo Metal Ind Ltd アルミニウム・炭素鋼クラツド材の製造方法
JPS6434586A (en) * 1987-07-31 1989-02-06 Kobe Steel Ltd Method for diffusion-joining al and al alloy members mutually
JPH0211320A (ja) * 1988-06-30 1990-01-16 Aichi Steel Works Ltd 発泡金属製吸音材
JPH02121786A (ja) * 1988-10-28 1990-05-09 Sumitomo Chem Co Ltd 銅・アルミニウムクラッド板の製造方法
JPH02179737A (ja) * 1988-12-29 1990-07-12 Fujitsu Ltd 防振材料
JPH0327884A (ja) * 1989-06-26 1991-02-06 Kobe Steel Ltd アルミニウムクラッド鋼板の製造方法
JPH0780273B2 (ja) * 1990-01-19 1995-08-30 松下電器産業株式会社 塗装物及び塗装用下地表面調整方法
JPH03275285A (ja) * 1990-03-22 1991-12-05 Sky Alum Co Ltd アルミニウム複合板の製造方法
JPH04105776A (ja) * 1990-08-22 1992-04-07 Nisshin Steel Co Ltd アルミニウムクラッド鋼板の製造法および設備
FR2683173A1 (fr) * 1991-11-05 1993-05-07 Commissariat Energie Atomique Tole composite a base d'aluminium et procede de fabrication de cette tole.
JP3185346B2 (ja) * 1992-04-28 2001-07-09 日立電線株式会社 電線用発泡導体及びそれを用いた電線並びに架空送電線
WO1994010351A1 (fr) 1992-10-29 1994-05-11 Aluminum Company Of America Composite a matrice metallique plus resistant et procede de fabrication associe
JP3139267B2 (ja) * 1994-03-23 2001-02-26 日立電線株式会社 送電線用素線導体及びその製造方法
JPH08257768A (ja) * 1995-03-18 1996-10-08 Eisuke Ishida 金属の圧接方法とアルミニウムと他の金属 との圧接構造
JPH1058591A (ja) * 1996-08-15 1998-03-03 Daido Steel Co Ltd アルミクラッド金属板とその製造方法
DE19640612C1 (de) * 1996-10-01 1998-06-18 Thyssen Stahl Ag Verfahren und Vorrichtung zum Fügen von überlappend miteinander zu verbindenden Flachprodukten
US6085965A (en) * 1997-02-04 2000-07-11 Mcdonnel & Douglas Corporation Pressure bonding and densification process for manufacturing low density core metal parts
JPH10265885A (ja) * 1997-03-28 1998-10-06 Kobe Steel Ltd フランジ幅のバラツキが小さいアルミニウム合金板及びその製造方法
JP2000357519A (ja) * 1999-06-15 2000-12-26 Katayama Tokushu Kogyo Kk 金属多孔体、該金属多孔体からなる電池用電極板、および該電極板を備えた電池
JP2001297780A (ja) * 2000-04-12 2001-10-26 Kokichi Uematsu 溶融炭酸塩型燃料電池とこれを用いた発電装置
DE10042569C1 (de) * 2000-08-25 2002-04-04 Christian Steglich Verfahren und Einrichtung zur Herstellung von Verbundwerkstoffen mit einem Kern aus Metallschaum
GB0027706D0 (en) * 2000-11-14 2000-12-27 Alcan Int Ltd Composite aluminium sheet
ATE299433T1 (de) * 2001-02-27 2005-07-15 Trierer Walzwerk Gmbh Verfahren zur herstellung von metallischem verbundwerkstoff
DE10156125A1 (de) * 2001-11-16 2003-05-28 Eads Deutschland Gmbh Metallfaserverstärkter Verbundwerkstoff sowie Verfahren zur Herstellung desselben
FR2836154B1 (fr) 2002-02-15 2004-10-22 Pechiney Rhenalu Bandes minces en alliage aluminium-fer
JP4061170B2 (ja) * 2002-10-21 2008-03-12 独立行政法人科学技術振興機構 アルミニウムフォーム製サンドイッチ構造体の製造方法
EP1468765A1 (fr) * 2003-04-16 2004-10-20 Corus Technology BV Préforme pour feuille moussée et produit moussé fabriqué à partir de ladite feuille
DE10360808B4 (de) * 2003-12-19 2005-10-27 Airbus Deutschland Gmbh Faserverstärkter metallischer Verbundwerkstoff
DE102004010810A1 (de) * 2004-03-05 2005-09-22 Bayer Materialscience Ag Verbundbauteil
WO2006058424A1 (fr) * 2004-12-03 2006-06-08 Novelis Inc. Emboutissage laminage de caractéristiques discrètes
JP4393362B2 (ja) * 2004-12-03 2010-01-06 株式会社コベルコ科研 AlまたはAl合金接合体の製法
WO2006070879A1 (fr) * 2004-12-28 2006-07-06 Nippon Light Metal Company, Ltd. Procede pour la fabrication d’un materiau composite d’aluminum
EP1874971A4 (fr) * 2005-04-28 2011-09-07 Showa Denko Kk Gaine et carte de circuit imprime
JP2007065319A (ja) * 2005-08-31 2007-03-15 Furukawa Sky Kk 吸音材及びその製造方法
HUE026137T2 (en) * 2005-12-09 2016-05-30 Kobe Steel Ltd Crust material for clad material containing at least one molding structure
US20080099183A1 (en) * 2006-09-12 2008-05-01 All-Clad Metalcrafters Llc Aluminum Clad Steel Composite for Heat Exchanger Tubes and Manifolds
US7960034B2 (en) * 2007-03-30 2011-06-14 All-Clad Metalcrafters Llc Multi-ply cookware with copper-aluminum-stainless steel
JP4885204B2 (ja) * 2008-12-08 2012-02-29 公益財団法人鉄道総合技術研究所 接合材とその製造方法及び交通輸送手段の構体
FR2957280B1 (fr) * 2010-03-12 2012-07-13 Centre Nat Rech Scient Procede de fabrication d'un complexe metallique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263801A (ja) * 1997-03-19 1998-10-06 Furukawa Electric Co Ltd:The 熱交換器のフィン用部分クラッド条材とその製造方法及びこの条材を用いた一体型熱交換器
GB2326117A (en) * 1997-06-09 1998-12-16 Atd Corp Flexible corrugated multilayer metal sheet shields and method of making
US6096145A (en) * 1997-12-18 2000-08-01 Texas Instruments Incorporated Method of making clad materials using lead alloys and composite strips made by such method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150075756A1 (en) * 2012-03-28 2015-03-19 Carrier Corporation Surface treatment for corrosion resistance of aluminum
FR3002482A1 (fr) * 2013-02-25 2014-08-29 Commissariat Energie Atomique Procede de realisation de couches minces structurees en 3d
WO2014128371A3 (fr) * 2013-02-25 2014-11-27 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de réalisation de couches minces structurées en 3d
US9972827B2 (en) 2013-02-25 2018-05-15 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for producing 3D-structured thin films

