WO2011103721A1 - 掺铽的硼酸钆盐基绿色发光材料及其制备方法 - Google Patents

掺铽的硼酸钆盐基绿色发光材料及其制备方法 Download PDF

Info

Publication number
WO2011103721A1
WO2011103721A1 PCT/CN2010/070776 CN2010070776W WO2011103721A1 WO 2011103721 A1 WO2011103721 A1 WO 2011103721A1 CN 2010070776 W CN2010070776 W CN 2010070776W WO 2011103721 A1 WO2011103721 A1 WO 2011103721A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
borate
green luminescent
earth metal
alkaline earth
Prior art date
Application number
PCT/CN2010/070776
Other languages
English (en)
French (fr)
Inventor
周明杰
梁小芳
刘军
廖秋荣
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN2010800478189A priority Critical patent/CN102575163A/zh
Priority to JP2012554192A priority patent/JP5529980B2/ja
Priority to US13/574,409 priority patent/US8765016B2/en
Priority to EP10846344.9A priority patent/EP2540799B1/en
Priority to PCT/CN2010/070776 priority patent/WO2011103721A1/zh
Publication of WO2011103721A1 publication Critical patent/WO2011103721A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates

Definitions

  • the invention belongs to the technical field of luminescent materials, and in particular relates to a bismuth borate-based green luminescent material excited by vacuum ultraviolet light and a preparation method thereof.
  • PDPs plasma flat panel displays
  • circuits and luminescent materials are important technologies. With the improvement of circuit design, the selection of luminescent materials has become the most critical technology in PDP display. Therefore, research on trichromatic phosphors for PDP and mercury-free fluorescent lamps is essential.
  • trichromatic phosphors are mainly red powder Y 2 O 3 : Eu 3+ , (Y, Gd) BO 3 : Eu 3+ , green powder Zn 2 SiO 4 : Mn 2+ , BaAl 12 O 19 : Mn 2 + and blue powder BaMgAl 10 O 17 :Eu 2+ .
  • green powder Zn 2 SiO 4 :Mn 2+ due to the spin inhibition of Mn 2+ ( 4 T 1 ⁇ 6 A 1 ), the afterglow time is long, which is not conducive to the display of fast motion pictures, and is not suitable. On the requirements of TV monitors.
  • the luminescent materials based on the strontium borate salt M 3 Gd(BO 3 ) 3 are mainly concentrated on the laser characteristics of rare earth doping as a single crystal, in terms of vacuum ultraviolet excitation. Less research.
  • Tb 3+ Compared with the long afterglow characteristics of Mn 2+ , Tb 3+ has characteristic green light emission (540-545nm), and its spin coupling shields the spin-forbidden ring, which makes it have a shorter afterglow time and overcomes Hysteresis effect.
  • the technical problem to be solved by the present invention is to provide a cerium-doped barium strontium borate-based green luminescent material with high luminescence intensity and a method for preparing a cerium-doped cerium borate-based green luminescent material.
  • the alkaline earth metal element M is one or more of Ca, Sr and Ba.
  • Step two mixing the source compounds
  • Step 3 The mixture is subjected to sintering pretreatment and then cooled;
  • Step 4 The cooled sinter is taken out for grinding, and the ground product is calcined in a reducing atmosphere to obtain the cerium-doped cerium borate-based green luminescent material after cooling.
  • the source compound of the alkaline earth metal ion is at least one of an oxide, a hydroxide, a nitrate, and a carbonate of an alkaline earth metal
  • the source compound of the borate ion is boric acid.
  • At least one of boron oxide, the source compound of Gd 3+ and Tb 3+ being a corresponding rare earth oxide or nitrate.
  • the respective source compounds are uniformly mixed together with the flux when mixed.
  • the fluxing agent is one or more of boric acid and cesium fluoride.
  • the sintering pretreatment temperature is 200 to 700 ° C for 2 to 7 hours.
  • the calcination treatment temperature is 900 to 1100 ° C, and the time is 3 to 24 hours.
  • the source compound of the borate ion is in an amount of 10% to 20% by weight.
  • the reducing atmosphere is a reducing atmosphere formed by a mixed gas of nitrogen and hydrogen, hydrogen or carbon monoxide.
  • the luminescent material of the present invention transmits energy to Gd ions through the strong absorption of vacuum ultraviolet light (VUV) of 150 nm to 175 nm by the matrix M 3 Gd 1-x Tb x (BO 3 ) 3 , and Gd 3+ 6 P J can There is energy transfer between the stage and Tb 3+ . After Tb 3+ absorbs energy, it emits green photons through ff transition radiation, and the energy transfer process between Gd 3+ 6 P J energy level and Tb 3+ increases Tb. 3+ green light emission intensity. Compared with the prior art, the luminescent material of the invention has the following advantages: 1.
  • Gd 3+ in the strontium borate salt M 3 Gd(BO 3 ) 3 (M Ca, Sr, Ba) as a skeleton structure, Gd 3+ ⁇ Tb There is energy transfer between 3+ , which is beneficial to increase the green emission intensity of Tb 3+ ; 2.
  • Tb 3+ has characteristic green emission (540 ⁇ 545nm) and its spin The coupling shields the spin-forbidden ring so that it has a shorter afterglow time and overcomes the hysteresis effect.
  • the luminescent material can be obtained by sintering and calcining, thereby making the preparation process simple, the cost is low, and the invention has broad application prospects.
  • Example 1 is an excitation spectrum of a Sr 3 Gd 0.85 Tb 0.15 (BO 3 ) 3 luminescent material according to Example 1 of the present invention, and the monitoring wavelength is 543 nm;
  • FIG. 4 is a flow chart of a method for preparing a cerium-doped barium borate-based green luminescent material according to the present invention.
  • VUV vacuum ultraviolet light
  • Tb 3+ absorbs energy, it passes.
  • Ff transition radiation, emitting green photons the energy transfer process between Gd 3+ 6 P J level and Tb 3+ increases the green emission intensity of Tb 3+ .
  • the strong absorption peak between 150-200 nm in the vacuum ultraviolet range is the matrix absorption peak.
  • the luminescent material in the first embodiment has strong absorption in the vacuum ultraviolet region, and can effectively transfer energy to the Gd 3+ ions, thereby finally realizing Gd-Tb energy transfer and improving the characteristic emission intensity of Tb 3+ at 543 nm.
  • curve 1 shows the emission spectrum of Sr 3 Gd 0.85 Tb 0.15 (BO 3 ) 3 at an excitation wavelength of 172 nm
  • curve 2 shows the commercial green powder BaAl 12 O 19 : Mn 2+ at an excitation wavelength of 172 nm.
  • Emission spectrum Obviously, the emission peak intensity of Sr 3 Gd 0.85 Tb 0.15 (BO 3 ) 3 near 543 nm is significantly higher than that of commercial green powder BaAl 12 O 19 :Mn 2+ at around 525 nm.
  • the emission intensity of 0.85 Tb 0.15 (BO 3 ) 3 at the excitation wavelength of 543 nm was 1.8 times that of the commercial powder BaAl 12 O 19 :Mn 2+ .
  • the luminescent material of the first embodiment has high luminous efficiency, has a short afterglow time, and overcomes the hysteresis effect.
  • the preparation method includes the following steps:
  • S01 selecting a source compound of an alkaline earth metal ion, a source compound of a borate ion, a source compound of Gd 3+ and Tb 3+ according to a stoichiometric ratio, and a stoichiometric ratio of each source compound is according to a chemical formula M 3 Gd 1-x Tb x a molar ratio of the corresponding element in (BO 3 ) 3 , wherein the source compound of the borate ion is in an amount of 10% to 30% by weight, preferably, the source compound of the borate ion is 10% to 20% by weight.
  • the source compound of the alkaline earth metal ion is at least one of an oxide, a hydroxide, a nitrate, and a carbonate of an alkaline earth metal
  • the source compound of the borate ion is at least at least boric acid and boron oxide.
  • the source compounds of the Gd 3+ and Tb 3+ are corresponding rare earth oxides or nitrates.
  • each source compound is uniformly mixed with a small amount of a flux, which is one or a combination of boric acid and cesium fluoride.
  • step S03 the sintering pretreatment temperature is 200 to 700 ° C for 2 to 7 hours, and is cooled to room temperature.
  • step S04 it is calcined at 900 to 1100 ° C for 3 to 24 hours in a box type high temperature furnace, and then naturally cooled.
  • the reducing atmosphere is a reducing atmosphere formed by a mixed gas of nitrogen and hydrogen, hydrogen or carbon monoxide.
  • compositions of the erbium-doped barium strontium sulphate-based green luminescent material and the preparation method thereof are exemplified below by various embodiments.
  • cerium nitrate Ba(NO 3 ) 2 3.9201g, cerium oxide Gd 2 O 3 0.9017g, boric acid H 3 BO 3 1.2057g (15% excess), cerium oxide Tb 4 O 7 0.0047g, barium fluoride BaF 2 0.0438 g (5%) was thoroughly ground in an agate mortar, placed in a corundum crucible and calcined at 200 ° C for 2 h, then cooled to room temperature, taken out and thoroughly ground again.
  • strontium carbonate SrCO 3 0.0370g of calcium hydroxide Ca(OH) 2 , 0.7703g of yttrium oxide Gd 2 O 3 , 1.0202g of boric acid H 3 BO 3 (10% excess), strontium oxide Tb 4 O 7 0.1402g
  • the barium fluoride BaF 2 0.0438 g (5%) was sufficiently ground in an agate mortar, placed in a corundum crucible and calcined at 700 ° C for 2 h, then cooled to room temperature, taken out and thoroughly ground again.
  • the intensity of Tb 3+ doping is low, as shown in Figure 3.
  • Curve 3 shows the emission spectrum of the Sr 3 Y 0.85 Tb 0.15 (BO 3 ) 3 luminescent material at an excitation wavelength of 172 nm
  • curve 4 shows the emission of the Sr 3 Gd 0.85 Tb 0.15 (BO 3 ) 3 luminescent material at an excitation wavelength of 172 nm. spectrum.
  • the luminescent material can be obtained by sintering and calcination treatment, thereby making the preparation process simple, the cost low, and having broad application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

掺铽的硼酸钆盐基绿色发光材料及其制备方法 技术领域
本发明属于发光材料技术领域,具体涉及一种真空紫外光激发的硼酸钆盐基绿色发光材料及其制备方法。
背景技术
等离子平板显示器(PDP)与常用的CRT显示器和LCD显示器相比,其具有视角宽、面积大、响应快、彩色还原性好等优点,可以被制成较大尺寸的显示器,是壁挂电视的最佳选择;而无汞荧光灯由于其不含对人体有毒的汞,相比与传统的高压汞灯和低压汞灯,从环境保护角度具有重要的意义。PDP显示的两大关键技术是电路和发光材料,随着电路设计的日益完善,发光材料的选用成为PDP显示中的最关键技术。因此,对PDP和无汞荧光灯用三基色荧光粉的研究至关重要。目前广泛使用的三基色荧光粉主要有红粉Y2O3: Eu3+,(Y,Gd)BO3:Eu3+,绿粉Zn2SiO4:Mn2+,BaAl12O19:Mn2+和蓝粉BaMgAl10O17:Eu2+。而对于商用绿粉Zn2SiO4:Mn2+来讲,由于Mn2+的自旋禁戒(4T16A1)发射,导致余辉时间长,不利于显示快速运动的画面,不适于TV显示器的要求。增加Mn2+的掺杂浓度可以缩短余辉时间,但会降低发光材料的发光强度,因此开发新型的高效短余辉绿色发光材料是一种迫切需要。目前对以硼酸钆盐M3Gd(BO3)3 (M=Ca, Sr, Ba) 为基质的发光材料主要集中于其作为单晶进行稀土掺杂的激光特性研究,在真空紫外激发方面的研究较少。而相对Mn2+的长余辉特性而言,Tb3+具有特征绿光发射(540-545nm),且其自旋耦合对自旋禁戒的屏蔽,使之具有较短的余辉时间,克服了滞后效应。
因此,为了克服余辉时间长等缺点,适应显色和绿色照明的需要,必须制备一种新型绿色发光材料,并应用于等离子平板显示技术(PDP)或无汞荧光灯中。
技术问题
本发明所要解决的技术问题是提供一种发光强度高的掺铽的硼酸钆盐基绿色发光材料以及提供一种掺铽的硼酸钆盐基绿色发光材料制备方法。
技术解决方案
解决本发明技术问题的技术方案是:提供一种掺铽的硼酸钆盐基绿色发光材料,所述掺铽的硼酸钆盐基绿色发光材料的化学式为:M3Gd1-xTbx(BO3)3,其中,M为碱土金属元素,x=0.005~0.5。所述碱土金属元素M为Ca、Sr及Ba中的一种或几种。
以及,一种掺铽的硼酸钆盐基绿色发光材料制备方法,其包括如下步骤:
步骤一:按照化学计量比选取碱土金属离子的源化合物、硼酸根离子的源化合物、Gd3+和 Tb3+的源化合物,各源化合物的化学计量比是按照化学式M3Gd1-xTbx(BO3)3 中的相应元素的摩尔比例,其中,所述硼酸根离子的源化合物按摩尔比过量10%~30%,M为碱土金属元素,x=0.005~0.5;
步骤二:将各源化合物混合;
步骤三:将混合物进行烧结预处理,然后冷却;
步骤四:取出冷却后的烧结物进行研磨,再将研磨后产物在还原气氛中进行煅烧,冷却后得到所述掺铽的硼酸钆盐基绿色发光材料。
在本发明的制备方法中,所述碱土金属离子的源化合物为碱土金属的氧化物、氢氧化物、硝酸盐、碳酸盐中的至少一种,所述硼酸根离子的源化合物为硼酸、氧化硼中的至少一种,所述Gd3+和Tb3+的源化合物为相对应的稀土氧化物或硝酸盐。
在本发明的制备方法中,所述各源化合物混合时与助熔剂一起均匀混合。
在本发明的制备方法中,所述助熔剂为硼酸和氟化钡中的一种或几种。
在本发明的制备方法中,所述烧结预处理温度为200~700°C,时间为2~7小时。
在本发明的制备方法中,所述煅烧处理温度为900~1100°C,时间为3~24小时。
在本发明的制备方法中,所述硼酸根离子的源化合物按摩尔比过量10%~20%。
在本发明的制备方法中,所述还原气氛为氮气和氢气的混合气体、氢气或一氧化碳形成的还原气氛。
有益效果
本发明的发光材料通过基质M3Gd1-xTbx(BO3)3 对150nm~175 nm的真空紫外光(VUV)的强吸收,将能量传递给Gd离子,Gd3+ 6PJ能级与Tb3+之间存在能量传递,Tb3+吸收能量后,通过f-f跃迁辐射,发射绿色光子,Gd3+ 6PJ能级与Tb3+之间存在的能量传递过程,增加了Tb3+的绿光发射强度。本发明的发光材料与现有技术相比具有以下优点:1、硼酸钆盐M3Gd(BO3)3 (M=Ca, Sr, Ba)中Gd3+作为骨架结构,Gd3+~Tb3+之间存在能量传递,有利于提高Tb3+的绿光发射强度;2、与Mn2+长余辉特性相比,Tb3+具有特征绿光发射(540~545nm),且其自旋耦合对自旋禁戒的屏蔽,使之具有较短的余辉时间,克服了滞后效应。
在掺铽的硼酸钆盐基绿色发光材料制备方法中,通过烧结和煅烧处理,即可获得发光材料,从而使得制备工艺简单、成本低,具有广阔的生产应用前景。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明实施例1的Sr3Gd0.85Tb0.15(BO3)3发光材料的激发光谱,监测波长为543nm;
图2为本发明实施例1的Sr3Gd0.85Tb0.15(BO3)3 发光材料以及商用BaAl12O19:Mn2+的发射光谱,激发波长为172nm;
图3为本发明实施例1的Sr3Gd0.85Tb0.15(BO3)3 发光材料与比较例1的Sr3Y0.85Tb0.15(BO3)3发光材料发射光谱图,激发波长为172nm;
图4为本发明掺铽的硼酸钆盐基绿色发光材料制备方法的流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的掺铽的硼酸钆盐基绿色发光材料,该掺铽的硼酸钆盐基绿色发光材料的化学式为:M3Gd1-xTbx(BO3)3 ,其中,M为碱土金属元素,x=0.005~0.5。
该掺铽的硼酸钆盐基绿色发光材料是以M3Gd(BO3)3 (M=Ca, Sr, Ba)为基质,掺入发光离子为Tb3+,其发光机理是:通过基质对150~175 nm的真空紫外光(VUV)的强吸收,将能量传递给Gd3+离子,Gd3+ 6PJ能级与Tb3+之间存在能量传递,Tb3+吸收能量后,通过f-f跃迁辐射,发射绿色光子,Gd3+ 6PJ 能级与Tb3+之间存在的能量传递过程,增加了Tb3+的绿光发射强度。
如图1所示,位于真空紫外波段150-200nm之间的强吸收峰是基质吸收峰。本实施例1中的发光材料在真空紫外波段具有较强吸收,可将能量有效传递给Gd3+离子,最终实现Gd-Tb能量传递,提高Tb3+位于543nm处的特征发射强度。
如图2所示,曲线1表示在激发波长为172nm下Sr3Gd0.85Tb0.15(BO3)3 的发射光谱,曲线2表示在激发波长为172nm下商用绿粉BaAl12O19:Mn2+的发射光谱。明显地,Sr3Gd0.85Tb0.15(BO3)3 位于543nm附近的发射峰强度明显高于商用绿粉BaAl12O19:Mn2+ 位于525nm附近的发射强度,本实施例1中Sr3Gd0.85Tb0.15(BO3)3 在激发波长为 543nm下发射强度是商用粉BaAl12O19:Mn2+ 的1.8倍。本实施例1的发光材料发光效率高,具有较短的余辉时间,克服了滞后效应。该硼酸钆盐基绿色发光材料中掺入的Tb3+至少具有以下优点:(1)硼酸钆盐M3Gd(BO3)3 (M=Ca, Sr, Ba)中Gd3+作为骨架结构,Gd3+-Tb3+之间存在能量传递,有利于提高Tb3+的绿光发射强度;(2)与Mn2+长余辉特性相比,Tb3+具有特征绿光发射(540-545nm),且其自旋耦合对自旋禁戒的屏蔽,使之具有较短的余辉时间,克服了滞后效应。
请参阅图4,说明本发明实施例的掺铽的硼酸钆盐基绿色发光材料制备方法的流程,该制备方法包括如下步骤:
S01:按照化学计量比选取碱土金属离子的源化合物、硼酸根离子的源化合物、Gd3+和Tb3+的源化合物,各源化合物的化学计量比是按化学式M3Gd1-xTbx(BO3)3 中相应元素的摩尔比例,其中,该硼酸根离子的源化合物按摩尔比过量10%~30%,优选地,该硼酸根离子的源化合物按摩尔比过量10%~20%,M为碱土金属元素,该碱土金属元素M为Ca、Sr、Ba中的至少一种,x=0.005~0.5;
S02:将各源化合物混合;
S03:将混合物进行烧结预处理,然后冷却;
S04:取出冷却后的烧结物进行研磨,再将研磨后产物在还原气氛中进行煅烧,冷却后得到所述掺铽的硼酸钆盐基绿色发光材料。
在步骤S01中,该碱土金属离子的源化合物为碱土金属的氧化物、氢氧化物、硝酸盐、碳酸盐中的至少一种,该硼酸根离子的源化合物为硼酸、氧化硼中的至少一种,该Gd3+和Tb3+的源化合物为相对应的稀土氧化物或硝酸盐。
在步骤S02中,各源化合物混合时与少量助熔剂一起均匀混合,该助熔剂为硼酸和氟化钡中的一种或组合。
在步骤S03中,烧结预处理温度为200~700°C,时间为2~7小时,冷却至室温。
在步骤S04中,在箱式高温炉中于900~1100°C煅烧3~24小时,然后自然冷却。该还原气氛为氮气和氢气的混合气体、氢气或一氧化碳形成的还原气氛。
以下通过多个实施例来举例说明掺铽的硼酸钆盐基绿色发光材料的不同组成及其制备方法等方面。
实施例1
称取碳酸锶SrCO3 2.2145g,氧化钆Gd2O3 0.7703g,硼酸H3BO31.0666g(按照所得产物中硼元素的摩尔当量过量15%计算而得,以下同此计算方法),氧化铽Tb4O7 0.1402g,氟化钡BaF2 0.0438g (按照与所得产物的摩尔比的5%称量,下同)置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在500℃下预烧2小时(h),然后冷却至室温,取出再次充分研磨。最后,将其在1000℃下,在N2和H2(H2占5%)混合气中煅烧5h,冷却,取出研磨后即得Sr3Gd0.85Tb0.15(BO3)3绿色荧光发光材料。在该制备方法中,氟化钡起助溶剂的作用,不能进入晶格中,不影响终产物Sr3Gd0.85Tb0.15(BO3)3 绿色荧光发光材料的结构及组成。
实施例2
称取硝酸钡Ba(NO3)2 3.9201g,氧化钆Gd2O3 0.9017g,硼酸H3BO3 1.2057g(过量15%),氧化铽Tb4O7 0.0047g,氟化钡BaF2 0.0438g(5%)置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在200℃下预烧2h,然后冷却至室温,取出再次充分研磨。最后,将其在900℃下,在N2和H2(H2占5%)混合气中煅烧5h,冷却,取出研磨后即得Ba3Gd0.995Tb0.005(BO3)3绿色荧光发光材料。
实施例3
称取碳酸钡BaCO3 2.9600g,硝酸钆Gd(NO3)3·6H2O 2.1434g,硼酸H3BO3 1.0202g(过量10%),氧化铽Tb4O7 0.0467g,氟化钡BaF2 0.0438g (5%)置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在700℃下预烧2h,然后冷却至室温,取出再次充分研磨。最后,将其在1100℃下,在一氧化碳形成的还原气氛下煅烧10h,冷却,取出研磨后即得Ba3Gd0.95Tb0.05(BO3)3绿色荧光发光材料。
实施例4
称取氢氧化钙Ca(OH)2 1.1114g,氧化钆Gd2O3 0.6344g,硼酸H3BO3 1.0202g(过量10%),氧化铽Tb4O7 0.2804g置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在600℃下预烧2h,然后冷却至室温,取出再次充分研磨。最后,将其在1000℃,在一氧化碳形成的还原气氛下煅烧24h,冷却,取出研磨后即得Ca3Gd0.7Tb0.3(BO3)3绿色荧光发光材料。
实施例5
称取碳酸锶SrCO3 2.1407g,氢氧化钙Ca(OH)2 0.0370g,氧化钆Gd2O3 0.7703g,硼酸H3BO3 1.0202g(过量10%),氧化铽Tb4O7 0.1402g,氟化钡BaF2 0.0438g (5%)置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在700℃下预烧2h,然后冷却至室温,取出再次充分研磨。最后,将其在1000℃下,在N2和H2(H2占5%)混合气中煅烧12h,冷却,取出研磨后即得Sr2.9Ca0.1Gd0.85Tb0.15(BO3)3绿色荧光发光材料。
实施例6
称取碳酸锶SrCO3 2.0669g,氢氧化钙Ca(OH)2 0.0370g,碳酸钡BaCO3 0.0987g,氧化钆Gd2O3 0.4531g,硼酸H3BO3 1.0666g(过量15%),氧化铽Tb4O7 0.4673g,氟化钡BaF2 0.0438g (5%)置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在700℃下预烧2h,然后冷却至室温,取出再次充分研磨。最后,将其在1000℃下,在H2气中煅烧24h,冷却,取出研磨后即得Sr2.8Ca0.1Ba0.1Gd0. 5Tb0. 5(BO3)3绿色荧光发光材料。
比较例 1
称取碳酸锶SrCO3 2.2145g,氧化钇Y2O3 0.4795g,硼酸H3BO3 1.0666g(过量15%),氧化铽Tb4O7 0.1402g, 氟化钡BaF2 0.0438g (5%)置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在500℃下预烧2h,然后冷却至室温,取出再次充分研磨。最后,将其在1000℃下,在N2和H2(H2占5%)混合气的还原气氛中煅烧5h,冷却,取出研磨即得Sr3Y0.85Tb0.15(BO3)3绿色荧光发光材料。
比较例 2
称取碳酸钡BaCO3 1.5013g,氧化镧La2O3 0.7738g,硼酸H3BO3 1.0202g(过量10%),氧化铽Tb4O7 0.0467g,氟化钡BaF2 0.0438g (5%)置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在500℃下预烧2h,然后冷却至室温,取出再次充分研磨。最后,将其在1100℃下,在一氧化碳形成的还原气氛下煅烧5h,冷却,取出研磨后即得Ba3La0.95Tb0.05(BO3)3绿色荧光发光材料。
比较例 3
称取碳酸钙CaCO3 1.5013g,氧化钆Gd2O3 0.7250g,氧化镧La2O3 0.0815g,硼酸H3BO3 1.0202g(过量10%),氧化铽Tb4O7 0.0934g,氟化钡BaF2 0.0438g (5%)置于玛瑙研钵中充分研磨后,放入刚玉坩埚中在600℃下预烧2h,然后冷却至室温,取出再次充分研磨。最后,将其在1000℃,在一氧化碳形成的还原气氛下煅烧10h,冷却,取出研磨后即得Ca3Gd0.8La0.1Tb0.1 (BO3)3绿色荧光发光材料。
实施例中硼酸钆盐M3Gd(BO3)3 (M=Ca, Sr, Ba)中Gd3+作为骨架结构,Gd3+~Tb3+之间存在能量传递,有利于提高Tb3+的绿光发射强度,而比较例中,硼酸盐MLn(BO3)3 (M=Ca, Sr, Ba;Ln=La, Y等)中Ln3+~Tb3+之间不存在能量传递,相较于M3Gd(BO3)3 (M=Ca, Sr, Ba)而言,在真空紫外光激发下,MLn(BO3)3 (M=Ca, Sr, Ba;Ln=La, Y等)掺Tb3+的发光强度较低,如图3所示。曲线3表示在激发波长为172nm下Sr3Y0.85Tb0.15(BO3)3发光材料的发射光谱,曲线4表示在激发波长为172nm下Sr3Gd0.85Tb0.15(BO3)3发光材料的发射光谱。
在上述掺铽的硼酸钆盐基绿色发光材料中,通过基质M3Gd1-xTbx(BO3)3对150~175 nm的真空紫外光(VUV)的强吸收,将能量传递给Gd离子,Gd3+ 6PJ能级与Tb3+之间存在能量传递,Tb3+吸收能量后,通过f-f跃迁辐射,发射绿色光子,Gd3+ 6PJ能级与Tb3+之间存在的能量传递过程,增加了Tb3+的绿光发射强度。
本发明的发光材料与现有技术相比具有以下优点:1、硼酸钆盐M3Gd(BO3)3 (M=Ca, Sr, Ba)中Gd3+作为骨架结构,Gd3+~Tb3+之间存在能量传递,有利于提高Tb3+的绿光发射强度;2、与Mn2+长余辉特性相比,Tb3+具有特征绿光发射(540-545nm),且其自旋耦合对自旋禁戒的屏蔽,使之具有较短的余辉时间,克服了滞后效应。
在上述掺铽的硼酸钆盐基绿色发光材料制备方法中,通过烧结和煅烧处理,即可获得发光材料,从而使得制备工艺简单、成本低,具有广阔的应用前景。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种掺铽的硼酸钆盐基绿色发光材料,其特征在于:所述掺铽的硼酸钆盐基绿色发光材料的化学式为:M3Gd1-xTbx(BO3)3 ,其中,M为碱土金属元素,x=0.005~0.5。
  2. 如权利要求1所述的掺铽的硼酸钆盐基绿色发光材料,其特征在于:所述碱土金属元素M为Ca、Sr及Ba中的一种或几种。
  3. 一种掺铽的硼酸钆盐基绿色发光材料制备方法,包括如下步骤:
    步骤一:按照化学计量比选取碱土金属离子的源化合物、硼酸根离子的源化合物、Gd3+和 Tb3+的源化合物,各源化合物的化学计量比是按照化学式M3Gd1-xTbx(BO3)3 中的相应元素的摩尔比例,其中,所述硼酸根离子的源化合物按摩尔比过量10%-30%,M为碱土金属元素,x=0.005~0.5;
    步骤二:将各源化合物混合;
    步骤三:将混合物进行烧结预处理,然后冷却;
    步骤四:将冷却后的烧结物进行研磨,再将研磨后产物在还原气氛中煅烧,冷却后得到所述掺铽的硼酸钆盐基绿色发光材料。
  4. 如权利要求3所述的掺铽的硼酸钆盐基绿色发光材料制备方法,其特征在于:所述碱土金属离子的源化合物为碱土金属的氧化物、氢氧化物、硝酸盐、碳酸盐中的至少一种,所述硼酸根离子的源化合物为硼酸、氧化硼中的至少一种,所述Gd3+和Tb3+的源化合物为相对应的稀土氧化物或硝酸盐。
  5. 如权利要求3所述的掺铽的硼酸钆盐基绿色发光材料制备方法,其特征在于:所述各源化合物混合时与助熔剂一起均匀混合。
  6. 如权利要求5所述的掺铽的硼酸钆盐基绿色发光材料制备方法,其特征在于:所述助熔剂为硼酸和氟化钡中的一种或几种。
  7. 如权利要求3所述的掺铽的硼酸钆盐基绿色发光材料制备方法,其特征在于:所述烧结预处理温度为200~700°C,时间为2~7小时。
  8. 如权利要求3所述的掺铽的硼酸钆盐基绿色发光材料制备方法,其特征在于:所述煅烧处理温度为900~1100°C,时间为3~24小时。
  9. 如权利要求3所述的掺铽的硼酸钆盐基绿色发光材料制备方法,其特征在于:所述硼酸根离子的源化合物按摩尔比过量10%-20%。
  10. 如权利要求3所述的掺铽的硼酸钆盐基绿色发光材料制备方法,其特征在于:所述还原气氛为氮气和氢气的混合气体、氢气或一氧化碳形成的还原气氛。
PCT/CN2010/070776 2010-02-26 2010-02-26 掺铽的硼酸钆盐基绿色发光材料及其制备方法 WO2011103721A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800478189A CN102575163A (zh) 2010-02-26 2010-02-26 掺铽的硼酸钆盐基绿色发光材料及其制备方法
JP2012554192A JP5529980B2 (ja) 2010-02-26 2010-02-26 テルビウムをドープしたホウ酸ガドリニウム塩緑色発光材料及びその製造方法
US13/574,409 US8765016B2 (en) 2010-02-26 2010-02-26 Green luminescent material of terbium doped gadolinium borate and preparing method thereof
EP10846344.9A EP2540799B1 (en) 2010-02-26 2010-02-26 Green luminescent material of terbiuim doped gadolinium borate and preparing method thereof
PCT/CN2010/070776 WO2011103721A1 (zh) 2010-02-26 2010-02-26 掺铽的硼酸钆盐基绿色发光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070776 WO2011103721A1 (zh) 2010-02-26 2010-02-26 掺铽的硼酸钆盐基绿色发光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2011103721A1 true WO2011103721A1 (zh) 2011-09-01

Family

ID=44506127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070776 WO2011103721A1 (zh) 2010-02-26 2010-02-26 掺铽的硼酸钆盐基绿色发光材料及其制备方法

Country Status (5)

Country Link
US (1) US8765016B2 (zh)
EP (1) EP2540799B1 (zh)
JP (1) JP5529980B2 (zh)
CN (1) CN102575163A (zh)
WO (1) WO2011103721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116574505A (zh) * 2023-04-27 2023-08-11 桂林电子科技大学 一种镓酸盐应力发光材料的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107011903A (zh) * 2017-05-27 2017-08-04 陕西科技大学 一种铥掺杂三硼酸镧锶基蓝光荧光粉及其制备方法
CN115216300B (zh) * 2021-04-20 2023-09-29 中国科学院理化技术研究所 一种三价铽掺杂的硫氧化钆发光材料的制备方法及其产品和应用
CN113292995A (zh) * 2021-05-19 2021-08-24 中山大学 一种Sm3+离子激活硼酸镥钡橙红色荧光粉及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1640984A (zh) * 2004-12-17 2005-07-20 中国科学院上海硅酸盐研究所 一种发射绿色荧光的荧光粉及其制备方法
US20050230689A1 (en) * 2004-04-20 2005-10-20 Gelcore Llc Ce3+ and Eu2+ doped phosphors for light generation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113087A (ja) 1988-09-07 1990-04-25 Philips Gloeilampenfab:Nv 発光テルビウム活性化硼酸塩
US6090310A (en) 1999-01-12 2000-07-18 Council Of Scientific And Industrial Research Green emitting TB3+ activated borate phosphors used in low pressure mercury vapour lamps and a process for synthesizing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230689A1 (en) * 2004-04-20 2005-10-20 Gelcore Llc Ce3+ and Eu2+ doped phosphors for light generation
CN1640984A (zh) * 2004-12-17 2005-07-20 中国科学院上海硅酸盐研究所 一种发射绿色荧光的荧光粉及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANG HONGBIN ET AL.: "The VUV-vis spectroscopic properties of phosphors Ca3Gd2(1-X)Ln2X(BO3)4(Ln3+=Ce,Sm,Eu,Tb)", MATERIALS RESEARCH BULLETIN, vol. 41, 2006, pages 1468 - 1475, XP008168682 *
LU, JUNYE ET AL.: "Exploration of crystal growth and giant faraday rotation of terbium doped Sr3Gd(BO3)3", THE PAPER COLLECTION OF THE 15TH ACADEMIC CONFERENCE ON CRYSTAL GROWTH AND MATERIALS, 2009, pages 144, XP008168675 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116574505A (zh) * 2023-04-27 2023-08-11 桂林电子科技大学 一种镓酸盐应力发光材料的制备方法

Also Published As

Publication number Publication date
JP2013520535A (ja) 2013-06-06
EP2540799A1 (en) 2013-01-02
US20120286206A1 (en) 2012-11-15
US8765016B2 (en) 2014-07-01
CN102575163A (zh) 2012-07-11
EP2540799B1 (en) 2015-11-25
JP5529980B2 (ja) 2014-06-25
EP2540799A4 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
CN102115667B (zh) 硼酸盐绿色发光材料及其制备方法
WO2012134043A2 (ko) 산질화물계 형광체
WO2011094937A1 (zh) 掺铽的磷酸盐基绿色发光材料及其制备方法
US20130140491A1 (en) Green to Yellow Light-Emitting Aluminate Phosphors
WO2011103721A1 (zh) 掺铽的硼酸钆盐基绿色发光材料及其制备方法
Gao et al. Enhancing the photoluminescence performance of Ca5 (PO4) 2SiO4: Re3+ (Re= Eu, Sm) phosphors with A3+ (A= La, Bi) codoping and white light-emitting diode application
WO2012000179A1 (zh) 含有金属颗粒的硅酸锌锰发光材料及其制备方法
WO2011153692A1 (zh) 氧化物锡酸盐发光材料及其制备方法
WO2011134148A1 (zh) 硅酸盐发光材料及其制备方法
Chao et al. Synthesis, luminescence properties and theoretical calculations of La5BSi2O13: Dy3+ phosphor coatings for light-emitting diodes
CN101805607A (zh) 硅酸盐绿光荧光粉的低温合成方法
WO2012009845A1 (zh) 一种发光材料及其制备方法
CN113549458B (zh) 一种基于磷灰石结构的高显色性三价Eu离子掺杂的红色荧光材料及其制备方法
CN111100634A (zh) 一种长余辉荧光材料及其制备方法
KR20010062527A (ko) 진공 자외선 여기 발광 소자용 인광체
CN102191056B (zh) 硅酸盐红色发光材料及其制备方法
CN100366704C (zh) 一种等离子体平板显示和无汞荧光灯用的稀土发光材料及其制备方法
CN109294583B (zh) 一种白光led用铈离子掺杂钛酸钆钡蓝光荧光粉及其制备方法
Huang et al. Preparation and near-white luminescence properties of Bi3+ doped and Bi3+/Eu3+ co-doped germanate phosphor powder
CN102191051A (zh) 硼酸盐发光材料及其制备方法
CN104804731A (zh) 一种Eu2+激活的硅酸镁钾蓝绿色荧光粉及其制备方法和应用
CN115322783B (zh) 一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法
CN115612495B (zh) 一种高亮度高稳定性硅酸盐荧光粉及其制备方法
CN1635049A (zh) 一种真空紫外激发的红色荧光材料及制备方法
CN107033902B (zh) 一种单基质三基色用于led白光的硅酸盐荧光材料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047818.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010846344

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13574409

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012554192

Country of ref document: JP