WO2011104827A1 - 空気調和システム及び空気調和システムの制御方法 - Google Patents

空気調和システム及び空気調和システムの制御方法 Download PDF

Info

Publication number
WO2011104827A1
WO2011104827A1 PCT/JP2010/052811 JP2010052811W WO2011104827A1 WO 2011104827 A1 WO2011104827 A1 WO 2011104827A1 JP 2010052811 W JP2010052811 W JP 2010052811W WO 2011104827 A1 WO2011104827 A1 WO 2011104827A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor
difference
target
conditioning system
Prior art date
Application number
PCT/JP2010/052811
Other languages
English (en)
French (fr)
Inventor
加藤 央平
岡崎 多佳志
野本 宗
耕司 松澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012501566A priority Critical patent/JP5312674B2/ja
Priority to CN201080064696.4A priority patent/CN102770718B/zh
Priority to US13/521,520 priority patent/US9797614B2/en
Priority to EP10801095.0A priority patent/EP2466220B1/en
Priority to PCT/JP2010/052811 priority patent/WO2011104827A1/ja
Publication of WO2011104827A1 publication Critical patent/WO2011104827A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to an air conditioning system in which a heat source device and an indoor heat exchanger are connected by a fluid circuit through which a fluid such as water flows.
  • the present invention relates to a control technique for controlling the temperature of a fluid based on a predetermined index in the air conditioning system.
  • this air conditioning system in which warm water or cold water is generated by a heat source device such as a heat pump device, and the generated hot water or cold water is sent to an indoor heat exchanger to heat or cool the room.
  • this air conditioning system has an air conditioning load such that, for example, warm water of 35 ° C. is supplied to an indoor heat exchanger during heating, and cold water of 16 ° C. is supplied to an indoor heat exchanger during cooling.
  • the water temperature is kept constant.
  • the heat source device is stopped when the room temperature reaches the set value, or the water supply to the indoor heat exchanger is stopped by controlling the three-way valve, etc. Control is performed. Therefore, the heating operation and the cooling operation are intermittently performed, and the user's comfort is impaired, and the operation efficiency is lowered.
  • an air conditioning system having a function of setting a target temperature of water supplied by a heat source device according to an expected outside air temperature when an installer installs an air conditioning system.
  • This air conditioning system is effective when the set target temperature is suitable for the air conditioning load.
  • the target temperature may be low with respect to the air conditioning load, or the target water temperature may be high with respect to the air conditioning load. In this case, driving with insufficient capability or driving with excessive capability is performed, so that the user's comfort is impaired and driving efficiency is lowered.
  • Patent Document 1 also describes a control method for resetting the target temperature of water supplied by the heat source device based on the deviation between the target indoor temperature set by the user and the current indoor temperature. In Patent Document 1, this control method is intended to achieve high driving efficiency without impairing comfort.
  • the target temperature of water when the target temperature of water is set only by the difference between the set temperature and the room temperature as in the control method described in Patent Document 1, the target temperature may not be set appropriately. In other words, a higher temperature than the appropriate target temperature may be set as the target temperature, or a lower temperature may be set as the target temperature. For this reason, the room temperature becomes too high with respect to the set temperature, or the room temperature becomes too low with respect to the set temperature, so that the user's comfort is impaired and the driving efficiency is lowered.
  • An object of this invention is to implement
  • An air conditioning system is, for example, An air conditioning system comprising: a heat source device that heats or cools a fluid; and an indoor heat exchanger that performs heat exchange between the fluid heated or cooled by the heat source device and room air; An indoor temperature measuring unit for measuring an indoor temperature that is the temperature of the indoor air; An outside temperature measuring unit for measuring outside temperature, The target of the fluid supplied from the heat source device to the indoor heat exchanger increases as the indoor / outdoor temperature difference that is the difference between the indoor temperature measured by the indoor temperature measuring unit and the outdoor air temperature measured by the outdoor air temperature measuring unit increases.
  • a target temperature determining unit that determines the target temperature so that the rate of change in temperature is small; And a control unit that controls the heat source device according to the target temperature determined by the target temperature determination unit.
  • the air conditioning system determines the target temperature so that the target temperature of the fluid decreases as the indoor / outdoor temperature difference increases. Thereby, the target water temperature is appropriately set, and high operating efficiency can be realized without impairing comfort.
  • FIG. 1 is a configuration diagram of an air conditioning system 1.
  • FIG. Explanatory drawing of Formula conversion to Formula 6 of the target outflow temperature Twom at the time of heating operation.
  • the flowchart which shows the flow of a process of the air conditioning system.
  • FIG. FIG. 1 is a configuration diagram of an air conditioning system 1.
  • the air conditioning system 1 includes an outdoor unit 2 that is a heat source device including a refrigerant circuit 4 and an indoor unit 3 including an indoor heat exchanger 12.
  • the outdoor unit 2 is installed outdoors, and the indoor unit 3 is installed indoors.
  • the outdoor unit 2 and the indoor unit 3 are connected by a water circuit 10.
  • the water circuit 10 is a circuit in which water is circulated by the water pump 11.
  • the refrigerant circuit 4 is a circuit in which a compressor 5, a four-way valve 6, an outdoor heat exchanger 7, an expansion mechanism 8, and an intermediate heat exchanger 9 are sequentially connected by a pipe and formed in an annular shape so that the refrigerant circulates. It is.
  • the water circuit 10 is connected to an intermediate heat exchanger 9 connected to the refrigerant circuit 4. Therefore, the refrigerant circulating in the refrigerant circuit 4 and the water circulating in the water circuit 10 are heat-exchanged by the intermediate heat exchanger 9.
  • the compressor 5 is, for example, a hermetic compressor.
  • the compressor 5 can change a rotational speed with an inverter. By changing the rotational speed, the compressor 5 adjusts the flow rate of the refrigerant circulating in the refrigerant circuit 4 and changes the heat exchange amount in the intermediate heat exchanger 9. By changing the amount of heat exchange in the intermediate heat exchanger 9, the temperature of the water flowing out of the outdoor unit 2 changes.
  • the four-way valve 6 is a switching device that switches the flow direction of the refrigerant circulating in the refrigerant circuit 4.
  • the air conditioning system 1 does not need to switch the refrigerant flow, for example, for cooling only, it is not necessary to switch the refrigerant flow direction. Therefore, in this case, the four-way valve 6 is not necessary.
  • the outdoor heat exchanger 7 is, for example, a fin-and-tube heat exchanger that uses air (outside air) as a heat source. Heat is exchanged between the refrigerant circulating in the refrigerant circuit 4 and the outside air by the outdoor heat exchanger 7. In the case where the outdoor heat exchanger 7 is a fin-and-tube heat exchanger, heat exchange in the outdoor heat exchanger 7 can be promoted by providing the outdoor unit 2 with an outdoor fan.
  • the outdoor heat exchanger 7 may be a heat exchanger that is buried in the ground and uses geothermal heat as a heat source. Geothermal heat is a stable heat source throughout the year.
  • the outdoor heat exchanger 7 may be a plate heat exchanger. In this case, water, antifreeze or the like is used as a heat source.
  • the expansion mechanism 8 is a mechanism whose opening degree is variable, for example.
  • the expansion mechanism 8 is adjusted so that the degree of supercooling at the outlet of the condenser or the degree of superheat at the outlet of the evaporator is as small as possible so that the outdoor heat exchanger 7 and the intermediate heat exchanger 9 can be used effectively.
  • the flow rate of the refrigerant is adjusted.
  • the expansion mechanism 8 may be configured by arranging a plurality of throttle devices having a fixed opening, such as a capillary, in parallel.
  • the intermediate heat exchanger 9 is, for example, a plate heat exchanger. As described above, the refrigerant circulating in the refrigerant circuit 4 and the water circulating in the water circuit 10 are heat-exchanged by the intermediate heat exchanger 9. Thereby, the intermediate heat exchanger 9 heats the water circulating in the water circuit 10 to generate hot water, or cools the water circulating in the water circuit 10 to generate cold water. Then, the intermediate heat exchanger 9 supplies the generated hot water or cold water to the water circuit 10. Further, as the intermediate heat exchanger 9, a double pipe type or a full liquid type heat exchanger may be used.
  • the water pump 11 supplies water to the outdoor unit 2 and the indoor unit 3 by circulating water.
  • the water pump 11 is a pump whose rotation speed can be changed by an inverter or the like. By changing the rotation speed, the flow rate of the water circulating in the water circuit 10 can be changed.
  • the water pump 11 may be configured by combining a pump having a constant rotation speed and a capacity control valve whose opening degree can be changed. In this case, the flow rate of the water circulating through the water circuit 10 can be changed by adjusting the opening of the capacity control valve.
  • the water pump 11 may be a pump having a constant rotation speed.
  • the indoor heat exchanger 12 is, for example, a radiator.
  • the indoor heat exchanger 12 performs heat exchange between the water circulating in the water circuit 10 and the room air, and heats or cools the room air.
  • the indoor heat exchanger 12 is not limited to a radiator, and may be a fan coil unit, a floor heating panel, or the like.
  • the outdoor unit 2 includes an outdoor temperature detector 21 (outside air temperature detector), an inlet water temperature detector 22 (front temperature detector), and an outlet water temperature detector 23 (rear temperature detector).
  • the outdoor temperature detector 21 detects an outdoor temperature that is an outdoor temperature.
  • the inlet water temperature detector 22 detects the temperature of water flowing through the water circuit 10 and flowing into the outdoor unit 2. That is, the inlet water temperature detector 22 detects the temperature of the water flowing into the intermediate heat exchanger 9.
  • the outlet water temperature detector 23 detects the temperature of water flowing through the water circuit 10 and flowing out of the outdoor unit 2. That is, the outlet water temperature detector 23 detects the temperature of the water flowing out from the intermediate heat exchanger 9.
  • the indoor unit 3 includes an indoor temperature detector 24 (indoor temperature detection unit).
