WO2011108113A1 - 有機elパネル及びその製造方法 - Google Patents

有機elパネル及びその製造方法 Download PDF

Info

Publication number
WO2011108113A1
WO2011108113A1 PCT/JP2010/053660 JP2010053660W WO2011108113A1 WO 2011108113 A1 WO2011108113 A1 WO 2011108113A1 JP 2010053660 W JP2010053660 W JP 2010053660W WO 2011108113 A1 WO2011108113 A1 WO 2011108113A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
wiring electrode
panel
substrate
region
Prior art date
Application number
PCT/JP2010/053660
Other languages
English (en)
French (fr)
Inventor
菅原 淳
木村 政美
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US13/581,569 priority Critical patent/US9082736B2/en
Priority to PCT/JP2010/053660 priority patent/WO2011108113A1/ja
Priority to JP2012502948A priority patent/JP5638599B2/ja
Publication of WO2011108113A1 publication Critical patent/WO2011108113A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • H10K59/1795Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present invention relates to an organic EL panel and a manufacturing method thereof.
  • An organic EL panel is a self-luminous panel in which one or a plurality of organic EL elements are arranged on a substrate, and is used for various applications such as display and illumination.
  • the organic EL element has a laminated structure including a lower electrode, an organic layer including a light emitting layer, and an upper electrode in this order from the substrate side.
  • One of the lower electrode and the upper electrode serves as an anode and the other serves as a cathode.
  • the wiring electrode When the electrical resistance of the wiring electrode is high, the length of the wiring electrode varies depending on the position of the organic EL element arranged on the substrate, and thus there is a problem that luminance unevenness occurs for each element due to a voltage drop due to a current flowing through the wiring electrode. . In order to cope with this, it is necessary to reduce the electrical resistance of the wiring electrode, and the wiring electrode has a metal oxide layer having high adhesion to the glass substrate and a metal or alloy such as Al, Ag having low electrical resistance. Is laminated (see Patent Document 1 below).
  • the wiring electrode formed on the substrate of the organic EL panel includes a cathode wiring for conducting with the cathode and an anode wiring for conducting with the anode. These wiring electrodes are patterned on the substrate together with the lower electrode which is a component of the organic EL element before the organic layer is formed. Before the organic layer is formed, the pattern of the wiring electrode is It exists on the substrate as an independent pattern. In this way, when static electricity is charged to the wiring electrode pattern that exists independently on the substrate, the charged static electricity flows into the element side when the organic layer is formed or after the laminated structure of the organic EL element is formed, There is a problem that adversely affects the organic layer and device structure. In addition, when aligning a metal mask used when forming an organic layer, there is a problem in that charging to the wiring electrode is difficult to align.
  • the present invention is an example of a problem to deal with such a problem. That is, for the purpose of the present invention, it is possible to prevent static electricity charged on the wiring electrodes patterned on the substrate in the manufacturing stage of the organic EL panel from adversely affecting the organic layer and the element structure of the organic EL element. is there.
  • the organic EL panel and the manufacturing method thereof according to the present invention include at least the configurations according to the following independent claims.
  • An organic EL panel in which at least one organic EL element is formed on a substrate, wherein the organic EL element has a laminated structure in which an organic layer including a light emitting layer is disposed between an anode and a cathode. Is formed with a light emitting region in which the organic EL element is formed and a wiring region in which a wiring electrode is formed which is drawn out from the light emitting region and is electrically connected to the anode or the cathode of the organic EL element.
  • An organic EL panel characterized in that the planar end shape on the side has an R-shaped portion with rounded corners.
  • FIG. 4A is a plan view of the entire organic EL panel
  • FIG. 4B is a cross-sectional view taken along the line AA
  • FIG. 4C shows a conventional example.
  • FIG. 1 is an explanatory view showing an organic EL panel according to an embodiment of the present invention.
  • FIG. 4A is a plan view of the entire organic EL panel
  • FIG. 4B is a cross-sectional view taken along the line AA
  • the organic EL panel 100 is obtained by forming at least one organic EL element 1 on a substrate 10.
  • the organic EL element 1 is formed by sequentially laminating a lower electrode 11, an organic layer 12 having a light emitting layer, and an upper electrode 13 from the substrate 10 side, and one of the lower electrode 11 and the upper electrode 13 is a cathode and the other is an anode. And a laminated structure in which the organic layer 12 is disposed between the cathode and the anode.
  • the lower electrode 11, the organic layer 12, and the upper electrode 13 are laminated directly on the substrate 10, but other layers for functional or film thickness control are interposed between the layers. Also good.
  • the substrate 10 has translucency
  • the lower electrode 11 has translucency
  • the upper electrode 13 has light reflectivity
  • a method of emitting light from the substrate 10 side bottom emission method
  • the upper electrode 13 side has translucency and the lower electrode side has light reflectivity
  • a method of emitting light from the upper electrode 13 side top emission method
  • Both the lower electrode 11 and the upper electrode 13 may be translucent so that light is extracted from both sides (dual emission method).
  • the organic EL element 1 holes are injected / transported from the anode side to the organic layer 12 and electrons are injected / transported from the cathode side to the organic layer 12 by the voltage applied between the lower electrode 11 and the upper electrode 13. As a result, holes and electrons recombine in the light emitting layer to emit light. Therefore, the light emission luminance is determined by the current flowing between the anode and the cathode.
  • the organic EL panel 100 including a plurality of organic EL elements 1 includes an insulating film 14 in order to ensure electrical insulation between the plurality of lower electrodes 11.
  • the lower electrode 11 is patterned in a stripe shape and includes an insulating film 14 that defines a light emitting portion 15 on the lower electrode 11.
  • the organic EL panel 100 has a sealing structure in which a sealing substrate 20 is bonded to a substrate 10 as shown in FIG.
  • the light emitting region 100A is formed in a sealing region covered with the sealing substrate 20, and the wiring region 100B is formed outside the light emitting region 100A.
  • the wiring electrode 30 in the wiring region 100 ⁇ / b> B is divided into one that conducts with the lower electrode 11 and one that conducts with the upper electrode 13.
  • the wiring electrode 30 that is electrically connected to the lower electrode 11 can be formed continuously with the lower electrode 11.
  • the wiring electrode 30 that is electrically connected to the upper electrode 13 connects the wiring electrode 30 formed on the substrate 10 and the upper electrode 13 during or after the formation of the upper electrode 13.
  • the wiring electrode 30 has an R-shaped portion 30R in which the planar end shape on the organic EL element 1 side has rounded corners (see FIG. 1C).
  • the outer peripheral edge of the R-shaped portion 30R is formed in an arc shape in the illustrated example, but is not necessarily in an arc shape, and may be a curved shape having an arbitrary shape in which a plurality of curvatures are combined.
  • a high effect can be obtained by providing the R-shaped portion 30 ⁇ / b> R at all ends of the wiring electrode 30, but a desired effect can also be obtained by providing the R-shaped portion 30 ⁇ / b> R at a part of the ends of the wiring electrode 30.
  • the wiring electrode 30 provided with the R-shaped portion 30R is not limited to either the anode wiring or the cathode wiring, and one or both of them can be targeted.
