WO2011102025A1 - 物体検出装置および情報取得装置 - Google Patents

物体検出装置および情報取得装置 Download PDF

Info

Publication number
WO2011102025A1
WO2011102025A1 PCT/JP2010/069410 JP2010069410W WO2011102025A1 WO 2011102025 A1 WO2011102025 A1 WO 2011102025A1 JP 2010069410 W JP2010069410 W JP 2010069410W WO 2011102025 A1 WO2011102025 A1 WO 2011102025A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
information
information acquisition
light source
signal
Prior art date
Application number
PCT/JP2010/069410
Other languages
English (en)
French (fr)
Inventor
楳田 勝美
高明 森本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN2010800638864A priority Critical patent/CN102753932A/zh
Publication of WO2011102025A1 publication Critical patent/WO2011102025A1/ja
Priority to US13/588,857 priority patent/US20130250308A2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present invention relates to an object detection apparatus that detects an object in a target area based on the state of reflected light when light is projected onto the target area, and an information acquisition apparatus suitable for use in the object detection apparatus.
  • An object detection device using light has been developed in various fields.
  • An object detection apparatus using a so-called distance image sensor can detect not only a planar image on a two-dimensional plane but also the shape and movement of the detection target object in the depth direction.
  • light in a predetermined wavelength band is projected from a laser light source or LED (Light Emitting Device) onto a target area, and the reflected light is received by a light receiving element such as a CMOS image sensor.
  • CMOS image sensor Light Emitting Device
  • the distance to each part (each scanning position) of the detection target object is determined based on the time difference between the emission timing and the light reception timing of the laser light at each scanning position. It is detected (see, for example, Patent Document 1).
  • a distance image sensor of a type that irradiates a target area with laser light having a predetermined dot pattern reflected light from the target area of the laser light at each dot position on the dot pattern is received by the light receiving element. Then, based on the light receiving position of the laser light at each dot position on the light receiving element, the distance to each part of the detection target object (each dot position on the dot pattern) is detected using triangulation (for example, Non-patent document 1).
  • Patent Document 1 a so-called stereo camera method distance image sensor that detects the distance to each part of the detection target object by binocularly viewing the target area with a plurality of cameras with different angles.
  • the accuracy of object detection can be improved by providing a filter that guides only light in the wavelength band emitted from a laser light source or the like to the light receiving element.
  • a filter that guides only light in the wavelength band emitted from a laser light source or the like to the light receiving element.
  • a narrowband filter having the wavelength band as a transmission band can be used.
  • the transmission wavelength band of the laser light source cannot be perfectly matched with the emission wavelength band of the laser light source because there are individual tolerances in the emission wavelength band of the laser light source or the like.
  • the transmission wavelength band of the filter can be adjusted by changing the tilt angle of the filter with respect to the reflected light.
  • this requires work for adjusting the tilt angle of the filter.
  • the amount of light reflected by the filter surface increases, and as a result, the amount of light received by the light receiving element decreases.
  • narrowband filters are expensive.
  • the wavelength of the light emitted from the laser light source varies with the temperature change of the laser light source. For this reason, in order to make the emission wavelength constant during actual operation, a temperature adjusting element such as a Peltier element is required to suppress the temperature change of the light source.
  • the present invention has been made to solve these problems, and an object of the present invention is to provide an information acquisition device that can accurately acquire target region information with a simple configuration and an object detection device equipped with the information acquisition device. To do.
  • An information acquisition apparatus includes a light source that emits light in a predetermined wavelength band, a light source control unit that controls the light source, and a projection optical system that projects the light emitted from the light source toward the target region.
  • a light receiving element that receives reflected light reflected from the target area and outputs a signal; a storage unit that stores signal value information related to a value of the signal output from the light receiving element; and a storage unit that stores the signal value information.
  • an information acquisition unit that acquires three-dimensional information of the object existing in the target area based on the signal value information.
  • the light source control unit controls the light source so that emission and non-emission of the light are repeated.
  • the storage unit includes first signal value information related to a value of a signal output from the light receiving element while the light is emitted from the light source, and while the light is not emitted from the light source. Second signal value information related to the value of the signal output from the light receiving element is stored. Then, the information acquisition unit 3 of the object existing in the target region based on a subtraction result obtained by subtracting the second signal value information from the first signal value information stored in the storage unit. Get dimension information.
  • the second aspect of the present invention relates to an object detection apparatus.
  • the object detection apparatus according to this aspect includes the information acquisition apparatus according to the first aspect.
  • an information acquisition device that can accurately acquire information on a target area with a simple configuration and an object detection device equipped with the information acquisition device.
  • the present invention is applied to an information acquisition apparatus of a type that irradiates a target area with laser light having a predetermined dot pattern.
  • FIG. 1 shows a schematic configuration of the object detection apparatus according to the present embodiment.
  • the object detection device includes an information acquisition device 1 and an information processing device 2.
  • the television 3 is controlled by a signal from the information processing device 2.
  • the information acquisition device 1 projects infrared light over the entire target area and receives the reflected light with a CMOS image sensor, whereby the distance between each part of the object in the target area (hereinafter referred to as “three-dimensional distance information”). To get.
  • the acquired three-dimensional distance information is sent to the information processing apparatus 2 via the cable 4.
  • the information processing apparatus 2 is, for example, a controller for TV control, a game machine, a personal computer, or the like.
  • the information processing device 2 detects an object in the target area based on the three-dimensional distance information received from the information acquisition device 1, and controls the television 3 based on the detection result.
  • the information processing apparatus 2 detects a person based on the received three-dimensional distance information and detects the movement of the person from the change in the three-dimensional distance information.
  • the information processing device 2 is a television control controller
  • the information processing device 2 detects the person's gesture from the received three-dimensional distance information, and sends a control signal to the television 3 according to the gesture.
  • An application program to output is installed.
  • the user can cause the television 3 to execute a predetermined function such as channel switching or volume up / down by making a predetermined gesture while watching the television 3.
