WO2011104942A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2011104942A1
WO2011104942A1 PCT/JP2010/069745 JP2010069745W WO2011104942A1 WO 2011104942 A1 WO2011104942 A1 WO 2011104942A1 JP 2010069745 W JP2010069745 W JP 2010069745W WO 2011104942 A1 WO2011104942 A1 WO 2011104942A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixel electrode
liquid crystal
capacitance
gate
Prior art date
Application number
PCT/JP2010/069745
Other languages
English (en)
French (fr)
Inventor
逸見郁未
下敷領文一
平田貢祥
北山雅江
兵頭賢一
山下祐樹
杉坂茜
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to KR1020127021278A priority Critical patent/KR101369587B1/ko
Priority to BR112012019594A priority patent/BR112012019594A2/pt
Priority to US13/579,946 priority patent/US8749727B2/en
Priority to CN201080064494.XA priority patent/CN102770802B/zh
Priority to EP10846605.3A priority patent/EP2541314B1/en
Priority to JP2012501631A priority patent/JP5342064B2/ja
Priority to RU2012141055/28A priority patent/RU2512680C1/ru
Publication of WO2011104942A1 publication Critical patent/WO2011104942A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133397Constructional arrangements; Manufacturing methods for suppressing after-image or image-sticking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device that employs a driving method using thin film transistors.
  • a liquid crystal display (LCD) device is a device that performs display by controlling the optical characteristics of light emitted from a light source by using a liquid crystal layer filled between a pair of substrates. Utilizing the features such as light weight and low power consumption, it is used in various fields.
  • a liquid crystal display device applies a voltage to a liquid crystal layer by a pair of electrodes formed on a substrate to change the alignment state of liquid crystal molecules, and changes the polarization state of light transmitted through the liquid crystal layer.
  • a plurality of color filters are arranged to perform color display.
  • a pair of substrates sandwiching the liquid crystal layer is held at a constant interval (cell gap) by a spacer, and is bonded to each other by a sealing material.
  • sub-pixels of three colors of red (R), green (G), and blue (B) are usually formed.
  • a color filter of each color is arranged for each sub-pixel, and color control is performed in units of pixels (pixels) by adjusting light transmitted through the color filter of each color.
  • pixel electrodes are usually arranged in a matrix, and each pixel electrode is driven through a switch by a thin film transistor (TFT).
  • TFT thin film transistor
  • the TFT is a three-terminal field effect transistor, and the drain electrode of each TFT is connected to a pixel electrode corresponding to the TFT.
  • the gate electrode of each TFT is connected to the gate bus line in each row of the matrix.
  • the source electrode of each TFT is connected to the source bus line of each column of the matrix.
  • a desired image can be obtained by applying an image signal to the source bus line and sequentially scanning the gate bus line.
  • Some liquid crystal display devices may have a multi-gap configuration in which the thickness (cell gap) of the liquid crystal layer varies depending on the subpixel of each color.
  • cell gaps of different sizes give different capacitance values to the pixel electrodes, in order to make the pixel capacitances between subpixels equal, (a) the pixel electrode areas are made equal, and the storage capacitors are made different. It is necessary to devise such as (b) making the pixel electrode areas different and making the storage capacitors equal (for example, see Patent Document 3).
  • one pixel is divided into multiple sub-pixels in order to eliminate the problem of viewing angle dependency due to the difference between the ⁇ characteristic during frontal observation and the ⁇ characteristic during oblique observation.
  • the adjustment may be made so that the respective ⁇ characteristics approach each other (for example, see Patent Document 4).
  • the ⁇ characteristic is the gradation dependence of display luminance, and the fact that the ⁇ characteristic is different between the front direction and the diagonal direction means that the gradation display state differs depending on the observation direction.
  • Patent Document 5 a method of equalizing the capacitance ratio of each pixel by changing the thickness of the storage capacitor wiring in order to compensate for the change in the capacitance of each pixel due to the spacer being formed in the sub-pixel. Is being considered.
  • an electric signal from the scanning signal line driver circuit is eliminated in order to eliminate the non-uniform level shift of the pixel potential that occurs when the scanning signal falls.
  • An active matrix substrate is disclosed in which each pixel circuit is formed so that the capacitance Cgd between the scanning signal line and the pixel electrode increases as the distance increases (see, for example, Patent Document 6).
  • the present inventors have been studying a liquid crystal display device including a plurality of color sub-pixels (hereinafter also referred to as picture elements).
  • picture elements for example, between picture elements in a direction along the scanning line direction.
  • FIG. 68 is a schematic diagram showing a state when a white window is displayed on the halftone background
  • FIG. 69 is a schematic diagram showing a state of halftone solid display when the white window is deleted. As shown in FIGS. 68 and 69, in the halftone solid display state, the area where the white window is displayed is burned in due to the display before the deletion.
  • the inventors of the present invention have made various studies on the cause of such a phenomenon.
  • the pixel capacitance varies depending on the pixel due to the difference in the area of the pixel electrode and the thickness of the liquid crystal layer.
  • FIG. 70 is a schematic diagram showing signal waveforms of drain voltages of two pixel electrodes arranged adjacent to each other.
  • the signal waveform on the left side in FIG. 70 is a waveform diagram of a pixel having a large pixel capacity when the gate drain capacitance is constant, and the signal waveform on the right side in FIG. 70 is a pixel capacity when the gate drain capacitance is constant. It is a waveform diagram of a small picture element. As shown in FIG. 70, the effective value of the drain voltage (Vd) is different for each pixel. This is because the magnitude of the pull-in voltage ( ⁇ Vd) differs between the picture elements, and the polarity of the drain voltage (Vd (+), Vd ( ⁇ )) is changed at each timing when the pixel electrode is AC driven. Because it changes.
  • the counter electrode Since the counter electrode is not formed for each pixel, the counter voltage is all set to a common magnitude. Therefore, the value of the optimum counter voltage determined by the value of the drain voltage (Vd (+), Vd ( ⁇ )) after drawing has a different value for each pixel, and all the pixels are shared. It becomes difficult to drive appropriately with the counter voltage.
  • FIG. 71 is a graph showing an in-plane facing distribution 121 (optimum facing voltage distribution in the scanning line (gate bus line) direction within the panel surface) when no Cgd gradation is provided in the liquid crystal display device.
  • FIG. 72 is a graph showing a Cgd gradation 122 provided in the liquid crystal display device.
  • FIG. 73 is a graph showing an in-plane facing distribution 123 when a Cgd gradation is provided in a conventional liquid crystal display device. In a panel having pixel electrodes having the same pixel capacity between picture elements, the in-plane facing distribution can be improved by such adjustment.
  • the correction by the Cgd gradation is a correction amount of 1 Step (a correction amount from the gate / drain capacitance formed with the scanning line by the pixel electrode to which the scanning line signal is first applied without correction to the next Step after correction. This is determined by the overlapping area of the electrodes with the scanning line (also referred to as a Cgd correction amount in this specification) and how many pixels the correction amount is retained.
  • the amount of increase in correction increases as the number of pixels held decreases, and conversely decreases as the number of pixels held increases.
  • the Cgd correction amount can also be negative.
  • ⁇ Vd between the picture elements is caused due to the difference in pixel capacity at a location where the correction amount in the panel surface is large to some extent.
  • the difference is further increased, and the optimum counter voltage between the picture elements varies.
  • the present invention has been made in view of the above-described situation, and provides a liquid crystal display device in which burn-in is unlikely to occur even if the pixel capacity between picture elements is different in a panel performing Cgd gradation. It is the purpose.
  • the present inventors have studied various methods for aligning the optimum counter voltage between the pixels in order to suppress burn-in. As a result, one of the factors necessary for adjusting the optimum counter voltage is the above-described ⁇ Vd. Focused on. By bringing the magnitude of ⁇ Vd closer between the picture elements, the optimum counter voltage is also matched between the picture elements.
  • Vg pp represents the change in gate voltage when the TFT is off, as shown in FIG. Since Vg pp needs to be maintained at a certain value to some extent, adjustment of ⁇ is necessary to change the value of ⁇ Vd.
  • Cgd / (Cgd + Csd + Ccs + Clc).
  • Csd is a source-drain parasitic capacitance
  • Ccs is a Cs-drain parasitic capacitance
  • Clc is a liquid crystal capacitance.
  • the total value of Cgd + Csd + Ccs + Clc is also referred to as Cpix, and represents all capacitances connected to the drain of the TFT (that is, pixel capacitance).
  • the present inventors have found that a gate formed by a pixel electrode having a larger pixel capacity among a plurality of pixel electrodes arranged in one pixel. It has been found that the value of ⁇ can be effectively adjusted by making the drain capacitance larger than the gate drain capacitance formed by the pixel electrode having a smaller pixel capacitance.
  • the Cgd correction amount ( ⁇ Cgd) usually increases initially in accordance with the traveling direction of the signal of the scanning line, and the increase rate decreases due to the signal delay characteristic in the gate wiring. Will form.
  • a gate / drain capacitance formed by a pixel electrode having a larger pixel capacitance is a gate drain formed by a pixel electrode having a smaller pixel capacitance among a plurality of pixel electrodes arranged in one pixel. Since it is larger than the capacitance, Cdg ( ⁇ ) can be adjusted appropriately by combining the difference in ⁇ Vd based on the difference in pixel capacitance, and the overlapping area of the pixel electrode with the scanning line can be reduced to a monochrome pixel. For each pixel electrode arranged corresponding to the pixel line, the pixel electrode is formed so as to increase in the first direction in accordance with the traveling direction of the signal of the scanning line and decrease in the increase rate.
  • the Cdg correction amount of each pixel electrode can also be appropriately set according to the area of the pixel electrode, and thereby the optimum counter voltage value for each pixel. I found that I can get closer. Then, it has been found that the occurrence of burn-in can be suppressed, and the inventors have conceived that the above-mentioned problems can be solved brilliantly, and have reached the present invention.
  • the present invention is a liquid crystal display device including a pair of substrates and a liquid crystal layer sandwiched between the pair of substrates, and one pixel is configured by a plurality of color pixels.
  • One of the substrates includes a scanning line, a signal line, an auxiliary capacitance wiring, a thin film transistor connected to each of the scanning line and the signal line, and a pixel electrode connected to the thin film transistor,
  • the other side of the substrate is provided with a counter electrode, and the pixel electrodes are respectively arranged corresponding to one picture element, and the scanning line and the pixel electrode form a gate / drain capacitance, and are formed in the one pixel.
  • the gate drain capacitance formed by the pixel electrode having a larger pixel capacitance is larger than the gate drain capacitance formed by the pixel electrode having a smaller pixel capacitance
  • the overlapping area of the pixel electrode with the scanning line is formed so that the pixel electrode arranged corresponding to the monochrome pixel is initially increased in accordance with the traveling direction of the signal of the scanning line, and the increase rate is decreased.
  • the increase rate is different for each pixel electrode having a different pixel capacity.
  • the liquid crystal display device of the present invention includes a pair of substrates and a liquid crystal layer sandwiched between the pair of substrates, and one pixel is composed of a plurality of color pixels.
  • one of the pair of substrates can be used as an array substrate and the other as a color filter substrate.
  • Multiple color picture elements can be realized by a color filter arranged corresponding to each picture element, and various display colors can be expressed by adjusting the balance of each color.
  • One of the pair of substrates is a scanning line (hereinafter also referred to as a gate bus line), a signal line (hereinafter also referred to as a source bus line), and an auxiliary capacitance wiring (hereinafter also referred to as a Cs bus line).
  • a thin film transistor (TFT) connected to each of the scanning line and the signal line, and a pixel electrode connected to the thin film transistor.
  • the drain electrode of each TFT is connected to the pixel electrode corresponding to that TFT.
  • the gate electrode of each TFT is connected to the gate bus line of each row.
  • the source electrode of each TFT is connected to the source bus line of each column.
  • a desired image can be obtained by applying an image signal to the source bus line and applying a voltage to the gate bus line at a predetermined timing.
  • the scanning line, the signal line, the auxiliary capacitance wiring, the thin film transistor, and the pixel electrode are spaced apart from each other through the insulating film or the like so as to be electrically isolated from each other. It is necessary to arrange with a gap. Further, the pixel electrode and the counter electrode are arranged apart from each other with a liquid crystal layer interposed therebetween. Therefore, a certain amount of capacitance is formed between each wiring and electrode. Specifically, the scanning line and the pixel electrode form a gate drain capacitance (Cgd), the signal line and the pixel electrode form a source / drain capacitance (Csd), and the auxiliary capacitance wiring. The pixel electrode forms an auxiliary capacitor (Ccs), and the pixel electrode and the counter electrode form a liquid crystal capacitor (Clc).
  • the other of the pair of substrates includes a counter electrode. Since an electric field is formed between the pixel electrode and the counter electrode, and each pixel electrode is individually controlled by a thin film transistor, the orientation of the liquid crystal can be controlled on a pixel-by-pixel basis. The whole can be controlled precisely.
  • the pixel electrodes are respectively arranged corresponding to one picture element, and a gate drain capacitance formed by a pixel electrode having a larger pixel capacitance among a plurality of pixel electrodes arranged in the one pixel is provided. This is larger than the gate / drain capacitance formed by the pixel electrode having a smaller pixel capacitance. Thereby, the value of ⁇ before setting the Cgd gradation can be effectively adjusted. Further, as the scanning line signal progresses from the pixel electrode to which it is first applied, the increasing rate of the overlapping area of the pixel electrode with the scanning line is different for each pixel electrode having a different pixel capacitance.
  • the Cgd correction amount There is a correlation between the overlapping area, that is, the Cgd correction amount and the pixel capacitance.
  • a pixel electrode having a larger pixel capacity is made larger in the overlapping area, and a pixel electrode having a smaller area is made smaller in the overlapping area.
  • the value of the gate-drain capacitance (Cgd) formed by the scanning line and the pixel electrode can be suitably adjusted, and variation in the optimum counter voltage between the picture elements can be suppressed.
  • the overlapping area of the pixel electrode with the scanning line is initially increased according to the traveling direction of the signal of the scanning line and the rate of increase is decreased for each pixel electrode arranged corresponding to the monochrome pixel.
  • the overlapping area of the pixel electrodes with the scanning lines is such that the scanning line signals travel in the traveling direction for the pixel electrodes arranged corresponding to the red picture elements.
  • the pixel electrode arranged corresponding to the green picture element initially increases as the scanning line signal advances in the traveling direction.
  • the rate of increase changes so that the pixel electrode arranged corresponding to the blue picture element increases as it progresses in the direction of the scanning line signal, and the rate of increase decreases. To do.
  • the overlapping area usually decreases near the non-input end of the panel (the increase rate becomes a negative value), and the scanning line signal is a double-sided liquid crystal display.
  • the overlapping area usually decreases near the center of the panel (the increase rate becomes a negative value near the center of the panel).
  • the gate / drain capacitance can be adjusted by adjusting the TFT channel width, adjusting the overlapping area between the gate bus line and the drain electrode, adjusting the overlapping area between the pixel electrode and the gate bus line, and the like.
  • the configuration of the liquid crystal display device of the present invention is not particularly limited by other components as long as such components are formed as essential. A preferred embodiment of the liquid crystal display device of the present invention will be described in detail below.
  • a pixel electrode having a larger pixel capacity is a thin film transistor having a larger channel width among the plurality of pixel electrodes arranged in the one pixel. It is preferable that they are connected. In other words, among the plurality of pixel electrodes arranged in the one pixel, a pixel electrode having a smaller pixel capacity has a smaller channel width among the plurality of thin film transistors arranged in the one pixel. A thin film transistor is connected.
  • the channel region of the TFT is a region that does not overlap with the source electrode and the drain electrode in a plan view in the semiconductor layer disposed between the source electrode and the drain electrode, that is, is not doped with impurities. It is an area.
  • the size of the channel region of the TFT greatly affects the characteristics of the TFT. The wider the width of the channel region, the better the current characteristics. By changing the size of the channel region, Cgd constituting Cpix is affected.
  • the channel width does not indicate the distance between the source electrode and the drain electrode (hereinafter also referred to as channel length), but the width of the portion where the source electrode and the drain electrode face each other when viewed in a plan view.
  • channel length the distance between the source electrode and the drain electrode
  • a TFT with a wider channel width is connected to a pixel electrode with a larger area
  • a TFT with a narrower channel width is connected to a pixel electrode with a smaller area, so that a Cgd gradation is set based on the characteristics of the TFT. It is possible to suitably suppress variation in the value of ⁇ between the picture elements before the image processing.
  • a pixel electrode having a larger pixel capacity is connected to a scanning line of the pixel electrode more than the plurality of pixel electrodes arranged in the one pixel. It is preferable that the overlapping area is large. In other words, among the plurality of pixel electrodes arranged in the one pixel, the pixel electrode having a smaller pixel capacity is the pixel electrode scanning line of the plurality of thin film transistors arranged in the one pixel. The overlapping area is smaller. Even in such a form, it is possible to suitably suppress variation in the value of ⁇ between the picture elements before setting the Cgd gradation.
  • the overlapping area with the signal line of the pixel electrode having the larger pixel capacity is different from the overlapping area with the signal line of the pixel electrode having the smaller pixel capacity. It is preferable that Further, from the viewpoint of appropriately adjusting the value of ⁇ , the overlapping area of the pixel electrode having a larger pixel capacity with the auxiliary capacity wiring of the pixel electrode having a smaller pixel capacity is equal to the overlapping area of the auxiliary capacity wiring of the pixel electrode having a smaller pixel capacity. It is preferred that they are different.
  • the area of the pixel electrode having the larger pixel capacity is different from the area of the pixel electrode having the smaller pixel capacity, for example.
  • the effect of the present invention can be sufficiently exerted by applying the configuration of the present invention.
  • the area of the pixel electrode having a larger pixel capacity is usually larger than the area of the pixel electrode having a smaller pixel capacity.
  • the thickness of the liquid crystal layer overlapping the pixel electrode having the larger pixel capacity is different from the thickness of the liquid crystal layer overlapping the pixel electrode having the smaller pixel capacity, for example.
  • the effect of the present invention can be sufficiently exerted by applying the configuration of the present invention.
  • the thickness of the liquid crystal layer overlapping with the pixel electrode having the larger pixel capacity is usually smaller than the thickness of the liquid crystal layer overlapping with the pixel electrode having the smaller pixel capacity.
  • the signal line and the pixel electrode form a source / drain capacitance (Csd), the auxiliary capacitance line and the pixel electrode form an auxiliary capacitance (Ccs), and the pixel electrode and the counter electrode are A liquid crystal capacitance (Clc) is formed, and the ratio of the gate drain capacitance to the total of the gate drain capacitance, the source drain capacitance, the auxiliary capacitance, and the liquid crystal capacitance (hereinafter, the value of the ratio of the gate drain capacitance is expressed as follows) ⁇ is different among the above-mentioned multiple-color picture elements, and among the ratios of the gate-drain capacitances obtained for the above-mentioned multiple-color picture elements, the ratio of the largest gate-drain capacitance is the smallest.
  • the difference from the ratio of the gate drain capacity is preferably 10% or less with respect to the ratio of the smallest gate drain capacity. More preferably, it is 5% or less.
  • ⁇ at this time is preferably close between the pixels, and by having the above numerical range, it is possible to sufficiently achieve the suppression of burn-in, and the optimum counter voltage between the pixels. It is possible to eliminate the difference.
  • the signal line and the pixel electrode form a source / drain capacitance
  • the auxiliary capacitance wiring and the pixel electrode form an auxiliary capacitance
  • the pixel electrode and the counter electrode form a liquid crystal capacitance
  • the gate drain capacitance, the source drain capacitance, the auxiliary capacitance, and the maximum value of the total sum of the gate drain capacitance, the source drain capacitance, the auxiliary capacitance, and the liquid crystal capacitance in the one pixel The value of the response coefficient (“Cpix (min) / Cpix (max)”) calculated by the minimum value of the total sum of the liquid crystal capacitances differs among the plurality of color picture elements. It is preferable that the difference between the largest response coefficient and the smallest response coefficient among the obtained response coefficients is 5% or less with respect to the smallest response coefficient.
  • the pixel electrode is divided into a plurality of pixels within one picture element, the thin film transistor is connected to each of the pixel electrodes, the auxiliary capacitance wiring overlaps with each of the pixel electrodes, and voltage It is preferable that the polarity of is inverted every certain time.
  • a method of controlling one picture element by using a plurality of pixel electrodes (also referred to as sub-pixel electrodes) divided in one picture element as described above is also called a multi-drive method.
  • the multi-drive is performed by using the change in the voltage of the auxiliary capacitance wiring, so that it is not necessary to increase the number of extra wirings.
  • the signal line and the pixel electrode form a source / drain capacitance (Csd), the auxiliary capacitance line and the pixel electrode form an auxiliary capacitance (Ccs), and the pixel electrode and the counter electrode are A liquid crystal capacitance (Clc) is formed, and the ratio of the auxiliary capacitance to the sum of the gate / drain capacitance, the source / drain capacitance, the auxiliary capacitance, and the liquid crystal capacitance (hereinafter, the value of the ratio of the auxiliary capacitance is K). Is different among the plurality of color pixels, and the ratio of the largest auxiliary capacity and the ratio of the smallest auxiliary capacity among the ratios of the auxiliary capacity respectively obtained for the plurality of color pixels. Is preferably 1.0% or less with respect to the ratio of the smallest auxiliary capacity.
  • the preferred form is a liquid crystal display device of three primary colors of red (R), green (G), and blue (B), RGBY4 primary colors obtained by adding yellow (Y) picture elements to RGB3 primary colors, and further cyan (C).
  • R red
  • G green
  • B blue
  • C cyan
  • a display device in which a display surface is configured by pixels having red, green, blue, and yellow subpixels.
  • a configuration in which the aperture area is larger than that of the sub-pixel a configuration in which the aperture area of the red sub-pixel is the largest, a configuration in which the aperture area of the blue sub-pixel is the maximum, and a red and blue sub-pixel A mode in which both of the aperture areas are the largest
  • a green and / or yellow subpixel has a smaller aperture area than the other subpixels (a green subpixel has a minimum aperture area than the other subpixels) Mode
  • a mode in which the aperture area of the yellow sub-pixel is minimum
  • a mode in which the aperture areas of the green and yellow sub-pixels are both minimum a mode in which the aperture areas of the green and yellow sub-pixels are both minimum.
  • the pixel may have a form having red and / or blue sub-pixels having different color characteristics.
  • visibility is impaired by increasing the number of primary colors used for display, in particular, by reducing the lightness of red.
  • a light source having a high color temperature is used to adjust the color tone of white display, the brightness of red display is further lowered, and accordingly, visibility is further impaired. If it is set as the said preferable form, as a result of being able to display bright red, visibility can be improved and the effect of this invention can be synergistically acquired with the structure of this invention by it.
  • the liquid crystal display device of the present invention in the panel performing in-plane correction (Cgd gradation) due to the parasitic capacitance between the gate and the drain, the variation in the optimum counter voltage is adjusted between the picture elements. Occurrence can be suppressed.
  • FIG. 6 is a graph showing the in-plane facing distribution of each of the three primary colors of RGB when no Cgd gradation is provided in the liquid crystal display device of Embodiment 1.
  • 3 is a schematic plan view illustrating an arrangement configuration of pixel electrodes, TFTs, and various wirings of the liquid crystal display device of Embodiment 1.
  • FIG. FIG. 3 is a schematic plan view when the color filter in Embodiment 1 has a stripe arrangement. It is a plane schematic diagram when the color filter in Embodiment 1 is a rice field arrangement.
  • 3 is an equivalent circuit diagram in the liquid crystal display device of Embodiment 1.
  • FIG. 3 is a schematic plan view of color filters per pixel according to Embodiment 1.
  • FIG. 6 is a schematic plan view (enlarged view) showing a second example of a TFT in which the channel width is adjusted. It is a plane schematic diagram which shows the 3rd example of TFT which adjusted the magnitude
  • FIG. 9 is a schematic plan view (enlarged view) showing a third example of a TFT in which the channel width is adjusted.
  • 6 is a schematic plan view of color filters per pixel of Example 2.
  • FIG. 6 is a schematic plan view of color filters per pixel of Example 3.
  • FIG. 6 is a schematic plan view of color filters per pixel of Example 4.
  • FIG. 10 is a schematic plan view of color filters per pixel of Example 5.
  • FIG. 10 is a schematic plan view of color filters per pixel of Example 5.
  • 10 is a schematic plan view of color filters per pixel of Example 6.
  • FIG. 10 is a schematic plan view of color filters per pixel of Example 6.