  • the electrostatic charging of the wiring electrode 30 may occur at any stage after the wiring electrode 30 is formed on the substrate 10, before or after the organic layer 12 is formed, and before or after the sealing region is formed. In each stage, static electricity removal (static elimination) of the wiring electrode 30 may not be performed effectively.
  • static electricity removal static elimination
  • the R-shaped portion 30R at the end of the wiring electrode 30 on the organic EL element 1 side, even if the wiring electrode 30 is charged, the adverse effect of static electricity on the organic layer 12 and the organic EL element 1 is adversely affected. Can be minimized.
  • FIG. 2 shows a configuration example and a conventional example of the wiring electrode 30 used in the organic EL panel 100 according to the embodiment of the present invention.
  • FIG. 6A shows the configuration shown in FIG. 1C described above, and an R-shaped portion 30R is provided at the end portion on the organic EL element 1 side (light emitting region side). Since the R-shaped portion 30R is provided for the purpose of preventing electric charges from concentrating at the end portion, it is preferably provided on both the left and right sides. In the example shown in the figure, the R-shaped portion 30R has a symmetrical shape, but it does not necessarily have to be a symmetrical shape.
  • an R-shaped portion 30R similar to that shown in FIG. 5A is provided at the end of the organic EL element 1 side (light emitting region side).
  • a charge discharge portion 30S is provided at the end opposite to the first side (substrate edge side).
  • the charge discharging portion 30S has a function of discharging charges charged in the wiring electrode 30 to the outside from the wiring electrode 30, and the charge discharging portion 30S is provided at the end opposite to the end where the R-shaped portion 30R is formed.
  • the planar shape of the end portion of the wiring electrode 30 is sharpened toward the end edge side of the substrate 10, as shown in FIG. According to this, the electric charge charged in the wiring electrode 30 can be easily concentrated on the tip of the sharp end portion, so that the electric charge can be prevented from concentrating on the opposite end portion.
  • FIG. 5C shows an example in which the R-shaped portion 30R and the charge discharging portion 30S are not provided at the end of the wiring electrode 30, and in this case, when the wiring electrode 30 is charged with static electricity, the corner of the end is shown. Concentration of charges is likely to occur in the portion, and there is a concern that charges flow from there to the organic EL element 1 side.
  • FIG. 3 is an explanatory view showing another form of the charge discharging portion in the organic EL panel according to the embodiment of the present invention.
  • the organic EL element 1 having the light emitting portion 15 is formed at the intersecting portion of the lower electrode 11 arranged in a stripe shape and the upper electrode 13 arranged in a stripe shape so as to intersect therewith.
  • the wiring electrode 30 is formed on the substrate 10 in the wiring region 100B outside the light emitting region 100A in which the organic EL element 1 is formed, and the end portion on which the R-shaped portion 30R on the organic EL element 1 side is formed is an upper part. It is connected to the electrode 13, and the end opposite to the electrode 13 is formed toward the edge of the substrate 10.
  • the charge discharge portion is formed by a conductive pattern 40 formed close to the end of the wiring electrode 30 opposite to the organic EL element 1 side.
  • the conductive pattern 40 is an electric resistance at the end of the wiring electrode 30. It is formed of a material having a lower electrical resistance. Even with such a charge discharge portion, when the wiring electrode 30 is electrostatically charged, the charge is drawn toward the low resistance conductive pattern 40 side, so that the opposite end portion (the end on the organic EL element 1 side). Part) can be prevented from concentrating charges.
  • the distance d2 between the end of the wiring electrode 30 opposite to the organic EL element 1 side and the conductive pattern 40 is set to be the distance between the end of the wiring electrode 30 on the organic EL element 1 side and the organic EL element 1 closest thereto.
  • FIG. 4 and 5 are explanatory views showing an organic EL panel according to another embodiment of the present invention (FIG. 4 is an overall plan view, and FIG. 5 is an enlarged view of a portion M in FIG. 4).
  • the large-sized panel 100m can be divided to obtain individual organic EL panels 100, and a plurality of panel formation regions S1, S2, and a plurality of organic EL panels 100 are simultaneously formed on the large-sized substrate 10m. S3 and S4.
  • a first wiring electrode 30 1 , a second wiring electrode 30 2 , and a conductive pattern 40 are formed on the large substrate 10m.
  • First wiring electrode 30 1 is formed over a plurality of panels forming region is intended to conduct one of the anode and the cathode of the organic EL element 1, it is formed continuously with the lower electrode 11 in the example shown ing.
  • the second wiring electrode 30 2 is formed in each panel forming region, there shall be conducted to the other of the anode and cathode of the organic EL element 1, in the illustrated example is formed to conduct to the upper electrode 13.
  • the conductive pattern 40 is formed outside the panel formation regions S1 to S4 on the large substrate 10m, and is formed so as to be electrically connected to the first wiring electrode 30 1 and the second wiring electrode 30 2 .
  • the first wiring electrode 30 1 and the second wiring electrode 30 2 are formed in order to discharge static electricity charged to the outside of the panel formation regions S1 to S4.
  • the first wiring electrode 30 1 and the second wiring electrode 30 2 is in a state of conduction with the conductive pattern 40, as shown in FIG. 3, the first wiring electrode 30 1 and the The end of the second wiring electrode 30 2 and the conductive pattern 40 may be close to each other, and the charges charged in the first wiring electrode 30 1 and the second wiring electrode 30 2 easily flow into the conductive pattern 40 side. It only has to be in form.
  • a sealing substrate 20 for sealing the organic EL element 1 is attached to each of the panel forming regions S1 to S4, and a sealing region P is formed inside thereof.
  • the sealing region P is formed inside the adhesive layer.
  • the second wiring electrode 30 2 has an R-shaped portion 30R formed at the end portion on the organic EL element 1 side as in the above-described embodiment, and the organic EL element 1 of the second wiring electrode 30 2 is formed.
  • the end opposite to the conductive pattern 40 is electrically connected to or close to the conductive pattern 40.
  • the first wiring electrode 30 1 is divided in divide portion 30n in the sealing region P.
  • FIG. 6 shows a modification of the example shown in FIG.
  • the organic EL device 1 of the second wiring electrode 30 2 to form a charge-emitting portion 30S showing the opposite end portion of in the pointed shape in FIG. 2 (b), the charge-emitting portion 30S Is placed close to the conductive pattern 40 for discharging electric charges.
  • the electrostatic charge charged in the second wiring electrode 302 can be more reliably separated from the organic EL element 1 side.
  • a method for manufacturing the organic EL panel shown in FIGS. 4 to 6 will be described.
  • a second wiring electrode 30 2 formed for each of the panel formation regions S1 to S4, and a conductive pattern 40 for discharging electric charges that is conductive or close to the first wiring electrode 30 1 and the second wiring electrode 30 2 is formed.
  • the first wiring electrode 30 1 , the second wiring electrode 30 2 , and the conductive pattern 40 are patterned by a photolithography process after a conductive material is formed on the large substrate 10m. Since the first wiring electrode 30 1 is intended to be formed continuously with the lower electrode 11, a low electrical resistance of the metal film on the lead wiring portion after forming the transparent conductive film (such as ITO) (Al, Ag, etc. ) And a pattern is formed in a stripe shape.
  • the second wiring electrode 30 2 is formed with the R-shaped portion 30R and the charge discharging portion 30S at the end at the same time as the stripe-shaped pattern, and the end opposite to the organic EL element 1 is electrically connected to the conductive pattern 40 Or close.
  • the conductive pattern 40 is formed of Al or Ag having a low electrical resistance, and is formed simultaneously with the first wiring electrode 30 1 and the second wiring electrode 30 2 .