Also Published As

Publication number Publication date
US10392687B2 (en) 2019-08-27
US20130048154A1 (en) 2013-02-28
JP5824466B2 (ja) 2015-11-25
EP2544892A1 (fr) 2013-01-16
FR2957280B1 (fr) 2012-07-13
JP2013522068A (ja) 2013-06-13
WO2011110686A1 (fr) 2011-09-15
US20130022834A1 (en) 2013-01-24
US9371575B2 (en) 2016-06-21
ES2665779T3 (es) 2018-04-27
EP2544891A1 (fr) 2013-01-16
WO2011110687A1 (fr) 2011-09-15
FR2957280A1 (fr) 2011-09-16
EP2544892B1 (fr) 2018-07-11
JP2013522069A (ja) 2013-06-13
US20130061987A1 (en) 2013-03-14
EP2544890B1 (fr) 2018-02-14
EP2544891B1 (fr) 2020-06-03
JP5897476B2 (ja) 2016-03-30
JP6016640B2 (ja) 2016-10-26
US9382610B2 (en) 2016-07-05
EP2544890A1 (fr) 2013-01-16
JP2013522041A (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
EP2544890B1 (fr) Procede de fabrication d'un assemblage metallique ayant une feuille d'aluminium traitee thermiquement pour obtenir de l'alumine alpha et une autre feuille avec des irregularites de surface que s'y incrustent lors du colaminage.
EP3113902B1 (fr) Tôle de brasage à placages multiples
CN108136729B (zh) 金属层叠材料及其制造方法
JP6543439B2 (ja) 金属積層材の製造方法
EP1446511B1 (fr) Bandes en alliage d'aluminium pour echangeurs thermiques
FR2876606A1 (fr) Procede de production d'une feuille de brasage en alliage d'aluminium et d'ensembles legers et brases pour echangeur de chaleur.
WO2008113911A2 (fr) Panneau composite métallique et procede de fabrication
KR20180063066A (ko) 금속 적층재 및 그 제조 방법
EP1339887A1 (fr) Procede de fabrication d'une bande plaquee en alliage d'aluminium pour la fabrication d'echangeurs de chaleur brases
FR3053979A1 (fr) Flans en alliages d’aluminium avec un recuit flash local
US9266189B2 (en) Structure, method of making a structure, and method of reducing galvanic corrosion
FR2857981A1 (fr) FEUILLES OU BANDES MINCES EN ALLIAGES AIFeSI
CN113574191B (zh) 铝合金箔、层叠体、铝合金箔的制造方法及层叠体的制造方法
JP6813961B2 (ja) 銅及びマグネシウムからなる金属積層材及びその製造方法
EP0245174B1 (fr) Procédé de fabrication d'une bande de tôle composite polymétallique, notamment d'une bande de tôle composite mince à base d'acier et articles obtenus à partir d'une telle tôle
US20100089873A1 (en) Enhanced metal wicking surface
CA2581075C (fr) Materiau composite utilise pour la fabrication d'ailettes d'echangeurs thermiques a haute conductivite thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11707438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012556540

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011707438

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13634017

Country of ref document: US