  • FIG. 10 is a schematic plan view of color filters per pixel of Example 6.
  • FIG. 10 is a schematic plan view of color filters per pixel of Example 7.
  • FIG. 10 is a schematic plan view of color filters per pixel of Example 7.
  • FIG. 10 is a schematic plan view of color filters per pixel of Example 7.
  • FIG. 10 is a schematic plan view of a TFT showing an example in which the size of the overlapping area of pixel electrodes is actually adjusted in Example 5.
  • FIG. 3 is a graph showing a mosaic region between Step (n) and Step (n + 1) in the liquid crystal display device of Embodiment 1.
  • 22 is a graph showing Cgd gradation provided in a liquid crystal display device according to a modification of Example 8.
  • the liquid crystal display device of the modification of Example 8 it is a graph which shows in-plane opposing distribution of each of RGB primary colors at the time of providing Cgd gradation.
  • Example 10 is a graph showing Cgd gradation provided in a liquid crystal display device of another modification of Example 8.
  • the liquid crystal display device of another modification of Example 8 it is a graph which shows in-plane opposing distribution of each of RGB three primary colors at the time of providing Cgd gradation.
  • the liquid crystal display device of Example 9 it is a graph which shows (DELTA) Vd correction amount (mV) with respect to the relative position from a gate input terminal.
  • It is a graph which shows Cgd gradation provided in the liquid crystal display device of the modification of Example 9.
  • the liquid crystal display device of the modification of Example 9 it is a graph which shows in-plane opposing distribution of each of RGB three primary colors at the time of providing Cgd gradation.
  • 10 is a graph showing ⁇ Vd correction amount (mV) relative to a relative position from a gate input terminal in the liquid crystal display device of Comparative Example 1; 10 is a graph showing Cgd gradation provided in a liquid crystal display device of a modification of Comparative Example 1. 10 is a graph showing an in-plane facing distribution of each of the three primary colors of RGB when a Cgd gradation is provided in a liquid crystal display device according to a modified example of Comparative Example 1. It is a graph which shows the relationship between channel size ratio and pixel electrode area ratio. It is a plane schematic diagram which shows the area
  • FIG. 37 It is a plane schematic diagram which shows the area
  • this is an example of a TFT in which the size of the overlapping area between the gate bus line and the drain electrode is adjusted, and the TFT d1 in FIG. 37 is changed.
  • this is an example of a TFT in which the size of the overlapping area between the gate bus line and the drain electrode is adjusted, and the TFT d1 in FIG. 37 is changed.
  • this is an example of the TFT in which the size of the overlapping area of the gate bus line and the drain electrode is adjusted, and the TFT d2 in FIG.
  • TFT 37 is changed.
  • this is an example of a TFT in which the size of the overlapping area of the gate bus line and the drain electrode is adjusted, and d2 of the TFT in FIG. 37 is changed.
  • 38 is an example of a TFT in which the size of the overlapping area between the gate bus line and the drain electrode is adjusted, and is a form in which d3 of the TFT in FIG. 38 is changed.
  • 38 is an example of a TFT in which the size of the overlapping area between the gate bus line and the drain electrode is adjusted, and is a form in which d4 of the TFT in FIG. 38 is changed.
  • FIG. 38 is an example of a TFT in which the size of the overlapping area between the gate bus line and the drain electrode is adjusted, and is a form in which d4 of the TFT in FIG. 38 is changed.
  • FIG. 5 is a schematic plan view showing a region where a gate bus line and a pixel electrode overlap each other, and is a form in which a normal gate bus line and a pixel electrode overlap each other.
  • FIG. 6 is a schematic plan view showing a region where a gate bus line and a pixel electrode overlap each other, and is an example in which the size of the overlapping area between the gate bus line and the drain electrode is adjusted.
  • FIG. 5 is a schematic plan view showing a region where a gate bus line and a pixel electrode overlap each other, and is a form in which a normal gate bus line and a pixel electrode overlap each other.
  • FIG. 6 is a schematic plan view showing a region where a gate bus line and a pixel electrode overlap each other, and is an example in which
  • FIG. 6 is a schematic plan view showing a region where a gate bus line and a pixel electrode overlap each other, and is an example in which the size of the overlapping area between the gate bus line and the drain electrode is adjusted. It is a graph which shows the relationship between gate drain overlap area ratio and pixel electrode area ratio. It is a graph which shows the relationship between a frame period and the arrival rate of an applied voltage. It is a schematic diagram which shows a display state when the influence on the display by the difference in a response coefficient is investigated. It is a graph which shows the suitable range of the response coefficient represented by "Cpix (min) / Cpix (max)".
  • FIG. 10 is a schematic plan view illustrating an arrangement configuration of pixel electrodes, TFTs, and various wirings of the liquid crystal display device of Embodiment 2.
  • 6 is an equivalent circuit diagram of the liquid crystal display device of Embodiment 2.
  • FIG. 10 is a schematic plan view illustrating a range where a Cs bus line and a spread portion of a drain electrode overlap in Embodiment 2. It is a plane schematic diagram which shows an example at the time of adjusting Cs capacity
  • FIG. 10 is a schematic plan view illustrating an arrangement configuration of pixel electrodes and wirings in a third embodiment.
  • FIG. 10 is a schematic plan view illustrating an arrangement configuration of pixel electrodes and wirings in a third embodiment.
  • FIG. 10 is a schematic plan view illustrating an arrangement configuration of pixel electrodes and wirings in a fourth embodiment.
  • FIG. 10 is a schematic plan view illustrating an arrangement configuration of pixel electrodes and wirings in Embodiment 5.
  • Embodiment 6 it is a cross-sectional schematic diagram which shows the form using the pixel of 3 colors. It is a cross-sectional schematic diagram which shows the form using the pixel of 4 colors in Embodiment 6.
  • FIG. It is a schematic diagram which shows a state when a white window is displayed on a halftone background. It is a schematic diagram which shows the state of a halftone solid display when a white window is deleted. It is a schematic diagram which shows the signal waveform of the drain voltage of two pixel electrodes arrange
  • the overlapping area with the wiring of the pixel electrode includes the overlapping area with the wiring of the drain electrode.
  • the overlapping area of the pixel electrode with the scanning line includes the overlapping area of the pixel electrode with the gate electrode.
  • the overlapping area of the pixel electrode with the signal line includes the overlapping area of the pixel electrode with the source electrode.
  • FIG. 1 is a graph showing the in-plane facing distribution of each of the three primary colors of RGB when no Cgd gradation is provided in the liquid crystal display device of the first embodiment.
  • an alternate long and short dash line indicates an in-plane facing distribution 101 of G (green)
  • a dotted line indicates an in-plane facing distribution 101 of B (blue)
  • a broken line indicates an in-plane facing distribution 101 of R (red).
  • the position x indicates the position on the scanning line signal side when the position of the horizontal axis on the panel plane where the signal is input to the scanning line is 0. As shown in FIG.
  • FIG. 2 is a schematic plan view illustrating an arrangement configuration of pixel electrodes, TFTs, and various wirings of the liquid crystal display device according to the first embodiment.
  • one pixel electrode is arranged for one picture element.
  • one pixel is constituted by a plurality of picture elements. Each pixel is controlled by individually controlling each picture element, and further, the entire display by the liquid crystal display device is controlled.
  • the liquid crystal display device of Embodiment 1 has a gate bus line 11 extending in the row direction (horizontal direction) and a source bus line 12 extending in the column direction (vertical direction).
  • the TFT 14 is connected to both the gate bus line 11 and the source bus line 12.
  • the TFT 14 is also connected to the pixel electrode 15.
  • the pixel electrode 15 has a Cs bus line 13 that overlaps at least a part of the pixel electrode 15, and is formed to extend in the row direction so as to cross the center of the pixel electrode 15, for example, as shown in FIG.
  • a kind of color filter is arranged for one picture element.
  • the type, number, and arrangement order of the picture elements constituting the pixel are not particularly limited, and examples thereof include combinations of RGB, RGBY, RGBC, RGBW, and the like.
  • the color of the picture element is determined by a color filter.
  • As an arrangement form of the color filter for example, as shown in FIG. 3, the stripe arrangement formed in the vertical direction regardless of the boundary of the pixel electrode, four colors as shown in FIG. There is a rice field arrangement in which two colors are arranged in each of the direction and the column direction.
  • FIG. 5 is an equivalent circuit diagram of the liquid crystal display device according to the first embodiment.
  • circuit patterns are formed in units of picture elements (subpixels), and in FIG. 5, circuit patterns for two picture elements are shown.
  • a liquid crystal capacitor Clc is formed by the pixel electrode and the counter electrode which are arranged to face each other with the liquid crystal layer interposed therebetween.
  • the value of Clc depends on the effective voltage (V) applied to the liquid crystal layer by the pair of electrodes.
  • the auxiliary capacitor Ccs is formed by the pixel electrode and the Cs bus line (auxiliary capacitor wiring) arranged to face each other with the insulating film interposed therebetween.
  • a gate drain capacitance Cgd is formed by the pixel electrode and the gate bus line (scanning line) which are arranged to face each other with the insulating film interposed therebetween.
  • a source / drain capacitor Csd is formed by the pixel electrode and the source bus line (signal line) arranged to face each other with the insulating film interposed therebetween.
  • a TFT thin film transistor
  • the pixel electrode is connected to the drain electrode of the TFT.
  • the gate electrode of the TFT is connected to the gate bus line, and the source electrode of the TFT is connected to the source bus line.
  • a scanning signal supplied in a pulse manner to the gate bus line at a predetermined timing is applied to each TFT at a predetermined timing (line-sequential, one-by-one, two-line simultaneous writing, etc.). Then, an image signal supplied from the source bus line is applied to the pixel electrode connected to the TFT which is turned on for a certain period by the input of the scanning signal.
  • An image signal of a predetermined level written to the liquid crystal layer for each picture element is held for a certain period between the pixel electrode to which the image signal is applied and the counter electrode facing the pixel electrode.
  • an auxiliary capacitor Ccs is formed in parallel with the liquid crystal capacitor Clc formed between the pixel electrode and the counter electrode. Is done.
  • each pixel electrode 15 is different, and the vertical length of each pixel electrode 15 is the same. Is different.
  • FIG. 6 is a schematic plan view of color filters per pixel of the first embodiment. As shown in FIG. 6, in the first embodiment, color filters of three colors of red (R), green (G), and blue (B) are arranged. The color filter in Example 1 is a stripe arrangement, and the same color picture elements are formed in the vertical direction of the panel.
  • the length in the vertical direction of the pixel electrode is formed to be the same for each color of red, green, and blue, whereas the length in the horizontal direction (picture element pitch) is different for each color.
  • the larger the pixel pitch the larger the pixel area.
  • the pitch width of the green picture element is larger than the pitch width of the red picture element and larger than the pitch width of the blue picture element.
  • the red pitch width and the blue pitch width are the same. Therefore, the area of the green picture element is larger than the area of the red picture element and larger than the area of the blue picture element.
  • the color balance may be lost because the area of the pixel electrode is different between the picture elements, but it can be adjusted by controlling the backlight. Specifically, it can be adjusted by controlling the backlight signal, changing the phosphor ratio of the light source used for the backlight, or the like.
  • a TFT having a larger channel width is arranged for a pixel electrode having a larger area. Therefore, the channel width of the TFT in the green picture element is larger than the channel width of the TFT in the red picture element and larger than the channel width of the TFT in the blue picture element.
  • a gate drain capacitance (Cgd) formed by the gate bus line and the pixel electrode, a source drain capacitance (Csd) formed by the source bus line and the pixel electrode, and a Cs bus line and the pixel electrode are formed.
  • the balance of the auxiliary capacitance (Ccs) and the liquid crystal capacitance (Clc) formed by the pixel electrode and the counter electrode can be easily adjusted for each picture element.
  • FIGS. 7 to 11 are schematic plan views showing examples of means for varying the channel width d (d1 to d5) of the TFTs in the first embodiment among the picture elements.
  • the TFT 14 is connected to each of the gate bus line 11 and the source bus line 12.
  • the TFT 14 includes a semiconductor layer formed of silicon or the like, a source electrode 22 extended from a part of the source bus line 12, and a drain electrode that supplies an image signal from the source bus line 12 to the pixel electrode via the semiconductor layer. 23 and a gate electrode which is a region overlapping with the semiconductor layer in the gate bus line 11 is provided as a constituent element.
  • the drain electrode 23 extends toward the center of the picture element and is formed with a certain spread.
  • a contact hole 24 is formed in the insulating film on the part 23 a having a certain spread, and the drain electrode 23 and the pixel electrode are electrically connected through the contact hole 24.
  • the portion 23a having the drain electrode 23 spread forms an auxiliary capacitance with the Cs bus line disposed in the lower layer via an insulating film.
  • the Cs bus line is extended in parallel with the gate bus line 11.
  • the semiconductor layer included in the TFT 14 overlaps with both the source electrode 22 and the drain electrode 23.
  • a region overlapping with the source electrode 22 is a source region
  • a region overlapping with the drain electrode 23 is a drain region.
  • a channel region 21 is a region that does not overlap with both the source electrode 22 and the drain electrode 23 and is positioned between the source electrode 22 and the drain electrode 23 in a plan view. Therefore, the semiconductor layer has three regions of the source region, the channel region 21, and the drain region.
  • the channel region 21 overlaps with the gate bus line 11, and an image signal can be supplied from the source electrode 22 to the drain electrode 23 only when a scanning signal is input to the gate bus line 11.
  • the length of the channel region 21 (the distance between the source electrode 22 and the drain electrode 23) is determined to an appropriate value to some extent. Therefore, it is not preferable to change the length of the channel region 21 for each pixel.
  • the width d of the channel region 21 can be adjusted. If the width d of the channel region with respect to the length of the channel region 21 is increased, the electrical characteristics of the TFT 14 are further improved. Therefore, in Example 1, the channel width d in the green picture element is formed larger than the channel width d in the red and blue picture elements.
  • the value of the gate drain capacitance (Cgd) formed with the pixel electrode changes, and this is used to change the optimum counter voltage value for each pixel so as to bring the values closer to each other. Can be adjusted to.
  • FIG. 7 is a schematic plan view showing a first example of a TFT in which the channel width is adjusted.
  • the channel region 21 of the TFT in FIG. 7 is formed between the drain electrode 23 and the source electrode 22 and has a channel width of d1.
  • the magnitude of ⁇ can be adjusted between the picture elements.
  • FIG. 8 and 9 are schematic plan views showing a second example of a TFT in which the channel width is adjusted.
  • the channel width d2 of the TFT 14 in FIG. 8 is formed not only between the drain electrode 23 and the source electrode 22 but also between the drain electrode 23 and a part of the source bus line 12.
  • the channel width d2 of the TFT 14 at this time is a length obtained by adding a portion d3 facing the source bus line 12 and a portion d4 facing the source electrode 22 as shown in FIG. By changing the magnitude of d2 for each picture element, the magnitude of ⁇ can be adjusted between picture elements.
  • FIGS. 10 and 11 are schematic plan views showing a third example of a TFT in which the channel width is adjusted.
  • a source electrode 22 extended from a part of the source bus line 12 branches off in the middle, and has a shape surrounding the tip of the drain electrode 23.
  • the channel width d5 of the TFT 14 at this time is a length obtained by adding portions d6 and d8 parallel to the gate bus line 11 and a portion d7 parallel to the source bus line 12 as shown in FIG. By changing the size of d5 for each picture element, the magnitude of ⁇ can be adjusted between the picture elements.
  • the value of ⁇ is close between the picture elements.
  • the value represented by the ratio of the value of ⁇ between the picture elements “(maximum value of ⁇ minimum value of ⁇ ) / minimum value of ⁇ ” is preferably 10% or less.
  • FIG. 12 is a schematic plan view of color filters per pixel according to the second embodiment.
  • the color filter in Example 2 has a stripe arrangement, and picture elements of the same color are formed in the vertical direction of the panel.
  • the color filter uses three colors of red (R), green (G), and blue (B).
  • the arrangement order of colors is not particularly limited.
  • the pitch width of red (R) is narrower than the pitch width of blue (B) than the pitch width of green (G).
  • the pitch width of green (G) and the pitch width of blue (B) are the same.
  • the color balance may be lost because the area of the pixel electrode is different between the picture elements, but it can be adjusted by controlling the backlight. Specifically, it can be adjusted by controlling the backlight signal, changing the phosphor ratio of the light source used for the backlight, or the like.
  • FIG. 13 is a schematic plan view of a color filter per pixel according to the third embodiment.
  • the color filter in Example 3 has a stripe arrangement, and picture elements of the same color are formed in the vertical direction of the panel.
  • the color filter uses three colors of red (R), green (G), and blue (B).
  • the arrangement order of colors is not particularly limited.
  • the pitch width of red (R) is narrower than the pitch width of blue (B), and the pitch width of blue (B) is narrower than the pitch width of green (G).
  • the red, green, and blue pitch widths all the same, reducing the red ratio and increasing the green ratio, a higher transmittance can be obtained as compared with the case where these are the same ratio.
  • the color balance may be lost because the area of the pixel electrode is different between the picture elements, but it can be adjusted by controlling the backlight. Specifically, it can be adjusted by controlling the backlight signal, changing the phosphor ratio of the light source used for the backlight, or the like.
  • FIG. 14 is a schematic plan view of color filters per pixel according to the fourth embodiment.
  • the color filter in Example 4 has a stripe arrangement, and picture elements of the same color are formed in the vertical direction of the panel.
  • the color filter uses four colors of red (R), green (G), blue (B), and yellow (Y).
  • the arrangement order of colors is not particularly limited.
  • the pitch width of green (G) and the pitch width of yellow (Y) are the same, and the pitch width of red (R) and the pitch width of blue (B) are the same.
  • the pitch width of green (G) and yellow (Y) is narrower than the pitch width of red (R) and blue (B).
  • the pitch widths of red, green, blue and yellow all the same, the ratio of red and blue is higher and the ratio of green and yellow is lower, so they are wider than if they are the same ratio Color reproducibility is obtained.
  • the color balance may be lost because the area of the pixel electrode is different between the picture elements, but it can be adjusted by controlling the backlight. Specifically, it can be adjusted by controlling the backlight signal, changing the phosphor ratio of the light source used for the backlight, or the like.
  • Example 5 15 and 16 are schematic plan views of color filters per pixel of Example 5.
  • the color filter in Example 5 has a stripe arrangement, and picture elements of the same color are formed in the vertical direction of the panel.
  • four color filters of red (R), green (G), blue (B), and yellow (Y) are used.
  • the arrangement order of colors is not particularly limited.
  • the pitch width of green (G) and the pitch width of yellow (Y) are the same.
  • the pitch width of red (R) is larger than any pitch width of green (G) and yellow (Y), and the pitch width of blue (B) is also any pitch of green (G) and yellow (Y). Greater than width.
  • the pitch widths of red, green, blue and yellow all the same, the ratio of red and blue is higher and the ratio of green and yellow is lower, so they are wider than if they are the same ratio Color reproducibility is obtained.
  • the color balance may be lost because the area of the pixel electrode is different between the picture elements, but it can be adjusted by controlling the backlight. Specifically, it can be adjusted by controlling the backlight signal, changing the phosphor ratio of the light source used for the backlight, or the like.
  • the red pitch width and the blue pitch width depending on the arrangement position of the spacer for holding the cell gap, the formation position of the Cs wiring in the display region, and the like.
  • the multilayer spacer may be formed on the red picture element in order to obtain a sufficient height.
  • copper (Cu) is used for metal wiring such as a gate bus line and a source bus line
  • reflection by copper (Cu) will be reddish, so a laminated spacer is formed on a blue picture element. It is possible that In this case, it is preferable to make the blue ratio smaller than the red ratio.
  • FIGS. 17 to 20 are schematic plan views of color filters per pixel according to the sixth embodiment.
  • the color filter in Example 6 has a stripe arrangement, and picture elements of the same color are formed in the vertical direction of the panel.
  • four color filters of red (R), green (G), blue (B), and yellow (Y) are used.
  • the arrangement order of colors is not particularly limited.
  • the pitch width of red is larger than any pitch width of green and yellow
  • the pitch width of blue is also larger than any pitch width of green and yellow.
  • any of large forms is assumed.
  • FIG. 17 shows a pitch width of yellow ⁇ green ⁇ blue ⁇ red
  • FIG. 18 shows a pitch width of green ⁇ yellow ⁇ blue ⁇ red
  • FIG. 19 shows a pitch width of yellow ⁇ green ⁇ red.
  • FIG. 20 shows a pitch width of green ⁇ yellow ⁇ red ⁇ blue.
  • the pitch widths of red, green, blue and yellow all the same, the ratio of red and blue is higher and the ratio of green and yellow is lower, so they are wider than if they are the same ratio Color reproducibility is obtained.
  • the color balance may be lost because the area of the pixel electrode is different between the picture elements, but it can be adjusted by controlling the backlight. Specifically, it can be adjusted by controlling the backlight signal, changing the phosphor ratio of the light source used for the backlight, or the like.
  • the location of the spacer for holding the cell gap and the formation of the Cs wiring in the display area It is preferable to appropriately set each pitch width depending on the location or the like. Specifically, as described above.
  • Example 7 21 and 22 are schematic plan views of color filters per pixel according to the seventh embodiment.
  • the color filter in the seventh embodiment is a rice field array of four color picture elements of red, green, blue, and yellow, and two are formed in each of the vertical direction and the horizontal direction. A total of four squares constitutes one picture element.
  • the arrangement order of colors is not particularly limited. Any pattern of Examples 4 to 6 can be applied to the area of each picture element. That is, Example 7 is the same except that the stripe arrangement is a rice field arrangement. Note that, in the case of a rice field arrangement, unlike the case of the stripe arrangement, the pixel is constituted not only by picture elements arranged in the horizontal direction but also by picture elements arranged in the vertical direction. Therefore, the pitch width in the vertical direction may be different as shown in FIG. 21, or the pitch width in the horizontal direction may be different as shown in FIG.
  • the pitch widths of red, green, blue, and yellow all the same and lowering the ratio of red, a higher transmittance can be obtained as compared with the case where these are the same ratio.
  • the color balance may be lost because the area of the pixel electrode is different between the picture elements, but it can be adjusted by controlling the backlight. Specifically, it can be adjusted by controlling the backlight signal, changing the phosphor ratio of the light source used for the backlight, or the like.
  • FIG. 23 is a schematic plan view of a TFT showing an example in which the size of the overlapping area of the pixel electrodes is actually adjusted in the fifth embodiment.
  • the TFT 14 includes a source electrode 22 extended from a part of the source bus line 12, a gate electrode 25 extended from a part of the gate bus line 11, and a drain electrode connected to the pixel electrode. 23. Further, the TFT 14 has a semiconductor layer at a position overlapping with the gate electrode 25, and a part of the semiconductor layer overlaps with each of the source electrode 22 and the drain electrode 23. Further, the other part of the semiconductor layer does not overlap with either the source electrode 22 or the drain electrode 23, and among these, a region sandwiched between the source electrode 22 and the drain electrode 23 in a plan view is a channel. Region 21. Here, the width of the channel region 21 of the semiconductor layer is set differently between the picture elements, but the distance between the source electrode 22 and the drain electrode 23 is set to be uniform.
  • the drain electrode 23 has a linear shape extending in a direction parallel to the source bus line 12.
  • the source electrode 22 has an opening that opens in a direction opposite to the gate bus line 11 when viewed in plan, and has a shape that surrounds the tip of the drain electrode 23.
  • the width of the drain electrode 23 is c, and the length in the direction parallel to the gate bus line 11 in the distance between the drain electrode 23 and the source electrode 22 is d.
  • the length in the direction parallel to the source bus line 12 is e.
  • the length in the direction parallel to the source bus line 12 at the portion where the source electrode 22 faces the drain electrode 23 is a.
  • the length obtained by subtracting the length of the source electrode 22 in the direction parallel to the source bus line 12 from the length of the gate electrode 25 in the direction parallel to the source bus line 12 is b.
  • Table 1 shows information on each picture element before setting the Cgd gradation (set to reduce the ⁇ Vd difference between the picture elements before setting the gradation).
  • the deviation of ⁇ (max-min) between the picture elements could be 3.88%.
  • ⁇ Vd is 1.838V for the red picture element, 1.901V for the green and yellow picture elements, and 1.910V for the blue picture element, and the difference between the maximum value and the minimum value of ⁇ Vd. was 72 mV.
  • Example 8 and Example 9 to be described later a Cgd gradation is further set and the value of ⁇ between picture elements is adjusted.
  • gradation is not set, an in-plane facing distribution is generated, and there is a possibility that flicker and display deterioration may occur in the display image.
  • the ratio of the pitch width of each picture element was 1.4: 1: 1: 1.7 for “red”: “green”: “yellow”: “blue”.
  • Example 8 In the liquid crystal display device having each picture element shown in Table 1 above, information on each picture element when gradation is set so that equal ⁇ Cgd / Cpix is applied to each picture element is shown in Table 2 below.
  • the length of the gate electrode is changed along the signal traveling direction of the scanning line, and the overlapping area of the gate electrode and the drain electrode is changed.
  • the length of the varying gate electrode 26 is g.
  • the length of the gate electrode 25 extending from a part of the gate bus line 11 in the direction parallel to the gate bus line 11 is f.
  • the correction amount per step (Cgd correction amount) is a size obtained by increasing or decreasing the size of g per step.
  • the total number of steps is the number of stages in which correction for increasing the magnitude of g is performed.
  • the maximum correction amount is the maximum value of g.
  • the ⁇ Vd correction amount (mV) per 1 step is an increase / decrease amount of ⁇ Vd accompanying an increase / decrease in g per 1 Step.
  • the maximum correction amount (mV) is the ⁇ Vd correction amount when g becomes the maximum value, and is the maximum value of the ⁇ Vd correction amount.
  • the optimum facing deviation (mV) is the difference between the maximum value and the minimum value of the in-plane facing distribution before setting the gradation.
  • ⁇ Vd (V) at the position where the maximum correction amount is applied is the value of ⁇ Vd when g is the maximum value (the position where g is maximum in the panel surface).
  • FIG. 24 is a graph showing a mosaic region between Step (n) and Step (n + 1) in the liquid crystal display device of Embodiment 1.
  • the mosaic region 133 is a region where Step (n) pixels 131 and Step (n + 1) pixels 132 are mixed, and may or may not be provided in the liquid crystal display device.
  • the number of pixels in the scanning line direction of the mosaic region 133 is usually constant (for example, 24) as long as it can achieve the purpose of suppressing the occurrence of a visual step and achieving a smooth display.
  • the number of pixels (the number of pixels to be held) of the portion that does not occur can be set to 4 or more, for example.
  • Example 9 and Comparative Example 1 a mosaic region is provided.
  • the correction by the Cgd gradation is basically determined by the correction amount per 1 Step described above and the number of pixels in the portion where no mixing occurs. The smaller the number of pixels to be held, the sharper the correction is performed, and the amount of increase in correction can be increased. Conversely, as the number of pixels to be held increases, correction is performed more gently, and the amount of increase in correction can be reduced.
  • FIG. 25 is a graph showing ⁇ Vd correction amount (mV) relative to the relative position from the gate input end in the liquid crystal display device of Example 8.
  • ⁇ Vd correction amount mV
  • the difference in ⁇ Vd correction amount at the maximum correction amount is obtained by adjusting the red picture element. 154.1 mV for green and yellow picture elements, 157.8 mV for blue and 163.5 mV for blue picture elements, and the maximum and minimum ⁇ Vd correction amount difference between the picture elements at the maximum correction amount. The difference between the values was 9.4 mV.
  • the optimum facing deviation is 324 mV
  • ⁇ Vd at the maximum correction amount is 1.668 V for red picture elements, 1.735 V for green and yellow picture elements, and 1.750 V for blue picture elements.
  • the difference between the maximum value and the minimum value of ⁇ Vd at the maximum correction amount was 82 mV.
  • the ⁇ shift (the ratio of the difference between the maximum value of ⁇ and the minimum value of ⁇ to the minimum value of ⁇ ) was 4.19%. Therefore, according to the above design, a liquid crystal display device in which the optimum counter voltage is sufficiently adjusted between the picture elements and the occurrence of burn-in is suppressed can be obtained.
  • FIGS. Shown in 26 and 27 show graphs in the case where three color picture elements are used, and the scanning line signal is input only from the position x 0 on the horizontal axis.
  • FIG. 26 is a graph showing a Cgd gradation 102 provided in the liquid crystal display device according to the modification of the eighth embodiment.
  • a solid line indicates the Cgd correction amount (Cgd gradation) provided for R (red), G (green), and B (blue).
  • Cgd correction amount Cgd gradation
  • FIG. 27 is a graph showing the in-plane facing distribution of each of the three primary colors of RGB when a Cgd gradation is provided in a liquid crystal display device according to a modification of the eighth embodiment.
  • the in-plane facing distribution 103 in each picture element becomes substantially constant, and the ⁇ Vd difference between the picture elements.
  • FIG. 27 is a graph showing the in-plane facing distribution of each of the three primary colors of RGB when a Cgd gradation is provided in a liquid crystal display device according to a modification of the eighth embodiment.
  • the alternate long and short dash line indicates the in-plane facing distribution 103 of G (green), the dotted line indicates the in-plane facing distribution 103 of B (blue), and the broken line indicates the in-plane facing distribution 103 of R (red).
  • the in-plane facing distribution 103 is translated in each pixel.
  • the Cgd gradation is applied so that Cgd / Cpix becomes equal in consideration of the difference in pixel capacitance, and the amount is an amount that substantially completely compensates for the optimum facing deviation, the in-plane facing distribution 103 is obtained. Is constant and has a ⁇ Vd difference A.
  • FIGS. Shown in FIG. 28 and FIG. 29 show graphs in the case where picture elements of three colors are used, and the scanning line signal is inputted only from the position x 0 on the horizontal axis.
  • FIG. 28 is a graph showing Cgd gradation provided in the liquid crystal display device of another modification of the eighth embodiment. In FIG. 28, the solid line indicates the Cgd correction amount provided for R (red), G (green), and B (blue).
  • FIG. 29 is a graph showing the in-plane facing distribution of each of the three primary colors of RGB when a Cgd gradation is provided in a liquid crystal display device according to another modification of the eighth embodiment.
  • the Cgd gradation is applied to such an extent that the in-plane facing distribution can be sufficiently reduced, the variation of the in-plane facing distribution in each picture element is reduced, but the remaining in-plane facing distribution is reduced. It is not constant.
  • the ⁇ Vd difference between the picture elements was almost the same as when no Cgd gradation was provided.
  • FIG. 29 is a graph showing the in-plane facing distribution of each of the three primary colors of RGB when a Cgd gradation is provided in a liquid crystal display device according to another modification of the eighth embodiment.
  • the alternate long and short dash line indicates the in-plane facing distribution of G (green)
  • the dotted line indicates the in-plane facing distribution of B (blue)
  • the broken line indicates the in-plane facing distribution of R (red).
  • the in-plane facing distribution is shifted in parallel for each pixel.
  • the amount of Cgd gradation is an amount that substantially compensates for the optimum facing deviation as in the above-described modification of the eighth embodiment.
  • Example 9 In the liquid crystal display device having each picture element shown in Table 1 above, information on each picture element when gradation is set so that ⁇ Cgd / Cpix that aligns in-plane opposition to each picture element is as follows: Table 3 shows. In the ninth embodiment, even if gradation is set as in the eighth embodiment, a difference of about several tens of mV (82 mV in the eighth embodiment) is generated. Therefore, the difference in ⁇ Vd is also taken into consideration. And set Cgd gradation. Each item name in Table 3 is the same as each item name shown in Table 2 described above.
  • FIG. 30 is a graph showing the ⁇ Vd correction amount (mV) relative to the relative position from the gate input end in the liquid crystal display device of Example 9.
  • ⁇ Vd correction amount mV
  • the liquid crystal display device of Example 9 by adjusting the value of g between the respective picture elements as shown in Table 3 and FIG. 154.1 mV for green and yellow, 157.8 mV for green and yellow, and 147.2 mV for blue, and the maximum ⁇ Vd correction amount difference between pixels The difference between the value and the minimum value was 23 mV.
  • ⁇ Vd at the maximum correction amount can be 1.668V for red picture elements, 1.735V for green and yellow picture elements, and 1.733V for blue picture elements.
  • the difference between the maximum value and the minimum value of ⁇ Vd was 67.0 mV.
  • the ⁇ shift (the ratio of the difference between the maximum value of ⁇ and the minimum value of ⁇ to the minimum value of ⁇ ) was 3.40%. Therefore, according to the above design, it is possible to improve the shift of ⁇ by loosening the degree of adjustment between the pixels of the optimum counter voltage, and to obtain a liquid crystal display device in which the occurrence of burn-in is suppressed. .
  • FIG. 31 is a graph showing Cgd gradation provided in the liquid crystal display device according to the modification of the ninth embodiment.
  • a small Cgd gradation is set for a pixel (R) having a large ⁇ Vd.
  • FIG. 32 is a graph showing the in-plane facing distribution of each of the three primary colors of RGB when a Cgd gradation is provided in a liquid crystal display device according to a modification of the ninth embodiment.
  • the alternate long and short dash line indicates the in-plane facing distribution of G (green)
  • the dotted line indicates the in-plane facing distribution of B (blue)
  • the broken line indicates the in-plane facing distribution of R (red).
  • the overlapping area of the pixel electrode with the scanning line starts according to the traveling direction of the signal of the scanning line for each pixel electrode arranged corresponding to the monochrome pixel. Is increased and the rate of increase is reduced, and the rate of increase is different for each pixel electrode having a different pixel capacitance. Further, as in the liquid crystal display devices shown in the eighth and ninth embodiments, the gate drain when the overlapping area of the pixel electrode and the scanning line is not changed among the plurality of pixel electrodes arranged in one pixel.
  • a pixel electrode having a larger capacitance a pixel electrode having a larger gate / drain capacitance before correction
  • a pixel electrode having a smaller gate / drain capacitance a gate / drain before correction
  • the increase rate of the gate drain correction amount is the same as that of the pixel electrode having a smaller capacitance
  • Example 8 is particularly suitable from the viewpoint of preventing variation in the in-plane facing distribution
  • Example 9 is particularly suitable from the viewpoint of reducing the ⁇ deviation.
  • a preferable gradation (Cgd correction) may be any of those shown in the eighth embodiment and those shown in the ninth embodiment.
  • Comparative Example 1 In the liquid crystal display device having each picture element shown in Table 1, information of each picture element when the gradation arrangement is not adjusted is shown in Table 4 below.
  • the item names in Table 4 are the same as the item names shown in Tables 2 and 3 above.
  • FIG. 33 is a graph showing the ⁇ Vd correction amount (mV) relative to the relative position from the gate input end in the liquid crystal display device of Comparative Example 1.
  • ⁇ Vd correction amount mV
  • the difference between the maximum value and the minimum value of ⁇ Vd was 109 mV.
  • the ⁇ shift (the ratio of the difference between the maximum value of ⁇ and the minimum value of ⁇ to the minimum value of ⁇ ) was 6.53%. Therefore, the liquid crystal display device having the above design may cause burn-in.
  • Comparative Example 1 when there is a difference in ⁇ Vd depending on the picture element, gradation is set with the same increase rate condition of the overlapping area with the scanning line of the pixel electrode for each picture element.
  • the graph of the modification of the comparative example 1 is shown in FIG.34 and FIG.35. Since the pixel capacitance is different for each pixel electrode, the gradation is not equal.
  • 34 and 35 show graphs in the case of using three-color (RGB) picture elements.
  • FIG. 34 is a graph showing Cgd gradation provided in the liquid crystal display device according to the modification of the first comparative example. In FIG.
  • FIG. 35 is a graph showing the in-plane facing distribution of each of the three primary colors of RGB when a Cgd gradation is provided in the liquid crystal display device of the modification of Comparative Example 1.
  • the alternate long and short dash line indicates the in-plane facing distribution of G (green)
  • the dotted line indicates the in-plane facing distribution of B (blue)
  • the broken line indicates the in-plane facing distribution of R (red).
  • the Cgd correction amount and the number of steps are the same ignoring the difference in pixel capacity.
  • the compensation amount may be too much (G) or too little (R), and both the in-plane facing distribution and ⁇ Vd cannot be within the range in which the effects of the present invention can be sufficiently achieved.
  • Table 5 shows the allowable range of the deviation of ⁇ when the difference in ⁇ Vd is assumed to be within 100 mV in the liquid crystal display device of the present invention. If the difference ⁇ Vd is 100 mV or less, the image sticking is easily improved, and if it is 50 mV or less, the image sticking is more reliably improved.
  • FIG. 36 is a graph showing the relationship between the channel size ratio and the pixel electrode area ratio.
  • the difference in the length of the source electrode and the drain electrode in the TFT shown in FIGS. 7 to 9 is actually the overlap between the gate bus line and the drain electrode as shown in FIGS. It also affects the area.
  • 37 to 39 are schematic plan views showing regions where the gate bus line and the drain electrode overlap in the first embodiment. As the overlapping area between the gate bus line 11 and the drain electrode 23 increases, the value of the gate drain capacitance (Cgd) changes. Therefore, in addition to the adjustment of the channel length, the overlapping between the gate bus line 11 and the drain electrode 23 occurs. By adjusting the area, it is possible to further balance the entire picture elements.
  • the balance between the pixels of the value of ⁇ Cgd / (Cgd + Csd + Ccs + Clc) is adjusted.
  • the adjustment of Cgd is effective for adjusting the balance of the ⁇ value between the picture elements.
  • the difference in overlap area between the drain electrode and the gate bus line in the TFT actually affects the gate drain capacitance (Cgd) formed between the gate bus line and the drain electrode.
  • Cgd gate drain capacitance
  • FIG. 40 to 43 are examples of TFTs in which the size of the overlapping area of the gate bus line and the drain electrode is adjusted in the example of the TFT shown in FIG. 40 and 41 show a form in which d1 of the TFT in FIG. 37 is changed.
  • a part of the projection is provided in plan in a region where the drain electrode 23 and the gate bus line 11 overlap.
  • the entire width of d1 is widened.
  • 42 and 43 show a form in which d2 of the TFT in FIG. 37 is changed.
  • the length of d2 is long.
  • the shape of the drain electrode 23 remains the same, but a protruding portion is provided in a plane on a part of the gate bus line 11, and as a result, the drain electrode 23 and the gate bus line 11 overlap each other. Is spreading.
  • FIG. 44 to 46 are examples of TFTs in which the size of the overlapping area of the gate bus line and the drain electrode is adjusted in the example of the TFT shown in FIG.
  • FIG. 44 shows a form in which d3 of the TFT in FIG. 38 is changed.
  • the entire width of d3 is widened.
  • 45 and 46 show a form in which d4 of the TFT in FIG. 38 is changed.
  • the length of d4 is long.
  • the shape of the drain electrode 23 remains the same, but a protruding portion is provided in a plane on a part of the gate bus line 11, and as a result, the drain electrode 23 and the gate bus line 11 overlap each other. Is spreading.
  • a gate drain capacitance (Cgd) formed between the gate bus line and the drain electrode is also formed in a region where the gate bus line and the pixel electrode directly overlap.
  • FIG. 47 to 49 are schematic plan views showing regions where the gate bus lines and the pixel electrodes overlap in the first embodiment.
  • FIG. 47 shows a form in which a normal gate bus line and a pixel electrode overlap each other, the end portion of the pixel electrode 15 is linear, and the gate bus line 11 extends in parallel with the end portion of the pixel electrode.
  • 48 and 49 are examples in which the size of the overlapping area between the gate bus line and the drain electrode is adjusted.
  • a part of the pixel electrode 15 and the pixel bus 15 are provided with a planar projection in a region where the pixel electrode 15 and the gate bus line 11 overlap. Therefore, as a result, a region where the pixel electrode 15 and the gate bus line 11 overlap is widened.
  • FIG. 48 shows a form in which a normal gate bus line and a pixel electrode overlap each other, the end portion of the pixel electrode 15 is linear, and the gate bus line 11 extends in parallel with the end portion of the pixel electrode.
  • 48 and 49 are examples in which
  • a recessed portion (notch portion) is provided in part on the pixel electrode 15 in a region where the pixel electrode 15 and the gate bus line 11 overlap. Therefore, as a result, the region where the pixel electrode 15 and the gate bus line 11 overlap is narrowed.
  • the area where the drain electrode and the gate bus line overlap and the area where the pixel electrode and the gate bus line overlap are adjusted, for example, among the plurality of pixel electrodes arranged in one pixel.
  • the gate / drain capacity formed by the pixel electrode having a larger pixel capacity becomes smaller. It can be larger than the gate-drain capacitance formed by the pixel electrode having. As a result, it is possible to suppress variation in ⁇ between picture elements before the Cgd gradation is applied. Furthermore, according to the traveling direction of the signal of the scanning line, the overlapping area is initially increased and the increasing rate is decreased.
  • the Cdg correction amount of the pixel electrode can also be set appropriately according to the area of the pixel electrode. As a result, the counter voltage value that is optimal for each pixel can be made closer, and a liquid crystal display device with less burn-in can be obtained.
  • the gate bus line overlaps with the drain electrode.
  • the actual overlap area between the gate bus line and the drain electrode and the ⁇ shift between the picture elements are examined. The results are shown below. In the following examination, adjustment based on the difference in channel width is not included, and examination is made purely on the gate drain area only.
  • FIG. 50 is a graph showing the relationship between the gate / drain overlap area ratio and the pixel electrode area ratio.
  • the adjustment is made according to the relationship between the Cgd area ratio and the pixel electrode area ratio after being largely adjusted according to the relationship between the channel size ratio and the pixel electrode area ratio.
  • the variation in ⁇ can be suppressed between the picture elements.
  • Cpix (min) / Cpix (max) (hereinafter also referred to as response coefficient) between picture elements.
  • Cpix (min) is a pixel capacity when black display is performed
  • Cpix (max) is a pixel capacity when white display is performed.
  • the response coefficient represented by “Cpix (min) / Cpix (max)” is one of the indicators of the response characteristics of the liquid crystal. If this value is different between picture elements, the response differs depending on the color. Therefore, a desired color may not be obtained.
  • Cpix (min) / Cpix (max) is the adjustment of the TFT channel width up to the above, the adjustment of the overlapping area of the gate bus line and the drain electrode, the adjustment of the overlapping area of the pixel electrode and the gate bus line, the pixel electrode And adjustment of the overlapping area between the Cs bus line and the like.
  • FIG. 51 is a graph showing the relationship between the frame period and the arrival rate of the applied voltage.
  • FIG. 52 is a schematic diagram showing a display state when the influence on the display due to the difference in response coefficient is examined.
  • the current liquid crystal display device is designed to obtain a desired transmittance through two stages because the liquid crystal does not respond within one frame. For example, as shown in FIG. 52, when a white square is displayed in a black background and this square is moved from right to left, the picture element at the left end of the square is displayed for each frame. Therefore, only the color with a small response coefficient has a slow response, the other colors become strong, and the color changes.
  • FIG. 53 is a graph showing a preferable range of the response coefficient represented by “Cpix (min) / Cpix (max)”.
  • the value of the response coefficient when the arrival rate is 0.9 is 0.78, and 0.78 ⁇ 0.04 where the difference in arrival rate is within 5% is a preferable range of the response coefficient.
  • FIG. 54 is a schematic plan view illustrating an arrangement configuration of pixel electrodes, TFTs, and various wirings of the liquid crystal display device according to the second embodiment.
  • two pixel electrodes hereinafter also referred to as sub-pixel electrodes
  • one pixel is composed of a plurality of picture elements, and each pixel is controlled by individually controlling each picture element, and further, the entire display by the liquid crystal display device is controlled.
  • the liquid crystal display device of Embodiment 2 has a gate bus line 11 extending in the row direction (lateral direction) and a source bus line 12 extending in the column direction (vertical direction).
  • the first TFT 14 a and the second TFT 14 b are connected to both the gate bus line 11 and the source bus line 12.
  • the first TFT 14a is connected to the first subpixel electrode 15a
  • the second TFT 14b is connected to the second subpixel electrode 15b.
  • the first Cs bus line 13a that overlaps at least part of the first subpixel electrode 15a and the second that overlaps at least part of the second subpixel electrode 15b.
  • each has a Cs bus line 13b, and is formed extending in the row direction so as to cross the center of each subpixel electrode 15a, 15b.
  • a kind of color filter is arranged for one picture element.
  • the type, number, and arrangement order of the picture elements constituting the pixel are not particularly limited, and examples thereof include combinations of RGB, RGBY, RGBC, RGBW, and the like.
  • the color of the picture element is determined by a color filter.
  • As an arrangement form of the color filter for example, as shown in FIG. 3, the stripe arrangement formed in the vertical direction regardless of the boundary of the pixel electrode, four colors as shown in FIG. There is a rice field arrangement in which two colors are arranged in each of the direction and the column direction.
  • the two subpixel electrodes form subpixel capacitors having different sizes.
  • a method of making the subpixel capacitances different there are (1) a method of supplying signal voltages from different source bus lines and (2) a method of adjusting by changing the voltage of the Cs bus lines.
  • One TFT is connected to each of the sub-pixel electrodes.
  • Each TFT is connected to the same gate bus line, and two subpixels are controlled at a time when a scanning signal is supplied to the gate bus line.
  • FIG. 55 is an equivalent circuit diagram of the liquid crystal display device according to the second embodiment.
  • a circuit pattern is formed in units of subpixels
  • FIG. 55 shows circuit patterns of two subpixels.
  • Each of the subpixel electrodes forms Clc1 and Clc2 with the liquid crystal layer.
  • each of the subpixel electrodes forms Ccs1 and Ccs2b with the Cs bus line.
  • each of the sub-pixel electrodes is connected to the drain electrode of each TFT, and driving is controlled by each TFT.
  • a liquid crystal capacitor Clc is formed by the pixel electrode and the counter electrode which are arranged to face each other with the liquid crystal layer interposed therebetween.
  • the value of Clc depends on the effective voltage (V) applied to the liquid crystal layer by the pair of electrodes.
  • the auxiliary capacitor Ccs is formed by the pixel electrode and the Cs bus line (auxiliary capacitor wiring) arranged to face each other with the insulating film interposed therebetween.
  • a gate drain capacitance Cgd is formed by the pixel electrode and the gate bus line (scanning line) which are arranged to face each other with the insulating film interposed therebetween.
  • a source / drain capacitor Csd is formed by the pixel electrode and the source bus line (signal line) arranged to face each other with the insulating film interposed therebetween.
  • each subpixel electrode using TFTs in the second embodiment are the same as those in the first embodiment.
  • FIG. 56 is a diagram showing signal waveforms when multi-pixel driving is performed.
  • the voltage of Vg changes from VgL to VgH, so that the first TFT 14a and the second TFT 14b are turned on at the same time, and the first and second subpixel electrodes 15a and 15b are respectively turned on.
  • the voltage Vs is transmitted from the source bus line 12 to charge the first and second subpixel electrodes 15a and 15b.
  • the first and second Cs bus lines 13a and 13b overlapping with the first and second subpixel electrodes 15a and 15b are also charged from the source bus line 12.
  • the first TFT 14a and the second TFT 14b are simultaneously turned off (OFF state), and the first and second TFTs are turned off.
  • the subpixel electrodes 15 a and 15 b and the first and second Cs bus lines 13 a and 13 b are all electrically insulated from the source bus line 12.
  • the voltages Vlc1 and Vlc2 of the first and second subpixel electrodes 15a and 15b are substantially the same voltage due to a pull-in phenomenon due to the influence of the parasitic capacitance and the like of the first TFT 14a and the second TFT 14b.
  • Vlc1 Vs ⁇ Vd
  • Vlc2 Vs ⁇ Vd It becomes.
  • Vcs2 Vcom + Vad It is.
  • the voltage Vcs1 of the first Cs bus line 13a changes from Vcom ⁇ Vad to Vcom + Vad
  • the voltage Vcs2 of the second Cs bus line 13b changes from Vcom + Vad to Vcom ⁇ Vad.
  • Vlc2 Vs ⁇ Vd ⁇ 2 ⁇ Vad ⁇ Ccs2 / (Clc2 + Ccs2) To change.
  • Vcs1 changes from Vcom + Vad to Vcom ⁇ Vad
  • Vcs2 changes from Vcom ⁇ Vad to Vcom + Vad
  • Vlc2 Vs ⁇ Vd To change.
  • Vcs1 changes from Vcom ⁇ Vad to Vcom + Vad
  • Vcs2 changes from Vcom + Vad to Vcom ⁇ Vad
  • Vlc2 Vs ⁇ Vd ⁇ 2 ⁇ Vad ⁇ Ccs2 / (Clc2 + Ccs2) To change.
  • Vcs1, Vcs2, Vlc1, and Vlc2 alternately repeat the changes in T4 and T5 at intervals of an integral multiple of the horizontal writing time 1H. Whether the repetition interval of T4 and T5 is 1 time, 2 times, 3 times, or more than 1H depends on the driving method of the liquid crystal display device (for example, polarity inversion driving). ) And display state (flickering, feeling of display roughness, etc.) may be set as appropriate. This repetition is continued until the next time equivalent to T1.
  • Vlca Vs ⁇ Vd + Vad ⁇ Ccs1 / (Clc1 + Ccs1)
  • Vlcb Vs ⁇ Vd ⁇ Vad ⁇ Ccs2 / (Clc2 + Ccs2) It becomes.
  • V1 Vlc1-Vcom
  • V2 Vs ⁇ Vd ⁇ Vad ⁇ Ccs2 / (Clc2 + Ccs2) ⁇ Vcom
  • the values are different from each other.
  • the total length in the vertical direction of the plurality of subpixel electrodes is formed to be the same for each color of red, green, and blue, while the length in the horizontal direction is different for each color. Therefore, the difference in picture element pitch is directly reflected in the difference in the total area of the subpixel electrode between the picture elements.
  • the adjustment is also made by the gate / drain overlap area.
  • a method of adjusting ⁇ in the second embodiment a method similar to that shown in the first embodiment can be used.
  • K Ccs / Cpix (Cgd + Csd + Ccs + Clc). Therefore, adjustment of Ccs is effective for adjusting the balance of the K value among the picture elements.
  • FIG. 57 is a schematic plan view showing a range where the Cs bus line and the extended portion of the drain electrode overlap in the second embodiment.
  • the Cs bus line 13 has a region that partially extends
  • the drain electrode 23 also has a region that partially extends. These are isolated via an insulating film, but overlap each other when viewed in a plane, and form an auxiliary capacitor Ccs. Since the size of Ccs depends on the area where they overlap each other, an appropriate Ccs value can be formed by adjusting the size of each spreading region for each sub-pixel and adjusting the degree of overlap. it can.
  • the expanded portion 23a of the Cs bus line 13 is larger than those of the expanded portion of the drain electrode 23 on both sides in the vertical direction and the horizontal direction.
  • the length of the extended portion 23a of the drain electrode 23 is d, and the length in the horizontal direction is f. Further, the length in the vertical direction of the expanded portion of the Cs bus line 13 is e, and the length in the horizontal direction is g.
  • FIG. 58 to 61 are schematic plan views showing an example when the Cs capacitance is adjusted by the overlapping area of the pixel electrode and the Cs bus line.
  • FIG. 58 shows a form in which the upper side of the pixel electrode 15 overlaps with a part of the Cs bus line 13.
  • the value of Ccs can be adjusted by adjusting the values of a and b in FIG. 59 is a form in which the Cs bus line 13 crosses the center of the pixel electrode 15, and by adjusting the values of c and d in FIG. 59 showing a form overlapping the entire width direction of the Cs bus line 13. In FIG. , Ccs can be adjusted.
  • FIG. 58 shows a form in which the upper side of the pixel electrode 15 overlaps with a part of the Cs bus line 13.
  • FIG. 60 shows a form in which the upper side of the pixel electrode 15 overlaps with the Cs bus line 13 and an extending portion is added along the left side of the pixel electrode 15.
  • FIG. 61 shows a form in which an extending portion is added so that the upper side of the pixel electrode 15 overlaps with the Cs bus line 13 and the center of the pixel electrode 15 is cut vertically.
  • the values of e to f in FIG. 61 the value of Ccs can be adjusted.
  • FIG. 62 is a waveform diagram showing Cs amplitude when multi-drive is performed.
  • the magnitude of the pull-in by ⁇ Vcs is preferably uniform among the sub-pixels, specifically within 10 mV. It is preferable to become. Thereby, the optimal counter voltage between subpixels can be brought close. Since Vcs pp is substantially a fixed value, ⁇ Vcs is preferably adjusted by K.
  • Table 10 is a table showing an allowable range of deviation of the value of K when it is assumed that ⁇ Vcs is within 10 mV.
  • the K value is set within a range of 0.43 to 0.54, and thus examination was made using this range as a guide.
  • Embodiment 3 In the third embodiment, picture elements of three colors of red, green and blue, or four colors of red, green, blue and yellow are used, and a combination of these picture elements constitutes one pixel. .
  • the type, number, and arrangement order of the pixel colors are not particularly limited.
  • FIG. 63 is a schematic plan view showing the arrangement configuration of pixel electrodes and wirings in the third embodiment.
  • any one of the two source bus lines extended in the vertical direction is selected for one pixel electrode among a plurality of pixel electrodes arranged in one pixel. It overlaps with the end of the pixel electrode.
  • only one source bus line 12 out of the two source bus lines 12 extending in the vertical direction is connected to the end of the pixel electrode 15 with respect to the other pixel electrodes 15.
  • the other source bus line 12 is not overlapped with the end of the pixel electrode 15.
  • the pixel capacity between the picture elements or the sub-pixels is adjusted by the same means as the means shown in the first and second embodiments.
  • the pitch width of the picture elements is not particularly limited, and the pitch width may be different or the same between the picture elements.
  • Embodiment 4 picture elements of three colors of red, green and blue, or four colors of red, green, blue and yellow are used, and a combination of these picture elements constitutes one pixel. .
  • the type, number, and arrangement order of the pixel colors are not particularly limited.
  • FIG. 64 is a schematic plan view showing the arrangement configuration of pixel electrodes and wirings in the fourth embodiment.
  • any one of the two source lines extending in the vertical direction is a pixel for a certain pixel electrode among a plurality of pixel electrodes arranged in one pixel. It overlaps with the end of the electrode.
  • one source bus line 12 out of the two source bus lines 12 extending in the vertical direction is connected to the end of the pixel electrode 15 with respect to the other pixel electrodes 15.
  • the other source bus line 12 is not overlapped with the end of the pixel electrode 15.
  • a Cs bus line 13 extends in the vertical direction next to the non-overlapping source bus line 12, and the Cs bus line 13 overlaps the other end of the pixel electrode 15.
  • the area of the pixel electrode is reduced, and the source wiring is overlapped only on one end of the pixel electrode.
  • Such a form is adopted when it is necessary to overlap only the Cs wiring instead of the source wiring on the other end of the electrode.
  • the pixel capacity between the picture elements or the sub-pixels is adjusted by the same means as the means shown in the first and second embodiments.
  • the pitch width of the picture elements is not particularly limited, and the pitch width may be different or the same between the picture elements.
  • Embodiment 5 In the fifth embodiment, picture elements of three colors of red, green and blue, or four colors of red, green, blue and yellow are used, and a combination of these picture elements constitutes one pixel. . In the fifth embodiment, the type, number, and arrangement order of the pixel colors are not particularly limited.
  • FIG. 65 is a schematic plan view showing an arrangement configuration of pixel electrodes and wirings in the fifth embodiment.
  • one pixel electrode is extended in the horizontal direction so that the Cs wiring overlaps with the upper end portion of the pixel electrode.
  • the Cs wiring is not linear, but has a partially expanded region.
  • the other pixel electrodes 15 are extended in the lateral direction so that the Cs bus lines 13 overlap the upper ends of the pixel electrodes 15, and the Cs bus lines 13 are straight lines.
  • the upper side of the pixel electrode 15 is not linear but has a shape recessed inside. For this reason, the overlapping area of the pixel electrode 15 and the Cs bus line 13 is different among the picture elements, and the area of the pixel electrode 15 is also different for each picture element.
  • the area of the pixel electrode is reduced, and the arrangement configuration of the pixel electrode and the Cs wiring is made different for each picture element.
  • the optimum counter voltage is different among the picture elements, so that burn-in is likely to occur.
  • the pixel capacity between the picture elements or the sub-pixels is adjusted by the same means as the means shown in the first and second embodiments.
  • the pitch width of the picture elements is not particularly limited, and the pitch width may be different or the same between the picture elements.
  • Embodiment 6 66 and 67 are schematic cross-sectional views of the liquid crystal layer in the sixth embodiment.
  • picture elements of three colors of red, green and blue, or four colors of red, green, blue and yellow are used, and a combination of these picture elements constitutes one pixel.
  • . 66 is a schematic cross-sectional view showing a form using three-color picture elements in the sixth embodiment
  • FIG. 67 is a schematic cross-sectional view showing a form using four-color picture elements in the sixth embodiment.
  • the liquid crystal layer 1 included in the liquid crystal display device of Embodiment 6 is disposed between a pair of substrates including an active matrix substrate 2 and a color filter substrate 3.
  • the active matrix substrate 2 has pixel electrodes 41
  • the color filter substrate 3 has counter electrodes 42.
  • the color filter substrate 3 includes a plurality of color filters 31 and constitutes one pixel with three or four colors.
  • FIG. 66 shows a configuration in which three color filters of red 31R, green 31G, and blue 31B are used
  • FIG. 67 shows red 31R, green 31G, blue 31B, and yellow 31Y. A form in which four color filters are used is shown.
  • the thickness (cell gap) of the liquid crystal layer 1 corresponding to the blue picture element is formed thinner than the thickness (cell gap) of the liquid crystal layer 1 corresponding to the other picture elements.
  • the voltage applied to the liquid crystal layer 1 by the electrodes 41 and 42 included in the pair of substrates varies depending on the picture element. This is because, in Embodiment 6, the thickness of the liquid crystal layer 1 in the blue picture element is set to be thinner than the thickness of the liquid crystal layer 1 in the other picture elements, and the liquid crystal formed in the blue picture element. The capacity is larger than other picture elements. Therefore, when the multi-gap structure is provided, the optimum counter voltage is different between the picture elements.
  • the optimum counter voltage is adjusted between the picture elements using the channel width of the TFT, and the optimum counter voltage is further adjusted by adjusting the cell gap between the picture elements. .
  • variation in (alpha) between picture elements can be suppressed further.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明の液晶表示装置では、各画素は、赤(R)、緑(G)及び青(B)の3色のサブピクセルを含んで構成される。 一方の基板は、走査線(11)と、信号線(12)と、補助容量配線(13)と、該走査線及び該信号線のそれぞれと接続された薄膜トランジスタ(14)と、該薄膜トランジスタと接続された画素電極とを備える。走査線(11)と画素電極とは、ゲート・ドレイン容量(Cgd)を形成し、1つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極が形成するゲート・ドレイン容量(Cgd)が、より小さな画素容量をもつ画素電極が形成するゲート・ドレイン容量(Cgd)よりも大きい。画素電極の走査線(11)との重なり面積は、単色のサブピクセルに対応して配置される画素電極毎に走査線(11)の信号の進行方向に従って始めは増加し、かつその増加率が減少するように形成され、上記増加率は、画素容量の異なる画素電極毎に異なる。本発明の液晶表示装置によると、Cgdグラデーションを行うパネルにおいて、サブピクセル間の画素容量が異なっていたとしても、焼きつきが生じにくい。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、薄膜トランジスタを用いた駆動方式を採用する液晶表示装置に関するものである。
液晶表示(LCD:Liquid Crystal Display)装置は、一対の基板間に充填された液晶層等を利用して、光源から出射された光の光学特性を制御することにより表示を行う装置であり、薄型、軽量、低消費電力といった特長を活かし、様々な分野で用いられている。
液晶表示装置は、基板に形成した一対の電極により液晶層に電圧を印加して液晶分子の配向状態を変化させ、液晶層を透過する光の偏光状態を変化させる。液晶表示装置には、カラー表示を行うために、複数色のカラーフィルタが配置される。液晶層を挟持する一対の基板は、スペーサによってその間隔(セルギャップ)が一定に保持され、シール材によって互いが貼り合わされている。
液晶表示装置には、通常、赤(R)、緑(G)及び青(B)の3色のサブピクセルが形成される。それぞれのサブピクセルに対し、各色のカラーフィルタが配置され、各色のカラーフィルタを透過する光を調整することで、画素(ピクセル)単位で色制御が行われる。
近年では、これらRGB以外に、輝度を高める目的として白(W)のサブピクセルを配置する等の工夫がなされている(例えば、特許文献1参照。)。また、RGBWのサブピクセルの面積を各色で異ならせ、カラーバランスを適切に調整する方法も検討されている(例えば、特許文献2参照。)。
液晶表示装置には、通常、画素電極がマトリクス状に配置され、各画素電極は、薄膜トランジスタ(TFT:Thin Film Transistor)によるスイッチを通して駆動される。TFTは三端子型の電界効果トランジスタであり、各TFTのドレイン電極は、そのTFTに対応する画素電極に接続される。各TFTのゲート電極は、マトリクスの各行のゲートバスラインと接続される。各TFTのソース電極は、マトリクスの各列のソースバスラインと接続される。ソースバスラインに画像信号を与えるとともに、ゲートバスラインを順次走査することにより、所望の画像を得ることができる。
液晶表示装置によっては、各色のサブピクセルによって液晶層の厚み(セルギャップ)を異ならせるマルチギャップの構成をとることがある。ただし、異なる大きさのセルギャップは、画素電極に対し異なる容量値を与えることになるため、サブピクセル間の画素容量を等しくするために、(a)画素電極面積を等しくし、蓄積容量を異ならせる、(b)画素電極面積を異ならせ、蓄積容量を等しくする等の工夫が必要となる(例えば、特許文献3参照。)。
また、液晶表示装置においては、正面観測時のγ特性と斜め観測時のγ特性とが異なっていることによる視角依存性の問題を解消するために、一つの画素を複数個の副画素に分割し、それぞれのγ特性が近づくように調節がなされることがある(例えば、特許文献4参照。)。γ特性とは、表示輝度の階調依存性であり、γ特性が正面方向と斜め方向で異なるということは、階調表示状態が観測方向によって異なることを意味している。各副画素に対応する液晶層に異なる電圧を印加することで、異なるγ特性が混合された状態を作り、γ特性に基づく視角依存性を解消することができる。