  • the organic EL element 1 is formed in each panel formation region S1 to S4.
  • a partition pattern for separating the insulating film 14 or the upper electrode 13 shown in FIG. 1 is formed on the lower electrode 11, and an organic layer 12 including a light emitting layer is formed in the opening of the light emitting portion 15 on the lower electrode 11. Further, an upper electrode 13 is formed. When the upper electrode 13 is formed, the upper electrode 13 and the second wiring electrode 30 2 are connected.
  • a sealing region P for sealing the organic EL element 1 is formed for each of the panel formation regions S1 to S4.
  • the sealing region P is formed inside the adhesive layer that bonds the large substrate 10m and the sealing substrate 20 together.
  • the fourth step to divide the first wiring electrodes 30 1 for each panel forming area in the sealing region P.
  • portions to form a divide portion 30n near the boundary of the panel formation region opposite to the first wiring electrode 30 1 of the drawing wiring in the sealing region P the first to separate wire wiring electrode 30 1.
  • Laser light is used for this division, and the laser light irradiated through the transparent large-sized substrate 10m and the sealing substrate 20 is moved along the dividing line Ld to form the divided portions 30n arranged linearly.
  • the large-sized substrate 10m is divided into the panel formation regions S1 to S4 to form individual organic EL panels 100.
  • the large-sized substrate 10m is cut along the cutting line Ct shown in FIGS. 4 to 6 with a cutting machine, and individual organic EL panels 100 are obtained.
  • the first wiring electrode 30 1 and the second wiring electrode 30 2 are separated from the conductive pattern 40, and the lead wiring side of the first wiring electrode 30 1 is cut together with the large substrate 10m. .
  • the substrate 10 is formed of a base material that can support the organic EL element 1 such as glass, plastic, or a metal having an insulating material layer formed on the surface thereof.
  • the transparent conductive film forming the lower electrode 11 is made of transparent metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), zinc oxide-based transparent conductive film, SnO 2 -based transparent conductive film, and titanium dioxide-based transparent conductive film.
  • first wiring electrodes 30 1 lead-out wiring portion and the second wiring portion 30 2 or the conductive pattern 40 silver is a low electrical resistance metal (Ag) or a silver alloy, aluminum (Al) or an aluminum alloy Etc. can be used.
  • the insulating film 14 is provided in order to ensure insulation of each of the patterned lower electrodes 11, and a material such as polyimide resin, acrylic resin, silicon oxide, silicon nitride is used.
  • the insulating film 14 is formed by forming a pattern on the entire surface of the light emitting region 100A on the substrate 10 on which the lower electrode 11 is formed, and then forming an opening of the light emitting portion 15 on the lower electrode 11. Specifically, a film is formed on the substrate 10 on which the lower electrode 11 is formed by a spin coating method so as to have a predetermined coating thickness, and exposure processing and development processing are performed using an exposure mask, whereby the light emitting unit 15 is formed. A layer of the insulating film 14 having the opening pattern shape is formed.
  • the insulating film 14 is formed so as to fill the space between the patterns of the lower electrode 11 and partially cover the side end portion thereof, and is formed in a lattice shape. As a result, the light emitting portion 15 is opened on the lower electrode 11 and the region is insulated and partitioned by the insulating film 14.
  • the partition walls are striped in the direction intersecting the lower electrode 11 in order to form the pattern of the upper electrode 13 without using a mask or the like, or to completely electrically insulate the adjacent upper electrode 13 from each other. It is formed.
  • an insulating material such as a photosensitive resin is spin-coated on the substrate 10 or the insulating film 14 so as to be thicker than the total thickness of the organic layer 12 and the upper electrode 13 forming the organic EL element 1.
  • ultraviolet light or the like is irradiated on the photosensitive resin film through a photomask having a stripe pattern intersecting with the lower electrode 11, resulting from a difference in exposure amount in the thickness direction of the layer.
  • a partition wall having a downward tapered surface is formed.
  • the organic layer 12 has a laminated structure of light emitting functional layers including the light emitting layer 12A.
  • a hole injection layer, a hole are sequentially formed from the anode side.
  • a transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are selectively formed.
  • a vacuum deposition method or the like is used as a dry film formation, and coating or various printing methods are used as a wet film formation.
  • NPB N, N-di (naphtalence) -N, N-dipheneyl-benzidene
  • This hole transport layer has a function of transporting holes injected from the anode to the light emitting layer.
  • the hole transport layer may be a single layer or a stack of two or more layers.
  • the hole transport layer is not formed by a single material, but a single layer may be formed by a plurality of materials, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. Doping may be performed.
  • red (R), green (G), and blue (B) light-emitting layers are formed in respective film formation regions by using a resistance heating vapor deposition method using a coating mask.
  • red (R) an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4′-dimethylaminostyryl) -4H-pyran) is used.
  • An organic material that emits green light such as an aluminum quinolinol complex (Alq 3 ) is used as green (G).
  • an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used.
  • a distyryl derivative or a triazole derivative is used.
  • other materials or a host-guest layer structure may be used, and the light emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
  • the electron transport layer formed on the light emitting layer is formed by using various materials such as an aluminum quinolinol complex (Alq 3 ) by various film forming methods such as resistance heating vapor deposition.
  • the electron transport layer has a function of transporting electrons injected from the cathode to the light emitting layer.
  • This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked.
  • the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
  • a material (metal, metal oxide, metal fluoride, alloy, etc.) having a work function smaller than that of the anode (for example, 4 eV or less) is used.
  • metal films such as aluminum (Al), indium (In), magnesium (Mg), amorphous semiconductors such as doped polyaniline and doped polyphenylene vinylene, Cr 2 O 3 , NiO , Oxides such as Mn 2 O 5 can be used.
  • a single layer structure made of a metal material, a laminated structure such as LiO 2 / Al, or the like can be adopted.
  • the sealing substrate 20 can be a plate-like member or container-like member made of metal, glass, plastic, or the like.
  • a glass sealing substrate 20 formed with a recess for sealing by processing such as press molding, etching, or blasting.
  • the sealing region P can be formed between the substrate 10 and a substrate made of glass (which may be plastic) using flat glass.
  • thermosetting type a chemical curing type (mixed with two liquids), a light (ultraviolet) curing type, or the like
  • acrylic resin an epoxy resin, or a polyester is used as a material.
  • Polyolefin or the like can be used.
  • the static electricity charged on the wiring electrodes 30 (30 1 , 30 2 ) patterned on the substrate 10 in the manufacturing stage of the organic EL panel 100 becomes the organic EL panel.
  • An adverse effect on the organic layer 12 and the element structure of the element 1 can be suppressed.
  • the wiring electrode It is possible to prevent the electric charge accumulated in 30 from concentrating on the end portion on the organic EL element 1 side, thereby preventing the electric charge from flowing into the organic EL element 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機ELパネルの製造段階で基板上にパターン形成された配線電極に帯電した静電気が、有機EL素子の有機層や素子構造に悪影響を与えるのを抑止する。基板10上に少なくも一つの有機EL素子1を形成した有機ELパネル100であって、有機EL素子1は、陽極と陰極間に発光層を含む有機層12を配置した積層構造を有し、基板10上には有機EL素子1が形成された発光領域100Aと発光領域から引き出され有機EL素子1の陽極又は陰極と導通する配線電極30が形成された配線領域100Bが形成され、配線電極30は、有機EL素子1側の平面的な端部形状が角部を丸めたR状部30Rを有している。