  • the information processing device 2 when the information processing device 2 is a game machine, the information processing device 2 detects the person's movement from the received three-dimensional distance information, and displays a character on the television screen according to the detected movement.
  • An application program that operates and changes the game battle situation is installed. In this case, the user can experience a sense of realism in which he / she plays a game as a character on the television screen by making a predetermined movement while watching the television 3.
  • FIG. 2 is a diagram showing the configuration of the information acquisition device 1 and the information processing device 2.
  • the information acquisition apparatus 1 includes a projection optical system 11 and a light receiving optical system 12 as a configuration of the optical unit.
  • the projection optical system 11 includes a laser light source 111, a collimator lens 112, an aperture 113, and a diffractive optical element (DOE: Diffractive Optical Element) 114.
  • the light receiving optical system 12 includes an aperture 121, an imaging lens 122, a filter 123, a shutter 124, and a CMOS image sensor 125.
  • the information acquisition device 1 includes a CPU (Central Processing Unit) 21, a laser driving circuit 22, an imaging signal processing circuit 23, an input / output circuit 24, and a memory 25 as a circuit unit.
  • CPU Central Processing Unit
  • the laser light source 111 outputs laser light in a narrow wavelength band with a wavelength of about 830 nm.
  • the collimator lens 112 converts the laser light emitted from the laser light source 111 into parallel light.
  • the aperture 113 adjusts the beam cross section of the laser light to a predetermined shape.
  • the DOE 114 has a diffraction pattern on the incident surface. Due to the diffraction effect of the diffraction pattern, the laser light incident on the DOE 114 from the aperture 113 is converted into a laser beam having a dot matrix pattern and is irradiated onto the target area.
  • the laser light reflected from the target area enters the imaging lens 122 through the aperture 121.
  • the aperture 121 stops the light from the outside so as to match the F number of the imaging lens 122.
  • the imaging lens 122 condenses the light incident through the aperture 121 on the CMOS image sensor 125.
  • the filter 123 is a band-pass filter that transmits light in a wavelength band including the emission wavelength (about 830 nm) of the laser light source 111 and cuts the visible light wavelength band.
  • the filter 123 is not a narrow-band filter that transmits only the wavelength band near 830 nm, but is an inexpensive filter that transmits light in a relatively wide wavelength band including 830 nm.
  • the shutter 124 blocks or passes light from the filter 123 in accordance with a control signal from the CPU 21.
  • the shutter 124 is, for example, a mechanical shutter or an electronic shutter.
  • the CMOS image sensor 125 receives the light collected by the imaging lens 122 and outputs a signal (charge) corresponding to the amount of received light to the imaging signal processing circuit 23 for each pixel.
  • the output speed of the signal is increased so that the signal (charge) of the pixel can be output to the imaging signal processing circuit 23 with high response from the light reception in each pixel.
  • the CPU 21 controls each unit according to a control program stored in the memory 25. With such a control program, the CPU 21 causes the laser control unit 21a for controlling the laser light source 111, a data subtraction unit 21b to be described later, a three-dimensional distance calculation unit 21c for generating three-dimensional distance information, and a shutter 124. The function of the shutter control unit 21d for controlling the function is given.
  • the laser drive circuit 22 drives the laser light source 111 according to a control signal from the CPU 21.
  • the imaging signal processing circuit 23 controls the CMOS image sensor 125 and sequentially takes in the signal (charge) of each pixel generated by the CMOS image sensor 125 for each line. Then, the captured signals are sequentially output to the CPU 21. Based on the signal (imaging signal) supplied from the imaging signal processing circuit 23, the CPU 21 calculates the distance from the information acquisition device 1 to each part of the detection target by processing by the three-dimensional distance calculation unit 21c.
  • the input / output circuit 24 controls data communication with the information processing apparatus 2.
  • the information processing apparatus 2 includes a CPU 31, an input / output circuit 32, and a memory 33.
  • the information processing apparatus 2 has a configuration for performing communication with the television 3 and for reading information stored in an external memory such as a CD-ROM and installing it in the memory 33.
  • an external memory such as a CD-ROM
  • the configuration of these peripheral circuits is not shown for the sake of convenience.
  • the CPU 31 controls each unit according to a control program (application program) stored in the memory 33.
  • a control program application program
  • the CPU 31 is provided with the function of the object detection unit 31a for detecting an object in the image.
  • a control program is read from a CD-ROM by a drive device (not shown) and installed in the memory 33, for example.
  • the object detection unit 31a detects a person in the image and its movement from the three-dimensional distance information supplied from the information acquisition device 1. Then, a process for operating the character on the television screen according to the detected movement is executed by the control program.
  • the object detection unit 31 a detects a person in the image and its movement (gesture) from the three-dimensional distance information supplied from the information acquisition device 1. To do. Then, processing for controlling functions (channel switching, volume adjustment, etc.) of the television 1 is executed by the control program in accordance with the detected movement (gesture).
  • the input / output circuit 32 controls data communication with the information acquisition device 1.
  • FIG. 3A is a diagram schematically showing the irradiation state of the laser light on the target region
  • FIG. 3B is a diagram schematically showing the light receiving state of the laser light in the CMOS image sensor 125.
  • FIG. 6B shows a light receiving state when a flat surface (screen) exists in the target area.
  • the projection optical system 11 emits laser light having a dot matrix pattern (hereinafter, the entire laser light having this pattern is referred to as “DMP light”) toward the target area. Irradiated.
  • DMP light the entire laser light having this pattern
  • the light beam cross section of the DMP light is indicated by a broken line frame.
  • Each dot in the DMP light schematically shows a region where the intensity of the laser light is scattered in a scattered manner by the diffraction action by the DOE 114.
  • regions where the intensity of the laser light is increased are scattered according to a predetermined dot matrix pattern.
  • the light at each dot position of the DMP light reflected thereby is distributed on the CMOS image sensor 125 as shown in FIG.
  • the light at the dot position P0 on the target area corresponds to the light at the dot position Pp on the CMOS image sensor 124.
  • the position on the CMOS image sensor 124 where the light corresponding to each dot is incident is detected. From the light receiving position, each part of the detection target object (based on the triangulation method) The distance to each dot position on the dot matrix pattern is detected. Details of such a detection technique are described in, for example, Non-Patent Document 1 (The 19th Annual Conference of the Robotics Society of Japan (September 18-20, 2001), Proceedings, P1279-1280).
  • the detection of the distribution state of the DMP light is optimized by the following processing.
  • FIG. 4 is a timing chart showing the light emission timing of the laser light from the laser light source 111, the exposure timing for the CMOS image sensor 125, and the storage timing of the imaging data obtained by the CMOS image sensor 125 by this exposure.
  • FIG. 5 is a flowchart showing the imaging data storage process.
  • CPU 21 has the functions of two function generators, and generates pulses FG1 and FG2 by these functions.
  • the pulse FG1 repeats High and Low every period T1.
  • the pulse FG2 is output at the rising timing and falling timing of FG1.
  • the pulse FG2 is generated by differentiating the pulse FG1.
  • the laser control unit 21a turns on the laser light source 111. Further, during a period T2 after the pulse FG2 becomes High, the shutter control unit 21d opens the shutter 124 and performs exposure on the CMOS image sensor 125. After the exposure is finished, the CPU 21 causes the memory 25 to store the imaging data acquired by the CMOS image sensor 125 by each exposure.
  • CPU 21 sets memory flag MF to 1 (S102) and turns on laser light source 111 (S103).
  • the shutter control unit 21d opens the shutter 124 and performs exposure on the CMOS image sensor 125 (S107). This exposure is performed until the period T2 elapses from the start of exposure (S108).
  • the shutter 124 is closed by the shutter control unit 21d (S109), and image data captured by the CMOS image sensor 125 is output to the CPU 21 (S110).
  • the CPU 21 determines whether the memory flag MF is 1 (S111).
  • the CPU 21 stores the imaging data output from the CMOS image sensor 125 in the memory area A of the memory 25 (S112). .
  • the process returns to S101, and the CPU 21 determines whether the pulse FG1 is High. If the pulse FG1 is still High, the CPU 21 keeps turning on the laser light source 111 while keeping the memory flag MF set to 1 (S102) (S103). However, since the pulse FG2 is not output at this timing (see FIG. 4), the determination in S106 is NO, and the process returns to S101. Thus, the CPU 21 continues to turn on the laser light source 111 until the pulse FG1 becomes Low.
  • the CPU 21 sets the memory flag MF to 0 (S104) and turns off the laser light source 111 (S105).
  • the pulse FG2 becomes High (S106: YES)
  • the shutter 124 is opened by the shutter control unit 21d, and the CMOS image sensor 125 is exposed (S107). This exposure is performed until the period T2 elapses from the start of exposure as described above (S108).
  • the shutter 124 is closed by the shutter control unit 21d (S109), and image data captured by the CMOS image sensor 125 is output to the CPU 125 (S110).
  • the CPU 21 determines whether the memory flag MF is 1 (S111).
  • the CPU 21 stores the imaging data output from the CMOS image sensor 125 in the memory area B of the memory 25 (S113). .
  • the imaging data acquired by the CMOS image sensor 125 when the laser light source 111 is turned on and the imaging data acquired by the CMOS image sensor 125 when the laser light source 111 is not turned on are respectively They are stored in the memory area A and the memory area B of the memory 25.
  • FIG. 6A is a flowchart showing processing by the data subtraction unit 21b of the CPU 21.
  • the data subtraction unit 21b When the imaging data is updated and stored in the memory area B (S201: YES), the data subtraction unit 21b performs a process of subtracting the imaging data stored in the memory area B from the imaging data stored in the memory area A (S201: YES). S202). Here, the value of the signal (charge) corresponding to the received light amount of the corresponding pixel stored in the memory area B is subtracted from the value of the signal (charge) corresponding to the received light amount of each pixel stored in the memory area A. Is done. The subtraction result is stored in the memory area C of the memory 25 (S203). If the operation for acquiring the target area information is not completed (S204: NO), the process returns to S201 and the same process is repeated.
  • the image data (first image data) acquired when the laser light source 111 is turned on, the image data (when the laser light source 111 is immediately turned off) (The subtraction result obtained by subtracting the second imaging data is updated and stored.
  • the first image data and the second image data are both acquired by exposing the CMOS image sensor 125 for the same time T2, and thus the second image data is obtained. Is equal to a noise component caused by light other than the laser light from the laser light source 111 included in the first imaging data. Therefore, the memory area C stores imaging data from which noise components due to light other than laser light from the laser light source 111 are removed.
  • FIG. 7 is a diagram schematically illustrating the effect of the processing in FIG.
  • the imaging region is set by the light receiving optical system 12 while irradiating the DMP light from the projection optical system 11 shown in the above embodiment.
  • the captured image is as shown in FIG. Imaging data based on the captured image is stored in the memory area A of the memory 25.
  • the captured image is as shown in FIG. Imaging data based on the captured image is stored in the memory area B of the memory 25.
  • the captured image of FIG. 10C is removed from the captured image of FIG. 10B, the captured image is as shown in FIG. Imaging data based on the captured image is stored in the memory area C of the memory 25. Therefore, the memory area C stores imaging data from which noise components due to light (fluorescent lamp) other than DMP light are removed.
  • calculation processing by the three-dimensional distance calculation unit 21c of the CPU 21 is performed using the imaging data stored in the memory C. Therefore, the three-dimensional distance information (information regarding the distance to each part of the detection target) acquired thereby can be highly accurate.
  • the inexpensive filter 123 can be used, the cost can be reduced. Furthermore, even if a deviation occurs in the wavelength of the laser light source 111, imaging data from which noise components due to light other than DMP light have been removed is acquired by the subtraction process. Therefore, the transmission wavelength band is adjusted by tilting the filter 123. In addition, there is no need to provide a temperature adjusting element such as a Peltier element in order to suppress the wavelength fluctuation of the laser light source 111.
  • the filter 123 is arranged to remove visible light.
  • the filter 123 may be any filter that can sufficiently reduce the amount of visible light incident on the CMOS image sensor 125.
  • the transmission wavelength band of the filter 123 only needs to cover a range in which the wavelength of the laser light can vary due to a temperature change of the laser light source 111.
  • the subtraction process is performed when the memory area B is updated.
  • the subtraction process is performed when the memory area A is updated as shown in FIG. Processing may be performed.
  • the memory area A is updated (S211: YES)
  • S212 A process of subtracting the second imaging data is performed (S212), and the subtraction result is stored in the memory area C (S203).
  • the acquisition of the first imaging data and the acquisition of the second imaging data are performed alternately.
  • the acquisition of the second imaging data (indicated by an arrow in FIG. 8) may be performed every time the imaging data is acquired several times (three times in FIG. 8).
  • subtraction processing is performed on the first imaging data acquired three times thereafter using the second imaging data, and the subtraction result is stored in the memory area C each time the first imaging data is acquired.
  • the subtraction process here is performed according to FIG.
  • the present invention is applied to an information acquisition device using a distance image sensor of a type that irradiates a laser beam of a dot matrix pattern to a target region.
  • a system that scans light and detects the distance to each part (each scanning position) of the object to be detected (TOF: Time ⁇ ⁇ of Flight) based on the time difference between the emission timing and the light receiving timing of the laser beam at each scanning position
  • TOF Time ⁇ ⁇ of Flight
  • the present invention to an information acquisition apparatus using a distance image sensor of the above type or a distance image sensor of a stereo camera system.
  • the distance image sensor of the TOF method there is no pixel in the light receiving element, and a light receiving element of a type that detects the amount of light received on the entire light receiving surface can be used.
  • the CMOS image sensor 125 is used as the light receiving element, but a CCD image sensor can be used instead.
  • the present invention can be used for an object detection apparatus that detects an object in a target area based on a state of reflected light when light is projected onto the target area, and an information acquisition apparatus using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

【課題】簡素な構成にて目標領域の情報を精度よく取得できる情報取得装置およびこれを搭載する物体検出装置を提供する。 【解決手段】情報取得装置1は、波長830nm程度のレーザ光を出射するレーザ光源111と、レーザ光を前記目標領域に向けて投射する投射光学系10と、前記目標領域からの反射光を受光して信号を出力するCMOSイメージセンサ125とを有する。レーザ光が出射されたときにCMOSイメージセンサ125から出力される第1の撮像データから、レーザ光が出射されていないときにCMOSイメージセンサ125から出力される第2の撮像データが減算され、減算結果が、メモリ25に記憶される。3次元距離演算部21cは、メモリ25に記憶された減算結果に基づいて、3次元距離情報を演算し取得する。

Description

物体検出装置および情報取得装置
 本発明は、目標領域に光を投射したときの反射光の状態に基づいて目標領域内の物体を検出する物体検出装置およびこれに用い好適な情報取得装置に関する。
 従来、光を用いた物体検出装置が種々の分野で開発されている。いわゆる距離画像センサを用いた物体検出装置では、2次元平面上の平面的な画像のみならず、検出対象物体の奥行き方向の形状や動きを検出することができる。かかる物体検出装置では、レーザ光源やLED(Light Emitting Device)から、予め決められた波長帯域の光が目標領域に投射され、その反射光がCMOSイメージセンサ等の受光素子により受光される。距離画像センサとして、種々のタイプのものが知られている。
 目標領域においてレーザ光を走査するタイプの距離画像センサでは、各走査位置におけるレーザ光の出射タイミングと受光タイミングとの間の時間差に基づいて、検出対象物体の各部(各走査位置)までの距離が検出される(たとえば、特許文献1参照)。
 また、所定のドットパターンを持つレーザ光を目標領域に照射するタイプの距離画像センサでは、ドットパターン上の各ドット位置におけるレーザ光の目標領域からの反射光が受光素子によって受光される。そして、各ドット位置のレーザ光の受光素子上の受光位置に基づいて、三角測量法を用いて、検出対象物体の各部(ドットパターン上の各ドット位置)までの距離が検出される(たとえば、非特許文献1)。
 この他、アングルの異なる複数のカメラで目標領域を両眼立体視することで検出対象物体の各部までの距離を検出する、いわゆる、ステレオカメラ法による距離画像センサも知られている(たとえば、非特許文献1)。
特開2008-70157号公報
第19回日本ロボット学会学術講演会(2001年9月18-20日)予稿集、P1279-1280
 上記物体検出装置では、レーザ光源等から出射された波長帯域の光のみを受光素子に導くフィルタを配することにより、物体検出の精度が高められる。かかるフィルタとして、当該波長帯域を透過帯域とする狭帯域フィルタが用いられ得る。
 しかし、このようなフィルタを用いても、レーザ光源等の出射波長帯域には個々に公差があるため、フィルタの透過帯域をレーザ光源の出射波長帯域に完全に整合させることはできない。この場合、たとえば、反射光に対するフィルタの傾き角を変化させることで、フィルタの透過波長帯域を調節することができる。しかし、このためには、フィルタの傾き角を調節する作業が必要となる。また、フィルタを傾けることにより、フィルタ表面で反射される光の量が増加し、その結果、受光素子にて受光される光の量が減少する。さらに、狭帯域フィルタは高価である。
 また、レーザ光源から出射される光の波長は、レーザ光源の温度変化によって変化する。このため、実動作時に出射波長を一定にするには、光源の温度変化を抑制するために、ペルチェ素子等の温度調節素子が必要となる。
 本発明は、これらの問題を解消するためになされたものであり、簡素な構成にて目標領域の情報を精度よく取得できる情報取得装置およびこれを搭載する物体検出装置を提供することを目的とする。
 本発明の第1の態様は、光を用いて目標領域の情報を取得する情報取得装置に関する。本態様に係る情報取得装置は、所定波長帯域の光を出射する光源と、前記光源を制御する光源制御部と、前記光源から出射された前記光を前記目標領域に向けて投射する投射光学系と、前記目標領域から反射された反射光を受光して信号を出力する受光素子と、前記受光素子から出力された信号の値に関する信号値情報を記憶する記憶部と、前記記憶部に記憶された信号値情報に基づいて前記目標領域に存在する物体の3次元情報を取得する情報取得部とを備える。ここで、前記光源制御部は、前記光の出射と非出射が繰り返されるように前記光源を制御する。また、前記記憶部は、前記光源から前記光が出射されている間に前記受光素子から出力された信号の値に関する第1の信号値情報と、前記光源から前記光が出射されていない間に前記受光素子から出力された信号の値に関する第2の信号値情報とをそれぞれ記憶する。そうして、前記情報取得部は、前記記憶部に記憶された前記第1の信号値情報から前記第2の信号値情報を減算した減算結果に基づいて、前記目標領域に存在する物体の3次元情報を取得する。
 本発明の第2の態様は、物体検出装置に関する。この態様に係る物体検出装置は、上記第1の態様に係る情報取得装置を有する。
 本発明によれば、簡素な構成にて目標領域の情報を精度よく取得できる情報取得装置およびこれを搭載する物体検出装置を提供することができる。
 本発明の特徴は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下の実施の形態は、あくまでも、本発明の一つの実施形態であって、本発明ないし各構成要件の用語の意義は、以下の実施の形態に記載されたものに制限されるものではない。
実施の形態に係る物体検出装置の構成を示す図である。 実施の形態に係る情報取得装置と情報処理装置の構成を示す図である。 実施の形態に係る目標領域に対するレーザ光の照射状態とイメージセンサ上のレーザ光の受光状態を示す図である。 実施の形態に係るレーザ光の発光タイミングと、イメージセンサに対する露光タイミングおよび撮像データの記憶タイミングを示すタイミングチャートである。 実施の形態に係る撮像データの記憶処理を示すフローチャートである。 実施の形態に係る撮像データの減算処理を示すフローチャートである。 実施の形態に係る撮像データの処理過程を模式的に示す図である。 実施の形態の変更例に係るレーザ光の発光タイミングと、イメージセンサに対する露光タイミングおよび撮像データの記憶タイミングを示すタイミングチャートである。
 以下、本発明の実施の形態につき図面を参照して説明する。本実施の形態は、所定のドットパターンを持つレーザ光を目標領域に照射するタイプの情報取得装置に本発明を適用したものである。
 まず、図1に本実施の形態に係る物体検出装置の概略構成を示す。図示の如く、物体検出装置は、情報取得装置1と、情報処理装置2とを備えている。テレビ3は、情報処理装置2からの信号によって制御される。
 情報取得装置1は、目標領域全体に赤外光を投射し、その反射光をCMOSイメージセンサにて受光することにより、目標領域にある物体各部の距離(以下、「3次元距離情報」という)を取得する。取得された3次元距離情報は、ケーブル4を介して情報処理装置2に送られる。
 情報処理装置2は、たとえば、テレビ制御用のコントローラやゲーム機、パーソナルコンピュータ等である。情報処理装置2は、情報取得装置1から受信した3次元距離情報に基づき、目標領域における物体を検出し、検出結果に基づきテレビ3を制御する。
 たとえば、情報処理装置2は、受信した3次元距離情報に基づき人を検出するとともに、3次元距離情報の変化から、その人の動きを検出する。たとえば、情報処理装置2がテレビ制御用のコントローラである場合、情報処理装置2には、受信した3次元距離情報からその人のジャスチャーを検出するとともに、ジェスチャに応じてテレビ3に制御信号を出力するアプリケーションプログラムがインストールされている。この場合、ユーザは、テレビ3を見ながら所定のジェスチャをすることにより、チャンネル切り替えやボリュームのUp/Down等、所定の機能をテレビ3に実行させることができる。
 また、たとえば、情報処理装置2がゲーム機である場合、情報処理装置2には、受信した3次元距離情報からその人の動きを検出するとともに、検出した動きに応じてテレビ画面上のキャラクタを動作させ、ゲームの対戦状況を変化させるアプリケーションプログラムがインストールされている。この場合、ユーザは、テレビ3を見ながら所定の動きをすることにより、自身がテレビ画面上のキャラクタとしてゲームの対戦を行う臨場感を味わうことができる。
 図2は、情報取得装置1と情報処理装置2の構成を示す図である。
 情報取得装置1は、光学部の構成として、投射光学系11と受光光学系12とを備えている。投射光学系11は、レーザ光源111と、コリメータレンズ112と、アパーチャ113と、回折光学素子(DOE:Diffractive Optical Element)114を備えている。また、受光光学系12は、アパーチャ121と、撮像レンズ122と、フィルタ123と、シャッター124と、CMOSイメージセンサ125とを備えている。この他、情報取得装置1は、回路部の構成として、CPU(Central Processing Unit)21と、レーザ駆動回路22と、撮像信号処理回路23と、入出力回路24と、メモリ25を備えている。
 レーザ光源111は、波長830nm程度の狭波長帯域のレーザ光を出力する。コリメータレンズ112は、レーザ光源111から出射されたレーザ光を平行光に変換する。アパーチャ113は、レーザ光の光束断面を所定の形状に調整する。DOE114は、入射面に回折パターンを有する。この回折パターンによる回折作用により、アパーチャ113からDOE114に入射したレーザ光は、ドットマトリックスパターンのレーザ光に変換されて、目標領域に照射される。
 目標領域からにより反射されたレーザ光は、アパーチャ121を介して撮像レンズ122に入射する。アパーチャ121は、撮像レンズ122のFナンバーに合うように、外部からの光に絞りを掛ける。撮像レンズ122は、アパーチャ121を介して入射された光をCMOSイメージセンサ125上に集光する。
 フィルタ123は、レーザ光源111の出射波長(830nm程度)を含む波長帯域の光を透過し、可視光の波長帯域をカットするバンドパスフィルタである。フィルタ123は、830nm近傍の波長帯域のみを透過する狭帯域のフィルタではなく、830nmを含む比較的広い波長帯域の光を透過させる安価なフィルタからなっている。
 シャッター124は、CPU21からの制御信号に応じて、フィルタ123からの光を遮光または通過させる。シャッター124は、たとえば、メカニカルシャッターや電子シャッターである。CMOSイメージセンサ125は、撮像レンズ122にて集光された光を受光して、画素毎に、受光光量に応じた信号(電荷)を撮像信号処理回路23に出力する。ここで、CMOSイメージセンサ125は、各画素における受光から高レスポンスでその画素の信号(電荷)を撮像信号処理回路23に出力できるよう、信号の出力速度が高速化されている。
 CPU21は、メモリ25に格納された制御プログラムに従って各部を制御する。かかる制御プログラムによって、CPU21には、レーザ光源111を制御するためのレーザ制御部21aと、後述するデータ減算部21bと、3次元距離情報を生成するための3次元距離演算部21cと、シャッター124を制御するためのシャッター制御部21dの機能が付与される。
 レーザ駆動回路22は、CPU21からの制御信号に応じてレーザ光源111を駆動する。撮像信号処理回路23は、CMOSイメージセンサ125を制御して、CMOSイメージセンサ125で生成された各画素の信号(電荷)をライン毎に順次取り込む。そして、取り込んだ信号を順次CPU21に出力する。CPU21は、撮像信号処理回路23から供給される信号(撮像信号)をもとに、情報取得装置1から検出対象物の各部までの距離を、3次元距離演算部21cによる処理によって算出する。入出力回路24は、情報処理装置2とのデータ通信を制御する。
 情報処理装置2は、CPU31と、入出力回路32と、メモリ33を備えている。なお、情報処理装置2には、同図に示す構成の他、テレビ3との通信を行うための構成や、CD-ROM等の外部メモリに格納された情報を読み取ってメモリ33にインストールするためのドライブ装置等が配されるが、便宜上、これら周辺回路の構成は図示省略されている。
 CPU31は、メモリ33に格納された制御プログラム(アプリケーションプログラム)に従って各部を制御する。かかる制御プログラムによって、CPU31には、画像中の物体を検出するための物体検出部31aの機能が付与される。かかる制御プログラムは、たとえば、図示しないドライブ装置によってCD-ROMから読み取られ、メモリ33にインストールされる。
 たとえば、制御プログラムがゲームプログラムである場合、物体検出部31aは、情報取得装置1から供給される3次元距離情報から画像中の人およびその動きを検出する。そして、検出された動きに応じてテレビ画面上のキャラクタを動作させるための処理が制御プログラムにより実行される。
 また、制御プログラムがテレビ3の機能を制御するためのプログラムである場合、物体検出部31aは、情報取得装置1から供給される3次元距離情報から画像中の人およびその動き(ジェスチャ)を検出する。そして、検出された動き(ジェスチャ)に応じて、テレビ1の機能(チャンネル切り替えやボリューム調整、等)を制御するための処理が制御プログラムにより実行される。
 入出力回路32は、情報取得装置1とのデータ通信を制御する。
 図3(a)は、目標領域に対するレーザ光の照射状態を模式的に示す図、図3(b)は、CMOSイメージセンサ125におけるレーザ光の受光状態を模式的に示す図である。なお、同図(b)には、便宜上、目標領域に平坦な面(スクリーン)が存在するときの受光状態が示されている。
 同図(a)に示すように、投射光学系11からは、ドットマトリックスパターンを持ったレーザ光(以下、このパターンを持つレーザ光の全体を「DMP光」という)が、目標領域に向けて照射される。同図(a)には、DMP光の光束断面が破線の枠によって示されている。DMP光内の各ドットは、DOE114による回折作用によってレーザ光の強度が点在的に高められた領域を模式的に示している。DMP光の光束中には、レーザ光の強度が高められた領域が、所定のドットマトリックスパターンに従って点在している。
 目標領域に平坦な面(スクリーン)が存在すると、これにより反射されたDMP光の各ドット位置の光は、同図(b)のように、CMOSイメージセンサ125上で分布する。たとえば、目標領域上におけるP0のドット位置の光は、CMOSイメージセンサ124上では、Ppのドット位置の光に対応する。
 上記3次元距離演算部21cでは、各ドットに対応する光がCMOSイメージセンサ124上のどの位置に入射したかが検出され、その受光位置から、三角測量法に基づいて、検出対象物体の各部(ドットマトリックスパターン上の各ドット位置)までの距離が検出される。かかる検出手法の詳細は、たとえば、上記非特許文献1(第19回日本ロボット学会学術講演会(2001年9月18-20日)予稿集、P1279-1280)に示されている。
 かかる距離検出では、CMOSイメージセンサ125上におけるDMP光(各ドット位置の光)の分布状態を正確に検出する必要がある。しかしながら、本実施の形態では、透過帯域幅が比較的広い安価なフィルタ123が用いられているため、DMP光以外の光がCMOSイメージセンサ124に入射し、この光が外乱光となる。たとえば、目標領域に蛍光灯等の発光体があると、この発光体の像がCMOSイメージセンサ124の撮像画像に写り込み、これにより、DMP光の分布状態を正確に検出できないことが起こり得る。
 そこで、本実施の形態では、以下の処理により、DMP光の分布状態の検出の適正化が図られている。
 図4および図5を参照して、CMOSイメージセンサ125によるDMP光の撮像処理について説明する。 図4は、レーザ光源111におけるレーザ光の発光タイミングと、CMOSイメージセンサ125に対する露光タイミングおよびこの露光によりCMOSイメージセンサ125により得られた撮像データの記憶タイミングを示すタイミングチャートである。図5は、撮像データの記憶処理を示すフローチャートである。
 図4を参照して、CPU21は、2つのファンクションジェネレータの機能を持っており、これらの機能により、パルスFG1、FG2を生成する。パルスFG1は、期間T1毎にHighとLowを繰り返す。パルスFG2は、FG1の立ち上がりタイミングと立下りタイミングに出力される。たとえば、パルスFG2は、パルスFG1を微分することにより生成される。
 パルスFG1がHighの間、レーザ制御部21aは、レーザ光源111を点灯させる。また、パルスFG2がHighとなってから期間T2の間、シャッター制御部21dはシャッター124を開き、CMOSイメージセンサ125に対する露光を行う。かかる露光が終わった後、CPU21は、各露光によりCMOSイメージセンサ125により取得された撮像データをメモリ25に記憶させる。
 図5を参照して、CPU21は、パルスFG1がHighになると(S101:YES)、メモリフラグMFを1にセットし(S102)、レーザ光源111を点灯させる(S103)。そして、パルスFG2がHighになると(S106:YES)、シャッター制御部21dはシャッター124を開き、CMOSイメージセンサ125に対する露光を行う(S107)。この露光は、露光開始から期間T2が経過するまで行われる(S108)。
 露光開始から期間T2が経過すると(S108:YES)、シャッター制御部21dによりシャッター124が閉じられ(S109)、CMOSイメージセンサ125により撮像された撮像データがCPU21に出力される(S110)。CPU21は、メモリフラグMFが1であるかを判別する(S111)。ここでは、ステップS102においてメモリフラグMFが1にセットされているので(S111:YES)、CPU21は、CMOSイメージセンサ125から出力された撮像データを、メモリ25のメモリ領域Aに記憶する(S112)。
 その後、目標領域の情報を取得するための動作が終了されていなければ(S114:NO)、S101に戻って、CPU21は、パルスFG1がHighであるかを判定する。引き続きパルスFG1がHighであると、CPU21は、メモリフラグMFを1にセットしたまま(S102)、レーザ光源111を点灯させ続ける(S103)。ただし、このタイミングでは、パルスFG2が出力されていないため(図4参照)、S106における判定がNOとなって、処理がS101に戻る。こうして、CPU21は、パルスFG1がLowになるまで、レーザ光源111を点灯させ続ける。
 その後、パルスFG1がLowになると、CPU21は、メモリフラグMFを0にセットし(S104)、レーザ光源111を消灯する(S105)。そして、パルスFG2がHighになると(S106:YES)、シャッター制御部21dによりシャッター124が開かれ、CMOSイメージセンサ125に対する露光が行われる(S107)。この露光は、上記と同様、露光開始から期間T2が経過するまで行われる(S108)。
 露光開始から期間T2が経過すると(S108:YES)、シャッター制御部21dによりシャッター124が閉じられ(S109)、CMOSイメージセンサ125により撮像された撮像データがCPU125に出力される(S110)。CPU21は、メモリフラグMFが1であるかを判別する(S111)。ここでは、ステップS104においてメモリフラグMFが0にセットされているので(S111:NO)、CPU21は、CMOSイメージセンサ125から出力された撮像データを、メモリ25のメモリ領域Bに記憶する(S113)。
 以上の処理が、情報取得動作の終了まで繰り返される。この処理により、レーザ光源111が点灯しているときにCMOSイメージセンサ125により取得された撮像データと、レーザ光源111が点灯していないときにCMOSイメージセンサ125により取得された撮像データが、それぞれ、メモリ25のメモリ領域Aとメモリ領域Bに記憶される。
 図6(a)は、CPU21のデータ減算部21bによる処理を示すフローチャートである。
 メモリ領域Bに撮像データが更新記憶されると(S201:YES)、データ減算部21bは、メモリ領域Aに記憶された撮像データからメモリ領域Bに記憶された撮像データを減算する処理を行う(S202)。ここでは、メモリ領域Aに記憶された各画素の受光光量に応じた信号(電荷)の値から、メモリ領域Bに記憶された対応する画素の受光光量に応じた信号(電荷)の値が減算される。この減算結果が、メモリ25のメモリ領域Cに記憶される(S203)。目標領域の情報を取得するための動作が終了していなければ(S204:NO)、S201に戻って、同様の処理が繰り返される。
 図6(a)の処理により、メモリ領域Cには、レーザ光源111の点灯時に取得された撮像データ(第1の撮像データ)から、その直後のレーザ光源111の消灯時に取得された撮像データ(第2の撮像データ)が減算された減算結果が更新記憶される。ここで、第1の撮像データと第2の撮像データは、図4、5を参照して説明したように、共に、同じ時間T2だけCMOSイメージセンサ125が露光されて取得されるため、第2の撮像データは、第1の撮像データ中に含まれるレーザ光源111からのレーザ光以外の光によるノイズ成分に等しくなる。よって、メモリ領域Cには、レーザ光源111からのレーザ光以外の光によるノイズ成分が除去された撮像データが記憶されることになる。
 図7は、図6(a)に処理による効果を模式的に例示する図である。
 図7(a)のように、撮像領域内に、蛍光灯L0が含まれている場合、上記実施の形態に示す投射光学系11からDMP光を照射しつつ、受光光学系12により撮像領域を撮像すると、撮像画像は、同図(b)のようになる。この撮像画像に基づく撮像データが、メモリ25のメモリ領域Aに記憶される。また、投射光学系11からDMP光を照射させずに、受光光学系12により撮像領域を撮像すると、撮像画像は、同図(c)のようになる。この撮像画像に基づく撮像データが、メモリ25のメモリ領域Bに記憶される。同図(b)の撮像画像から同図(c)の撮像画像を除くと、撮像画像は、同図(d)のようになる。この撮像画像に基づく撮像データが、メモリ25のメモリ領域Cに記憶される。よって、メモリ領域Cには、DMP光以外の光(蛍光灯)によるノイズ成分が除去された撮像データが記憶される。
 本実施の形態では、メモリCに記憶された撮像データを用いて、CPU21の3次元距離演算部21cによる演算処理が行われる。よって、これにより取得された3次元距離情報(検出対象物の各部までの距離に関する情報)は、精度の高いものとなり得る。
 以上、本実施の形態によれば、安価なフィルタ123を用いることができるため、コストの低減を図ることができる。さらに、レーザ光源111の波長にずれが生じても、上記減算処理により、DMP光以外の光によるノイズ成分が除去された撮像データが取得されるため、フィルタ123を傾けて透過波長帯域を調節したり、あるいは、レーザ光源111の波長変動を抑えるためにペルチェ素子等の温度調節素子を配したりする必要もない。
 このように、本実施の形態によれば、簡素な構成にて目標領域の検出対象物体に対する3次元距離情報を精度よく取得することができる。
 なお、上記のように減算処理を行ってノイズ成分を除去する場合、理論上は、フィルタ123を用いなくても、DMP光による撮像データを取得することができる。しかしながら、一般に、可視光帯域の光の光量レベルは、通常、DMP光の光量レベルよりも数段高いため、可視光帯域が混ざった光からDMP光のみを上記減算処理により正確に導き出すのは困難である。よって、本実施の形態では、上記のように、可視光を除去するために、フィルタ123が配されている。フィルタ123は、CMOSイメージセンサ125に入射する可視光の光量レベルを十分に低下させ得るものであれば良い。また、フィルタ123の透過波長帯域は、レーザ光源111の温度変化によりレーザ光の波長が変動し得る範囲をカバーできれば良い。
 以上、本発明の実施の形態について説明したが、本発明は、上記実施の形態に何ら制限されるものではなく、また、本発明の実施の形態も上記の他に種々の変更が可能である。
 たとえば、上記実施の形態の図6(a)では、メモリ領域Bが更新されると減算処理が行われるようにしたが、図6(b)のように、メモリ領域Aが更新されると減算処理が行われるようにしても良い。この場合、メモリ領域Aが更新されると(S211:YES)、その直前にメモリ領域Bに記憶された第2の撮像データを用いて、メモリ領域Aに更新記憶された第1の撮像データから第2の撮像データを減算する処理が行われ(S212)、減算結果がメモリ領域Cに記憶される(S203)。
 また、上記実施の形態では、図4のタイミングチャートに示すように、第1の撮像データの取得と第2の撮像データの取得が交互に行われたが、図8に示すように、第1の撮像データの取得が数回((図8では3回)行われる毎に、第2の撮像データの取得(図8に矢印で示す)が行われるようにしても良い。この場合、取得された第2の撮像データを用いて、その後3回取得された第1の撮像データに対する減算処理が、第1の撮像データの取得の度に行われ、減算結果がメモリ領域Cに記憶される。ここでの減算処理は、図6(b)に従って行われる。
 また、上記実施の形態では、ドットマトリックスパターンのレーザ光を目標領域に照射するタイプの距離画像センサを用いた情報取得装置に本発明を適用した例を示したが、この他、目標領域においてレーザ光を走査させ、各走査位置におけるレーザ光の出射タイミングと受光タイミングとの間の時間差に基づいて、検出対象物体の各部(各走査位置)までの距離を検出する方式(TOF:Time of Flight)の距離画像センサや、ステレオカメラ方式の距離画像センサを用いる情報取得装置に本発明を適用することも可能である。TOF方式の距離画像センサでは、受光素子に画素がなく、受光面全体の受光量を検出するタイプの受光素子を用いることもできる。
 さらに、上記実施の形態では、受光素子として、CMOSイメージセンサ125を用いたが、これに替えて、CCDイメージセンサを用いることもできる。
 本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
 1 情報取得装置
 11 投射光学系
 111 レーザ光源(光源)
 124 シャッター
 125 CMOSイメージセンサ(受光素子)
 21 CPU
 21a レーザ制御部(光源制御部)
 21b データ減算部(情報取得部)
 21c 3次元距離演算部(情報取得部)
 21d シャッター制御部
 25 メモリ(記憶部)
 本発明は、目標領域に光を投射したときの反射光の状態に基づいて目標領域内の物体を検出する物体検出装置およびこれを用いた情報取得装置に利用できる。

Claims (5)

  1.  光を用いて目標領域の情報を取得する情報取得装置において、
     所定波長帯域の光を出射する光源と、
     前記光源を制御する光源制御部と、
     前記光源から出射された前記光を前記目標領域に向けて投射する投射光学系と、
     前記目標領域から反射された反射光を受光して信号を出力する受光素子と、
     前記受光素子から出力された信号の値に関する信号値情報を記憶する記憶部と、
     前記記憶部に記憶された信号値情報に基づいて前記目標領域に存在する物体の3次元情報を取得する情報取得部と、を備え、
     前記光源制御部は、前記光の出射と非出射が繰り返されるように前記光源を制御し、
     前記記憶部は、前記光源から前記光が出射されている間に前記受光素子から出力された信号の値に関する第1の信号値情報と、前記光源から前記光が出射されていない間に前記受光素子から出力された信号の値に関する第2の信号値情報とをそれぞれ記憶し、
     前記情報取得部は、前記記憶部に記憶された前記第1の信号値情報から前記第2の信号値情報を減算した減算結果に基づいて、前記目標領域に存在する物体の3次元情報を取得する、ことを特徴とする情報取得装置。
  2.  請求項1に記載の情報取得装置において、
     前記記憶部は、前記光が非出射となる度毎に、前記前記第2の信号値情報を記憶し、
     前記情報取得部は、前記第1の信号値情報が前記記憶部に記憶される直前または直後に前記記憶部に記憶された前記第2の信号値情報を、当該第1の信号情報から減算した減算結果に基づいて、前記目標領域に存在する物体の3次元情報を取得する、ことを特徴とする情報取得装置。
  3.  請求項1または2に記載の情報取得装置において、
     前記受光素子は、受光量に応じた電荷を貯めて電荷に応じた信号を出力する素子からなり、
     前記受光素子に対する露光を制御するシャッターと、前記シャッターを制御するシャッター制御部とを備え、
     前記シャッター制御部は、前記第1信号情報を取得する際の前記受光素子に対する露光の時間と、前記第2信号情報を取得する際の前記受光素子に対する露光の時間とが同じとなるように、前記シャッターを制御する、ことを特徴とする情報取得装置。
  4.  請求項1ないし4の何れか一項に記載の情報取得装置において、
     前記投射光学系は、前記光源から出射された光をドットマトリックス状のパターンで前記目標領域に投射し、
     前記受光素子は、画素毎に受光量に応じた信号を出力可能なイメージセンサからなっている、ことを特徴とする情報取得装置。
  5.  請求項1ないし4の何れか一項に記載の情報取得装置を有する物体検出装置。
PCT/JP2010/069410 2010-02-17 2010-11-01 物体検出装置および情報取得装置 WO2011102025A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800638864A CN102753932A (zh) 2010-02-17 2010-11-01 物体检测装置及信息取得装置
US13/588,857 US20130250308A2 (en) 2010-02-17 2012-08-17 Object detecting device and information acquiring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-032845 2009-02-17
JP2010032845A JP2011169701A (ja) 2010-02-17 2010-02-17 物体検出装置および情報取得装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/588,857 Continuation US20130250308A2 (en) 2010-02-17 2012-08-17 Object detecting device and information acquiring device

Publications (1)

Publication Number Publication Date
WO2011102025A1 true WO2011102025A1 (ja) 2011-08-25

Family

ID=44482638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069410 WO2011102025A1 (ja) 2010-02-17 2010-11-01 物体検出装置および情報取得装置

Country Status (4)

Country Link
US (1) US20130250308A2 (ja)
JP (1) JP2011169701A (ja)
CN (1) CN102753932A (ja)
WO (1) WO2011102025A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867385A (zh) * 2012-09-26 2013-01-09 清华大学 基于脉冲光斑阵图样变化检测的楼宇安防系统及安防方法
CN102930682A (zh) * 2012-10-09 2013-02-13 清华大学 一种基于光点图样位移的入侵检测方法
US11336884B2 (en) 2020-03-05 2022-05-17 SK Hynix Inc. Camera module having image sensor and three-dimensional sensor

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238259A (ja) * 2011-09-28 2014-12-18 三洋電機株式会社 情報取得装置および物体検出装置
JP2014238262A (ja) * 2011-09-29 2014-12-18 三洋電機株式会社 情報取得装置および物体検出装置
US9709387B2 (en) 2012-11-21 2017-07-18 Mitsubishi Electric Corporation Image generation device for acquiring distances of objects present in image space
CN104036226B (zh) * 2013-03-04 2017-06-27 联想(北京)有限公司 一种目标物信息获取方法及电子设备
US9551791B2 (en) * 2013-07-09 2017-01-24 Xenomatix Nv Surround sensing system
EP2853929A1 (de) * 2013-09-30 2015-04-01 Sick Ag Optoelektronischer Sicherheitssensor
JP6489320B2 (ja) 2013-11-20 2019-03-27 パナソニックIpマネジメント株式会社 測距撮像システム
US9256944B2 (en) 2014-05-19 2016-02-09 Rockwell Automation Technologies, Inc. Integration of optical area monitoring with industrial machine control
US11243294B2 (en) 2014-05-19 2022-02-08 Rockwell Automation Technologies, Inc. Waveform reconstruction in a time-of-flight sensor
US9921300B2 (en) 2014-05-19 2018-03-20 Rockwell Automation Technologies, Inc. Waveform reconstruction in a time-of-flight sensor
US9696424B2 (en) * 2014-05-19 2017-07-04 Rockwell Automation Technologies, Inc. Optical area monitoring with spot matrix illumination
US9625108B2 (en) 2014-10-08 2017-04-18 Rockwell Automation Technologies, Inc. Auxiliary light source associated with an industrial application
JP6520053B2 (ja) * 2014-11-06 2019-05-29 株式会社デンソー 光飛行型測距装置
US11099008B2 (en) * 2014-12-15 2021-08-24 Sony Corporation Capture device assembly, three-dimensional shape measurement device, and motion detection device
JP5996687B2 (ja) * 2015-02-10 2016-09-21 浜松ホトニクス株式会社 検査装置及び検査方法
JP6484072B2 (ja) * 2015-03-10 2019-03-13 アルプスアルパイン株式会社 物体検出装置
JP6484071B2 (ja) * 2015-03-10 2019-03-13 アルプスアルパイン株式会社 物体検出装置
JP6247793B2 (ja) * 2015-03-27 2017-12-13 富士フイルム株式会社 距離画像取得装置
JP6244061B2 (ja) * 2015-03-30 2017-12-06 富士フイルム株式会社 距離画像取得装置及び距離画像取得方法
US10215557B2 (en) 2015-03-30 2019-02-26 Fujifilm Corporation Distance image acquisition apparatus and distance image acquisition method
JP6290512B2 (ja) 2015-06-09 2018-03-07 富士フイルム株式会社 距離画像取得装置及び距離画像取得方法
JP6605244B2 (ja) * 2015-07-17 2019-11-13 朝日航洋株式会社 架空線撮影装置および架空線撮影方法
EP3159711A1 (en) * 2015-10-23 2017-04-26 Xenomatix NV System and method for determining a distance to an object
JP6647524B2 (ja) * 2015-10-27 2020-02-14 北陽電機株式会社 エリアセンサ及び外部記憶装置
US11009347B2 (en) * 2016-05-26 2021-05-18 Symbol Technologies, Llc Arrangement for, and method of, determining a distance to a target to be read by image capture over a range of working distances
WO2018008388A1 (ja) * 2016-07-04 2018-01-11 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、および情報処理方法
JP6665873B2 (ja) * 2017-03-29 2020-03-13 株式会社デンソー 光検出器
JP6925844B2 (ja) * 2017-04-06 2021-08-25 京セラ株式会社 電磁波検出装置、プログラム、および電磁波検出システム
CN107015288B (zh) * 2017-05-25 2018-11-27 青岛理工大学 一种多通道的水下光学成像方法
KR102163643B1 (ko) 2017-08-14 2020-10-12 선전 구딕스 테크놀로지 컴퍼니, 리미티드 3차원(3d) 이미지 시스템 및 전자 장치
KR20200054326A (ko) 2017-10-08 2020-05-19 매직 아이 인코포레이티드 경도 그리드 패턴을 사용한 거리 측정
JP6557319B2 (ja) * 2017-12-25 2019-08-07 株式会社キーエンス 三次元画像処理装置、三次元画像処理装置用ヘッド部、三次元画像処理方法、三次元画像処理プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP7292315B2 (ja) 2018-06-06 2023-06-16 マジック アイ インコーポレイテッド 高密度投影パターンを使用した距離測定
WO2020049906A1 (ja) * 2018-09-03 2020-03-12 パナソニックIpマネジメント株式会社 距離測定装置
CN109798838B (zh) * 2018-12-19 2020-10-27 西安交通大学 一种基于激光散斑投射的ToF深度传感器及其测距方法
JP7130544B2 (ja) 2018-12-20 2022-09-05 三星電子株式会社 3次元情報算出装置、3次元計測装置、3次元情報算出方法及び3次元情報算出プログラム
EP3911920B1 (en) 2019-01-20 2024-05-29 Magik Eye Inc. Three-dimensional sensor including bandpass filter having multiple passbands
WO2020197813A1 (en) 2019-03-25 2020-10-01 Magik Eye Inc. Distance measurement using high density projection patterns
TWI748460B (zh) * 2019-06-21 2021-12-01 大陸商廣州印芯半導體技術有限公司 飛時測距裝置及飛時測距方法
CN111062857B (zh) * 2019-11-25 2024-03-19 上海芯歌智能科技有限公司 3d轮廓相机反射光消除系统与方法
WO2021113135A1 (en) 2019-12-01 2021-06-10 Magik Eye Inc. Enhancing triangulation-based three-dimensional distance measurements with time of flight information
WO2021146490A1 (en) * 2020-01-18 2021-07-22 Magik Eye Inc. Distance measurements including supplemental accuracy data
CN113075692A (zh) * 2021-03-08 2021-07-06 北京石头世纪科技股份有限公司 目标检测及控制方法、系统、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302604A (ja) * 1989-05-17 1990-12-14 Toyota Central Res & Dev Lab Inc 三次元座標計測装置
JPH09229673A (ja) * 1996-02-20 1997-09-05 Canon Inc 測距装置
JP2000321035A (ja) * 1999-05-14 2000-11-24 Mitsubishi Electric Corp 検出装置
JP2006105848A (ja) * 2004-10-07 2006-04-20 Megachips System Solutions Inc 距離測定システムおよび距離測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870178A (en) * 1996-02-20 1999-02-09 Canon Kabushiki Kaisha Distance measuring apparatus
DE102004059526B4 (de) * 2004-12-09 2012-03-08 Sirona Dental Systems Gmbh Vermessungseinrichtung und Verfahren nach dem Grundprinzip der konfokalen Mikroskopie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302604A (ja) * 1989-05-17 1990-12-14 Toyota Central Res & Dev Lab Inc 三次元座標計測装置
JPH09229673A (ja) * 1996-02-20 1997-09-05 Canon Inc 測距装置
JP2000321035A (ja) * 1999-05-14 2000-11-24 Mitsubishi Electric Corp 検出装置
JP2006105848A (ja) * 2004-10-07 2006-04-20 Megachips System Solutions Inc 距離測定システムおよび距離測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867385A (zh) * 2012-09-26 2013-01-09 清华大学 基于脉冲光斑阵图样变化检测的楼宇安防系统及安防方法
CN102930682A (zh) * 2012-10-09 2013-02-13 清华大学 一种基于光点图样位移的入侵检测方法
US11336884B2 (en) 2020-03-05 2022-05-17 SK Hynix Inc. Camera module having image sensor and three-dimensional sensor

Also Published As

Publication number Publication date
CN102753932A (zh) 2012-10-24
JP2011169701A (ja) 2011-09-01
US20130250308A2 (en) 2013-09-26
US20130038882A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
WO2011102025A1 (ja) 物体検出装置および情報取得装置
CN112119628B (zh) 调整相机曝光以用于三维深度感测和二维成像
EP3911920B1 (en) Three-dimensional sensor including bandpass filter having multiple passbands
JP6784295B2 (ja) 距離測定システム、距離測定方法およびプログラム
WO2011114571A1 (ja) 物体検出装置および情報取得装置
KR102486385B1 (ko) 깊이 정보 획득 장치 및 방법
JP6603320B2 (ja) 距離画像取得装置付きプロジェクタ装置及びプロジェクションマッピング方法
JP5966467B2 (ja) 測距装置
US20140055565A1 (en) 3-dimensional image acquisition apparatus and 3d image acquisition method for simultaneously obtaining color image and depth image
JP2013124985A (ja) 複眼式撮像装置および測距装置
WO2017056776A1 (ja) 距離画像取得装置付きプロジェクタ装置及びプロジェクション方法
JP2014185917A (ja) 撮像装置
TW202021340A (zh) 用於相機之紅外光預閃光
JP7005175B2 (ja) 距離測定装置、距離測定方法及び撮像装置
WO2013015145A1 (ja) 情報取得装置および物体検出装置
WO2021124730A1 (ja) 情報処理装置、撮像装置、情報処理方法、及びプログラム
WO2012132087A1 (ja) 受光装置、情報取得装置及び情報取得装置を有する物体検出装置
JP6232784B2 (ja) パターン照明装置及び測距装置
JP2023001122A (ja) 撮像装置
WO2012120729A1 (ja) 情報取得装置および情報取得装置を搭載する物体検出装置
KR20150109187A (ko) 구조광 시스템
WO2013046928A1 (ja) 情報取得装置および物体検出装置
JP6693757B2 (ja) 距離画像生成装置および方法
JP6611525B2 (ja) 撮像装置及び撮像システム
WO2023171203A1 (ja) 撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063886.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846157

Country of ref document: EP

Kind code of ref document: A1