また、スペーサとして、RGBのサブピクセルに対応してカラーフィルタを形成する際に、スペーサを設ける場所にも同様にカラーフィルタを形成し、それらを積層させてスペーサを形成する方法も試みられている(例えば、特許文献5参照。)。特許文献5においては、スペーサがサブピクセル内に形成されることにより各画素の容量が変わることを補償するために、保持容量配線の太さを変えることで、各画素の容量比を等しくする方法が検討されている。
また、走査信号線に平行に共通電極線が形成されるアクティブマトリクス基板において、走査信号の立ち下がりの際に生じる画素電位のレベルシフトの不均一性を解消すべく、走査信号線駆動回路から電気的に遠ざかるにしたがって、走査信号線-画素電極間容量Cgdが大きくなるように、各画素回路を形成したアクティブマトリクス基板が開示されている(例えば、特許文献6参照。)。
特開2001-296523号公報 特開2007-25697号公報 特開平6-11733号公報 特開2004-62146号公報 国際公開第2008/081624号パンフレット 国際公開第2006/006376号パンフレット
本発明者らは、複数色のサブピクセル(以下、絵素ともいう。)を含む液晶表示装置について検討を行っていたところ、絵素ピッチ(例えば、走査線方向に沿った方向における絵素間の長さ)を異ならせたときに、中間調背景に白ウインドウ画面を長時間表示した後、中間調ベタ画面を表示させると、白ウインドウのあった部分のある色だけが背景部分と異なって見える現象が生じる点に着目した。
図68は、中間調背景に白ウインドウを表示したときの状態を示す模式図であり、図69は、白ウインドウを削除したときの中間調ベタ表示の状態を示す模式図である。図68及び図69に示すように、中間調ベタ表示の状態において、白ウインドウが表示されていた領域には、削除前の表示による焼きつきが生じている。
本発明者らは、このような現象が起こる原因について種々検討を行ったところ、例えば画素電極の面積や液晶層の厚みが絵素間で異なること等によって、画素容量が絵素ごとで異なっていたために、表示に焼きつきが起こっていたことを見いだした。
例えば絵素の面積や液晶層の厚みが色ごとに異なっていると、画素電極との間で形成される静電容量の大きさも、絵素ごとで異なってくる。図70は、隣りあって配置された2つの画素電極のドレイン電圧の信号波形を示す模式図である。
図70における左側の信号波形が、ゲートドレイン容量を一定とした場合により画素容量が大きい絵素の波形図であり、図70における右側の信号波形が、ゲートドレイン容量を一定とした場合により画素容量が小さい絵素の波形図である。図70に示すように、絵素ごとにドレイン電圧(Vd)の実効値が異なっている。これは、引き込み電圧(ΔVd)の大きさが絵素間で相違しており、かつ画素電極を交流駆動する際にドレイン電圧の極性(Vd(+)、Vd(-))が、タイミングごとに変化するためである。対向電圧は、画素ごとに対向電極が形成されているわけではないため、全て共通の大きさに設定される。したがって、引き込み後のドレイン電圧(Vd(+)、Vd(-))の値によって決定される最適対向電圧の値が、絵素ごとで異なる値をもつことになり、全ての絵素を共通の対向電圧で適切に駆動することが困難となる。
ここで、面内対向と、ゲート-ドレイン間の寄生容量による面内補正(Cgdグラデーション)の説明をする。図71は、液晶表示装置において、Cgdグラデーションを設けなかった場合の面内対向分布121(パネル面内での走査線(ゲートバスライン)方向における最適対向電圧の分布)を示すグラフである。位置x=0のときはΔVdで決まる最適対向電圧であり、走査線方向に進行するにつれてゲート波形が遅延し、ΔVdが見かけ上小さくなり、最適対向電圧は大きくなる。対向電圧は、面内で一つの値しかとれないので、位置によって最適対向電圧ズレが起こる。通常は図71に示すように画面中央で対向合わせを行うため、端部では最適対向電圧ズレ120が最大となる。この場合、表示画像にフリッカや表示劣化、焼きつきムラが生じるおそれがある。図72は、液晶表示装置において設けられるCgdグラデーション122を示すグラフである。図73は、従来の液晶表示装置において、Cgdグラデーションを設けた場合の面内対向分布123を示すグラフである。絵素間で画素容量が等しい画素電極を有するパネルにおいては、このような調整により面内対向分布を良好なものとすることができる。
一方、絵素間で画素容量が異なる画素電極を有するパネルにおいて、ゲート-ドレイン間の寄生容量(Cgd)による面内補正(Cgdグラデーション)を行う場合について説明する。Cgdグラデーションによる補正は、1Stepの補正量(補正のない最初に走査線の信号が印加される画素電極が走査線と形成するゲートドレイン容量から、補正を行った次のStepへの補正量。画素電極の走査線との重なり面積によって定められる。本明細書中、Cgd補正量ともいう)と、その補正量を何画素分保持するかによって行われる。補正の増加量は、この保持する画素数が少ないほど大きく、逆に保持する画素数が多いほど小さい。Cgd補正量をマイナスにすることもできる。Cgd補正量や保持する画素数を絵素間の画素容量の違いを考慮しないで決定したときは、パネル面内の補正量がある程度大きい箇所では画素容量の違いに起因して絵素間のΔVd差が更に大きくなってしまい、絵素間の最適対向電圧がばらつくことになる。
そして、このような最適対向電圧のばらつきが、焼きつきムラの発生となって表示に影響を及ぼしていたことが、本発明者らの検討により明らかとなった。
本発明は、上記現状に鑑みてなされたものであり、Cgdグラデーションを行っているパネルにおいて、絵素間の画素容量が異なっていたとしても、焼きつきが生じにくい液晶表示装置を提供することを目的とするものである。
本発明者らは、焼きつきを抑制するために最適対向電圧を絵素間でそろえる方法について種々検討したところ、最適対向電圧を調節するために必要な因子の一つが、上述のΔVdである点に着目した。ΔVdの大きさを絵素間で近づけることで、最適対向電圧も絵素間でそろうことになる。ΔVdの値は、ΔVd=α×Vgp-pで表すことができる。Vgp-pは、上記図70に示すとおり、TFTオフ時のゲート電圧変化を表す。Vgp-pは、ある程度一定の値に保つ必要があるため、ΔVdの値を変化させるためにはαの調節が必要となる。αの値は、α=Cgd/(Cgd+Csd+Ccs+Clc)で表される。Csdは、ソース-ドレイン間の寄生容量、Ccsは、Cs-ドレイン間の寄生容量、Clcは、液晶容量である。Cgd+Csd+Ccs+Clcの合計値を、以下、Cpixともいい、TFTのドレインにつながる全ての容量(すなわち、画素容量)を表す。
本発明者らは、αの値の調節に有効な手段について鋭意検討を行った結果、一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極が形成するゲートドレイン容量が、より小さな画素容量をもつ画素電極が形成するゲートドレイン容量よりも大きいものとすることにより、αの値を効果的に調節することができることを見いだした。
また、Cgdグラデーションを行っているパネルにおいて、画素容量の違いを考慮しないで補正量を決定した場合は、絵素間のΔVd差が更に大きくなってしまうという課題があったところ、画素電極の重なり面積に着目し、画素電極の重なり面積の増加率を絵素ごとで異ならせてCgdグラデーションを形成することにより、面内対向分布を効果的に調節することができることを見いだした。なお、Cgdグラデーションの設定においては、ゲート配線における信号遅延の特性上、Cgd補正量(ΔCgd)は、通常は走査線の信号の進行方向に従って始めは増加し、かつその増加率が減少するように形成することになる。
本発明者らは、一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極が形成するゲートドレイン容量が、より小さな画素容量をもつ画素電極が形成するゲートドレイン容量よりも大きいことにより、画素容量の違いにもとづくΔVdの違いを合わせ込んでCdg(α)を適切に調整することができ、更に、画素電極の走査線との重なり面積が、単色の絵素に対応して配置される画素電極毎に、走査線の信号の進行方向に従って始めは増加し、かつその増加率が減少するように形成されたものであり、該増加率が画素容量の異なる画素電極毎に異なるものとすることにより、各画素電極のCdg補正量も、画素電極の面積に応じて適切に設定することが可能となり、これにより各絵素にとって最適の対向電圧の値により近づけることができることを見いだした。そして、それにより焼きつきの発生を抑制することができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、一対の基板と、該一対の基板間に挟持された液晶層とを有し、かつ複数色の絵素によって一つの画素が構成される液晶表示装置であって、上記一対の基板の一方は、走査線と、信号線と、補助容量配線と、該走査線及び該信号線のそれぞれと接続された薄膜トランジスタと、該薄膜トランジスタと接続された画素電極とを備え、上記一対の基板の他方は、対向電極を備え、上記画素電極は、一つの絵素に対応してそれぞれ配置され、上記走査線と上記画素電極とは、ゲートドレイン容量を形成し、上記一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極が形成するゲートドレイン容量が、より小さな画素容量をもつ画素電極が形成するゲートドレイン容量よりも大きいものであり、上記画素電極の走査線との重なり面積は、単色の絵素に対応して配置される画素電極毎に、走査線の信号の進行方向に従って始めは増加し、かつその増加率が減少するように形成されたものであり、上記増加率は、画素容量の異なる画素電極毎に異なる液晶表示装置である。
本発明の液晶表示装置は、一対の基板と、上記一対の基板間に挟持された液晶層とを有し、かつ複数色の絵素によって一つの画素が構成される。上記一対の基板は、例えば、一方をアレイ基板、他方をカラーフィルタ基板として用いることができる。複数色の絵素は、各絵素に対応して配置されたカラーフィルタによって実現することができ、各色のバランスを調節することで様々な表示色を表現することができる。
上記一対の基板の一方は、走査線(以下、ゲートバスラインともいう。)と、信号線(以下、ソースバスラインともいう。)と、補助容量配線(以下、Csバスラインともいう。)と、上記走査線及び上記信号線のそれぞれと接続された薄膜トランジスタ(TFT)と、上記薄膜トランジスタと接続された画素電極とを備える。各TFTのドレイン電極は、そのTFTに対応する画素電極に接続される。各TFTのゲート電極は、各行のゲートバスラインと接続される。各TFTのソース電極は、各列のソースバスラインと接続される。ソースバスラインに画像信号を与えるとともに、ゲートバスラインに対し所定のタイミングで電圧印加することにより、所望の画像を得ることができる。
上記構成によれば、上記走査線、上記信号線、上記補助容量配線、上記薄膜トランジスタ、及び、上記画素電極のそれぞれは、互いが電気的に隔離されるように、絶縁膜等を介して一定間隔を空けて配置される必要がある。また、上記画素電極と上記対向電極とは、液晶層を介してそれぞれが離れて配置される。したがって、各配線、電極間には一定量の静電容量が形成される。具体的には、上記走査線と上記画素電極とは、ゲートドレイン容量(Cgd)を形成し、上記信号線と上記画素電極とは、ソースドレイン容量(Csd)を形成し、上記補助容量配線と上記画素電極とは、補助容量(Ccs)を形成し、上記画素電極と上記対向電極とは、液晶容量(Clc)を形成する。
上記一対の基板の他方は、対向電極を備える。上記画素電極と上記対向電極との間で電界が形成され、かつ各画素電極が薄膜トランジスタによって個別に制御されることになるので、絵素単位で液晶の配向を制御することができ、それによって画面全体を精密に制御することができる。
更に、上記画素電極は、一つの絵素に対応してそれぞれ配置され、上記一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極が形成するゲートドレイン容量が、より小さな画素容量をもつ画素電極が形成するゲートドレイン容量よりも大きいものとなっている。これにより、Cgdグラデーションを設定する前のαの値を効果的に調節することができる。また、上記走査線の信号が初めに印加される画素電極から進行するに従って画素電極の走査線との重なり面積の増加率は、画素容量の異なる画素電極毎に異なるものとなっている。重なり面積、つまりCgd補正量と画素容量の大きさとの間には相関関係がある。より画素容量の大きな画素電極を、上記重なり面積がより大きいものとし、より面積の小さな画素電極を、上記重なり面積がより小さいものとすることで、回路基板において特徴的な電気的特性に基づき、上記走査線と上記画素電極とで形成されるゲートドレイン容量(Cgd)の値を好適に調整することができ、絵素間での最適対向電圧のバラツキを抑えることができる。
上記「画素電極の走査線との重なり面積は、単色の絵素に対応して配置される画素電極毎に、走査線の信号の進行方向に従って始めは増加し、かつその増加率が減少する」とは、例えばRGB3原色の絵素を用いた液晶表示装置においては、上記画素電極の走査線との重なり面積が、赤絵素に対応して配置される画素電極について、走査線の信号が進行方向に進むに従って始めは増加し、かつその増加率が減少するように変化し、緑絵素に対応して配置される画素電極について、走査線の信号が進行方向に進むに従って始めは増加し、かつその増加率が減少するように変化し、青絵素に対応して配置される画素電極について、走査線の信号の進行方向に進むに従って始めは増加し、かつその増加率が減少するように変化することをいう。上記「走査線の信号の進行方向に従って始めは増加し」とは、始め(例えば、信号が走査線に入力されるパネル平面上の横軸の位置x=0から該信号の進行方向側に向かうとき)は増加率が正であることを意味し、上記「その増加率が減少する」とは、減少して負の値になる場合を含むものである。例えば、走査信号線が片入れの液晶表示装置では、通常パネル非入力端付近で重なり面積は減少することになり(増加率が負の値になり)、走査線の信号が両入れの液晶表示装置では、通常パネル中央付近で重なり面積が減少することになる(パネル中央付近で増加率が負の値になる)。なお、ゲートドレイン容量の調整は、TFTチャネル幅の調整、ゲートバスラインとドレイン電極との重なり面積の調整、画素電極とゲートバスラインとの重なり面積の調整等によって行うことができる。
本発明の液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。本発明の液晶表示装置における好ましい形態について以下に詳しく説明する。
上記一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極は、該一つの画素内に配置された複数の画素電極のうち、より大きなチャネル幅を有する薄膜トランジスタと接続されていることが好ましい。言い換えれば、上記一つの画素内に配置された複数の画素電極のうち、より小さな画素容量をもつ画素電極が、上記一つの画素内に配置された複数の薄膜トランジスタのうち、より小さなチャネル幅を有する薄膜トランジスタと接続されている。
TFTのチャネル領域とは、電気的にソース電極とドレイン電極との間に配置される半導体層のうち、平面的に見てソース電極及びドレイン電極と重畳しない領域、すなわち、不純物ドープがなされていない領域である。
TFTのチャネル領域の大きさは、TFTの特性に大きな影響を及ぼす。チャネル領域の幅が広いほど電流特性はよくなり、チャネル領域の大きさを変えることで、Cpixを構成するCgdに影響が及ぶ。
上記チャネル幅とは、ソース電極とドレイン電極との間隔(以下、チャネル長さともいう。)を指すのではなく、平面的に見たときに、ソース電極とドレイン電極が相対する部分の幅をいう。チャネル幅と画素容量の大きさとの間には相関関係があり、画素容量の大きさと画素電極面積との間には相関関係がある。より面積の大きな画素電極に対し、よりチャネル幅の広いTFTを接続させ、より面積の小さな画素電極に対し、よりチャネル幅の狭いTFTを接続させることで、TFTの特性に基づき、Cgdグラデーションを設定する前の絵素間でのαの値のバラツキを好適に抑制することができる。
上記一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極は、該一つの画素内に配置された複数の画素電極のうち、より画素電極の走査線との重なり面積が大きいことが好ましい。言い換えれば、上記一つの画素内に配置された複数の画素電極のうち、より小さな画素容量をもつ画素電極が、上記一つの画素内に配置された複数の薄膜トランジスタのうち、画素電極の走査線との重なり面積がより小さくなっている。このような形態によっても、Cgdグラデーションを設定する前の絵素間でのαの値のバラツキを好適に抑制することができる。更に、αの値を適切に調整する観点から、上記より大きな画素容量をもつ画素電極の信号線との重なり面積は、上記より小さな画素容量をもつ画素電極の信号線との重なり面積と異なっていることが好適である。また、αの値を適切に調整する観点から、上記より大きな画素容量をもつ画素電極の補助容量配線との重なり面積は、上記より小さな画素容量をもつ画素電極の補助容量配線との重なり面積と異なっていることが好適である。
上記より大きな画素容量をもつ画素電極の面積は、例えば、上記より小さな画素容量をもつ画素電極の面積と異なっていることを特徴とする。このような形態において、本発明の構成を適用することにより本発明の効果を充分に発揮することができる。上記形態においては、より大きな画素容量をもつ画素電極の面積は、通常、上記より小さな画素容量をもつ画素電極の面積よりも広いものである。
上記より大きな画素容量をもつ画素電極と重なっている液晶層の厚みは、例えば、上記より小さな画素容量をもつ画素電極と重なっている液晶層の厚みと異なっていることを特徴とする。このような形態において、本発明の構成を適用することにより本発明の効果を充分に発揮することができる。上記形態においては、上記より大きな画素容量をもつ画素電極と重なっている液晶層の厚みは、通常、上記より小さな画素容量をもつ画素電極と重なっている液晶層の厚みよりも小さいものである。
上記信号線と上記画素電極とは、ソースドレイン容量(Csd)を形成し、上記補助容量配線と上記画素電極とは、補助容量(Ccs)を形成し、上記画素電極と上記対向電極とは、液晶容量(Clc)を形成し、上記ゲートドレイン容量、上記ソースドレイン容量、上記補助容量、及び、上記液晶容量の総和に対する、上記ゲートドレイン容量の比(以下、このゲートドレイン容量の比の値をαとする。)は、上記複数色の絵素間で異なっており、上記複数色の絵素に対してそれぞれ得られるゲートドレイン容量の比のうち、最も大きなゲートドレイン容量の比と、最も小さなゲートドレイン容量の比との差は、最も小さなゲートドレイン容量の比に対して10%以下であることが好ましい。より好ましくは、5%以下である。
このときのαの値は、各絵素間で近いことが好ましく、上記数値範囲を有していることで、焼きつきの抑制を充分に達成することができるだけの、各絵素間の最適対向電圧の差を解消することができる。
上記信号線と上記画素電極とは、ソースドレイン容量を形成し、上記補助容量配線と前記画素電極とは、補助容量を形成し、上記画素電極と上記対向電極とは、液晶容量を形成し、上記一つの絵素内における、上記ゲートドレイン容量、上記ソースドレイン容量、上記補助容量、及び、上記液晶容量の総和の最大値に対する、上記ゲートドレイン容量、上記ソースドレイン容量、上記補助容量、及び、上記液晶容量の総和の最小値で算出される応答係数(「Cpix(min)/Cpix(max)」)の値は、上記複数色の絵素間で異なっており、上記複数色の絵素に対してそれぞれ得られる応答係数のうち、最も大きな応答係数と、最も小さな応答係数との差は、最も小さな応答係数に対して5%以下であることが好ましい。
上記画素電極は、一つの絵素内で複数に分割されたものであり、上記薄膜トランジスタは、該画素電極のそれぞれと接続され、上記補助容量配線は、該画素電極のそれぞれと重畳し、かつ電圧の極性が一定時間ごとに反転することが好ましい。以下、このように、一つの絵素内で複数に分割された画素電極(副画素電極ともいう。)を用いて一つの絵素を制御する方式をマルチ駆動方式ともいう。同一絵素内に複数の副画素電極を配置し、それぞれを異なる実効電圧で駆動することで、異なるγ特性が混合された状態を作り、γ特性に基づく視角依存性を解消することができる。また、補助容量配線の電圧の変化を利用してマルチ駆動を行うことで、余分な配線の数を増やさずにすむ。
上記信号線と上記画素電極とは、ソースドレイン容量(Csd)を形成し、上記補助容量配線と上記画素電極とは、補助容量(Ccs)を形成し、上記画素電極と上記対向電極とは、液晶容量(Clc)を形成し、上記ゲートドレイン容量、上記ソースドレイン容量、上記補助容量、及び、上記液晶容量の総和に対する、上記補助容量の比(以下、この補助容量の比の値をKとする。)は、上記複数色の絵素間で異なっており、上記複数色の絵素に対してそれぞれ得られる補助容量の比のうち、最も大きな補助容量の比と、最も小さな補助容量の比との差は、最も小さな補助容量の比に対して1.0%以下であることが好ましい。
上記好ましい形態は、赤色(R)、緑色(G)、青色(B)のRGB3原色の液晶表示装置、RGB3原色に更に黄色(Y)の絵素を加えたRGBY4原色、更にシアン色(C)の絵素を加えたRGBC4原色、又は(W)の絵素を加えたRGBW4原色や、RGBY、RGBC又はRGBW等を必須としたそれ以上の多原色の液晶表示パネルにおいて、好適に適用することができる。
なお、4原色以上の好ましい形態を挙げれば、赤、緑、青及び黄の副画素を有する画素によって表示面が構成された表示装置であって、赤及び/又は青の副画素は、他の副画素よりも開口面積が大きい形態(他の副画素よりも、赤の副画素の開口面積が最大である形態、青の副画素の開口面積が最大である形態、赤及び青の副画素の開口面積が共に最大である形態)、緑及び/又は黄の副画素は、他の副画素よりも開口面積が小さい形態(他の副画素よりも、緑の副画素の開口面積が最小である形態、黄の副画素の開口面積が最小である形態、緑及び黄の副画素の開口面積が共に最小である形態)が挙げられる。同様に、黄をシアンに置き換えることができる。また、黄及びシアンを同時に有していてもよい。更に、上記画素は、色特性が互いに異なる赤及び/又は青の副画素を有する形態も挙げられる。
これら4原色又は4原色以上の液晶表示装置においては、表示に用いる原色の数を増やすことにより、特に赤色の明度の低下によって、視認性が損なわれることになる。また、白表示の色調を調節するために、高色温度の光源が用いられると、赤表示の明度は更に低下し、これに伴って、視認性は更に損なわれる。上記好ましい形態とすれば、明るい赤を表示することができる結果、視認性を向上させることができ、それによって本発明の構成と相まって、本発明の効果を相乗的に得ることができる。
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明の液晶表示装置によれば、ゲート-ドレイン間の寄生容量による面内補正(Cgdグラデーション)を行っているパネルにおいて、最適対向電圧のばらつきが絵素間で調節されているので、焼きつきの発生を抑制することができる。
実施形態1の液晶表示装置において、Cgdグラデーションを設けなかった場合のRGB3原色それぞれの面内対向分布を示すグラフである。 実施形態1の液晶表示装置の画素電極、TFT及び各種配線の配置構成を示す平面模式図である。 実施形態1におけるカラーフィルタがストライプ配列であるときの平面模式図である。 実施形態1におけるカラーフィルタが田の字配列であるときの平面模式図である。 実施形態1の液晶表示装置における等価回路図である。 実施例1の1画素あたりのカラーフィルタの平面模式図である。 チャネル幅の大きさを調節したTFTの第一の例を示す平面模式図である。 チャネル幅の大きさを調節したTFTの第二の例を示す平面模式図である。 チャネル幅の大きさを調節したTFTの第二の例を示す平面模式図(拡大図)である。 チャネル幅の大きさを調節したTFTの第三の例を示す平面模式図である。 チャネル幅の大きさを調節したTFTの第三の例を示す平面模式図(拡大図)である。 実施例2の1画素あたりのカラーフィルタの平面模式図である。 実施例3の1画素あたりのカラーフィルタの平面模式図である。 実施例4の1画素あたりのカラーフィルタの平面模式図である。 実施例5の1画素あたりのカラーフィルタの平面模式図である。 実施例5の1画素あたりのカラーフィルタの平面模式図である。 実施例6の1画素あたりのカラーフィルタの平面模式図である。 実施例6の1画素あたりのカラーフィルタの平面模式図である。 実施例6の1画素あたりのカラーフィルタの平面模式図である。 実施例6の1画素あたりのカラーフィルタの平面模式図である。 実施例7の1画素あたりのカラーフィルタの平面模式図である。 実施例7の1画素あたりのカラーフィルタの平面模式図である。 実際に実施例5において画素電極の重なり面積の大きさを調節した一例を示すTFTの平面模式図である。 実施形態1の液晶表示装置におけるStep(n)とStep(n+1)との間のモザイク領域を示すグラフである。 実施例8の液晶表示装置において、ゲート入力端からの相対位置に対するΔVd補正量(mV)を示すグラフである。 実施例8の変形例の液晶表示装置において設けたCgdグラデーションを示すグラフである。 実施例8の変形例の液晶表示装置において、Cgdグラデーションを設けた場合のRGB3原色それぞれの面内対向分布を示すグラフである。 実施例8のもう一つの変形例の液晶表示装置において設けたCgdグラデーションを示すグラフである。 実施例8のもう一つの変形例の液晶表示装置において、Cgdグラデーションを設けた場合のRGB3原色それぞれの面内対向分布を示すグラフである。 実施例9の液晶表示装置において、ゲート入力端からの相対位置に対するΔVd補正量(mV)を示すグラフである。 実施例9の変形例の液晶表示装置において設けたCgdグラデーションを示すグラフである。 実施例9の変形例の液晶表示装置において、Cgdグラデーションを設けた場合のRGB3原色それぞれの面内対向分布を示すグラフである。 比較例1の液晶表示装置において、ゲート入力端からの相対位置に対するΔVd補正量(mV)を示すグラフである。 比較例1の変形例の液晶表示装置において設けたCgdグラデーションを示すグラフである。 比較例1の変形例の液晶表示装置において、Cgdグラデーションを設けた場合のRGB3原色それぞれの面内対向分布を示すグラフである。 チャネルサイズ比と画素電極面積比との関係を示すグラフである。 ゲートバスラインとドレイン電極とが重なった領域を示す平面模式図である。 ゲートバスラインとドレイン電極とが重なった領域を示す平面模式図である。 ゲートバスラインとドレイン電極とが重なった領域を示す平面模式図である。 図37で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例であり、図37におけるTFTのd1を変更した形態である。 図37で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例であり、図37におけるTFTのd1を変更した形態である。 図37で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例であり、図37におけるTFTのd2を変更した形態である。 図37で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例であり、図37におけるTFTのd2を変更した形態である。 図38で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例であり、図38におけるTFTのd3を変更した形態である。 図38で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例であり、図38におけるTFTのd4を変更した形態である。 図38で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例であり、図38におけるTFTのd4を変更した形態である。 ゲートバスラインと画素電極とが重なった領域を示す平面模式図であり、通常のゲートバスラインと画素電極とが重なった形態である。 ゲートバスラインと画素電極とが重なった領域を示す平面模式図であり、ゲートバスラインとドレイン電極との重なり面積の大きさを調節した例である。 ゲートバスラインと画素電極とが重なった領域を示す平面模式図であり、ゲートバスラインとドレイン電極との重なり面積の大きさを調節した例である。 ゲートドレイン重なり面積比と画素電極面積比との関係を示すグラフである。 フレーム期間と印加電圧の到達率との関係を示すグラフである。 応答係数の違いによる表示への影響を調べたときの表示状態を示す模式図である。 「Cpix(min)/Cpix(max)」で表される応答係数の好適な範囲を示すグラフである。 実施形態2の液晶表示装置の画素電極、TFT及び各種配線の配置構成を示す平面模式図である。 実施形態2の液晶表示装置における等価回路図である。 マルチ画素駆動を行ったときの信号波形を示す図である。 実施形態2におけるCsバスラインとドレイン電極の広がり部分とが重複する範囲を示す平面模式図である。 画素電極とCsバスラインとの重なり面積でCs容量を調節する際の一例を示す平面模式図である。 画素電極とCsバスラインとの重なり面積でCs容量を調節する際の一例を示す平面模式図である。 画素電極とCsバスラインとの重なり面積でCs容量を調節する際の一例を示す平面模式図である。 画素電極とCsバスラインとの重なり面積でCs容量を調節する際の一例を示す平面模式図である。 マルチ駆動を行った場合の、Cs振幅を示す波形図である。 実施形態3における画素電極及び配線の配置構成を示す平面模式図である。 実施形態4における画素電極及び配線の配置構成を示す平面模式図である。 実施形態5における画素電極及び配線の配置構成を示す平面模式図である。 実施形態6において3色の絵素を用いた形態を示す断面模式図である。 実施形態6において4色の絵素を用いた形態を示す断面模式図である。 中間調背景に白ウインドウを表示したときの状態を示す模式図である。 白ウインドウを削除したときの中間調ベタ表示の状態を示す模式図である。 隣りあって配置された2つの画素電極のドレイン電圧の信号波形を示す模式図である。 液晶表示装置において、Cgdグラデーションを設けなかった場合の面内対向分布を示すグラフである。 液晶表示装置において設けられるCgdグラデーションを示すグラフである。 従来の液晶表示装置において、Cgdグラデーションを設けた場合の面内対向分布を示すグラフである。