Description

有機ELパネル及びその製造方法
 本発明は、有機ELパネル及びその製造方法に関するものである。
 有機ELパネルは基板上に単数又は複数の有機EL素子を配置した自発光パネルであり、表示や照明など各種の用途に用いられている。有機EL素子は、基板側から下部電極,発光層を含む有機層,上部電極を順に備えた積層構造を有しており、下部電極と上部電極の一方が陽極となり他方が陰極となって、陽極から注入・輸送される正孔と陰極から注入・輸送される電子が発光層で再結合することによって発光するものである。したがって、有機EL素子は陽極と陰極間を流れる電流の大小によって輝度が決まることになり、素子の発光効率は素子に電気供給する配線電極の電気抵抗に大きく影響されることになる。
 配線電極の電気抵抗が高いと、基板上に配置される有機EL素子の位置によって配線電極の長さが異なるので、配線電極を流れる電流による電圧降下によって素子毎に輝度ムラが発生する問題がある。これに対処するためには、配線電極の電気抵抗を低くすることが必要になり、配線電極はガラス基板との密着性が高い金属酸化物層に低電気抵抗のAl,Agなどの金属又は合金の導電層を積層することが行われている(下記特許文献1参照)。
特開2003-36037号公報
 有機ELパネルの基板上に形成される配線電極には、陰極と導通するための陰極用配線と陽極と導通するために陽極用配線がある。これらの配線電極は、有機層が成膜される前に、有機EL素子の構成要素である下部電極と共に基板上にパターン形成され、有機層が成膜される前には、配線電極のパターンは独立したパターンとして基板上に存在している。このように基板上に独立して存在する配線電極のパターンに静電気が帯電すると、有機層の成膜時或いは有機EL素子の積層構造が形成された後に、帯電した静電気が素子側に流れ込んで、有機層や素子構造に悪影響を及ぼす問題がある。
 また、有機層の成膜時に使用するメタルマスクのアライメントを行う場合、配線電極への帯電がアライメントし難くなるなどの悪影響を及ぼす問題がある。
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、有機ELパネルの製造段階で基板上にパターン形成された配線電極に帯電した静電気が、有機EL素子の有機層や素子構造に悪影響を与えるのを抑止すること、などが本発明の目的である。
 このような目的を達成するために、本発明による有機ELパネル及びその製造方法は、以下の各独立請求項に係る構成を少なくとも具備するものである。
 基板上に少なくも一つの有機EL素子を形成した有機ELパネルであって、前記有機EL素子は、陽極と陰極間に発光層を含む有機層を配置した積層構造を有し、前記基板上には前記有機EL素子が形成された発光領域と該発光領域から引き出され前記有機EL素子の陽極又は陰極と導通する配線電極が形成された配線領域が形成され、前記配線電極は、前記有機EL素子側の平面的な端部形状が角部を丸めたR状部を有していることを特徴とする有機ELパネル。
 基板上に少なくも一つの有機EL素子を形成した有機ELパネルの製造方法であって、複数の有機ELパネルを同時形成する複数のパネル形成領域を有する大判基板上に、複数のパネル形成領域に渡って前記有機EL素子の陽極と陰極の一方に導通する第1の配線電極、前記パネル形成領域毎に形成され前記有機EL素子の陽極と陰極の他方に導通する第2の配線電極、前記第1の配線電極及び第2の配線電極に導通又は近接する電荷放出用の導電パターンを形成する工程と、前記パネル形成領域に有機EL素子を形成する工程と、前記パネル形成領域毎に前記有機EL素子を封止する封止領域を形成する工程と、前記封止領域内で前記第1の配線電極を前記パネル形成領域毎に分断する工程と、前記大判基板を前記パネル形成領域毎に分割して個別の有機ELパネルを形成する工程を有し、前記第2の配線電極は、前記有機EL素子側の端部にR状部を形成すると共に、前記第2の配線電極の前記有機EL素子側とは逆側の端部を前記導電パターンに導通又は近接させることを特徴とする有機ELパネルの製造方法。
本発明の一実施形態に係る有機ELパネルを示す説明図である。同図(a)は有機ELパネルの全体的な平面図、同図(b)はA-A断面図、同図(c)はB部拡大図を示している。 本発明の実施形態に係る有機ELパネルに用いられる配線電極の形態例と従来例を示したものである。同図(a),(b)が本発明の実施形態例、同図(c)は従来例を示している。 本発明の実施形態に係る有機ELパネルにおける電荷放出部の他の形態を示した説明図である。 本発明の他の実施形態に係る有機ELパネルを示した説明図である。 本発明の他の実施形態に係る有機ELパネルを示した説明図である。 本発明の他の実施形態に係る有機ELパネルを示した説明図である。
 以下、図面を参照しながら本発明の実施形態を説明する。本発明の実施形態は図示の内容を含むがこれのみに限定されるものではない。以下の説明では、各図で示した共通部位について同一符号を付して重複説明を一部省略する。
 図1は本発明の一実施形態に係る有機ELパネルを示す説明図である。同図(a)は有機ELパネルの全体的な平面図、同図(b)はA-A断面図、同図(c)はB部拡大図を示している。有機ELパネル100は、基板10上に少なくとも一つの有機EL素子1を形成したものである。有機EL素子1は、基板10側から順次、下部電極11、発光層を有する有機層12、上部電極13を積層して形成され、下部電極11と上部電極13の一方が陰極となり他方が陽極となり、陰極と陽極間に有機層12が配置された積層構造を有している。
 図示の例では、基板10上に直接、下部電極11、有機層12、上部電極13が積層されているが、機能的な或いは膜厚制御などのための他の層を各層間に介在しても良い。基板10が透光性を有し、下部電極11が透光性を有して上部電極13が光反射性を有する場合には、基板10側から光を出射させる方式(ボトムエミッション方式)になり、上部電極13側が透光性を有して下部電極側が光反射性を有する場合には、上部電極13側から光を出射させる方式(トップエミッション方式)になる。下部電極11及び上部電極13の両方を透光性にして両側から光を取り出す方式(デュアルエミッション方式)にしてもよい。
 有機EL素子1は、下部電極11と上部電極13との間に印加された電圧によって、陽極側から正孔が有機層12に注入・輸送され、陰極側から電子が有機層12に注入・輸送されて、正孔と電子が発光層で再結合することで発光する。したがって、陽極と陰極間を流れる電流によって発光輝度が決まることになる。
 同図(b)に示すように有機EL素子1を複数備えた有機ELパネル100は、複数の下部電極11間の電気的絶縁性を確保するために絶縁膜14を備えている。一例としては、下部電極11はストライプ状にパターン形成され、下部電極11上の発光部15を画定する絶縁膜14を備えている。
 有機ELパネル100は、同図(a)に示すように、基板10に封止基板20を貼り合わせた封止構造を有している。そして、有機ELパネル100は、基板10上に有機EL素子1が形成された発光領域100Aと有機EL素子1の陽極又は陰極と導通する配線電極30が形成された配線領域100Bが形成されている。発光領域100Aは封止基板20で覆われた封止領域内に形成されており、配線領域100Bは発光領域100Aの外側に形成されている。配線領域100B内の配線電極30は、下部電極11と導通するものと上部電極13と導通するものに分けられる。下部電極11と導通する配線電極30は、下部電極11と連続して形成することができる。上部電極13と導通する配線電極30は、基板10上に形成された配線電極30と上部電極13とを上部電極13の形成時又は形成後に接続する。
 このような有機ELパネル100において、配線電極30は有機EL素子1側の平面的な端部形状が角部を丸めたR状部30Rを有している(図1(c)参照)。R状部30Rの外周縁は図示の例では円弧状に形成されているが、必ずしも円弧状である必要はなく、複数の曲率が組み合わせられた任意形状の曲線状であってもよい。このようなR状部30Rを設けることで、配線電極30に静電気が帯電した場合であっても、配線電極30の有機EL素子1側の端部に電荷が集中することがなく、配線電極30の有機EL素子1側の端部から電荷が有機EL素子1に流れ込むのを抑止することができる。R状部30Rは配線電極30の全部の端部に設けることで高い効果を得ることができるが、配線電極30の一部の端部に設けることでも所望の効果を得ることができる。また、R状部30Rが設けられる配線電極30は陽極用配線と陰極用配線のいずれかに限られるものではなく、その一方又は両方を対象にすることができる。
 配線電極30の静電気帯電は、配線電極30が基板10上に形成された後、有機層12の成膜前や成膜後、封止領域の形成前や形成後など、あらゆる段階で生じうる。そして、各段階では配線電極30の静電気除去(除電)を効果的に行うことができない場合がある。これに対して、配線電極30の有機EL素子1側の端部にR状部30Rを設けることで、仮に配線電極30が帯電したとしても、有機層12や有機EL素子1に与える静電気の悪影響を最小限に抑えることが可能になる。
 図2は、本発明の実施形態に係る有機ELパネル100に用いられる配線電極30の形態例と従来例を示したものである。同図(a)は前述した図1(c)に示した形態であり、有機EL素子1側(発光領域側)の端部にR状部30Rが設けられている。R状部30Rは端部に電荷が集中しないことを目的に設けられるので左右両側に設けることが好ましい。図示の例ではR状部30Rは左右対称の形状にしているが、必ずしも左右対称の形状でなくてもよい。
 同図(b)に示した配線電極30の形態は、有機EL素子1側(発光領域側)の端部に同図(a)と同様のR状部30Rが設けられており、有機EL素子1側とは逆側(基板端縁側)の端部に電荷放出部30Sが設けられている。電荷放出部30Sは配線電極30に帯電した電荷を配線電極30から外に放出する機能を有するものであり、R状部30Rが形成された端部の逆側の端部に電荷放出部30Sを設けることで有機EL素子1側に向けた電荷の流れを規制することができ、有機EL素子1側の端部に電荷が集中する現象をより確実に抑止することができる。
 電荷放出部30Sの一つの形態は、同図(b)に示すように、配線電極30の端部の平面形状が基板10の端縁側に向けた尖鋭状になっている。これによると、配線電極30に帯電した電荷が尖鋭状の端部の先端に集中し易くなることで、それとは逆側の端部に電荷が集中するのを抑止できる。同図(c)は配線電極30の端部にR状部30Rや電荷放出部30Sを設けない場合の例を示しており、この場合には、配線電極30に静電気が帯電すると端部の角部に電荷の集中が起こり易く、そこから有機EL素子1側へ電荷が流れ込む懸念が生じる。
 図3は、本発明の実施形態に係る有機ELパネルにおける電荷放出部の他の形態を示した説明図である。ここでも有機ELパネル100は、ストライプ状に配列された下部電極11とそれと交差状にストライプ状に配列された上部電極13の交差部分に発光部15を有する有機EL素子1が形成されている。そして、配線電極30は、有機EL素子1が形成された発光領域100Aの外側の配線領域100Bの基板10上に形成され、有機EL素子1側のR状部30Rが形成された端部が上部電極13に接続され、それとは逆側の端部が基板10の端縁に向いて形成されている。
 そして、電荷放出部は、配線電極30の有機EL素子1側とは逆側の端部に近接して形成された導電パターン40によって形成され、導電パターン40は配線電極30の端部の電気抵抗より低い電気抵抗の材料によって形成されている。このような電荷放出部によっても、配線電極30が静電気に帯電した場合に、電荷が低抵抗の導電パターン40側に引き寄せられることで、それとは逆側の端部(有機EL素子1側の端部)に電荷が集中するのを抑止できる。
 この際、配線電極30の有機EL素子1側とは逆側の端部と導電パターン40との距離d2を、配線電極30の有機EL素子1側の端部とこれに直近の有機EL素子1との距離d1より狭くすることで、配線電極30に帯電した電荷をより導電パターン40側に移動させることができ、それとは逆側の端部(有機EL素子1側の端部)に電荷が集中するのをより確実に抑止できる。
 図4及び図5は、本発明の他の実施形態に係る有機ELパネルを示した説明図である(図4が全体平面図、図5が図4におけるM部拡大図)。この例は、大判パネル100mを分割して個々の有機ELパネル100を得ることができるものであり、大判基板10m上に複数の有機ELパネル100を同時形成する複数のパネル形成領域S1,S2,S3,S4を有する。
 大判基板10m上には、第1の配線電極301、第2の配線電極302、導電パターン40が形成されている。第1の配線電極301は、複数のパネル形成領域に渡って形成され、有機EL素子1の陽極と陰極の一方に導通するものであり、図示の例では下部電極11と連続して形成されている。第2の配線電極302は、パネル形成領域毎に形成され、有機EL素子1の陽極と陰極の他方に導通するものあり、図示の例では上部電極13に導通するように形成されている。導電パターン40は、大判基板10m上で各パネル形成領域S1~S4の外側に形成され、第1の配線電極301及び第2の配線電極302に導通するように形成されたもので、第1の配線電極301や第2の配線電極302に帯電した静電気の電荷をパネル形成領域S1~S4の外に放出するために形成されたものである。図示の例では、第1の配線電極301及び第2の配線電極302は導電パターン40と導通した状態になっているが、図3に示すように、第1の配線電極301及び第2の配線電極302の端部と導電パターン40が近接した状態であってもよく、第1の配線電極301や第2の配線電極302に帯電した電荷が導電パターン40側に流れ込み易い形態になっていればよい。
 大判基板10mには、パネル形成領域S1~S4毎に、有機EL素子1を封止するための封止基板20が貼り付けられて、その内側に封止領域Pが形成されている。接着層を介して大判基板10mと封止基板20を貼り合わせることで、その接着層の内側に封止領域Pが形成される。
 そして、第2の配線電極302は、前述した実施形態と同様に、有機EL素子1側の端部にR状部30Rが形成されており、第2の配線電極302の有機EL素子1とは逆側の端部は導電パターン40に導通又は近接されている。また、第1の配線電極301は封止領域P内で分断箇所30nにおいて分断されている。
 図6は図5に示した例の変形例を示している。この例では、第2の配線電極302の有機EL素子1とは逆側の端部を尖鋭状にして図2(b)に示した電荷放出部30Sを形成して、その電荷放出部30Sを電荷放出用の導電パターン40に近接させたものである。このような電荷放出部30Sを設けることで第2の配線電極302に帯電した静電気の電荷をより確実に有機EL素子1側から引き離すことができる。
 図4~図6に示した有機ELパネルの製造方法を説明する。第1の工程としては、複数の有機ELパネル1を同時形成する複数のパネル形成領域S1~S4を有する大判基板10m上に、複数のパネル形成領域に渡って形成される第1の配線電極301、パネル形成領域S1~S4毎に形成される第2の配線電極302、第1の配線電極301及び第2の配線電極302に導通又は近接する電荷放出用の導電パターン40を形成する。
 第1の配線電極301、第2の配線電極302、導電パターン40は、大判基板10m上に導電材料を成膜した後フォトリソ工程などでパターン形成される。第1の配線電極301は下部電極11に連続して形成されるものであるから、透明導電膜(ITOなど)を成膜した後に引き出し配線部分に低電気抵抗の金属膜(Al,Agなど)を成膜し、これをストライプ状にパターン形成する。第2の配線電極302は、前述した端部のR状部30Rや電荷放出部30Sをストライプ状のパターンと同時に形成し、有機EL素子1と逆側の端部を導電パターン40に導通させるか或いは近接させる。導電パターン40は低電気抵抗のAlやAgによって形成され、第1の配線電極301や第2の配線電極302と同時にパターン形成される。
 第2の工程としては、各パネル形成領域S1~S4に有機EL素子1を形成する。下部電極11上に図1に示した絶縁膜14或いは上部電極13を分離する隔壁のパターンを形成して、下部電極11上の発光部15の開口に発光層を含む有機層12を成膜し、更に上部電極13を成膜する。上部電極13の成膜時に上部電極13と第2の配線電極302が接続される。
 第3の工程としては、パネル形成領域S1~S4毎に有機EL素子1を封止する封止領域Pを形成する。大判基板10mのパネル形成領域S1~S4毎に封止基板20を貼り合わせることで、大判基板10mと封止基板20とを貼り合わせる接着層の内側に封止領域Pが形成される。
 第4の工程としては、封止領域P内で第1の配線電極301をパネル形成領域毎に分断する。図5及び図6に示すように、封止領域P内において第1の配線電極301の引き出し配線とは逆側でパネル形成領域の境界に近い部分に分断箇所30nを形成し、第1の配線電極301を独立した配線にする。この分断にはレーザ光が用いられ、透明な大判基板10mや封止基板20を介して照射されたレーザ光を分断線Ldに沿って移動させ、直線的に並んだ分断箇所30nを形成する。このように封止領域P内で第1の配線電極301を分断することで、配線領域以外の部分で封止領域Pの外に引き出された第1の配線電極301から封止領域P内に静電気が侵入するのを抑止することができる。特に、有機ELパネルが結露する状況や配線領域に導電物が付着した場合にも配線間ショートといった不具合解消に本発明は有効である。
 第5の工程としては、大判基板10mをパネル形成領域S1~S4毎に分割して個別の有機ELパネル100を形成する。切断機で図4~図6に示した切断線Ctに沿って大判基板10mを切断し、個々の有機ELパネル100を得る。この際、第1の配線電極301と第2の配線電極302は導電パターン40と切り離されることになり、第1の配線電極301の引き出し配線側が大判基板10mと共に切断されることになる。
 以下に、本発明の実施形態に係る有機ELパネルの構成例を更に具体的に説明する。
 基板10は、ガラス、プラスチック、表面に絶縁材料の層が形成された金属など、有機EL素子1を支持することができる基材によって形成される。下部電極11を形成する透明導電膜は、ITO(Indium Tin Oxide),IZO(Indium Zinc Oxide),酸化亜鉛系透明導電膜,SnO2系透明導電膜,二酸化チタン系透明導電膜などの透明金属酸化物を用い、第1の配線電極301の引き出し配線部分や第2の配線部分302或いは導電パターン40は、低電気抵抗金属である銀(Ag)や銀合金,アルミニウム(Al)やアルミニウム合金などを用いることができる。
 絶縁膜14は、パターニングされた下部電極11のそれぞれの絶縁性を確保するために設けられ、ポリイミド樹脂,アクリル系樹脂,酸化シリコン,窒化シリコンなどの材料が用いられる。絶縁膜14の形成は、下部電極11が形成された基板10上の発光領域100A全面に成膜した後、下部電極11上に発光部15の開口を形成するパターニングがなされる。具体的には、下部電極11が形成された基板10にスピンコート法により所定の塗布厚となるように膜を形成し、露光マスクを用いて露光処理,現像処理を施すことにより、発光部15の開口パターン形状を有する絶縁膜14の層が形成される。この絶縁膜14は、下部電極11のパターン間を埋めると共にその側端部分を一部覆うように形成され、格子状に形成される。これによって、下部電極11上に発光部15を開口して、その領域が絶縁膜14によって絶縁区画されることになる。
 図示省略の隔壁は、マスク等を用いることなく上部電極13のパターンを形成するため、或いは隣り合う上部電極13を完全に電気的に絶縁するために、下部電極11と交差する方向にストライプ状に形成される。具体的には、基板10又は絶縁膜14の上に光感光性樹脂等の絶縁材料を、有機EL素子1を形成する有機層12と上部電極13の膜厚の総和より厚い膜厚にスピンコート法等で塗布形成した後、この光感光性樹脂膜上に下部電極11に交差するストライプ状パターンを有するフォトマスクを介して紫外線等を照射し、層の厚さ方向の露光量の違いから生じる現像速度の差を利用して、側部が下向きのテーパ面を有する隔壁を形成する。
 有機層12は、発光層12Aを含む発光機能層の積層構造を有し、下部電極11と上部電極13の一方を陽極とし他方を陰極とすると、陽極側から順次、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などが選択的に形成される。有機層12の成膜は乾式の成膜として真空蒸着法などが用いられ、湿式の成膜としては塗布や各種の印刷法が用いられる。
 有機層12の形成例を以下に説明する。例えば先ず、NPB(N,N-di(naphtalence)-N,N-dipheneyl-benzidene)を正孔輸送層として成膜する。この正孔輸送層は、陽極から注入される正孔を発光層に輸送する機能を有する。この正孔輸送層は、1層だけ積層したものでも2層以上積層したものであってもよい。また正孔輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングしてもよい。
 次に、正孔輸送層の上に発光層を成膜する。一例としては、抵抗加熱蒸着法により、赤(R)、緑(G)、青(B)の発光層を、塗分け用マスクを利用してそれぞれの成膜領域に成膜する。赤(R)としてDCM1(4-(ジシアノメチレン)-2-メチル-6-(4’-ジメチルアミノスチリル)-4H-ピラン)等のスチリル色素等の赤色を発光する有機材料を用いる。緑(G)としてアルミキノリノール錯体(Alq3) 等の緑色を発光する有機材料を用いる。青(B)としてジスチリル誘導体、トリアゾール誘導体等の青色を発光する有機材料を用いる。勿論、他の材料でも、ホスト‐ゲスト系の層構成でも良く、発光形態も蛍光発光材料を用いてもりん光発光材料を用いたものであってもよい。
 発光層の上に成膜される電子輸送層は、抵抗加熱蒸着法等の各種成膜方法により、例えばアルミキノリノール錯体(Alq3 )等の各種材料を用いて成膜する。電子輸送層は、陰極から注入される電子を発光層に輸送する機能を有する。この電子輸送層は、1層だけ積層したものでも2層以上積層した多層構造を有してもよい。また、電子輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングして形成してもよい。
 有機層12上に形成される上部電極13は、こちらが陰極の場合には、陽極より仕事関数の小さい(例えば4eV以下)材料(金属,金属酸化物,金属フッ化物,合金等)を用いることができ、具体的には、アルミニウム(Al),インジウム(In),マグネシウム(Mg)等の金属膜、ドープされたポリアニリンやドープされたポリフェニレンビニレン等の非晶質半導体、Cr23,NiO,Mn25等の酸化物を使用できる。構造としては、金属材料による単層構造、LiO2/Al等の積層構造等が採用できる。
 封止基板20は、金属製,ガラス製,プラスチック製等による板状部材又は容器状部材を用いることができる。一例としては、ガラス製の封止基板20にプレス成形,エッチング,ブラスト処理等の加工によって封止用凹部(一段掘り込み、二段掘り込みを問わない)を形成したものを用いることもできるし、或いは平板ガラスを使用してガラス(プラスチックでも良い)製のスペーサにより基板10との間に封止領域Pを形成することもできる。
 基板10に封止基板20を貼り合わせる接着剤は、熱硬化型,化学硬化型(2液混合),光(紫外線)硬化型等を使用することができ、材料としてアクリル樹脂,エポキシ樹脂,ポリエステル,ポリオレフィン等を用いることができる。特には、加熱処理を要さず即硬化性の高い紫外線硬化型のエポキシ樹脂製接着剤の使用が好ましい。
 このような特徴を有する有機ELパネル及びその製造方法によると、有機ELパネル100の製造段階で基板10上にパターン形成された配線電極30(301,302)に帯電した静電気が、有機EL素子1の有機層12や素子構造に悪影響を与えるのを抑止することができる。配線電極30(301,302)の端部にR状部30Rを形成することで、配線電極30が静電気で帯電した場合に仮に除電が完全に行われない場合であっても、配線電極30に溜まった電荷が有機EL素子1側の端部に集中するのを抑止でき、これによって有機EL素子1に電荷が流れ込むのを抑止することができる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。上述の各図で示した実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの記載内容を組み合わせることが可能である。また、各図の記載内容はそれぞれ独立した実施形態になり得るものであり、本発明の実施形態は各図を組み合わせた一つの実施形態に限定されるものではない。

Claims (7)

  1.  基板上に少なくも一つの有機EL素子を形成した有機ELパネルであって、
     前記有機EL素子は、陽極と陰極間に発光層を含む有機層を配置した積層構造を有し、
     前記基板上には前記有機EL素子が形成された発光領域と該発光領域から引き出され前記有機EL素子の陽極又は陰極と導通する配線電極が形成された配線領域が形成され、
     前記配線電極は、前記有機EL素子側の平面的な端部形状が角部を丸めたR状部を有していることを特徴とする有機ELパネル。
  2.  前記配線電極の前記有機EL素子側とは逆側の端部には、前記配線電極に帯電した電荷を放出する電荷放出部が形成されていることを特徴とする請求項1記載の有機ELパネル。
  3.  前記電荷放出部は、前記配線電極の端部に形成され、当該端部の平面形状が前記基板の端縁側に向けた尖鋭状になっていることを特徴とする請求項2記載の有機ELパネル。
  4.  前記電荷放出部は、前記配線電極の前記有機EL素子側とは逆側の端部に近接して形成された導電パターンによって形成され、当該導電パターンは前記配線電極の端部の電気抵抗より低い電気抵抗の材料によって形成されていることを特徴とする請求項2記載の有機ELパネル。
  5.  前記配線電極の前記有機EL素子側とは逆側の端部と前記導電パターンとの距離が、前記配線電極の前記有機EL素子側の端部とこれに直近の有機EL素子との距離より狭いことを特徴とする請求項4に記載の有機ELパネル。
  6.  前記発光領域を封止する封止領域が形成され、
     前記封止領域から前記配線領域以外の前記基板の端部に延びる配線電極を備え、
     当該配線電極が前記封止領域内で分断されていることを特徴とする請求項1~5のいずれかに記載の有機ELパネル。
  7.  基板上に少なくも一つの有機EL素子を形成した有機ELパネルの製造方法であって、
     複数の有機ELパネルを同時形成する複数のパネル形成領域を有する大判基板上に、複数のパネル形成領域に渡って前記有機EL素子の陽極と陰極の一方に導通する第1の配線電極、前記パネル形成領域毎に形成され前記有機EL素子の陽極と陰極の他方に導通する第2の配線電極、前記第1の配線電極及び第2の配線電極に導通又は近接する電荷放出用の導電パターンを形成する工程と、
     前記パネル形成領域に有機EL素子を形成する工程と、
     前記パネル形成領域毎に前記有機EL素子を封止する封止領域を形成する工程と、
     前記封止領域内で前記第1の配線電極を前記パネル形成領域毎に分断する工程と、
     前記大判基板を前記パネル形成領域毎に分割して個別の有機ELパネルを形成する工程を有し、
     前記第2の配線電極は、前記有機EL素子側の端部にR状部を形成すると共に、前記第2の配線電極の前記有機EL素子側とは逆側の端部を前記導電パターンに導通又は近接させることを特徴とする有機ELパネルの製造方法。
PCT/JP2010/053660 2010-03-05 2010-03-05 有機elパネル及びその製造方法 WO2011108113A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/581,569 US9082736B2 (en) 2010-03-05 2010-03-05 Organic EL panel and method of manufacturing the same
PCT/JP2010/053660 WO2011108113A1 (ja) 2010-03-05 2010-03-05 有機elパネル及びその製造方法
JP2012502948A JP5638599B2 (ja) 2010-03-05 2010-03-05 有機elパネル及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053660 WO2011108113A1 (ja) 2010-03-05 2010-03-05 有機elパネル及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011108113A1 true WO2011108113A1 (ja) 2011-09-09

Family

ID=44541797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053660 WO2011108113A1 (ja) 2010-03-05 2010-03-05 有機elパネル及びその製造方法

Country Status (3)

Country Link
US (1) US9082736B2 (ja)
JP (1) JP5638599B2 (ja)
WO (1) WO2011108113A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162453A1 (ja) * 2013-04-01 2014-10-09 パイオニア株式会社 接合構造および発光装置
JP2014203525A (ja) * 2013-04-01 2014-10-27 パイオニア株式会社 接合構造および発光装置
WO2018198979A1 (ja) * 2017-04-26 2018-11-01 住友化学株式会社 電極付き基板、積層基板及び有機デバイスの製造方法
US11108028B2 (en) 2017-04-25 2021-08-31 Sumitomo Chemical Company, Limited Manufacturing method for organic electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188362A (ja) * 1992-01-10 1993-07-30 Rohm Co Ltd 液晶表示装置の製造方法とそのガラス基板
JP2001230073A (ja) * 2000-02-17 2001-08-24 Tohoku Pioneer Corp 有機エレクトロルミネッセンス表示パネル及びその製造方法
JP2002014370A (ja) * 2000-06-30 2002-01-18 Optrex Corp 液晶表示パネル
JP2002189225A (ja) * 2000-12-19 2002-07-05 Optrex Corp 反射型液晶表示パネル用マザー基板
JP2006019266A (ja) * 2004-07-02 2006-01-19 Samsung Sdi Co Ltd 電子発光素子
JP2009301032A (ja) * 2008-06-12 2009-12-24 Samsung Mobile Display Co Ltd 平板ディスプレイ装置及び平板ディスプレイ装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185978A (ja) 1994-12-28 1996-07-16 Nippondenso Co Ltd El表示器とその製造方法
JP2001034190A (ja) * 1999-07-21 2001-02-09 Denso Corp パネル基板の実装構造
DE10133686C2 (de) * 2001-07-11 2003-07-17 Osram Opto Semiconductors Gmbh Organisches, elektrolumineszierendes Display und dessen Herstellung
JP4620298B2 (ja) 2001-07-23 2011-01-26 パイオニア株式会社 銀若しくは銀合金配線及びその形成方法並びに表示パネル基板
US7161184B2 (en) * 2003-06-16 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US7002292B2 (en) * 2003-07-22 2006-02-21 E. I. Du Pont De Nemours And Company Organic electronic device
JP4020060B2 (ja) 2003-08-29 2007-12-12 株式会社豊田自動織機 有機電界発光素子
JP2005183209A (ja) 2003-12-19 2005-07-07 Asahi Glass Co Ltd 有機el表示装置及びその製造方法
US7151342B2 (en) * 2004-05-07 2006-12-19 E. I. Du Pont De Nemours And Company Processes for removing organic layers and organic electronic devices formed by the processes
JP2006301407A (ja) * 2005-04-22 2006-11-02 Optrex Corp 表示パネル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188362A (ja) * 1992-01-10 1993-07-30 Rohm Co Ltd 液晶表示装置の製造方法とそのガラス基板
JP2001230073A (ja) * 2000-02-17 2001-08-24 Tohoku Pioneer Corp 有機エレクトロルミネッセンス表示パネル及びその製造方法
JP2002014370A (ja) * 2000-06-30 2002-01-18 Optrex Corp 液晶表示パネル
JP2002189225A (ja) * 2000-12-19 2002-07-05 Optrex Corp 反射型液晶表示パネル用マザー基板
JP2006019266A (ja) * 2004-07-02 2006-01-19 Samsung Sdi Co Ltd 電子発光素子
JP2009301032A (ja) * 2008-06-12 2009-12-24 Samsung Mobile Display Co Ltd 平板ディスプレイ装置及び平板ディスプレイ装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162453A1 (ja) * 2013-04-01 2014-10-09 パイオニア株式会社 接合構造および発光装置
JP2014203525A (ja) * 2013-04-01 2014-10-27 パイオニア株式会社 接合構造および発光装置
US11108028B2 (en) 2017-04-25 2021-08-31 Sumitomo Chemical Company, Limited Manufacturing method for organic electronic device
WO2018198979A1 (ja) * 2017-04-26 2018-11-01 住友化学株式会社 電極付き基板、積層基板及び有機デバイスの製造方法
US11121350B2 (en) 2017-04-26 2021-09-14 Sumitomo Chemical Company, Limited Electrode-attached substrate, laminated substrate, and organic device manufacturing method

Also Published As

Publication number Publication date
US9082736B2 (en) 2015-07-14
JPWO2011108113A1 (ja) 2013-06-20
US20120319570A1 (en) 2012-12-20
JP5638599B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6751459B2 (ja) 有機エレクトロルミネッセンス照明パネル、その製造方法及び有機エレクトロルミネッセンス照明装置
CN110416260B (zh) 显示面板、显示装置和显示面板的制造方法
US9608229B2 (en) Organic EL lighting panel substrate, organic EL lighting panel, and organic EL lighting device
US8710735B2 (en) Organic electroluminescence element
JP5743609B2 (ja) 有機el発光素子
JP5638599B2 (ja) 有機elパネル及びその製造方法
KR101657083B1 (ko) 전기광학장치 및 이의 제작 방법
US20130334958A1 (en) Planar light emitting device and manufacturing method thereof
JP2009259413A (ja) 有機el素子
US9960382B2 (en) Organic electroluminescence element, display panel, and method for manufacturing organic electroluminescence element
WO2012121249A1 (ja) 面状発光装置
JP2009259435A (ja) 有機el素子
WO2012032661A1 (ja) 有機elパネル
RU2603434C2 (ru) Усовершенствованное маскирование для рисунков на светоизлучающих устройствах
WO2011114424A1 (ja) 有機elパネル及びその製造方法
WO2012121251A1 (ja) 面状発光装置
WO2012102268A1 (ja) 有機エレクトロルミネッセンス素子、及び照明装置
WO2010084586A1 (ja) 有機elパネル及びその製造方法
WO2012032662A1 (ja) 有機elパネル
JP4026141B2 (ja) 有機elディスプレイパネルおよびその製造方法
JPWO2012032663A1 (ja) 有機elパネル
JP2005050706A (ja) 画像表示装置
JP2006086084A (ja) 自発光パネルの製造方法
JP5553890B2 (ja) 有機el装置及びその製造方法、有機光電変換装置
JP2014078536A (ja) 有機el装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012502948

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13581569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847015

Country of ref document: EP

Kind code of ref document: A1