WO2011099637A1 - Tigアーク溶接用電極及びtigアーク溶接方法 - Google Patents

Tigアーク溶接用電極及びtigアーク溶接方法 Download PDF

Info

Publication number
WO2011099637A1
WO2011099637A1 PCT/JP2011/053304 JP2011053304W WO2011099637A1 WO 2011099637 A1 WO2011099637 A1 WO 2011099637A1 JP 2011053304 W JP2011053304 W JP 2011053304W WO 2011099637 A1 WO2011099637 A1 WO 2011099637A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
tip
arc
welding
tungsten electrode
Prior art date
Application number
PCT/JP2011/053304
Other languages
English (en)
French (fr)
Inventor
浩 渡辺
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Priority to CN201180009130.6A priority Critical patent/CN102753299B/zh
Priority to JP2011553921A priority patent/JP5832304B2/ja
Publication of WO2011099637A1 publication Critical patent/WO2011099637A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode

Definitions

  • the present invention relates to a TIG arc welding electrode and a TIG arc welding method, and more particularly to a TIG arc welding method for improving a bead shape and a penetration shape by improving a tungsten electrode shape.
  • FIG. 10 shows a conceptual diagram of TIG welding (Tungsten Inert Gas Arc Welding).
  • TIG welding is performed in an inert gas atmosphere such as argon gas using a tungsten electrode 1 that is a non-consumable electrode when welding a welding object 3 such as an iron plate (hereinafter also referred to as a base material 3).
  • This is a welding method in which an arc 4 is generated from the tungsten electrode 1 toward the base material 3 to be welded to form a molten pool 5, where the base material 3 is melted, the weld metal is solidified, etc., as an inert gas.
  • High-quality welding is possible because it is performed in an atmosphere and not in an oxidizing atmosphere.
  • a welding material is added as necessary.
  • the tungsten electrode 1 generally has a diameter of 1 to 10 mm, a cylindrical thorium-containing tungsten electrode (ThO 2 : 1 to 2% by weight), a cerium-containing tungsten electrode (CeO 2 : 1 to 2% by weight), or lanthanum.
  • a tungsten electrode (La 2 O 3 : 1 to 2% by weight) is used, and the tip of the tungsten electrode 1 directed toward the base material 3 side is generally conical in order to increase the concentration and directivity of the arc 4. Polished one is used.
  • a DC power source having a constant current characteristic is generally used as the welding power source 6, a DC power source having a constant current characteristic is generally used.
  • the DC power source 6 and the base material 3 are connected to the positive electrode, and the DC power source 6 and the tungsten electrode 1 are connected to the negative electrode.
  • the tip of the tungsten electrode 1 directed toward the base material 3 is polished in a conical shape, and after energization, the tip reaches a high temperature to emit thermoelectrons and generate an arc 4.
  • the arc 4 is formed in a conical shape from the tip of the tungsten electrode 1 toward the base material 3, and current flows from the base material 3 toward the tip of the tungsten electrode 1. Lorentz force works.
  • the current density in the vicinity of the tip of the tungsten electrode 1 is higher than the current density of the arc-shaped arc 4 in the vicinity of the base 3, and near the base 3 (high pressure) near the tip of the tungsten electrode 1 (high pressure).
  • a pressure difference is generated toward the low pressure, and a plasma air flow 7 is generated.
  • the temperature in the vicinity of the electrode tip reaches 17000K and is in a plasma state.
  • the plasma airflow 7 collides with the molten pool 5 in which the base material 3 is melted by high heat, and an arc pressure (arc pressure) is generated in a direction in which the molten pool 5 is pressed.
  • TIG welding is of high quality but has a drawback of low efficiency.
  • methods for improving the efficiency have been proposed.
  • the welding current is increased to 200 A or higher and the welding speed is increased to 150 mm / min or higher, the plasma air flow 7 becomes higher, the arc pressure increases, the central recess of the molten pool 5 becomes larger, and the molten pool bottom is exposed.
  • a defective weld bead such as a humping bead that solidifies as it is or an undercut bead that remains as a groove is dug along the toe in the width direction of the molten pool.
  • the current density near the tip of the tungsten electrode 1 is lowered, and the pressure difference between the tip of the tungsten electrode 1 and the base material 3 is reduced to reduce the plasma airflow. 7 may be reduced to reduce the arc pressure, and various countermeasures have been conventionally considered.
  • a dent at the center of the molten pool 5 remains or cracks occur, so that a processing method at the end of welding, generally referred to as downslope and crater processing, is used.
  • the welding is completed by gradually reducing the current and reducing the molten pool 5 to a small size.
  • the arc length (the distance from the tip of the tungsten electrode 1 to the base material 3 in FIG. 10) is extremely shortened to about 1 mm.
  • the tungsten electrode 1 is shaken at a high speed of 10 Hz or more at a right angle with respect to the welding progress direction, or the arc 4 is deflected by applying a magnetic field to the arc 4 so that the welding progress direction.
  • these methods require a mechanism for swinging the tungsten electrode 1 at a high speed and a mechanism for deflecting and swinging the arc 4 with a magnetic field.
  • the control for operating the welding torch part in which the metal is stored becomes complicated, the weight of the welding machine increases, making it difficult to apply to general-purpose robots that perform high-speed welding, and the welding torch part becomes large and assembled products There is a problem that the welded part cannot be applied due to interference or the like.
  • FIG. 8 shows a tungsten electrode 1 in which the tip used for TIG welding is processed into a conical shape.
  • the upper limit of the cone angle ⁇ is about 120 °, and if it is larger than that, the arc 4 shown in FIG. 10 may be generated from a specific conical surface and becomes unstable. In particular, the arc 4 tends to be generated from the conical surface at a small current indispensable for the processing method at the end of welding, and welding becomes unstable.
  • the cause of the occurrence of the biased arc 4 in a small current region has a correlation between the magnitude of the current and the area where the arc 4 is generated at the tip of the tungsten electrode 1, and the arc 4 has the tungsten electrode 1 and the base material 3.
  • the area where the arc 4 is generated can be small in a small current region, the distance between the shaft portion of the tip of the tungsten electrode 1 and the base material 3, the portion other than the shaft portion, and the base material 3 If the difference from the distance between the tungsten electrode 1 and the base material 3 becomes other than the axial part due to the influence of the deposits on the tip of the tungsten electrode 1, the arc 4 May occur, causing the arc 4 to be biased.
  • FIG. 9 shows a truncated conical electrode 1 for processing the tip of the tungsten electrode 1 into a flat surface.
  • This is a method of increasing the arc diameter at the tip of the tungsten electrode 1 by increasing the truncated diameter W2.
  • the arc 4 is generated in a biased manner on a part of the truncated surface as described above.
  • increasing the truncated diameter W2 may cause the arc 4 to be biased on a part of the truncated surface, which makes the arc 4 unstable.
  • the arc 4 is generated with a deviation from the axis of the tungsten electrode 1, so that the penetration shape tends to be different on the left and right sides of the bead, or becomes shallower. A weld cannot be obtained.
  • Patent Document 1 discloses a method using a tungsten electrode having a hole at the tip of the tungsten electrode. Specifically, as shown in Table 1 of Patent Document 1, a truncated head is provided at the tip of a tungsten electrode having a diameter of 8 mm, and a hole having a diameter of 3, 4 or 5 mm and a depth of 5 mm is provided at the center. ing. In this method, as described above, arcs are biased and generated in a small current region, so that the penetration shape tends to be different between the left and right sides of the bead or shallow, and a sound weld cannot be obtained. Japanese Patent Laid-Open No.
  • Patent Document 2 introduces a method of generating an arc by using a hollow tungsten electrode and separately flowing an inert gas from the outside of the tungsten electrode and from the hollow portion. .
  • an arc is generated from the tip of the doughnut-shaped tungsten electrode outside the hollow portion, but the arc is likely to be generated unevenly in a small current region as in the method described in Patent Document 1.
  • the diameter of the tungsten electrode is increased due to the structure in which the inert gas flows from the hollow portion, the shortest distance from the tip portion to the base material is distributed in the circumferential direction. For this reason, arcs tend to be generated unevenly. For this reason, the penetration shape tends to be different between the left and right sides of the bead or becomes shallow, and a sound weld cannot be obtained.
  • Patent Document 3 discloses that an arc is formed by forming the tip of the tungsten electrode into a tapered wedge shape and forming an indented groove at the width center of the tip. Is generated from both sides of the groove to reduce the concentration of the arc, and a magnetic probe is used to swing the arc in a direction perpendicular to the weld line to obtain a wide and shallow weld zone.
  • FIG. 2 of Patent Document 3 discloses the shape of the tip of the tungsten electrode.
  • FIG. 3 of Patent Document 3 discloses that the outer diameter of the tungsten electrode is 3.2 mm, and it is estimated from FIG. 2 of Patent Document 3 that the center-to-center distance is 1.6 mm. . This distance is too large as the slit width of the electrode tip used in the present invention described later, and is not an appropriate distance. Also, with this method, there is a difference in the penetration shape depending on the wedge-shaped attachment direction.
  • the direction of the wedge shape at the tip of the tungsten electrode attached to the welding torch is made constant. It is not suitable for an automatic welding apparatus such as a robot because it needs to be taught. Further, when the electrodes are automatically exchanged, it is necessary to make the wedge-shaped attachment direction of the tip of the tungsten electrode attached to the welding torch constant, and this operation is also difficult. Furthermore, there is a problem that the use of a magnetic probe leads to an increase in the size of the welding machine.
  • Patent Document 4 a slit is formed in the axial direction from the tip of a tungsten electrode to form two or more sharp tips (tips), and the two or more sharp tips.
  • a method of obtaining a wide bead without oscillating by generating an arc in each specific direction from a plurality of points is disclosed.
  • Patent Document 4 there is no description of the outer diameter or slit width of tungsten, but the tip is formed outside the outer diameter by illustration, and a plurality of arcs are formed from the respective tip toward the base material. Yes.
  • the distance between the tips is almost equal to the outer diameter of tungsten, and this distance is too far as the slit width of the electrode tip used in the present invention described later, and is not an appropriate distance. Also, with this method, the strength of the arc from each tip is unevenly generated, particularly in a small current range, so the penetration shape tends to be different on the left and right sides of the bead, or shallow, and a sound weld can be obtained. Absent.
  • Japanese Utility Model Laid-Open No. 4-98390 Japanese Utility Model Laid-Open No. 4-98390 (GB Publication 2250900A, US Pat. No.
  • Patent Document 5 has a tungsten electrode formed of two separate parts, each of which has a tapered tip.
  • a technique is disclosed in which sparks are induced while suppressing vapor deposition of metal ions by fixing and using objects facing each other with a gap therebetween.
  • the object of the invention described in Patent Document 5 relates to the improvement of spark induction essential for a good arc start, and is different from the object of the present invention.
  • Patent Document 5 does not describe the outer diameter of the tungsten electrode or the width of the gap portion, but paragraph [0006] of the specification describes the spark intended by the technique described in Patent Document 5 even when the slit width is extremely small.
  • Patent Document 6 The object of the invention described in Patent Document 6 is to improve the problem of being unable to weld due to metal deposition from the molten pool, and is similar to the technique described in Patent Document 5 regarding improvement of spark induction essential for good arc start. This is an object and is different from the object of the present invention.
  • Patent Document 6 there is a description that the diameter of the tungsten electrode is 4 mm and the diameter of the truncated portion at the tip is 1 mm, but there is no description about the width of the gap.
  • the width of the gap is estimated to be 0.5 mm or less.
  • Patent Document 5 describes that the slit width is extremely small, and the invention described in Patent Document 6 uses a truncated cone shape in which the cone tip of the tungsten electrode is flattened. Since it is 1 mm, the width of the slit is estimated to be 0.5 mm or less. In the case of such an interval between the tapered portions of the electrode tip (Patent Document 5) and a gap at the electrode tip (Patent Document 6), the arc spread near the tungsten electrode tip is small and the current density remains high.
  • JP-A-52-144345 Japanese Unexamined Patent Publication No. 61-3683 JP 60-49891 A JP-A-61-273295 Japanese Utility Model Publication No. 4-98390 (GB Publication 2250900A, US Pat. No. 5,173,581) European Patent No. 67062 (US Pat. No. 4,471,208)
  • the object of the present invention is to reduce the current density in the vicinity of the tip of the tungsten electrode while keeping the arc concentration in a large current region, and to reduce the pressure difference between the tip of the tungsten electrode and the base material, thereby reducing the plasma airflow.
  • the object of the present invention is to provide a slit in the center direction of the electrode width (diameter) from the end face of the tungsten electrode, and to form the slit-processed tungsten electrode end face in a conical shape expanding in the axial direction from the vicinity of the center of the end face.
  • it is polished into a polygonal pyramid, thereby forming at least two or more tips with a slit in the vicinity of the center of the electrode, and arcs generated from a plurality of adjacent tips obtained are attracted by Lorentz force, and one arc is drawn. This is achieved by the TIG welding tungsten electrode to be formed and the TIG welding method.
  • the tip of the tungsten electrode is polished in a conical shape or a polygonal pyramid shape, and a slit having a width of 0.75 mm or more and 1.5 mm or less along the central axis of the tip is formed from the tip of the electrode.
  • An electrode for TIG arc welding characterized by being provided along the axial direction on the base side.
  • the invention according to claim 2 is the electrode for TIG arc welding according to claim 1, characterized in that the shape of the slit provided at the tip of the tungsten electrode is a single character or a cross shape when viewed from the tip.
  • the invention according to claim 3 is the electrode for TIG arc welding according to claim 1, wherein the tip end angle of the tip of the tungsten electrode is 30 ° or more and 100 ° or less.
  • the tip of the tungsten electrode is polished in a conical shape or a polygonal pyramid shape, and a constant slit having a width of 0.75 mm or more and 1.5 mm or less is formed along the central axis of the tip.
  • TIG characterized by being provided along the axial direction from the tip to the base side, forming at least two tips with a slit in the vicinity of the center of the electrode, and forming one arc from a plurality of obtained close tips
  • This is an arc welding method.
  • the invention according to claim 5 is the TIG arc welding method according to claim 4, wherein welding is performed with the tungsten electrode attached to the welding direction in the same direction or in a direction other than the same direction. is there.
  • the slit having a width of 0.75 mm or more and 1.5 mm or less along the central axis of the tip portion of the tungsten electrode is formed in the axial direction from the tip of the electrode to the base side. Since the arcs generated from the tip ends of the two or more electrodes have the same direction of current flow, they are attracted to each other by Lorentz force to form one arc and have the following effects. (1) Even with a large current of 200 A or more, welding is possible without generating irregular beads such as humping beads and undercut beads, and the distance between two or more tips close to the tungsten electrode that corresponds to the width of the slit is set appropriately.
  • the current density near the tip of the tungsten electrode is lowered while maintaining the arc concentration, so that the difference between the pressure near the tip of the electrode and the pressure near the base metal is reduced, and the flow velocity of the plasma airflow is reduced.
  • the arc pressure that slows down and pushes the molten pool is reduced, and a good weld can be obtained.
  • a single arc is formed by setting the distance between two or more adjacent tips of the tungsten electrode to be 0.75 mm or more and 1.5 mm or less, so that fluctuation due to arc bias occurs. No bead meandering occurs.
  • the shape of the slit provided at the tip of the tungsten electrode is a single letter or a cross when viewed from the tip side. Can be easily processed with a cutter.
  • welding with no directivity can be performed even in the case of a single character, but when the diameter of the tungsten electrode exceeds 5.0 mm, welding with less directivity in the case of a single character than in the case of a single character is possible.
  • the invention described in claim 3 has a difference in arc pressure when the tip angle of the conical or polygonal pyramid tip of the tungsten electrode is 30 ° or more and 100 ° or less.
  • the bead depth / width ratio is almost the same between 0.17 and 0.20, which deepens the penetration of the beat.
  • the polishing angle of the electrode tip exceeds 100 °, the arc generated from each tip spreads in the slit direction, so that the bead depth / width ratio is 0.17 to 0 when the slit direction is the welding progress direction. ..20 and smaller than 0.17 to 0.20 in the case of a right angle in the welding direction, a difference between the slit installation direction and the penetration shape occurs.
  • the polishing angle is less than 30 °, the strength is insufficient and polishing is difficult, and the yield is 50% or less.
  • the width / depth ratio of the bead is made substantially constant even if the direction of the slit of the tungsten electrode is changed with respect to the welding progress direction. As compared with a truncated electrode or a hollow electrode, the bead bottom is deeply melted, and defects such as poor fusion at the bead bottom do not occur.
  • FIG. 1 (a) shows a front view (FIG. 1 (a)), a side view (FIG. 1 (b)), and a bottom view (FIG. 1 (c)) showing the shape of the tungsten electrode for the first embodiment of the present invention.
  • FIG.1 (a) shows the front view (FIG.1 (a)), side view (FIG.1 (b)), and bottom view (FIG.1 (c)) which show the shape of the tungsten electrode for the 2nd Example of this invention.
  • FIG. 3A shows an arc pressure distribution diagram measured using the tungsten electrode of FIG. 1,
  • FIG. 3A shows a conical electrode having an electrode tip angle of 60 °, and
  • FIG. 3B shows a slit width of 1 mm in the welding direction. When the slit is installed, FIG.
  • FIG. 6A is a photograph of an arc using a tungsten electrode of the first example
  • FIG. 6A is an arc with an electrode polished in a conical shape
  • FIG. 6B is an arc with a slit electrode viewed from the slit direction
  • FIG. 6A is an arc using a tungsten electrode of the first example
  • FIG. 6A is an arc with an electrode polished in a conical shape
  • FIG. 6B is an arc with a slit electrode viewed from the slit direction
  • FIG. 6C shows an arc viewed from a direction perpendicular to the slit with a slit electrode. It is a slit width when performing arc welding using the tungsten electrode for a 1st example, a numerical value of a tip angle and a slit direction, a bead appearance photograph, and a cross-sectional macro model. They are a front view (Drawing 8 (a)) and a bottom view (Drawing 8 (b)) of a tungsten electrode where the tip of conventional technology is conical. A front view (FIG. 9A) and a bottom view (FIG. 9B) of a tungsten electrode having a truncated conical tip in the prior art are shown. It is a figure explaining the arc generation condition of an electrode.
  • FIG. 1 to 7 show an electrode shape, arc pressure distribution diagram, measured value of arc pressure with respect to the width of the slit 2, and electrode when arc welding is performed using the tungsten electrode 1 in the first embodiment of the present invention.
  • the measured value of the arc pressure with respect to the cone angle of the tip, the photograph of the arc, the appearance of the bead and the cross-sectional macro photograph are shown.
  • Non-Patent Document 1 Hiraoka, Okada, Inagaki: "Effect of electrode shape on maximum arc pressure in TIG arc", JSME Journal, Vol. 3, No. 2, PP. 246-252 (1985) ) Measure using the method described in).
  • a water-cooled copper plate was measured by a method in which a through hole having a diameter of 1 mm was provided, a pressure gauge was installed at the outlet of the through hole, and an arc was passed through the through hole.
  • FIG. 3A shows measurement results of arc pressure (kPa) with a diameter of 3.2 mm, a tungsten electrode 1 containing 2% lanthanum, a tip polishing angle of 60 °, a welding current of 300 A, and an arc length of 3 mm.
  • the arc 4 (Fig. 10) has an arc pressure distribution of 4 mm on one side and a maximum arc pressure of 2.8 kPa on both sides from the center, and the arc pressure is concentrated and large at the arc center.
  • the vertical axis represents the arc pressure (kPa)
  • the horizontal axis represents the length in the bead width direction.
  • Table 1 shows the results of a bead placement test without adding a welding material such as a wire to a mild steel sheet
  • FIG. 7 shows a typical bead appearance and cross-sectional macrostructure.
  • the welding conditions are a welding current of 300 A, an arc length of 3 mm, and a welding speed of 200 mm / min. With no slit and with a slit width of 0.5 mm, a humping bead was generated under all conditions, and with a slit width of 0.75 mm, a humping bead was generated in the start part under some conditions, but after that, it became a normal bead. .
  • the slit width is preferably 1.5 mm or less.
  • the case where the direction of the slit 2 is the welding progress direction and the case where the direction of the welding progress direction is perpendicular are compared.
  • the direction of the slit 2 in FIG. 3B is the welding progress direction
  • the arc pressure was not affected by the direction of the slit 2 and was almost the same distribution.
  • the penetration shape of the electrode 1 with a slit is a penetration shape suitable for the multilayer pile welding which piles up a bead from having the uniform penetration depth of the breadth spread.
  • the polishing angle of the tip of the electrode 1 is 30 to 60 ° when the slit width is 0.75 and 1.0 mm, there is almost no difference in arc pressure, and the penetration shape has a bead depth / width ratio of 0.17 to 0. .20 is almost the same.
  • the bead depth / width ratio is 0.17 to 0 when the direction of the slit 2 is the welding progress direction. Is smaller than 20 and is greater than 0.17 to 0.20 in the case of a right angle in the welding direction, resulting in a difference between the installation direction of the slit 2 and the penetration shape.
  • the conical tip angle of the tip of the tungsten electrode 1 is preferably 30 ° or more and 100 ° or less.
  • the arc spread on the base metal side is comparable between the electrode polished in the conical shape in FIG. 6 (a) and the slit electrode 1 in FIG. 6 (b) or FIG. 6 (c).
  • the width of the arc on the tungsten electrode side is wider in the slit electrode 1 shown in FIGS. 6 (b) and 6 (c) than the electrode polished in a conical shape in FIG. 6 (a).
  • the current density and pressure are lower than the conically polished electrode shown in FIG.
  • the pressure difference between the vicinity of the electrode and the base material side becomes smaller than that of the electrode polished in a conical shape shown in FIG.
  • the speed of the airflow is also reduced, and the arc pressure generated by the airflow is also lower than that of the electrode 1 polished in a conical shape.
  • Table 2 shows the results of the bead placement test using the truncated electrode and the hollow electrode in the same manner as the slit electrode 1 described above.
  • the test conditions used were the above conditions.
  • the truncated electrode and the hollow electrode have a bead width of about 10 mm and are equivalent to the slit electrode 1, but the penetration depth is shallow and the bead depth / width ratio is 0.11 to 0.15, which is 0 of the slit electrode 1. It was found to be shallower than 17 to 0.20. In thick plate welding, it is necessary to sufficiently melt the bead overlap and base material so that defects such as poor fusion do not occur.
  • the slit electrode 1 is used rather than a truncated electrode or a hollow electrode.
  • the slit electrode 1 of this welding method is suitable because the penetration of the beads can be deepened.
  • FIG. 2 shows the shape of a slitted tungsten electrode 1 according to a second embodiment of the present invention.
  • FIG. 2 (a) is a front view
  • FIG. 2 (b) is a side view
  • FIG. 2 (c) is a bottom view. .
  • a plurality of slits 2 may be inserted at the tip of the electrode 1 to increase the number of tips to 3 or more (FIG. 2 shows a cross-shaped slit). Even if the slit is a single character, welding without sufficient direction can be performed, but when the diameter of the tungsten electrode is larger than 5.0 mm, there is no more directivity in the case of ten characters than in the case of one character. Welding is possible.
  • the electrode 1 of the present invention By using the electrode 1 of the present invention, welding is possible without generating irregular beads even at a large current of 200 A or more, such as 300 A, and in combination with hot wire TIG welding, the efficiency is approximately doubled (from 20 g / min). 40 g / min), TIG arc welding can be promoted for welding.
  • Tungsten electrode (cylindrical) 2 Slit 3 Base material 4 Arc 5 Weld pool 6 Welding power source 7 Plasma airflow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

タングステン電極1の先端を円錐状または多角錐状に研磨し、該先端部の中心軸に沿って幅が0.75mm以上、1.5mm以下で一定のスリットを電極1の先端から基部側に軸方向に沿って設け、電極1の中心付近でスリットを挟んで少なくとも2以上の先端を形成したTIGアーク溶接用電極1とすることで、大電流域では不整ビードを発生させずに溶接可能であり、小電流域でもアークの集中を保ちアークが偏って発生しビードが蛇行したり、ビードの幅が細くなり凸ビードにならないようにすることができるTIG溶接タングステン電極1が得られる。

Description

TIGアーク溶接用電極及びTIGアーク溶接方法
 本発明は、TIGアーク溶接用電極及びTIGアーク溶接方法に係り、タングステン電極形状に改良を加えてビード形状、溶け込み形状を改善しようとするTIGアーク溶接方法に関するものである。
 図10にTIG溶接(Tungsten Inert Gas Arc Welding)の概念図を示す。TIG溶接は、鉄板などの溶接対象物3(以下母材3と称することがある)を溶接する際に、非消耗電極であるタングステン電極1を用いて、アルゴンガス等の不活性ガス雰囲気中で、前記タングステン電極1から溶接対象物となる前記母材3に向けてアーク4を発生し、溶融池5を形成する溶接方法であり、母材3の溶融、溶接金属の凝固等が不活性ガス雰囲気中で行われ、酸化性雰囲気中で行われないため高品質な溶接が可能である。なお、図示していないが必要に応じて溶接材料を添加する。
 タングステン電極1としては、一般的に直径1~10mm、円柱状のトリウム入りタングステン電極(ThO:1~2重量%)、セリウム入りタングステン電極(CeO:1~2重量%)、またはランタン入りタングステン電極(La:1~2重量%)などが用いられ、タングステン電極1の母材3側に向けられる先端部はアーク4の集中性、指向性を高めるために一般的に円錐状に研磨したものが用いられる。
 溶接電源6としては一般的に、定電流特性の直流電源が用いられる。
前記直流電源6と母材3とは正極、前記直流電源6とタングステン電極1とは負極に接続される。タングステン電極1の母材3側に向けられる先端部は円錐状に研摩され、通電後に先端部が高温に達して熱電子が放出されアーク4が発生する。アーク4はタングステン電極1の先端部から母材3に向けて円錐状に形成され、電流が母材3よりタングステン電極1の先端に向けて流れるためタングステン電極1の軸の外周から軸に向かってローレンツ力が働く。このため、タングステン電極1の先端部近傍での電流密度は母材3の近傍の末広がり状のアーク4部の電流密度より高くなり、タングステン電極1の先端部近傍(高圧)より母材3近傍(低圧)に向けて圧力差が生じてプラズマ気流7が発生する。このとき電極先端近傍の温度は17000Kにも達してプラズマ状態になっている。前記プラズマ気流7が、母材3が高熱により溶融した溶融池5にぶつかり、溶融池5を押圧する方向にアーク圧力(アークプレッシャー)が発生する。
 TIG溶接は高品質ではあるが、効率が低いのが欠点である。これに対して従来から効率を上げる方法が提案されてきた。TIG溶接の効率を上げるためには溶接電流を大電流とする必要がある。特に隅肉溶接の場合には溶接電流を大電流にすると共に溶接速度を上げる必要がある。例えば、溶接電流を200A以上、溶接速度を150mm/min以上に上げると、プラズマ気流7が高速になり、アーク圧力が上昇し、溶融池5の中央の凹みが大きくなり、溶融池底部が露出したままで凝固するハンピングビードや溶融池の幅方向の止端に沿って母材が掘られて溝となって残るアンダーカットビードなどの欠陥溶接ビードが生じるようになる。
 従って、大電流溶接でかつ高速溶接を可能にするにはタングステン電極1の先端部近傍の電流密度を下げて、タングステン電極1の先端部近傍と母材3近傍の圧力差を小さくしてプラズマ気流7の流速を低下させ、アーク圧力を軽減すれば良く、従来種々の対策が考えられている。また、溶接を大電流のままで終了させると、溶融池5の中心の窪みが残ったり、割れが発生したりするため、一般的にダウンスロープ、クレータ処理と言われる溶接終了時における処理方法が行われ、徐々に電流を低下させて溶融池5を小さく絞って溶接を終了させる。この処理中には特にアークが安定して発生することが不可欠であり、アークが偏って発生し、ビードが蛇行したり、ビードの幅が細くなり凸ビードにならないように留意する必要がある。
 前記大電流でかつ高速溶接を可能にするための従来技術としては、まず、アーク長(図10において、タングステン電極1先端部から母材3までの距離)を1mm程度に極端に短くしてタングステン電極1の先端部近傍と母材3近傍の間の圧力差を小さくしアーク圧力を抑えて溶接する方法があるが、アークの広がりが無いためビード幅が細くなり、溶け込み深さが浅くなるため数ミリ薄板の突合せや重ね溶接には適するが、十分なビード幅と溶け込みが必要な厚板の溶接には適さない。また、ビード幅を広げるためにタングステン電極1を10Hz以上の高速で溶接進行方向に対して直角に振る方法、あるいはアーク4に対して磁場を作用させることでアーク4を偏向させることにより溶接進行方向に対して振る方法があるが、これらの方法ではタングステン電極1を高速で振るための機構や、磁場でアーク4を偏向させて振るための機構が必要であり、溶接機の制御、特にタングステン電極が収納される溶接トーチ部を操作するための制御が複雑になること、溶接機の重量が増えるため、高速溶接が行われる汎用ロボットへの適用が難しくなること、溶接トーチ部が大きくなり組み立て製品などの溶接部には干渉等のため適用できない等の問題がある。
 次に、大電流でかつ高速溶接を可能にするための従来技術としてタングステン電極1の形状を工夫した方法を説明する。
 図8にTIG溶接に使用する先端部を円錐状に加工したタングステン電極1を示す。この先端の円錐角度θを増大する方法がある。この方法はタングステン電極1の先端部近傍のアーク径を広げることにより、タングステン電極1の先端部近傍での電流密度と母材3の近傍の末広がり状のアーク4部の電流密度との大きさの差を小さくすることにより、タングステン電極1の先端部近傍と母材3近傍との圧力差を小さくしてアーク圧力を低下する効果がある。しかしながら、前記円錐角度θは約120°が上限であり、それ以上大きくすると図10に示すアーク4が特定の円錐面より発生することがあり、不安定になる。特に溶接終了時における処理方法に不可欠な小電流においてアーク4が円錐面から発生しやすく溶接が不安定になる。
 特に小電流域でアーク4が偏って発生する原因として、電流の大きさとタングステン電極1の先端部でのアーク4の発生位置の面積に相関があり、アーク4はタングステン電極1と母材3との最短距離で発生するが、小電流域ではアーク4の発生位置の面積が小さくて済むため、タングステン電極1の先端部の軸部と母材3との距離と軸部以外と母材3との距離との差が微小の場合、又はタングステン電極1の先端部への付着物などの影響でタングステン電極1と母材3との最短距離が軸部以外になった場合にはそこからアーク4が発生することがあり、アーク4が偏って発生する原因になることが考えられる。
 次に図9にタングステン電極1の先端部を平面に加工する切頭円錐電極1を示す。この切頭径W2を増大することによりタングステン電極1の先端部のアーク径を拡げる方法である。この方法では小電流域の場合には前記と同様に、切頭面の一部にアーク4が偏って発生する。また、切頭径W2を増大することでも切頭面の一部にアーク4が偏って発生することがあり、アーク4が不安定になる。
 前記の2つの方法では特に小電流において溶接できたとしても、アーク4がタングステン電極1の軸から偏って発生するため溶け込み形状がビードの左右で違ったり、浅くなったりする傾向があり、健全な溶接部が得られない。
 同様な方法として、特開昭52−144345号公報(特許文献1)にはタングステン電極先端部に孔を有するタングステン電極を用いる方法が開示されている。具体的には特許文献1の第1表にあるように、直径8mmのタングステン電極の先端部に切頭部を設け、その中心部に直径3、4または5mm、それぞれ深さ5mmの孔を設けている。この方法では、前記と同じように小電流域でアークが偏って発生するため溶け込み形状がビードの左右で違ったり、浅くなったりする傾向があり、健全な溶接部が得られない。
 また、特開昭61−3683号公報(特許文献2)には中空式タングステン電極を用いてタングステン電極の外と中空部から別々に不活性ガスを流してアークを発生させる方法が紹介されている。この方法では中空部の外側にあるドーナツ状のタングステン電極先端部からアークが発生するが、前記特許文献1記載の方法と同様に小電流域でアークが偏って発生しやすい。本従来技術においても中空部から不活性ガスを流す構造のためタングステン電極の直径が大きくなるため、先端部から母材までの最短距離が円周方向に分布する。このため、アークが偏って発生しやすく、このため、溶け込み形状がビードの左右で違ったり、浅くなる傾向があり、健全な溶接部が得られない。
 以上の従来技術はタングステン電極先端部で発生するアーク4を拡げることにより、アーク4の集中性による欠点を減少させる方法である。同様に、特開昭60−49891号公報(特許文献3)には、タングステン電極先端部の形状を先細りのくさび状とし、その先端部の幅中心に凹溝を形成した電極とすることによってアークを溝の両側から発生することでアークの集中性を減少させるとともに、磁気プローブを用いてアークを溶接線の直角方向に揺動させて幅広で溶け込みの浅い溶接部を得る方法が開示されている。しかしながら、特許文献3の図2にはタングステン電極の先端部形状が開示されているが、溝の両側の山部は緩やかな頂部を形成しており、このような形状の場合、特に小電流においては、既に説明したように、それぞれの頂部においてアークの発生位置が安定しないため、アークが偏って発生する原因になることが考えられる。
 また、特許文献3の図3にはタングステン電極として外径が3.2mmであることが開示されており、特許文献3の図2から頂部の中心間距離は1.6mmであると推定される。この距離は後述する本発明で用いる電極先端のスリット幅としては大き過ぎ、適切な距離ではない。また、この方法では、くさび形状の取付け方向により溶け込み形状の違いが発生し、特にロボット等の自動溶接装置を使用する場合には溶接トーチに取付けたタングステン電極先端部のくさび形状の方向を一定にするティーチングを行う必要があり、その作業にはかなりの困難を要するためロボット等の自動溶接装置には向いていない。また電極の自動交換を行う場合に溶接トーチに取付けるタングステン電極先端部のくさび形状の取付け方向を一定にする必要があり、この作業においても困難性を要する。さらに、磁気プローブを用いるために溶接機の大型化につながるという問題があった。
 次に、特開昭61−273295号公報(特許文献4)には、タングステン電極の先端部から軸方向にスリットを入れて2以上の尖った先端(尖端)を形成し、前記2以上の尖端となる複数点よりおのおの特定方向へアークを発生させることによりオシレートしなくても広幅のビードを得る方法が開示されている。特許文献4にはタングステンの外径やスリット幅の記載はないが、図示により前記尖端は外径の外側に形成されており、それぞれの尖端から母材に向かってそれぞれ複数のアークが形成されている。従って、尖端間の距離はタングステンの外径にほぼ等しく、この距離は後述する本発明で用いる電極先端のスリット幅としては離れすぎており適切な距離ではない。また、この方法では、特に小電流域で各尖端からのアークの強弱が偏って発生するため、溶け込み形状がビードの左右で違ったり、浅くなったりする傾向があり、健全な溶接部が得られない。
 また、タングステン電極1の形状として実開平4−98390号(GB公開2250900A、US特許5173581)(特許文献5)には、2つの別個の部分からなるタングステン電極をそれぞれの先端部を先細に加工したものを、間隙を空けて互いに対向させて固定し使用することにより金属イオンの蒸着を抑制しながら火花誘導を行う技術が開示されている。特許文献5記載の発明の目的は良好なアークスタートに不可欠な火花誘導の改善に関するもので、本発明の目的とは異なる。特許文献5にはタングステン電極の外径や間隙部の幅の記載はないが、明細書の段落[0006]には、スリットの幅が極めて小さい場合でも特許文献5記載の技術が目的とする火花誘導が良好に行えること、実質的に対向して接触させて互いに固定されても良いことが記載されており、スリット幅は0に近いことが推定される。この0に近いスリット幅は本発明に用いるスリット幅としては小さ過ぎて適切な距離ではない。
 また、特許文献5記載の従来技術においては、アークを点弧するためにタングステン電極と母材間に高周波を印加するが、通常の円錐に研磨したタングステン電極では電極先端に金属イオンが蒸着し、アークスタート時の熱電子の放出が困難になりアークスタート性が悪くなる。タングステン電極先端に狭い空隙、スリットを設けると空隙、スリット内には金属イオンの蒸着がしにくいため、円錐面に金属イオンが蒸着しても空隙、スリット内より電子の放出が行われるためにアークスタート性が落ちない。この場合にタングステン電極先端部に設ける空隙、スリットは金属蒸気が入り込まないように狭く設定する必要がある。
 次に、欧州特許第67062号(US特許4471208)(特許文献6)には、タングステン電極の先端部を円錐状に研磨し、さらにタングステン電極の先端部に空隙部を設ける方法が開示されている。特許文献6記載の発明の目的は溶融池からの金属の蒸着により溶接できなくなるといった問題を改善するもので、良好なアークスタートに不可欠な火花誘導の改善に関する前記特許文献5記載の技術と同様の目的であり、本発明の目的とは異なる。
 特許文献6には、タングステン電極の直径が4mm、先端部の切頭部の直径が1mmであることなどの記載はあるが、空隙部の幅についての記載はない。しかしながら、特許文献6の本文中の記載から溶着物(deposits)の侵入を防止すべきことが記載されており、また特許文献6の図1より空隙部の幅は0.5mm以下と推定され、この距離は本発明に用いるスリット幅としては小さ過ぎて適切な距離ではない。
 また、特許文献5にはスリット幅を極めて微小にすると記述されており,特許文献6記載の発明ではタングステン電極の円錐先端を平らにした切頭円錐形状を用いているが、切頭の直径が1mmであることから、スリットの幅は0.5mm以下と推定される。このような電極先端部の先細加工部分の間隔(特許文献5)や電極先端部の空隙(特許文献6)の場合、タングステン電極先端部の近傍のアークの広がりが小さく、電流密度が大きなままであり、このためタングステン電極の先端部近傍での電流密度と母材の近傍の末広がり状のアーク部の電流密度との大きさの差を小さくできず、タングステン電極の先端部近傍と母材3近傍との圧力差を小さくできないため、アーク圧力を低下する効果が得られない。
特開昭52−144345号公報 特開昭61−3683号公報 特開昭60−49891号公報 特開昭61−273295号公報 実開平4−98390号公報(GB公開2250900A、US特許5173581) 欧州特許第67062号(US特許4471208)
 本発明の課題は、大電流域ではアークの集中を保ったままで、タングステン電極の先端部近傍の電流密度を下げて、タングステン電極の先端部近傍と母材近傍の圧力差を小さくしてプラズマ気流の流速を低下させ、アーク圧力を軽減し良好な溶接部を得ることができると共に、小電流域でもアークの集中を保ち、アークが偏って発生しビードが蛇行したり、ビードの幅が細くなり凸ビードにならないようにでき、良好な溶接部やクレータ処理部が得られるTIG溶接用のタングステン電極およびTIG溶接方法を提供することである。
 上記本発明の課題は、タングステン電極の端面より電極幅(直径)の中心方向にスリットを加工して設け、該スリット加工したタングステン電極端面を該端面の中心付近から軸方向に拡大する円錐状、または多角錐状に研磨し、それによって電極中心付近でスリットを挟んで少なくとも2以上の先端を形成させて、得られた複数の近接した先端より発生したアークがローレンツ力で引き合い、1つのアークを形成するTIG溶接用のタングステン電極およびTIG溶接方法により達成される。
 請求項1記載の発明は、タングステン電極の先端を円錐状または多角錐状に研磨し、該先端部の中心軸に沿って幅が0.75mm以上、1.5mm以下のスリットを電極の先端から基部側に軸方向に沿って設けたことを特徴とするTIGアーク溶接用電極である。
 請求項2記載の発明は、タングステン電極の先端に設けたスリットの形状が先端部側から見て一文字状又は十文字状であることを特徴とする請求項1記載のTIGアーク溶接用電極である。
 請求項3記載の発明は、タングステン電極先端の円錐状または多角錐状の先端角度が30°以上かつ100°以下であることを特徴とする請求項1記載のTIGアーク溶接用電極である。
 請求項4記載の発明は、タングステン電極の先端を円錐状または多角錐状に研磨し、該先端部の中心軸に沿って幅が0.75mm以上、1.5mm以下で一定のスリットを電極の先端から基部側に軸方向に沿って設け、電極中心付近でスリットを挟んで少なくとも2以上の先端を形成し、得られた複数の近接した先端より1つのアークを形成することを特徴とするTIGアーク溶接方法である。
 請求項5記載の発明は、溶接進行方向に対するタングステン電極の取付け方向を同一方向にするか又は前記同一方向以外の方向にして溶接を行うことを特徴とする請求項4記載のTIGアーク溶接方法である。
 請求項1,2,4記載の本発明によれば、タングステン電極の先端部の中心軸に沿って幅が0.75mm以上、1.5mm以下のスリットを電極の先端から基部側に軸方向に沿って設けたことにより、前記2以上の電極の先端部から発生したアークは電流の流れる方向が同一のためローレンツ力で互いに引き合い、1つのアークを形成して、次のような効果がある。
(1)200A以上の大電流でもハンピングビードやアンダーカットビード等の不整ビードを発生させることなく溶接が可能であり、スリットの幅に当たるタングステン電極の近接した2以上の先端の距離を適正に設定することにより、アークの集中を保ったままで、タングステン電極の先端部近傍の電流密度を下げて電極の先端部近傍の圧力と母材近傍の間の圧力の差が小さくなり、プラズマ気流の流速が遅くなり溶融池を押すアーク圧力を軽減し、良好な溶接部を得ることができる。また、100A程度の小電流域でもタングステン電極の近接した2以上の先端の距離を0.75mm以上、1.5mm以下に設定することにより1つのアークを形成することからアークの偏りによるふらつきが発生せずビードの蛇行等は発生しない。
(2)溶接終了時のダウンスロープ、クレータ処理時のように小電流での溶接時にもアークの集中を保ち、ビードの蛇行やビードの幅が細くなり、凸ビードを発生させることのない安定した溶接を行えるため、TIG溶接の高速化や能率化を達成することができる。特に高速溶接が行われる汎用ロボットへの適用、組み立て製品などの溶接部への適用時に安定した溶接を行えるため、TIG溶接の高速化や能率向上を達成することができる。
(3)厚板溶接の多層盛溶接ではビードの重ね部や母材を、融合不良等の欠陥が入らないように充分に溶かすことができる。
 請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、タングステン電極の先端に設けたスリットの形状を先端部側から見て一文字状又は十文字状とすることで、ダイヤモンドカッター等で容易に加工できる。また一文字の場合でも十分に方向性の無い溶接が行えるが、特にタングステン電極の直径が5.0mmを越えて大きくなった場合に、十文字の場合に一文字の場合よりもいっそう方向性がない溶接が行える。
 請求項3記載の発明は、請求項1記載の発明の効果に加えて、タングステン電極先端の円錐状または多角錐状の先端角度が30°以上かつ100°以下であると、アーク圧力の差はほとんど無く、溶け込み形状もビード深さ/幅比が0.17~0.20でほぼ同一で、ビートの溶け込みを深くする。また、電極先端の研磨角度が100°を超えると、各先端から発生するアークはスリットの方向に拡がるため、ビード深さ/幅比はスリットの方向が溶接進行方向の場合に0.17~0.20より小さく、溶接進行方向直角の場合に0.17~0.20より大きくなり、スリットの設置方向と溶け込み形状の違いが発生する。また、前記研磨角度が30°未満であると、強度が不足して研磨加工が困難となり歩留まりが50%以下となる。
 請求項5記載の発明によれば、請求項4記載の発明の効果に加えて溶接進行方向に対してタングステン電極のスリットの方向を変えてもビードの幅/深さ比をほぼ一定とすることができ、切頭電極や中空電極に比較してビード底の溶け込みが深く、ビード底の融合不良等の欠陥が発生しない。
本発明の第1の実施例のためのタングステン電極の形状を示す正面図(図1(a))、側面図(図1(b))、底面図(図1(c))である。 本発明の第2の実施例のためのタングステン電極の形状を示す正面図(図1(a))、側面図(図1(b))、底面図(図1(c))である。 図1のタングステン電極を用いて計測したアーク圧力分布図を示し、図3(a)は電極先端角が60°の円錐状電極の場合、図3(b)はスリット幅が1mmで溶接方向にスリットを設置した場合、図3(c)はスリット幅が1mmで溶接直角方向にスリットを設置した場合を示す。 第1の実施例のタングステン電極のスリット幅に対するアーク圧力の測定値のグラフである。 第1の実施例のタングステン電極の先端角度に対するアーク圧力の測定値のグラフである。 第1の実施例のタングステン電極を用いたアークの写真であり、図6(a)は円錐状に研磨した電極でのアーク、図6(b)はスリット入り電極でスリット方向から見たアーク、図6(c)はスリット入り電極でスリット直角方向から見たアークである。 第1の実施例のためのタングステン電極を用いてアーク溶接を実施したときのスリット幅、先端角度及びスリット方向の数値、ビード外観写真及び断面マクロ模式図である。 従来技術の先端が円錐状であるタングステン電極の正面図(図8(a))と底面図(図8(b))である。 従来技術の先端が切頭円錐状であるタングステン電極の正面図(図9(a))と底面図(図9(b))がである。 電極のアーク発生状況を説明する図である。
 以下、本発明の実施例を図面により説明する。
 図1~図7には、本発明の第1の実施例におけるタングステン電極1を用いてアーク溶接を実施したときの電極形状、アーク圧力分布図、スリット2の幅に対するアーク圧力の測定値、電極先端部の円錐状の角度に対するアーク圧力の測定値、アークの写真及びビードの外観と断面マクロ写真を示す。
 アーク圧力を非特許文献1(平岡、岡田、稲垣:「TIGアークにおける最大アーク圧力に及ぼす電極形状の影響」、溶接学会論文集、Vol.3、No.2、PP.246−252(1985))に掲載されている方法で測定する。水冷銅板に直径1mmの貫通穴を設け、貫通穴の出口に圧力計を設置して貫通穴上にアークを通過させる方法により測定した。直径3.2mm、2%ランタン入りタングステン電極1を使用し、先端研磨角度60°、溶接電流300A、アーク長3mmのアーク圧力(kPa)の測定結果を図3(a)に示す。アーク4(図10)の中心から両側にそれぞれ片幅4mmで、最大アーク圧力が2.8kPaのアーク圧力分布を有し、しかもアーク圧力がアーク中心で集中して大きいことが分かる。なお、図3で縦軸はアーク圧力(kPa)を示し、横軸はビード幅方向の長さを示す。スリット幅(W1=0、0.5、0.75、1mm)と先端研磨角度(θ=30°、45°、60°)を変化させてアーク圧力測定を行った結果を図4と図5に示す。
 また、軟鋼板にワイヤ等の溶接材を添加せずにビード置き試験を行った結果を表1に、代表的なビード外観と断面マクロ組織を図7に示す。溶接条件は、溶接電流300A、アーク長3mm、溶接速度200mm/minである。スリット無し、スリット幅0.5mmでは総ての条件でハンピングビードが発生し、スリット幅0.75mmでは一部の条件でスタート部にハンピングビードが発生したが、その後は正常ビードになった。アーク圧力はスリット幅0.75mm近辺で1kPaに収束することより、スリット幅は0.75mm以上が適すると考えられる。
 また、スリット幅を1mmより拡げて1.5mmにすると小電流の時に両先端からのアーク4の維持が難しくなり、片側からしかアーク4が発生しなくなる。この現象は従来技術においても説明したが、タングステン電極1の両先端部のそれぞれと母材3(図10)との距離差が生じ、いずれかのタングステン電極1の先端部と母材3との距離が最短になった場合には、最短になった箇所だけからアーク4が発生することがあり、アーク4が偏って発生する原因になることがあるためである。従って、スリット幅は1.5mm以下が良い。
 スリット2の方向を溶接進行方向にした場合と溶接進行方向直角にした場合を比較する。図3(b)のスリット2の方向を溶接進行方向とした場合、図3(c)のスリット2の方向を溶接進行方向直角にした場合のそれぞれのスリット幅1mmのアーク圧力分布を示すが、アーク圧力はスリット2の方向に影響されずほぼ同様の分布となった。表1、図7に溶け込み形状などを示す。
Figure JPOXMLDOC01-appb-T000001
 表1、図7の溶け込み形状のビード幅、深さ、ビード深さ/幅比を比較してみてもスリット2の方向による優位の差は認められなかった。溶接進行方向に対するスリット2の設置方向の影響はほとんど無い。また、スリット入り電極1の溶け込み形状は、横広がりの均一な溶け込み深さになっていることよりビードを重ねる多層盛溶接に適する溶け込み形状である。
 電極1の先端の研磨角度は、スリット幅が0.75、1.0mmの場合に30~60°でアーク圧力の差はほとんど無く、溶け込み形状もビード深さ/幅比が0.17~0.20でほぼ同一である。ただし研磨角度が100°を超えると電極1の各先端から発生するアークはスリット2の方向に拡がるため、ビード深さ/幅比はスリット2の方向が溶接進行方向の場合に0.17~0.20より小さく、溶接進行方向直角の場合に0.17~0.20より大きくなり、スリット2の設置方向と溶け込み形状の違いが発生する。また研磨角度を30°未満とすると、研磨加工が困難となり歩留まりが50%以下となった。また加工できたものについても強度が不足するため、折れやすく実際の溶接作業には適さない。さらにスリット加工を行うことで、さらに強度的に不足する。このことより、タングステン電極1の先端の円錐状先端角度は30°以上かつ100°以下が良い。
 図6のアークの写真を比較すると、母材側のアークの広がりは図6(a)の円錐状に研磨した電極と図6(b)又は図6(c)のスリット入り電極1では同程度であるが、タングステン電極側のアークの幅が図6(a)の円錐状に研磨した電極に比較して、図6(b)と図6(c)に示すスリット入り電極1では広くなり、電流密度と圧力が図6(a)に示す円錐状に研磨した電極に比較して低くなる。また図6(b)と図6(c)に示すスリット入り電極1では電極近傍と母材側の圧力差が図6(a)に示す円錐状に研磨した電極に比較して小さくなるためプラズマ気流の速度も遅くなり、気流により発生するアーク圧力も円錐状に研磨した電極1に比較して低くなる。
 切頭電極と中空電極を用いて上記したスリット入り電極1と同様にビード置き試験を行った結果を表2に示す。試験条件は上記条件を用いた。
Figure JPOXMLDOC01-appb-T000002
 切頭電極と中空電極はビード幅が10mm前後でスリット入り電極1と同等であるが、溶け込み深さが浅く、ビード深さ/幅比が0.11~0.15でスリット入り電極1の0.17~0.20より浅くなることが分かった。厚板溶接の多層盛溶接ではビードの重ね部や母材を融合不良等の欠陥が発生しないように充分に溶かす必要があり、切頭電極、中空電極より、スリット入り電極1を用いる本実施例の溶接法のスリット入り電極1の方がビードの溶け込みを深くすることができるので適する。
 本発明の第2の実施例のスリット入りタングステン電極1の形状を図2に示し、図2(a)は正面図、図2(b)は側面図、図2(c)は底面図である。
 電極1の先端に複数のスリット2を入れて先端の数を3以上にしても良い(図2には十文字体タイプのスリットを示す。)。
 前記スリットが一文字の場合でも十分に方向性の無い溶接が行えるが、特にタングステン電極の直径が5.0mmを越えて大きくなった場合に、十文字の場合に一文字の場合よりもいっそう方向性がない溶接が行える。
 なお、上記実施例1及び実施例2におけるタングステン電極1の先端部の円錐状を図示していない多角錐状に変更しても、前記した一文字体タイプ又は十文字タイプのスリットを有する電極1と同様の結果が得られた。
 本発明の電極1を用いることにより、200A以上で300A等の大電流でも不整ビードを発生させずに溶接可能であり、ホットワイヤTIG溶接と組み合わせて効率を溶着量で約2倍(20g/分から40g/分)に向上できるので、溶接施工のTIGアーク溶接化を推進することができる。
1 タングステン電極(円柱状)
2 スリット
3 母材
4 アーク
5 溶融池
6 溶接電源
7 プラズマ気流

Claims (5)

  1.  タングステン電極の先端を円錐状または多角錐状に研磨し、該先端部の中心軸に沿って幅が0.75mm以上、1.5mm以下のスリットを電極の先端から基部側に軸方向に沿って設けたことを特徴とするTIGアーク溶接用電極。
  2.  タングステン電極の先端に設けたスリットの形状が先端部側から見て一文字状又は十文字状であることを特徴とする請求項1記載のTIGアーク溶接用電極。
  3.  タングステン電極先端の円錐状または多角錐状の先端角度が30°以上かつ100°以下であることを特徴とする請求項1記載のTIGアーク溶接用電極。
  4.  電極の先端を円錐状または多角錐状に研磨し、該先端部の中心軸に沿って幅が0.75mm以上、1.5mm以下で一定のスリットを電極の先端から基部側に軸方向に沿って設け、電極中心付近でスリットを挟んで少なくとも2以上の先端を形成し、得られた複数の近接した先端より1つのアークを形成することを特徴とするTIGアーク溶接方法。
  5.  溶接進行方向に対するタングステン電極の取付け方向を同一方向にするか又は前記同一方向以外の方向にして溶接を行うことを特徴とする請求項4記載のTIGアーク溶接方法。
PCT/JP2011/053304 2010-02-12 2011-02-07 Tigアーク溶接用電極及びtigアーク溶接方法 WO2011099637A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180009130.6A CN102753299B (zh) 2010-02-12 2011-02-07 Tig电弧焊用电极和tig电弧焊方法
JP2011553921A JP5832304B2 (ja) 2010-02-12 2011-02-07 Tigアーク溶接用電極及びtigアーク溶接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-029143 2010-02-12
JP2010029143 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099637A1 true WO2011099637A1 (ja) 2011-08-18

Family

ID=44367900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053304 WO2011099637A1 (ja) 2010-02-12 2011-02-07 Tigアーク溶接用電極及びtigアーク溶接方法

Country Status (4)

Country Link
JP (1) JP5832304B2 (ja)
KR (1) KR20120112743A (ja)
CN (1) CN102753299B (ja)
WO (1) WO2011099637A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744527A (zh) * 2012-07-13 2012-10-24 兰州理工大学 一种用于高速tig焊接的耦合电弧钨极
HRP20140363B1 (hr) * 2014-04-17 2018-10-05 ĐURO ĐAKOVIĆ TERMOENERGETSKA POSTROJENJA d.o.o. Poboljšani postupak mehaniziranog elektrolučnog zavarivanja korijena spoja priključak na sabirnik
JP2021027736A (ja) * 2019-08-07 2021-02-22 トヨタ紡織株式会社 積層構造体の製造方法及び積層構造体
CN116921817A (zh) * 2023-09-15 2023-10-24 中建安装集团有限公司 自动tig焊电弧聚集度在线监测及智能预警方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20152608A1 (it) * 2015-07-29 2017-01-29 Fly S P A Nuovo metodo di saldatura.
CN105750707B (zh) * 2016-03-30 2022-11-04 山东诺博泰智能科技有限公司 一种机器人钨极气体保护焊系统
DE102017214460A1 (de) * 2017-08-18 2019-02-21 Kjellberg Stiftung Elektrode für einen Schweißbrenner oder einen Schneidbrenner
CN109454315B (zh) * 2018-12-27 2020-10-13 哈尔滨工业大学 一种多钨极氩弧热源、控制方法及焊接装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989690U (ja) * 1982-12-09 1984-06-18 三菱重工業株式会社 Tig溶接用電極
JPS6049891A (ja) * 1983-08-30 1985-03-19 Agency Of Ind Science & Technol Tigア−ク溶接用電極
JPS61273295A (ja) * 1985-05-29 1986-12-03 Ishikawajima Harima Heavy Ind Co Ltd 非消耗電極溶接方法
JPH0647576A (ja) * 1992-07-30 1994-02-22 Showa Alum Corp Tig溶接用電極棒

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471208A (en) * 1981-06-10 1984-09-11 British Nuclear Fuels Limited Electrodes for welding
GB9027235D0 (en) * 1990-12-15 1991-02-06 British Nuclear Fuels Plc Electrode for tungsten inert gas welding
CN2796925Y (zh) * 2005-04-06 2006-07-19 张文军 钨极氩弧焊电极

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989690U (ja) * 1982-12-09 1984-06-18 三菱重工業株式会社 Tig溶接用電極
JPS6049891A (ja) * 1983-08-30 1985-03-19 Agency Of Ind Science & Technol Tigア−ク溶接用電極
JPS61273295A (ja) * 1985-05-29 1986-12-03 Ishikawajima Harima Heavy Ind Co Ltd 非消耗電極溶接方法
JPH0647576A (ja) * 1992-07-30 1994-02-22 Showa Alum Corp Tig溶接用電極棒

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744527A (zh) * 2012-07-13 2012-10-24 兰州理工大学 一种用于高速tig焊接的耦合电弧钨极
HRP20140363B1 (hr) * 2014-04-17 2018-10-05 ĐURO ĐAKOVIĆ TERMOENERGETSKA POSTROJENJA d.o.o. Poboljšani postupak mehaniziranog elektrolučnog zavarivanja korijena spoja priključak na sabirnik
JP2021027736A (ja) * 2019-08-07 2021-02-22 トヨタ紡織株式会社 積層構造体の製造方法及び積層構造体
JP7379914B2 (ja) 2019-08-07 2023-11-15 トヨタ紡織株式会社 積層構造体の製造方法及び積層構造体
CN116921817A (zh) * 2023-09-15 2023-10-24 中建安装集团有限公司 自动tig焊电弧聚集度在线监测及智能预警方法
CN116921817B (zh) * 2023-09-15 2023-12-15 中建安装集团有限公司 自动tig焊电弧聚集度在线监测及智能预警方法

Also Published As

Publication number Publication date
JP5832304B2 (ja) 2015-12-16
JPWO2011099637A1 (ja) 2013-06-17
CN102753299A (zh) 2012-10-24
KR20120112743A (ko) 2012-10-11
CN102753299B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5832304B2 (ja) Tigアーク溶接用電極及びtigアーク溶接方法
Meng et al. High speed TIG–MAG hybrid arc welding of mild steel plate
JP2007000933A (ja) 液体ブリッジを介した金属移行を用いるtig溶接又はろう付け溶接
JP2912693B2 (ja) アルミニウム基材加工物のガス金属アーク溶接方法
EP2596896A1 (en) Welding system and process with a laser device, a GMAW device and a GTAW device; corresponding welded article
JP2015223605A (ja) 狭開先ガスシールドアーク溶接方法
JP2007237225A (ja) 薄鋼板の高速ホットワイヤ多電極tig溶接方法
JP7318740B2 (ja) 接合方法
JP2011177769A (ja) Tig溶接方法
JPH07204854A (ja) 高速ガスシールドアーク溶接装置及び方法
JP2001030091A (ja) 挟開先t継手の構造およびその溶接方法ならびに溶接構造物
JPS59110474A (ja) ア−ク溶接方法
JPH11147175A (ja) ガスシールドアーク溶接方法
JP3867164B2 (ja) 溶接方法
JP2012187630A (ja) 開先形状
JP6607677B2 (ja) 4電極片面1層サブマージアーク溶接方法
WO2017221470A1 (ja) 溶融Zn系めっき鋼板のアーク溶接方法および溶接部材の製造方法
JP2019051542A (ja) プラズマキーホール溶接方法
JPH11226736A (ja) ガスシールドアーク溶接方法
JP2000102871A (ja) 多電極ガスシールドアーク片面溶接方法
JP6715682B2 (ja) サブマージアーク溶接方法
JP5681568B2 (ja) 裏置きビード溶接法
JP3105124B2 (ja) 非消耗ノズル式エレクトロスラグ溶接方法
JP2005246469A (ja) 消耗電極式アーク溶接方法
JPH0471782A (ja) 高速サブマージドアーク溶接法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009130.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553921

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127020538

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742376

Country of ref document: EP

Kind code of ref document: A1