本明細書中、画素電極の配線との重なり面積とは、ドレイン電極の配線との重なり面積を含むものである。また、画素電極の走査線との重なり面積とは、画素電極のゲート電極との重なり面積を含む。画素電極の信号線との重なり面積とは、画素電極のソース電極との重なり面積を含む。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
実施形態1
図1は、実施形態1の液晶表示装置において、Cgdグラデーションを設けなかった場合のRGB3原色それぞれの面内対向分布を示すグラフである。
図1中、一点鎖線は、G(緑)の面内対向分布101を示し、点線は、B(青)の面内対向分布101を示し、破線は、R(赤)の面内対向分布101を示す。位置xは、信号が走査線に入力されるパネル平面上の横軸の位置を0としたときの走査線信号側の位置を示す。
図1に示したように、絵素によってΔVdに差Aがある場合、Cgdグラデーションを設けなかったときは、RGB3原色それぞれの面内対向分布101が異なることになる。これに対してCgdグラデーションを設ける図(図26~図29、並びに、図31~図32)については後述する通りである。
図2は、実施形態1の液晶表示装置の画素電極、TFT及び各種配線の配置構成を示す平面模式図である。図2に示すように、実施形態1においては、一つの絵素に対して一つの画素電極が配置されている。また、複数個の絵素によって一つの画素が構成されており、各絵素を個別に制御することで各画素が制御され、更に液晶表示装置による表示全体が制御される。
実施形態1の液晶表示装置は、行方向(横方向)に伸びるゲートバスライン11、列方向(縦方向)に伸びるソースバスライン12を有している。また、ゲートバスライン11とソースバスライン12とのいずれにも接続されたTFT14を有している。TFT14は、画素電極15とも接続されている。また、画素電極15の少なくとも一部で重なるCsバスライン13を有しており、例えば、図2に示すように、画素電極15の中央を横切るように、行方向に伸びて形成されている。
実施形態1においては、一つの絵素に対して一種のカラーフィルタが配置されている。画素を構成する絵素の色の種類、数、及び、配置順は特に限定されず、例えば、RGB、RGBY、RGBC、RGBW等の組み合わせが挙げられる。絵素の色はカラーフィルタで決定される。カラーフィルタの配置形態としては、例えば、図3に示すような、画素電極の境界に関わらず縦方向に伸びて形成されるストライプ配列、図4に示すような、4つの色を有し、行方向及び列方向にそれぞれ2つずつ各色が配置される田の字配列が挙げられる。
図5は、実施形態1の液晶表示装置における等価回路図である。実施形態1においては、絵素(サブピクセル)単位で回路パターンが形成されており、図5においては、2絵素分の回路パターンが表されている。
液晶層を間に介して対向配置された画素電極と対向電極とによって液晶容量Clcが形成される。Clcの値は、一対の電極によって液晶層に印加される実効電圧(V)に依存する。絶縁膜を間に介して対向配置された画素電極とCsバスライン(補助容量配線)とによって補助容量Ccsが形成される。絶縁膜を間に介して対向配置された画素電極とゲートバスライン(走査線)とによってゲートドレイン容量Cgdが形成される。絶縁膜を間に介して対向配置された画素電極とソースバスライン(信号線)とによって、ソースドレイン容量Csdが形成される。
TFT(薄膜トランジスタ)は、シリコン等を材料とする半導体層、並びに、ゲート電極、ソース電極及びドレイン電極の3つの電極を備える。画素電極は、TFTのドレイン電極と接続されている。TFTのゲート電極は、ゲートバスラインと接続されており、TFTのソース電極は、ソースバスラインと接続されている。
所定のタイミングでゲートバスラインにパルス的に供給される走査信号が、所定のタイミング(線順次、一つとばし、2ライン同時書き込み等)で各TFTに印加される。そして、走査信号の入力により一定期間だけオン状態とされたTFTに接続された画素電極に、ソースバスラインから供給される画像信号が印加される。
絵素ごとに液晶層に書き込まれた所定レベルの画像信号は、画像信号が印加された画素電極と、この画素電極に対向する対向電極との間で一定期間保持される。画像信号が印加された後、保持された画像信号がリークすることがあるが、これを防ぐために、画素電極と対向電極との間に形成される液晶容量Clcと並列に、補助容量Ccsが形成される。
実施形態1においては、図2に示すように、各画素電極15の横の長さが異なっており、各画素電極15の縦の長さは同一であるため、各画素電極15の面積がそれぞれ異なっている。
以下、具体的に、赤、緑及び青の3色のカラーフィルタ、及び、赤、緑、青及び黄の4色のカラーフィルタの配置形態(実施例1~6)の例を挙げて説明する。
実施例1
図6は、実施例1の1画素あたりのカラーフィルタの平面模式図である。図6に示すように、実施例1においてカラーフィルタは、赤(R)、緑(G)及び青(B)の3色のカラーフィルタが配置されている。実施例1におけるカラーフィルタは、ストライプ配列であり、パネルの縦方向に同色の絵素が形成される。
画素電極の縦方向の長さは、赤、緑及び青の各色で同じとなるように形成されているのに対し、横方向の長さ(絵素ピッチ)は各色で異なっている。通常、絵素ピッチの大きいものほど絵素面積は大きい。
具体的には、緑の絵素のピッチ幅は、赤の絵素のピッチ幅より大きく、かつ青の絵素のピッチ幅より大きい。赤のピッチ幅と青のピッチ幅とは、同じである。したがって、緑の絵素の面積は、赤の絵素の面積より大きく、かつ青の絵素の面積より大きい。
赤、緑及び青のピッチ幅を全て同じとせず、緑の比率を増やすことで、これらが同じ比率である場合と比べ、より高い透過率が得られる。なお、画素電極の面積が各絵素間で異なることで、カラーバランスが崩れることがあるが、バックライトの制御により調整することが可能である。具体的には、バックライト信号の制御、バックライトに用いる光源の蛍光体比の変更等により調整することができる。
実施例1では、TFTのチャネル幅を利用して、α=Cgd/(Cgd+Csd+Ccs+Clc)の値の絵素間でのバランスを調整している。具体的には、より広い面積をもつ画素電極に対しては、より大きなチャネル幅をもつTFTが配置されている。したがって、緑の絵素におけるTFTのチャネル幅は、赤の絵素におけるTFTのチャネル幅よりも大きく、かつ青の絵素におけるTFTのチャネル幅よりも大きい。
これにより、ゲートバスラインと画素電極とによって形成されるゲートドレイン容量(Cgd)、ソースバスラインと画素電極とによって形成されるソースドレイン容量(Csd)、Csバスラインと画素電極とによって形成される補助容量(Ccs)、及び、画素電極と対向電極とによって形成される液晶容量(Clc)のバランスの調節を絵素ごとに容易に行うことができる。
図7~図11は、実施例1においてTFTのチャネルの幅d(d1~d5)を絵素間で異ならせる手段の一例を示す平面模式図である。図7~図11に示すように、TFT14は、ゲートバスライン11とソースバスライン12とのそれぞれと接続されている。TFT14は、シリコン等で形成された半導体層と、ソースバスライン12の一部から延伸されたソース電極22と、半導体層を介してソースバスライン12からの画像信号を画素電極に供給するドレイン電極23と、ゲートバスライン11のうち、半導体層と重畳する領域であるゲート電極とを、構成要素として備えている。
ドレイン電極23は、絵素の中央に向かって延伸されており、一定の広がりをもって形成されている。上記一定の広がりをもった部分23a上の絶縁膜には、コンタクトホール24が形成されており、コンタクトホール24を通じて、ドレイン電極23と画素電極とは電気的に接続されている。
ドレイン電極23の広がりをもった部分23aは、絶縁膜を介して下層に配置されたCsバスラインとの間で補助容量を形成する。Csバスラインは、ゲートバスライン11と平行に延伸されている。
TFT14が備える半導体層は、ソース電極22とドレイン電極23との双方と重畳しており、ソース電極22と重畳する領域がソース領域であり、ドレイン電極23と重畳する領域がドレイン領域である。また、ソース電極22とドレイン電極23の双方と重畳せず、かつ平面的にみてソース電極22とドレイン電極23との間に位置する領域がチャネル領域21である。したがって、半導体層は、ソース領域、チャネル領域21、及び、ドレイン領域の3つの領域を有していることになる。
チャネル領域21は、ゲートバスライン11と重畳しており、ゲートバスライン11に走査信号が入力されたときのみ、画像信号をソース電極22からドレイン電極23に供給することができる。チャネル領域21の長さ(ソース電極22とドレイン電極23との間隔)は、適正な値がある程度決められているため、チャネル領域21の長さを各絵素で変更することは好ましくないが、チャネル領域21の幅dを調節することは可能であり、チャネル領域21の長さに対するチャネル領域の幅dを広げると、よりTFT14の電気特性が向上する。したがって、実施例1においては、緑の絵素におけるチャネル幅dを、赤及び青の絵素におけるチャネル幅dよりも大きく形成している。
これにより、画素電極との間で形成されるゲートドレイン容量(Cgd)の値が変化するため、これを利用して各絵素における最適の対向電圧の値を変化させ、それぞれの値を近づけるように調節することができる。
図7は、チャネル幅の大きさを調節したTFTの第一の例を示す平面模式図である。図7におけるTFTのチャネル領域21は、ドレイン電極23とソース電極22との間に形成されており、d1のチャネル幅を有している。d1の大きさを絵素ごとに変えることで、絵素間でαの大きさを調節することができる。
図8及び図9は、チャネル幅の大きさを調節したTFTの第二の例を示す平面模式図である。図8におけるTFT14のチャネル幅d2は、ドレイン電極23とソース電極22との間のみならず、ドレイン電極23とソースバスライン12の一部との間にも形成されている。このときのTFT14のチャネル幅d2は、図9に示すように、ソースバスライン12と対向する部分d3と、ソース電極22と対向する部分d4とを足した長さとなる。d2の大きさを絵素ごとに変えることで、絵素間でαの大きさを調節することができる。
図10及び図11は、チャネル幅の大きさを調節したTFTの第三の例を示す平面模式図である。図10におけるTFT14においては、ソースバスライン12の一部から延伸されたソース電極22が途中で枝分かれしており、ドレイン電極23の先端を囲うような形状を有している。このときのTFT14のチャネル幅d5は、図11に示すように、ゲートバスライン11に平行な部分d6、d8と、ソースバスライン12に平行な部分d7とを足した長さとなる。d5の大きさを絵素ごとに変えることで、絵素間でαの大きさを調節することができる。
実施例1においては、絵素間でαの値が近いことが好ましい。具体的には、絵素間でのαの値の比「(αの最大値-αの最小値)/αの最小値」で表される値は、10%以下であることが好ましい。絵素間でαがそろうことで、引き込み電圧であるΔVdのばらつきが抑制され、絵素間での最適対向電圧がそろうことになる。そして、それにより焼きつきの発生の可能性を大きく低減することができる。αは、α=Cgd/Cpix(Cpixは、Cgd+Csd+Ccs+Clc)で表される。そのため、α値の絵素間でのバランスを調整するためには、これらのパラメーターの調整が必要であり、その調整にはチャネル幅の調整が効果的である。
実施例2
図12は、実施例2の1画素あたりのカラーフィルタの平面模式図である。図12に示すように、実施例2におけるカラーフィルタは、ストライプ配列であり、パネルの縦方向に同色の絵素が形成される。また、実施例2においてカラーフィルタは、赤(R)、緑(G)及び青(B)の3色が用いられている。色の配置順は特に限定されない。実施例2では、赤(R)のピッチ幅が、緑(G)のピッチ幅よりも青(B)のピッチ幅よりも狭い。緑(G)のピッチ幅と青(B)のピッチ幅とは同じである。
赤、緑及び青のピッチ幅を全て同じとせず、赤の比率を減らすことで、これらが同じ比率である場合と比べ、より高い透過率が得られる。なお、画素電極の面積が各絵素間で異なることで、カラーバランスが崩れることがあるが、バックライトの制御により調整することが可能である。具体的には、バックライト信号の制御、バックライトに用いる光源の蛍光体比の変更等により調整することができる。
実施例3
図13は、実施例3の1画素あたりのカラーフィルタの平面模式図である。図13に示すように、実施例3におけるカラーフィルタは、ストライプ配列であり、パネルの縦方向に同色の絵素が形成される。また、実施例3においてカラーフィルタは、赤(R)、緑(G)及び青(B)の3色が用いられている。色の配置順は特に限定されない。実施例3では、赤(R)のピッチ幅が青(B)のピッチ幅よりも狭く、青(B)のピッチ幅が緑(G)のピッチ幅よりも狭い。
赤、緑及び青のピッチ幅を全て同じとせず、赤の比率を減らし、かつ緑の比率を増やすことで、これらが同じ比率である場合と比べ、より高い透過率が得られる。なお、画素電極の面積が各絵素間で異なることで、カラーバランスが崩れることがあるが、バックライトの制御により調整することが可能である。具体的には、バックライト信号の制御、バックライトに用いる光源の蛍光体比の変更等により調整することができる。
実施例4
図14は、実施例4の1画素あたりのカラーフィルタの平面模式図である。図14に示すように、実施例4におけるカラーフィルタは、ストライプ配列であり、パネルの縦方向に同色の絵素が形成される。また、実施例4においてカラーフィルタは、赤(R)、緑(G)、青(B)、及び、黄(Y)の4色が用いられている。色の配置順は特に限定されない。実施例4では、緑(G)のピッチ幅と黄(Y)のピッチ幅とは同じであり、赤(R)のピッチ幅と青(B)のピッチ幅とは同じである。緑(G)及び黄(Y)のピッチ幅は、赤(R)及び青(B)のピッチ幅よりも狭い。
赤、緑、青及び黄のピッチ幅を全て同じとせず、赤及び青の比率をより高く、かつ緑及び黄の比率をより低くすることで、これらが同じ比率である場合と比べ、より広い色再現性が得られる。なお、画素電極の面積が各絵素間で異なることで、カラーバランスが崩れることがあるが、バックライトの制御により調整することが可能である。具体的には、バックライト信号の制御、バックライトに用いる光源の蛍光体比の変更等により調整することができる。
実施例5
図15及び図16は、実施例5の1画素あたりのカラーフィルタの平面模式図である。図15に示すように、実施例5におけるカラーフィルタは、ストライプ配列であり、パネルの縦方向に同色の絵素が形成される。また、実施例5においてカラーフィルタは、赤(R)、緑(G)、青(B)、及び、黄(Y)の4色が用いられている。色の配置順は特に限定されない。実施例5では、緑(G)のピッチ幅と黄(Y)のピッチ幅とは同じである。赤(R)のピッチ幅は、緑(G)及び黄(Y)のいずれのピッチ幅よりも大きく、青(B)のピッチ幅もまた、緑(G)及び黄(Y)のいずれのピッチ幅よりも大きい。
赤、緑、青及び黄のピッチ幅を全て同じとせず、赤及び青の比率をより高く、かつ緑及び黄の比率をより低くすることで、これらが同じ比率である場合と比べ、より広い色再現性が得られる。なお、画素電極の面積が各絵素間で異なることで、カラーバランスが崩れることがあるが、バックライトの制御により調整することが可能である。具体的には、バックライト信号の制御、バックライトに用いる光源の蛍光体比の変更等により調整することができる。
赤のピッチ幅と青のピッチ幅との関係では、いずれが大きい形態も想定される。青のピッチ幅がより大きければ、図15のようになり、赤のピッチ幅がより大きければ、図16のようになる。
これらは、セルギャップを保持するスペーサの配置場所、表示領域内のCs配線の形成場所等により赤のピッチ幅と青のピッチ幅とを適宜設定することが好ましい。具体的には、スペーサとして、複数色のカラーフィルタを積層して形成する積層スペーサが用いられる場合、充分な高さを得るために、赤の絵素に積層スペーサを形成することがありうる。このときは、赤の比率を、青の比率よりも小さくすることが好ましい。また、例えば、ゲートバスライン、ソースバスライン等のメタル配線に銅(Cu)が用いられる場合、銅(Cu)による反射が赤みを帯びることになるため、青の絵素に積層スペーサが形成されることがありうる。このときは、青の比率を、赤の比率よりも小さくすることが好ましい。
実施例6
図17~図20は、実施例6の1画素あたりのカラーフィルタの平面模式図である。図17~図20に示すように、実施例6におけるカラーフィルタは、ストライプ配列であり、パネルの縦方向に同色の絵素が形成される。また、実施例6においてカラーフィルタは、赤(R)、緑(G)、青(B)、及び、黄(Y)の4色が用いられている。色の配置順は特に限定されない。実施例6では、赤のピッチ幅は、緑及び黄のいずれのピッチ幅よりも大きく、青のピッチ幅もまた、緑及び黄のいずれのピッチ幅よりも大きい。緑のピッチ幅と黄のピッチ幅との関係、及び、赤のピッチ幅と青のピッチ幅との関係は、いずれが大きい形態も想定される。図17は、ピッチ幅が黄<緑<青<赤の形態であり、図18は、ピッチ幅が緑<黄<青<赤の形態であり、図19は、ピッチ幅が黄<緑<赤<青の形態であり、図20は、ピッチ幅が緑<黄<赤<青の形態である。
赤、緑、青及び黄のピッチ幅を全て同じとせず、赤及び青の比率をより高く、かつ緑及び黄の比率をより低くすることで、これらが同じ比率である場合と比べ、より広い色再現性が得られる。なお、画素電極の面積が各絵素間で異なることで、カラーバランスが崩れることがあるが、バックライトの制御により調整することが可能である。具体的には、バックライト信号の制御、バックライトに用いる光源の蛍光体比の変更等により調整することができる。
赤のピッチ幅と青のピッチ幅、及び、緑のピッチ幅と黄のピッチ幅の関係については、実施例5と同様、セルギャップを保持するスペーサの配置場所、表示領域内のCs配線の形成場所等によりそれぞれのピッチ幅を適宜設定することが好ましい。具体的には、上述したとおりである。
実施例7
図21及び図22は、実施例7の1画素あたりのカラーフィルタの平面模式図である。図21及び図22に示すように、実施例7におけるカラーフィルタは、赤、緑、青及び黄の4色絵素による田の字配列であり、縦方向及び横方向のそれぞれに2つずつ形成された計4つのマスによって一つの絵素が構成される。色の配置順は特に限定されない。各絵素の面積は、実施例4~6のいずれのパターンも適用することができる。すなわち、実施例7は、ストライプ配列が田の字配列となったこと以外は、同様である。なお、田の字配列であれば、ストライプ配列の場合と異なり、画素が横方向に並ぶ絵素のみならず、縦方向に並ぶ絵素によっても構成される。したがって、図21のように、縦方向のピッチ幅が異なる場合もあれば、図22のように、横方向のピッチ幅が異なる場合も想定される。
赤、緑、青及び黄のピッチ幅を全て同じとせず、赤の比率をより低くすることで、これらが同じ比率である場合と比べ、より高い透過率が得られる。なお、画素電極の面積が各絵素間で異なることで、カラーバランスが崩れることがあるが、バックライトの制御により調整することが可能である。具体的には、バックライト信号の制御、バックライトに用いる光源の蛍光体比の変更等により調整することができる。
以下に、実施例5の液晶表示装置において、画素電極のゲート電極との重なり面積を調整することでCgdグラデーションを設定するとともに絵素間のαの値の調整を行った例を示す。図23は、実際に実施例5において画素電極の重なり面積の大きさを調節した一例を示すTFTの平面模式図である。
図23に示すように、TFT14は、ソースバスライン12の一部から延伸されたソース電極22と、ゲートバスライン11の一部から延伸されたゲート電極25と、画素電極と接続されたドレイン電極23とを有している。また、TFT14は、ゲート電極25と重なる位置に半導体層を有しており、半導体層の一部は、ソース電極22及びドレイン電極23のそれぞれの一部と重畳している。更に、半導体層の他の一部は、ソース電極22及びドレイン電極23のいずれにも重畳しておらず、このうち、平面的に見てソース電極22とドレイン電極23とに挟まれる領域がチャネル領域21である。ここでは、半導体層のチャネル領域21の幅は絵素間で異なって設定されるが、ソース電極22とドレイン電極23との間隔は、均一となるように設定されている。
図23に示す例では、ドレイン電極23はソースバスライン12に平行な方向に延伸された直線状である。また、ソース電極22は、平面的に見てゲートバスライン11側と逆側を向いて開かれた開口を有し、ドレイン電極23の先端を囲うような形状を有している。
ドレイン電極23の幅はcであり、ドレイン電極23とソース電極22との間隔のうち、ゲートバスライン11と平行な方向の長さはdである。ドレイン電極23とソース電極22との間の距離のうち、ソースバスライン12と平行な方向の長さはeである。ソース電極22がドレイン電極23と対向する部位のソースバスライン12と平行な方向の長さはaである。ゲート電極25のソースバスライン12と平行な方向の長さからソース電極22のソースバスライン12と平行な方向の長さを差し引いた長さはbである。
Cgdグラデーションを設定する前の各絵素の情報(グラデーションを設定する前の絵素間でのΔVd差を低減するように設定されている)を、表1に示す。
実施例5の液晶表示装置においては、異なる絵素ピッチをもつ4色の絵素において、絵素のピッチ幅を「青」>「赤」>「緑=黄」とした場合に、それぞれの絵素間でのa~eの値を下記表1のように調整することで、絵素間でのαのズレ(max-min)を、3.88%とすることができた。また、ΔVdは、赤の絵素で1.838V、緑及び黄の絵素で1.901V、青の絵素で1.910Vとなっており、ΔVdの最大値と最小値との間の差は、72mVであった。後述する実施例8及び実施例9では、更にCgdグラデーションを設定するとともに絵素間のαの値を調整することになる。なお、グラデーションを設定しない場合は、面内対向分布が生じることになり、表示画像にフリッカや表示劣化が生じるおそれがある。なお、ここでの各絵素のピッチ幅の比は、「赤」:「緑」:「黄」:「青」が1.4:1:1:1.7であった。
Figure JPOXMLDOC01-appb-T000001
実施例8
上記表1に示した各絵素を有する液晶表示装置において、各絵素に対して等しいΔCgd/Cpixをかけるようにグラデーションを設定した場合の各絵素の情報を、下記表2に示す。なお、Cdgグラデーションを設定するために、走査線の信号進行方向に沿ってゲート電極の長さを変動させ、ゲート電極とドレイン電極との重なり面積を変動させている。この変動するゲート電極26の長さは、gである。また、ゲートバスライン11の一部から延伸されたゲート電極25のゲートバスライン11と平行な方向の長さはfである。1Step当たりの補正量(Cgd補正量)は、1Stepにつきgの大きさを増減させた大きさである。全Step数は、当該補正のうち、gの大きさを増加させる補正を行った段数である。最大補正量は、gの最大値である。1Step当たりのΔVd補正量(mV)は、1Step当たりのgの増減に伴うΔVdの増減量である。最大補正量(mV)は、gが最大値となったときのΔVd補正量であり、ΔVd補正量の最大値である。最適対向ズレ(mV)は、グラデーションを設定する前の面内対向分布の最大値と最小値の差である。最大補正量をかけた位置でのΔVd(V)は、gが最大値となったとき(パネル面内で、gが最大となる位置)のΔVdの値である。
なお、図24は、実施形態1の液晶表示装置におけるStep(n)とStep(n+1)との間のモザイク領域を示すグラフである。モザイク領域133とは、Step(n)の画素131とStep(n+1)の画素132とが混在している領域をいい、液晶表示装置において設けていても設けていなくてもよい。モザイク領域133の走査線方向の画素数は、視覚的な段差が生じることを抑制して滑らかな表示とするという目的を達成することができればよく、通常一定(例えば、24)であり、混在が生じていない部分の画素数(保持する画素数)は、例えば4以上とすることができる。また、実施例9及び比較例1においても同様にモザイク領域が設けられている。Cgdグラデーションによる補正は、基本的に、上述した1Step当たりの補正量と混在が生じていない部分の画素数とで決定するものである。保持する画素数が少ないほど急峻に補正をかけることになり、補正の増加量を大きくすることができる。逆に保持する画素数が多いほどなだらかに補正をかけることになり、補正の増加量を小さくすることができる。
Figure JPOXMLDOC01-appb-T000002
図25は、実施例8の液晶表示装置において、ゲート入力端からの相対位置に対するΔVd補正量(mV)を示すグラフである。
実施例8の液晶表示装置においては、それぞれの絵素間でのgの値を上記表2に示したように調整することで、最大補正量のときのΔVd補正量差を、赤の絵素で154.1mV、緑及び黄の絵素で157.8mV、青の絵素で163.5mVとすることができ、最大補正量のときのΔVd補正量差の絵素間での最大値と最小値との間の差は、9.4mVであった。また、最適対向ズレは324mVであり、最大補正量のときのΔVdを、赤の絵素で1.668V、緑及び黄の絵素で1.735V、青の絵素で1.750Vとすることができ、最大補正量のときのΔVdの最大値と最小値との間の差は、82mVであった。αズレ(αの最大値とαの最小値との差の、αの最小値に対する割合)は、4.19%であった。したがって、上記設計によれば、最適対向電圧の絵素間での調整が充分に行われ、焼きつきの発生が抑制された液晶表示装置を得ることができた。
以下に、実施例8に示したように、絵素によってΔVdに差がある場合に、各絵素に対して等しいΔCgd/Cpixをかけるようにグラデーションを設定したときのグラフを図26及び図27に示す。なお、図26及び図27では、3色の絵素を用いた場合であり、走査線の信号は横軸の位置x=0からのみ入力されている場合のグラフを示している。
図26は、実施例8の変形例の液晶表示装置において設けたCgdグラデーション102を示すグラフである。図26中、実線は、R(赤)、G(緑)及びB(青)において設けたCgd補正量(Cgdグラデーション)を示す。
図27は、実施例8の変形例の液晶表示装置において、Cgdグラデーションを設けた場合のRGB3原色それぞれの面内対向分布を示すグラフである。図27に示されるように、Cgdグラデーションが面内対向分布103を十分に低減できる程度にかけられた場合、各絵素における面内対向分布103はそれぞれほぼ一定になり、各絵素間のΔVd差はCgdグラデーションを設けなかった場合と略同一とすることができた。図27中、一点鎖線は、G(緑)の面内対向分布103を示し、点線は、B(青)の面内対向分布103を示し、破線は、R(赤)の面内対向分布103を示す。実施例8の変形例においては、図27に示されるように、ΔVdを揃えたとしてもAだけずれていた場合、画素ごとに面内対向分布103が平行移動したようになる。これに対して画素容量の差を考慮してCgd/Cpixが等しくなるようにCgdグラデーションをかけ、かつその量が最適対向ずれを実質的に完全に補償する量であれば、面内対向分布103は一定で、ΔVd差Aをもつようになる。
以下に、実施例8に示したように、絵素によってΔVdに差がある場合に、各絵素に対して等しいΔCgd/Cpixをかけるようにグラデーションを設定したときのグラフを図28及び図29に示す。なお、図28及び図29は、3色の絵素を用いた場合であり、走査線の信号は横軸の位置x=0からのみ入力されている場合のグラフを示している。
図28は、実施例8のもう一つの変形例の液晶表示装置において設けたCgdグラデーションを示すグラフである。図28中、実線は、R(赤)、G(緑)及びB(青)において設けたCgd補正量を示す。
図29は、実施例8のもう一つの変形例の液晶表示装置において、Cgdグラデーションを設けた場合のRGB3原色それぞれの面内対向分布を示すグラフである。図29に示されるように、Cgdグラデーションが面内対向分布を十分に低減できる程度にかけられた場合、各絵素における面内対向分布のバラツキは低減したが、残っており、面内対向分布が一定にはなっていない。各絵素間のΔVd差はCgdグラデーションを設けなかった場合と略同一であった。図29中、一点鎖線は、G(緑)の面内対向分布を示し、点線は、B(青)の面内対向分布を示し、破線は、R(赤)の面内対向分布を示す。実施例8のもう一つの変形例においても、図29に示されるように、ΔVdを揃えたとしてもAだけずれていた場合、画素ごとに面内対向分布が平行移動したようになる。例えば、x=0の位置のΔVd差Aと最大補正量の位置のΔVd差Aとは、略同一である。面内対向分布を一定にするという観点からは、上述した実施例8の変形例のように、Cgdグラデーションの量が最適対向ずれを実質的に補償する量であることが好ましい。
実施例9
上記表1に示した各絵素を有する液晶表示装置において、各絵素に対して面内対向を揃えるようなΔCgd/Cpixとなるようにグラデーションを設定した場合の各絵素の情報を、下記表3に示す。実施例9では、実施例8のようにグラデーションを設定した場合であっても数十mV程度(実施例8では、82mV)の差はでてしまうので、そのΔVdの差も考慮に入れたうえでCgdグラデーションを設定したものである。なお、表3中の各項目名は、上述した表2に示した各項目名と同様である。
Figure JPOXMLDOC01-appb-T000003
図30は、実施例9の液晶表示装置において、ゲート入力端からの相対位置に対するΔVd補正量(mV)を示すグラフである。
実施例9の液晶表示装置においては、それぞれの絵素間でのgの値を上記表3及び図30に示したように調整することで、最大補正量のときのΔVd補正量差を、赤の絵素で154.1mV、緑及び黄の絵素で157.8mV、青の絵素で147.2mVとすることができ、最大補正量のときのΔVd補正量差の絵素間での最大値と最小値との間の差は、23mVであった。また、最大補正量のときのΔVdを、赤の絵素で1.668V、緑及び黄の絵素で1.735V、青の絵素で1.733Vとすることができ、最大補正量のときのΔVdの最大値と最小値との間の差は、67.0mVであった。αズレ(αの最大値とαの最小値との差の、αの最小値に対する割合)は、3.40%であった。したがって、上記設計によれば、最適対向電圧の絵素間での調整の程度を緩めることでαのズレを改善することができ、焼きつきの発生が抑制された液晶表示装置を得ることができた。
以下に、実施例9に示したように、絵素によってΔVdに差がある場合に、各絵素に対して面内対向を揃えるようなΔCgd/Cpixとなるようにグラデーションを設定した実施例9の変形例のグラフを図31及び図32に示す。なお、実施例9の変形例においては、3色(RGB)の絵素を用いた場合のグラフを示している。
図31は、実施例9の変形例の液晶表示装置において設けたCgdグラデーションを示すグラフである。図31では、ΔVdが大きい画素(R)には少なめにCgdグラデーションを設定している。図31中、実線は、G(緑)において設けたCgd補正量とB(青)において設けたCgd補正量とをそれぞれ示し、破線は、R(赤)において設けたCgd補正量を示す。
図32は、実施例9の変形例の液晶表示装置において、Cgdグラデーションを設けた場合のRGB3原色それぞれの面内対向分布を示すグラフである。図32中、一点鎖線は、G(緑)の面内対向分布を示し、点線は、B(青)の面内対向分布を示し、破線は、R(赤)の面内対向分布を示す。
図31及び図32に示されるように、実施例9及び実施例9の変形例ではΔVdの差も考慮に入れたうえで最大補正量のときに各絵素でαがより揃うようにCgdグラデーションが設定されている。
このように設定するCgdグラデーションをΔVdが大きい画素(R)に対してはより少なくし、その他のΔVdが小さい画素(G、B)に対してはより多くすると、面内対向分布が同一にはならないものの、面内対向分布のバラツキを低減するとともに、実施例8よりも更にΔVd差を小さくすることができる。例えば、x=0の位置のΔVd差はAのままであるが、最大補正量の位置のΔVd差Bは、Aよりも小さくなっている。
実施例8及び実施例9で上述したように、上記画素電極の走査線との重なり面積は、単色の絵素に対応して配置される画素電極毎に、走査線の信号の進行方向に従って始めは増加し、かつその増加率が減少するように形成されたものであり、上記増加率は、画素容量の異なる画素電極毎に異なるものである。また、実施例8及び実施例9に示される液晶表示装置のように、一つの画素内に配置された複数の画素電極のうち、画素電極の走査線との重なり面積を変化させないときのゲートドレイン容量がより大きい画素電極(補正前のゲートドレイン容量がより大きい画素電極)において、該画素電極の走査線との重なり面積を変化させないときのゲートドレイン容量がより小さい画素電極(補正前のゲートドレイン容量がより小さい画素電極)と比べて、走査線の信号の進行方向におけるゲートドレイン補正量の増加率(画素電極の走査線との重なり面積を変化させることによるゲートドレイン容量の増加率)を同じ又はそれ以上とすることが好適である。このような形態とすることにより、より好適に面内対向分布のバラツキは低減したり、ΔVd差を小さくしたりすることができる。
実施例8は、面内対向分布のバラツキを防止する観点から特に好適であり、実施例9は、αズレを小さくする観点から特に好適である。好ましいグラデーション(Cgd補正)は、実施例8に示したものと実施例9に示したもののいずれであってもよい。
比較例1
上記表1に示した各絵素を有する液晶表示装置において、グラデーション配置の調整がされていない場合の各絵素の情報を、下記表4に示す。なお、表4中の各項目名は、上述した表2及び表3に示した各項目名と同様である。
Figure JPOXMLDOC01-appb-T000004
図33は、比較例1の液晶表示装置において、ゲート入力端からの相対位置に対するΔVd補正量(mV)を示すグラフである。
比較例1の液晶表示装置においては、それぞれの絵素間でのgの値を上記表4及び図33に示したように調整することで、最大補正量のときのΔVd補正量差を、赤の絵素で112.0mV、緑及び黄の絵素で157.8mV、青の絵素で87.2mVとなり、最大補正量のときのΔVd補正量差の絵素間での最大値と最小値との間の差は、70.6mVであった。また、最大補正量のときのΔVdを、赤の絵素で1.626V、緑及び黄の絵素で1.735V、青の絵素で1.673Vとすることができ、最大補正量のときのΔVdの最大値と最小値との間の差は、109mVであった。αズレ(αの最大値とαの最小値との差の、αの最小値に対する割合)は、6.53%であった。したがって、上記設計による液晶表示装置は、焼きつきの発生が生じるおそれがある。
以下に、比較例1に示したように、絵素によってΔVdに差がある場合に、各絵素に対して画素電極の走査線との重なり面積の増加率条件を同じものとしてグラデーションを設定した比較例1の変形例のグラフを図34及び図35に示す。それぞれの画素電極で画素容量が異なるため、等しいグラデーションにはならない。なお、図34及び図35では、3色(RGB)の絵素を用いた場合のグラフを示している。
図34は、比較例1の変形例の液晶表示装置において設けたCgdグラデーションを示すグラフである。図34中、一点鎖線は、G(緑)において設けたCgd補正量を示し、点線は、B(青)において設けたCgd補正量を示し、破線は、R(赤)において設けたCgd補正量を示す。
図35は、比較例1の変形例の液晶表示装置において、Cgdグラデーションを設けた場合のRGB3原色それぞれの面内対向分布を示すグラフである。図35中、一点鎖線は、G(緑)の面内対向分布を示し、点線は、B(青)の面内対向分布を示し、破線は、R(赤)の面内対向分布を示す。
図34及び図35に示されるように、比較例1及びその変形例では設定するCgdグラデーションを画素容量の差を無視して同じ形状(Cgd補正量とステップ数が同じ)とした場合必要とされる補償量に対して多すぎたり(G)、少なすぎたり(R)することがあり、面内対向分布・ΔVdともに本発明の効果を充分に奏することができる範囲内とすることができない。例えば、x=0の位置でのΔVd差Aよりも、最大補正量のときのΔVd差Cがより大きくなっている。
下記表5は、本発明の液晶表示装置において、ΔVdの差を100mV以内と仮定したときのαのズレの許容範囲を示す表である。ΔVdの差が100mV以下となれば焼きつきは改善されやすく、50mV以下となればより確実に焼きつきが改善される。
Figure JPOXMLDOC01-appb-T000005
上記表5に示すように、ΔVdを1.0Vとし、ΔVdの差を100mVで設定したときのαのズレは10.0%であった。ΔVdを1.5Vとし、ΔVdの差を100mVで設定したときのαのズレは6.7%であった。ΔVdを2.0Vとし、ΔVdの差を100mVで設定したときのαのズレは5.0%であった。ΔVdを3.0Vとし、ΔVdの差を100mVで設定したときのαのズレは3.3%であった。
通常の液晶表示装置では、ΔVdが1.5~3.0Vの範囲内に設定され、この条件においてはαのズレの範囲は7.0%以下であることが好ましいことが分かった。また、将来的にはΔVd=1Vの範囲内に設定される可能性が考えられ、このときには、αのズレの範囲は10.0%以下であることが好ましいことが分かった。
また、本発明の液晶表示装置におけるチャネルサイズと画素電極面積との関係について検討を行ったところ、表6及び図36に示されるようなデータが得られた。図36は、チャネルサイズ比と画素電極面積比との関係を示すグラフである。
Figure JPOXMLDOC01-appb-T000006
表6及び図36に示される直線に沿ってTFTチャネルのa~eの値を変更することで、Cgdグラデーションをかける前の絵素間でのαのバラツキを抑制することができる。
また、図7~図9に示したTFTにおけるソース電極やドレイン電極の長さの相違は、実際には、図37~図39に示すように、ゲートバスラインとドレイン電極との間との重なり面積にも影響を与える。図37~図39は、実施形態1におけるゲートバスラインとドレイン電極とが重なった領域を示す平面模式図である。ゲートバスライン11とドレイン電極23との重なり面積が大きければ大きいほどゲートドレイン容量(Cgd)の値は変化するため、チャネルの長さの調節に加え、ゲートバスライン11とドレイン電極23との重なり面積も調節することによって、更に絵素どうしの全体のバランスを整えることが可能となる。
上述したように、実施形態1では、α=Cgd/(Cgd+Csd+Ccs+Clc)の値の絵素間でのバランスを調整している。上記式からわかるように、αの値の絵素間でのバランスを調整するためには、Cgdの調整が効果的である。
TFTにおけるドレイン電極とゲートバスラインとの重なり面積の相違は、実際には、ゲートバスラインとドレイン電極との間に形成されるゲートドレイン容量(Cgd)にも影響を与える。ゲートバスラインとドレイン電極との重なり面積が大きければ大きいほどゲートドレイン容量(Cgd)の値は大きくなるため、ゲートバスラインとドレイン電極との重なり面積を調節することによっても、絵素間でのαのバランスを整えることが可能となる。
図40~図43は、図37で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例である。図40及び図41は、図37におけるTFTのd1を変更した形態である。図40においては、ドレイン電極23とゲートバスライン11とが重なる領域において平面的に一部に突出部が設けられている。図41においては、d1の幅全体が広げられている。図42及び図43は、図37におけるTFTのd2を変更した形態である。図42においては、d2の長さが長くなっている。図43においては、ドレイン電極23の形状はそのままであるが、ゲートバスライン11の一部に平面的に突出部が設けられており、結果として、ドレイン電極23とゲートバスライン11とが重なる領域が広がっている。
図44~図46は、図38で示されるTFTの例において、ゲートバスラインとドレイン電極との重なり面積の大きさを調節したTFTの一例である。図44は、図38におけるTFTのd3を変更した形態である。図44においては、d3の幅全体が広げられている。図45及び図46は、図38におけるTFTのd4を変更した形態である。図45においては、d4の長さが長くなっている。図46においては、ドレイン電極23の形状はそのままであるが、ゲートバスライン11の一部に平面的に突出部が設けられており、結果として、ドレイン電極23とゲートバスライン11とが重なる領域が広がっている。
ゲートバスラインとドレイン電極との間に形成されるゲートドレイン容量(Cgd)は、ゲートバスラインと画素電極とが直接重なる領域においても形成される。ゲートバスラインと画素電極との重なり面積が大きければ大きいほどゲートドレイン容量(Cgd)の値は大きくなるため、ゲートバスラインと画素電極との重なり面積を調節することによって、絵素間でのαのバランスを整えることが可能となる。
図47~図49は、実施形態1におけるゲートバスラインと画素電極とが重なった領域を示す平面模式図である。図47は、通常のゲートバスラインと画素電極とが重なった形態であり、画素電極15の端部は直線状であり、ゲートバスライン11が画素電極の端部と平行に延伸されている。図48及び図49は、ゲートバスラインとドレイン電極との重なり面積の大きさを調節した例である。図48においては、画素電極15とゲートバスライン11とが重なる領域において画素電極15に対し一部に平面的に突出部が設けられている。したがって、結果として、画素電極15とゲートバスライン11とが重なる領域が広がっている。図49においては、画素電極15とゲートバスライン11とが重なる領域において画素電極15に対し一部に平面的にくぼみ部(切り欠け部)が設けられている。したがって、結果として、画素電極15とゲートバスライン11とが重なる領域が狭まっている。
このようにして、ドレイン電極とゲートバスラインとが重なる面積、及び、画素電極とゲートバスラインとが重なる面積を調整し、例えば、一つの画素内に配置された複数の画素電極のうち、より広い面積をもつ画素電極の重なり面積が、より狭い面積をもつ画素電極の重なり面積よりも大きいものとすることにより、より大きな画素容量をもつ画素電極が形成するゲートドレイン容量が、より小さな画素容量をもつ画素電極が形成するゲートドレイン容量よりも大きいものとすることができる。これにより、Cgdグラデーションをかける前の絵素間でのαのバラツキを抑制することができる。更に、走査線の信号の進行方向に従って、重なり面積が始めは増加し、かつその増加率が減少するように形成し、該増加率が、面積の異なる画素電極毎に異なるものとすれば、各画素電極のCdg補正量も、画素電極の面積に応じて適切に設定することが可能となる。これにより、各絵素にとって最適の対向電圧の値により近づけることができ、焼きつきの少ない液晶表示装置を得ることができる。
より大きな画素容量をもつ画素電極が形成するゲートドレイン容量が、より小さな画素容量をもつ画素電極が形成するゲートドレイン容量よりも大きいものとする一つの手段として、ゲートバスラインとドレイン電極との重なり面積を絵素間で異ならせる例において、異なる絵素ピッチをもつ3色の絵素において、実際にゲートバスラインとドレイン電極との重なり面積と、絵素間でのαのズレとの検討を行った結果を以下に示す。なお、下記検討においては、チャネル幅の相違に基づく調整は含まれず、純粋にゲートドレイン面積のみでの検討を行っている。
ピッチ幅が「赤」>「緑=青」の場合に、それぞれの絵素間でのa~eの値を下記表7のように調整することで、絵素間でのαのズレを、2.92%とすることができた。また、ΔVdは、赤の絵素で1.194V、緑及び青の絵素で1.230Vとなっており、ΔVdの最大値と最小値との間の差は、36mVであった。したがって、上記設計によれば、Cgdグラデーションをかける前の絵素間でαのバラツキを抑制することができる。なお、ここでの各絵素のピッチ幅の比は、「赤」:「緑」:「青」が1:1:0.86であった。
Figure JPOXMLDOC01-appb-T000007
Cgdグラデーションをかける前の、ゲートドレイン重なり面積と画素電極面積との関係について更に検討を行ったところ、表8及び図50に示されるようなデータが得られた。図50は、ゲートドレイン重なり面積比と画素電極面積比との関係を示すグラフである。
Figure JPOXMLDOC01-appb-T000008
表8及び図50に示される直線に沿ってTFTチャネルのa~eの値を変更することで、画素電極の面積比に応じてCgdグラデーションを設定する前の絵素間でのαのバラツキを抑制することができる。
チャネルサイズ比と画素電極面積比との間の関係によって大きく調節した上で、更に、Cgd面積比と画素電極面積比との間の関係によって調整を行うことで、より適切にCgdグラデーションをかける前の絵素間でαのバラツキを抑制することができる。
実施形態1においては、絵素間で「Cpix(min)/Cpix(max)」(以下、応答係数ともいう。)をそろえることが好ましい。Cpix(min)は、黒表示を行っている際の画素容量であり、Cpix(max)は、白表示を行っている際の画素容量である。「Cpix(min)/Cpix(max)」で表される応答係数は、液晶の応答特性の指標の一つであり、この値が絵素間で異なっていると、色によって応答が異なってしまうため、所望の色味が得られないことがある。
「Cpix(min)/Cpix(max)」は、上述までのTFTチャネル幅の調整、ゲートバスラインとドレイン電極との重なり面積の調整、画素電極とゲートバスラインとの重なり面積の調整、画素電極とCsバスラインとの重なり面積の調整等によって行うことができる。
図51は、フレーム期間と印加電圧の到達率との関係を示すグラフである。図52は、応答係数の違いによる表示への影響を調べたときの表示状態を示す模式図である。図51に示すように、現在の液晶表示装置では、1フレーム内では液晶が応答しないため、2段階を経て所望の透過率を得るように設計されている。例えば、図52に示すように、背景が黒色の中に白色の四角形を表示し、この四角形が右から左へと動いているような表示を行う場合、四角形の左端の絵素は、フレームごとに新しい応答をしているため、応答係数が小さい色のみが応答が遅く、他の色が強い状態になり、色味が変わってしまう。
これに対し、絵素間で応答係数の値を近づけることで、色味の変化を抑制することができる。図53は、「Cpix(min)/Cpix(max)」で表される応答係数の好適な範囲を示すグラフである。到達率が0.9であるときの応答係数の値は0.78であり、到達率差が5%以内である0.78±0.04が応答係数の好ましい範囲である。
実施形態2
図54は、実施形態2の液晶表示装置の画素電極、TFT及び各種配線の配置構成を示す平面模式図である。図54に示すように、実施形態2においては、一つの絵素に対して二つの画素電極、(以下、それぞれを副画素電極ともいう。)が配置されている。また、複数個の絵素によって一つの画素が構成されており、各絵素を個別に制御することで各画素が制御され、更に液晶表示装置による表示全体が制御される。
実施形態2の液晶表示装置は、行方向(横方向)に伸びるゲートバスライン11、及び、列方向(縦方向)に伸びるソースバスライン12を有している。また、ゲートバスライン11とソースバスライン12とのいずれにも接続された第一のTFT14a及び第二のTFT14bを有している。第一のTFT14aは第一の副画素電極15aと接続されており、第二のTFT14bは第二の副画素電極15bと接続されている。また、実施形態2の液晶表示装置は、第一の副画素電極15aの少なくとも一部で重なる第一のCsバスライン13a、及び、第二の副画素電極15bの少なくとも一部で重なる第二のCsバスライン13bを有しており、図54に示すように、各副画素電極15a、15bの中央を横切るように、それぞれが行方向に伸びて形成されている。
実施形態2においては、一つの絵素に対して一種のカラーフィルタが配置されている。画素を構成する絵素の色の種類、数、及び、配置順は特に限定されず、例えば、RGB、RGBY、RGBC、RGBW等の組み合わせが挙げられる。絵素の色はカラーフィルタで決定される。カラーフィルタの配置形態としては、例えば、図3に示すような、画素電極の境界に関わらず縦方向に伸びて形成されるストライプ配列、図4に示すような、4つの色を有し、行方向及び列方向にそれぞれ2つずつ各色が配置される田の字配列が挙げられる。
実施形態2において二つの副画素電極は、それぞれ異なる大きさの副画素容量を形成する。副画素容量を異ならせる方法としては、(1)信号電圧をそれぞれ異なるソースバスラインから供給する方法、(2)Csバスラインの電圧変化によって調節を行う方法が挙げられる。これら副画素電極に対しては、それぞれ一つずつTFTが接続される。各TFTは同一のゲートバスラインとつながっており、ゲートバスラインに走査信号が供給されるタイミングで、二つの副画素が一度に制御されることになる。
図55は、実施形態2の液晶表示装置における等価回路図である。実施形態2においては、副画素単位で回路パターンが形成されており、図55においては、2つの副画素の回路パターンを示している。副画素電極のそれぞれは、液晶層との間でClc1及びClc2を形成する。また、副画素電極のそれぞれは、Csバスラインとの間でCcs1及びCcs2bを形成する。更に、副画素電極のそれぞれは、各TFTのドレイン電極と接続されており、各TFTによって駆動が制御される。
液晶層を間に介して対向配置された画素電極と対向電極とによって液晶容量Clcが形成される。Clcの値は、一対の電極によって液晶層に印加される実効電圧(V)に依存する。絶縁膜を間に介して対向配置された画素電極とCsバスライン(補助容量配線)とによって補助容量Ccsが形成される。絶縁膜を間に介して対向配置された画素電極とゲートバスライン(走査線)とによってゲートドレイン容量Cgdが形成される。絶縁膜を間に介して対向配置された画素電極とソースバスライン(信号線)とによって、ソースドレイン容量Csdが形成される。
実施形態2におけるTFTを用いた各副画素電極の駆動方式、及び、基本構成は、実施形態1と同様である。
以下、Csバスラインの電圧変化により、マルチ画素駆動を行う方法について詳述する。図56は、マルチ画素駆動を行ったときの信号波形を示す図である。
時刻T1のときVgの電圧がVgLからVgHに変化することにより、第一のTFT14aと第二のTFT14bが同時に導通状態(オン状態)となり、第一及び第二の副画素電極15a、15bのそれぞれにソースバスライン12から電圧Vsが伝達され、第一及び第二の副画素電極15a、15bに充電される。同様に、第一及び第二の副画素電極15a、15bのそれぞれと重畳する第一及び第二のCsバスライン13a、13bに対しても、ソースバスライン12からの充電がなされる。
次に、時刻T2のときゲートバスライン11の電圧VgがVgHからVgLに変化することにより、第一のTFT14aと第二のTFT14bが同時に非導通状態(OFF状態)となり、第一及び第二の副画素電極15a、15b、並びに、第一及び第二のCsバスライン13a、13bはすべてソースバスライン12と電気的に絶縁される。なお、この直後、第一のTFT14aと第二のTFT14bの有する寄生容量等の影響による引き込み現象のために、第一及び第二の副画素電極15a、15bの電圧Vlc1、Vlc2は略同一の電圧ΔVdだけ低下し、
Vlc1=Vs-ΔVd
Vlc2=Vs-ΔVd
となる。また、このとき、第一及び第二のCsバスライン13a、13bの電圧Vcs1、Vcs2は
Vcs1=Vcom-Vad
Vcs2=Vcom+Vad
である。
時刻T3で、第一のCsバスライン13aの電圧Vcs1がVcom-VadからVcom+Vadに変化し、第二のCsバスライン13bの電圧Vcs2がVcom+VadからVcom-Vadに変化する。第一のCsバスライン13a及び第二のCsバスライン13bのこの電圧変化に伴い、第一及び第二の副画素電極15a、15bの電圧Vlc1、Vlc2は
Vlc1=Vs-ΔVd+2×Vad×Ccs1/(Clc1+Ccs1)
Vlc2=Vs-ΔVd-2×Vad×Ccs2/(Clc2+Ccs2)
へ変化する。
時刻T4では、Vcs1がVcom+VadからVcom-Vadへ、Vcs2がVcom-VadからVcom+Vadへ、それぞれ変化し、Vlc1、Vlc2もまた、
Vlc1=Vs-ΔVd+2×Vad×Ccs1/(Clc1+Ccs1)
Vlc2=Vs-ΔVd-2×Vad×Ccs2/(Clc2+Ccs2)
から、
Vlc1=Vs-ΔVd
Vlc2=Vs-ΔVd
へ変化する。
時刻T5では、Vcs1がVcom-VadからVcom+Vadへ、Vcs2がVcom+VadからVcom-Vadへ、それぞれ変化し、Vlc1、Vlc2もまた、
Vlc1=Vs-ΔVd
Vlc2=Vs-ΔVd
から、
Vlc1=Vs-ΔVd+2×Vad×Ccs1/(Clc1+Ccs1)
Vlc2=Vs-ΔVd-2×Vad×Ccs2/(Clc2+Ccs2)
へ変化する。
Vcs1、Vcs2、Vlc1、及び、Vlc2は、水平書き込み時間1Hの整数倍の間隔ごとに上記T4、T5における変化を交互に繰り返す。上記T4、T5の繰り返し間隔を1Hの1倍とするか、2倍とするか、3倍とするか、又は、それ以上とするかについては、液晶表示装置の駆動方法(例えば、極性反転駆動)や表示状態(ちらつき、表示のざらつき感等)をみて適宜設定すればよい。この繰り返しは、次にT1に等価な時間になるまで継続される。したがって、それぞれの副画素電極の電圧Vlca、Vlcbの実効的な値は、
Vlca=Vs-ΔVd+Vad×Ccs1/(Clc1+Ccs1)
Vlcb=Vs-ΔVd-Vad×Ccs2/(Clc2+Ccs2)
となる。
よって、第一及び第二の副画素電極15a、15bのそれぞれによって液晶層に印加される実効電圧V1、V2は、
V1=Vlc1-Vcom
V2=Vlc2-Vcom
すなわち、
V1=Vs-ΔVd+Vad×Ccs1/(Clc1+Ccs1)-Vcom
V2=Vs-ΔVd-Vad×Ccs2/(Clc2+Ccs2)-Vcom
となり、互いに異なる値となる。
以上のような前提の下、実施形態2における各絵素間での最適対向電圧の調整について、以下に詳述する。
複数の副画素電極の縦方向のトータルの長さは、赤、緑及び青の各色で同一となるように形成されているのに対し、横方向の長さは各色で異なっている。そのため、絵素ピッチの違いが絵素間の副画素電極のトータルの面積の違いにそのまま反映される。
実施形態2では、実施形態1と同様、TFTのチャネルの幅を利用して、Cgdグラデーションをかける前のα=Cgd/(Cgd+Csd+Ccs+Clc)の値の絵素間でのバランスを調整している。また、ゲートドレイン重なり面積によっても調整を行っている。実施形態2におけるαの調整方法は、実施形態1で示したものと同様の方法を用いることができる。
実施形態2においては、副画素間でK値をそろえることが好ましい。K値がそろうことで、各副画素電極によって形成される静電容量の大きさが均一化され、より適切な副画素間の調節がなされるので、より絵素間でのαの値がばらつく可能性を低減させることができる。K=Ccs/Cpix(Cgd+Csd+Ccs+Clc)で表される。そのため、K値の絵素間でのバランスを調整するためには、Ccsの調整が効果的である。
図57は、実施形態2におけるCsバスラインとドレイン電極の広がり部分とが重複する範囲を示す平面模式図である。図57に示すように、Csバスライン13は一部に広がった領域を有しており、ドレイン電極23もまた、一部に広がった領域を有している。これらは絶縁膜を介して隔離されているが、平面的に見たときに互いに重畳しており、補助容量Ccsを形成する。Ccsの大きさは、これらが互いに重畳する面積に依存するため、それぞれの広がり領域の大きさを副画素ごとに調節し、重なり度合いを調整することで、適切なCcsの値を形成することができる。なお、図57において、Csバスライン13の広がり部分23aは、縦方向及び横方向のいずれの辺においても、ドレイン電極23の広がり部分のそれらよりも大きい。
ドレイン電極23の広がり部分23aの縦方向の長さはdであり、横方向の長さはfである。また、Csバスライン13の広がり部分の縦方向の長さはeであり、横方向の長さはgである。
Csバスライン13の広がり部分の縦方向の一辺と、ドレイン電極23の広がり部分23aの縦方向の一辺との間の距離は、片側につき、aの長さを有している。すなわち、ドレイン電極23の広がり部分23aは、横方向に関して、Csバスライン13の広がり部分よりもaだけ内側に形成されている。したがって、g=f+2aの等式が成り立つことになる。
Csバスライン13の広がり部分の横方向の一辺と、ドレイン電極23の広がり部分23aの横方向の一辺との間の距離は、片側につき、bの長さを有している。すなわち、ドレイン電極23の広がり部分23aは、縦方向に関して、Csバスライン13の広がり部分よりもbだけ内側に形成されている。したがって、e=d+2aの等式が成り立つことになる。
このような場合において、異なる絵素ピッチをもつ4色の絵素において、「赤=青」>「緑=黄」の場合に、それぞれの絵素間でのa~gの値を下記表9のように調整することで、絵素間でのK値(max-min)のズレは、0.10%とすることができた。なお、ここでの各絵素のピッチ幅の比は、「赤」:「青」:「緑」:「黄」が1:1:1.4:1.4であった。
Figure JPOXMLDOC01-appb-T000009
図58~図61は、画素電極とCsバスラインとの重なり面積でCs容量を調節する際の一例を示す平面模式図である。図58は、画素電極15の上辺がCsバスライン13の一部と重複する形態を示している。図58におけるa及びbの値を調整することで、Ccsの値を調整することができる。図59は、画素電極15の中央をCsバスライン13が横切る形態であり、Csバスライン13の幅方向の全体と重複する形態を示している図59におけるc及びdの値を調整することで、Ccsの値を調整することができる。図60は、画素電極15の上辺がCsバスライン13と重畳し、かつ画素電極15の左辺に沿って延伸部が追加された形態を示している。図60におけるa~dの値を調整することで、Ccsの値を調整することができる。図61は、画素電極15の上辺がCsバスライン13と重畳し、かつ画素電極15の中央を縦断するように延伸部が追加された形態を示している。図61におけるe~fの値を調整することで、Ccsの値を調整することができる。
このような調節を副画素間で行うことにより副画素間でのCcsの値が近づくことになり、適切な範囲内でのK値を得ることができる。
図62は、マルチ駆動を行った場合の、Cs振幅を示す波形図である。図62中のΔVcsは、ΔVcs=K×Vcsp-pで表される値であり、ΔVcsによる引き込みの大きさは、副画素間で均一であることが好ましく、具体的には、10mV以内となることが好ましい。これにより、副画素間の最適対向電圧を近づけることができる。Vcsp-pは実質的に固定値となるため、ΔVcsはKで調節することが好ましい。
下記表10は、ΔVcsは10mV以内と仮定したときのKの値のズレの許容範囲を示す表である。絵素の面積を異ならせない場合の通常の液晶表示装置では、K値は、0.43~0.54の範囲内に設定されているため、この範囲を目安として検討を行った。
Figure JPOXMLDOC01-appb-T000010
上記表10に示すように、Kを0.54とし、Kのズレを0.74%で設定したとき、ΔVcsのズレは7.7mVに抑えることができた。また、Kを0.43とし、Kのズレを0.93%で設定したとき、ΔVcsのズレは9.6mVに抑えることができた。したがって、Kの範囲の目安としては、1.0%以下である。
実施形態3
実施形態3においては、赤、緑及び青の3色、又は、赤、緑、青及び黄の4色の絵素を用いており、これらの絵素の組み合わせが一つの画素を構成している。なお、実施形態3において、絵素の色の種類、数及び配置順は特に限定されない。
図63は、実施形態3における画素電極及び配線の配置構成を示す平面模式図である。実施形態3の液晶表示装置では、一つの画素内に配置された複数の画素電極のうち、ある一つの画素電極に対しては、縦方向に延伸された2本のソースバスラインのいずれもが画素電極の端部と重なっている。一方、図63に示すように、他の画素電極15に対しては、縦方向に延伸された2本のソースバスライン12のうち、一方のソースバスライン12のみが画素電極15の端部と重なり、他方のソースバスライン12は、画素電極15の端部と重畳していない。
例えば、絵素内に柱状スペーサを配置する、又は、ソースドレイン容量Csdを小さくするといったような場合に、画素電極の面積を減らして、画素電極の一方の端部にのみソース配線と重ねる必要があるときには、このような形態が採用される。ある一つの絵素においてのみ画素電極の面積が減らされている場合、又は、ソース配線と画素電極との重なり具合が絵素ごとに異なっている場合、絵素間で最適対向電圧が異なることになるので、焼きつきが起こりやすくなる。
そこで、実施形態3においては、実施形態1及び実施形態2で示した手段と同様の手段により、絵素間又は副画素間の画素容量の調節を行っている。なお、実施形態3において、絵素のピッチ幅は特に限定されず、ピッチ幅が絵素間でそれぞれ異なっていても同じであってもよい。
実施形態4
実施形態4においては、赤、緑及び青の3色、又は、赤、緑、青及び黄の4色の絵素を用いており、これらの絵素の組み合わせが一つの画素を構成している。なお、実施形態4において、絵素の色の種類、数及び配置順は特に限定されない。
図64は、実施形態4における画素電極及び配線の配置構成を示す平面模式図である。実施形態4の液晶表示装置では、一つの画素内に配置された複数の画素電極のうち、ある一つの画素電極に対しては、縦方向に延伸された2本のソース配線のいずれもが画素電極の端部と重なっている。一方、図64に示すように、他の画素電極15に対しては、縦方向に延伸された2本のソースバスライン12のうち、一方のソースバスライン12が、画素電極15の端部と重なり、他方のソースバスライン12が、画素電極15の端部と重畳していない。また、重畳していない側のソースバスライン12の隣には、Csバスライン13が縦方向に延伸されており、このCsバスライン13が画素電極15の他方の端部と重なっている。
例えば、絵素内に柱状スペーサを配置する、又は、ソースドレイン容量Csdを小さくするといったような場合に、画素電極の面積を減らして、画素電極の一方の端部にのみソース配線を重ね、画素電極の他方の端部にソース配線ではなくCs配線のみを重ねる必要があるときには、このような形態が採用される。ある一つの絵素においてのみ画素電極の面積が減らされている場合、又は、ソース配線及びCs配線の配置の画素電極との重なり具合が絵素ごとに異なっている場合、絵素間で最適対向電圧が異なることになるので、焼きつきが起こりやすくなる。
そこで、実施形態4においては、実施形態1及び実施形態2で示した手段と同様の手段により、絵素間又は副画素間の画素容量の調節を行っている。なお、実施形態4において、絵素のピッチ幅は特に限定されず、ピッチ幅が絵素間でそれぞれ異なっていても同じであってもよい。
実施形態5
実施形態5においては、赤、緑及び青の3色、又は、赤、緑、青及び黄の4色の絵素を用いており、これらの絵素の組み合わせが一つの画素を構成している。なお、実施形態5において、絵素の色の種類、数及び配置順は特に限定されない。
図65は、実施形態5における画素電極及び配線の配置構成を示す平面模式図である。実施形態5の液晶表示装置では、一つの画素内に配置された複数の画素電極のうち、ある一つの画素電極に対しては、画素電極の上端部にCs配線が重なるように横方向に延伸されており、かつCs配線は、直線状ではなく、一部に広がり領域を有している。一方、図65に示すように、他の画素電極15に対しては、画素電極15の上端部にCsバスライン13が重なるように横方向に延伸されており、かつCsバスライン13は、直線状ではなく、一部に広がり領域を有しているが、画素電極15の上辺が直線状でなく、内側に窪んだ形状を有している。そのため、画素電極15とCsバスライン13との重なり面積が絵素間で異なっており、かつ画素電極15の面積も絵素ごとに異なっている。
例えば、絵素内に柱状スペーサを配置する、又は、補助容量Ccsを小さくするといったような場合に、画素電極の面積を減らして、画素電極及びCs配線の配置構成を絵素ごとに異ならせる、又は、画素電極の面積が絵素ごとを異ならせる場合、絵素間で最適対向電圧が異なることになるので、焼きつきが起こりやすくなる。
そこで、実施形態5においては、実施形態1及び実施形態2で示した手段と同様の手段により、絵素間又は副画素間の画素容量の調節を行っている。なお、実施形態5において、絵素のピッチ幅は特に限定されず、ピッチ幅が絵素間でそれぞれ異なっていても同じであってもよい。
実施形態6
図66及び図67は、実施形態6における液晶層の断面模式図である。実施形態6においては、赤、緑及び青の3色、又は、赤、緑、青及び黄の4色の絵素を用いており、これらの絵素の組み合わせが一つの画素を構成している。図66は、実施形態6において3色の絵素を用いた形態を示す断面模式図であり、図67は、実施形態6において4色の絵素を用いた形態を示す断面模式図である。
図66及び図67に示すように、実施形態6の液晶表示装置が有する液晶層1は、アクティブマトリクス基板2及びカラーフィルタ基板3からなる一対の基板の間に配置されている。アクティブマトリクス基板2は画素電極41を有しており、カラーフィルタ基板3は対向電極42を有している。また、カラーフィルタ基板3は、複数色のカラーフィルタ31を有しており、3色又は4色で一つの画素を構成している。図66においては、赤31R、緑31G、及び、青31Bの3色のカラーフィルタが用いられた形態を示しており、図67においては、赤31R、緑31G、青31B、及び、黄31Yの4色のカラーフィルタが用いられた形態を示している。
実施形態6において青の絵素にあたる液晶層1の厚み(セルギャップ)は、他の絵素にあたる液晶層1の厚み(セルギャップ)よりも薄く形成されている。これにより、液晶層1の厚みが全ての絵素で共通の場合と比べ、より高い視野角特性を得ることができる。
実施形態6において、一対の基板が有する電極41、42によって液晶層1内に印加される電圧は、絵素によって異なる。これは、実施形態6において、青の絵素における液晶層1の厚みが、他の絵素における液晶層1の厚みよりも薄く設定されているためであり、青の絵素において形成される液晶容量は、他の絵素に比べて大きくなる。そのため、マルチギャップ構造を設けた場合、絵素間で最適対向電圧が異なることになる。
実施形態6においては、TFTのチャネル幅を用いて絵素間での最適対向電圧の調節を行うとともに、セルギャップを絵素間で調節することで、更なる最適対向電圧の調節がなされている。これにより、Cgdグラデーションをかける前において、更に絵素間でαのバラツキを抑制することができる。
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
なお、本願は、2010年2月26日に出願された日本国特許出願2010-043425号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1:液晶層
2:アクティブマトリクス基板
3:カラーフィルタ基板
11:ゲートバスライン(走査線)
12:ソースバスライン(信号線)
13:Csバスライン(補助容量配線)
13a:第一のCsバスライン
13b:第二のCsバスライン
14:TFT(薄膜トランジスタ)
14a:第一のTFT
14b:第二のTFT
15:画素電極
15a:第一の副画素電極
15b:第二の副画素電極
21:チャネル領域
22:ソース電極
23:ドレイン電極
23a:ドレイン電極の広がり部
24:コンタクトホール
25:ゲート電極
26:変動するゲート電極
31:カラーフィルタ
31R:カラーフィルタ(赤)
31G:カラーフィルタ(緑)
31B:カラーフィルタ(青)
31Y:カラーフィルタ(黄)
41:画素電極
42:対向電極
101、103、113、121、123:面内対向分布
102、112、122:Cgdグラデーション
131:Step(n)の画素
132:Step(n+1)の画素
133:モザイク領域

Claims (9)

  1. 一対の基板と、該一対の基板間に挟持された液晶層とを有し、かつ複数色の絵素によって一つの画素が構成される液晶表示装置であって、
    該一対の基板の一方は、走査線と、信号線と、補助容量配線と、該走査線及び該信号線のそれぞれと接続された薄膜トランジスタと、該薄膜トランジスタと接続された画素電極とを備え、
    該一対の基板の他方は、対向電極を備え、
    該画素電極は、一つの絵素に対応してそれぞれ配置され、
    該走査線と該画素電極とは、ゲートドレイン容量を形成し、
    該一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極が形成するゲートドレイン容量が、より小さな画素容量をもつ画素電極が形成するゲートドレイン容量よりも大きいものであり、
    該画素電極の走査線との重なり面積は、単色の絵素に対応して配置される画素電極毎に、走査線の信号の進行方向に従って始めは増加し、かつその増加率が減少するように形成されたものであり、
    該増加率は、画素容量の異なる画素電極毎に異なる
    ことを特徴とする液晶表示装置。
  2. 前記一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極は、該一つの画素内に配置された複数の画素電極のうち、より大きなチャネル幅を有する薄膜トランジスタと接続されている
    ことを特徴とする請求項1に記載の液晶表示装置。
  3. 前記一つの画素内に配置された複数の画素電極のうち、より大きな画素容量をもつ画素電極は、該一つの画素内に配置された複数の画素電極のうち、より画素電極の走査線との重なり面積が大きいことを特徴とする請求項1又は2に記載の液晶表示装置。
  4. 前記より大きな画素容量をもつ画素電極の面積は、前記より小さな画素容量をもつ画素電極の面積と異なっていることを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記より大きな画素容量をもつ画素電極と重なっている液晶層の厚みは、前記より小さな画素容量をもつ画素電極と重なっている液晶層の厚みと異なっていることを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記信号線と前記画素電極とは、ソースドレイン容量を形成し、
    前記補助容量配線と前記画素電極とは、補助容量を形成し、
    前記画素電極と前記対向電極とは、液晶容量を形成し、
    該ゲートドレイン容量、該ソースドレイン容量、該補助容量、及び、該液晶容量の総和に対する、該ゲートドレイン容量の比は、前記複数色の絵素間で異なっており、
    前記複数色の絵素に対してそれぞれ得られるゲートドレイン容量の比のうち、最も大きなゲートドレイン容量の比と、最も小さなゲートドレイン容量の比との差は、最も小さなゲートドレイン容量の比に対して10%以下である
    ことを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
  7. 前記信号線と前記画素電極とは、ソースドレイン容量を形成し、
    前記補助容量配線と前記画素電極とは、補助容量を形成し、
    前記画素電極と前記対向電極とは、液晶容量を形成し、
    前記一つの絵素内における、前記ゲートドレイン容量、前記ソースドレイン容量、前記補助容量、及び、前記液晶容量の総和の最大値に対する、前記ゲートドレイン容量、前記ソースドレイン容量、前記補助容量、及び、前記液晶容量の総和の最小値で算出される応答係数の値は、前記複数色の絵素間で異なっており、
    該複数色の絵素に対してそれぞれ得られる応答係数のうち、最も大きな応答係数と、最も小さな応答係数との差は、最も小さな応答係数に対して5%以下である
    ことを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
  8. 前記画素電極は、一つの絵素内で複数に分割されたものであり、
    前記薄膜トランジスタは、該画素電極のそれぞれと接続され、
    前記補助容量配線は、該画素電極のそれぞれと重畳し、かつ電圧の極性が一定時間ごとに反転する
    ことを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記信号線と前記画素電極とは、ソースドレイン容量を形成し、
    前記補助容量配線と前記画素電極とは、補助容量を形成し、
    前記画素電極と前記対向電極とは、液晶容量を形成し、
    前記ゲートドレイン容量、前記ソースドレイン容量、前記補助容量、及び、前記液晶容量の総和に対する、前記補助容量の比は、前記複数色の絵素間で異なっており、
    該複数色の絵素に対してそれぞれ得られる補助容量の比のうち、最も大きな補助容量の比と、最も小さな補助容量の比との差は、最も小さな補助容量の比に対して1.0%以下である
    ことを特徴とする請求項8に記載の液晶表示装置。
PCT/JP2010/069745 2010-02-26 2010-11-05 液晶表示装置 WO2011104942A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127021278A KR101369587B1 (ko) 2010-02-26 2010-11-05 액정 표시 장치
BR112012019594A BR112012019594A2 (pt) 2010-02-26 2010-11-05 dispositivo com visor de cristal líquido
US13/579,946 US8749727B2 (en) 2010-02-26 2010-11-05 Liquid crystal display device
CN201080064494.XA CN102770802B (zh) 2010-02-26 2010-11-05 液晶显示装置
EP10846605.3A EP2541314B1 (en) 2010-02-26 2010-11-05 Liquid crystal display device
JP2012501631A JP5342064B2 (ja) 2010-02-26 2010-11-05 液晶表示装置
RU2012141055/28A RU2512680C1 (ru) 2010-02-26 2010-11-05 Жидкокристаллическое устройство отображения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-043425 2010-02-26
JP2010043425 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011104942A1 true WO2011104942A1 (ja) 2011-09-01

Family

ID=44506379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069745 WO2011104942A1 (ja) 2010-02-26 2010-11-05 液晶表示装置

Country Status (8)

Country Link
US (1) US8749727B2 (ja)
EP (1) EP2541314B1 (ja)
JP (1) JP5342064B2 (ja)
KR (1) KR101369587B1 (ja)
CN (1) CN102770802B (ja)
BR (1) BR112012019594A2 (ja)
RU (1) RU2512680C1 (ja)
WO (1) WO2011104942A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151760A (ja) * 2015-02-19 2016-08-22 株式会社ジャパンディスプレイ 表示装置
JP2017167403A (ja) * 2016-03-17 2017-09-21 株式会社ジャパンディスプレイ 表示装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2541314B1 (en) * 2010-02-26 2015-03-11 Sharp Kabushiki Kaisha Liquid crystal display device
JP2015018066A (ja) * 2013-07-10 2015-01-29 株式会社ジャパンディスプレイ 表示装置
KR102128969B1 (ko) 2014-02-17 2020-07-02 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR102166107B1 (ko) * 2014-05-13 2020-10-16 엘지디스플레이 주식회사 프린지 필드형 액정표시장치
US20160055781A1 (en) 2014-08-21 2016-02-25 Vp Assets Limited Image device with imrpoved chrominance quality
US9613588B2 (en) 2014-08-21 2017-04-04 Vp Assets Limited Image device with improved chrominance quality
US9552757B2 (en) 2014-08-21 2017-01-24 Vp Assets Limited Image device with improved chrominance quality
CN104361862A (zh) * 2014-11-28 2015-02-18 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示面板、显示装置
TWI665800B (zh) * 2015-06-16 2019-07-11 友達光電股份有限公司 發光二極體顯示器及其製造方法
US9947257B2 (en) * 2015-07-24 2018-04-17 Sharp Kabushiki Kaisha Pixel layout and display with varying area and/or luminance capability of same type sub-pixels in different composite pixels
WO2021016946A1 (zh) * 2019-07-31 2021-02-04 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板、显示装置
CN106019747A (zh) 2016-07-26 2016-10-12 京东方科技集团股份有限公司 一种阵列基板、其驱动方法及显示面板
CN106125408A (zh) 2016-08-31 2016-11-16 京东方科技集团股份有限公司 阵列基板、显示装置和显示装置的驱动方法
KR102533621B1 (ko) * 2016-09-06 2023-05-18 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN106292110A (zh) * 2016-09-23 2017-01-04 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示装置
CN106990634B (zh) * 2017-05-20 2020-09-04 武汉华星光电技术有限公司 显示像素结构、阵列基板及显示装置
CN107422557A (zh) * 2017-08-11 2017-12-01 武汉华星光电技术有限公司 一种rgbw液晶面板
JP7057134B2 (ja) * 2018-01-10 2022-04-19 キヤノン株式会社 表示装置及び撮像装置
CN108681167B (zh) 2018-06-22 2021-09-03 厦门天马微电子有限公司 显示面板及显示装置
US10877343B2 (en) * 2018-11-21 2020-12-29 Sharp Kabushiki Kaisha Array substrate and display device
CN109377965B (zh) * 2018-12-21 2021-06-25 信利半导体有限公司 异形像素驱动单元、像素驱动阵列及显示设备
CN109521616A (zh) * 2018-12-28 2019-03-26 上海中航光电子有限公司 显示面板和显示装置
JP2021189465A (ja) * 2020-05-25 2021-12-13 株式会社ジャパンディスプレイ 液晶表示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611733A (ja) 1992-03-11 1994-01-21 Honeywell Inc マルチギャップカラー液晶表示装置
JP2000147539A (ja) * 1998-11-17 2000-05-26 Hitachi Ltd 液晶表示装置の製造方法
JP2001296523A (ja) 2000-04-17 2001-10-26 Sony Corp 反射型液晶ディスプレイ
JP2002303882A (ja) * 2001-04-05 2002-10-18 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004062146A (ja) 2002-06-06 2004-02-26 Sharp Corp 液晶表示装置
WO2006006376A1 (ja) 2004-07-14 2006-01-19 Sharp Kabushiki Kaisha アクティブマトリクス基板およびその駆動回路
JP2007025697A (ja) 2005-07-19 2007-02-01 Samsung Electronics Co Ltd ディスプレイ装置
WO2008081624A1 (ja) 2006-12-28 2008-07-10 Sharp Kabushiki Kaisha 液晶表示装置
JP2010043425A (ja) 2008-08-11 2010-02-25 Sumitomo (Shi) Construction Machinery Co Ltd 舗装機械のスクリード装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512849B2 (ja) * 1993-04-23 2004-03-31 株式会社東芝 薄膜トランジスタおよびそれを用いた表示装置
KR100218584B1 (ko) * 1994-09-21 1999-09-01 모리시타 요이찌 액정표시장치 및 그구동방법
JP3821701B2 (ja) * 2001-12-12 2006-09-13 シャープ株式会社 液晶表示装置
KR20090131596A (ko) * 2008-06-18 2009-12-29 엘지디스플레이 주식회사 액정표시장치
MY155206A (en) * 2010-01-29 2015-09-30 Sharp Kk Liquid crystal display device
MX2012008150A (es) * 2010-01-29 2012-08-03 Sharp Kk Dispositivo de presentacion visual de cristal liquido.
EP2541314B1 (en) * 2010-02-26 2015-03-11 Sharp Kabushiki Kaisha Liquid crystal display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611733A (ja) 1992-03-11 1994-01-21 Honeywell Inc マルチギャップカラー液晶表示装置
JP2000147539A (ja) * 1998-11-17 2000-05-26 Hitachi Ltd 液晶表示装置の製造方法
JP2001296523A (ja) 2000-04-17 2001-10-26 Sony Corp 反射型液晶ディスプレイ
JP2002303882A (ja) * 2001-04-05 2002-10-18 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004062146A (ja) 2002-06-06 2004-02-26 Sharp Corp 液晶表示装置
WO2006006376A1 (ja) 2004-07-14 2006-01-19 Sharp Kabushiki Kaisha アクティブマトリクス基板およびその駆動回路
JP2007025697A (ja) 2005-07-19 2007-02-01 Samsung Electronics Co Ltd ディスプレイ装置
WO2008081624A1 (ja) 2006-12-28 2008-07-10 Sharp Kabushiki Kaisha 液晶表示装置
JP2010043425A (ja) 2008-08-11 2010-02-25 Sumitomo (Shi) Construction Machinery Co Ltd 舗装機械のスクリード装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541314A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151760A (ja) * 2015-02-19 2016-08-22 株式会社ジャパンディスプレイ 表示装置
JP2017167403A (ja) * 2016-03-17 2017-09-21 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
US8749727B2 (en) 2014-06-10
EP2541314A4 (en) 2013-08-21
JP5342064B2 (ja) 2013-11-13
RU2012141055A (ru) 2014-04-10
BR112012019594A2 (pt) 2016-05-03
EP2541314B1 (en) 2015-03-11
EP2541314A1 (en) 2013-01-02
CN102770802B (zh) 2015-01-28
RU2512680C1 (ru) 2014-04-10
US20120320297A1 (en) 2012-12-20
KR101369587B1 (ko) 2014-03-04
KR20120116484A (ko) 2012-10-22
JPWO2011104942A1 (ja) 2013-06-17
CN102770802A (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5342064B2 (ja) 液晶表示装置
WO2011092913A1 (ja) 液晶表示装置
JP5480970B2 (ja) 表示パネル及び表示装置
JP5148494B2 (ja) 液晶表示装置
JP4932823B2 (ja) アクティブマトリクス基板、表示装置及びテレビジョン受像機
US8373633B2 (en) Multi-domain vertical alignment liquid crystal display with charge sharing
WO2011092914A1 (ja) 液晶表示装置
RU2510066C1 (ru) Жидкокристаллическое устройство отображения
WO2011036975A1 (ja) 液晶表示装置
US20130222747A1 (en) Display panel
JP5173038B2 (ja) 液晶表示装置
USRE47907E1 (en) Liquid crystal display
KR20160074804A (ko) 백색 화소를 포함하는 액정 표시 장치
JP4592384B2 (ja) 液晶表示装置
WO2012093630A1 (ja) 液晶表示装置
WO2011155300A1 (ja) 表示パネル、および、液晶表示装置
WO2008053609A1 (fr) Écran à cristaux liquides et procédé de commande associé

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064494.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501631

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127021278

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13579946

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010846605

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8140/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012141055

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019594

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019594

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120806