  • the room temperature detector 24 detects the room temperature.
  • the air conditioning system 1 includes a set temperature determination device 31 (target temperature determination unit) and a control device 32 (control unit).
  • the set temperature determination device 31 determines a target temperature of water flowing out of the outdoor unit 2 based on the temperatures detected by the outdoor temperature detector 21, the inlet water temperature detector 22, the outlet water temperature detector 23, and the indoor temperature detector 24. .
  • the control device 32 issues a command to the compressor 5 in accordance with the target temperature determined by the set temperature determining device 31, controls the rotational speed of the compressor 5, and the temperature of water flowing out of the outdoor unit 2 is the target temperature. To be.
  • the control device 32 controls the expansion mechanism 8 to adjust the flow rate of the refrigerant circulating in the refrigerant circuit 4.
  • control device 32 controls the water pump 11 to adjust the flow rate of water circulating in the water circuit 10.
  • the set temperature determining device 31 and the control device 32 are computers such as a microcomputer. In FIG. 1, the set temperature determining device 31 and the control device 32 are illustrated as separate computers, but the set temperature determining device 31 and the control device 32 may be realized by a single computer.
  • the set temperature determining device 31 determines a target outflow temperature that is a target temperature of water flowing out of the outdoor unit 2.
  • the set temperature determination device 31 is based on the relationship between the heat balance between the heat exchange amount Qw of the intermediate heat exchanger 9, which is the capacity of the outdoor unit 2, and the indoor load represented by the heat exchange amount Qio between the indoor air and the outside air.
  • the target outflow temperature for bringing the room temperature to the set temperature set by the user of the air conditioning system 1 is determined.
  • the current indoor load that is, the heat exchange amount Qio between the indoor air and the outside air is expressed by Equation 2 from the heat exchange performance AKio of the building, the indoor temperature Tai that is the temperature of the indoor air, and the outdoor temperature Tao that is the outdoor temperature.
  • the building heat exchange performance AKio is the product of the heat exchange area A between room air and outside air and the heat transfer rate Kio representing the heat transfer performance between room air and outside air.
  • C1 can be expressed as follows from Equation 3.
  • C1 (Two-Twi) / (Tai-Tao)
  • C1 can be expressed as follows from Equation 4.
  • C1 (Twom-Twi) / (Taim-Tao) Therefore, the following equation is obtained from these two equations.
  • (Two-Twi) / (Tai-Tao) (Two-Twi) / (Taim-Tao)
  • Equation 6 By transforming Equation 5 as shown in FIG. 2, Equation 6 can be obtained.
  • ⁇ Formula 6> Two Two + ((Two-Twi) / (Tai-Tao)) ⁇ (Taim-Tai)
  • Expression 3 ′ corresponding to Expression 3 and Expression 4 ′ corresponding to Expression 4 are as follows.
  • ⁇ Formula 3 '> (Twi-Two) C1 ⁇ (Tao-Tai)
  • ⁇ Formula 4 '> (Twi-Twom) C1 ⁇ (Tao-Taim)
  • Equation 5 ′ corresponding to Equation 5 is as follows.
  • ⁇ Formula 5 '> (Twi-Twom) / (Twi-Two) (Tao-Taim) / (Tao-Tai)
  • Expression 6 ′ corresponding to Expression 6 can be obtained.
  • ⁇ Formula 6 '> Two Two + ((Two ⁇ Twi) / (Tao ⁇ Tai)) ⁇ (Tai ⁇ Taim)
  • Equation 6 Two in Equation 6 representing the target outflow temperature Twom during the heating operation is the current outflow temperature.
  • (Tai ⁇ Tao) in Equation 6 represents an indoor / outdoor temperature difference which is a difference between the indoor temperature Tai and the outdoor temperature Tao.
  • (Two ⁇ Twi) in Equation 6 represents an inlet / outlet temperature difference (front / rear temperature difference) that is a difference between the outflow temperature Two and the inflow temperature Twi.
  • (Taim ⁇ Tai) in Equation 6 represents a set temperature difference which is a difference between the target indoor temperature Taim (set temperature) and the indoor temperature Tai (current indoor temperature).
  • Two in Equation 6 ′ representing the target outflow temperature Twom during the cooling operation is the current outflow temperature.
  • (Tao ⁇ Tai) in Expression 6 represents an indoor / outdoor temperature difference which is a difference between the outdoor temperature Tao and the indoor temperature Tai.
  • (Two ⁇ Twi) in Equation 6 represents an inlet / outlet temperature difference (front / rear temperature difference) that is a difference between the outflow temperature Two and the inflow temperature Twi.
  • (Tai ⁇ Taim) in Expression 6 represents a set temperature difference that is a difference between the target indoor temperature Taim (set temperature) and the indoor temperature Tai (current indoor temperature). Therefore, both Expression 6 and Expression 6 ′ can be expressed as Expression 7.
  • ⁇ Formula 7> Target outflow temperature current outflow temperature + ((inlet / outlet temperature difference / indoor / outdoor temperature difference) x set temperature difference)
  • the set temperature determination device 31 calculates a target outflow temperature (target temperature) based on Expression 7. As can be seen from Equation 7, the set temperature determination device 31 determines the target outflow temperature in inverse proportion to the indoor / outdoor temperature difference. That is, the set temperature determining device 31 sets the target outflow temperature so that the change rate of the target outflow temperature decreases as the indoor / outdoor temperature difference increases, and the change rate of the target outflow temperature increases as the indoor / outdoor temperature difference decreases. To decide. Further, as can be seen from Equation 7, the set temperature determining device 31 determines the target outflow temperature in proportion to the inlet / outlet temperature difference.
  • the set temperature determination device 31 determines the target outflow temperature so that the rate of change of the target outflow temperature increases as the inlet / outlet temperature difference increases, and the rate of change of the target outflow temperature decreases as the entrance / exit temperature difference decreases. To do. Further, as can be seen from Equation 7, the set temperature determining device 31 determines the target outflow temperature in proportion to the set temperature difference. That is, the set temperature determining device 31 determines the target outflow temperature so that the change rate of the target outflow temperature increases as the set temperature difference increases, and the change rate of the target outflow temperature decreases as the set temperature difference decreases. To do.
  • the set temperature determining device 31 adds the correction value 1 calculated from “(entrance / outlet temperature difference / indoor / outdoor temperature difference) ⁇ set temperature difference” to the current outflow temperature to obtain the target outflow temperature.
  • the set temperature determining device 31 calculates a correction value 1 from “((entrance / outlet temperature difference / indoor / outdoor temperature difference) ⁇ set temperature difference) ⁇ K1” using a relaxation coefficient K1 which is a value smaller than 1. May be.
  • a relaxation coefficient K1 which is a value smaller than 1. May be.
  • FIG. 4 is a flowchart showing a process flow of the air conditioning system 1.
  • the set temperature determination device 31 determines whether the air conditioning system 1 is in a heating operation or a cooling operation when the operation is started. If it is heating operation, Formula 6 memorize
  • the set temperature determining device 31 determines whether the room temperature is equal to the set temperature. If the difference between the room temperature and the set temperature is within a predetermined range, the set temperature determination device 31 determines that the room temperature and the set temperature are equal. When the room temperature is equal to the set temperature, the set temperature determination device 31 does not change the target outflow temperature, and determines again whether the room temperature is equal to the set temperature after a predetermined time has elapsed. On the other hand, when the room temperature and the set temperature are different, the set temperature determining device 31 advances the process to (S3).
  • the set temperature determining device 31 calculates the target outflow temperature based on the equation read in (S1).
  • the control device 32 controls the outdoor unit 2 according to the target outflow temperature calculated in (S3). For example, the control device 32 changes the rotation speed of the compressor 5 according to the target outflow temperature, and changes the heat exchange amount Qw in the intermediate heat exchanger 9.
  • the correction value 1 is normally a positive value.
  • the target outflow temperature is higher than the current outflow temperature.
  • the control device 32 increases the rotational speed of the compressor 5 and increases the heat exchange amount Qw in the intermediate heat exchanger 9. Thereby, the heating to the water in the intermediate heat exchanger 9 is promoted, and the temperature of the water flowing out from the outdoor unit 2 is increased.
  • the control device 32 decreases the rotation speed of the compressor 5 and decreases the heat exchange amount Qw in the intermediate heat exchanger 9. Thereby, the heating to the water in the intermediate heat exchanger 9 is suppressed, and the temperature of the water flowing out from the outdoor unit 2 is lowered.
  • FIG. 5 is an explanatory diagram of the influence of the indoor / outdoor temperature difference in the calculation of the target outflow temperature.
  • the horizontal axis indicates the outside air temperature
  • the vertical axis indicates the capacity of the outdoor unit 2.
  • the room temperature is 18 ° C.
  • the set temperature is 20 ° C.
  • the target outflow temperature is affected when the outside air temperature is 0 ° C. and when it is 10 ° C.
  • the outdoor unit 2 When the outside air temperature is 0 ° C., the outdoor unit 2 needs to have a higher capacity than the outside air temperature of 10 ° C. in order to set the room temperature to 20 ° C., which is the set temperature. Similarly, when the outside air temperature is 0 ° C., the outdoor unit 2 needs to have a higher capability than the outside air temperature of 10 ° C. in order to set the room temperature to the current room temperature of 18 ° C. Regarding the ratio of the capacity of the outdoor unit 2 required to set the indoor temperature to the set temperature of 20 ° C. and the capacity of the outdoor unit 2 required to set the indoor temperature to the current indoor temperature of 18 ° C. The case where the temperature is 0 ° C. and the case where the outside temperature is 10 ° C.
  • FIG. 6 is a diagram showing the relationship between the indoor / outdoor temperature difference and the change rate of the target outflow temperature.
  • the change rate of the target outflow temperature is smaller than when the outside air temperature is 10 ° C.
  • the set temperature difference which is the difference between the set temperature and the room temperature
  • the indoor / outdoor temperature difference is large, the rate of change of the target outflow temperature is small, and if the indoor / outdoor temperature difference is small, the target outflow temperature The rate of change is large.
  • the influence of the inlet / outlet temperature difference in the calculation of the target outflow temperature will be described using a heating operation as an example. Here, it will be described how the target outflow temperature is affected when the inflow temperature is 30 ° C. and when the outflow temperature is 40 ° C. or 35 ° C.
  • the change rate of the target outlet temperature is larger when the inlet / outlet temperature difference is larger than when the inlet / outlet temperature difference is small. That is, even if the set temperature difference, which is the difference between the set temperature and the room temperature, is the same, if the inlet / outlet temperature difference is large, the rate of change of the target outlet temperature is large, and if the inlet / outlet temperature difference is small, the rate of change of the target outlet temperature Is small.
  • the inlet / outlet temperature difference indicates the capacity of the outdoor unit 2. That is, the capacity of the outdoor unit 2 is higher as the inlet / outlet temperature difference is larger, and the capacity of the outdoor unit 2 is lower as the inlet / outlet temperature difference is smaller. Therefore, even if the set temperature difference, which is the difference between the set temperature and the indoor temperature, is the same, when the capacity of the outdoor unit 2 is high, the rate of change of the target outflow temperature is large, and when the capacity of the outdoor unit 2 is low, the target outflow It can also be said that the rate of change in temperature is small.
  • the air conditioning system 1 determines the target outflow temperature based on not only the set temperature difference but also the indoor / outdoor temperature difference and the inlet / outlet temperature difference. Therefore, an appropriate target outflow temperature can be set, and control with high driving efficiency can be performed without impairing user comfort.
  • the set temperature determination device 31 may change the time interval until a new target outflow temperature is set according to the heat capacity of the building. For example, when the building heat capacity is large and the indoor temperature change is slow, the set temperature determination device 31 lengthens the time interval until a new target outflow temperature is set.
  • the target outflow temperature can be changed while the room temperature is changing, and the outflow temperature can be prevented from becoming higher (or lower) than necessary. As a result, the room temperature can be prevented from becoming higher (or lower) than the set temperature.
  • the temperature detected by the room temperature detector 24 at a predetermined interval may be stored in a storage device, and the heat capacity of the building may be measured from the temperature change width of the room temperature and the current room temperature.
  • the control device 32 may change the flow rate of the water pump 11 in proportion to the electric power used in the outdoor unit 2. That is, the power used by the water pump 11 relative to the power used by the entire air conditioning system 1 may be constant. Thereby, driving efficiency improves.
  • the air conditioning system 1 having only one indoor unit 3 has been described.
  • the air conditioning system 1 includes a plurality of indoor units 3 and each indoor unit 3 is installed in a different room.
  • the set temperature determination device 31 uses the temperature of the representative room as the room temperature.
  • the representative room may be, for example, a room having the largest set temperature difference, which is a difference between the set temperature and the room temperature, or a room in which the predetermined indoor unit 3 is set as the master unit and the master unit is installed. May be.
  • Embodiment 2 a method for preventing the target outflow temperature from being set higher (or lower) than necessary and the room temperature from becoming higher (or lower) than the set temperature will be described. In the second embodiment, only portions different from the first embodiment will be described.
  • the set temperature determining device 31 calculates the target outflow temperature by adding the correction value 1 to the current outflow temperature.
  • a correction value 2 is newly defined. Then, the set temperature determining device 31 calculates the target outflow temperature by adding the correction value 1 and the correction value 2 to the current outflow temperature.
  • the correction value 2 is a value that is corrected so as to prevent the target outflow temperature from being set higher (or lower) than necessary so that the room temperature does not become higher (or lower) than the set temperature. .
  • the correction value 2 in the case of the heating operation is expressed as Expression 11 using an expected arrival temperature Tai ( ⁇ ) that is a temperature at which the room temperature is expected to reach after a predetermined time has elapsed.
  • Correction value 2 ((Two ⁇ Twi) / (Tai ( ⁇ ) ⁇ Tao)) ⁇ (Taim ⁇ Tai ( ⁇ ))
  • the correction value 1 uses the indoor / outdoor temperature difference that is the difference between the current room temperature and the outside air temperature, whereas the correction value 2 uses the predicted temperature reached after a predetermined time, The point is to use an expected internal / external temperature difference that is the difference from the outside air temperature.
  • the second point is that the correction value 1 uses a set temperature difference that is the difference between the current room temperature and the set temperature, whereas the correction value 2 uses the expected temperature reached after a predetermined time and the set temperature. It is a point using an expected set temperature difference which is a difference with temperature.
  • the correction value 1 is “(entrance / outlet temperature difference / indoor / outdoor temperature difference) ⁇ set temperature difference”
  • the correction value 2 is “(entrance / outlet temperature difference / expected inside / outside temperature difference) ⁇ expected set temperature difference”. It is. It has been described that the correction value 1 may be “((entrance / outlet temperature difference / indoor / outdoor temperature difference) ⁇ set temperature difference) ⁇ K1” using the relaxation coefficient K1.
  • the correction value 2 may be “((entrance / outlet temperature difference / predicted internal / external temperature difference) ⁇ predicted set temperature difference) ⁇ K2” using the relaxation coefficient K2.
  • the relaxation coefficient K2 is a value smaller than 1 similarly to the relaxation coefficient K1.
  • the correction value 2 is determined in inverse proportion to the expected internal / external temperature difference. That is, the correction value 2 decreases as the predicted internal / external temperature difference increases, and increases as the predicted internal / external temperature difference decreases.
  • the correction value 2 is determined in proportion to the expected set temperature difference. That is, the correction value 2 increases as the predicted set temperature difference increases, and decreases as the predicted set temperature difference decreases.
  • FIG. 7 is a diagram illustrating examples of changes in the room temperature when the target outflow temperature is determined using only the correction value 1 and when the target outflow temperature is determined using the correction value 1 and the correction value 2.
  • the current room temperature is lower than the set temperature, but the predicted arrival temperature may be higher than the set temperature.
  • the normal correction value 1 is a positive value
  • the normal correction value 2 is a negative value. That is, since the current room temperature is lower than the set temperature, the correction value 1 increases the target outflow temperature and increases the heating capacity.
  • the correction value 2 works in the direction of lowering the target outflow temperature and lowering the heating capacity because the expected arrival temperature is higher than the set temperature.
  • the target outflow temperature is set higher (or lower) than necessary so that the room temperature does not become higher (or lower) than the set temperature. It is prevented.
  • the same target outflow temperature is calculated when the target outflow temperature is determined using only the correction value 1 and when the target outflow temperature is determined using the correction value 1 and the correction value 2. It had been. Therefore, the room temperature was the same in both cases. However, after time t1, the current room temperature is lower than the set temperature, but the expected temperature reached is higher than the set temperature. Therefore, the correction value 2 worked to lower the target outflow temperature and lower the heating capacity.
  • the target outflow temperature when the target outflow temperature is determined only with the correction value 1, the room temperature slightly exceeds the target room temperature after the time t2.
  • the target outflow temperature is determined using the correction value 1 and the correction value 2, it takes time until the room temperature approaches the target room temperature, but the room temperature does not exceed the target room temperature. .
  • any method may be used to calculate the predicted arrival temperature Tai ( ⁇ ).
  • a predetermined temperature is calculated from the indoor temperature measured at a plurality of past time points and the outflow temperature at that time. It can be calculated using the formula.
  • what is necessary is just to use the already-known formula as a formula for calculating the room temperature, the outflow temperature at that time, and the expected temperature at arrival Tai ( ⁇ ).
  • the air conditioning system 1 calculates the target outflow temperature using the correction value 2 in addition to the correction value 1.
  • the target outflow temperature is prevented from being set higher (or lower) than necessary, and the room temperature is prevented from being higher (or lower) than the set temperature. Therefore, control with high driving efficiency can be performed without impairing the comfort of the user.
  • the water circuit 10 connecting the intermediate heat exchanger 9 and the indoor heat exchanger 12 is a circuit through which water flows.
  • the circuit that connects the intermediate heat exchanger 9 and the indoor heat exchanger 12 is not limited to a circuit through which water flows, and may be a circuit through which other fluid flows. That is, the fluid heated or cooled by the intermediate heat exchanger 9 may be a fluid other than water.
  • 1 air conditioning system 2 outdoor unit, 3 indoor unit, 4 refrigerant circuit, 5 compressor, 6 four-way valve, 7 outdoor heat exchanger, 8 expansion mechanism, 9 intermediate heat exchanger, 10 water circuit, 11 water pump, 12 Indoor heat exchanger, 21 outdoor temperature detector, 22 inlet water temperature detector, 23 outlet water temperature detector, 24 indoor temperature detector, 31 set temperature determination device, 32 control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 使用者の快適性を損なうことなく、高い運転効率の空気調和システムを実現することを目的とする。空気調和システム1において、設定温度決定装置31は、目標流出温度=現在の流出温度+((出入口温度差/室内外温度差)×設定温度差)に基づき、室内熱交換器12へ供給する水の目標温度を決定する。ここで、室内外温度差とは室内温度と外気温との差であり、出入口温度差とは中間熱交換器9の入口側の水の温度と出口側の水の温度との差であり、設定温度差とは室内温度と設定温度との差である。制御装置32は、設定温度決定装置31が決定した目標温度に応じて室外機2を制御する。

Description

空気調和システム及び空気調和システムの制御方法
 この発明は、熱源装置と室内熱交換器とが水等の流体が流れる流体回路によって接続される空気調和システムに関する。特に、この発明は、前記空気調和システムにおいて、所定の指標に基づき流体の温度を制御する制御技術に関する。
 ヒートポンプ装置等の熱源装置により温水又は冷水を生成し、生成した温水又は冷水を室内熱交換器へ送って室内の暖房又は冷房を行う空気調和システムがある。
 一般的に、この空気調和システムは、例えば、暖房時は35℃の温水が室内熱交換器へ供給され、冷房時は16℃の冷水が室内熱交換器へ供給されるというように、空調負荷によらず水温を一定にする方式である。この方式では、季節の中間期等の空調負荷が小さい場合、室温が設定値になると熱源装置を停止するという制御、あるいは、三方弁等を制御することで室内熱交換器への送水を停止するという制御が行われる。そのため、暖房運転や冷房運転が断続的に行われることになり、使用者の快適性が損なわれるとともに、運転効率が低下する。
 また、設置業者が空気調和システムを設置する際に、予想される外気温度に応じて熱源装置が供給する水の目標温度を設定する機能を有する空気調和システムがある。この空気調和システムでは、設定された目標温度が空調負荷に適している場合には効果的である。しかし、季節の変化等により、空調負荷に対して目標温度が低い場合や、空調負荷に対して目標水温が高い場合が起こり得る。この場合、能力不足の運転や、能力過多の運転が行われることになり、使用者の快適性が損なわれるとともに、運転効率が低下する。
 また、特許文献1には、利用者が設定した目標室内温度と現在の室内温度との偏差に基づき、熱源装置が供給する水の目標温度を再設定する制御方法についての記載がある。特許文献1では、この制御方法により、快適性を損なうことなく、高い運転効率を実現することを図っている。
特開2007-212085号公報
 しかし、特許文献1に記載された制御方法のように、設定温度と室内温度の差だけで水の目標温度を設定した場合、適切な目標温度に設定されない場合がある。つまり、適切な目標温度よりも、高い温度が目標温度に設定される場合や、低い温度が目標温度に設定される場合がある。そのため、設定温度に対して室内温度が高くなり過ぎることや、設定温度に対して室内温度が低くなり過ぎることが起こり、使用者の快適性が損なわれるとともに、運転効率が低下する。
 この発明は、使用者の快適性を損なうことなく、高い運転効率を実現することを目的とする。
 この発明に係る空気調和システムは、例えば、
 流体を加熱又は冷却する熱源装置と、前記熱源装置で加熱又は冷却された流体と室内空気との熱交換を行う室内熱交換器とを備える空気調和システムであり、
 前記室内空気の温度である室内温度を計測する室内温度計測部と、
 外気温度を計測する外気温度計測部と、
 前記室内温度計測部が計測した室内温度と、前記外気温度計測部が計測した外気温度との差である室内外温度差が大きくなるほど、前記熱源装置から前記室内熱交換器へ供給する流体の目標温度の変化率が小さくなるように、前記目標温度を決定する目標温度決定部と、
 前記目標温度決定部が決定した目標温度に応じて、前記熱源装置を制御する制御部と
を備えることを特徴とする。
 この発明に係る空気調和システムは、室内外温度差が大きくなるほど流体の目標温度が低くなるように目標温度を決定する。これにより、目標水温が適切に設定され、快適性を損なうことなく、高い運転効率を実現することができる。
空気調和システム1の構成図。 暖房運転時における目標流出温度Twomの式6への式変換の説明図。 冷房運転時における目標流出温度Twomの式6’への式変換の説明図。 空気調和システム1の処理の流れを示すフローチャート。 目標流出温度の算出における室内外温度差の影響の説明図。 室内外温度差と目標流出温度との関係を示す図。 補正値1のみで目標流出温度を決定した場合と、補正値1と補正値2とを用いて目標流出温度を決定した場合の室内温度の変化の例を示す図。
 実施の形態1.
 図1は、空気調和システム1の構成図である。
 空気調和システム1は、冷媒回路4を備える熱源装置である室外機2と、室内熱交換器12を備える室内機3とを備える。室外機2は室外に設置され、室内機3は室内に設置される。室外機2と室内機3とは、水回路10により接続される。水回路10は、水ポンプ11により、水が循環する回路である。
 冷媒回路4は、圧縮機5と、四方弁6と、室外熱交換器7と、膨張機構8と、中間熱交換器9とが配管により順次接続されて環状に形成され、冷媒が循環する回路である。
 なお、水回路10は、冷媒回路4に接続された中間熱交換器9に接続されている。そのため、冷媒回路4を循環する冷媒と、水回路10を循環する水とは、中間熱交換器9で熱交換される。
 圧縮機5は、例えば、全密閉式圧縮機である。圧縮機5は、インバータで回転速度を変更可能である。回転速度を変更することにより、圧縮機5は冷媒回路4を循環する冷媒の流量を調整し、中間熱交換器9での熱交換量を変化させる。中間熱交換器9での熱交換量を変化させることで、室外機2から流出する水の温度が変化する。
 四方弁6は、冷媒回路4を循環する冷媒の流れる方向を切り替える切替装置である。空気調和システム1が冷媒の流れを切り替える必要が無い場合、例えば冷房専用の場合は、冷媒の流れる方向を切り替える必要がない。そのため、この場合、四方弁6は不要である。
 室外熱交換器7は、例えば、空気(外気)を熱源とするフィンアンドチューブ型の熱交換器である。冷媒回路4を循環する冷媒と外気とが室外熱交換器7で熱交換される。なお、室外熱交換器7がフィンアンドチューブ型の熱交換器の場合、室外機2に室外ファンを備えることで、室外熱交換器7における熱交換を促進させることができる。
 また、室外熱交換器7は、地中に埋められ、地熱を熱源として利用する熱交換器であってもよい。地熱は、年間を通じて安定した熱源となる。また、室外熱交換器7は、プレート熱交換器であってもよい。この場合、水や不凍液等が熱源として利用される。
 膨張機構8は、例えば、開度が可変な機構である。膨張機構8は、凝縮器出口における過冷却度、又は、蒸発器出口における過熱度ができるだけ小さくなるように開度調整され、室外熱交換器7や中間熱交換器9が有効に利用できるように冷媒の流量が調整される。
 また、膨張機構8は、キャピラリのような開度が固定の絞り装置を複数並列に並べて構成してもよい。
 中間熱交換器9は、例えば、プレート熱交換器である。上述したように、冷媒回路4を循環する冷媒と、水回路10を循環する水とが、中間熱交換器9で熱交換される。これにより、中間熱交換器9は、水回路10を循環する水を加熱して温水を生成する、又は、水回路10を循環する水を冷却して冷水を生成する。そして、中間熱交換器9は、生成した温水又は冷水を水回路10へ供給する。
 また、中間熱交換器9として、二重管式や満液式の熱交換器を用いてもよい。
 水ポンプ11は、水を循環させることで、室外機2と室内機3とへ水を供給する。水ポンプ11は、インバータなどによって回転速度が変更可能なポンプである。回転速度を変更することにより、水回路10を循環する水の流量を変更することができる。
 また、水ポンプ11は、回転速度が一定のポンプと、開度が変更可能な容量制御弁とを組合せて構成してもよい。この場合、容量制御弁の開度を調整することで水回路10を循環する水の流量を変更することができる。
 水回路10を循環する水の流量を変更しない場合には、水ポンプ11は回転速度が一定のポンプであってもよい。
 室内熱交換器12は、例えば、ラジエータである。室内熱交換器12は、水回路10を循環する水と、室内空気との熱交換を行い、室内空気を加熱又は冷却する。
 また、室内熱交換器12は、ラジエータに限らず、ファンコイルユニットや、床暖房パネル等であってもよい。
 また、室外機2は、室外温度検出器21(外気温度検出部)、入口水温検出器22(前温度検出部)、出口水温検出器23(後温度検出部)を備える。室外温度検出器21は、室外温度である外気温を検出する。入口水温検出器22は、水回路10を流れる水であって、室外機2へ流入する水の温度を検出する。つまり、入口水温検出器22は、中間熱交換器9へ流入する水の温度を検出する。出口水温検出器23は、水回路10を流れる水であって、室外機2から流出する水の温度を検出する。つまり、出口水温検出器23は、中間熱交換器9から流出する水の温度を検出する。
 また、室内機3は、室内温度検出器24(室内温度検出部)を備える。室内温度検出器24は、室内温度を検出する。
 また、空気調和システム1は、設定温度決定装置31(目標温度決定部)、制御装置32(制御部)、を備える。
 設定温度決定装置31は、室外温度検出器21、入口水温検出器22、出口水温検出器23、室内温度検出器24が検出した温度に基づき、室外機2から流出する水の目標温度を決定する。
 制御装置32は、設定温度決定装置31が決定した目標温度に応じて、圧縮機5へ指令を出し、圧縮機5の回転速度を制御して、室外機2から流出する水の温度が目標温度になるようにする。また、制御装置32は、膨張機構8を制御して、冷媒回路4を循環する冷媒の流量を調整する。また、制御装置32は、水ポンプ11を制御して、水回路10を循環する水の流量を調整する。
 なお、設定温度決定装置31と制御装置32とは、マイクロコンピュータ等のコンピュータである。図1では、設定温度決定装置31と制御装置32とを別のコンピュータとして示しているが、設定温度決定装置31と制御装置32とは1つのコンピュータにより実現されていてもよい。
 次に、設定温度決定装置31が室外機2から流出する水の目標温度である目標流出温度を決定する方法について説明する。
 設定温度決定装置31は、室外機2の能力である中間熱交換器9の熱交換量Qwと、室内空気と外気との熱交換量Qioで表される室内負荷との熱バランスの関係から、空気調和システム1の使用者により設定された設定温度に室内温度をするための目標流出温度を決定する。
 まず、暖房運転の場合について説明する。
 中間熱交換器9での熱交換量Qwは、水の流量Gw、水の比熱Cpw、中間熱交換器9へ流入する水の温度である流入温度Twi(前温度)、中間熱交換器9から流出する水の温度である流出温度Two(後温度)から式1で表すことができる。
<式1>
Qw=Gw×Cpw×(Two-Twi)
 一方、現在の室内負荷、つまり室内空気と外気との熱交換量Qioは、建物の熱交換性能AKio、室内空気の温度である室内温度Tai、外気温である室外温度Taoから、式2で表すことができる。なお、建物の熱交換性能AKioとは、室内空気と外気との熱交換面積Aと、室内空気と外気との伝熱性能を表す熱通過率Kioとの積である。
<式2>
Qio=AKio×(Tai-Tao)
 中間熱交換器での熱交換量Qwと、室内空気と外気との熱交換量Qioとが釣り合っている場合(Qw=Qioである場合)、式1と式2とから次のような式が得られる。
Gw×Cpw×(Two-Twi)=AKio×(Tai-Tao)
 この式を変形すると、次のような式になる。
(Two-Twi)=(AKio/(Gw×Cpw))×(Tai-Tao)
 ここで、(AKio/(Gw×Cpw))をC1と置き換えれば、流入温度Twi、流出温度Two、室内温度Tai、室外温度Taoの関係を式3で表すことができる。なお、C1は、水の流量Gw、水の比熱Cpw、建物の熱交換性能AKioで決定される定数である。
<式3>
(Two-Twi)=C1×(Tai-Tao)
 ここで、流出温度Twoを流出温度Twomに変更した場合に、室内温度Taiが目標室内温度Taimと一致するとき、目標室内温度Taimと流出温度Twomとの関係は式4となる。
<式4>
(Twom-Twi)=C1×(Taim-Tao)
 また、式3からC1を次のように表せる。
C1=(Two-Twi)/(Tai-Tao)
 同様に、式4からC1を次のように表せる。
C1=(Twom-Twi)/(Taim-Tao)
 したがって、この2つの式から次の式が得られる。
(Two-Twi)/(Tai-Tao)=(Twom-Twi)/(Taim-Tao)
 この式を変形すると、流入温度Twi、流出温度Two、室内温度Tai、室外温度Tao、目標室内温度Taim、流出温度Twomの関係は式5で表すことができる。
<式5>
(Twom-Twi)/(Two-Twi)=(Taim-Tao)/(Tai-Tao)
 式5を図2に示すように変形すると、式6を得ることができる。
<式6>
Twom=Two+((Two-Twi)/(Tai-Tao))×(Taim-Tai)
 次に、冷房の場合について説明する。
 冷房の場合、Two<Twiであり、Tai<Taoである。ここで、中間熱交換器9での熱交換量Qwと、室内空気と外気との熱交換量Qioとは正の値(0より大きい値)である。そのため、式1に対応する式1’と、式2に対応する式2’とは、次のようになる。
<式1’>
Qw=Gw×Cpw×(Twi-Two)
<式2’>
Qio=AKio×(Tao-Tai)
 すると、式3に対応する式3’と、式4に対応する式4’とは、次のようになる。
<式3’>
(Twi-Two)=C1×(Tao-Tai)
<式4’>
(Twi-Twom)=C1×(Tao-Taim)
 式3’と式4’とから、式5に対応する式5’は次のようになる。
<式5’>
(Twi-Twom)/(Twi-Two)=(Tao-Taim)/(Tao-Tai)
 式5’を図3に示すように変形すると、式6に対応する式6’を得ることができる。
<式6’>
Twom=Two+((Two-Twi)/(Tao-Tai))×(Tai-Taim)
 ここで、暖房運転時の目標流出温度Twomを表す式6におけるTwoは、現在の流出温度である。式6における(Tai-Tao)は、室内温度Taiと室外温度Taoとの差である室内外温度差を表す。式6における(Two-Twi)は、流出温度Twoと流入温度Twiとの差である出入口温度差(前後温度差)を表す。式6における(Taim-Tai)は、目標室内温度Taim(設定温度)と室内温度Tai(現在の室内温度)との差である設定温度差を表す。
 同様に、冷房運転時の目標流出温度Twomを表す式6’におけるTwoは、現在の流出温度である。式6における(Tao-Tai)は、室外温度Taoと室内温度Taiとの差である室内外温度差を表す。式6における(Two-Twi)は、流出温度Twoと流入温度Twiとの差である出入口温度差(前後温度差)を表す。式6における(Tai-Taim)は、目標室内温度Taim(設定温度)と室内温度Tai(現在の室内温度)との差である設定温度差を表す。
 したがって、式6と式6’とはいずれも、式7のように表すことができる。
<式7>
目標流出温度=現在の流出温度+((出入口温度差/室内外温度差)×設定温度差)
 設定温度決定装置31は、式7に基づき、目標流出温度(目標温度)を計算する。
 式7から分かるように、設定温度決定装置31は、室内外温度差に反比例させて目標流出温度を決定する。つまり、設定温度決定装置31は、室内外温度差が大きくなるほど目標流出温度の変化率が小さくなるように、室内外温度差が小さくなるほど目標流出温度の変化率が大きくなるように、目標流出温度を決定する。
 また、式7から分かるように、設定温度決定装置31は、出入口温度差に比例させて目標流出温度を決定する。つまり、設定温度決定装置31は、出入口温度差が大きくなるほど目標流出温度の変化率が大きくなるように、出入口温度差が小さくなるほど目標流出温度の変化率が小さくなるように、目標流出温度を決定する。
 また、式7から分かるように、設定温度決定装置31は、設定温度差に比例させて目標流出温度を決定する。つまり、設定温度決定装置31は、設定温度差が大きくなるほど目標流出温度の変化率が大きくなるように、設定温度差が小さくなるほど目標流出温度の変化率が小さくなるように、目標流出温度を決定する。
 特に、設定温度決定装置31は、「(出入口温度差/室内外温度差)×設定温度差」から計算される補正値1を、現在の流出温度に加算して、目標流出温度とする。
 なお、設定温度決定装置31は、1よりも小さい値である緩和係数K1を用いて、「((出入口温度差/室内外温度差)×設定温度差)×K1」から補正値1を計算してもよい。緩和係数K1を用いて補正値1を計算することにより、目標流出温度が大きく変更されなくなる。つまり、緩和係数K1を用いて補正値1を計算した場合には、徐々に目標流出温度が変更され、最終的に室内温度が設定温度と同じ温度になるように、室外機2が制御される。したがって、暖房運転の場合に設定温度に対して室内温度が高くなり過ぎることや、冷房運転の場合に設定温度に対して室内温度が低くなり過ぎることが起きづらくなる。
 図4は、空気調和システム1の処理の流れを示すフローチャートである。
 (S1)では、設定温度決定装置31は、空気調和システム1は運転が開始されると、暖房運転であるか、冷房運転であるかを判定する。暖房運転であれば、予め記憶装置に記憶された式6を読み出す。一方、冷房運転であれば、予め記憶装置に記憶された式6’を読み出す。
 (S2)では、設定温度決定装置31は、室内温度と設定温度とが等しいか否かを判定する。なお、室内温度と設定温度との差が所定の範囲内である場合には、設定温度決定装置31は、室内温度と設定温度とが等しいと判定する。
 室内温度と設定温度とが等しい場合には、設定温度決定装置31は目標流出温度の変更はせず、所定時間経過後に再び室内温度と設定温度とが等しいか否かを判定する。一方、室内温度と設定温度とが異なる場合、設定温度決定装置31は(S3)へ処理を進める。
 (S3)では、設定温度決定装置31は、(S1)で読み出した式に基づき、目標流出温度を計算する。
 (S4)では、制御装置32は、(S3)で計算された目標流出温度に応じて、室外機2を制御する。例えば、制御装置32は、目標流出温度に応じて圧縮機5の回転速度を変更して、中間熱交換器9での熱交換量Qwを変更する。
 室内温度が設定温度よりも低い場合には、補正値1は通常正の値となる。その結果、目標流出温度は、現在の流出温度よりも高くなる。暖房運転の場合であれば、制御装置32は、圧縮機5の回転速度を速くして、中間熱交換器9での熱交換量Qwを多くする。これにより、中間熱交換器9における水への加熱が促進され、室外機2から流出する水の温度が高くなる。
 一方、室内温度が設定温度よりも高い場合には、補正値1は通常負の値となる。その結果、目標流出温度は、現在の流出温度よりも低くなる。暖房運転の場合であれば、制御装置32は、圧縮機5の回転速度を遅くして、中間熱交換器9での熱交換量Qwを少なくする。これにより、中間熱交換器9における水への加熱が抑えられ、室外機2から流出する水の温度が低くなる。
 目標流出温度の算出における室内外温度差の影響について、暖房運転の場合を例に説明する。
 図5は、目標流出温度の算出における室内外温度差の影響の説明図である。図5において、横軸は外気温を示し、縦軸は室外機2の能力を示す。
 ここでは、室内温度が18℃、設定温度が20℃であるとする。この場合に、外気温が0℃の場合と、10℃の場合とで、目標流出温度の算出にどのような影響があるかを説明する。
 外気温が0℃の場合、外気温が10℃の場合に比べ、室内温度を設定温度である20℃にするには、室外機2は高い能力が必要となる。同様に、外気温が0℃の場合、外気温が10℃の場合に比べ、室内温度を現在の室内温度である18℃にするのに、室外機2は高い能力が必要であった。
 室内温度を設定温度である20℃にするのに必要な室外機2の能力と、室内温度を現在の室内温度である18℃にするのに必要な室外機2の能力との比について、外気温が0℃の場合と、外気温が10℃の場合とで比較する。
 外気温が0℃の場合における室外機2の能力の比は、(18℃―0℃)/(20℃―0℃)×100=90%である。つまり、外気温が0℃の場合、10%程度の能力が不足していることになる。すなわち、外気温が0℃の場合、10%程度の能力増加に相当する目標流出温度の上昇により、室内温度18℃が設定温度20℃になると言える。
 一方、外気温が10℃の場合における室外機2の能力の比は、(18℃―10℃)/(20℃―10℃)×100=80%である。つまり、外気温が10℃の場合、20%程度の能力が不足していることになる。すなわち、外気温が10℃の場合、20%程度の能力増加に相当する目標流出温度の上昇により、室内温度18℃が設定温度20℃になると言える。
 図6は、室内外温度差と目標流出温度の変化率との関係を示す図である。
 外気温が0℃の場合は、外気温が10℃の場合に比べ、目標流出温度の変化率は小さい。つまり、設定温度と室内温度の差である設定温度差が同じであっても、室内外温度差が大きい場合、目標流出温度の変化率は小さく、室内外温度差が小さい場合、目標流出温度の変化率は大きい。
 目標流出温度の算出における出入口温度差の影響について、暖房運転の場合を例に説明する。
 ここでは、流入温度が30℃である場合に、流出温度が40℃の場合と、35℃の場合とで、目標流出温度の算出にどのような影響があるかを説明する。
 ここで、式5を変形する次のようになる。
(Twom-Twi)=((Taim-Tao)/(Tai-Tao))×(Two-Twi)
 (Taim-Tao)/(Tai-Tao)をαと置き換えれば、目標流出温度Twomと流入温度Twiとの差を式8のように表すことができる。
<式8>
(Twom-Twi)=α×(Two-Twi)
 式8から、出入口温度差が大きい流出温度が40℃である場合、次のように表せる。
(Twom-Twi)=α×(40℃-30℃)
したがって、この場合の目標流出温度Twomは、式9のようになる。
<式9>
Twom=α×10℃+30℃
 同様に、式8から、出入口温度差が小さい流出温度が35℃である場合、次のように表せる。
(Twom-Twi)=α×(35℃-30℃)
したがって、この場合の目標流出温度Twomは、式10のようになる。
<式10>
Twom=α×5℃+30℃
 つまり、出入口温度差が大きい場合の方が、出入口温度差が小さい場合よりも、目標流出温度の変化率は大きい。
 すなわち、設定温度と室内温度の差である設定温度差が同じであっても、出入口温度差が大きい場合、目標流出温度の変化率は大きく、出入口温度差が小さい場合、目標流出温度の変化率は小さい。
 なお、水回路10を循環する水の流量が一定の場合には、出入口温度差は室外機2の能力を示す。つまり、出入口温度差が大きいほど室外機2の能力が高く、出入口温度差が小さいほど室外機2の能力が低い。したがって、設定温度と室内温度の差である設定温度差が同じであっても、室外機2の能力が高い場合、目標流出温度の変化率は大きく、室外機2の能力が低い場合、目標流出温度の変化率は小さいということもできる。
 以上のように、この実施の形態に係る空気調和システム1は、設定温度差だけでなく、室内外温度差と、出入口温度差とに基づき、目標流出温度を決定した。そのため、適切な目標流出温度を設定することができ、使用者の快適性を損なうことなく、運転効率の高い制御を行うことができる。
 なお、流出温度の変化に応じて室内温度も変化するが、流出温度の変化に対する室内温度の変化の応答性は、建物の熱容量に依存し、建物の熱容量が大きい建物ほど応答性は遅くなる。
 そこで、設定温度決定装置31は、建物の熱容量に応じて、新たな目標流出温度を設定するまでの時間間隔を変更してもよい。例えば、設定温度決定装置31は、建物の熱容量が大きく室内温度変化が遅い場合は、新たな目標流出温度を設定するまでの時間間隔を長くする。これにより、室内温度が変化している最中に目標流出温度を変更し、流出温度が必要以上に高く(あるいは低く)なることを防止できる。その結果、室内温度が設定温度以上に高く(あるいは低く)なることを防止できる。
 したがって、さらに、使用者の快適性が向上し、運転効率も向上する。
 なお、所定の間隔で室内温度検出器24が検出した温度を記憶装置に記憶しておき、室内温度と現在の室内温度の温度変化幅から建物の熱容量を計測してもよい。
 また、室内負荷に関係なく水ポンプ11の流量を一定にすると、室内負荷が小さい場合に無駄が生じる。
 そこで、制御装置32は、室外機2で使用される電力に比例させて、水ポンプ11の流量を変化させてもよい。つまり、空気調和システム1全体で使用される電力に対する水ポンプ11で使用される電力が一定にしてもよい。これにより、運転効率が向上する。
 また、上記説明では、室内機3を1台だけ有する空気調和システム1を説明した。しかし、空気調和システム1が複数台の室内機3を備え、各室内機3が異なる部屋に設置されている場合も考えられる。この場合、設定温度決定装置31は、代表の部屋の温度を室内温度として用いる。代表の部屋は、例えば設定温度と室内温度との差である設定温度差が最も大きい部屋であってもよいし、所定の室内機3を親機とし、その親機が設置された部屋であってもよい。
 実施の形態2.
 実施の形態2では、目標流出温度が必要以上に高く(あるいは低く)設定され、室内温度が設定温度以上に高く(あるいは低く)なることを防止する方法について説明する。
 なお、実施の形態2では、実施の形態1と異なる部分のみ説明する。
 実施の形態1では、設定温度決定装置31は、現在の流出温度に補正値1を加算して、目標流出温度を計算した。
 実施の形態2では、新たに補正値2を定義する。そして、設定温度決定装置31は、現在の流出温度に補正値1と補正値2とを加算して、目標流出温度を計算する。
 ここで、補正値2は、室内温度が設定温度以上に高く(あるいは低く)ならないように、目標流出温度が必要以上に高く(あるいは低く)設定されることを防止するように補正する値である。
 暖房運転の場合における補正値2は、所定の時間経過後に室内温度が到達すると予想される温度である到達予想温度Tai(∞)を用いて、式11のように表される。
<式11>
補正値2=((Two-Twi)/(Tai(∞)-Tao))×(Taim-Tai(∞))
 同様に、冷房運転の場合における補正値2は、Tai(∞)を用いて、式11’のように表される。
<式11’>
補正値2=((Two-Twi)/(Tao-Tai(∞)))×(Tai(∞)-Taim)
 補正値1と補正値2との差は、2点ある。1点目は、補正値1では現在の室内温度と、外気温との差である室内外温度差を用いていたのに対して、補正値2では所定の時間経過後の到達予想温度と、外気温との差である予想内外温度差を用いる点である。2点目は、補正値1では現在の室内温度と、設定温度との差である設定温度差を用いていたのに対して、補正値2では所定の時間経過後の到達予想温度と、設定温度との差である予想設定温度差を用いる点である。
 つまり、補正値1は「(出入口温度差/室内外温度差)×設定温度差」であるのに対して、補正値2は「(出入口温度差/予想内外温度差)×予想設定温度差」である。なお、補正値1は緩和係数K1を用いて、「((出入口温度差/室内外温度差)×設定温度差)×K1」としてもよいと説明した。同様に、補正値2も緩和係数K2を用いて、「((出入口温度差/予想内外温度差)×予想設定温度差)×K2」としてもよい。ここで、緩和係数K2は、緩和係数K1と同様に、1よりも小さい値である。
 したがって、補正値2は、予想内外温度差に反比例して決定される。つまり、補正値2は、予想内外温度差が大きくなるほど小さくなり、予想内外温度差が小さくなるほど大きくなる。
 また、補正値2は、予想設定温度差に比例して決定される。つまり、補正値2は、予想設定温度差が大きくなるほど大きくなり、予想設定温度差が小さくなるほど小さくなる。
 図7は、補正値1のみで目標流出温度を決定した場合と、補正値1と補正値2とを用いて目標流出温度を決定した場合の室内温度の変化の例を示す図である。
 現在の室温は設定温度よりも低いが、到達予想温度は設定温度よりも高いという場合が考えられる。この場合には、通常補正値1は正の値となり、通常補正値2は負の値となる。つまり、補正値1は、現在の室温が設定温度よりも低いため、目標流出温度を高くして、暖房能力を高くする方向に働く。一方、補正値2は、到達予想温度が設定温度よりも高いため、目標流出温度を低くして、暖房能力を低くする方向に働く。
 このように、補正値2を用いて目標流出温度を計算することにより、室内温度が設定温度以上に高く(あるいは低く)ならないように、目標流出温度が必要以上に高く(あるいは低く)設定されることが防止される。
 図7では、時刻t1までは、補正値1のみで目標流出温度を決定した場合と、補正値1と補正値2とを用いて目標流出温度を決定した場合とで同一の目標流出温度が計算されていた。そのため、どちらの場合も同じ室内温度となった。しかし、時刻t1以降は、現在の室温は設定温度よりも低いが、到達予想温度は設定温度よりも高い状態となった。そのため、補正値2が目標流出温度を低くして、暖房能力を低くする方向に働いた。その結果、補正値1のみで目標流出温度を決定した場合には、時刻t2を過ぎると、室内温度が目標室内温度を若干超えてしまった。一方、補正値1と補正値2とを用いて目標流出温度を決定した場合には、室内温度が目標室内温度へ近づくまでに時間はかかるものの、室内温度が目標室内温度を超えることがなかった。
 なお、到達予想温度Tai(∞)を計算する方法は、どのような方法であっても構わないが、例えば、複数の過去の時点において計測した室内温度と、その時の流出温度とから、所定の式を用いて計算することができる。なお、室内温度と、その時の流出温度と到達予想温度Tai(∞)を計算するための式は、既に知られている式を用いればよい。
 以上のように、この実施の形態に係る空気調和システム1は、補正値1に加え、補正値2を用いて、目標流出温度を計算する。これにより、目標流出温度が必要以上に高く(あるいは低く)設定されることが防止され、室内温度が設定温度以上に高く(あるいは低く)なることが防止される。したがって、使用者の快適性を損なうことなく、運転効率の高い制御を行うことができる。
 なお、上記説明では、中間熱交換器9と室内熱交換器12とを接続する水回路10は水が流れる回路であるとした。しかし、中間熱交換器9と室内熱交換器12とを接続する回路は、水が流れる回路に限らず、他の流体が流れる回路であってもよい。つまり、中間熱交換器9で加熱又は冷却される流体は水以外の他の流体であってもよい。
 1 空気調和システム、2 室外機、3 室内機、4 冷媒回路、5 圧縮機、6 四方弁、7 室外熱交換器、8 膨張機構、9 中間熱交換器、10 水回路、11 水ポンプ、12 室内熱交換器、21 室外温度検出器、22 入口水温検出器、23 出口水温検出器、24 室内温度検出器、31 設定温度決定装置、32 制御装置。

Claims (13)

  1.  流体を加熱又は冷却する熱源装置と、前記熱源装置で加熱又は冷却された流体と室内空気との熱交換を行う室内熱交換器とを備える空気調和システムであり、
     前記室内空気の温度である室内温度を検出する室内温度検出部と、
     外気温度を検出する外気温度検出部と、
     前記室内温度検出部が検出した室内温度と、前記外気温度検出部が検出した外気温度との差である室内外温度差が大きくなるほど、前記熱源装置から前記室内熱交換器へ供給する流体の目標温度の変化率が小さくなるように、前記目標温度を決定する目標温度決定部と、
     前記目標温度決定部が決定した目標温度に応じて、前記熱源装置を制御する制御部と
    を備えることを特徴とする空気調和システム。
  2.  前記空気調和システムは、さらに、
     前記熱源装置で加熱又は冷却される前の流体の前温度を検出する前温度検出部と、
     前記熱源装置で加熱又は冷却された後の流体の後温度を検出する後温度検出部と
    を備え、
     前記目標温度決定部は、さらに、前記前温度検出部が検出した前温度と、前記後温度検出部が検出した後温度との差である前後温度差が大きくなるほど、前記目標温度の変化率が大きくなるように、前記目標温度を決定する
    ことを特徴とする請求項1に記載の空気調和システム。
  3.  前記空気調和システムは、さらに、
     予め設定された前記室内空気の到達目標温度である設定室温を取得する設定室温取得部
    を備え、
     前記目標温度決定部は、さらに、前記室内温度検出部が検出した室内温度と、前記設定室温取得部が取得した設定室温との差である設定温度差が大きくなるほど、前記目標温度の変化率が大きくなるように、前記目標温度を決定する
    ことを特徴とする請求項2に記載の空気調和システム。
  4.  前記目標温度決定部は、「(前記前後温度差/前記室内外温度差)×前記設定温度差」に基づき補正値1を計算して、現在設定されている目標温度に前記補正値1を加算して、新たな目標温度とする
    ことを特徴とする請求項3に記載の空気調和システム。
  5.  前記空気調和システムは、さらに、
     現在設定されている目標温度に基づき、前記制御部が前記熱源装置を制御した場合において、所定の時間経過後における前記室内空気の温度が到達する到達予想温度を計算する予想温度計算部
    を備え、
     前記目標温度決定部は、前記予想温度計算部が計算した到達予想温度と、前記外気温度検出部が検出した外気温度との差である予想内外温度差と、前記到達予想温度と、前記設定室温取得部が取得した設定室温との差である予想設定温度差を用いて、「(前記前後温度差/前記予想内外温度差)×前記予想設定温度差」に基づき補正値2を計算して、設定されている目標温度に前記補正値1と前記補正値2とを加算して、新たな目標温度とする
    ことを特徴とする請求項4に記載の空気調和システム。
  6.  前記目標温度決定部は、「((前記前後温度差/前記室内外温度差)×前記設定温度差)×所定の緩和係数K1」により補正値1を計算し、「((前記前後温度差/前記予想内外温度差)×前記予想設定温度差)×所定の緩和係数K2」により補正値2を計算する
    ことを特徴とする請求項5に記載の空気調和システム。
  7.  前記予想温度計算部は、複数の過去の時点における室内温度に基づき、前記到達予想温度を計算する
    ことを特徴とする請求項5に記載の空気調和システム。
  8.  前記熱源装置は、圧縮機と、第1熱交換器と、膨張機構と、第2熱交換器とが順次配管により接続され、冷媒が循環する冷媒回路を備えるヒートポンプ式の熱源装置であり、前記第1熱交換器で冷媒と流体とを熱交換させて流体を加熱又は冷却し、
     前記制御部は、前記目標温度に応じて前記圧縮機を制御する
    ことを特徴とする請求項1に記載の空気調和システム。
  9.  前記目標温度決定部は、室内の熱容量に応じて、目標温度を新たに決定するまでの間隔を制御する
    ことを特徴とする請求項1に記載の空気調和システム。
  10.  前記空気調和システムは、さらに、
     前記室内温度検出部が検出した室内温度を記憶装置に記憶する室内温度記憶部と、
     前記室内温度記憶部が記憶した室内温度から室内温度の変化速度を計算する変化速度計算部と
    を備え、
     前記目標温度決定部は、前記変化速度計算部が計算した変化速度に応じて、目標温度を新たに決定するまでの間隔を制御する
    ことを特徴とする請求項1に記載の空気調和システム。
  11.  前記空気調和システムは、さらに、
     前記熱源装置と前記室内熱交換器とを接続し、流体が循環する流体回路
    を備え、
     前記制御部は、さらに、前記熱源装置の制御に応じて、前記流体回路を循環する流体の循環量を制御する
    ことを特徴とする請求項1に記載の空気調和システム。
  12.  前記空気調和システムは、複数の部屋の各部屋に設置された複数の室内熱交換器を備え、
     前記室内温度検出部は、前記複数の室内熱交換器のうちの所定の室内熱交換器が設置された部屋の室内空気の温度を前記室内温度として検出する
    ことを特徴とする請求項1に記載の空気調和システム。
  13.  流体を加熱又は冷却する熱源装置と、前記熱源装置で加熱又は冷却された流体と室内空気との熱交換を行う室内熱交換器とを備える空気調和システムの制御方法であり、
     前記室内空気の温度である室内温度を検出する室内温度検出ステップと、
     外気温度を検出する外気温度検出ステップと、
     前記室内温度検出ステップで検出した室内温度と、前記外気温度検出ステップで検出した外気温度との差である室内外温度差が大きくなるほど、前記熱源装置から前記室内熱交換器へ供給する流体の目標温度の変化率が小さくなるように、前記目標温度を決定する目標温度決定ステップと、
     前記目標温度決定ステップで決定した目標温度に応じて、前記熱源装置を制御する制御ステップと
    を備えることを特徴とする空気調和システムの制御方法。
PCT/JP2010/052811 2010-02-24 2010-02-24 空気調和システム及び空気調和システムの制御方法 WO2011104827A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012501566A JP5312674B2 (ja) 2010-02-24 2010-02-24 空気調和システム及び空気調和システムの制御方法
CN201080064696.4A CN102770718B (zh) 2010-02-24 2010-02-24 空调系统及空调系统的控制方法
US13/521,520 US9797614B2 (en) 2010-02-24 2010-02-24 Air conditioning system
EP10801095.0A EP2466220B1 (en) 2010-02-24 2010-02-24 Air conditioning system and method of controlling air conditioning system
PCT/JP2010/052811 WO2011104827A1 (ja) 2010-02-24 2010-02-24 空気調和システム及び空気調和システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052811 WO2011104827A1 (ja) 2010-02-24 2010-02-24 空気調和システム及び空気調和システムの制御方法

Publications (1)

Publication Number Publication Date
WO2011104827A1 true WO2011104827A1 (ja) 2011-09-01

Family

ID=44506274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052811 WO2011104827A1 (ja) 2010-02-24 2010-02-24 空気調和システム及び空気調和システムの制御方法

Country Status (5)

Country Link
US (1) US9797614B2 (ja)
EP (1) EP2466220B1 (ja)
JP (1) JP5312674B2 (ja)
CN (1) CN102770718B (ja)
WO (1) WO2011104827A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059380A1 (en) * 2012-03-27 2015-03-05 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104913411A (zh) * 2014-03-11 2015-09-16 海尔集团公司 一种空调机组
JP5951142B1 (ja) * 2015-04-01 2016-07-13 三菱電機株式会社 空調システム制御装置
JP2018194257A (ja) * 2017-05-19 2018-12-06 ダイキン工業株式会社 空調システム
WO2020262701A1 (ja) * 2019-06-27 2020-12-30 ダイキン工業株式会社 空気調和装置の制御装置、空調システム、空気調和装置の制御方法、およびプログラム
CN113266925A (zh) * 2021-05-28 2021-08-17 广东纽恩泰新能源科技发展有限公司 一种两联供热泵系统的控制方法及水温控制装置
WO2021187423A1 (ja) * 2020-03-16 2021-09-23 三菱電機株式会社 空気調和システム
JP7568997B1 (ja) 2023-09-29 2024-10-17 ダイキン工業株式会社 空調システム

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5657110B2 (ja) 2011-05-31 2015-01-21 三菱電機株式会社 温度調節システム及び空気調和システム
CN103673195B (zh) * 2012-08-31 2016-08-24 珠海格力电器股份有限公司 空调器及其控制方法
US10101043B2 (en) * 2013-07-26 2018-10-16 Energy Design Technology & Solutions, Inc. HVAC system and method of operation
JP5984784B2 (ja) * 2013-11-19 2016-09-06 三菱電機株式会社 温冷水空調システム
EP2937657B1 (en) * 2014-04-25 2019-11-27 Franke Technology and Trademark Ltd Heat exchanger
CN105333566A (zh) * 2014-08-13 2016-02-17 戴若夫 新风热交换空调系统控制方法及系统
US20160098026A1 (en) * 2014-10-02 2016-04-07 Mohamed Farouk SALEM Temperature control system and methods of performing the same
PL3009908T3 (pl) 2014-10-13 2017-11-30 Metrona Wärmemesser Union Gmbh Sposób i układ urządzeń do rejestrowania, oceny i oddziaływania na rozkład oddawania energii grzewczej w otulinie budynku
US10386795B2 (en) * 2014-10-30 2019-08-20 Vivint, Inc. Methods and apparatus for parameter based learning and adjusting temperature preferences
CN104456832A (zh) * 2014-10-31 2015-03-25 江苏台普达科技有限公司 变电站室内环境智能控制装置
AU2015367294A1 (en) * 2014-12-17 2017-08-10 Nixon, Brendan Joseph A hide-away air-conditioning system
CN104695564A (zh) * 2015-03-04 2015-06-10 上海市建筑科学研究院 应用于高发热量建筑的传热系数可变的高能效围护结构
EP3073205B1 (en) * 2015-03-27 2020-07-22 Honeywell Technologies Sarl Method for operating a hydronic heating and/or cooling system, control valve and hydronic heating and/or cooling system
CN104776531A (zh) * 2015-04-17 2015-07-15 北京百度网讯科技有限公司 水侧自然冷却系统和水侧自然冷却方法
CN104990229B (zh) * 2015-07-28 2017-11-10 广东美的暖通设备有限公司 空调系统及其控制方法
KR20170068958A (ko) * 2015-12-10 2017-06-20 삼성전자주식회사 공조 시스템에서 온도를 제어하기 위한 장치 및 방법
US11686488B2 (en) 2016-02-12 2023-06-27 Goodman Manufacturing Company LP Systems and methods for controlling rate of change of air temperature in a building
CN105783148B (zh) * 2016-05-12 2019-01-29 山东惠净居环保科技有限公司 一种温度控制型空气净化器及其控制方法
US10480826B2 (en) * 2016-05-13 2019-11-19 Lochinvar, Llc System and method of controlling a mixing valve of a heating system
US11221150B2 (en) 2016-05-13 2022-01-11 Lochinvar, Llc System and method of controlling a mixing valve of a heating system
CN106288204B (zh) * 2016-08-19 2020-02-21 青岛海尔空调器有限总公司 变频空调舒适制冷控制方法
CN106193280B (zh) * 2016-08-31 2018-09-28 四川绿舟韵环境科技有限公司 海绵建筑生态系统
WO2018078709A1 (ja) * 2016-10-24 2018-05-03 三菱電機株式会社 空調システム、空調制御装置、空調方法及びプログラム
EP3382490B1 (en) 2017-03-31 2023-05-03 Mitsubishi Electric R&D Centre Europe B.V. Method for controlling a hydronic heating system in multiple rooms
CN107560099A (zh) * 2017-07-10 2018-01-09 珠海格力电器股份有限公司 户式中央空调机组的控制方法和装置
CN107747788B (zh) * 2017-09-21 2020-04-03 广东美的制冷设备有限公司 空调参数确定方法、空调设备及可读存储介质
CN108050719B (zh) * 2017-12-12 2023-05-12 广东海悟科技有限公司 一种基于温差计算制冷剂泵能力的自然冷却系统及其控制方法
US11009248B2 (en) 2018-04-10 2021-05-18 Air2O Inc. Adaptive comfort control system
US10527296B2 (en) * 2018-04-25 2020-01-07 Computime Ltd. Temperature delta control for a hydronic heating/cooling system
CN108800425B (zh) * 2018-06-19 2021-01-22 广东美的制冷设备有限公司 防止空调频繁启停的控制方法、装置及空调
EP3637217A1 (en) * 2018-10-08 2020-04-15 E.ON Sverige AB A method for controlling a thermal energy distribution system
US11002455B2 (en) 2018-11-14 2021-05-11 Air2O Inc. Air conditioning system and method
CN111380167A (zh) * 2018-12-29 2020-07-07 杭州三花研究院有限公司 空调系统及空调系统的控制方法
CN109764541B (zh) * 2019-01-09 2021-10-29 青岛海尔空调器有限总公司 一种能源系统及其控制方法
EP3966506A4 (en) 2019-05-05 2023-01-11 Chilled Beam Controls, LLC INDOOR AIR CONDITIONING SYSTEM AND UNIT
CN110500731B (zh) * 2019-07-05 2021-05-28 珠海格力电器股份有限公司 一种户式空调系统的控制方法及使用该控制方法的系统
CN110500747B (zh) * 2019-08-30 2021-10-29 郑州海尔空调器有限公司 空调器的控制方法
CN110513931B (zh) * 2019-09-19 2021-04-23 四川虹美智能科技有限公司 一种确定空气源热泵的回水温度的目标值的方法及装置
US11885508B2 (en) * 2019-09-23 2024-01-30 Warmboard, Inc. Response slope based hydronic control system and method
CN111795526B (zh) * 2020-07-17 2022-03-11 广东Tcl智能暖通设备有限公司 温度控制方法、装置、系统及计算机可读存储介质
CN112325368B (zh) * 2020-11-05 2021-10-08 安徽扬子地板股份有限公司 一种地板用智能提示系统
WO2022147278A1 (en) * 2020-12-31 2022-07-07 Goodman Manufacturing Company LP Systems and methods for controlling rate of change of air temperature in a building
SE545541C2 (en) * 2021-12-14 2023-10-17 Energy Cut Sweden AB Device and a method related to control of a heating source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180152A (ja) * 1992-12-11 1994-06-28 Hitachi Ltd 冷水供給装置
JPH10185241A (ja) * 1996-12-20 1998-07-14 Daikin Ind Ltd 冷凍装置
JPH1163631A (ja) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd 送水温度制御装置
JP2007147094A (ja) * 2005-11-24 2007-06-14 Shin Nippon Air Technol Co Ltd 空気調和設備の運転方法
JP2007212085A (ja) 2006-02-10 2007-08-23 Ishimoto Kenchiku Jimusho:Kk 輻射パネル用空調システムの制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510186Y2 (ja) 1985-11-29 1993-03-12
JPH0774697B2 (ja) 1986-05-15 1995-08-09 松下電器産業株式会社 コンロ
JPH02208455A (ja) 1989-02-08 1990-08-20 Toshiba Corp 冷凍装置
US5095715A (en) * 1990-09-20 1992-03-17 Electric Power Research Institute, Inc. Electric power demand limit for variable speed heat pumps and integrated water heating heat pumps
JPH04143115A (ja) * 1990-10-05 1992-05-18 Zexel Corp 車両用空調装置
JPH0814672A (ja) 1994-06-29 1996-01-19 Sanyo Electric Co Ltd 冷凍装置
JP3723879B2 (ja) * 1996-06-28 2005-12-07 日本電熱株式会社 給湯制御装置
JPH11248232A (ja) 1998-03-06 1999-09-14 Toshiba Corp 床暖房空調システム
JP3275870B2 (ja) * 1999-02-19 2002-04-22 ダイキン工業株式会社 マルチ形空気調和機
JP4032634B2 (ja) 2000-11-13 2008-01-16 ダイキン工業株式会社 空気調和装置
JP4493889B2 (ja) * 2001-08-27 2010-06-30 北海道電力株式会社 冷暖房システム
CN2641504Y (zh) * 2003-08-25 2004-09-15 南京五洲制冷(集团)公司 自由节能型单元式空调机
KR100661919B1 (ko) * 2004-08-14 2006-12-28 엘지전자 주식회사 유니터리 공기조화기의 운전제어방법
JP4711852B2 (ja) 2006-02-24 2011-06-29 三菱電機株式会社 温度調整装置および冷凍サイクル
JP4832960B2 (ja) 2006-05-25 2011-12-07 高砂熱学工業株式会社 水熱源ヒートポンプユニットシステムの制御方法
CN200946886Y (zh) * 2006-08-28 2007-09-12 吴厚林 空调机室外温度设控系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180152A (ja) * 1992-12-11 1994-06-28 Hitachi Ltd 冷水供給装置
JPH10185241A (ja) * 1996-12-20 1998-07-14 Daikin Ind Ltd 冷凍装置
JPH1163631A (ja) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd 送水温度制御装置
JP2007147094A (ja) * 2005-11-24 2007-06-14 Shin Nippon Air Technol Co Ltd 空気調和設備の運転方法
JP2007212085A (ja) 2006-02-10 2007-08-23 Ishimoto Kenchiku Jimusho:Kk 輻射パネル用空調システムの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2466220A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059380A1 (en) * 2012-03-27 2015-03-05 Mitsubishi Electric Corporation Air-conditioning apparatus
US9683768B2 (en) * 2012-03-27 2017-06-20 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104913411A (zh) * 2014-03-11 2015-09-16 海尔集团公司 一种空调机组
JP5951142B1 (ja) * 2015-04-01 2016-07-13 三菱電機株式会社 空調システム制御装置
JP2018194257A (ja) * 2017-05-19 2018-12-06 ダイキン工業株式会社 空調システム
JP6989755B2 (ja) 2017-05-19 2022-01-12 ダイキン工業株式会社 空調システム
JP2021006759A (ja) * 2019-06-27 2021-01-21 ダイキン工業株式会社 空気調和装置の制御装置、空調システム、空気調和装置の制御方法、およびプログラム
WO2020262701A1 (ja) * 2019-06-27 2020-12-30 ダイキン工業株式会社 空気調和装置の制御装置、空調システム、空気調和装置の制御方法、およびプログラム
JP7004931B2 (ja) 2019-06-27 2022-02-04 ダイキン工業株式会社 空気調和装置の制御装置、空調システム、空気調和装置の制御方法、およびプログラム
US11852367B2 (en) 2019-06-27 2023-12-26 Daikin Industries, Ltd. Control device for air conditioning apparatus, air conditioning system, control method for air conditioning apparatus, and program
WO2021187423A1 (ja) * 2020-03-16 2021-09-23 三菱電機株式会社 空気調和システム
JPWO2021187423A1 (ja) * 2020-03-16 2021-09-23
JP7414958B2 (ja) 2020-03-16 2024-01-16 三菱電機株式会社 空気調和システム
CN113266925A (zh) * 2021-05-28 2021-08-17 广东纽恩泰新能源科技发展有限公司 一种两联供热泵系统的控制方法及水温控制装置
JP7568997B1 (ja) 2023-09-29 2024-10-17 ダイキン工業株式会社 空調システム

Also Published As

Publication number Publication date
CN102770718B (zh) 2015-02-18
US9797614B2 (en) 2017-10-24
CN102770718A (zh) 2012-11-07
JPWO2011104827A1 (ja) 2013-06-17
JP5312674B2 (ja) 2013-10-09
EP2466220A1 (en) 2012-06-20
US20120291468A1 (en) 2012-11-22
EP2466220B1 (en) 2016-11-16
EP2466220A4 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5312674B2 (ja) 空気調和システム及び空気調和システムの制御方法
US9562701B2 (en) Temperature control system and air conditioning system
JP6567183B2 (ja) 空気調和システム
JP4842654B2 (ja) 輻射パネル用空調システムの制御方法
US11959652B2 (en) Machine learning apparatus, air conditioning system, and machine learning method
AU2012392673B2 (en) Air conditioning apparatus
US9410715B2 (en) Air conditioning apparatus
JP6681896B2 (ja) 冷凍システム
EP2508806B1 (en) Heat pump system and heat pump unit controlling method
JP2017078556A (ja) 輻射式空調装置
CN110793135B (zh) 一种地暖空调一体机
KR20160051596A (ko) 공조 시스템
JP2019105397A (ja) 空気調和装置及び空気調和システム
WO2013061399A1 (ja) ヒートポンプシステム、制御装置、温調方法及びプログラム
JP2007205605A (ja) 空調システム
JP6072670B2 (ja) ヒートポンプ式給湯暖房システム
JP6890727B1 (ja) 空気調和システムおよび制御方法
JP4104218B2 (ja) 空気調和装置
US11674706B2 (en) System and method for operating an air conditioner unit having an auxiliary electric heater
JP7523397B2 (ja) 空調システム
JP2016102635A (ja) 空調システム
JP2021196096A (ja) 空調システム
WO2012114205A1 (en) Refrigerating machine optimized for carrying out cascade refrigerating cycles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064696.4

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2010801095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010801095

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801095

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501566

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13521520

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE