WO2011105193A1 - ノイズ抑制構造を有する回路基板 - Google Patents

ノイズ抑制構造を有する回路基板 Download PDF

Info

Publication number
WO2011105193A1
WO2011105193A1 PCT/JP2011/052357 JP2011052357W WO2011105193A1 WO 2011105193 A1 WO2011105193 A1 WO 2011105193A1 JP 2011052357 W JP2011052357 W JP 2011052357W WO 2011105193 A1 WO2011105193 A1 WO 2011105193A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
wiring layer
conductor
circuit board
suppression structure
Prior art date
Application number
PCT/JP2011/052357
Other languages
English (en)
French (fr)
Inventor
淳 堺
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2011105193A1 publication Critical patent/WO2011105193A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0248Skew reduction or using delay lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0723Shielding provided by an inner layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias

Definitions

  • the present invention relates to a noise suppression structure for a circuit board such as a printed circuit board that can be applied to electronic devices and electric devices including wireless devices such as mobile phones, wireless-equipped personal computers, and portable information terminals.
  • This noise propagation path includes a path in which noise affects other components via a power distribution system and a path in which noise directly affects signal wiring.
  • FIG. 17 An example of a noise generation structure caused by the power distribution system is shown in FIG.
  • integrated circuits for example, large scale integrated circuit LSIs
  • LSIs large scale integrated circuit LSIs
  • a high-speed signal is transmitted from the integrated circuit 102 to the integrated circuit 103 via the signal wiring 106.
  • a high-speed signal is transmitted from the integrated circuit 104 to the integrated circuit 105 via the signal wiring 107.
  • a bypass capacitor 108 is mounted on the circuit board 101.
  • a ground plane (not shown) is formed around these components on the surface of the circuit board 101, and a power plane (not shown) is formed on the inner layer of the circuit board 101.
  • a power source 109 is mounted on the circuit board 101, and the power source 109 is connected to the power plane and the ground plane.
  • FIG. 18 is a circuit diagram when the bypass capacitor 108 is not mounted.
  • a charge / discharge current (indicated by Icd) is supplied from the power supply 109 to the power supply plane or the ground plane in accordance with ON / OFF switching of the transistors existing in the integrated circuit 103.
  • Icd charge / discharge current
  • the power supply voltage of the integrated circuits 102 and 104 decreases due to the inductance component parasitic on the power supply plane or the ground plane, and the integrated circuit 104 is affected as power supply noise.
  • FIG. 19 is a circuit diagram when the bypass capacitor 108 is mounted.
  • a bypass capacitor 108 is inserted between the power supply terminal and the ground terminal of the integrated circuits 102 to 105.
  • the charge / discharge current Icd is first supplied from the bypass capacitor 108 in the vicinity of the integrated circuit 102 as shown by a two-dot chain line. For this reason, no high frequency current flows outside the loop formed by the integrated circuit 102 and the bypass capacitor 108. Therefore, the influence on the other integrated circuits 103 to 105 can be reduced.
  • FIG. 17 an example in which the signal wiring directly receives noise is shown in FIG. Similarly to FIG. 17, a high-speed signal is transmitted from the integrated circuit 102 to the integrated circuit 103 via the signal wiring 106. A high-speed signal is transmitted from the integrated circuit 104 to the integrated circuit 105 via the signal wiring 107.
  • an electromagnetic field caused by the high-speed signal may propagate through the space or the substrate and be coupled to the signal wiring 107. Then, this electromagnetic coupling becomes noise and degrades the high-speed signal output from the integrated circuit 104.
  • a filter is inserted into the signal wiring.
  • a chip inductor 111 is inserted in series with the signal wiring 107 and a chip capacitor 110 is inserted in parallel with the signal wiring 107 to form a T-type filter. Since this filter functions as a Low Pass Filter (LPF) that removes high frequency, high frequency noise can be removed.
  • LPF Low Pass Filter
  • FIGS. 21A to 21E a circuit in which an inductor is inserted in series with a signal wiring (FIG. 21A), and a capacitor is inserted in parallel between the signal wiring and the ground.
  • a circuit FIG.
  • FIG. 21B an L-shaped circuit in which an inductor is inserted in series with a signal wiring and a capacitor is inserted in parallel with the signal wiring, and a circuit in which an inductor and a capacitor are inserted in a T shape (FIG. 21D) And a circuit in which an inductor and a capacitor are inserted in a ⁇ -type (FIG. 21E). If an LPF using these inductors and capacitors is inserted into the dotted line portion in FIG. 22, high-frequency noise coupled to the signal wiring can be removed.
  • a noise suppression structure other than mounting such an inductor or capacitor on a substrate for example, a noise suppression configuration shown in Patent Document 1 has been proposed.
  • a first conductor through which a high-frequency current flows and a noise suppression layer are electromagnetically coupled via an insulating layer, and further, the noise suppression layer is electromagnetically coupled via a second conductor and an insulating layer. It is.
  • the structure for removing the noise described with reference to FIGS. 19 and 20 needs to mount an inductor and a capacitor on a substrate. For this reason, the area
  • the noise suppression structure shown in Patent Document 1 is a layered body in which a single noise suppression layer is electromagnetically coupled between a first conductor and a second conductor via an insulating layer. For this reason, in order to obtain a predetermined noise suppression effect, there is a problem that a certain area is required for the noise suppression layer. That is, in a wireless device that is becoming smaller and thinner, a noise suppression structure that requires a small mounting area has been desired. However, since the configuration of the related technology has configured a resonator on the same surface, the mounting area tends to increase particularly when a low frequency or the like is targeted.
  • the present invention has been made to solve the above-described problem, and can eliminate noise propagating in a power distribution system and a signal line without mounting a noise suppression component on a substrate. It aims at providing the noise suppression structure which can be reduced in size.
  • the present invention provides three or more wiring layers including a first wiring layer, a second wiring layer, and a third wiring layer, and a first wiring layer disposed on the first wiring layer.
  • One conductor, a second conductor disposed in the third wiring layer opposite the first conductor, and provided between the first wiring layer and the third wiring layer A first metal plate disposed in the second wiring layer and having at least one side not connected to the first conductor and the second conductor, and arranged in a straight line, the first metal A circuit board having a noise suppression structure including a first via that short-circuits between a plate and the second conductor.
  • the noise suppression structure of the present invention at least one side of the first metal plate disposed in the second wiring layer is not connected to the first conductor and the second conductor. Moreover, the via
  • the input impedance when the short-circuited portion is viewed from the open end becomes a very large value, so transmission loss is very high at this frequency. growing.
  • the length of the first metal plate is designed to be 1 ⁇ 4 of the wavelength of noise, this portion functions as a resonator, and noise that has propagated through the transmission line can be removed.
  • the conductor in which at least one side of the first metal plate arranged in the second wiring layer among the three or more wiring layers is arranged in the other wiring layer is Not connected.
  • veer which short-circuits between the 1st metal plate and the 2nd conductor is arrange
  • FIG. 3 is a development view of each wiring layer in the circuit board according to the first embodiment.
  • FIG. 3 is an equivalent circuit diagram illustrating functions of the first embodiment.
  • 6 is a perspective view showing an application example of a circuit board according to Embodiment 1.
  • FIG. It is a graph showing the result of the electromagnetic field analysis in the circuit board of an application example, and the result of the analysis according to an equivalent circuit.
  • 3 is a graph showing transmission characteristics when the length d of the metal plate is changed in the equivalent circuit of FIG. 2 in the circuit board of the application example.
  • FIG. 3 is a graph showing transmission characteristics when a characteristic impedance Zg of a parallel plate transmission line sandwiched between a metal plate and a ground plane in the circuit board of the application example is changed in the equivalent circuit of FIG. It is a graph showing the relationship between the maximum value of attenuation of an attenuation band, and Zg when Zg is changed in the circuit board of an application example.
  • the circuit board of an application example it is a graph showing the relationship between the ratio of the space
  • Example 6 is a development view of each wiring layer in a circuit board according to Example 4; It is an electronic device of related technology that shows the principle of generation of noise caused by a power distribution system. It is a circuit diagram which shows the generation principle of the noise caused by the power distribution system. It is an electronic device of related technology that suppresses noise caused by a power distribution system. It is an electronic device of related technology which shows the principle when a signal wiring receives noise directly. It is an example of the low-pass filter comprised using an inductor. It is an example of the low-pass filter comprised using a capacitor
  • FIG. 21B is a block diagram showing a part for inserting the filters of FIGS. 21A to 21E between integrated circuits.
  • 1A and 1B show a noise suppression structure 10 according to the first embodiment.
  • FIG. 1A shows a cross-sectional view of a circuit board 11 having a noise suppression structure 10.
  • FIG. 1B shows a development view of each wiring layer constituting the circuit board 11.
  • the signal wiring 12 is formed in the first wiring layer L1, the metal plate 13 is formed in the second wiring layer L2, and the ground plane 14 is formed in the third wiring layer L3. Is formed.
  • the signal wiring 12, the metal plate 13, and the ground plane 14 are all composed of planar conductors. Further, the signal wiring 12 of the first wiring layer L1 and the ground plane 14 of the third wiring layer L3 are arranged so as to face each other. Further, at the left end of the metal plate 13, an interlayer connection via 15 is arranged linearly along the width direction of the metal plate 13, and the metal plate 13 is connected to the ground plane 14 via the interlayer connection via 15. It is short-circuited.
  • FIG. 2 is an equivalent circuit showing signal wiring of the circuit board 11 having the noise suppression structure 10.
  • the cylindrical elements denoted by reference numerals 21 to 24 in FIG. 2 are transmission line models (transmission circuit models) representing transmission lines.
  • the terminal extended from the center of the cylindrical element to the left and right represents the signal wiring
  • the terminal extending from the bottom of the cylindrical element represents the signal reference terminal.
  • the line connecting the cylindrical elements represents the connection between the transmission line models 21 to 24, and has no electrical meaning such as the wiring length.
  • the transmission line model 21 represents a microstrip line composed of the signal wiring 12 and the ground plane 14 in a region on the left side of the metal plate 13 in FIGS. 1A and 1B.
  • the transmission line model 23 shows a microstrip line composed of the signal wiring 12 and the ground plane 14 in a region on the right side of the metal plate 13.
  • the transmission line model 22 represents a microstrip line composed of the signal wiring 12 and the metal plate 13.
  • the transmission line model 24 shows a parallel plate type transmission line composed of the metal plate 13 and the ground plane 14.
  • the transmission line model 24 is characterized in that one terminal is connected to the reference terminals of the transmission line models 22 and 23, and the signal and the ground are short-circuited at the other terminal.
  • the input impedance Zin viewed from the open end AA ′ of the metal plate 13 is the characteristic impedance of the transmission line model 24, which is a parallel plate transmission line, Zg, and the length of the metal plate (that is, the signal propagation direction) (Length along the line) is represented by formula (1).
  • j is an imaginary unit.
  • 2 ⁇ / ⁇ where ⁇ is the wavelength of the signal.
  • Equation (1) becomes Equation (2), and the input impedance Zin becomes infinite.
  • the characteristic impedance Zg of the parallel plate transmission line can be obtained by Expression (3).
  • permeability, epsilon is the dielectric constant of the circuit board 11 of the mu circuit board 11
  • mu r is the relative dielectric constant of the relative permeability
  • epsilon r is the circuit board 11 of the circuit board 11
  • b is a metal plate 13 Grand The distance between the plane 14 and a is the width of the metal plate.
  • a method for manufacturing the circuit board 11 will be described.
  • a circuit board generally used is used.
  • a substrate using an organic material epoxy, polyimide, fluororesin, PPE (polyphenylene ether) resin, phenol resin, or the like
  • a substrate using an insulating material such as ceramic, glass, silicon, or a composite material
  • etching and printing are used.
  • the interlayer connection via 15 is formed by applying a laser irradiation or drilling to the insulating material to form a hole, and filling the formed hole with a metal paste or plating, to form the metal plate 13 and the ground plane. 14 is made conductive.
  • a three-layer substrate was used.
  • the present invention is not limited to application to such a three-layer board, and can be used for the circuit board 11 having more than three wiring layers. That is, if a structure of the present invention is applied to three wiring layers of a substrate having four or more wiring layers, an effect of noise removal can be obtained.
  • FIG. 3 is a diagram illustrating an application example of the circuit board 11 according to the first embodiment.
  • Integrated circuits (for example, LSIs) 32 to 35 are mounted on the circuit board 31 shown in FIG. 3, and signal wiring is provided between the integrated circuit 32 and the integrated circuit 33 and between the integrated circuit 34 and the integrated circuit 35. Is formed.
  • a clock signal having a frequency component of 1.8 GHz is transmitted from the integrated circuit 32 to the integrated circuit 33.
  • a 500 Mbps digital signal is transmitted from the integrated circuit 34 to the integrated circuit 35 through the signal wiring 37.
  • a part of the output signal of the integrated circuit 32 is coupled to the signal wiring 37 as noise.
  • the circuit board 11 having the resonance structure shown in FIGS. 1A and 1B is applied to the region indicated by the dotted line B of the circuit board 31. At this time, the circuit board 11 is applied to a region indicated by a dotted line B so that the interlayer connection via 15 of the circuit board 11 is orthogonal to the traveling direction of electromagnetic noise (orthogonal to the signal propagation direction).
  • the circuit board 31 having the circuit board 11 having a resonance structure is a three-layer board having a relative dielectric constant ( ⁇ r ) of 4.2, and one insulating layer in the board (that is, an insulating material below the metal plate).
  • the thickness (b) of the part) is 30 ⁇ m
  • the thickness of the metal plate is 20 ⁇ m
  • the width (a) of the metal plate is 2 mm
  • the length (d) of the metal plate is 20 mm.
  • the entire length of the signal wiring 37 is 40 mm
  • the distance between the right end of the metal plate and the integrated circuit 35 is 5 mm
  • the distance from the left end of the metal plate to the integrated circuit 34 is 15 mm.
  • the metal plate referred to here means the metal plate 13 shown in FIGS. 1A and 1B.
  • FIG. 4 shows the result of electromagnetic field analysis of the transmission characteristics of the signal wiring 37 using a three-dimensional electromagnetic field simulator.
  • This figure shows the frequency characteristic of S21 representing the insertion loss among the S parameters of the signal wiring 37.
  • S21 represents the ratio of the amplitude of the signal reaching the integrated circuit 35 to the amplitude of the signal output from the integrated circuit 34.
  • S21 is significantly reduced, but at other frequencies, S21 is nearly 0 dB.
  • the resonant structure behaves like a band elimination filter that significantly attenuates the signal at certain frequencies but transmits signals at other frequencies. Therefore, when the resonance structure shown in FIGS. 1A and 1B is provided in the middle of the signal wiring 37, the 500 Mbps signal output from the integrated circuit 34 reaches the integrated circuit 35, but 1.8 GHz coming from the integrated circuit 32. Noise is removed, and good signal transmission can be performed.
  • FIG. 5 shows the frequency characteristics of S21 when the length d of the metal plate is changed. This frequency characteristic is obtained by performing analysis by changing the frequency in the range of 0.1 GHz to 6 GHz in increments of 0.01 GHz. As the length d changes to 20 mm, 15 mm, and 10 mm, the frequency at which attenuation is maximum changes to 1.8 GHz, 2.4 GHz, and 3.6 GHz. At these frequencies, the length d of the metal plate is ⁇ / 4. Therefore, according to the frequency of the noise to be removed, if the length of the metal plate is 1 ⁇ 4 of the wavelength ⁇ in the substrate corresponding to the frequency, it is confirmed that the frequency for band removal can be controlled.
  • FIG. 6 shows the frequency characteristics of S21 when the characteristic impedance Zg of the parallel plate transmission line sandwiched between the metal plate and the ground plane is changed.
  • the characteristic impedance Zg increases to 0.5 ⁇ , 10 ⁇ , and 80 ⁇
  • the maximum attenuation values increase to 9.7 dB, 35.3 dB, and 53.3 dB.
  • the input impedance Zin seen from the entrance of the parallel-plate transmission line is proportional to Zg according to Equation (1). Therefore, the input impedance Zin becomes larger at a frequency where the length of the metal plate approaches ⁇ / 4 as Zg increases. Because it grows.
  • FIG. 7 can be converted into the relationship between the ratio b / a of the interval b between the parallel plates and the width a of the metal plate and Zg. The result of this conversion is shown in FIG. The necessary attenuation varies depending on the noise / signal ratio S / N.
  • the attenuation band of the filter is defined as a band where the attenuation is 6 dB, that is, the signal energy is halved. Therefore, a structure having more attenuation can be regarded as a filter.
  • b / a is 0.0017 or more and the maximum attenuation is 6 dB or more
  • noise attenuation is achieved.
  • An effect can be obtained.
  • the interlayer thickness of the substrate is 30 ⁇ m, noise can be removed if the width a of the metal plate is about 17.6 mm or less.
  • the above-mentioned threshold value b / a is a value in the present embodiment, but this varies depending on the characteristic impedance of the signal line.
  • the maximum value of attenuation increases as the characteristic impedance Z1 of the signal line decreases.
  • the maximum value of attenuation is 6 dB or more because “b / a> 0.001. Was the case. If the metal plate is designed so as to satisfy this condition, noise coupled to the signal line can be removed.
  • At least one side of the metal plate 13 formed in the second wiring layer L2 is formed of the conductor formed in the first wiring layer L1.
  • Interlayer connection vias that are not connected to the signal wiring 12 and the conductor ground plane 14 formed in the third wiring layer L3 and are connected to the ground plane 14 at any position of the metal plate 13. 15 are arranged in a straight line so as to be orthogonal to the signal propagation direction. Then, a metal plate 13 is inserted between the two conductors formed in the first wiring layer L1 and the third wiring layer L3, and the metal plate 13 is the ground plane 14 which is the one conductor. And shorted.
  • the input impedance when the short-circuited portion is viewed from the open end becomes a very large value, and the transmission loss is very high at this frequency. growing.
  • the length of the metal plate 13 is designed to be 1 ⁇ 4 of the wavelength of the noise, this portion functions as a resonator, and the noise propagating through the transmission line can be removed.
  • the noise suppression structure at least one side of the metal plate 13 formed in the second wiring layer L2 in the three or more wiring layers is connected to a conductor formed in another wiring layer.
  • the interlayer connection via 15 connected to the third wiring layer L3 is linearly arranged at any position of the metal plate 13 to suppress noise.
  • Such a structure does not require a large mounting area like the noise suppression structure of the related art. Further, it is not necessary to mount an inductor or a capacitor on the substrate, so that the management cost of parts, the work man-hours and lead time for mounting, etc. are reduced. Therefore, a saving effect can be generated in terms of installation area, cost, design time, and manufacturing time.
  • the interval between the metal plate 13 and the ground plane 14 is “b”, and the width of the metal plate 13 is “a”.
  • the relationship of “b / a> 0.001” is satisfied, a particularly high noise attenuation effect can be obtained.
  • FIGS. 10A to 14 are circuit boards according to the second embodiment.
  • FIG. 10A is a sectional view of the circuit board 41
  • FIG. 10B is a development view of each wiring layer.
  • a power plane 42 is formed on the entire first wiring layer L1
  • a metal plate 43 is formed on the second wiring layer L2
  • a ground plane is formed on the third wiring layer L3. 44 is formed.
  • the power plane 42, the metal plate 43, and the ground plane 44 are all composed of planar conductors.
  • an interlayer connection via 45 is linearly arranged along the width direction of the metal plate 43, and the metal plate 43 is connected to the ground plane 44 via the interlayer connection via 45. It is short-circuited.
  • the function of the noise suppression structure 40 shown in FIGS. 10A and 10B will be described with reference to FIG.
  • the power distribution system composed of the power plane 42 and the ground plane 44 can be considered as a kind of transmission line.
  • the transmission line model 21 in FIG. 2 represents a parallel plate transmission line composed of a power plane 42 and a ground plane 44 in a region on the left side of the metal plate 43 shown in FIGS. 10A and 10B.
  • the transmission line model 23 represents a parallel plate transmission line composed of a power plane 42 and a ground plane 44 in a region on the right side of the metal plate 43.
  • the transmission line model 22 represents a parallel plate transmission line composed of a power plane 42 and a metal plate 43.
  • the transmission line model 24 represents a parallel plate transmission line composed of a metal plate 43 and a ground plane 44.
  • the feature of this embodiment is that only the reference terminals of the transmission line model (parallel plate transmission line) 22 and the transmission line model 23 are connected to one terminal of the transmission line model (parallel plate transmission line) 24. And the other terminal of the transmission line model (parallel plate transmission line) 24 is short-circuited.
  • the input impedance of this portion becomes infinite, and the entire power distribution system Signal attenuation increases.
  • the circuit board 41 of the second embodiment behaves as a band elimination filter having a frequency that is an odd multiple of the frequency at which the length of the metal plate 43 is 1/4 of the wavelength as the center of the attenuation band.
  • the magnitude of attenuation and the attenuation bandwidth can be controlled by the characteristic impedance of the transmission line model (parallel plate transmission line 24).
  • the center frequency of the attenuation band is controlled by the length of the metal plate, and the magnitude and bandwidth of the attenuation are controlled by the width of the metal plate and the thickness of the substrate.
  • the range in which the magnitude of this attenuation can be controlled by the width of the metal plate and the thickness of the substrate is shown using the equivalent circuit of FIG.
  • a range of characteristic impedance of a general parallel plate transmission line is assumed.
  • the thickness b between wiring layers in a general substrate is about 20 ⁇ m for a thin substrate such as a build-up substrate, and about 800 ⁇ m for a thick substrate such as a printed circuit board.
  • the width of the metal plate is about 1 mm to 50 mm.
  • FIG. 11 shows the characteristic impedance of the parallel-plate transmission line obtained according to the equation (3) with the relative dielectric constant ⁇ r being about 4.2 as a typical relative dielectric constant of the resin substrate. From this result, it is understood that the characteristic impedance of the parallel plate type power distribution system in a general circuit board is about 0.1 to 100 ⁇ .
  • the result of calculating the magnitude of attenuation of the entire power distribution system when the characteristic impedance of the transmission line models 21 and 23 is in the range of 0.1 to 100 ⁇ is shown using the equivalent circuit of FIG. Ignore conductor thickness for simplicity, the thickness of the inter-parallel plate corresponding to a portion of the transmission line model 21 and 23 and b 1, a thickness between parallel plate corresponding to the transmission line model 22 is b, the transmission line model The thickness between parallel flat plates corresponding to 24 is defined as b g (see FIG. 10A). Further, the width of the power plane 42 and the ground plane 44 is “a 1 ”, and the width of the metal plate 43 is “a g ” (see FIG. 10B).
  • the characteristic impedance of the transmission line models 21 and 23 is Z1
  • the characteristic impedance of the transmission line model 22 is Z2
  • the length of the transmission line model 21 is 15 mm
  • the length of the transmission line model 23 is 5 mm
  • the length of the transmission line models 22 and 24 is 20 mm. Under these conditions, the S parameter was calculated by changing the characteristic impedance of the transmission line model 24.
  • FIG. 13 shows the result of converting the calculation result of S21 of FIG. 12 into the relationship between Zr and S21. From this result, the minimum value of S21 is arranged on a straight line in the range of “Zr> 1” regardless of the values of Z1 and Zg, and in the range of “Zr ⁇ 0.0001”, S21 is saturated and hardly attenuates. I understand. Since the characteristic impedance of the parallel plate can be calculated by the width and thickness from Equation (3), FIG. 13 can be converted into the relationship between the structural parameter E and S21 shown by Equation (5).
  • each insulating layer that is, the portion of the insulating material above the metal plate 43 and the portion of the insulating material below the metal plate 43
  • the width (a g ) of the metal plate 43 is equal. Is equal to the width (a 1 ) of the power plane 42 and the ground plane 44, the noise can be attenuated if “a / (4b)> 0.02” is satisfied, and the greater the E, the greater the noise attenuation effect.
  • At least one side of the metal plate 43 formed in the second wiring layer L2 is a power source for the conductor formed in the first wiring layer L1.
  • An interlayer connection via 45 connected to the ground plane 44 is not connected to the ground plane 44 of the conductor formed on the plane 42 and the third wiring layer L3, and is connected to the ground plane 44 at any position of the metal plate 43.
  • a metal plate 43 is inserted between the two conductors formed in the first wiring layer L1 and the third wiring layer L3, and the metal plate 43 is the ground plane 44 which is the one conductor. And shorted.
  • the input impedance when the short-circuited portion is viewed from the open end becomes a very large value, and transmission loss is very high at this frequency. growing.
  • the length of the metal plate 43 is designed to be 1 ⁇ 4 of the wavelength of noise, this portion functions as a resonator, and the noise propagating through the transmission line can be removed.
  • at least one side of the metal plate 43 formed in the second wiring layer L2 in the three or more wiring layers is connected to the conductor formed in the other wiring layer.
  • the interlayer connection via 45 connected to the third wiring layer L3 is linearly arranged at any position on the metal plate 43 to suppress noise.
  • Such a structure does not require a large mounting area like the noise suppression structure of the related art.
  • the distance between the metal plate 43 and the ground plane 44 is “b g ”
  • the width of the metal plate 43 is “a g ”
  • the distance between the power plane 42 and the ground plane 44 is “B 1 ”
  • “a 1 ” is the width of the narrower conductor of the power supply plane 42 or ground plane 44, “(b g / a g ) / (b 1 / a 1 ) 2
  • the circuit board is equal to the interval (b g ) of 44 and satisfies the relationship of “a / (4b)> 0.02,” a particularly high noise attenuation effect can be obtained.
  • a noise suppression structure 50 according to Embodiment 3 of the present invention will be described with reference to FIGS. 15A and 15B.
  • the interlayer connection via was arranged at the end of the metal plate.
  • noise can be attenuated at any two different frequencies.
  • FIG. 15A and 15B are circuit boards according to the third embodiment.
  • FIG. 15A is a cross-sectional view of the circuit board 51
  • FIG. 15B is a development view of each wiring layer.
  • a power plane 52 is formed on the entire first wiring layer L1
  • a metal plate 53 is formed on the second wiring layer L2
  • a ground plane is formed on the third wiring layer L3.
  • 54 is formed.
  • An interlayer connection via 55 is arranged in a straight line in the middle portion of the metal plate 53, and the metal plate 53 is short-circuited to the ground plane 54.
  • the distance from the interlayer connection via 55 to the right end of the metal plate 53 is “d1”, and the distance from the interlayer connection via 55 to the left end of the metal plate 53 is “d2”.
  • noise suppression structure 50 it is possible to attenuate signals of any two frequencies, and to obtain a higher noise attenuation effect than in the first and second embodiments.
  • a noise suppression structure 60 according to Embodiment 4 of the present invention will be described with reference to FIGS. 16A and 16B.
  • the metal plate was disposed only on the adjacent wiring layer on one side of the ground plane.
  • metal plates may be provided on adjacent wiring layers on both upper and lower sides of the ground plane.
  • 16A and 16B are diagrams showing a circuit board according to a fourth embodiment of the present invention.
  • 16A is a sectional view of the circuit board 61
  • FIG. 16B is a development view of each wiring layer.
  • a power plane 62 is formed on the entire first wiring layer L1
  • a metal plate 63 is formed on the second wiring layer L2
  • a ground plane is formed on the third wiring layer L3.
  • 64, the metal plate 65 is formed on the fourth wiring layer L4, and the power plane 66 is formed on the entire fifth wiring layer L5.
  • An interlayer connection via 67 and an interlayer connection via 68 are arranged at the left ends of the metal plate 63 and the metal plate 65, respectively, and the metal plate 63 and the metal plate 65 are short-circuited to the ground plane 64. That is, in the noise suppression structure 60 according to the fourth embodiment, the metal plate 63 and the first wiring layer formed in the second wiring layer L2 are formed on the ground plane 64 formed in the third wiring layer L3. The power planes 62 formed in L1 are sequentially stacked. Further, below the ground plane 64 formed in the third wiring layer L3, a metal plate 65 formed in the fourth wiring layer L4 similar to the second wiring layer L2, and the first wiring layer L1 Power supply planes 66 formed in the same fifth wiring layer L5 are sequentially stacked.
  • the length of the metal plate 63 is d1
  • the noise suppression structure 60 similarly to the third embodiment, it is possible to attenuate signals of any two frequencies, and obtain a higher noise attenuation effect than the first and second embodiments. Can do.
  • the length of the left and right portions of the metal plate 63 with the portion short-circuited by the interlayer connection via 67 as the boundary and the portion short-circuited by the interlayer connection via 68 are the boundary.
  • the lengths of the left and right portions of the metal plate 65 may be different from each other. By doing so, it is possible to attenuate signals of arbitrary four frequencies at the maximum.
  • the present invention relates to a noise suppression structure for a circuit board such as a printed circuit board that can be applied to electronic devices and electric devices including wireless devices such as mobile phones, wireless-equipped personal computers, and portable information terminals.
  • noise propagating through the power distribution system and the signal line can be removed without mounting noise suppression components on the substrate, and the noise suppression structure can be downsized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 基板上にノイズ抑制用の部品を実装することなく、電源分配系や信号線路を伝搬するノイズを除去することができる小型のノイズ抑制構造を有する回路基板を提供する。ノイズ抑制構造を有する回路基板は、第一の配線層、第二の配線層および第三の配線層を含む3層以上の配線層と、前記第一の配線層に配置された第一の導体と、前記第一の導体に対向して、前記第三の配線層に配置された第二の導体と、前記第一の配線層と前記第三の配線層との間に設けられた前記第二の配線層に配置され、少なくとも一つの辺が前記第一の導体および前記第二の導体に接続されていない第一の金属板と、直線状に配置され、前記第一の金属板と前記第二の導体との間を短絡する第一のビアとを具備している。

Description

ノイズ抑制構造を有する回路基板
 本発明は、携帯電話や無線搭載パソコン、さらには携帯型情報端末などのような無線利用機器を含む電子機器および電気機器に適用可能なプリント基板等の回路基板のノイズ抑制構造に関する。
 回路基板上に集積回路等の半導体素子が多数実装される電子機器において、各部品が生じさせる電磁ノイズ(電磁波)が他の部品に影響を及ぼし、誤動作を生じさせるという問題がある。このノイズの伝搬経路としては、電源分配系を経由してノイズが他の部品に影響を及ぼす経路と、ノイズが信号配線に直接影響する経路とがある。
 電源分配系が原因となるノイズ発生構造の一例を図17に示す。
 図17に示すように、回路基板101上に集積回路(例えば、大規模集積回路LSI(Large Scale Integration))102~105が実装されている。そして、集積回路102から集積回路103へ信号配線106を経由して高速信号が伝送されている。また集積回路104から集積回路105に信号配線107を経由して高速信号が伝送されている。また、回路基板101上にはバイパスコンデンサ108が実装されている。回路基板101の表面においてこれらの部品の周囲にはグランドプレーン(図示略)が形成されており、回路基板101の内層には電源プレーン(図示略)が形成されている。そして、回路基板101上には電源109が実装されており、電源プレーンとグランドプレーンに電源109が接続されている。
 図17で示す回路の動作を図18を参照して説明する。
 図18はバイパスコンデンサ108が実装されていない場合の回路図である。
 集積回路102から集積回路103に信号が流れると、集積回路103内に存在するトランジスタのON/OFFのスイッチングに伴い電源109から電源プレーン又はグランドプレーンに充放電電流(符号Icdで示す)が供給される。このとき、電源プレーン又はグランドプレーン上に寄生するインダクタンス成分のために、集積回路102および104の電源電圧は低下し、集積回路104には電源ノイズとして影響が現れてしまう。
 このような電圧降下を抑制するために、集積回路の近傍にバイパスコンデンサを実装することが行われてきた。図19はバイパスコンデンサ108が実装される場合の回路図である。それぞれの集積回路102~105の近傍において、集積回路102~105の電源端子とグランド端子の間にバイパスコンデンサ108が挿入されている。そして、このような構造では、集積回路102から集積回路103に信号が出力された際、充放電電流Icdは、二点鎖線で示すようにまず集積回路102近傍のバイパスコンデンサ108から供給される。このため、集積回路102とバイパスコンデンサ108とで形成されるループの外側には高周波電流は流れない。したがって、他の集積回路103~105への影響を低減することができる。
 次に、信号配線が直接ノイズを受ける例を図20に示す。図17と同様に、集積回路102から集積回路103へ信号配線106を経由して高速信号が伝送されている。また集積回路104から集積回路105に信号配線107を経由して高速信号が伝送されている。ここで、高速信号が信号配線106を伝搬する際、高速信号に起因した電磁界が空間や基板を伝搬して信号配線107に結合することがある。すると、この電磁結合がノイズとなって集積回路104から出力された高速信号を劣化させてしまう。
 このような信号配線に結合されるノイズを除去するために、信号配線にフィルタを挿入することが行われる。一例として、図20では信号配線107に直列にチップインダクタ111を挿入するとともに、信号配線107に並列にチップコンデンサ110を挿入し、T型のフィルタを形成している。このフィルタは高周波を除去するLow Pass Filter(LPF)として機能するので、高周波のノイズを除去することができる。インダクタとコンデンサを用いたLPFの例としては、図21A~図21Eに示すように、インダクタを信号配線に直列に挿入した回路(図21A)、コンデンサを信号配線とグランドの間に並列に挿入した回路(図21B)、インダクタを信号配線に直列に挿入するとともに、コンデンサを信号配線に並列に挿入したL字型の回路(図21C)、インダクタとコンデンサをT型に挿入した回路(図21D)、インダクタとコンデンサをπ型に挿入した回路(図21E)、などが挙げられる。これらインダクタやコンデンサを用いたLPFを、図22の点線部分に挿入すれば、信号配線に結合する高周波ノイズを除去することができる。
 なお、このようなインダクタやコンデンサを基板上に実装する以外のノイズ抑制構造として、例えば、特許文献1に示されるノイズ抑制の構成が提案されている。このノイズ抑制構造体は、高周波電流が流れる第1の導体とノイズ抑制層とが絶縁層を介して電磁結合し、さらに該ノイズ抑制層が第2の導体と絶縁層を介して電磁結合する構成である。
日本特開2007-243007号公報
 ところで、図19や図20を用いて説明した上記のノイズを除去する構造は、インダクタやコンデンサを基板上に実装する必要がある。このため、基板上にこれらの部品を実装する領域が必要になり、基板の大型化を招く。また、部品のコストに加えて、部品の管理コスト、実装にかかる作業工数やリードタイムが増加してしまう。さらに、信号配線にフィルタを挿入する場合には個々の配線に対してフィルタを割り当てていかなければならないので、設計工数が増大してしまう。一つの基板にコンデンサやインダクタを数十~数百個も実装する装置もあるため、これら部品の面積、コスト、設計時間および製造時間の増大は無視できないほど大きくなる。
 また、特許文献1に示されるノイズ抑制構造体は、第1の導体と第2の導体の間に絶縁層を介して単一のノイズ抑制層が電磁結合されるという層状体である。このため、所定のノイズ抑制効果を得るためにはノイズ抑制層に一定の面積が必要となるという問題がある。すなわち、小型化および薄型化が進む無線利用機器では、特に、実装面積が小さくてすむノイズ抑制構造が望まれていた。しかし、関連技術の構成は、同一面上に共振器を構成していたため、特に低い周波数などを対象とした場合は、実装面積が大きくなる傾向にあった。
 本発明は、上記の課題を解決するためになされたものであって、基板上にノイズ抑制用の部品を実装することなく、電源分配系や信号線路を伝搬するノイズを除去することができかつ小型化が可能なノイズ抑制構造を提供することを目的としている。
 上記課題を解決するために、本発明は、第一の配線層、第二の配線層および第三の配線層を含む3層以上の配線層と、前記第一の配線層に配置された第一の導体と、前記第一の導体に対向して、前記第三の配線層に配置された第二の導体と、前記第一の配線層と前記第三の配線層との間に設けられた前記第二の配線層に配置され、少なくとも一つの辺が前記第一の導体および前記第二の導体に接続されていない第一の金属板と、直線状に配置され、前記第一の金属板と前記第二の導体との間を短絡する第一のビアとを具備するノイズ抑制構造を有する回路基板である。
 本発明のノイズ抑制構造では、第二の配線層に配置された第一の金属板の少なくとも一つの辺が、第一の導体および第二の導体とは接続されていない。また、第一の金属板と第二の導体との間を短絡するビアが直線状に配置されている。そして、第一の配線層と第三の配線層の間に設けられた第二の配線層に第一の金属板が配置されている。このように、第一の金属板が第二の導体と短絡されると、第一の金属板と第二の導体で挟まれた領域が共振器として機能し、伝送線路を伝搬してきたノイズを除去することができる。例えば、短絡部から開放端までの距離が波長の1/4となる周波数においては、開放端から短絡部を見た入力インピーダンスが非常に大きな値になるため、この周波数においては伝送損失が非常に大きくなる。このとき、第一の金属板の長さをノイズの波長の1/4に設計すれば、この部分が共振器として機能して、伝送線路を伝搬してきたノイズを除去することができる。
 また、本発明のノイズ抑制構造では、3層以上の配線層の中の第二の配線層に配置された第一の金属板の少なくとも一つの辺が他の配線層に配置された導体とは接続されていない。また、第一の金属板と第二の導体との間を短絡するビアが直線状に配置されている。すなわち、層状体内にノイズ抑制構造が納められている。したがって、本発明のノイズ抑制構造は、関連技術のノイズ抑制構造のように大きな実装面積を必要としない。また、インダクタやコンデンサを基板上に実装する必要もなく、部品の管理コスト、実装にかかる作業工数やリードタイムなどが低減される。したがって、設置面積、コスト、設計時間および製造時間の点で節約効果を発生させることができる。
本発明の実施例1に係る回路基板の断面図である。 実施例1に係る回路基板における各配線層の展開図である。 実施例1の機能を示す等価回路図である。 実施例1に係る回路基板の適用例を示す斜視図である。 適用例の回路基板における電磁界解析の結果と等価回路に従った解析の結果を表すグラフである。 適用例の回路基板において、図2の等価回路で金属板の長さdを変化させた時の伝送特性を表すグラフである。 適用例の回路基板において、図2の等価回路で金属板とグランドプレーンで挟まれた並行平板型伝送線路の特性インピーダンスZgを変化させた時の伝送特性を表すグラフである。 適用例の回路基板においてZgを変化させた時に、減衰帯域の減衰の最大値とZgとの関係を表すグラフである。 適用例の回路基板において、金属板の幅aに対する金属板とグランドプレーンとの間隔bの比と、減衰の最大値との関係を表すグラフである。 適用例の回路基板において、金属板が無い部分の信号配線の特性インピーダンスZ1が40、60および100Ωの時に、金属板の幅aに対する金属板とグランドプレーンとの間隔bの比と、減衰の最大値との関係を表すグラフである。 本発明の実施例2に係る回路基板の断面図である。 実施例2に係る回路基板における各配線層の展開図である。 一般的な回路基板における並行平板型の電源分配系の特性インピーダンスを表すグラフである。 本発明の実施例2の回路基板において、並行平板型伝送線路の特性インピーダンスZ1を変化させた場合に、Zgと、減衰帯域で減衰が最大となる1.81GHzにおけるS21との関係を表すグラフである。 パラメータZrと1.81GHzにおけるS21との関係を表すグラフである。 構造パラメータEと1.81GHzにおけるS21との関係を表すグラフである。 本発明の実施例3に係る回路基板の断面図である。 実施例3に係る回路基板における各配線層の展開図である。 本発明の実施例4に係る回路基板の断面図である。 実施例4に係る回路基板における各配線層の展開図である。 電源分配系が原因となるノイズの発生原理を示す関連技術の電子機器である。 電源分配系が原因となるノイズの発生原理を示す回路図である。 電源分配系が原因となるノイズを抑制する関連技術の電子機器である。 信号配線が直接ノイズを受ける場合の原理を示す関連技術の電子機器である。 インダクタを用いて構成される低域通過フィルタの例である。 コンデンサを用いて構成される低域通過フィルタの例である。 インダクタとコンデンサを用いて構成される低域通過フィルタの第1の例である。 インダクタとコンデンサを用いて構成される低域通過フィルタの第2の例である。 インダクタとコンデンサを用いて構成される低域通過フィルタの第3の例である。 図21A~図21Eのフィルタを集積回路間に挿入する部分を表すブロック図である。
 本発明の実施例1について図1A~図9を参照して説明する。
 図1Aおよび図1Bは実施例1に係るノイズ抑制構造10である。図1Aはノイズ抑制構造10を有する回路基板11の断面図を示している。図1Bは回路基板11を構成する各配線層の展開図を示している。
 3つの配線層を有する回路基板11において、第一の配線層L1に信号配線12が形成され、第二の配線層L2に金属板13が形成され、第三の配線層L3にグランドプレーン14が形成されている。これら信号配線12、金属板13およびグランドプレーン14はいずれも面状の導体から構成されている。また、第一の配線層L1の信号配線12と、第三の配線層L3のグランドプレーン14とは対向するように配置されている。さらに、金属板13の左端には、該金属板13の幅方向に沿うように層間接続ビア15が直線状に配置され、かつ該層間接続ビア15を介して、金属板13がグランドプレーン14に短絡されている。
 次に、図1Aおよび図1Bに示すノイズ抑制構造10の機能について、図2を参照して説明する。図2はノイズ抑制構造10を有する回路基板11の信号配線を示す等価回路である。図2中の符号21~24で示す円筒素子は、伝送線路を表す伝送線路モデル(伝送回路モデル)である。
 これらの伝送線路モデル21~24では、円筒素子の中心から左右に伸ばされている端子が信号配線を表し、円筒素子の下から出ている端子が、信号のリファレンスの端子を表している。図2中、円筒素子同士を接続する線は、伝送線路モデル21~24同士の接続を表し、配線長などの電気的な意味は持たない。
 伝送線路モデル21は、図1Aおよび図1Bにおいて金属板13より左側の領域で信号配線12とグランドプレーン14とで構成されるマイクロストリップラインを表している。同様に、伝送線路モデル23は金属板13より右側の領域で信号配線12とグランドプレーン14とで構成されるマイクロストリップラインを示している。また、伝送線路モデル22は信号配線12と金属板13とで構成されるマイクロストリップラインを示している。そして、伝送線路モデル24は金属板13とグランドプレーン14とで構成される並行平板型の伝送線路を示している。ここで、伝送線路モデル24は、一方の端子が伝送線路モデル22および23のリファレンス端子に接続されており、他方の端子で信号とグランドが短絡していることが特徴である。
 金属板13の開放端A-A’から短絡部を見た入力インピーダンスZinは、並行平板型伝送線路である伝送線路モデル24の特性インピーダンスをZg、金属板の長さ(すなわち、信号の伝播方向に沿った長さ)をdとすると式(1)で表される。ここで、jは虚数単位である。また、信号の波長をλとしたとき、β=2π/λである。
Figure JPOXMLDOC01-appb-M000001
 d=λ/4となる周波数において、式(1)は式(2)のようになり、入力インピーダンスZinが無限大となる。
Figure JPOXMLDOC01-appb-M000002
 このようにして、本実施例の回路基板11は、金属板13とグランドプレーン14で挟まれた領域が共振器として機能し、マイクロストリップラインを伝搬してきた信号のうち「d=λ/4」となる周波数の奇数倍の周波数の信号を帯域除去することができる。
 ここで、並行平板型伝送線路の特性インピーダンスZgは、式(3)で求めることができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、μは回路基板11の透磁率、εは回路基板11の誘電率、μは回路基板11の比透磁率、εは回路基板11の比誘電率、bは金属板13とグランドプレーン14との間隔、aは金属板の幅である。後述する[適用例]で詳細に述べるが、金属板13の幅と回路基板11の厚みを変化させれば、帯域除去する帯域幅と減衰量を制御することができる。
 次に、回路基板11の製造方法について述べる。この回路基板11には一般的に用いられている回路基板を使用する。例えば、有機材料(エポキシ、ポリイミド、フッ素樹脂、PPE(ポリフェニレンエーテル)樹脂、フェノール樹脂等)を使用した基板や、セラミック、ガラス、シリコン、コンポジット材などの絶縁材料を用いた基板を用いることができる。各層のパターンニング(パターンの形成)はエッチングや印刷等の技術を用いる。また層間接続ビア15は、絶縁材料にレーザー照射やドリル加工を施して穴を形成し、形成された穴に金属ペーストを充填したりめっき等を施したりして形成し、金属板13とグランドプレーン14を導通させる。
 なお、本実施例では3層基板を用いた。しかし、本発明はこうした3層基板への適用に限定されるものではなく、3層より多い配線層を有する回路基板11に用いることができる。すなわち、4層以上の配線層を有する基板において、そのうちの3つの配線層に本発明の構造を適用すればノイズ除去の効果を得ることができる。
[回路基板11の適用例]
 図3は実施例1に係る回路基板11の適用例を示す図である。
 図3に示される回路基板31上には集積回路(例えばLSI)32~35が実装されており、集積回路32と集積回路33の間、および、集積回路34と集積回路35の間に信号配線が形成されている。集積回路32から集積回路33には1.8GHzの周波数成分を有するクロック信号が伝送されている。また、集積回路34から集積回路35へは信号配線37を通じて500Mbpsのデジタル信号が伝送されている。そして、集積回路32の出力信号の一部が信号配線37にノイズとして結合している。
 回路基板31の点線Bで示した領域には、図1Aおよび図1Bに示した共振構造を有する回路基板11が適用されている。このとき、回路基板11の層間接続ビア15が電磁ノイズの進行方向に対して直交する(信号の伝播方向に直交する)ように、点線Bで示した領域に回路基板11が適用される。共振構造の回路基板11を有する回路基板31は、比誘電率(ε)が4.2の3層基板であり、基板内の一つの絶縁層(すなわち、金属板よりも下の絶縁材料の部分)の厚み(b)は30μm、金属板の厚みは20μm、金属板の幅(a)は2mm、金属板の長さ(d)は20mmである。また、信号配線37の全体の長さは40mmであり、金属板の右端と集積回路35との間の距離が5mmであり、金属板の左端から集積回路34までの距離が15mmである。なお、ここで言う金属板は、図1Aおよび図1Bで示した金属板13を意味している。
 信号配線37の伝送特性を3次元電磁界シミュレータで電磁界解析した結果を図4に示す。この図は信号配線37のSパラメータのうち挿入損失を表すS21の周波数特性を示してある。このS21は、集積回路34から出力された信号の振幅に対する集積回路35に到達する信号の振幅の割合を示す。1.8GHzとその奇数倍の周波数においてS21が著しく小さくなるが、その他の周波数ではS21はほぼ0dBに近い値になっている。これは、共振構造が、特定の周波数においては信号を著しく減衰させるがその他の周波数の信号を透過する帯域除去フィルタのような振舞いをすることを意味する。従って、信号配線37の途中に図1Aおよび図1Bに示した共振構造を設けると、集積回路34から出力された500Mbpsの信号は集積回路35に到達するが、集積回路32から到来する1.8GHzのノイズは除去され、良好な信号伝送を行うことができる。
 電磁界解析の結果から、信号配線37のマイクロストリップラインとしての特性インピーダンスZ0は、金属板の上部ではZ2=40.5Ωであり、それ以外の領域ではZ1=61.1Ωであった。また、金属板とグランドプレーンとで挟まれた並行平板型伝送線路の特性インピーダンスZgは式(3)から2.73Ωと求まる。これらの値と図2の等価回路に従って計算したSパラメータを図4に併せて示す。3次元電磁界解析の結果と等価回路に従った計算結果とが良く一致している。
 この等価回路を用いて金属板の設計手法について説明する。図5は金属板の長さdを変化させた時のS21の周波数特性である。この周波数特性は、周波数を0.1GHz~6GHzの範囲で0.01GHz刻みで変化させて解析を行って得られたものである。長さdが20mm、15mm、10mmと変化するに従い、減衰が最大となる周波数が1.8GHz、2.4GHz、3.6GHzと変化している。これらの周波数では金属板の長さdがλ/4となる。従って、除去すべきノイズの周波数に応じて、金属板の長さをその周波数に対応する基板内の波長λの1/4とすれば、帯域除去する周波数を制御できることが確認される。
 図6は金属板とグランドプレーンとで挟まれた並行平板型伝送線路の特性インピーダンスZgを変化させた時のS21の周波数特性である。
 特性インピーダンスZgが0.5Ω、10Ω、80Ωと大きくなるに従って、減衰の最大値が9.7dB、35.3dB、53.3dBと大きくなっている。これは、式(1)より並行平板型伝送線路の入り口から見た入力インピーダンスZinがZgに比例するため、Zgが大きいほど金属板の長さがλ/4に近づいた周波数において入力インピーダンスZinが大きくなるからである。
 Zgをさらに変化させて数点のSパラメータを計算し、それぞれについてZgとS21の最小値との関係を求めた。その結果を図7に示す。Zgが大きくなるにつれて、減衰量の絶対値(|S21|)が単調増加している。並行平板型伝送線路のZgは式(3)で求められるので、図7は並行平板の間隔bと金属板の幅aの比b/aとZgとの関係に変換することができる。この変換の結果を図8に示す。必要な減衰量はノイズと信号の比S/Nに応じて変化する。しかし、一般にフィルタの減衰帯域は減衰量が6dB、すなわち信号のエネルギーが1/2になる帯域で定義される。したがって、それ以上の減衰量を有する構造をフィルタとみなすことができる。図8ではb/aが0.0017以上で減衰量の最大値が6dB以上になるので、b/aがこの範囲になるように金属板の大きさや基板の厚みを設定すれば、ノイズの減衰効果を得られる。例えば本実施例の場合、基板の層間厚みが30μmであるので、金属板の幅aが約17.6mm以下であればノイズを除去できる。
 上記のb/aの閾値は本実施例の場合の値であるが、これは信号線路の特性インピーダンスに応じて変化する。本実施例では金属板がない部分の特性インピーダンスZ1は61.1Ωであったが、高速信号を伝送するための配線のインピーダンスは一般には50±10Ω程度に設定する。そこで、簡単のためZ1=2Z2とし、Z1を変化させながら、図8と同様に、b/aとS21の最小値との間の関係を計算した結果を図9に示す。信号線路の特性インピーダンスZ1が小さくなるほど減衰の最大値は大きくなるが、特性インピーダンスが「Z1=50±10Ω」の範囲において減衰の最大値が6dB以上になるのは「b/a>0.001」の場合であった。この条件を満たすように金属板を設計すれば、信号線路に結合するノイズを除去することができる。
 以上詳細に説明したように本実施例1に示すノイズ抑制構造では、第二の配線層L2に形成された金属板13の少なくとも一つの辺が、第一の配線層L1に形成された導体の信号配線12および第三の配線層L3に形成された導体のグランドプレーン14とは接続されておらず、かつ前記金属板13のいずれかの位置には、前記グランドプレーン14と接続する層間接続ビア15が信号の伝播方向に直交するように直線状に配置されるようにした。そして、このような第一の配線層L1と第三の配線層L3に形成された2枚の導体間に金属板13が挿入されて、その金属板13が前記一方の導体であるグランドプレーン14と短絡される。すると、その短絡部から開放端までの距離が波長の1/4となる周波数においては、開放端から短絡部を見た入力インピーダンスが非常に大きい値になり、この周波数においては伝送損失が非常に大きくなる。そして、このとき、前記金属板13の長さをノイズの波長の1/4に設計すれば、この部分が共振器として機能して、伝送線路を伝搬してきたノイズを除去することができる。
 また、このノイズ抑制構造では、3層以上の配線層の中の第二の配線層L2に形成される金属板13の少なくとも一つの辺を、他の配線層に形成された導体とは接続せず、かつ前記金属板13のいずれかの位置に、前記第三の配線層L3と接続する層間接続ビア15を直線状に配置することでノイズを抑制する。こうした構造は、関連技術のノイズ抑制構造のように大きな実装面積を必要としない。また、インダクタやコンデンサを基板上に実装する必要もなく、部品の管理コスト、実装にかかる作業工数やリードタイムなどが低減される。したがって、設置面積、コスト、設計時間および製造時間の点で節約効果を発生させることができる。
 また、本実施例1のノイズ抑制構造では、[適用例]に示したように、金属板13とグランドプレーン14との間隔を「b」とし、金属板13の幅を「a」とするとき、「b/a>0.001」の関係を満たす場合、特に高いノイズの減衰効果を得ることができる。
 本発明の実施例2に係るノイズ抑制構造40について図10A~図14を参照して説明する。
 図10Aおよび図10Bは実施例2の回路基板である。図10Aが回路基板41の断面図であり、図10Bが各配線層の展開図である。
 3つの配線層を有する回路基板41において、第一の配線層L1の全体に電源プレーン42が形成され、第二の配線層L2に金属板43が形成され、第三の配線層L3にグランドプレーン44が形成されている。これら電源プレーン42、金属板43およびグランドプレーン44はいずれも面状の導体から構成されている。また、金属板43の左端には、該金属板43の幅方向に沿うように層間接続ビア45が直線状に配置され、かつ該層間接続ビア45を介して、金属板43がグランドプレーン44に短絡されている。
 次に、図10Aおよび図10Bに示すノイズ抑制構造40の機能について、先の図2を参照して説明する。
 電源プレーン42を信号配線とみなすと、電源プレーン42とグランドプレーン44から成る電源分配系は一種の伝送線路と考えることができる。信号の伝搬方向が図10Bにおける左右の方向(図10B中の参照符号PD)であるとすると、この電源分配系の等価回路は実施例1と同じく図2で表現できる。
 本実施例の場合、図2の伝送線路モデル21は図10Aおよび図10Bに示された金属板43より左側の領域で電源プレーン42とグランドプレーン44から構成される並行平板型伝送線路を表す。同様に、伝送線路モデル23は金属板43より右側の領域で電源プレーン42とグランドプレーン44から構成される並行平板型伝送線路を表している。また、伝送線路モデル22は電源プレーン42と金属板43とで構成される並行平板型伝送線路を表している。さらに、伝送線路モデル24は金属板43とグランドプレーン44とで構成される並行平板型伝送線路を表している。
 本実施例の特徴は、伝送線路モデル(並行平板型伝送線路)22および伝送線路モデル23のそれぞれのリファレンス端子のみが伝送線路モデル(並行平板型伝送線路)24の一方の端子に接続されていることと、伝送線路モデル(並行平板型伝送線路)24の他方の端子が短絡していることにある。この伝送線路モデル(並行平板型伝送線路)24の長さ、すなわち金属板43の長さが波長の1/4となる周波数においてはこの部分の入力インピーダンスが無限大になり、電源分配系全体の信号の減衰が大きくなる。従って、本実施例2の回路基板41は全体として、金属板43の長さが波長の1/4となる周波数の奇数倍の周波数を減衰帯域の中心とする帯域除去フィルタとして振舞う。この減衰の大きさや減衰の帯域幅は伝送線路モデル(並行平板型伝送線路24)の特性インピーダンスで制御できる。実際の基板の設計においては、減衰帯域の中心周波数は金属板の長さで制御し、減衰の大きさや帯域幅は金属板の幅と基板の厚みで制御する。
 この減衰の大きさを金属板の幅と基板の厚みで制御できる範囲を、図2の等価回路を用いて示す。まず、一般的な並行平板型伝送線路の特性インピーダンスの範囲を想定する。一般的な基板における配線層間の厚みbは、ビルドアップ基板のような薄い基板では20μm程度であり、プリント基板のような厚い基板では800μm程度である。金属板の幅は1mm~50mm程度とする。比誘電率εを樹脂基板の代表的な比誘電率4.2程度として、式(3)に従って求めた並行平板型伝送線路の特性インピーダンスを図11に示す。この結果から、一般的な回路基板における並行平板型の電源分配系の特性インピーダンスは0.1~100Ω程度であることがわかる。
 次に、図2の等価回路を用いて、伝送線路モデル21および23の特性インピーダンスが上記の0.1~100Ωの範囲の時の電源分配系全体の減衰の大きさを計算した結果を示す。簡単のため導体の厚みを無視し、伝送線路モデル21および23の部分に相当する並行平板間の厚みをbとし、伝送線路モデル22に相当する並行平板間の厚みをbとし、伝送線路モデル24に相当する並行平板間の厚みをbとする(図10Aを参照)。
 また、電源プレーン42とグランドプレーン44の幅を「a」とし、金属板43の幅を「a」とする(図10Bを参照)。ここで、「b=b=b/2、a=a」である。そして、伝送線路モデル21および23の特性インピーダンスをZ1、伝送線路モデル22の特性インピーダンスをZ2、伝送線路モデル24の特性インピーダンスをZgとする。「b=b/2」であるので、「Z1=2Z2」となる。
 また、伝送線路モデル21の長さを15mmとし、伝送線路モデル23の長さを5mmとし、伝送線路モデル22および24の長さを20mmとする。この条件で伝送線路モデル24の特性インピーダンスを変化させてSパラメータを計算した。図12は、それぞれの特性インピーダンスでの計算結果において減衰が最大となる周波数1.81GHzでのS21の値を示している。金属板とグランドプレーンで挟まれた並行平板型の伝送線路モデル24の特性インピーダンスZgが増加すると減衰量の絶対値(|S21|)は増加し、電源プレーンとグランドプレーンで構成される伝送線路モデル21および23の特性インピーダンスZ1、ならびに、伝送線路モデル22の特性インピーダンスZ2が増加すると減衰量の絶対値(|S21|)は減少している。
 ここで、例えば点Cで示したZ1=0.1Ω、Zg=0.1ΩでのS21の値と、点Dで示したZ1=1Ω、Zg=10ΩでのS21の絶対値は89.5dBで等しくなっている。すなわち、Z1が10倍になっても同時にZgが100倍になれば減衰量はほとんど変化していない。この結果は減衰量と式(4)で示されるパラメータZrとの間に相関があることを示している。
Figure JPOXMLDOC01-appb-M000004
 そこで、図12のS21の計算結果をZrとS21との関係に変換した結果を図13に示す。この結果より、「Zr>1」の範囲ではZ1およびZgの値によらずS21の最小値は直線上に並び、「Zr<0.0001」の範囲ではS21が飽和してほとんど減衰しないことが分かる。並行平板の特性インピーダンスは式(3)より幅と厚みで計算できるので、図13は式(5)で示される構造パラメータEとS21との関係に変換できる。
Figure JPOXMLDOC01-appb-M000005
 図13をこの構造パラメータEと減衰量の最大値との関係に変換した結果を図14に示す。この結果から、「E>0.02」で電源分配系全体の減衰量の最大値が6dB以上になるので、金属板の寸法がこの条件を満たすように金属板を設計すれば、ノイズの減衰効果が表れる。さらに、「b=b、a=a=a」のとき、式(5)は式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 従って、各絶縁層(すなわち、金属板43よりも上にある絶縁材料の部分、および、金属板43よりも下にある絶縁材料の部分)の厚みが等しく、金属板43の幅(a)が電源プレーン42およびグランドプレーン44の幅(a)と等しい時には、「a/(4b)>0.02」が成立すればノイズを減衰でき、Eが大きいほどノイズの減衰効果が大きくなる。
 以上詳細に説明したように本実施例2のノイズ抑制構造では、第二の配線層L2に形成された金属板43の少なくとも一つの辺が、第一の配線層L1に形成された導体の電源プレーン42および第三の配線層L3に形成された導体のグランドプレーン44とは接続されておらず、かつ前記金属板43のいずれかの位置には、前記グランドプレーン44と接続する層間接続ビア45が信号の伝播方向に直交するように直線状に配置されるようにした。そして、このような第一の配線層L1と第三の配線層L3に形成された2枚の導体間に金属板43が挿入されて、その金属板43が前記一方の導体であるグランドプレーン44と短絡される。すると、その短絡部から開放端までの距離が波長の1/4となる周波数においては、開放端から短絡部を見た入力インピーダンスが非常に大きい値になり、この周波数においては伝送損失が非常に大きくなる。そして、このとき、前記金属板43の長さをノイズの波長の1/4に設計すれば、この部分が共振器として機能して、伝送線路を伝搬してきたノイズを除去することができる。
 また、このノイズ抑制構造では、3層以上の配線層の中の第二の配線層L2に形成された金属板43の少なくとも一つの辺を、他の配線層に形成された導体とは接続せず、かつ前記金属板43のいずれかの位置に、前記第三の配線層L3と接続する層間接続ビア45を直線状に配置することでノイズを抑制する。こうした構造は、関連技術のノイズ抑制構造のように大きな実装面積を必要としない。また、インダクタやコンデンサを基板上に実装する必要もなく、部品の管理コスト、実装にかかる作業工数やリードタイムなどが低減される。したがって、設置面積、コスト、設計時間および製造時間の点で節約効果を発生させることができる。
 また、本実施例2のノイズ抑制構造では、金属板43とグランドプレーン44との間隔を「b」、金属板43の幅を「a」、電源プレーン42とグランドプレーン44との間隔を「b」、これら電源プレーン42又はグランドプレーン44のうち幅の狭い方の導体の幅を「a」としたときに、「(b/a)/(b/a>0.02」の関係を満たす場合に、特に高いノイズの減衰効果を得ることができる。また、電源プレーン42とグランドプレーン44の導体の幅が、金属板43の幅(a=a)と等しく、電源プレーン42と金属板43の間隔(b)が、該金属板43とグランドプレーン44の間隔(b)と等しい回路基板であって、「a/(4b)>0.02」の関係を満たす場合に、特に高いノイズの減衰効果を得ることができる。
 本発明の実施例3に係るノイズ抑制構造50について図15Aおよび図15Bを参照して説明する。先の実施例1および実施例2は金属板の端に層間接続ビアが配置されていた。これに対して、層間接続ビアを金属板の端以外の内側に配置すれば、任意の異なる2つの周波数でノイズを減衰させることができる。
 図15Aおよび図15Bは実施例3の回路基板である。図15Aが回路基板51の断面図であり、図15Bが各配線層の展開図である。
 3つの配線層を有する回路基板51において、第一の配線層L1の全体に電源プレーン52が形成され、第二の配線層L2に金属板53が形成され、第三の配線層L3にグランドプレーン54が形成されている。そして、金属板53の中間部に層間接続ビア55が直線状に配置され、金属板53がグランドプレーン54に短絡されている。層間接続ビア55から金属板53の右端までの距離は「d1」であり、層間接続ビア55から金属板53の左端までの距離は「d2」である。
 金属板53において、層間接続ビア55で短絡された部分を境にした左右の部分が、実施例1および実施例2で示した原理に従ってそれぞれ独立して信号の減衰を行う。すなわち、層間接続ビア55よりも右側の部分は「λ1/4=d1」となる周波数の奇数倍の周波数の信号を減衰する。また、層間接続ビア55よりも左側の部分は「λ2/4=d2」となる周波数の奇数倍の周波数の信号を減衰する。d1とd2はそれぞれ独立して設計することができるので、図15Aに示したようにd1とd2が異なる場合、任意の二つの周波数の信号を減衰させることができる。
 そして、上記のようなノイズ抑制構造50では、任意の二つの周波数の信号を減衰させることができ、実施例1および実施例2以上の高いノイズの減衰効果を得ることができる。
 本発明の実施例4に係るノイズ抑制構造60について図16Aおよび図16Bを参照して説明する。
 先の実施例1~3はグランドプレーンの片側の隣接配線層のみに金属板が配置されていた。しかし、グランドプレーンの上下両側の隣接配線層に金属板を設けてもよい。
 図16Aおよび図16Bは本発明の実施例4の回路基板を示す図である。図16Aが回路基板61の断面図であり、図16Bが各配線層の展開図である。
 5つの配線層を有する回路基板61において、第一の配線層L1の全体に電源プレーン62が形成され、第二の配線層L2に金属板63が形成され、第三の配線層L3にグランドプレーン64が形成され、第四の配線層L4に金属板65が形成され、第五の配線層L5の全体に電源プレーン66が形成されている。そして、金属板63と金属板65の左端に層間接続ビア67と層間接続ビア68がそれぞれ配置され、金属板63と金属板65がグランドプレーン64に短絡されている。
 すなわち、本実施例4に係るノイズ抑制構造60では、第三の配線層L3に形成されたグランドプレーン64の上層に、第二の配線層L2に形成された金属板63及び第一の配線層L1に形成された電源プレーン62が順次積層される。また、第三の配線層L3に形成されたグランドプレーン64の下層に、第二の配線層L2と同様の第四の配線層L4に形成された金属板65と、第一の配線層L1と同様の第五の配線層L5に形成された電源プレーン66が順次積層されている。
 金属板63の長さはd1であり、金属板63とグランドプレーン64で挟まれた並行平板型伝送線路が実施例2で示した原理に従って、電源プレーン62とグランドプレーン64間を伝搬する信号のうち「λ/4=d1」となる周波数成分を減衰させる。同様に、金属板65とグランドプレーン64で挟まれた並行平板型伝送線路が電源プレーン66とグランドプレーン64間を伝搬する信号のうち「λ/4=d2」となる周波数成分を減衰させる。
 このように、グランドプレーン64の両側に金属板63および65を設けてグランドプレーン64と短絡させると、電源分配系を伝搬してきた信号を減衰させることができる。
 そして、上記のようなノイズ抑制構造60では、実施例3と同様に、任意の二つの周波数の信号を減衰させることができ、実施例1および実施例2以上の高いノイズの減衰効果を得ることができる。
 なお、本実施例を実施例3と組み合わせた場合に、層間接続ビア67で短絡された部分を境にした金属板63の左右の部分における長さと、層間接続ビア68で短絡された部分を境にした金属板65の左右の部分における長さが互いに異なるようにしても良い。そうすることで、最大で任意の四つの周波数の信号を減衰させることができる。
 以上、実施例を参照して本発明を説明したが、本発明は、上述した実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更を加えることができる。
 この出願は、2010年2月25日に出願された日本出願特願2010-040132号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、携帯電話や無線搭載パソコン、さらには携帯型情報端末などのような無線利用機器を含む電子機器および電気機器に適用可能なプリント基板等の回路基板のノイズ抑制構造に関する。本発明では、基板上にノイズ抑制用の部品を実装することなく、電源分配系や信号線路を伝搬するノイズを除去でき、ノイズ抑制構造を小型化できる。
 10 ノイズ抑制構造
 11 回路基板
 12 信号配線
 13 金属板
 14 グランドプレーン
 15 層間接続ビア
 40 ノイズ抑制構造
 41 回路基板
 42 電源プレーン
 43 金属板
 44 グランドプレーン
 45 層間接続ビア
 50 ノイズ抑制構造
 51 回路基板
 52 電源プレーン
 53 金属板
 54 グランドプレーン
 55 層間接続ビア
 60 ノイズ抑制構造
 61 回路基板
 62 電源プレーン
 63 金属板
 64 グランドプレーン
 65 金属板
 66 電源プレーン
 67 層間接続ビア
 68 層間接続ビア
 L1 第一の配線層
 L2 第二の配線層
 L3 第三の配線層
 L4 第四の配線層
 L5 第五の配線層

Claims (13)

  1.  第一の配線層、第二の配線層および第三の配線層を含む3層以上の配線層と、
     前記第一の配線層に配置された第一の導体と、
     前記第一の導体に対向して、前記第三の配線層に配置された第二の導体と、
     前記第一の配線層と前記第三の配線層との間に設けられた前記第二の配線層に配置され、少なくとも一つの辺が前記第一の導体および前記第二の導体に接続されていない第一の金属板と、
     直線状に配置され、前記第一の金属板と前記第二の導体との間を短絡する第一のビアと
     を具備する
     ノイズ抑制構造を有する回路基板。
  2.  前記第一のビアは、前記第一の金属板の幅方向と前記第二の導体の幅方向に沿うように、かつ、信号の伝播方向に直交するように、直線状に配置されている請求項1に記載のノイズ抑制構造を有する回路基板。
  3.  前記第一の金属板の長さが特定の周波数に対応する波長の1/4に設定され、前記特定の周波数の奇数倍の周波数の信号成分に対する減衰量が、他の周波数の信号成分に対する減衰量よりも大きい請求項1又は2に記載のノイズ抑制構造を有する回路基板。
  4.  前記第一の導体が信号配線である請求項1~3のいずれか1項に記載のノイズ抑制構造を有する回路基板。
  5.  前記第一の導体、前記第二の導体および前記第一の金属板が面状である請求項1~4のいずれか1項に記載のノイズ抑制構造を有する回路基板。
  6.  前記第一の金属板と前記第二の導体との間隔をb、前記第一の金属板の幅をaとするとき、b/a>0.001の関係を満たす請求項1~5のいずれか1項に記載のノイズ抑制構造を有する回路基板。
  7.  前記第一の金属板と前記第二の導体との間隔をb、前記第一の金属板の幅をa、前記第一の導体と前記第二の導体との間隔をb、前記第一の導体の幅と前記第二の導体の幅のうちのより狭い幅をaとするとき、(b/a)/(b/a>0.02の関係を満たす請求項1~5のいずれか1項に記載のノイズ抑制構造を有する回路基板。
  8.  前記第一の導体の幅と前記第二の導体の幅が、前記第一の金属板の幅aと等しく、前記第一の導体と前記第一の金属板の間隔が、前記第一の金属板と前記第二の導体の間隔bと等しく、a/(4b)>0.02の関係を満たす請求項1~5のいずれか1項に記載のノイズ抑制構造を有する回路基板。
  9.  前記第一の金属板の長さが特定の周波数に対応する波長の1/4に設定され、前記第一の金属板と前記第二の導体との距離bと前記第一の金属板の幅aとの比b/aに基づき、前記特定の周波数における減衰量と、前記特定の周波数を中心とする減衰帯域の幅とが調整されている請求項1~8のいずれか1項に記載のノイズ抑制構造を有する回路基板。
  10.  前記特定の周波数の奇数倍の周波数は、除去すべきノイズの周波数を含む請求項3に記載のノイズ抑制構造を有する回路基板。
  11.  前記第一のビアは、前記第一の金属板の端以外の部分で前記第一の金属板と前記第二の導体を短絡している請求項1~10のいずれか1項に記載のノイズ抑制構造を有する回路基板。
  12.  第四の配線層と、
     第五の配線層と、
     前記第三の配線層および前記第五の配線層の間に設けられた前記第四の配線層に配置された第二の金属板と、
     前記第二の導体に対向して、前記第五の配線層に配置された第三の導体と、
     直線状に配置され、前記第二の金属板と前記第二の導体との間を短絡する第二のビアと
     を具備し、
     前記第三の配線層を挟んで、前記第三の配線層の上層に、前記第二の配線層および第一の配線層が順次積層され、前記第三の配線層の下層に、前記第四の配線層および前記第五の配線層が順次積層されている請求項1~11のいずれか1項に記載のノイズ抑制構造を有する回路基板。
  13.  前記第一の金属板の長さと前記第二の金属板の長さが異なる請求項12に記載のノイズ抑制構造を有する回路基板。
PCT/JP2011/052357 2010-02-25 2011-02-04 ノイズ抑制構造を有する回路基板 WO2011105193A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-040132 2010-02-25
JP2010040132 2010-02-25

Publications (1)

Publication Number Publication Date
WO2011105193A1 true WO2011105193A1 (ja) 2011-09-01

Family

ID=44506611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052357 WO2011105193A1 (ja) 2010-02-25 2011-02-04 ノイズ抑制構造を有する回路基板

Country Status (1)

Country Link
WO (1) WO2011105193A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015122203A1 (ja) * 2014-02-12 2017-03-30 株式会社村田製作所 プリント基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263908A (ja) * 1994-03-18 1995-10-13 Matsushita Electric Ind Co Ltd チップ型高周波ローパスフィルタ
JP2007088917A (ja) * 2005-09-22 2007-04-05 Tdk Corp 伝送線路、電子部品及び伝送線路の製造方法
JP2009004779A (ja) * 2007-06-22 2009-01-08 Samsung Electro Mech Co Ltd 電磁気バンドギャップ構造物及び印刷回路基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263908A (ja) * 1994-03-18 1995-10-13 Matsushita Electric Ind Co Ltd チップ型高周波ローパスフィルタ
JP2007088917A (ja) * 2005-09-22 2007-04-05 Tdk Corp 伝送線路、電子部品及び伝送線路の製造方法
JP2009004779A (ja) * 2007-06-22 2009-01-08 Samsung Electro Mech Co Ltd 電磁気バンドギャップ構造物及び印刷回路基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015122203A1 (ja) * 2014-02-12 2017-03-30 株式会社村田製作所 プリント基板

Similar Documents

Publication Publication Date Title
JP5931851B2 (ja) ノイズ抑制構造を有する回路基板
US7215007B2 (en) Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards
WO2002091515A1 (en) Transmission line type components
JP2010530690A (ja) 高い帯域幅の信号を3次元分配するためのインピーダンス管理されたコプレーナ導波路システム
JP4535995B2 (ja) 多層プリント回路基板のビア構造、それを有する帯域阻止フィルタ
US9083313B2 (en) Substrate, duplexer and substrate module
JP6125274B2 (ja) 電子回路および電子機器
US20050224912A1 (en) Circuit and method for enhanced low frequency switching noise suppression in multilayer printed circuit boards using a chip capacitor lattice
JP5674363B2 (ja) ノイズ抑制構造を有する回路基板
JP2015056719A (ja) 多層配線基板
WO2014045792A1 (ja) 回路基板及び電子機器
JP5110807B2 (ja) 積層コンデンサ
JP2015012169A (ja) プリント回路板
JP6176242B2 (ja) Ebg特性を有する導波路構造
JP2014003090A (ja) 回路基板
WO2014157031A1 (ja) 高周波伝送線路、および電子機器
JP2012526371A (ja) ハイ・インピーダンス・トレース
WO2011105193A1 (ja) ノイズ抑制構造を有する回路基板
JP4693588B2 (ja) バンドパスフィルタ
KR20120019634A (ko) 광대역 노이즈를 억제하는 전자기 밴드갭 구조
JP4377725B2 (ja) 高周波用配線基板
JP5661137B2 (ja) プリント基板及び光伝送装置
JP2011044847A (ja) 多層回路及びパッケージ
JP4540493B2 (ja) プリント配線基板
JP2004259960A (ja) 配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP