WO2011104809A1 - エレベーターの制御装置 - Google Patents

エレベーターの制御装置 Download PDF

Info

Publication number
WO2011104809A1
WO2011104809A1 PCT/JP2010/052698 JP2010052698W WO2011104809A1 WO 2011104809 A1 WO2011104809 A1 WO 2011104809A1 JP 2010052698 W JP2010052698 W JP 2010052698W WO 2011104809 A1 WO2011104809 A1 WO 2011104809A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
drive control
torque
speed
command
Prior art date
Application number
PCT/JP2010/052698
Other languages
English (en)
French (fr)
Inventor
一文 平林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP10846476.9A priority Critical patent/EP2541754B1/en
Priority to CN201080063454.3A priority patent/CN102754329B/zh
Priority to KR1020127019541A priority patent/KR101402395B1/ko
Priority to JP2012501548A priority patent/JP5464265B2/ja
Priority to PCT/JP2010/052698 priority patent/WO2011104809A1/ja
Publication of WO2011104809A1 publication Critical patent/WO2011104809A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases

Definitions

  • This invention relates to an elevator control device.
  • an elevator has a set of drive systems including a motor for driving a car, a power converter paired with the motor, and a control device for the power converter as a drive system.
  • the capacity required for the electric motor is mainly determined from the speed of the elevator and the loading capacity of the car. The higher the speed and the larger the loading capacity, the more the capacity required for the electric motor. growing. Therefore, a drive system corresponding to an elevator called a so-called high-speed or ultra-high-speed elevator needs a drive system composed of a large-capacity electric motor and a large-capacity power converter paired with the electric motor.
  • transistor converters, transistor inverters, and the like used in power converters have a predetermined maximum capacity that can be processed as an element, and the capacity of the power converter is limited by the capacity of this element.
  • a drive control system called a so-called multi-drive system that includes a plurality of small-capacity electric motors and a plurality of small-capacity power converters paired with these electric motors has been considered.
  • an elevator control device using a conventional multi-drive method, a plurality of power converters, a plurality of electric motors respectively fed by these, and a plurality of power sharing units that determine the output sharing among the plurality of power converters based on the required torque And a torque distribution unit consisting of a function of the above, selecting a function according to the operation mode, calculating and outputting a current command or the like according to the function, and inputting the current command or the like as a PWM (Pulse Width Modulation: pulse)
  • PWM Pulse Width Modulation: pulse
  • the present invention has been made to solve such a problem, and can shorten the wiring of the gate signal line connecting the gate amplifying device and each power conversion device, thereby improving noise resistance in the gate signal. It is possible to obtain a multi-drive type elevator control device that is possible.
  • the second object is to obtain a multi-drive type elevator control device that can increase the degree of freedom of device arrangement and can simplify the wiring for connecting each device. is there.
  • two or more drive control devices an electric motor that is controlled by each of the drive control devices to drive the elevator, and each of the drive control devices are provided, and electric power is supplied to the electric motor.
  • An elevator control device having a power conversion device, the speed control device provided in one of the drive control devices and outputting a torque command based on the speed command, and the one drive control device
  • a torque distribution device that distributes the torque command to a distributed torque command to each of the drive control devices, and a communication device that transmits the distributed torque command to the other drive control devices
  • the power conversion device provided in the other drive control device is configured such that the electric motor corresponds to the distributed torque command transmitted by the communication device. Configured to supply the power.
  • the elevator control device is a multi-drive system, and can shorten the wiring of the gate signal line connecting the gate amplification device and each power conversion device, thereby improving noise resistance in the gate signal. There is an effect that it is possible. In addition, it is possible to increase the degree of freedom of device arrangement, and it is also possible to simplify the wiring connecting each device.
  • FIG. 1 is a system configuration diagram illustrating an overall configuration of an elevator control device according to Embodiment 1 of the present invention.
  • FIG. It is explanatory drawing which shows the internal structure of the speed control apparatus which concerns on Embodiment 1 of this invention. It is explanatory drawing which shows the internal structure of the torque distribution apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 1 to 3 relate to Embodiment 1 of the present invention.
  • FIG. 1 is a system configuration diagram showing the overall configuration of the elevator control device
  • FIG. 2 is an explanatory diagram showing the internal configuration of the speed control device
  • 3 is an explanatory diagram showing an internal configuration of the torque distribution device.
  • reference numeral 1 denotes a commercial power source which is a three-phase AC power source for supplying power to the elevator.
  • the three-phase alternating current from the commercial power source 1 is input to the first power conversion device 2A and the second power conversion device 2B, respectively, and in the first power conversion device 2A and the second power conversion device 2B, respectively.
  • the voltage and frequency are respectively converted, that is, output as variable voltage and variable frequency AC power, respectively.
  • the AC power output from the first power converter 2A is supplied to the first AC motor 3A, and the AC power output from the second power converter 2B is supplied to the second AC motor 3B.
  • the first AC motor 3A and the second AC motor 3B are double three-phase AC motors, and drive the operation of the elevator.
  • the first power conversion device 2A and the first AC motor 3A constitute a first drive system A that is one drive system of the elevator, and the second power conversion device 2B and the second AC motor 3B.
  • the second drive system B which is the other drive system of the elevator is configured.
  • a drive sheave 4 is connected to a rotational drive shaft of a double three-phase AC motor constituted by the first AC motor 3A and the second AC motor 3B, and a main rope 5 is wound around the drive sheave 4. It has been.
  • One end of the main rope 5 is connected to a car 6 that can be raised and lowered in a hoistway (not shown), and the other end of the main rope 5 is opposite to the car 6 in the hoistway.
  • a counterweight 7 that moves up and down is connected.
  • the AC motor (the first AC motor 3A and the second AC motor 3B) is provided with a position detector 8 that detects the rotational position of the rotary drive and outputs it as a position signal. Is provided with a load detector 9 for detecting the load in the car 6 and outputting it as a load signal WL.
  • the speed command generator 11 provided in the first drive control device 10A generates a speed command ⁇ r * for controlling the traveling speed of the elevator, and the speed detector 12 receives a position signal from the position detector 8. Based on this, the traveling speed of the elevator is calculated and output as a speed signal ⁇ r.
  • the speed control device 13 provided in the first drive control device 10A includes the speed command ⁇ r * from the speed command generation device 11, the speed signal ⁇ r from the speed detection device 12, and the load signal WL from the load detector 9. Based on this, torque current commands i ⁇ 1 *, i ⁇ 2 *, i ⁇ 3 * and i ⁇ 4 * necessary for controlling the first drive system A and the second drive system B are generated.
  • the torque current commands i ⁇ 1 *, i ⁇ 2 *, i ⁇ 3 * and i ⁇ 4 * output from the speed control device 13 are input to the torque distribution device 14 provided in the first drive control device 10A.
  • the torque distribution device 14 outputs distributed torque current commands iA * and iB * based on the torque current commands i ⁇ 1 *, i ⁇ 2 *, i ⁇ 3 * and i ⁇ 4 *.
  • iA * is a distributed torque current command to the first drive system A composed of the first power converter 2A and the first AC motor 3A
  • iB * is the second power converter 2B and the second AC. This is a distributed torque current command to the second drive system B composed of the electric motor 3B.
  • the first phase detection device 16A provided in the first drive control device 10A detects the rotational phase of the first AC motor 3A based on the position detection signal from the position detector 8 and outputs the phase signal ⁇ A. To do.
  • the distributed torque current command iA * which is one distributed torque current command output from the torque distribution device 14, is input to the first current control device 17A included in the first drive control device 10A.
  • the first current control device 17A is based on the distribution torque current command iA * from the torque distribution device 14, the iA from the first current detector 15A, and the phase signal ⁇ A from the first phase detection device 16A.
  • the voltage command VA * for the first AC motor 3A is calculated and output.
  • the voltage command VA * output from the first current control device 17A is input to the first PWM device 18A included in the first drive control device 10A, and the first PWM device 18A receives the voltage command VA *. Based on this, the PWM signal PA is output.
  • PWM is an abbreviation for Pulse Width Modulation (pulse width modulation).
  • the PWM signal PA is input to a first gate amplifying device 19A included in the first drive control device 10A, and the first gate amplifying device 19A generates a gate pulse PGA based on the PWM signal PA. Then, the gate pulse PGA output from the first gate amplifier 19A is input to the first power converter 2A, and the power supplied to the first AC motor 3A is controlled to control the first. The driving of one AC motor 3A is controlled.
  • the distributed torque current command iB * which is the other distributed torque current command output from the torque distribution device 14 included in the first drive control device 10A, is transmitted via the first communication device 20A included in the first drive control device 10A. And transmitted to the second drive control device 10B related to the control of the second drive system B.
  • the second drive control device 10B includes a second communication device 20B, and is transmitted from the first communication device 20A included in the first drive control device 10A via the second communication device 20B. Distribution torque current command iB * from torque distribution device 14 is received.
  • the amount of current supplied from the second power converter 2B to the second AC motor 3B is detected and output as a current signal iB.
  • a second current detector 15B is provided.
  • the second phase detection device 16B included in the second drive control device 10B detects the rotational phase of the second AC motor 3B based on the position detection signal from the position detector 8 and outputs the phase signal ⁇ B. To do.
  • the distributed torque current command iB * received via the second communication device 20B is input to the second current control device 17B included in the second drive control device 10B.
  • This second current control device 17B is based on the distributed torque current command iB *, the iB from the second current detector 15B, and the phase signal ⁇ B from the second phase detector 16B.
  • the voltage command VB * for is calculated and output.
  • the voltage command VB * output from the second current control device 17B is input to the second PWM device 18B included in the second drive control device 10B, and the second PWM device 18B receives the voltage command VB *. Based on this, the PWM signal PB is output.
  • the PWM signal PB is input to a second gate amplifying device 19B included in the second drive control device 10B, and the second gate amplifying device 19B generates a gate pulse PGB based on the PWM signal PB.
  • the gate pulse PGB output from the second gate amplifier 19B is input to the second power converter 2B, and the power supplied to the second AC motor 3B is controlled to control the first. The driving of the second AC motor 3B is controlled.
  • the speed control device 13 included in the first drive control device 10A is as follows: the speed command ⁇ r * from the speed command generation device 11, the speed signal ⁇ r from the speed detection device 12, and the load detector 9 Torque current commands i ⁇ 1 *, i ⁇ 2 *, i ⁇ 3 * and i ⁇ 4 * are calculated based on the load signal WL from (FIG. 2).
  • the speed control device 13 employs a so-called model reference control configuration, and calculates a model torque command value ⁇ mdl *, an error torque command value ⁇ err *, a vibration suppression torque command value ⁇ damp *, and a load torque command value ⁇ l *. To do.
  • the model torque command value ⁇ mdl * is calculated by multiplying the deviation of the speed command ⁇ r * from a model speed ⁇ mdl * described later by a proportional gain Ksp1. Further, the model speed ⁇ mdl * is calculated by multiplying the model torque command value ⁇ mdl * by an integral gain (1 / JA ⁇ s) including the model inertia JA component to be controlled.
  • the error torque command value ⁇ err * is obtained by multiplying ⁇ err, which is a deviation signal with respect to the speed signal ⁇ r of the model speed ⁇ mdl *, by a proportional gain Ksp2, and by multiplying the deviation signal ⁇ err by an integral gain (Ksi2 / s), It is calculated by adding together.
  • the vibration suppression torque command value ⁇ damp * is calculated by extracting a vibration component from the speed signal ⁇ r and converting it into a suppression signal in the vibration suppression control device 21 provided in the speed control device 13.
  • the load torque command value ⁇ l * is calculated from the load signal WL in the load torque calculation control device 22 provided in the speed control device 13.
  • each model torque command value ⁇ mdl *, error torque command value ⁇ err *, vibration suppression torque command value ⁇ damp *, and load torque command value ⁇ l * is multiplied by a torque constant k ⁇ to obtain each torque command value as a torque current.
  • a torque current command i ⁇ 4 * is calculated from the load torque command value ⁇ l * and output.
  • the torque constant k ⁇ used here is determined by the characteristics of the electric motors (first AC motor 3A and second AC motor 3B).
  • i ⁇ 2 * and i ⁇ 3 * are the actual values of the elevator detected by the speed detection device 12, respectively. That is, it is a torque current command value (complementary torque) that includes information indicating the actual speed of the elevator and that functions as feedback.
  • i ⁇ 1 * and i ⁇ 4 * are calculated without using the speed signal ⁇ r indicating the actual speed of the elevator, that is, the feed does not include information indicating the actual speed of the elevator. This is the torque current command value that works forward.
  • the torque distribution device 14 included in the first drive control device 10A is based on the torque current commands i ⁇ 1 *, i ⁇ 2 *, i ⁇ 3 *, and i ⁇ 4 * from the speed control device 13 as follows.
  • the distributed torque current command iA * to the drive system A and the distributed torque current command iB * to the second drive system B are calculated (FIG. 3).
  • the feedforward current command ifwd * is distributed to the first drive system A and the second drive system B.
  • the torque current command related to the feedforward is distributed to the first drive system A and the second drive system B with a predetermined distribution ratio, and the first The torque current command related to the feedforward distributed to one drive system A is further added with the torque current command related to feedback to calculate the distributed torque current command iA * to the first drive system A, and the second The drive system B is calculated as a distributed torque current command iB * to the second drive system B with the torque current command related to the distributed feedforward.
  • the distributed torque current command iA * to the first drive system A includes a component related to the speed deviation between the speed command ⁇ r * and the speed signal ⁇ r, and the distributed torque to the second drive system B
  • the current command iB * does not include a component related to the speed deviation.
  • the speed command ⁇ r * from the speed command generation device 11 and the speed signal from the speed detection device 12 are used.
  • torque current commands i ⁇ 1 *, i ⁇ 2 *, i ⁇ 3 * and i ⁇ 4 * are generated so as to follow the speed command ⁇ r *.
  • the torque distribution device 14 included in the first drive control device 10A includes a torque current command component (speed deviation component) related to feedback based on the torque current commands i ⁇ 1 *, i ⁇ 2 *, i ⁇ 3 *, and i ⁇ 4 *.
  • the distributed torque current command iA * to the first drive system A and the distributed torque current command iB * to the second drive system B not including the torque current command component (speed deviation component) related to feedback are output.
  • the distributed torque current command iA * to the first drive system A output from the torque distribution device 14 is directly input to the first current control device 17A of the first drive control device 10A, and the torque distribution device 14
  • the distributed torque current command iB * to the second drive system B output from the second drive system B via the first communication device 20A and the second communication device 20B is the second current control device 17B of the second drive control device 10B. Is transmitted to.
  • the distributed torque current command iA * output from the torque distribution device 14 to the first drive system A includes the first current control device 17A, the first PWM device 18A and the first drive device 10A included in the first drive control device 10A.
  • the gate pulse PGA is passed through the gate amplification device 19A, and the power supplied from the first power conversion device 2A to the first AC motor 3A is controlled by the gate pulse PGA, whereby the first AC motor 3A Drive is controlled.
  • the distributed torque current command iB * to the second drive system B transmitted to the second drive control device 10B via the communication device is the second current control device provided in the second drive control device 10B.
  • the second PWM device 18B and the second gate amplifying device 19B become the gate pulse PGB, and the power supplied from the second power converter 2B to the second AC motor 3B is controlled by the gate pulse PGB. As a result, the driving of the second AC motor 3B is controlled.
  • the speed control device and the torque distribution device are provided only in the drive control device constituting a certain drive system, and the torque command from the torque distribution device is transmitted to the drive control device of the other drive system via the communication device. To transmit each.
  • the elevator control device configured as described above is provided in each of two or more drive control devices, an electric motor that is controlled by each of the drive control devices and drives the elevator, and supplies electric power to the electric motor.
  • An elevator controller having a power conversion device to supply, provided in one of the drive control devices, provided in one drive control device, a speed control device that outputs a torque command based on the speed command, A torque distribution device that distributes a torque command to a distributed torque command to each of the drive control devices, and a communication device that transmits the distributed torque command to other drive control devices, provided in the other drive control device
  • the power converter supplies power to the motor in accordance with the distributed torque command transmitted by the communication device, and is provided in each of the drive control devices. Further comprising a gate amplifier which outputs a gate pulse in response to the torque command, the power converter is for supplying power to the motor based on the gate pulse.
  • a multi-drive type elevator comprising two or more drive control devices each having a power conversion device that supplies electric power to the motor, and an electric motor that is controlled by each of these drive control devices to drive the elevator is easy. It is possible to realize a large capacity, to shorten the wiring of the gate signal line connecting the gate amplifier and each power converter, and to improve the noise resistance in the gate signal. System reliability can be improved. In addition, the degree of freedom of device arrangement can be increased, and the wiring connecting the devices can be simplified.
  • the speed control device outputs a torque command based on the speed deviation between the speed command and the speed detected from the rotation speed of the electric motor, and the torque distribution device has a component related to the speed deviation only to one drive control device.
  • the distributed torque command included is distributed, and the distributed torque command not including the component related to the speed deviation is distributed to the other drive control devices. For this reason, the distribution torque command to the other drive control device transmitted via the communication device does not include the component related to the speed deviation, only the component related to the feedforward, and has little variation with respect to time.
  • the present invention includes two or more drive control devices, an electric motor that is controlled by each of these drive control devices to drive an elevator, and a power conversion device that is provided in each of the drive control devices and supplies electric power to the electric motor. It can be used for a multi-drive elevator control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Elevator Control (AREA)

Abstract

 ゲート増幅装置と各電力変換装置との間のゲート信号線を短縮することができ、ゲート信号におけるノイズ耐性を向上することが可能であるマルチドライブ方式のエレベーターの制御装置を提供する。このため、2以上の駆動制御装置と、駆動制御装置のそれぞれに制御されてエレベーターを駆動する電動機と、駆動制御装置のそれぞれに設けられ、電動機に電力を供給する電力変換装置と、を有するエレベーターの制御装置において、駆動制御装置の一に設けられ、速度指令に基づいてトルク指令を出力する速度制御装置と、一の駆動制御装置に設けられ、トルク指令を駆動制御装置それぞれへの分配トルク指令に分配するトルク分配装置と、分配トルク指令を、他の駆動制御装置へと伝送する通信装置と、を備え、他の駆動制御装置に設けられた電力変換装置は、通信装置により伝送された分配トルク指令に応じて電動機に電力を供給する構成とする。

Description

エレベーターの制御装置
 この発明は、エレベーターの制御装置に関するものである。
 一般にエレベーターは、その駆動系として、乗かご駆動用の電動機と、この電動機と対をなす電力変換器及びこの動力変換器の制御装置と、で構成されている1組の駆動系を有している。そして、この場合、電動機に必要とされる容量は主にエレベーターの速度と乗りかごの積載量とから決定され、速度が高くなるほど、また、積載量が大きくなるほど、電動機に必要とされる容量が大きくなる。
 従って、いわゆる高速又は超高速エレベーターと呼ばれるエレベーターに対応する駆動装置には、大容量の電動機及びこの電動機と対をなす大容量の電力変換器から構成された駆動系が必要になる。
 しかし、電力変換器に使用されるトランジスタ・コンバータやトランジスタ・インバータ等には、素子として処理可能な最大容量が予め決められており、電力変換器の容量にはこの素子の容量からくる制約がある。
 そこで、複数の小容量の電動機と、これらの電動機とそれぞれ対をなす複数の小容量の電力変換器とを備えた、いわゆるマルチドライブ方式といわれる駆動制御方式が考えられている。
 従来におけるマルチドライブ方式を用いたエレベーターの制御装置においては、複数の電力変換器と、これらによってそれぞれ給電される複数の電動機と、要求トルクに基づき複数の電力変換器間の出力分担を決定する複数の関数からなるトルク分配部と、を設け、運転モードに応じて関数を選択してその関数に従って電流指令等を演算して出力し、これらの電流指令等を入力としてPWM(Pulse Width Modulation:パルス幅変調)装置及びゲート増幅器を経て出力されたゲート信号を各電力変換器へと伝送するものが知られている(例えば、特許文献1参照)。
日本特開平05-038182号公報
 しかしながら、特許文献1に示された従来におけるエレベーターの制御装置においては、各電力変換装置へのトルク分配を行った後に、トルク分配結果に応じた指令信号に基づきPWM装置及びゲート増幅装置においてゲート信号を発生させ、ゲート増幅装置からゲート信号をそれぞれの電力変換装置へと伝送するものである。
 従って、ゲート信号伝送先の電力変換装置が複数存在するため、ゲート増幅装置と各電力変換装置とを接続するゲート信号線の配線が非常に長くなってしまい、このゲート信号におけるノイズ耐性が減少してしまうおそれがあるという課題がある。
 すなわち、ノイズの影響により適切な駆動信号(ゲート信号)を電力変換装置へと伝達することができずに、例えばインバータの誤動作等によりエレベーターの運行に悪影響及ぼしてしまうおそれがあるという課題がある。
 また、ゲート信号線をなるべく短くするために1つの制御盤内に複数の電力変換装置を収納しようとした場合、構成機器が巨大化してしまい機器配置の自由度が損なわれてしまうという課題や、制御盤内の配線が煩雑になってしまうという課題がある。
 この発明は、このような課題を解決するためになされたもので、ゲート増幅装置と各電力変換装置とを接続するゲート信号線の配線を短縮することができ、ゲート信号におけるノイズ耐性を向上することが可能であるマルチドライブ方式のエレベーターの制御装置を得るものである。
 また、第2の目的は、機器配置の自由度を高くすることが可能であるとともに、各機器を接続する配線を簡潔なものにすることができるマルチドライブ方式のエレベーターの制御装置を得るものである。
 この発明に係るエレベーターの制御装置においては、2以上の駆動制御装置と、前記駆動制御装置のそれぞれに制御されてエレベーターを駆動する電動機と、前記駆動制御装置のそれぞれに設けられ、前記電動機に電力を供給する電力変換装置と、を有するエレベーターの制御装置であって、前記駆動制御装置の一に設けられ、速度指令に基づいてトルク指令を出力する速度制御装置と、前記一の前記駆動制御装置に設けられ、前記トルク指令を前記駆動制御装置それぞれへの分配トルク指令に分配するトルク分配装置と、前記分配トルク指令を、他の前記駆動制御装置へと伝送する通信装置と、を備え、前記他の前記駆動制御装置に設けられた前記電力変換装置は、前記通信装置により伝送された前記分配トルク指令に応じて前記電動機に電力を供給する構成とする。
 この発明に係るエレベーターの制御装置においては、マルチドライブ方式であって、ゲート増幅装置と各電力変換装置とを接続するゲート信号線の配線を短縮することができ、ゲート信号におけるノイズ耐性を向上することが可能であるという効果を奏する。
 また、機器配置の自由度を高くすることが可能であるとともに、各機器を接続する配線を簡潔なものにすることができるという効果も併せ奏する。
この発明の実施の形態1に係るエレベーターの制御装置の全体構成を示すシステム構成図である。 この発明の実施の形態1に係る速度制御装置の内部構成を示す説明図である。 この発明の実施の形態1に係るトルク分配装置の内部構成を示す説明図である。
 この発明を添付の図面に従い説明する。各図を通じて同符号は同一部分又は相当部分を示しており、その重複説明は適宜に簡略化又は省略する。
実施の形態1.
 図1から図3は、この発明の実施の形態1に係るもので、図1はエレベーターの制御装置の全体構成を示すシステム構成図、図2は速度制御装置の内部構成を示す説明図、図3はトルク分配装置の内部構成を示す説明図である。
 図において1は当該エレベーターに電力を供給する三相交流電源である商用電源である。商用電源1からの三相交流は、第1の電力変換装置2A及び第2の電力変換装置2Bへとそれぞれ入力されて、これらの第1の電力変換装置2A及び第2の電力変換装置2Bにおいて、それぞれ電圧、周波数が変換されすなわち可変電圧、可変周波数の交流電力としてそれぞれ出力される。
 第1の電力変換装置2Aから出力された交流電力は第1の交流電動機3Aへと、第2の電力変換装置2Bから出力された交流電力は第2の交流電動機3Bへと、それぞれ給電される。これらの第1の交流電動機3A及び第2の交流電動機3Bは二重三相交流電動機であり、当該エレベーターの運転を駆動するものである。
 そして、第1の電力変換装置2A及び第1の交流電動機3Aにより当該エレベーターの一方の駆動系である第1の駆動系Aが構成され、第2の電力変換装置2B及び第2の交流電動機3Bにより当該エレベーターの他方の駆動系である第2の駆動系Bが構成されている。
 第1の交流電動機3A及び第2の交流電動機3Bにより構成される二重三相交流電動機の回転駆動軸には駆動シーブ4が連結されており、この駆動シーブ4には主ロープ5が巻き掛けられている。
 この主ロープ5の一端には、図示しない昇降路内に昇降自在に配設された乗りかご6が接続されており、主ロープ5の他端には、昇降路内において乗りかご6と逆方向に昇降する釣合い重り7が接続されている。
 また、交流電動機(第1の交流電動機3A及び第2の交流電動機3B)にはこの回転駆動機の回転位置を検出し位置信号として出力する位置検出器8が設けられており、乗りかご6にはこの乗りかご6内の荷重を検出し荷重信号WLとして出力する荷重検出器9が設けられている。
 以下、まず、第1の駆動系Aの制御に係る第1の駆動制御装置10Aについて説明する。
 この第1の駆動制御装置10Aが備える速度指令発生装置11は当該エレベーターの走行速度を制御するための速度指令ωr*を発生するものであり、速度検出装置12は位置検出器8からの位置信号に基づいて当該エレベーターの走行速度を演算して速度信号ωrとして出力するものである。
 そして、この第1の駆動制御装置10Aが備える速度制御装置13は、速度指令発生装置11からの速度指令ωr*、速度検出装置12からの速度信号ωr及び荷重検出器9からの荷重信号WLに基づいて、第1の駆動系A及び第2の駆動系Bを制御するために必要なトルク電流指令iτ1*、iτ2*、iτ3*及びiτ4*を発生する。
 速度制御装置13から出力されたトルク電流指令iτ1*、iτ2*、iτ3*及びiτ4*は、第1の駆動制御装置10Aが備えるトルク分配装置14へと入力される。
 このトルク分配装置14は、トルク電流指令iτ1*、iτ2*、iτ3*及びiτ4*に基づいて、分配トルク電流指令iA*及びiB*を出力する。
 ここで、iA*は第1の電力変換装置2A及び第1の交流電動機3Aからなる第1の駆動系Aへの分配トルク電流指令、iB*は第2の電力変換装置2B及び第2の交流電動機3Bからなる第2の駆動系Bへの分配トルク電流指令である。
 第1の電力変換装置2Aと第1の交流電動機3Aとの間には、第1の電力変換装置2Aから第1の交流電動機3Aへと供給される電流量を検出し電流信号iAとして出力する第1の電流検出器15Aが設けられている。
 また、第1の駆動制御装置10Aが備える第1の位相検出装置16Aは、位置検出器8からの位置検出信号に基づいて、第1の交流電動機3Aの回転位相を検出し位相信号θAを出力する。
 トルク分配装置14から出力された一方の分配トルク電流指令である分配トルク電流指令iA*は、第1の駆動制御装置10Aが備える第1の電流制御装置17Aへと入力される。
 この第1の電流制御装置17Aは、トルク分配装置14からの分配トルク電流指令iA*、第1の電流検出器15AからのiA及び第1の位相検出装置16Aからの位相信号θAに基づいて、第1の交流電動機3Aに対する電圧指令VA*を算出して出力する。
 第1の電流制御装置17Aから出力された電圧指令VA*は、第1の駆動制御装置10Aが備える第1のPWM装置18Aへと入力され、この第1のPWM装置18Aは電圧指令VA*に基づいてPWM信号PAを出力する。なお、PWMとは、Pulse Width Modulation(パルス幅変調)の略である。
 このPWM信号PAは第1の駆動制御装置10Aが備える第1のゲート増幅装置19Aへと入力され、この第1のゲート増幅装置19AはPWM信号PAに基づいてゲートパルスPGAを発生する。
 そして、この第1のゲート増幅装置19Aから出力されるゲートパルスPGAが第1の電力変換装置2Aへと入力されて、第1の交流電動機3Aへと供給される電力が制御されることにより第1の交流電動機3Aの駆動が制御される。
 第1の駆動制御装置10Aが備えるトルク分配装置14から出力された他方の分配トルク電流指令である分配トルク電流指令iB*は、第1の駆動制御装置10Aが備える第1の通信装置20Aを介して、第2の駆動系Bの制御に係る第2の駆動制御装置10Bへと伝送される。
 この第2の駆動制御装置10Bは第2の通信装置20Bを備えており、この第2の通信装置20Bを介して、第1の駆動制御装置10Aが備える第1の通信装置20Aから送信されたトルク分配装置14からの分配トルク電流指令iB*を受け取る。
 第2の電力変換装置2Bと第2の交流電動機3Bとの間には、第2の電力変換装置2Bから第2の交流電動機3Bへと供給される電流量を検出し電流信号iBとして出力する第2の電流検出器15Bが設けられている。
 また、第2の駆動制御装置10Bが備える第2の位相検出装置16Bは、位置検出器8からの位置検出信号に基づいて、第2の交流電動機3Bの回転位相を検出し位相信号θBを出力する。
 そして、第2の通信装置20Bを介して受信した分配トルク電流指令iB*は、第2の駆動制御装置10Bが備える第2の電流制御装置17Bへと入力される。
 この第2の電流制御装置17Bは、分配トルク電流指令iB*、第2の電流検出器15BからのiB及び第2の位相検出装置16Bからの位相信号θBに基づいて、第2の交流電動機3Bに対する電圧指令VB*を算出して出力する。
 第2の電流制御装置17Bから出力された電圧指令VB*は、第2の駆動制御装置10Bが備える第2のPWM装置18Bへと入力され、この第2のPWM装置18Bは電圧指令VB*に基づいてPWM信号PBを出力する。
 このPWM信号PBは第2の駆動制御装置10Bが備える第2のゲート増幅装置19Bへと入力され、この第2のゲート増幅装置19BはPWM信号PBに基づいてゲートパルスPGBを発生する。
 そして、この第2のゲート増幅装置19Bから出力されるゲートパルスPGBが第2の電力変換装置2Bへと入力されて、第2の交流電動機3Bへと供給される電力が制御されることにより第2の交流電動機3Bの駆動が制御される。
 第1の駆動制御装置10Aが備える速度制御装置13は、より詳しくは次のようにして、速度指令発生装置11からの速度指令ωr*、速度検出装置12からの速度信号ωr及び荷重検出器9からの荷重信号WLに基づいて、トルク電流指令iτ1*、iτ2*、iτ3*及びiτ4*を算出する(図2)。
 この速度制御装置13は、いわゆるモデル規範制御の構成を採っており、モデルトルク指令値τmdl*、エラートルク指令値τerr*、振動抑制トルク指令値τdamp*、及び、負荷トルク指令値τl*を算出する。
 まず、モデルトルク指令値τmdl*は、速度指令ωr*の後述するモデル速度ωmdl*に対する偏差に比例ゲインKsp1を乗じることにより算出される。また、このモデルトルク指令値τmdl*に当該制御対象のモデルイナーシャJA成分を含む積分ゲイン(1/JA・s)を乗じることによりモデル速度ωmdl*が算出される。
 エラートルク指令値τerr*は、モデル速度ωmdl*の速度信号ωrに対する偏差信号であるωerrに比例ゲインKsp2を乗じたものと、この偏差信号ωerrに積分ゲイン(Ksi2/s)を乗じたものと、を加え合わせることにより算出される。
 振動抑制トルク指令値τdamp*は、速度制御装置13が備える振動抑制制御装置21において速度信号ωrから振動成分を抽出して抑制信号に変換することにより算出される。
 また、負荷トルク指令値τl*は、速度制御装置13が備える負荷トルク演算制御装置22において荷重信号WLから算出される。
 そして、これらのモデルトルク指令値τmdl*、エラートルク指令値τerr*、振動抑制トルク指令値τdamp*及び負荷トルク指令値τl*のそれぞれに、トルク定数kτを乗じることにより各トルク指令値をトルク電流指令値へと変換し、モデルトルク指令値τmdl*からトルク電流指令iτ1*を、エラートルク指令値τerr*からトルク電流指令iτ2*を、振動抑制トルク指令値τdamp*からトルク電流指令iτ3*を、負荷トルク指令値τl*からトルク電流指令iτ4*を、それぞれ算出し出力する。
 なお、ここで用いたトルク定数kτは、電動機(第1の交流電動機3A及び第2の交流電動機3B)の特性により決定される。
 このようにして速度制御装置13により算出された各トルク電流指令値iτ1*、iτ2*、iτ3*及びiτ4*においては、iτ2*及びiτ3*は、速度検出装置12により検出された当該エレベーターの実際の速度を示す速度信号ωrから算出されたものであり、すなわち、当該エレベーターの実際の速度を示す情報を含みフィードバックの働きをするトルク電流指令値(補完トルク)である。
 そして、これに対し、iτ1*及びiτ4*は、当該エレベーターの実際の速度を示す速度信号ωrを用いることなく算出されたものであり、すなわち、当該エレベーターの実際の速度を示す情報を含まないフィードフォワードの働きをするトルク電流指令値である。
 第1の駆動制御装置10Aが備えるトルク分配装置14は、より詳しくは次のようにして、速度制御装置13からのトルク電流指令iτ1*、iτ2*、iτ3*及びiτ4*に基づいて、第1の駆動系Aへの分配トルク電流指令iA*及び第2の駆動系Bへの分配トルク電流指令iB*を算出する(図3)。
 まず、前述したようにフィードフォワードの働きをするトルク電流指令値であるiτ1*とiτ4*との和を求め、フィードフォワード電流指令ifwd*を算出する。すなわち、フィードフォワード電流指令ifwd*は次の式により算出される。
 ifwd* = iτ1* + iτ4*
 次に、このフィードフォワード電流指令ifwd*を、第1の駆動系Aと第2の駆動系Bとに分配する。この際の分配比は、第1の駆動系Aについて0<k1≦1を満たす所定の割合k1に対して、第2の駆動系Bについて割合(1-k1)となるようにされる。
 すなわち、第1の駆動系Aへと出力するフィードフォワード電流指令ifwdA*及び第2の駆動系Bへと出力するフィードフォワード電流指令ifwdB*は、次の式により算出される。
 ifwdA* = k1 × ifwd*
 ifwdB* = (1-k1) × ifwd*
 また、ここで、前述したように、ifwdA*とifwdB*との間には次の関係がある。この分配比に係るk1は、ある所定の定数に固定してもよいし、次の範囲内において当該エレベーターの運転状況により適宜に変化させるようにしてもよい。
 ifwdA* : ifwdB* = k1 : (1-k1)
 0 < k1 ≦ 1
 そして、トルク分配装置14が備えられている第1の駆動系Aへの分配トルク電流指令iA*は、この第1の駆動系Aへと分配されたフィードフォワード電流指令ifwdA*に、前述したようにフィードバックの働きをするトルク電流指令値であるiτ2*及びiτ3*を加えることにより算出される。
 また、第2の駆動系Bへの分配トルク電流指令iB*は、この第2の駆動系Bへと分配されたフィードフォワード電流指令ifwdB*となる。
 すなわち、第1の駆動系Aへと出力する分配トルク電流指令iA*及び第2の駆動系Bへと出力する分配トルク電流指令iB*は、次の式により算出される。
 iA* = ifwdA* + iτ2* + iτ3*
 iB* = ifwdB*
 こうして、第1の駆動制御装置10Aが備えるトルク分配装置14において、フィードフォワードに係るトルク電流指令を所定の分配比でもって第1の駆動系Aと第2の駆動系Bとに分配し、第1の駆動系Aへと分配されたフィードフォワードに係るトルク電流指令にはさらにフィードバックに係るトルク電流指令を加えることにより第1の駆動系Aへの分配トルク電流指令iA*を算出し、第2の駆動系Bについては分配されたフィードフォワードに係るトルク電流指令をもって第2の駆動系Bへの分配トルク電流指令iB*として算出する。
 従って、第1の駆動系Aへの分配トルク電流指令iA*には、速度指令ωr*と速度信号ωrとの速度偏差に係る成分が含まれており、第2の駆動系Bへの分配トルク電流指令iB*には、速度偏差に係る成分は含まれていない。
 このように構成されたエレベーターの制御装置においては、まず、第1の駆動制御装置10Aが備える速度制御装置13において、速度指令発生装置11からの速度指令ωr*、速度検出装置12からの速度信号ωr及び荷重検出器9からの荷重信号WLに基づいて、速度指令ωr*に追従するように制御すべくトルク電流指令iτ1*、iτ2*、iτ3*及びiτ4*を発生する。
 次に、第1の駆動制御装置10Aが備えるトルク分配装置14において、トルク電流指令iτ1*、iτ2*、iτ3*及びiτ4*に基づいて、フィードバックに係るトルク電流指令成分(速度偏差成分)を含む第1の駆動系Aへの分配トルク電流指令iA*及びフィードバックに係るトルク電流指令成分(速度偏差成分)を含まない第2の駆動系Bへの分配トルク電流指令iB*を出力する。
 そして、トルク分配装置14から出力された第1の駆動系Aへの分配トルク電流指令iA*は直接第1の駆動制御装置10Aの第1の電流制御装置17Aへと入力され、トルク分配装置14から出力された第2の駆動系Bへの分配トルク電流指令iB*は第1の通信装置20A及び第2の通信装置20Bを介して第2の駆動制御装置10Bの第2の電流制御装置17Bへと伝送される。
 トルク分配装置14から出力された第1の駆動系Aへの分配トルク電流指令iA*は、第1の駆動制御装置10Aが備える第1の電流制御装置17A、第1のPWM装置18A及び第1のゲート増幅装置19Aを経てゲートパルスPGAとなり、このゲートパルスPGAにより第1の電力変換装置2Aから第1の交流電動機3Aへと供給される電力が制御されることにより第1の交流電動機3Aの駆動が制御される。
 また、通信装置を介して第2の駆動制御装置10Bへと伝送された第2の駆動系Bへの分配トルク電流指令iB*は、第2の駆動制御装置10Bが備える第2の電流制御装置17B、第2のPWM装置18B及び第2のゲート増幅装置19Bを経てゲートパルスPGBとなり、このゲートパルスPGBにより第2の電力変換装置2Bから第2の交流電動機3Bへと供給される電力が制御されることにより第2の交流電動機3Bの駆動が制御される。
 なお、ここでは、駆動系が2組である場合について説明したが、駆動系が2以上の場合において同様にして構成することができる。この場合においては、ある1つの駆動系を構成する駆動制御装置にのみ速度制御装置及びトルク分配装置を設け、他の駆動系の駆動制御装置にはトルク分配装置からのトルク指令を通信装置を介してそれぞれ伝送するようにする。
 以上のように構成されたエレベーターの制御装置は、2以上の駆動制御装置と、駆動制御装置のそれぞれに制御されてエレベーターを駆動する電動機と、駆動制御装置のそれぞれに設けられ、電動機に電力を供給する電力変換装置と、を有するエレベーターの制御装置であって、駆動制御装置の一に設けられ、速度指令に基づいてトルク指令を出力する速度制御装置と、一の駆動制御装置に設けられ、トルク指令を駆動制御装置それぞれへの分配トルク指令に分配するトルク分配装置と、分配トルク指令を、他の駆動制御装置へと伝送する通信装置と、を備え、他の駆動制御装置に設けられた電力変換装置は、通信装置により伝送された分配トルク指令に応じて電動機に電力を供給するものであり、駆動制御装置のそれぞれに設けられ、分配トルク指令に応じてゲートパルスを出力するゲート増幅装置をさらに備え、電力変換装置は、ゲートパルスに基づいて電動機に電力を供給するものである。
 このため、それぞれが電動機に電力を供給する電力変換装置を有する2以上の駆動制御装置と、これらの駆動制御装置それぞれに制御されてエレベーターを駆動する電動機と、からなるマルチドライブ方式のエレベーターを容易に構成でき、大容量化が実現できるとともに、ゲート増幅装置と各電力変換装置とを接続するゲート信号線の配線を短縮することができ、ゲート信号におけるノイズ耐性を向上することが可能であって、システム信頼性を向上させることができる。
 また、機器配置の自由度を高くすることが可能であるとともに、各機器を接続する配線を簡潔なものにすることができる。
 そして、速度制御装置は、速度指令と電動機の回転速度から検出される速度との速度偏差に基づいてトルク指令を出力し、トルク分配装置は、一の駆動制御装置へのみ速度偏差に係る成分が含まれる分配トルク指令を分配し、他の駆動制御装置へは速度偏差に係る成分が含まれない分配トルク指令を分配するものである。
 このため、通信装置を介して伝送する他の駆動制御装置への分配トルク指令には、速度偏差に係る成分が含まれず、フィードフォワードに係る成分のみであって、時間に対する変動分が少ない。
 一般に、通信周期より短い時間間隔で変動するトルク指令を通信により伝送することは困難であるため、通信によるトルク指令の伝送に漏れや遅れ等が生じてしまうおそれがある。そして、例えば、微速運転時に各駆動系へと伝送されるトルク指令に通信に起因するズレや遅れが生じると、トルク供給時に相互干渉(トルク干渉)が発生して、乗り心地が悪化してしまう等のおそれがある。
 これに対し、本願に係るエレベーターの制御装置においては、通信装置を介して伝送する他の駆動制御装置への分配トルク指令には速度偏差に係る成分が含まれないため、通信で送信する信号成分の時間変動を緩和することができ、通信によるトルク指令の伝送遅れ等が発生しにくくトルク干渉等の発生を抑制して乗り心地の悪化を防止することが可能である。
 この発明は、2以上の駆動制御装置と、これらの駆動制御装のそれぞれに制御されてエレベーターを駆動する電動機と、駆動制御装置のそれぞれに設けられ電動機に電力を供給する電力変換装置と、を有するマルチドライブ方式のエレベーターの制御装置に利用できる。
  1  商用電源
  2A 第1の電力変換装置
  2B 第2の電力変換装置
  3A 第1の交流電動機
  3B 第2の交流電動機
  4  駆動シーブ
  5  主ロープ
  6  乗りかご
  7  釣合い重り
  8  位置検出器
  9  荷重検出器
 10A 第1の駆動制御装置
 10B 第2の駆動制御装置
 11  速度指令発生装置
 12  速度検出装置
 13  速度制御装置
 14  トルク分配装置
 15A 第1の電流検出器
 15B 第2の電流検出器
 16A 第1の位相検出装置
 16B 第2の位相検出装置
 17A 第1の電流制御装置
 17B 第2の電流制御装置
 18A 第1のPWM装置
 18B 第2のPWM装置
 19A 第1のゲート増幅装置
 19B 第2のゲート増幅装置
 20A 第1の通信装置
 20B 第2の通信装置
 21  振動抑制制御装置
 22  負荷トルク演算制御装置

Claims (3)

  1.  2以上の駆動制御装置と、
     前記駆動制御装置のそれぞれに制御されてエレベーターを駆動する電動機と、
     前記駆動制御装置のそれぞれに設けられ、前記電動機に電力を供給する電力変換装置と、を有するエレベーターの制御装置であって、
     前記駆動制御装置の一に設けられ、速度指令に基づいてトルク指令を出力する速度制御装置と、
     前記一の前記駆動制御装置に設けられ、前記トルク指令を前記駆動制御装置それぞれへの分配トルク指令に分配するトルク分配装置と、
     前記分配トルク指令を、他の前記駆動制御装置へと伝送する通信装置と、を備え、
     前記他の前記駆動制御装置に設けられた前記電力変換装置は、前記通信装置により伝送された前記分配トルク指令に応じて前記電動機に電力を供給することを特徴とするエレベーターの制御装置。
  2.  前記駆動制御装置のそれぞれに設けられ、前記分配トルク指令に応じてゲートパルスを出力するゲート増幅装置をさらに備え、
     前記電力変換装置は、前記ゲートパルスに基づいて前記電動機に電力を供給することを特徴とする請求項1に記載のエレベーターの制御装置。
  3.  前記速度制御装置は、前記速度指令と前記電動機の回転速度から検出される速度との速度偏差に基づいて前記トルク指令を出力し、
     前記トルク分配装置は、前記一の前記駆動制御装置へのみ前記速度偏差に係る成分が含まれる前記分配トルク指令を分配し、前記他の前記駆動制御装置へは前記速度偏差に係る成分が含まれない前記分配トルク指令を分配することを特徴とする請求項1又は請求項2のいずれかに記載のエレベーターの制御装置。
PCT/JP2010/052698 2010-02-23 2010-02-23 エレベーターの制御装置 WO2011104809A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10846476.9A EP2541754B1 (en) 2010-02-23 2010-02-23 Elevator control device
CN201080063454.3A CN102754329B (zh) 2010-02-23 2010-02-23 电梯控制装置
KR1020127019541A KR101402395B1 (ko) 2010-02-23 2010-02-23 엘리베이터의 제어 장치
JP2012501548A JP5464265B2 (ja) 2010-02-23 2010-02-23 エレベーターの制御装置
PCT/JP2010/052698 WO2011104809A1 (ja) 2010-02-23 2010-02-23 エレベーターの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052698 WO2011104809A1 (ja) 2010-02-23 2010-02-23 エレベーターの制御装置

Publications (1)

Publication Number Publication Date
WO2011104809A1 true WO2011104809A1 (ja) 2011-09-01

Family

ID=44506256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052698 WO2011104809A1 (ja) 2010-02-23 2010-02-23 エレベーターの制御装置

Country Status (5)

Country Link
EP (1) EP2541754B1 (ja)
JP (1) JP5464265B2 (ja)
KR (1) KR101402395B1 (ja)
CN (1) CN102754329B (ja)
WO (1) WO2011104809A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882444A (zh) * 2012-09-11 2013-01-16 北京铁道工程机电技术研究所有限公司 一种适用于轴控和架控机车的转矩均衡和转速跟踪的控制装置
CN103997260A (zh) * 2014-04-28 2014-08-20 范永建 一种直流电机多边独立驱动行走机构变速及差速控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538182A (ja) 1991-07-24 1993-02-12 Hitachi Ltd エレベーター装置
JPH0733342A (ja) * 1993-07-19 1995-02-03 Hitachi Ltd エレベーターの制御装置
JP2008156071A (ja) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp エレベーターの制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146172B2 (ja) * 2002-06-24 2008-09-03 東芝エレベータ株式会社 エレベータの制御装置
KR100953237B1 (ko) * 2006-04-13 2010-04-16 미쓰비시덴키 가부시키가이샤 엘리베이터 장치
KR20070024560A (ko) * 2006-12-01 2007-03-02 미쓰비시덴키 가부시키가이샤 엘리베이터의 제어 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538182A (ja) 1991-07-24 1993-02-12 Hitachi Ltd エレベーター装置
JPH0733342A (ja) * 1993-07-19 1995-02-03 Hitachi Ltd エレベーターの制御装置
JP2008156071A (ja) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp エレベーターの制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882444A (zh) * 2012-09-11 2013-01-16 北京铁道工程机电技术研究所有限公司 一种适用于轴控和架控机车的转矩均衡和转速跟踪的控制装置
CN103997260A (zh) * 2014-04-28 2014-08-20 范永建 一种直流电机多边独立驱动行走机构变速及差速控制系统

Also Published As

Publication number Publication date
EP2541754A1 (en) 2013-01-02
KR20120110127A (ko) 2012-10-09
JP5464265B2 (ja) 2014-04-09
EP2541754B1 (en) 2019-03-27
CN102754329B (zh) 2015-02-04
EP2541754A4 (en) 2018-03-07
CN102754329A (zh) 2012-10-24
JPWO2011104809A1 (ja) 2013-06-17
KR101402395B1 (ko) 2014-06-03

Similar Documents

Publication Publication Date Title
US5389749A (en) Elevator system
JP5440889B2 (ja) 電動パワーステアリング装置
WO2013157315A1 (ja) 電動車両の制御装置および電動車両の制御方法
JP2007166821A (ja) 電動機の制御装置
JP2008187794A (ja) 電動機制御システム、シリーズハイブリッド車両、電動機制御装置、及び電動機制御方法
JPH11299290A (ja) 交流電動機駆動システム
WO2011070609A1 (ja) 推進制御装置
JP4146172B2 (ja) エレベータの制御装置
CN104218852A (zh) 马达控制装置以及具备该马达控制装置的建筑机械
JP4781853B2 (ja) エレベータ装置
WO2014103586A1 (ja) モータ制御装置およびモータ制御方法
JP5464265B2 (ja) エレベーターの制御装置
JP2008222334A (ja) 搬送装置
JP5194330B2 (ja) 電動機の駆動制御装置
CN103378792A (zh) 永磁型同步电机的控制装置
JPWO2005092764A1 (ja) エレベータ制御装置
JP2015050779A (ja) 誘導電動機式電気車及びその制御方法
JP3340346B2 (ja) エレベータ制御装置
JP2011250616A (ja) モータ駆動装置及びモータ駆動車両
JP2009077606A (ja) 発電機と電動機の関連制御装置
JP6381723B1 (ja) 回転電機の制御装置および制御方法
JP2020120497A (ja) 電動車両
JP5566629B2 (ja) 車両用電力変換器の制御装置
JP5127433B2 (ja) 周波数変換装置及び周波数変換方法
JP2016131429A (ja) 電源装置、産業車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063454.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501548

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127019541

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010846476

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE