WO2011107546A1 - Ionische gruppen aufweisender schmelzklebstoff - Google Patents

Ionische gruppen aufweisender schmelzklebstoff Download PDF

Info

Publication number
WO2011107546A1
WO2011107546A1 PCT/EP2011/053192 EP2011053192W WO2011107546A1 WO 2011107546 A1 WO2011107546 A1 WO 2011107546A1 EP 2011053192 W EP2011053192 W EP 2011053192W WO 2011107546 A1 WO2011107546 A1 WO 2011107546A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mol
hot melt
molecular weight
groups
Prior art date
Application number
PCT/EP2011/053192
Other languages
English (en)
French (fr)
Inventor
Thomas Möller
Melanie Lack
Andrea Krlejova
Riju Davis
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Priority to JP2012555426A priority Critical patent/JP5802687B2/ja
Priority to PL11706813T priority patent/PL2542604T3/pl
Priority to ES11706813.0T priority patent/ES2504093T3/es
Priority to EP11706813.0A priority patent/EP2542604B1/de
Priority to BR112012022302A priority patent/BR112012022302A2/pt
Priority to CN201180012042.1A priority patent/CN102781992B/zh
Publication of WO2011107546A1 publication Critical patent/WO2011107546A1/de
Priority to US13/602,888 priority patent/US20130122287A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/20Compositions for hot melt adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2896Adhesive compositions including nitrogen containing condensation polymer [e.g., polyurethane, polyisocyanate, etc.]

Definitions

  • the invention relates to radiation-crosslinkable hot-melt adhesives with good adhesion based on reactive polyurethanes, which can be used, for example, for bonding films to various substrates.
  • Radiation curing adhesives are well known.
  • flowable, often thin-viscous adhesives are crosslinked by free-radical or cationic polymerization and pressure-sensitive adhesives or solid bonded layers are formed.
  • the polymers must be adapted to the substrate surfaces to ensure good adhesion.
  • One field of application are adhesives for bonding plastic labels on packaging, such as bottles or cans. To ensure good adhesion to the substrate sleeve-shaped shrink labels are often used. Machines and methods are known to apply such round-about labels on rotationally symmetric objects. These labels are produced by gluing. In most cases, thin layers of adhesive are applied.
  • Radiation-curing hot melt adhesives are known, for example, from DE 4041753 A1 or WO 02/34858. In this two-stage polymerizable
  • Urethane-based coating compositions described which are solidified by a content of UV-polymerizable acrylate groups in a first curing stage, and in a subsequent second stage via isocyanate groups irreversible crosslinking occurs.
  • monofunctional acrylates are added to the adhesive as reactive diluents.
  • EP 1262502 describes a linear polymer which has a polyester backbone which contains an unsaturated double bond at one end of the chain and an alcohol at the other end. There are no adhesives described which anreagiert to the base polymer carry the initiator groups.
  • adhesives which can be used as adhesive for bonding labels.
  • Radiation-crosslinkable prepolymers which are prepared on the basis of polyether or polyester polyurethane prepolymers are also used. Only conventional polyols are described, but a specific structure of anionic or cationic polymer chains is not described.
  • UV-crosslinking adhesives are also known from WO 2005/105857. There, reaction products are described from a polyester diol, a polyether polyol together with an OH-functional acrylate, which are reacted with polyisocyanates. These prepolymers are then mixed with monomeric acrylates and initiators and used as a reactive adhesive.
  • the known radiation-crosslinkable adhesives have the disadvantage that the adhesion to plastic substrates can be improved. If different environmental influences regularly act on the bonded area, for example when exposed to locations accessible to daytime weather, the bond can be improved even further. In addition, it is common for label bonding to apply the adhesive only in a thin layer. Crosslinking even in thick layers with good adhesion and elastic bonding is often impossible to achieve.
  • the adhesive should also be applied in a thicker layer and be crosslinked.
  • the object is achieved by the provision of a radiation-crosslinking hotmelt adhesive according to the patent claims.
  • a radiation-crosslinkable hot-melt adhesive is provided which more than
  • At least one polyurethane polymer having at least one radiation-polymerizable reactive group prepared by reacting a) a reactive PU prepolymer having two or three NCO groups per molecule and at least one carboxyl group or a tertiary Amino group, prepared from - i) a mixture of at least one di- or trifunctional polyol selected from polyether or polyester polyols having a molecular weight between 200 to 5000 g / mol together with a diol component, which additionally has a carboxyl group or a tertiary amino group, reacted with ii) an excess of at least one di- or triisocyanate having a molecular weight below 500 g / mol, b) 20 to 98 mol% of at least one low molecular weight compound (B) comprising a free-radically polymerizable double bond and a group reacting with an NCO group , and c
  • Another object of the invention is the use of such hot melt adhesives with radiation-crosslinkable functional groups for bonding films on mineral substrates. Another object of the invention is the use of such hot melt adhesives for bonding to plastic surfaces.
  • the hot-melt adhesive according to the invention consists essentially of a PU polymer which has terminally radiation-crosslinkable reactive double bonds. Furthermore, the PU polymer contains chemically bound initiators. The polymer Framework must also contain ionic groups or groups that can be converted into ionic groups. In a further embodiment, the PU prepolymer additionally contains free, non-crosslinkable polymer chain ends. The PU polymer will be made from an NCO-reactive polyurethane prepolymer.
  • the polyurethane prepolymer A) as the basis for the further reactions is prepared by reacting diol units and / or triol units with di- or triisocyanate compounds. The proportions are chosen so that terminally NCO-functionalized prepolymers are obtained.
  • Another building block is to contain diol compounds which additionally have a tertiary amino group or a carboxylic or sulfonic acid group.
  • the PU prepolymers should be linear, i. are produced predominantly from diols and diisocyanates. An additional use of small amounts of trifunctional polyols or isocyanates is possible.
  • the polyols and polyisocyanates which can be used in the synthesis of the prepolymers are known to the person skilled in the art.
  • Suitable monomeric polyisocyanates are 1,5-naphthylene diisocyanate, 2,2 ' -, 2,4- and / or 4,4'-diphenylmethane diisocyanate (MDI), hydrogenated MDI (H12MDI), allophanates of MDI, xylylene diisocyanate (XDI), Tetramethylxylylene diisocyanate (TMXDI), 4,4'-diphenyldimethylmethane diisocyanate, di- and tetraalkylenediphenylmethane diisocyanate, 4,4'-dibenzyldiisocyanate, 1,3-phenylenediisocyanate, 1,4-phenylenediisocyanate, the isomers of toluylenediisocyanate (TDI), 1-methylbenzidine 2,4-diisocyanato-cyclohexan
  • aliphatic isocyanates such as Hexamethylendiisocy- nat, undecane, dodecamethylene diisocyanate, 2,2,4-trimethylhexane-2,3,3-trimethyl-hexannethylene, 1, 3 or 1, 4-Cyclohexandiisocynat-, 1, 3 or 1, 4-tetramethylxylene diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane, lysine ester diisocyanate or tetramethylxylylene diisocyanate (TMXDI).
  • aliphatic isocyanates such as Hexamethylendiisocy- nat, undecane, dodecamethylene diisocyanate, 2,2,4-trimethylhexane-2,3,3-trimethyl-hexannethylene, 1, 3 or 1, 4-Cyclohexandiisocynat-, 1, 3 or 1, 4-tetramethylxylene
  • Suitable trifunctional isocyanates are polyisocyanates which are formed by trimerization or oligomerization of diisocyanates or by reaction of diisocyanates with polyfunctional compounds containing hydroxyl or amino groups.
  • Isocyanates suitable for the preparation of trimers are the diisocyanates already mentioned above, with the trimerization products of HDI, TMXDI or IPDI being particularly preferred.
  • polyisocyanates having uretdione, isocyanurate, allophanate, biuret, iminooxathizinedione and / or oxadiazinetrione structures are also possible for polyisocyanates having uretdione, isocyanurate, allophanate, biuret, iminooxathizinedione and / or oxadiazinetrione structures to be present.
  • PU prepolymers are preferably based on aliphatic or cycloaliphatic polyisocyanates or oligomers based on HDI, IPDI and / or 2,4 '- or 4,4' -Diisocyanatodicyclohexylmethan.
  • the known polyols having a molecular weight of up to 20,000 g / mol can be selected. They are to be selected, for example, based on polyethers, polyesters, polyolefins, polyacrylates or polyamides, these polymers additionally having to have OH groups. Preference is given to polyols which have terminal OH groups.
  • Polyesters which are suitable as polyol for the preparation of the PU prepolymer in the context of the present invention can be obtained by polycondensation of acid and alcohol components, in particular by polycondensation of a polycarboxylic acid or a mixture of two or more polycarboxylic acids and a polyol or a mixture of two or more polyols , Suitable polycarboxylic acids are those having an aliphatic, cycloaliphatic, aromatic or heterocyclic basic body. If necessary, instead of the free carboxylic acids and their acid anhydrides or their esters with Ci -5 -Mo-alcohols are used for polycondensation.
  • polystyrene resin As diols for the reaction with the polycarboxylic acids, a large number of polyols can be used. For example, aliphatic polyols having 2 to 4 primary or secondary OH groups per molecule and 2 to 20 carbon atoms are suitable. It is also possible to use partially higher-functionality alcohols. Other polyesterols can be prepared based on polycaprolactones. Methods for preparing such polyester polyols are known to those skilled in the art and these products are commercially available. A special
  • Such polyesters for example, by the use of small amounts of
  • Tricarboxylic acids are obtained in the synthesis.
  • polyether polyols are preferably obtained by reacting low molecular weight polyols with alkylene oxides.
  • the alkylene oxides preferably have two to four carbon atoms.
  • Suitable examples are the reaction products of ethylene glycol, propylene glycol or the isomeric butanediols with ethylene oxide, propylene oxide or butylene oxide.
  • reaction products of polyfunctional alcohols such as glycerol, trimethylolethane or trimethylolpropane, pentaerythritol or sugar alcohols with said alkylene oxides to form polyether polyols. They may be random polymers or block copolymers.
  • Particularly suitable are polyether polyols obtainable from the reactions mentioned having a molecular weight of about 200 to about 20,000 g / mol, preferably from about 400 to about 6,000 g / mol.
  • polyacrylates are polymers produced by polymerization of poly (meth) acrylic esters.
  • other copolymerizable monomers may also be present in small proportions.
  • the acrylates according to the invention are intended to be two OH Have groups. These may preferably be present terminally in the polymer.
  • Such OH-functional poly (meth) acrylates are known to the person skilled in the art.
  • polystyrene resins are OH-functionalized polyolefins.
  • Polyolefins are known in the art and can be produced in many molecular masses.
  • Such polyolefins based on ethylene, propylene or higher-chain ⁇ -olefins as homo- or copolymer can be functionalized either by copolymerization of monomers containing functional groups or by grafting reactions.
  • Another possibility is that these base polymers are subsequently provided, for example, by oxidation with OH-functional groups.
  • the olefins are known in the art and can be produced in many molecular masses.
  • Such polyolefins based on ethylene, propylene or higher-chain ⁇ -olefins as homo- or copolymer can be functionalized either by copolymerization of monomers containing functional groups or by grafting reactions.
  • these base polymers are subsequently provided, for example, by oxidation with OH-functional groups.
  • Polyolefins in addition to COOH groups can, for example, be incorporated into the polymers by copolymerization or by grafting with maleic anhydride.
  • the polyols which are suitable according to the invention for the preparation of the PU prepolymers should have a molecular weight of from 200 to 20 000 g / mol. In particular, the molecular weight should be less than 12,000 g / mol. In the case of polyether polyols, the molecular weight, in particular between 400 and 12000 g / mol. In the case of polyesterpolyols, the molecular weight should preferably be between 600 and 2500 g / mol (number average molecular weight, M N , as determined by GPC,
  • Polystyrene standard Particularly suitable are linear polyether polyols,
  • Polyester polyols or mixtures thereof are polyester polyols or mixtures thereof.
  • further isocyanate-reactive groups which additionally contain at least one ionic group or a group convertible into ionic groups.
  • ionic groups may be compounds which have a molecular weight of about 90 to 1000 g / mol, in particular less than 500 g / mol.
  • two OH groups should be included.
  • Another embodiment contains two NRH groups.
  • In less preferred embodiments may also contain SH groups. It is advantageous if they are primary, for example OH groups.
  • ionic group or in an ionic group convertible group are preferably tert.
  • Amino groups or carboxyl, phosphonic acid, phosphoric acid or sulfonic acid groups are suitable.
  • hydroxyalkanecarboxylic acids such as hydroxyacetic acid, 2- or 3-hydroxypropanoic acid, mandelic acid, 2-, 3- or 4-hydroxybutanoic acid, hydroxyisobutanoic acid, hydroxypentanoic acid, hydroxyisopentanoic acid, hydroxyhexanoic acid, hydroxydodecanoic acid, hydroxypentadecanoic acid, hydroxyhexadecanoic acid or castor oil.
  • dihydroxyalkanecarboxylic acids such as dimethylolpropionic acid (DMPA). DMPA is particularly preferred.
  • carboxylic acids having two phenolic OH groups such as dihydroxybenzoic acid or dihydroxydi-carboxylic acids, such as tartaric acid.
  • sulfonic acids such as 3-aminopropanesulfonic acid, N-3- (2-aminoethyl) aminopropyl-sulfonic acid, 2,5-dihydroxy-benzenesulfonic acid, 4,5-dihydroxy-1,3-benzenedisulfonic acid or its salts
  • phosphonic acids such as 3-aminopropanephosphonic acid, 1-hydroxy-ethylidene-diphosphonic acid or N- (2-hydroxyethyl) -iminobis (methylphosphonic acid).
  • alkyldialkanolamines such as alkyldimethanolamines, alkyldiethanolamines, alkyldipropanolamines, examples being N-methyldiethanolamine, N-methyldipropanolamine, N- (2,3-dihydroxypropyl) -piperidine.
  • There is only one type of ionic group preferably only one compound is reacted. By selecting the compounds and the reaction conditions, it is ensured that essentially only the OH groups or NHR groups react with the isocyanates.
  • the amount of the additional ionic groups is selected such that 0.05 to 1 mmol / g, preferably 0.07 to 0.7 mmol / g, particularly preferably 0.1 to 0.5 mmol / g of acid or in the resulting prepolymer tert.
  • Amino groups are included.
  • An embodiment of the invention operates such that in the synthesis of the prepolymers the compounds containing ionic groups are reacted in a mixture with the polyols.
  • Another embodiment first prepares prepolymers, which are then reacted and chain extended in a further reaction step with the difunctional compounds with additional acid or amino group.
  • Prepolymers are preferably prepared from the mentioned polyisocyanates and polyols based on polyether and / or polyester diols. In particular, mixtures of both polyol types are to be used in the synthesis.
  • Embodiment contains tertiary amino groups in the chain, another preferred embodiment carboxyl groups.
  • the resulting reactive PU prepolymers A) are NCO-reactive and carry 3 or preferably 2 isocyanate groups.
  • the reaction of the polyols with the polyisocyanates can be carried out, for example, in the presence of solvents, but preference is given to working in a solvent-free form.
  • the temperature is usually raised, for example between 30 and 130 ° C., preferably between 35 and 100 ° C.,
  • conventional catalysts can be added to the reaction mixture to accelerate the reaction in polyurethane chemistry. Preference is given to the addition of dibutyltin dilaurate, dimethyltin dineodecanoate or diazabicyclooctane (DABCO). The amount of about 0.001 wt .-% to about 0.1 wt .-% of the prepolymer should be.
  • the NCO groups are reacted proportionally with compounds B) which carry a functional group which can react with isocyanates and has, as a further functional group, a double bond which can be crosslinked by free-radical polymerization. These usually have a molecular weight of less than 1500 g / mol.
  • esters of ⁇ -ß-unsaturated carboxylic acids with low molecular weight in particular aliphatic alcohols which carry in the alkyl radical still another OH group.
  • carboxylic acids are acrylic acids, methacrylic acid, crotonic acids, itaconic acid, fumaric acid and maleic acid semiesters.
  • Corresponding OH-containing esters of (meth) acrylic acid are, for example, 2-hydroxyethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 3 Hydroxypropyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, reaction products of glycidyl ethers or esters with acrylic or methacrylic acid, for example
  • the amount of the OH-functional compound with free-radically polymerizable double bonds is selected such that 20 to 98 mol%, in particular 22 to 90 mol%, preferably 25 to 85 mol%, based on the NCO groups of the PU prepolymer are used.
  • a preferred embodiment uses a mixture of methacrylate and acrylate esters, wherein in particular the proportion of acrylates makes up at least 20 mol%, in particular at least 25 mol%, of the mixture.
  • the NCO-reactive PU prepolymer is reacted with at least one compound C) which has at least one isocyanate-reactive group, moreover, no further polymerizable under free-radical conditions group has.
  • isocyanate-reactive groups are OH, SH or NHR groups.
  • These compounds C) should have a molecular weight between 32 and 10,000 g / mol, in particular between 40 and 4000 g / mol.
  • Suitable monofunctional compounds are, for example, alcohols having 1 to 36 carbon atoms, such as methanol, ethanol, propanol and higher homologs, and the corresponding thio compounds, for example having a molecular weight between 40 to 1000 g / mol.
  • monohydroxy- or monoamino-functional polymers are used having a molecular weight of less than 10,000 g / mol, in particular of 1000 and 4000 g / mol. Mixtures of low molecular weight and polymeric building blocks are possible.
  • the functional group should be an OH group.
  • higher functional compounds are suitable.
  • these are diols, triols or polyols, preferably diols or triols, in particular diols.
  • Suitable compounds are, for example, polyols having 2 to 44 carbon atoms, for example ethylene glycol, propanediol, butanediol and higher homologs, and the corresponding thio compounds.
  • the amounts of these polyols in this embodiment are chosen so that there is a suitable molar excess of this reactive functionality with respect to the NCO groups. It is possible to chain extend the NCO prepolymers, but preferably only one OH group is to be reacted, and free OH groups are obtained.
  • the molecular weight of this higher-functional compound C) should be up to 10,000 g / mol, in particular from 200 to 3000 g / mol.
  • SH or NH polymers can also be used.
  • the amount of component C) should be 0 to 50 mol%, in particular 2 to 35 mol%.
  • Photoinitiator (D) is used, which upon irradiation with light of a wavelength of about 215 nm to about 480 nm is capable of initiating a radical polymerization of olefinically unsaturated double bonds.
  • photoinitiator (D) is used, which upon irradiation with light of a wavelength of about 215 nm to about 480 nm is capable of initiating a radical polymerization of olefinically unsaturated double bonds.
  • photoinitiator (D) is used, which upon irradiation with light of a wavelength of about 215 nm to about 480 nm is capable of initiating a radical polymerization of olefinically unsaturated double bonds.
  • all commercially available photoinitiators are suitable which are compatible with the hot-melt adhesive according to the invention.
  • Norrish Type I fragmenting and Norrish Type II substances are all Norrish Type I fragmenting and Norrish Type II substances.
  • Examples include photoinitiators of Kayacure series (manufactured by Nippon Kayaku), Trigonal 14 (manufacturer: Akzo), photoinitiators of the Irgacure ® -, data rocure ® - series (manufactured by Ciba-Geigy), Speedcure® ® series (manufacturer Lambson) , Esacure series (manufacturer: Fratelli Lamberti) or Fi-4 (manufacturer Eastman).
  • those initiators which have at least one NCO-reactive OH group are selected from these initiators.
  • this OH group should react with a part of the NCO groups of the PU prepolymer and be present bound to the polymer.
  • the amount of the reactive initiators should be at least 1 mol% based on the NCO groups of the PU prepolymer, in particular between 4 to 50 mol%, preferably between 0 to 30 mol%.
  • the selected initiator is added as part of the polymer synthesis, in which case the sum of components B, C, D should be 100 mol%, based on the NCO groups of the PU prepolymer.
  • the reaction processes for the reaction of the reactive PU prepolymers are known to the person skilled in the art. In this case, a reaction can take place in a mixture, or the constituents are reacted one after the other. After the reaction, statistically functionalized PU polymers are obtained.
  • the PU polymer should have a molecular weight of less than 200,000 g / mol, in particular between 1,000 and 100,000 g / mol, preferably between 2,000 and 50,000 g / mol, in particular less than 20,000 g / mol.
  • the PU polymer should be substantially free of isocyanate groups, i. after the reaction, only traces of unreacted NCO groups should be present.
  • the amount should be less than 0.1% (based on the prepolymer), more preferably less than 0.05%.
  • the hot melt adhesive may still contain portions of reactive diluents.
  • Suitable reactive diluents are, in particular, those compounds which have one or more reactive functional groups that can be polymerized by irradiation with UV light or with electron beams.
  • acrylate or methacrylate esters are suitable.
  • acrylate or methacrylate esters include, for example, esters of Acrylic acid or methacrylic acid with aromatic, aliphatic or cycloaliphatic polyols or acrylate esters of polyether alcohols.
  • suitable compounds are, for example, the acrylic or metha crylklareester of the aromatic, cycloaliphatic, aliphatic, linear or branched C 4- 2o monoalcohols or of corresponding ether.
  • suitable compounds are 2-ethylhexyl acrylate, octyl / decyl acrylate, isobornyl acrylate, 3-methoxybutyl acrylate, 2-phenoxyethyl acrylate, benzyl acrylate or 2-methoxypropyl acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri ( meth) acrylate, pentaerythritol tetra (meth) acrylate, and (meth) acrylate esters of sorbitol and other sugar alcohols.
  • (meth) acrylate esters of aliphatic or cycloaliphatic diols can optionally be modified with an aliphatic ester or an alkylene oxide.
  • the aliphatic ester-modified acrylates include, for example, neopentyl glycol hydroxypivalate di (meth) acrylate, caprolactone-modified neopentyl glycol hydroxypivalate di (meth) acrylates, and the like.
  • the alkylene oxide-modified acrylate compounds include, for example, ethylene oxide-modified neopentyl glycol di (meth) acrylates, propylene oxide-modified neopentyl glycol di (meth) acrylates, ethylene oxide-modified 1,6-hexanediol di (meth) acrylates or propylene oxide-modified 1,6-hexanediol di (meth) - acrylates, neopentyl glycol-modified (meth) acrylates, trimethylolpropane di (meth) acrylates, polyethylene glycol di (meth) acrylates, polypropylene glycol di (meth) acrylates and the like.
  • Tri- and higher functional acrylate monomers include, for example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri- and tetra (meth) acrylate,
  • Particularly suitable reactive diluents are (meth) acrylic esters which contain three to six (meth) acrylic groups.
  • the amount may be 0 to 10 wt .-%, in particular more than 0.1 wt .-%, preferably 2 to 5 wt .-%. These substances increase the cohesion of this hot melt adhesive according to the invention.
  • auxiliaries and additives additionally usable in the context of the present invention include, for example, plasticizers, stabilizers, antioxidants, adhesion promoters, resins, polymers, dyes or fillers.
  • the hot melt adhesive of the invention contains at least one tackifying resin.
  • the resin causes additional stickiness.
  • all resins which are compatible with the hotmelt adhesive can be used, i. form a largely homogeneous mixture.
  • resins which have a softening point of 70 to 140 ° C are in particular resins which have a softening point of 70 to 140 ° C (ring-ball method, DIN 5201 1).
  • resins which have a softening point of 70 to 140 ° C are, for example, aromatic, aliphatic or cycloaliphatic hydrocarbon resins, as well as modified or hydrogenated versions thereof. Examples of these are aliphatic or alicyclic petroleum hydrocarbon resins and their hydrogenated derivatives.
  • resins which can be used in the context of the invention are, for example, hydroabethyl alcohol and its esters, in particular esters with aromatic carboxylic acids such as terephthalic acid and phthalic acid; modified natural resins such as resin acids from balsam resin, tall resin or root resin, for example partially or fully saponified gum rosin; Alkyl esters of optionally partially hydrogenated rosin with low softening points such as methyl, diethylene glycol, glycerol and pentaerythritol esters; Terpene resins, in particular terpolymers or copolymers of terpene, such as styrene-terpenes, ⁇ -methyl-styrene-terpenes, phenol-modified terpene resins and hydrogenated derivatives thereof; Acrylic acid copolymers, preferably styrene-acrylic acid copolymers and resins based on functional hydrocarbon resins.
  • the resins generally have a low molecular weight. They may be chemically inert, or they still carry functional groups, such as double bonds or OH groups.
  • the resin can be used in an amount of from 0 to 50% by weight, preferably from 10 to 40% by weight, based on the hotmelt adhesive.
  • the adhesives according to the invention may also contain fractions of adhesion promoters. These are, for example, silane compounds which have hydrolysable radicals, for example alkoxy, acetoxy-halogen groups, and also an organic substituent which can also carry a further functional group.
  • Examples of these are hydroxy-functional, (meth) acryloxy-functional, mercapto-functional, amino-functional or epoxy-functional silanes, such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-acryloxypropyltrialkoxysilane, 3-methacryloxypropyltrialkoxysilane, 3-aminopropyltrialkoxysilane, N- (2-aminoethyl) - 3-aminopropyltrialkoxysilane, or their Alkyldialkoxy- analogs, in particular methoxy or ethoxy groups.
  • silanes such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-acryloxypropyltrialkoxysilane, 3-methacryloxypropyltrialkoxysilane, 3-aminopropyltrialkoxysilane, N- (2-a
  • Plasticizers used are, for example, medicinal white oils, naphthenic mineral oils, paraffinic hydrocarbon oils, phthalates, adipates, polypropylene, polybutene, polyisoprene oligomers, hydrogenated polyisoprene and / or polybutadiene oligomers, benzoate esters, vegetable or animal oils and derivatives thereof.
  • As usable stabilizers or antioxidants phenols, hindered phenols of high molecular weight, polyfunctional phenols, sulfur and phosphorus phenols or amines can be selected.
  • pigments for example, titanium dioxide, talc, clay and the like can be selected.
  • waxes may be added to the hot melt adhesive.
  • the amount is calculated so that the adhesion is not adversely affected.
  • the wax can be of natural or synthetic origin.
  • photosensitizers can additionally be used. Through the use of photosensitizers, it is possible to extend the absorption of photopolymerization initiators to shorter and / or longer wavelengths and thus to accelerate crosslinking. The absorbed radiation of certain wavelength is transferred as energy to the photopolymerization initiator.
  • Photosensitizers which can be used in the context of the invention are, for example, acetophenone, thioxanthans, benzophenone and fluorescein and derivatives thereof. If appropriate, proportions of thermoplastic polymers may be present in the adhesives according to the invention, for example they may be polymers having a molecular weight greater than 1000 g / mol.
  • these polymers may have vinylic unsaturated groups.
  • APAO poly-alpha-olefin copolymers
  • thermoplastic polymers may be present from 0 to 30% by weight, in particular from 2 to 25% by weight, in the hot-melt adhesive according to the invention.
  • the molecular weight is generally above 1000, preferably above 10000 g / mol.
  • the selection and the properties of the thermoplastic polymers are known to the person skilled in the art. Overall, the sum of the adhesive components should be 100%.
  • hot melt adhesives are solvent-free and can be prepared in a known manner. They are particularly suitable for the use according to the invention for bonding plastic substrates.
  • Preferred embodiments include a selection of additional components, such as
  • Hot melt adhesives the hot melt adhesive being substantially free of isocyanate groups
  • Hot melt adhesives in which N-methyl- or N-ethyl-diethanolamine or dimethylolpropionic acid or tartaric acid are reacted in,
  • Hot melt adhesives in addition polymers based on polyesters, polyethers, polyamides or polyolefins with vinylic groups which do not contain urethane groups, Hotmelt adhesives, in addition to auxiliaries, such as resins, stabilizers, plasticizers and other photoinitiators,
  • Hot melt adhesives the hot melt adhesive being free from pigments or fillers,
  • Hotmelt adhesives which additionally contain 0.1 to 10 wt .-% of three to six-functional (meth) acrylic acid esters. This embodiment may be present individually or in combination.
  • the radiation-crosslinkable hot-melt adhesives according to the invention are particularly suitable for bonding sheet-like substrates to substrates of glass, metal, fabric, ceramic or plastic.
  • Film-form substrates can include labels, films, plastic tapes, fabric surfaces or similar materials.
  • the support materials of the film substrates are usually thin, flexible and possibly also elastic. These may be, for example, films made of thermoplastics such as polyethylene, polypropylene, polystyrene, polyvinyl chloride or cellophane.
  • the hotmelt adhesives suitable according to the invention When using the hot melt adhesives suitable according to the invention, these are applied to the support material in the molten state, and are crosslinked by radiation in the following method step.
  • the hotmelt adhesives according to the invention should have a correspondingly low viscosity before irradiation; at 130 ° C., they should usually be from 500 mPas to 100,000 mPas, in particular up to 5,000 mPas (measured using a Brookfield viscometer DV 2+, spindle 27, at Temperature, according to EN ISO 2555).
  • the hot melt adhesives of the present invention have the required low viscosity at low processing temperatures, as desired, for example, when used on temperature sensitive substrates.
  • the processing temperatures are in the range of 50 ° C. to 150 ° C., preferably in the rich from 70 ° C to 130 ° C. The processing takes place on known machines.
  • the hot melt adhesive according to the invention is irradiated with a sufficient UV or electron beam dose so that the adhesive layer is crosslinked and has sufficient mechanical stability and cohesion.
  • the UV dose based on the UV-C content should be greater than 10 mJ / cm 2 , in particular greater than 20 mJ / cm 2 , preferably greater than 30 mJ / cm 2 .
  • the amount of non-reactive chain ends can affect tackiness.
  • the amount of unsaturated groups influences the cohesiveness of the crosslinked adhesive. This can be enhanced by adding polyfunctional reactive diluents.
  • a preferred use form of the hot-melt adhesives according to the invention is the coating of self-adhesive films, tapes or labels made of plastic films with an adhesive layer.
  • tapes or films for example based on polyolefins or polyesters, coated with the present invention suitable hot melt adhesive and crosslinked by radiation.
  • a permanent pressure-sensitive adhesive layer is obtained by selecting a suitable adhesive. Thereafter, these materials can be made up. In this way, permanently tacky films, labels and tapes can be produced.
  • the self-adhesive surfaces thus obtained may optionally be covered by anti-adhesive coated carrier films, which are removed in a later use.
  • Another embodiment uses the adhesives according to the invention for bonding foils in the construction industry. It is necessary to apply the adhesive layer in higher layer thicknesses. This can be from 50 to 500 ⁇ . Even in this thickness, a crosslinking by the radiation is observed. It Self-adhesive coatings are obtained with high bond strength. For example, self-adhesive films can be produced for roof coating.
  • hotmelt adhesives for bonding foils of PE, PP, PVC, polyester or polyamide
  • hot melt adhesives according to the invention for bonding to substrates of nonpolar plastics, such as polyethylene, polypropylene, Teflon,
  • the solvent-free hotmelt adhesives according to the invention give a self-adhesive layer after crosslinking. This is storage stable and can be glued later. In this case, it has a high bond strength.
  • the resulting network has a uniform structure and improved adhesion and cohesion over a wide temperature range. Furthermore, it is advantageous that they can not migrate or separate due to the chemically reacted initiators in the adhesive.
  • the adhesives can also be used in thick layers and result in a cohesively stable bond.
  • App 11 four-necked flask with stirrer; Thermocouple; N2 reconciliation; height-adjustable oil bath; Vacuum pump with nitrogen-filled cold trap.
  • a film of PET (50 ⁇ ) was coated with the adhesives and then irradiated (UV lamp, Loctite UVALOC 1000, Cure Chamber, UV-I dose 90 mJ / cm 2 ).
  • the layer thickness of the adhesive was 50 ⁇ .
  • the samples were adhered to solid specimens of the indicated substrates under defined rolling. After 24 hours, the sample was measured.
  • the loop tack is determined according to FINAT test method 9.
  • the shear strength according to FINAT test method 8 is determined.
  • the peel value 180 ° according to FINAT test method 1 is determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Durch Strahlung vernetzbare Schmelzklebstoffe, enthaltend mehr als 30 % bezogen auf den Schmelzklebstoff mindestens eines Polyurethanpolymeren, das mindestens eine durch Strahlung polymerisierbare reaktive Gruppe enthält, hergestellt durch Umsetzung a) eines reaktiven PU-Prepolymeren (A) mit zwei oder drei NCO-Gruppen pro Molekül sowie mindestens einer Carboxylgruppe oder eine tertiären Aminogruppe, hergestellt aus i) einem Gemisch aus mindestens einem di- oder trifunktionellen Polyol ausgewählt aus Polyetherpolyolen oder Polyesterpolyolen mit einer Molekulargewicht zwischen 200 bis 5000 g/mol zusammen mit einer Diolkomponenten, die zusätzlich noch eine Carboxylgruppe oder eine tertiäre Aminogruppe aufweist, umgesetzt mit ii) einem Überschuss mindestens eines Di- oder Triisocyanats mit einer Molekulargewicht unterhalb von 500 g/mol, b) 20 bis 98 Mol-% mindestens einer niedermolekularen Verbindung (B) enthaltend eine radikalisch polymerisierbare Doppelbindung und eine mit einer NCO-Gruppe reagierenden Gruppe, und c) 0 bis 50 Mol-% mindestens einer Verbindung (C), die mindestens eine gegen NCO-Gruppen reaktive Gruppe aufweist, aber keine unter radikalischen Bedingungen polymerisierbare Gruppe, mit einer Molekulargewicht von 32 bis 5000 g/mol und d) 2 bis 50 Mol-% mindestens eines radikalischen Photoinitiators (D), der eine primäre oder sekundäre OH-Gruppe aufweist, wobei die Angeben auf die NCO-Gruppen des PU-Prepolymeren bezogen sind und die Summe aus B, C, D 100 Mol-% ergeben soll, sowie ggf. weitere Hilfsstoffe.

Description

„Ionische Gruppen aufweisender Schmelzklebstoff"
Die Erfindung betrifft strahlenvernetzbare Schmelzklebstoffe mit guter Haftung auf Basis von reaktiven Polyurethanen, die beispielsweise zum Verkleben von Folien auf verschiedenen Substraten eingesetzt werden können.
Strahlenhärtende Klebstoffe sind allgemein bekannt. Dabei werden beispielsweise fließfähige, häufig dünnviskose Klebstoffe durch radikalische oder kationische Polymerisation vernetzt und es entstehen Haftklebstoffe oder feste verklebte Schichten. Die Polymere müssen den Substratoberflächen angepasst werden, um eine gute Haftung sicherzustellen.
Ein Anwendungsgebiet sind Klebstoffe zum Verkleben von Kunststoffetiketten auf Verpackungen, beispielsweise Flaschen oder Dosen. Um eine gute Haftung auf dem Substrat sicherzustellen werden häufig hülsenförmige Schrumpfetiketten eingesetzt. Maschinen und Verfahren sind bekannt, solche Rund-um-Etiketten auf rotationssymmetrische Gegenstände aufzubringen. Dabei werden durch Verkleben diese Etiketten hergestellt. Dabei werden meist dünne Klebstoffschichten af- getragen.
Strahlenhärtende Schmelzklebstoffe sind beispielsweise aus der DE 4041753 A1 oder der WO 02/34858 bekannt. Darin werden zweistufig polymerisierbare
Beschichtungsmassen auf Urethanbasis beschrieben, die durch einen Gehalt an UV-polymerisierbaren Acrylatgruppen im Rahmen einer ersten Härtungsstufe verfestigt werden, und in einer nachfolgenden zweiten Stufe über Isocyanat- gruppen eine irreversible Vernetzung erfolgt. Zur Viskositätsabsenkung werden dem Klebstoff als Reaktivverdünner monofunktionelle Acrylate zugegeben.
Isocyanathaltige Klebstoffe können jedoch gesundheitlich bedenklich sein. ln der EP 1262502 wird ein lineares Polymeres beschrieben, dass ein Polyesterrückgrat aufweist, an einem Kettenende eine ungesättigte Doppelbindung, am anderen Ende einen Alkohol anreagiert enthält. Es werden dort keine Klebstoff beschrieben, die anreagiert an das Basispolymere die Initiatorgruppen tragen.
In der DE 102007015801 werden Klebstoffe beschreiben, die als Klebstoff zum Verkleben von Etiketten eingesetzt werden können. Dabei werden auch strahlen- vernetzbare Prepolymere, die auf Basis von Polyether- oder Polyester- Polyurethanpre-polymeren hergestellt werden. Es werden nur übliche Polyole beschrieben, ein gezielter Aufbau von anionische oder kationische Gruppen aufweisenden Polymerketten wird nicht beschrieben.
UV-vernetzende Klebstoffe sind auch aus der WO 2005/105857 bekannt. Dort werden Umsetzungsprodukte beschrieben aus einem Polyesterdiol, einem Polye- therpolyol zusammen mit einem OH-funktionellen Acrylat, die mit Polyisocyanaten umgesetzt werden. Diese Prepolymere werden dann mit monomeren Acrylaten und Initiatoren gemischt und als reaktiver Klebstoff eingesetzt.
Die bekannten strahlenvernetzbaren Klebstoffe haben aber den Nachteil, dass die Haftung zu Kunststoffsubstraten verbessert werden kann. Wenn regelmäßig unterschiedliche Umwelteinflüsse auf die verklebte Stelle einwirken, beispielsweise bei einer Exposition an der Tageswitterung zugänglichen Stellen, kann die Verklebung noch verbessert werden. Außerdem ist es für Etikettenverklebung üblich, den Klebstoff nur in dünner Schicht aufzutragen. Eine Vernetzung auch in dicker Schicht mit guter Klebkraft und elastischer Verklebung ist häufig nicht zu erzielen.
Es ist daher Aufgabe der vorliegenden Erfindung, einen strahlenhärtbaren Klebstoff, wobei die Verklebung nach Vernetzung eine dauerhafte Belastung auch unter wechselnder thermischer Beanspruchung ermöglicht und der sich durch eine gute Haftung zu Kunststoffoberflächen auszeichnet. Außerdem soll der Klebstoff auch in dickerer Schicht aufzutragen und zu vernetzen sein. Die Aufgabe wird gelöst durch die Bereitstellung eines durch Strahlung vernetzenden Schmelzklebstoffs gemäß den Patentansprüchen. Dabei wird ein durch Strahlung vernetzbarer Schmelzklebstoff bereitgestellt, der mehr als
30 Gew.-% bezogen auf den Schmelzklebstoff mindestens eines Polyurethanpolymeren enthält, das mindestens eine durch Strahlung polymerisierbare reaktive Gruppe aufweist, hergestellt durch Umsetzung a) eines reaktiven PU- Prepolymeren mit zwei oder drei NCO-Gruppen pro Molekül sowie mindestens einer Carboxylgruppe oder einer tertiäre Aminogruppe, hergestellt aus - i) einem Gemisch aus mindestens einem di- oder trifunktionellen Polyol ausgewählt aus Polyetherpolyolen oder Polyesterpolyolen mit einer Molmasse zwischen 200 bis 5000 g/mol zusammen mit einer Diolkomponente, die zusätzlich noch eine Carboxylgruppe oder eine tertiäre Aminogruppe aufweist, umgesetzt mit - ii) einem Überschuss mindestens eines Di- oder Triisocyanats mit einem Molekulargewicht unterhalb von 500 g/mol, b) 20 bis 98 Mol-% mindestens einer niedermolekularen Verbindung (B) enthaltend eine radikalisch polymerisierbaren Doppelbindung und eine mit einer NCO-Gruppe reagierende Gruppe, und c) 0 bis 50 Mol-% mindestens einer Verbindung (C), die mindestens eine gegen NCO-Gruppen reaktive Gruppe aufweist, aber keine unter radikalischen Bedingungen polymerisierbare Gruppe, mit einem Molekulargewicht von 32 bis 5000 g/mol und d) 2 bis 50 Mol-% mindestens eines radikalischen Photoinitiators (D), der eine primäre oder sekundäre OH-Gruppe aufweist, wobei die Angeben auf die NCO-Gruppen des PU- Prepolymeren bezogen sind und die Summe aus B, C, D 100 Mol-% ergeben soll, sowie ggf. weitere Hilfsstoffe.
Ein weiterer Gegenstand der Erfindung ist die Verwendung solcher Schmelzklebstoffe mit strahlenvernetzbaren funktionellen Gruppen zum Verkleben von Folien auf mineralischen Untergründen. Ein weiterer Gegenstand der Erfindung ist die Verwendung solcher Schmelzklebstoffe zur Verklebung auf Kunststoffoberflächen.
Der erfindungsgemäße Schmelzklebstoff besteht im Wesentlichen aus einem PU- Polymer, das endständig strahlenvernetzbare reaktive Doppelbindungen aufweist. Weiterhin enthält das PU-Polymer chemisch gebundene Initiatoren. Das Polymer- gerüst muss außerdem ionische Gruppen oder in ionische Gruppen überführbare Gruppen enthalten. In einer weiteren Ausführungsform enthält das PU-Prepolymer zusätzlich freie, nicht vernetzbare Polymerkettenenden. Das PU-Polymer wird aus einem NCO-reaktiven Polyurethanprepolymer hergestellt werden.
Das Polyurethanprepolymer A) als Basis für die weiteren Umsetzungen wird durch Umsetzung von Diolbausteinen und/oder Triolbausteinen mit Di- oder Tri- Isocyanatverbindungen hergestellt. Dabei werden die Mengenverhältnisse so gewählt, dass endständig NCO-funktionalisierte Prepolymere erhalten werden. Als weiterer Baustein sollen Diolverbindungen enthalten sein, die zusätzlich noch eine tertiäre Aminogruppe oder eine Carbon- oder Sulfonsäuregruppe aufweisen. Insbesondere sollen die PU-Prepolymere linear sein, d.h. überwiegend aus Diolen und Diisocyanaten hergestellt werden. Eine zusätzliche Verwendung von geringen Anteilen an trifunktionellen Polyolen oder Isocyanaten ist möglich. Die bei der Synthese der Prepolymeren einsetzbaren Polyole und Polyisocyanate sind dem Fachmann bekannt.
Es handelt sich dabei um die für Klebstoffanwendung bekannten monomeren Dioder Triisocyanate. Beispiele für geeignete monomere Polyisocyanate sind 1 ,5- Naphthylendiisocyanat, 2,2'-, 2,4- und/oder 4,4'-Diphenylmethandiisocyanat (MDI), hydriertes MDI (H12MDI), Allophanate des MDI, Xylylendiisocyanat (XDI), Tetramethylxylylendiisocyanat (TMXDI), 4,4'-Diphenyldimethylmethandiisocyanat, Di- und Tetraalkylendiphenylmethandiisocyanat, 4,4'-Dibenzyldiisocyanat, 1 ,3- Phenylendiisocyanat, 1 ,4-Phenylendiisocyanat, die Isomeren des Toluylendiisocy- anats (TDI), 1 -Methyl-2,4-diisocyanato-cyclohexan, 1 ,6-Diisocyanato-2,2,4-tri- methylhexan, 1 ,6-Diisocyanato-2,4,4-trimethylhexan, 1 -lsocyanatomethyl-3- isocyanato-1 ,5,5-trimethylcyclohexan (IPDI), chlorierte und bromierte Diisocyana- te, phosphorhaltige Diisocyanate, 4,4'-Di-isocyanatophenylperfluorethan, Tetra- methoxybutan-1 ,4-diisocyanat, Butan-1 ,4-diisocyanat, Hexan-1 ,6-diisocyanat (HDI), Dicyclohexylmethandiisocyanat, Cyclohexan-1 ,4-diisocyanat, Ethylen- diisocyanat, Phthalsäure-bis-isocyanato-ethylester, Trimethylhexamethylendiiso- cyanat, 1 ,4-Diisocyanatobutan, 1 ,12-Diisocyanatododecan, Dimerfettsäurediisocy- anat. Besonders geeignet sind aliphatische Isocyanate wie Hexamethylendiisocy- nat, Undecan-, Dodecamethylendiisocyanat, 2,2,4-Trimethylhexan-2,3,3- Trimethyl-hexannethylen, 1 ,3- oder 1 ,4-Cyclohexandiisocynat-, 1 ,3- oder 1 ,4- Tetramethylxyloldiisocynat, Isophorondiisocynat, 4,4-Dicyclohexylmethan-, Lysi- nesterdiisocyanat oder Tetramethylxylylendiisocyanat (TMXDI).
Als trifunktionelle Isocyanate geeignet sind Polyisocyanate, die durch Trimerisati- on oder Oligomerisation von Diisocyanaten oder durch Reaktion von Diisocyana- ten mit polyfunktionellen hydroxyl- oder aminogruppenhaltigen Verbindungen entstehen. Zur Herstellung von Trimeren geeignete Isocyanate sind die bereits oben genannten Diisocyanate, wobei die Trimerisierungsprodukte von HDI, TMXDI oder IPDI besonders bevorzugt sind.
In einer besonderen Ausführungsform können auch Polyisocyanate mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxathizindion- und/oder Oxadiazintri- onstruktur enthalten sein. Bevorzugt sind PU-Prepolymere auf Basis von aliphatischen oder cycloaliphatischen Polyisocyanaten oder von Oligomeren auf Basis von HDI, IPDI und/oder 2,4'- oder 4,4'-Diisocyanatodicyclohexylmethan.
Als di-funktionelle oder tri-funktionelle Polyole können die bekannten Polyole mit einer Molekulargewicht bis 20000 g/mol ausgewählt werden. Sie sollen beispielsweise auf Basis von Polyethern, Polyestern, Polyolefinen, Polyacrylaten oder Polyamiden ausgewählt werden, wobei diese Polymere zusätzlich OH-Gruppen aufweisen müssen. Bevorzugt sind Polyole, die endständige OH-Gruppen aufweisen.
Im Rahmen der vorliegenden Erfindung als Polyol zur Herstellung des PU- Prepolymeren geeignete Polyester können durch Polykondensation von Säure- und Alkoholkomponenten gewonnen werden, insbesondere durch Polykondensation einer Polycarbonsäure oder eines Gemischs aus zwei oder mehr Polycarbonsäuren und einem Polyol oder einem Gemisch aus zwei oder mehr Polyolen. Als Polycarbonsäure sind solche mit einem aliphatischen, cycloaliphatischen, aromatischen oder heterocyclischen Grundkörper geeignet. Gegebenenfalls können anstatt der freien Carbonsäuren auch deren Säureanhydride oder deren Ester mit Ci-5-Mono- alkoholen zur Polykondensation eingesetzt werden.
Als Diole zur Umsetzung mit den Polycarbonsäuren können eine Vielzahl von Polyolen eingesetzt werden. Beispielsweise sind aliphatische Polyole mit 2 bis 4 primären oder sekundären OH-Gruppen pro Molekül und 2 bis 20 C-Atomen geeignet. Ebenfalls eingesetzt werden können anteilsweise höherfunktionelle Alkohole. Weitere Polyesterole können auf Basis von Polycaprolactonen hergestellt werden. Verfahren zur Herstellung solcher Polyesterpolyole sind dem Fachmann bekannt und diese Produkte sind kommerziell erhältlich. Eine besondere
Ausführungsform der Erfindung verwendet bei der Synthese des PU-Prepolymeren Polyesterdiole, die zusätzlich noch Carboxylgruppen enthalten. Solche Polyester können beispielsweise durch die Verwendung von geringen Anteilen an
Tricarbonsäuren bei der Synthese erhalten werden.
Weiterhin können als Polyol Polyetherpolyole eingesetzt werden. Polyetherpolyole werden vorzugsweise durch Umsetzung von niedermolekularen Polyolen mit Alkylenoxiden erhalten. Die Alkylenoxide weisen vorzugsweise zwei bis vier C-Atome auf. Geeignet sind beispielsweise die Umsetzungsprodukte von Ethylenglykol, Propylenglykol oder den isomeren Butandiolen mit Ethylenoxid, Propylenoxid oder Butylenoxid. Es sind auch Umsetzungsprodukte polyfunktioneller Alkohole wie Glycerin, Trimethylolethan oder Trimethylolpropan, Pentaerythrit oder Zuckeralkohole mit den genannten Alkylenoxiden zu Polyetherpolyolen geeignet. Es kann sich um statistische Polymere oder um Blockcopolymere handeln. Besonders geeignet sind aus den genannten Umsetzungen erhältliche Polyetherpolyole mit einem Molekulargewicht von etwa 200 bis etwa 20.000 g/mol, vorzugsweise von etwa 400 bis etwa 6.000 g/mol.
Weitere geeignete Polyole können auf Basis von Polyacrylaten hergestellt sein. Es handelt sich dabei um durch Polymerisation von Poly(meth)acrylestern hergestellte Polymere. Gegebenenfalls können auch andere copolymerisierbare Monomere zu geringen Anteilen enthalten sein. Die erfindungsgemäßen Acrylate sollen zwei OH- Gruppen aufweisen. Diese können bevorzugt endständig in dem Polymer vorhanden sein. Solche OH-funktionellen Poly(meth)acrylate sind dem Fachmann bekannt.
Eine weitere geeignete Klasse von Polyolen sind OH-funktionalisierte Polyolefine. Polyolefine sind dem Fachmann bekannt und können in vielen Molekularmassen erzeugt werden. Solche Polyolefine auf Basis von Ethylen-, Propylen- oder höher- kettigen α-Olefinen als Homo- oder Copolymer können entweder durch Copolymeri- sation von funktionelle Gruppen enthaltenden Monomeren oder durch Pfropfreaktionen funktional isiert werden. Eine weitere Möglichkeit besteht darin, dass diese Basispolymere nachträglich beispielsweise durch Oxidation mit OH-funktionellen Gruppen versehen werden. In einer anderen Ausführungsform weisen die
Polyolefine zusätzlich COOH-Gruppen auf. Diese können beispielsweise durch Copolymeriation oder durch Pfropfen mit Maleinsäureanhydrid in die polymere einreagiert werden.
Die erfindungsgemäß zur Herstellung der PU-Prepolymere geeigneten Polyole sollen ein Molekulargewicht zwischen 200 bis 20000 g/mol aufweisen. Insbesondere soll das Molekulargewicht kleiner 12000 g/mol sein. Im Falle von Polyetherpolyolen soll das Molekulargewicht, insbesondere zwischen 400 und 12000 g/mol. Im Falle von Polyesterpolyolen soll das Molekulargewicht bevorzugt zwischen 600 und 2500 g/mol (zahlenmittleres Molekulargewicht, MN , wie durch GPC bestimmbar,
Polystyrolstandard). Insbesondere geeignet sind lineare Polyetherpolyole,
Polyesterpolyole oder Gemische davon.
Erfindungsgemäß ist es notwendig, dass zusammen mit den oben erwähnten Polyolen weitere niedermolekulare Verbindungen zwei mit Isocyanaten reagierende Gruppen eingesetzt werden, die zusätzlich mindestens eine ionische Gruppe oder eine in ionische Gruppen überführbare Gruppe enthalten. Es kann sich dabei um Verbindungen handeln, die ein Molekulargewicht von ca. 90 bis 1000 g/mol aufweisen, insbesondere unter 500g/mol. Bevorzugt sollen zwei OH-Gruppen enthalten sein. Eine weitere Ausführungsform enthält zwei NRH-Gruppen. In weniger bevorzugten Ausführungsformen können auch SH-Gruppen enthalten sein. Es ist vorteilhaft, wenn es sich um primäre, beispielsweise OH-Gruppen handelt.
Als ionische Gruppe oder in eine ionische Gruppe überführbare Gruppe sind bevorzugt tert. Aminogruppen oder Carboxyl-, Phosphonsaure-, Phosphorsäureoder Sulfonsäure-gruppen geeignet. Es können eins bis drei Gruppen vorliegen, bevorzugt eine Gruppe, insbesondere eine Carboxylgruppe. Beispiele für solche Verbindungen sind Hydroxyalkancarbonsäuren, wie Hydroxyessigsäure, 2- oder 3- Hydroxypropansäure, Mandelsäure, 2-, 3- oder 4-Hydroxybutansäure, Hydroxyiso- butansäure, Hydroxypentansäure, Hydroxyisopentansäure, Hydroxyhexansäure, Hydroxydodecansäure, Hydroxypentadecansäure, Hydroxyhexadecansäure oder Rizinussäure. Weiterhin möglich sind Dihydroxyalkancarbonsaeuren, wie Dimethylol- propionsaeure (DMPA). DMPA ist besonders bevorzugt. Weiterhin möglich sind Carbonsäuren mit zwei phenolischen OH-Gruppen, wie Dihydroxybenzoesäure oder Dihydroxydi-carbonsäuren, wie Weinsäure. Weiterhin möglich sind Sulfonsäuren, wie 3-Aminopropansulfonsäure, N-3-(2-Aminoethyl)-aminopropyl-sulfonsäure, 2,5- Dihydroxy-benzolsulfonsäure, 4,5-Dihydroxy-1 ,3-benzoldisulfonsäure oder deren Salze, Phosphonsäuren, wie 3-Aminopropanphosphonsäure, 1 -Hydroxy-ethylidendi- phosphonsäure oder N-(2-Hydroxyethyl)-iminobis-(methylphosphonsäure). Weiterhin möglich sind Alkyldialkanolamine, wie Alkyldimethanolamine, Alkyldiethanolamine, Alkyldipropanolamine, Beispiele sind N-Methyldiethanolamin, N-Methyldipropanol- amin, N-(2,3-Dihydroxypropyl)-Piperidin. Bevorzugt werden N-Alkyl-Dialkanolamine eingesetzt oder insbesondere Dihydroxycarbonsäuren. Es liegt nur ein Typ einer ionischen Gruppe vor, bevorzugt wird nur eine Verbindung umgesetzt. Durch die Auswahl der Verbindungen und die Reaktionsbedingungen wird sichergestellt, dass im Wesentlichen nur die OH-Gruppen oder NHR-Gruppen mit den Isocyanaten reagieren.
Die Menge der zusätzlichen ionischen Gruppen wird so gewählt, dass im erhaltenen Prepolymeren 0,05 bis 1 mmol/g, bevorzugt 0,07 bis 0,7 mmol/g, besonders bevorzugt 0,1 bis 0,5 mmol/g Säure- oder tert. Aminogruppen enthalten sind. Eine Ausführungsform der Erfindung arbeitet so, dass bei der Synthese der Prepolymere die Verbindungen enthaltend ionische Gruppen im Gemisch mit den Polyolen umgesetzt werden. Eine andere Ausführungsform stellt zuerst Prepolymere her, die anschließend in einer weiteren Reaktionsstufe mit den difunktionellen Verbindungen mit zusätzlicher Säure- oder Aminogruppe umgesetzt und kettenverlängert werden.
Bevorzugt werden Prepolymere aus den erwähnten Polyisocyanaten und Polyolen auf Basis von Polyether- und/oder Polyesterdiolen hergestellt. Insbesondere sollen Gemische beider Polyoltypen bei der Synthese eingesetzt werden. Eine
Ausführungsform enthält tertiäre Aminogruppen in der Kette, eine andere bevorzugte Ausführungsform Carboxylgruppen. Die entstehenden reaktiven PU-Prepolymere A) sind NCO-reaktiv und tragen 3 oder bevorzugt 2 Isocyanatgruppen.
Die Umsetzung der Polyole mit den Polyisocyanaten kann beispielsweise in Gegenwart von Lösemitteln erfolgen, bevorzugt wird jedoch in lösemittelfreier Form gearbeitet. Zur Beschleunigung der Reaktion wird üblicherweise die Temperatur erhöht, beispielsweise zwischen 30 bis 130°C, bevorzugt 35 bis 100°C,
insbesondere von 40 bis 80°C. Gegebenenfalls können zur Beschleunigung der Reaktion in der Polyurethanchemie übliche Katalysatoren zum Reaktionsgemisch zugesetzt werden. Bevorzugt ist die Zugabe von Dibutylzinndi- laurat, Dimethylzinndineodecanoat oder Diazabicyclooctan (DABCO). Dabei soll die Menge von etwa 0,001 Gew.-% bis etwa 0,1 Gew.-% des Prepolymeren betragen.
In einer weiteren Reaktion werden die NCO-Gruppen anteilsweise mit Verbindungen B) umgesetzt, die eine funktionelle Gruppe tragen, die mit Isocyanaten reagieren kann und als weitere funktionelle Gruppe eine durch radikalische Polymerisation vernetzbare Doppelbindung aufweist. Diese haben üblicherweise ein Molekulargewicht von weniger als 1500 g/mol.
Beispiele für solche Verbindungen sind Ester von α-ß-ungesättigten Carbonsäuren mit niedermolekularen insbesondere aliphatischen Alkoholen, die im Alkylrest noch eine weitere OH-Gruppe tragen. Beispiele für solche Carbonsäuren sind Acryl- säuren, Methacrylsäure, Crotonsäuren, Itaconsäure, Fumarsäure- und Malein- säure-halbester. Entsprechende OH-Gruppen tragende Ester von (Meth)acryl- säure sind beispielsweise 2-Hydroxyethyl(meth)acrylamid, 2-Hydroxyethyl(meth)- acrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat, 3-Hydroxy- propyl(meth)acrylamid, N-Hydroxyethyl(meth)acrylamid, Umsetzungsprodukte von Glycidylethern oder -estern mit Acryl- oder Methacrylsäure, beispielsweise
Umsetzungsprodukte von Versaticsäureglycidylestern mit Acryl- oder Methacrylsäure, Addukte von Ethylenoxid oder Propylenoxid an (Meth)acrylsäure, Umsetzungsprodukte von Hydroxylacrylaten mit ε-Caprolacton oder partielle Umesterungsprodukte von Poylalkoholen, wie Pentaerythrit, Glycerin oder Tri- methylolpropan, mit (Meth)acrylsäure.
Die Menge der OH-funktionellen Verbindung mit radikalisch polymerisierbaren Doppelbindungen wird so gewählt, dass 20 bis 98 Mol-% insbesondere 22 bis 90 Mol-%, bevorzugt 25 bis 85 Mol-% bezogen auf die NCO-Gruppen des PU- Prepolymeren eingesetzt werden. Eine bevorzugte Ausführungsform verwendet ein Gemisch von Methacrylat- und Acrylatestern, wobei insbesondere der Anteil an Acrylaten mindestens 20 Mol-%, insbesondere mindestens 25 Mol-% der Mischung ausmacht.
Weiterhin ist es möglich, dass das NCO-reaktive PU-Prepolymer mit mindestens einer Verbindung C) umgesetzt wird, die mindestens eine mit Isocyanaten reaktive Gruppe aufweist, darüber hinaus keine weitere unter radikalischen Bedingungen poylmerisierbare Gruppe besitzt. Beispiele für solche mit Isocyanate reaktive Gruppen sind OH-, SH- oder NHR-Gruppen. Diese Verbindungen C) sollen ein Molekulargewicht zwischen 32 und 10000 g/mol aufweisen, insbesondere zwischen 40 und 4000 g/mol.
Geeignete monofunktionelle Verbindungen sind beispielsweise Alkohole mit 1 bis 36 C- Atomen, wie beispielsweise Methanol, Ethanol, Propanol und höhere Homologe, sowie die entsprechenden Thioverbindungen, beispielsweise mit einem Molekulargewicht zwischen 40 bis 1000 g/mol. Weiterhin können auch monohydroxy- oder monoamino-funktionelle Polymere eingesetzt werden mit einem Molekulargewicht kleiner 10000 g/mol, insbesondere von 1000 und 4000 g/mol. Auch Gemische von niedermolekularen und polymeren Bausteinen sind möglich. Insbesondere soll die funktionelle Gruppe eine OH-Gruppe sein.
Auch höherfunktionelle Verbindungen sind geeignet. Beispiele dafür sind Diole, Triole oder Polyole, bevorzugt Diole oder Triole, insbesondere Diole. Geeignete Verbindungen sind beispielsweise Polyole mit 2 bis 44 C-Atomen, beispielsweise Ethylenglycol, Propandiol, Butandiol und höhere Homologe, sowie die entsprechenden Thioverbindungen. Die Mengen dieser Polyole werden in dieser Ausführungsform so gewählt, dass ein geeigneter molarer Überschuss dieser reaktiven Funktionalität in Bezug auf die NCO-Gruppen vorliegt. Es kann eine Kettenverlängerung der NCO-Prepolymere erfolgen, bevorzugt soll jedoch nur eine OH-Gruppe umgesetzt werden, und man erhält freie OH-Gruppen. Dabei soll das Molekulargewicht dieser höherfunktionellen Verbindung C) bis 10000 g/mol betragen insbesondere von 200 bis zu 3000 g/mol. Es können auch SH oder NH-Polymere eingesetzt werden. Die Menge der Komponente C) soll 0 bis 50 Mol-% betragen, insbesondere 2 bis 35 Mol-%.
Als weiterer notwendiger Bestandteil anreagiert an das Prepolymer wird ein
Photoinitiator (D) eingesetzt, der bei Bestrahlung mit Licht einer Wellenlänge von etwa 215 nm bis etwa 480 nm dazu in der Lage ist, eine radikalische Polymerisation olefinisch ungesättigter Doppelbindungen zu initiieren. Im Rahmen der vorliegenden Erfindung sind grundsätzlich alle handelsüblichen Photoinitiatoren geeignet, die mit dem erfindungsgemäßen Schmelzklebstoff kompatibel sind.
Beispielsweise sind dies alle Norrish-Type I fragmentierenden und Norrish -Typ II Substanzen. Beispiele hierfür sind Photoinitiatoren der Kayacure -Reihe (Hersteller Nippon Kayaku), Trigonal 14 (Hersteller: Akzo), Photoinitiatoren der Irgacure®-, Da- rocure®- Reihe (Hersteller: Ciba-Geigy), Speedcure®-Reihe (Hersteller Lambson), Esacure-Reihe (Hersteller: Fratelli Lamberti) oder Fi-4 ( Hersteller Eastman ). Aus diesen Initiatoren werden erfindungsgemäß solche ausgewählt, die mindestens eine mit NCO-Gruppen reaktive OH-Gruppe besitzt, beispielsweise eine primäre oder sekundäre OH-Gruppe, insbesondere eine aliphatische OH-Gruppe. Dabei soll diese OH-Gruppe mit einem Teil der NCO-Gruppen des PU-Prepolymeren reagieren und gebunden am Polymeren vorliegen. Die Menge der reaktiven Initiatoren soll mindestens 1 Mol% bezogen auf die NCO-Gruppen des PU- Prepolymeren betragen, insbesondere zwischen 4 bis 50 Mol-%, bevorzugt zwi- schenl O bis 30 Mol-%.
Der ausgewählte Initiator wird im Rahmen der Polymersynthese zugesetzt, wobei dann die Summe der Komponenten B, C, D 100 Mol-% bezogen auf die NCO- Gruppen des PU-Prepolymeren ergeben soll. Die Umsetzungsverfahren zur Umsetzung der reaktiven PU-Prepolymere sind dem Fachmann bekannt. Dabei kann eine Reaktion im Gemisch stattfinden, oder die Bestandteile werden nacheinander umgesetzt. Nach der Umsetzung erhält man statistisch funktionalisierte PU- Polymere.
Das PU-Polymer soll ein Molekulargewicht kleiner 200.000 g/mol aufweisen, insbesondere zwischen 1000 und 100.000 g/mol, bevorzugt zwischen 2000 und 50.000 g/mol, insbesondere unter 20.000 g/mol. Das PU-Polymer soll im wesentlichen frei von Isocyanatgruppen sein, d.h. nach der Umsetzungsreaktion sollen nur noch Spuren von nicht umgesetzten NCO-Gruppen enthalten sein. Die Menge soll unter 0,1 % (bezogen auf das Prepolymer) betragen, besonders bevorzugt kleiner 0,05 %.
Zusätzlich kann der Schmelzklebstoff noch Anteile an Reaktivverdünnern enthalten. Als Reaktivverdünner sind besonders solche Verbindungen geeignet, die eine oder mehrere reaktive durch Bestrahlung mit UV-Licht oder mit Elektronenstrahlen polymerisierbare funktionelle Gruppe aufweisen.
Insbesondere sind di- oder höherfunktionelle Acrylat- oder Methacrylatester geeignet. Solche Acrylat- oder Methacrylatester umfassen beispielsweise Ester der Acrylsäure oder Methacrylsäure mit aromatischen, aliphatischen oder cycloali- phatischen Polyolen oder Acrylatester von Polyetheralkoholen.
Ebenfalls geeignete Verbindungen sind beispielsweise die Acrylsäure- oder Metha- crylsäureester der aromatischen, cycloaliphatischen, aliphatischen, linearen oder verzweigten C4-2o-Monoalkohole oder von entsprechenden Etheralkoholen. Beispiele für solche Verbindungen sind 2-Ethylhexylacrylat, Octyl-/Decylacrylat, Isobornyl- acrylat, 3-Methoxybutylacrylat, 2-Phenoxyethylacrylat, Benzylacrylat oder 2- Methoxypropylacrylat, Neopentylglykoldi(meth)acrylat, 1 ,6-Hexandioldi(meth)acrylat, Trimethylolpropantri(meth)acrylat, Pentaerythrittetra(meth)acrylat, sowie (Meth)- acrylatester des Sorbits und anderer Zuckeralkohole. Diese (Meth)acrylatester von aliphatischen oder cycloaliphatischen Diolen können ggf. mit einem aliphatischen Ester oder einem AI kylenoxid modifiziert werden. Die durch einen aliphatischen Ester modifizierten Acrylate umfassen beispielsweise Neopentylglykolhydroxypivalatdi- (meth)acrylat, Caprolacton-modifizierte Neopentylglykolhydroxypivalatdi(meth)- acrylate und dergleichen. Die Alkylenoxid-modifizierten Acrylatverbindungen umfassen beispielsweise Ethylenoxid-modifizierte Neopentylglykoldi(meth)acrylate, Propylenoxid-modifizierte Neopentylglykoldi (meth)acrylate, Ethylenoxid-modifizierte 1 ,6-Hexandioldi(meth)acrylate oder Propylenoxid-modifizierte 1 ,6-Hexandioldi(meth)- acrylate, Neopentylglykol-modifizierte (Meth)acrylate, Trimethylolpropandi(meth)- acrylate, Polyethylenglykoldi(meth)acrylate, Polypropylenglykoldi(meth)acrylate und dergleichen. Tri- und höherfunktionelle Acrylatmonomere umfassen beispielsweise Trimethylolpropantri(meth)acrylat, Pentaerythritoltri- und tetra(meth)acrylat,
Ditrimethylolpropantetra(meth)acrylat, Dipentaerythritoltetra(meth)acrylat,
Dipentaerytrhitolpenta(meth)acrylat, Dipentaerythritolhexa(meth)acrylat,
Caprolacton-modifiziertes Dipentaerythritolhexa(meth)acrylat, Pentaerythritoltetra- (meth)acrylat, Tris[(meth)acryloxyethyl] isocyanurat, Caprolacton-modifizierte
Tris[(meth)acryloxyethyl]isocyanurate oder Trimethylolpropantetra(meth)acrylat oder Gemische aus zwei oder mehr davon.
Als Reaktivverdünner sind insbesondere (Meth)acrylester geeignet, die drei bis sechs (Meth)acrylgruppen enthalten. Die Menge kann 0 bis 10 Gew.-% betragen, insbesondere mehr als 0,1 Gew.-%, bevorzugt 2 bis 5 Gew.-%. Diese Substanzen erhöhen die Kohäsion dieses erfindungsgemäßen Schmelzklebstoffes.
Zu den im Rahmen der vorliegenden Erfindung in dem Schmelzklebstoff zusätzlich einsetzbaren Hilfs- und Zusatzstoffen zählen beispielsweise Weichmacher, Stabilisatoren, Antioxidantien, Haftvermittler, Harze, Polymere, Farbstoffe oder Füllstoffe.
In einer Ausführungsform enthält der erfindungsgemäße Schmelzklebstoff mindestens ein klebrigmachendes Harz. Das Harz bewirkt eine zusätzliche Klebrigkeit. Es können grundsätzlich alle Harze eingesetzt werden, die mit dem Schmelzklebstoff verträglich sind, d.h. ein weitgehend homogenes Gemisch bilden.
Es handelt sich dabei insbesondere um Harze, die einen Erweichungspunkt von 70 bis 140 °C (Ring-Ball-Methode, DIN 5201 1 ) besitzen. Es sind dieses beispielsweise aromatische, aliphatische oder cycloaliphatische Kohlenwasserstoff-Harze, sowie modifizierte oder hydrierte Versionen davon. Beispiele dafür sind aliphatische oder alicyclische Petroleum-Kohlenwasserstoffharze und deren hydrierte Derivate. Weitere, im Rahmen der Erfindung einsetzbare Harze sind z.B. Hydroabie- tylalkohol und seine Ester, insbesondere Ester mit aromatischen Carbonsäuren wie Terephthalsäure und Phthalsäure; modifizierte Naturharze wie Harzsäuren aus Balsamharz, Tallharz oder Wurzelharz, z.B. teil- oder vollverseiftes Balsamharz; Alkylester von gegebenenfalls teilhydriertem Kolophonium mit niedrigen Erweichungspunkten wie z.B. Methyl-, Diethylenglykol-, Glycerin- und Pentaerythrit- Ester; Terpen-Harze, insbesondere Terpolymere oder Copolymere des Terpens, wie Styrol-Terpene, α-Methyl-Styrol-Terpene, Phenol-modifizierte Terpenharze sowie hydrierte Derivate davon; Acrylsäure-Copolymerisate, vorzugsweise Styrol- Acrylsäure-Copolymere und Harze auf Basis funktioneller Kohlenwasserstoffharze. Die Harze besitzen im Allgemeinen ein niedriges Molekulargewicht. Sie können chemisch inert sein, oder sie tragen noch funktionelle Gruppen, wie Doppelbindungen oder OH-Gruppen. Das Harz kann in einer Menge von 0 bis 50 Gew.- % eingesetzt werden, bevorzugt von 10 bis 40 Gew.-% bezogen auf den Schmelzklebstoff. Die erfindungsgemäßen Klebstoffe können gegebenenfalls auch noch Anteile an Haftvermittlern enthalten. Es handelt sich dabei beispielsweise um Silanverbin- dungen, die hydrolysierbare Reste aufweisen, beispielsweise Alkoxy-, Acetoxy- Halogen-Gruppen, sowie einen organischen Substituenten, der auch eine weitere funktionelle Gruppe tragen kann. Beispiele dafür sind hydroxyfunktionelle, (meth)acryloxyfunktionelle, mercaptofunktionelle, aminofunktionelle oder epoxy- funktionelle Silane, wie 3-Mercaptopropyltrimethoxysilan, 3-Mercaptopropyl- trimethoxysilan, 3-Acryloxypropyltrialkoxysilan, 3-Methacryloxypropyltrialkoxysilan, 3-Aminopropyltrialkoxysilan, N-(2-Aminoethyl)-3-aminopropyltrialkoxysilan, oder deren Alkyldialkoxy- Analoga, insbesondere Methoxy oder Ethoxygruppen.
Als Weichmacher werden beispielsweise medizinische Weißöle, naphtenische Mineralöle, paraffinischen Kohlenwasserstofföle, Phthalate, Adipate, Polypropylen-, Polybuten-, Polyisopren-Oligomere, hydrierte Polyisopren- und/oder Polybutadien- Oligomere, Benzoatester, pflanzliche oder tierische Öle und deren Derivate eingesetzt. Als einsetzbaren Stabilisatoren oder Antioxidantien können Phenole, sterisch gehinderte Phenole hohen Molekulargewichts, polyfunktionelle Phenole, schwefel- und phosphorhaltige Phenole oder Amine ausgewählt werden. Als Pigmente können beispielsweise Titandioxid, Talkum, Ton und dergleichen ausgewählt werden.
Gegebenenfalls können dem Schmelzklebstoff Wachse zugegeben werden. Die Menge ist dabei so bemessen, dass die Adhäsion nicht negativ beeinflusst wird. Das Wachs kann natürlichen oder synthetischen Ursprungs sein.
Ferner können zusätzlich Photosensibilisatoren eingesetzt werden. Durch den Einsatz von Photosensibilisatoren ist es möglich, die Absorption von Photopolymerisationsinitiatoren zu kürzeren und/oder zu längeren Wellenlängen auszuweiten und auf diese Weise die Vernetzung zu beschleunigen. Die von ihnen absorbierte Strahlung bestimmter Wellenlänge wird als Energie auf den Photopolymerisationsinitiator übertragen. Im Rahmen der Erfindung einsetzbare Photosensibilisatoren sind z.B. Acetophenon, Thioxanthane, Benzophenon und Fluoreszein und deren Derivate. Gegebenenfalls können in den erfindungsgemäßen Klebstoffen Anteile an thermoplastischen Polymeren vorliegen, beispielsweise kann es sich um Polymere mit einem Molekulargewicht größer 1000 g/mol handeln. Diese enthalten keine reaktiven Gruppen, in einer anderen Ausführungsform können diese Polymere vinylisch ungesättigte Gruppen aufweisen. Es sind beispielsweise Polymere aus der Gruppe der Polyacrylate, Polymethacrylate und deren Copolymere, Ethylen-n-butylacrylat- Copolymere, Ethylen-(Meth)Acrylsäure-Copolymere, Ethylen-Vinylacetat- Copolymere, Polyvinyl-methylether, Polyvinylpyrrolidon, Polyethyloxazoline, Polyamide, Stärke oder Celluloseester, amorphe Polyolefine, beispielsweise Polypropylen- Homopolymere, Propylen-Buten-Copolymere, Propylen-Hexen-Copolymere und insbesondere amorphe Poly-alpha-Olefin-Copolymere (APAO), die durch Metallocen- Katalyse hergestellt werden, enthalten.
Diese weiteren polymeren Bestandteile können von 0 bis 30 Gew.-%, insbesondere 2 bis 25 Gew.-% im erfindungsgemäßen Schmelzklebstoff enthalten sein. Das Molekulargewicht beträgt im Allgemeinen über 1000, bevorzugt über 10000 g/mol. Die Auswahl und die Eigenschaften der thermoplastischen Polymere sind dem Fachmann bekannt. Insgesamt soll die Summe der Klebstoffbestandteile 100% ergeben.
Die oben genannten Schmelzklebstoffe sind lösemittelfrei und können auf bekannte Art hergestellt werden. Sie sind zu der erfindungsgemäßen Einsatz zum Verkleben von Kunststoffsubstraten besonders geeignet.
Bevorzugte Ausführungsformen umfassen eine Auswahl von zusätzlichen Bestandteilen, wie
- Schmelzklebstoffe, wobei der Schmelzklebstoff im Wesentlichen frei von Isocya- natgruppen ist,
- Schmelzklebstoffe, wobei N-Methyl- oder N-Ethyl- Diethanolamin oder Dimethy- lolpropionsäure oder Weinsäure einreagiert werden,
- Schmelzklebstoffe, wobei zusätzlich Polymere auf Basis von Polyestern, Polye- thern, Polyamiden oder Polyolefinen mit vinylischen Gruppen enthalten sind, die keine Urethangruppen enthalten, -Schmelzklebstoffe, wobei zusätzlich Hilfsstoffe, wie Harze, Stabilisatoren, Weichmacher sowie weitere Photoinitiatoren enthalten sind,
- Schmelzklebstoffe, wobei der Schmelzklebstoff frei von Pigmenten oder Füllstoffen ist,
- Schmelzklebstoffe, wobei die Viskosität bei Applikationstemperatur von 2000 bis 20000 mPas beträgt, insbesondere gemessen bei 130°C.
- Schmelzklebstoffe, die zusätzlich 0,1 bis 10 Gew.-% von drei bis sechs- funktionellen (Meth)acrylsäureestern enthalten. Diese Ausführungsform können einzeln oder auch kombiniert vorliegen.
Die erfindungsgemäßen strahlenvernetzbaren Schmelzklebstoffe sind insbesondere zum Verkleben von folienförmigen Substraten mit Substraten aus Glas, Metall, Gewebe, Keramik oder Kunststoff geeignet. Folienformige Substrate können dabei Etiketten, Folien, Kunststoffbänder, Gewebeflächen oder ähnliche Materialien umfassen. Die Trägermaterialien der Foliensubstrate sind üblicherweise dünn, flexibel und gegebenenfalls auch elastisch. Es kann sich dabei beispielsweise um Folien aus thermoplastischen Kunststoffen wie Polyethylen, Polypropylen, Polystyrol, Polyvinylchlorid oder Zellglas handeln.
Bei der Verwendung der erfindungsgemäß geeigneten Schmelzklebstoffe werden diese in geschmolzenem Zustand auf das Trägermaterial aufgetragen, im folgenden Verfahrensschritt durch Strahlung vernetzt. Für eine problemlose Verarbeitung sollte die erfindungsgemäßen Schmelzklebstoffe vor der Bestrahlung eine entsprechend niedrige Viskosität aufweisen, bei 130 °C soll sie üblicherweise 500 mPas bis 100000 mPas betragen, insbesondere bis 5000 mPas ( gemessen mit einem Brookfield Viskosimeter DV 2+ , Spindel 27, bei angegebener Temperatur, nach EN ISO 2555).
Die erfindungsgemäßen Schmelzklebstoffe weisen die erforderliche niedrige Viskosität bei niedrigen Verarbeitungstemperaturen auf, wie sie beispielsweise bei der Verwendung auf temperaturempfindlichen Substraten gewünscht ist. Die Verarbeitungstemperaturen liegen im Bereich von 50 °C bis 150 °C, bevorzugt im Be- reich von 70 °C bis 130 °C. Die Verarbeitung erfolgt auf an sich bekannten Maschinen.
Nach der Applikation des erfindungsgemäßen Schmelzklebstoffes wird der erfin- dungsgemäße Schmelzklebstoff mit einer ausreichenden UV- oder Elektronenstrahl-Dosis bestrahlt, damit die Klebstoffschicht vernetzt und eine ausreichende mechanische Stabilität und Kohäsion aufweist. Dabei soll die UV-Dosis bezogen auf die UV-C-Anteil größer 10 mJ/cm2, insbesondere größer als 20 mJ/cm2, bevorzugt größer 30 mJ/cm2 betragen.
Durch die Menge der nicht-reaktiven Kettenenden kann die Klebrigkeit beeinflusst werden. Durch die Menge der ungesättigten Gruppen wird die Kohäsion des vernetzten Klebstoffes beeinflusst. Das kann durch Zusatz von mehrfunktionellen Reaktivverdünnern verstärkt werden.
Eine bevorzugte Verwendungsform der erfindungsgemäßen Schmelzklebstoffe ist die Beschichtung von selbstklebenden Folien, Bändern oder Etiketten aus Kunststofffolien mit einer Klebstoffschicht. Dabei werden Bänder oder Folien, beispielsweise auf Basis von Polyolefinen oder Polyestern, mit dem erfindungsgemäß geeigneten Schmelzklebstoff beschichtet und dieser durch Strahlung vernetzt. Es wird in diesem Fall durch Auswahl eines entsprechenden Klebstoffs eine dauerhaft haftklebrige Schicht erhalten. Danach können diese Materialien konfektioniert werden. Auf diese Weise können dann dauerklebrige Folien, Etiketten und Bänder hergestellt werden. Die so erhaltenen selbstklebenden Oberflächen können ggf. durch antiadhäsiv beschichtete Trägerfolien abgedeckt werden, die bei einer späteren Verwendung entfernt wird.
Eine andere Ausführungsform setzt die erfindungsgemäßen Klebstoff zum Verkleben von Folien in der Bauindustrie ein. Dabei ist es notwendig, die Klebstoffschicht in höheren Schichtstärken aufzutragen. Diese kann von 50 bis 500 μιτι betragen. Auch in dieser Dicke ist eine Vernetzung durch die Strahlung festzustellen. Es werden selbstklebende Beschichtungen mit hoher Klebkraft erhalten. Beispielsweise können so selbstklebende Folien zur Dachbeschichtung hergestellt werden.
Bevorzugte Ausführungsformen der Anwendungsverfahren umfassen die
- Verwendung solcher Schmelzklebstoffe, zum Verkleben von Folien aus PE, PP, PVC, Polyester oder Polyamid,
- Verwendung der erfindungsgemäßen Schmelzklebstoffe zum Verkleben auf Substraten aus unpolaren Kunststoffen, wie Polyethylen, Polypropylen, Teflon,
- einseitig beschichtete Foliensubstrate, die eine haftklebrige Schicht aus einem der erfindungsgemäßen Klebstoffe aufweisen,
- Verwendung zum überlappenden Verkleben von Foliensubstraten, wobei diese an der Klebefläche an beiden zugewandten Substratseiten mit einer Klebstoffschicht versehen sind.
Die erfindungsgemäßen lösemittelfreien Schmelzklebstoffe ergeben nach der Vernetzung eine selbstklebende Klebstoffschicht. Dies ist lagerstabil und kann später verklebt werden. Dabei weist sie eine hohe Klebkraft auf. Das entstandene Netzwerk ist gleichmäßig aufgebaut und verbesserte Adhäsion und Kohäsion dabei über einen weiten Temperaturbereich gegeben. Weiterhin ist es vorteilhaft, dass durch die chemisch anreagierten Initiatoren diese im Klebstoff nicht migrieren oder sich separieren können. Die Klebstoffe können auch in dicker Schicht eingesetzt werden und ergeben eine kohäsiv stabile Verklebung.
Der Gegenstand der Erfindung soll anhand der folgenden Beispiele näher erläutert werden. Beispiel 1 (Vergleich):
App: 11-Vierhalskolben mit Rührer; Thermofühler; N2-Überleitung; höhenverstellbares Ölbad; Vakuumpumpe mit stickstoffgefüllter Kühlfalle.
Ansatz:
1 . ) PPG 1000 200,00 g Polypropylenglykol
(OHZ=101 )
2. ) PEG 600 50.5 g Polyethylenglykol
(OHZ = 50)
3. ) Irganox B225 1 ,0 g
4. ) IPDI 77.6 g (Isophorondiisocyanat)
5. ) DBTL 0,03 g Sn Katalysator
6. ) BHT 0,3 g
7. ) 2-Hydroxyethylacrylat 1 1 ,3 g
8. ) aliphatischer Alkohol 15,5 g (Molekulargewicht 268 g/mol, einwertig)
9. ) Irgacure 2959 8,7 g
Versuchsdurchführung:
1 , 2, 3 wurden vorgelegt und auf ca. 120°C aufgeheizt. Anschließend wurde Vakuum angelegt und bei < 10 mbar 1 h entwässert und anschließend mit Stickstoff belüftet. Die Temperatur wurde auf 99°C gesenkt, 4 zugegeben und dann 10 min homogenisiert. Anschließend wurde 5 zugegeben. Die Temperatur erhöht sich. Nach 45 min wurde die NCO-Zahl bestimmt ( ca, 2,47%). Danach wurde mit trockener Luft belüftet.
6 wird zugegeben, homogenisiert, dann 7 und bei 100 °C gerührt. Es wurden 8 und 9 zugesetzt und nach 1 Std. NCO-Wert und Viskosität bestimmt.
Schmelzviskosität 500 mPas bei 120°C; nach 48 stündiger Lagerung bei 120°C betrug die Viskosität 460 mPas; NCO = 0,025%.
Peel-Test ( ASTM D 1876 ): 2,3 N Beispiel 2:
App.: wie in Beispiel 1
1 ) PPG 1000 200,00 g (OHZ=101 )
2) PPG 600 50,5 g ( OHZ = 50 )
3) Irganox B225 1 ,0 g (Stabilisator)
4) IPDI 105,5 g (Isophorondiisocyanat)
5) DBTL 0,03 9
6) BHT 0,4 9
7) 2-Hydroxyethylacrylat 10,1 g
8) aliphat. Alkohol 8,0 g (Molekulargewicht 268 g/mol, einwertig)
9) Irgacure 2959 14,2 g
10) Dimethylolpropionsäure 15,0 g
Versuchsdurchführung:
1 , 2,3, 10, wurden vorgelegt und auf ca. 120°C aufgeheizt. Anschließend wurde Vakuum angelegt und bei < 10 mbar 1 h entwässert und anschließend mit Stickstoff belüftet. Die Temperatur wurde auf 92°C gesenkt, 4 zugegeben und 10 min homogenisiert. Anschließend wurde 5 zugegeben, die Temperatur erhöht sich. Nach 60 min wird die NCO-Zahl bestimmt ( ca. 2,0%). Danach wurde mit trockener Luft belüftet.
6 wurde zugegeben, homogenisiert, dann 7 und bei 100°C gerührt. Nach 30 min. wurden 8 und 9 zugesetzt und nach 1 Std. NCO-Wert und Viskosität bestimmt. Schmelzviskosität 1500 mPas bei 120°C; nach 48 stündiger Lagerung bei 120°C betrug die Viskosität 1850 mPas; NCO = 0,03%. Beispiel 3:
App.: wie in Beispiel 1
1 .) PPG 1000 205 9 (OHZ=101 )
2) PPG 600 51 ,0 (OHZ = 50)
3) Irganox B225 1 ,0
4) IPDI 1 10,5 g (Isophorondiisocyanat)
5) DBTL 0,02 g
6) BHT 0,4 g
7) 2-Hydroxyethylacrylat 1 ,6 g
8) aliphat. Alkohol 2,2 g (Molekulargewicht 268 g/mol
einwertig)
Irgacure 2959 1 ,2 g
10) N-Methyldiethanolamin 15,5 g
Versuchsdurchführung:
1 , 2,3, 10, wurden vorgelegt und auf ca. 120°C aufgeheizt. Anschließend wurde Vakuum angelegt und bei < 10 mbar 1 h entwässert und anschließend mit Stickstoff belüftet. Die Temperatur wurde auf 92°C gesenkt, 4 zugegeben und 10 min homogenisiert. Anschließend wurde 5 zugegeben, die Temperatur erhöht sich. Nach 60 min wird die NCO-Zahl bestimmt ( ca. 0,3%). Danach wurde mit trockener Luft belüftet.
6 wurde zugegeben, homogenisiert, dann 7 und bei 100 °C gerührt. Nach 30 min. wurden 8 und 9 zugesetzt und nach 1 Std. NCO-Wert und Viskosität bestimmt. Schmelzviskosität 1600 mPas bei 120 °C; nach 48 stündiger Lagerung bei 120 °C betrug die Viskosität 1850 mPas; NCO = 0,0%.
Eine Folie aus PET (50 μιτι) wurde mit den Klebstoffen beschichtet und danach bestrahlt (UV-Lampe, Loctite UVALOC 1000, Cure Chamber, UV-I Dosis 90 mJ /cm2).
Die Schichtstärke des Klebstoffs betrug 50 μιτι. Die Proben wurden auf feste Prüfkörper aus den angegebenen Substraten geklebt unter definiertem Anrollen. Nach 24 Std. wurde die Probe vermessen.
Figure imgf000025_0001
Es wird der loop tack nach FINAT Test Methode 9 bestimmt.
Es wird die shear-Festigkeit nach FINAT Test Methode 8 bestimmt.
Es wird der peel-Wert 180 ° nach FINAT Test Methode 1 bestimmt.
Es zeigt sich, dass die Verklebungen mit den erfindungsgemäßen Klebstoffen besser sind als ein Vergleichsklebstoff.

Claims

Patentansprüche
1 . Durch Strahlung vernetzbare Schmelzklebstoffe, enthaltend mehr als
30 Gew.-% bezogen auf den Schmelzklebstoff mindestens eines Polyurethanpolymeren, das mindestens eine durch Strahlung polymerisierbare reaktive Gruppe enthält, hergestellt durch Umsetzung
a) eines reaktiven PU-Prepolymeren (A) mit zwei oder drei NCO-Gruppen pro Molekül sowie mindestens einer Carboxylgruppe oder eine tertiären Ami- nogruppe, hergestellt aus
i) einem Gemisch aus mindestens einem di- oder trifunktionellen Polyol ausgewählt aus Polyetherpolyolen oder Polyesterpolyolen mit einem Molekulargewicht zwischen 200 bis 5000 g/mol zusammen mit einer Diol- komponente, die zusätzlich noch eine Carboxylgruppe oder eine tertiäre Aminogruppe aufweist, umgesetzt mit
ii) einem Überschuss mindestens eines Di- oder Triisocyanats mit einer Molekulargewicht unterhalb von 500 g/mol,
b) 20 bis 98 Mol-% mindestens einer niedermolekularen Verbindung (B) enthaltend eine radikalisch polymerisierbare Doppelbindung und eine mit einer NCO-Gruppe reagierender Gruppe, und
c) 0 bis 50 Mol-% mindestens einer Verbindung (C), die mindestens eine gegen NCO-Gruppen reaktive Gruppe aufweist, aber keine unter radikalischen Bedingungen polymerisierbare Gruppe, mit einem Molekulargewicht von 32 bis 5000 g/mol und
d) 2 bis 50 Mol-% mindestens eines radikalischen Photoinitiators (D), der eine primäre oder sekundäre OH-Gruppe aufweist,
wobei die Angeben auf die NCO-Gruppen des PU-Prepolymeren bezogen sind und die Summe aus B, C, D 100 Mol-% ergeben soll,
sowie ggf. weitere Hilfsstoffe.
2. Schmelzklebstoff nach Anspruch 1 , dadurch gekennzeichnet, dass als Isocya- nate (a ii) aliphatische Isocyanate eingesetzt werden.
3. Schmelzklebstoff nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die niedermolekulare Verbindung B) ein Molekulargewicht unter 1500 g/mol aufweist, insbesondere wobei OH-funktionelle Ester der (Meth)Acryl- säure eingesetzt werden.
4. Schmelzklebstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Verbindung (C) 2 bis 35 Mol% mono- oder difunktionelle Alkohole eingesetzt werden.
5. Schmelzklebstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Diolkomponente N-Alkyl-di-Alkanolamine oder Dihydroxycarbonsäu- ren enthalten sind.
6. Schmelzklebstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass 4 bis 40 Mol% radikalische Photoinitiatoren (D) eingesetzt werden, die eine primäre OH-Gruppe aufweisen.
7. Schmelzklebstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das strahlenvernetzbare PU-Prepolymer 0,05 bis 1 mmol/g COOH- Gruppen oder tert. Aminogruppen enthält.
8. Schmelzklebstoffe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zusätzlich 0,1 bis 10 Gew.-% von drei bis sechs-funktionellen
(Meth)acrylsäureestern enthalten sind.
9. Schmelzklebstoffe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zusätzlich Polymere auf Basis von Polyestern, Polyethern, Polyamiden oder Polyolefinen mit vinylischen Gruppen enthalten sind, die keine Ur- ethangruppen enthalten, l O. Schmelzklebstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Viskosität bei Applikationstemperatur von 2000 bis 20000 mPas beträgt, insbesondere gemessen bei 130°C.
11 .Verwendung von Schmelzklebstoffen nach einem der Ansprüche 1 bis 10 zur Herstellung von haftklebrigen Klebstoffschichten auf Kunststofffolien.
12. Verwendung nach Anspruch 1 1 zum Verkleben von Folien aus PE, PP, PVC, Polyester oder Polyamid.
13. Verwendung nach Anspruch 1 1 zum Verkleben von Foliensubstraten auf
mineralischen Untergründen oder auf Kunststoffsubstraten
14. Verwendung nach einem der Ansprüche 1 1 bis 13, dadurch gekennzeichnet, dass der Schmelzklebstoff in einer Schichtdicke bis 500 μιτι aufgetragen wird.
PCT/EP2011/053192 2010-03-05 2011-03-03 Ionische gruppen aufweisender schmelzklebstoff WO2011107546A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012555426A JP5802687B2 (ja) 2010-03-05 2011-03-03 イオン基を含むホットメルト接着剤
PL11706813T PL2542604T3 (pl) 2010-03-05 2011-03-03 Klej topliwy wykazujący grupy jonowe
ES11706813.0T ES2504093T3 (es) 2010-03-05 2011-03-03 Adhesivo termoplástico que presenta grupos iónicos
EP11706813.0A EP2542604B1 (de) 2010-03-05 2011-03-03 Ionische gruppen aufweisender schmelzklebstoff
BR112012022302A BR112012022302A2 (pt) 2010-03-05 2011-03-03 adesivo de fusão apresentando grupos iônicos.
CN201180012042.1A CN102781992B (zh) 2010-03-05 2011-03-03 含离子基团的热熔粘合剂
US13/602,888 US20130122287A1 (en) 2010-03-05 2012-09-04 Hot-melt adhesive comprising ionic groups

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010002622.0 2010-03-05
DE102010002622A DE102010002622A1 (de) 2010-03-05 2010-03-05 Ionische Gruppen aufweisender Schmelzklebstoff

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/602,888 Continuation US20130122287A1 (en) 2010-03-05 2012-09-04 Hot-melt adhesive comprising ionic groups

Publications (1)

Publication Number Publication Date
WO2011107546A1 true WO2011107546A1 (de) 2011-09-09

Family

ID=44201092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053192 WO2011107546A1 (de) 2010-03-05 2011-03-03 Ionische gruppen aufweisender schmelzklebstoff

Country Status (9)

Country Link
US (1) US20130122287A1 (de)
EP (1) EP2542604B1 (de)
JP (1) JP5802687B2 (de)
CN (1) CN102781992B (de)
BR (1) BR112012022302A2 (de)
DE (1) DE102010002622A1 (de)
ES (1) ES2504093T3 (de)
PL (1) PL2542604T3 (de)
WO (1) WO2011107546A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527383A1 (de) * 2011-05-27 2012-11-28 Henkel AG & Co. KGaA Verfahren zur Herstellung von dicken Schichten aus strahlungsgehärteten Haftmitteln
CN102965065A (zh) * 2012-11-13 2013-03-13 山东泰德新能源有限公司 一种水性粘合剂及其制备方法
WO2014015497A1 (en) * 2012-07-26 2014-01-30 Henkel Ag & Co. Kgaa Uv-curing hot melt adhesive containing low content of oligomers

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521012A1 (de) 2013-09-18 2019-08-07 Firestone Building Products Co., LLC Abziehbare und klebbare dachmembranen mit gehärteten druckempfindlichen haftstoffen
CA2941239C (en) 2014-03-07 2022-12-06 Firestone Building Products Co., LLC Roofing membranes with pre-applied, cured, pressure-sensitive seam adhesives
JP6241680B2 (ja) * 2014-12-16 2017-12-06 オート化学工業株式会社 一液型硬化性組成物及び一液型防水材
WO2017032381A1 (en) 2015-08-24 2017-03-02 Coloplast A/S An adhesive composition
WO2017165652A1 (en) * 2016-03-23 2017-09-28 H.B. Fuller Company Reactive hot melt adhesive composition
EP3433098A1 (de) 2016-03-25 2019-01-30 Firestone Building Products Co., LLC Mit einem herkömmlichen klebstoff verklebtes und gefalztes, vollständig verklebtes dachsystem
CN109952355B (zh) * 2016-11-10 2022-06-14 汉高股份有限及两合公司 反应性热熔粘合剂组合物及其用途
EP3601466A4 (de) * 2017-03-30 2020-11-25 Dow Global Technologies LLC Feuchtigkeitshärtbare polyurethan-heisschmelzharzzusammensetzung
CN108859346A (zh) * 2017-05-08 2018-11-23 上海海优威新材料股份有限公司 新型多层粘结性薄膜及其制备方法
CN110078882A (zh) * 2019-04-28 2019-08-02 东莞华工佛塑新材料有限公司 一种双面胶胶带用聚氨酯弹性体的制备方法
CN113403018B (zh) * 2021-06-30 2023-03-21 湖南松井新材料股份有限公司 一种聚氨酯热熔胶及其制备方法和应用
CN116176087B (zh) * 2023-04-27 2023-09-29 宁波时代铝箔科技股份有限公司 具有高抗菌高阻隔性能的包装薄膜材料、制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041753A1 (de) 1990-12-24 1992-06-25 Henkel Kgaa Neue reaktivkontaktkleber, verfahren zu ihrer herstellung und ihre verwendung
DE19742217A1 (de) * 1997-09-24 1999-04-01 Henkel Kgaa Hydrophiles, hochmolekulares Polyurethan, Klebstoffzusammensetzungen, die dieses enthalten sowie Verwendung dieses Polyurethans
WO2002034858A1 (de) 2000-10-23 2002-05-02 Henkel Kommanditgesellschaft Auf Aktien Monomerarmer reaktivklebstoff mit mehrstufiger aushärtung
EP1262502A1 (de) 2001-05-25 2002-12-04 Kyoeisha Chemical Co., Ltd. Ein Druckrelief und Klebstoffmaterial zum Herstellen desselben
WO2005105857A1 (en) 2004-04-27 2005-11-10 Ashland Inc. Polyester-polyether hybrid urethane acrylate oligomer for uv curing pressure sensitive adhesives
DE102007015801A1 (de) 2007-03-30 2008-10-02 Henkel Ag & Co. Kgaa Strahlenvernetzender Schmelzklebstoff

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123421A (en) * 1977-03-21 1978-10-31 Witco Chemical Corporation Stable tertiary amine containing terminally unsaturated polyurethane resins
JPH023464A (ja) * 1988-06-13 1990-01-09 Toyobo Co Ltd 無機物の被覆用または接着用樹脂
DE4011455A1 (de) * 1990-04-09 1991-10-10 Henkel Kgaa Haushaltsalleskleber auf polyurethanbasis
JPH0616749A (ja) * 1992-07-03 1994-01-25 Three Bond Co Ltd 電気・電子部品用光硬化性樹脂組成物
DE19853813A1 (de) * 1997-12-10 1999-06-17 Henkel Kgaa Klebstoff mit mehrstufiger Aushärtung und dessen Verwendung bei der Herstellung von Verbundmaterialien
US8333542B2 (en) * 2001-10-24 2012-12-18 Henkel Ag & Co. Kgaa Bookbinding process
DE10261196A1 (de) * 2002-12-20 2004-07-01 Basf Ag Kaschierklebstoff
ATE307168T1 (de) * 2003-03-19 2005-11-15 Collano Ag Uv-härtender schmelzklebstoff
US7396875B2 (en) * 2003-06-20 2008-07-08 Bayer Materialscience Llc UV-curable waterborne polyurethane dispersions for soft touch coatings
US20060216523A1 (en) * 2003-08-19 2006-09-28 Shunsuke Takaki Pressure-sensitive adhesive tape and pressure-sensitive adhesive composition for medical adhesive tape
EP2113527B1 (de) * 2008-04-28 2014-05-21 Bayer Intellectual Property GmbH Verformbare Folie mit strahlungshärtbarer Beschichtung und hieraus hergestellte Formkörper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041753A1 (de) 1990-12-24 1992-06-25 Henkel Kgaa Neue reaktivkontaktkleber, verfahren zu ihrer herstellung und ihre verwendung
DE19742217A1 (de) * 1997-09-24 1999-04-01 Henkel Kgaa Hydrophiles, hochmolekulares Polyurethan, Klebstoffzusammensetzungen, die dieses enthalten sowie Verwendung dieses Polyurethans
WO2002034858A1 (de) 2000-10-23 2002-05-02 Henkel Kommanditgesellschaft Auf Aktien Monomerarmer reaktivklebstoff mit mehrstufiger aushärtung
EP1262502A1 (de) 2001-05-25 2002-12-04 Kyoeisha Chemical Co., Ltd. Ein Druckrelief und Klebstoffmaterial zum Herstellen desselben
WO2005105857A1 (en) 2004-04-27 2005-11-10 Ashland Inc. Polyester-polyether hybrid urethane acrylate oligomer for uv curing pressure sensitive adhesives
DE102007015801A1 (de) 2007-03-30 2008-10-02 Henkel Ag & Co. Kgaa Strahlenvernetzender Schmelzklebstoff

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527383A1 (de) * 2011-05-27 2012-11-28 Henkel AG & Co. KGaA Verfahren zur Herstellung von dicken Schichten aus strahlungsgehärteten Haftmitteln
WO2012163593A1 (en) * 2011-05-27 2012-12-06 Henkel Ag & Co. Kgaa A process to manufacture thick layers of radiation cured adhesives
WO2014015497A1 (en) * 2012-07-26 2014-01-30 Henkel Ag & Co. Kgaa Uv-curing hot melt adhesive containing low content of oligomers
US9676977B2 (en) 2012-07-26 2017-06-13 Henkel Ag & Co. Kgaa UV-curing hot melt adhesive containing low content of oligomers
CN102965065A (zh) * 2012-11-13 2013-03-13 山东泰德新能源有限公司 一种水性粘合剂及其制备方法

Also Published As

Publication number Publication date
US20130122287A1 (en) 2013-05-16
CN102781992B (zh) 2014-11-26
EP2542604B1 (de) 2014-06-25
ES2504093T3 (es) 2014-10-08
JP5802687B2 (ja) 2015-10-28
PL2542604T3 (pl) 2014-11-28
CN102781992A (zh) 2012-11-14
EP2542604A1 (de) 2013-01-09
BR112012022302A2 (pt) 2017-10-31
JP2013521366A (ja) 2013-06-10
DE102010002622A1 (de) 2011-09-08

Similar Documents

Publication Publication Date Title
EP2542604B1 (de) Ionische gruppen aufweisender schmelzklebstoff
EP2132276B1 (de) Strahlenvernetzender schmelzklebstoff
EP2569346B1 (de) Filmbildender strahlenvernetzender klebstoff
EP3116925B1 (de) Uv-reaktiver schmelzklebstoff für die laminierung transparenter folien
TWI464187B (zh) 輻射硬化型黏著劑
WO2012041719A1 (de) Polyurethan-schmelzklebstoff aus polyacrylaten und polyestern
JP2008063406A (ja) 反応性ホットメルト接着剤組成物及びそれを用いた接着方法
US20140087166A1 (en) Process to manufacture thick layers of radiation cured adhesives
US9676977B2 (en) UV-curing hot melt adhesive containing low content of oligomers
DE102007060536A1 (de) Beschichtungsmittel mit doppelter Vernetzung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012042.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11706813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011706813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7545/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012555426

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022302

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022302

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120904