WO2011096489A1 - シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法 - Google Patents

シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2011096489A1
WO2011096489A1 PCT/JP2011/052277 JP2011052277W WO2011096489A1 WO 2011096489 A1 WO2011096489 A1 WO 2011096489A1 JP 2011052277 W JP2011052277 W JP 2011052277W WO 2011096489 A1 WO2011096489 A1 WO 2011096489A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
lsa
silicon wafer
treatment
heat treatment
Prior art date
Application number
PCT/JP2011/052277
Other languages
English (en)
French (fr)
Inventor
敏昭 小野
淳 藤瀬
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010025487A external-priority patent/JP5655319B2/ja
Priority claimed from JP2010096505A external-priority patent/JP2011228459A/ja
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020147004493A priority Critical patent/KR101461531B1/ko
Priority to US13/576,853 priority patent/US9502266B2/en
Priority to DE112011100479.6T priority patent/DE112011100479B4/de
Priority to KR1020127018331A priority patent/KR101381299B1/ko
Publication of WO2011096489A1 publication Critical patent/WO2011096489A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a silicon wafer and a manufacturing method thereof, and more particularly, to a silicon wafer used for a device process including an LSA (Laser Spike Anneal) process and a manufacturing method thereof.
  • the present invention also relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device including LSA processing.
  • a semiconductor device manufacturing process various heat treatments are performed on a silicon wafer.
  • a source / drain region of a MOS transistor after ion implantation of a dopant into a silicon wafer, annealing for activating the dopant is performed.
  • annealing for activating the dopant a method of heating the entire surface of the wafer using a lamp furnace or the like is generally used.
  • the LSA process is performed by scanning the wafer with a laser beam having a beam diameter of about several millimeters.
  • the region irradiated with the laser beam reaches a temperature of 1000 ° C. or higher and a melting point (1414 ° C.) or lower in the order of milliseconds or less, so that a steep impurity profile can be obtained.
  • a steep temperature gradient is formed not only in the thickness direction of the wafer but also in the in-plane direction, so that a strong thermal stress is generated inside the wafer.
  • dislocation may occur starting from oxygen precipitates.
  • misalignment occurs before and after the occurrence of the dislocation, so that a so-called overlay error occurs in the photolithography process.
  • Patent Document 1 discloses a method for preventing the occurrence of dislocation due to thermal stress by making carbon precipitates into a polyhedron instead of a plate by adding carbon to a silicon wafer.
  • Patent Document 2 discloses a method in which light scattering defects are zero in a region having a depth of 25 ⁇ m to 100 ⁇ m from the surface layer of the silicon wafer, and a large amount of light scattering defects are included in a region having a depth of 100 ⁇ m.
  • Patent Document 3 discloses a method for setting the size and density of oxygen precipitates during heat treatment and the thermal stress applied by the heat treatment within a predetermined range.
  • an epitaxial wafer having an epitaxial layer formed on the surface.
  • it is effective to contain nitrogen or boron in the wafer body at a high concentration.
  • a wafer doped with nitrogen or boron at a high concentration is much easier to form oxygen precipitates in the device process than a normal wafer.
  • nitrogen and boron have the effect of increasing the stability of the precipitation nuclei. Therefore, when such an epitaxial wafer is put into a device process, a plate-like fine precipitate is easily formed by a low-temperature treatment of about 750 ° C. included in the device process, followed by a heat treatment of about 1000 ° C. Then, fine precipitates grow and become large plate-like oxygen precipitates.
  • Patent Document 1 describes that the shape of oxygen precipitates can be made into a polyhedron by adding carbon to a silicon wafer, but nitrogen and boron are doped at a high concentration like an epitaxial wafer. Whether it is effective in the wafer body is unknown. Moreover, as is apparent from the description of paragraph [0004], Patent Document 1 assumes that heat treatment is performed using a batch furnace or the like, and is strong in the wafer thickness direction and in-plane direction as in LSA processing. The case where thermal stress occurs is not assumed. For this reason, when LSA processing is performed on an epitaxial wafer doped with nitrogen or boron at a high concentration, it is considered difficult to prevent the occurrence of dislocation by the method described in Patent Document 1.
  • Patent Documents 2 and 3 it is unclear whether or not the occurrence of dislocations can be prevented when the above-described epitaxial wafer is subjected to the LSA treatment, and it is probably impossible to prevent them.
  • an object of the present invention is an epitaxial wafer having a wafer body doped with nitrogen or boron at a high concentration and a method for manufacturing the same, and the occurrence of dislocations even when the LSA treatment is performed in the device process.
  • An object of the present invention is to provide a silicon wafer that can be prevented and a method of manufacturing the same.
  • Another object of the present invention is to provide a method for manufacturing a semiconductor device using such a silicon wafer, which does not cause dislocation during the LSA process.
  • Patent Document 1 is an invention that excludes plate-like oxygen precipitates, under what conditions LSA treatment should be performed on a silicon wafer that actually contains plate-like oxygen precipitates, Patent Document 1 Is unknown.
  • Patent Document 2 assumes a flash lamp annealing apparatus as a rapid heating / cooling heat treatment apparatus, there is almost no temperature gradient in the in-plane direction of the wafer. For this reason, in the invention described in Patent Document 2, it is unclear whether or not it is effective when the LSA process in which a steep temperature gradient occurs in the in-plane direction is performed. Even if it is effective for the LSA process, it is possible to prevent the occurrence of dislocation by setting the LSA process for a silicon wafer containing plate-like oxygen precipitates. Is unknown.
  • Patent Document 3 describes conditions for performing flash lamp annealing and spike lamp annealing, but as in Patent Document 2, it is unclear whether it is effective when LSA treatment is performed. Even if it is effective, it is unclear from Patent Document 3 how dislocations can be prevented by setting LSA treatment conditions for silicon wafers containing plate-like oxygen precipitates.
  • Still another object of the present invention is a silicon wafer containing plate-like oxygen precipitates and a method for manufacturing the same, and it is possible to prevent the occurrence of dislocation even when the LSA treatment is performed in the device process.
  • An object of the present invention is to provide a silicon wafer and a method for manufacturing the same.
  • a silicon wafer according to one aspect of the present invention has a wafer body in which a nitrogen concentration is set to 1 ⁇ 10 12 atoms / cm 3 or more, or a specific resistance is set to 20 m ⁇ ⁇ cm or less by boron doping, and a surface of the wafer body.
  • the wafer body is subjected to a heat treatment at 750 ° C. for 4 hours and then a heat treatment at 1000 ° C. for 4 hours, and thus a polyhedral oxygen precipitate rather than a plate-like oxygen precipitate. Is characterized by a dominant growth.
  • the oxygen precipitate is the starting point.
  • the occurrence of dislocation can be prevented.
  • heat treatment is performed at 750 ° C. for 4 hours and at 1000 ° C. for 4 hours, the polyhedral oxygen precipitate grows more dominantly than the plate-like oxygen precipitate. This is because there are more types of precipitation nuclei that grow into polyhedral oxygen precipitates than precipitation nuclei that grow into granular oxygen precipitates.
  • which type of precipitation nuclei is more contained cannot be analyzed by current analysis techniques unless the precipitation nuclei are actually grown by heat treatment.
  • the silicon wafer manufacturing method according to the present invention is characterized by this point.
  • the silicon wafer manufacturing method provides an epitaxial layer on the surface of a wafer body in which the nitrogen concentration is 1 ⁇ 10 12 atoms / cm 3 or more or the specific resistance is set to 20 m ⁇ ⁇ cm or less by boron doping. And a step of performing a heat treatment for 5 minutes or more at a temperature of 1050 ° C. or higher and a melting point or lower after forming the epitaxial layer and raising the temperature at a rate of 5 ° C./min or higher in a temperature range of at least 800 ° C. or higher. And.
  • more precipitation nuclei of the type that grows into a polyhedron are formed by performing the above heat treatment, so that even when the device process undergoes various thermal histories, plate oxygen precipitation The proportion of things is very low. For this reason, even when the LSA treatment is performed, it is possible to prevent the occurrence of dislocations starting from oxygen precipitates.
  • a semiconductor device manufacturing method is a semiconductor device manufacturing method including a wafer process for manufacturing a silicon wafer and a device process for forming a semiconductor device on the silicon wafer, wherein the wafer process has a nitrogen concentration. 1 ⁇ 10 12 atoms / cm 3 or more, or a step of forming an epitaxial layer on the surface of the wafer body whose specific resistance is set to 20 m ⁇ ⁇ cm or less by boron doping, and after forming the epitaxial layer, at least 800 ° C. or more And heating at a rate of 5 ° C./min or higher in a temperature range of 1050 ° C. or higher and a melting point of 1050 ° C.
  • the device process includes LSA (Laser Spike Anneal)
  • LSA Laser Spike Anneal
  • the LSA process is included in the wafer body.
  • T the maximum temperature reached is T (° C.)
  • T ⁇ S 2 ⁇ 9 ⁇ 10 6 The process is performed under conditions that satisfy the following conditions.
  • the diagonal length of the plate-like oxygen precipitates refers to the average value of the diagonal lengths of many plate-like oxygen precipitates contained in the wafer body.
  • a silicon wafer according to another aspect of the present invention is a silicon wafer used in a device process including an LSA (Laser Spike Anneal) process, and a plate-like oxygen precipitate contained in the silicon wafer during the LSA process.
  • LSA Laser Spike Anneal
  • T ⁇ S 2 ⁇ 9 ⁇ 10 6 It is characterized by satisfying.
  • a method for manufacturing a silicon wafer according to another aspect of the present invention is a method for manufacturing a silicon wafer used in a device process including an LSA (Laser Spike Anneal) process, and is included in the silicon wafer during the LSA process.
  • LSA Laser Spike Anneal
  • a silicon wafer according to still another aspect of the present invention is a silicon wafer used for a device process including LSA processing, and has a nitrogen concentration of 1 ⁇ 10 12 atoms / cm 3 or more, or has a specific resistance due to boron doping.
  • a method for manufacturing a silicon wafer according to still another aspect of the present invention is a method for manufacturing a silicon wafer used in a device process including an LSA process, wherein the nitrogen concentration is 1 ⁇ 10 12 atoms by the Czochralski method. / cm 3 or more, or, specific resistance by boron dope is set below 20 m [Omega ⁇ cm, a step of initial oxygen concentration to cultivate configured silicon single crystal below 14 ⁇ 10 17 atoms / cm 3, the silicon single crystal Forming an epitaxial layer on the surface of the wafer body cut out from the substrate.
  • the maximum temperature reached is about 1250 ° C. It is possible to prevent the occurrence of dislocation due to the general LSA treatment.
  • a general heat treatment performed before the LSA treatment for example, a heat treatment that is held at a temperature of 750 ° C. or more for 3 hours or more and that is held at a temperature range of 1000 ° C. to 1050 ° C. for 1 hour or more. Including heat treatment.
  • the initial oxygen concentration of the wafer body is preferably 12 ⁇ 10 17 atoms / cm 3 or less. According to this, even when the heat treatment is performed for a longer time before the LSA treatment, it is possible to prevent the occurrence of dislocation due to a general LSA treatment with a maximum temperature of about 1250 ° C. .
  • a heat treatment including a heat treatment for 4 hours or more at a temperature of 750 ° C. or more and a treatment for holding for 2 hours or more in a temperature range of 1000 ° C. to 1050 ° C. can be given.
  • a method for manufacturing a semiconductor device using an epitaxial wafer doped with nitrogen or boron at a high concentration and a method for manufacturing a semiconductor device that does not generate dislocations by LSA treatment. Can be provided.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a silicon wafer 10 according to a preferred embodiment of the present invention.
  • the silicon wafer 10 includes a wafer body 11 and an epitaxial layer 12 formed on the surface thereof.
  • the wafer main body 11 is single crystal silicon grown by the Czochralski method, and plays a role of ensuring the mechanical strength of the silicon wafer 10 and also serving as a heavy metal gettering source.
  • the thickness of the wafer body 11 is not particularly limited as long as the mechanical strength is ensured, but is about 725 ⁇ m, for example.
  • the wafer body 11 is preferably doped with nitrogen or boron.
  • the concentration is preferably 1 ⁇ 10 12 atoms / cm 3 or more.
  • the specific resistance of the wafer body 11 is preferably set to 20 m ⁇ ⁇ cm or less by boron doping. This is because sufficient gettering capability is given to the wafer body 11 if nitrogen or boron is doped at the above concentration.
  • the upper limit of the concentration of nitrogen or boron is not particularly limited, but it is preferable to set nitrogen to 5 ⁇ 10 14 atoms / cm 3 or less and boron to 3 m ⁇ ⁇ cm or more in terms of specific resistance.
  • the initial oxygen concentration of the wafer body 11 is preferably 7 ⁇ 10 17 atoms / cm 3 or more and 2.4 ⁇ 10 18 atoms / cm 3 or less. This is because if the oxygen concentration is less than 7 ⁇ 10 17 atoms / cm 3 , the formation density of oxygen precipitates necessary for gettering heavy metals such as Ni may be insufficient, and the oxygen concentration is 2 This is because it is difficult to form the defect-free epitaxial layer 12 when the thickness exceeds 0.4 ⁇ 10 18 atoms / cm 3 .
  • the formation of oxygen precipitates is promoted by nitrogen doping or boron doping, so that the initial oxygen concentration of the wafer body 11 is 7 ⁇ 10 as long as the oxygen precipitates are formed by heat treatment. It may be less than 17 atoms / cm 3 .
  • the oxygen concentrations described in this specification are all measured by Fourier transform infrared spectrophotometry (FT-IR) standardized by ASTM F-121 (1979).
  • a heat treatment in which precipitation nuclei can grow before the LSA treatment for example, a heat treatment held at a temperature of 750 ° C. or higher for 3 hours or longer, and a temperature range of 1000 to 1050 ° C. for 1 hour or longer.
  • the initial oxygen concentration of the wafer main body 11 is preferably set to 14 ⁇ 10 17 atoms / cm 3 or less.
  • a heat treatment including a treatment for a longer time before the LSA treatment for example, a heat treatment for 4 hours or more at a temperature of 750 ° C. or more and a temperature range of 1000 ° C. to 1050 ° C. for 2 hours or more is performed.
  • the initial oxygen concentration of the wafer body 11 is 12 ⁇ 10 17 atoms / cm 3 or less. This is because the size of the plate-like oxygen precipitate formed by the heat treatment is determined by the heat treatment conditions (temperature and time) and the initial oxygen concentration of the wafer body 11. Assuming the above general heat treatment, if the initial oxygen concentration of the wafer body 11 is set to 14 ⁇ 10 17 atoms / cm 3 or less, the size of the plate-like oxygen precipitate immediately before the LSA treatment is set to a predetermined value. The following can be suppressed.
  • the initial oxygen concentration of the wafer body 11 is set to 12 ⁇ 10 17 atoms / cm 3 or less
  • the size of the plate-like oxygen precipitate immediately before the LSA treatment is set. Can be kept below a predetermined value.
  • the initial oxygen concentration can be adjusted by convection control of the silicon melt at the time of growing a silicon single crystal by the Czochralski method. The relationship between the size of the plate-like oxygen precipitate and the presence or absence of dislocation generation will be described later.
  • a semiconductor device such as a MOS transistor cannot be directly formed on the wafer body 11.
  • Semiconductor devices such as MOS transistors are formed in the epitaxial layer 12 on the wafer body 11.
  • the specific resistance of the epitaxial layer 12 is normally set higher than the specific resistance of the wafer body 11.
  • the film thickness of the epitaxial layer 12 is not particularly limited, and may be set to about 1 ⁇ m or more and 10 ⁇ m or less.
  • the wafer body 11 has more polyhedral oxygen than plate oxygen precipitates. Precipitates grow predominantly.
  • the plate-like oxygen precipitate is an oxygen precipitate mainly having the structure shown in FIG. 2, and its main surface 21 is along the [100] plane, the [010] plane, or the [001] plane.
  • the size of the plate oxygen precipitate is defined by the diagonal length S.
  • the polyhedral oxygen precipitate is an octahedral oxygen precipitate mainly having the structure shown in FIG. 3, and each surface 22 thereof is along the [111] plane.
  • the size of the polyhedral oxygen precipitate is defined by the length S of one side.
  • FIG. 4 is a flowchart for explaining the manufacturing method (wafer process) of the silicon wafer 10 according to the present embodiment.
  • a wafer body 11 cut out from a silicon single crystal ingot is prepared (step S11), and its surface is mirror-polished (step S12).
  • the silicon single crystal ingot is grown by the Czochralski method, and thereby, the oxygen eluted from the quartz crucible is contained in the wafer body 11 in supersaturation.
  • the initial oxygen concentration contained in the wafer main body 11 is preferably set to 14 ⁇ 10 17 atoms / cm 3 or less, and more preferably set to 12 ⁇ 10 17 atoms / cm 3 or less.
  • the epitaxial layer 12 is formed on the mirror-polished surface of the wafer body 11 (step S13).
  • a type of precipitation nucleus that grows into polyhedral oxygen precipitates is formed (step S14).
  • the heat treatment is performed by raising the temperature at a rate of 5 ° C./min or more in a temperature range of at least 800 ° C. and holding at a temperature of 1050 ° C. or more and a melting point or less for 5 minutes or more.
  • oxygen contained in the wafer body 11 forms precipitation nuclei, but if the temperature at the time of formation of the precipitation nuclei is less than 1050 ° C., the type of precipitation nuclei that grows into plate-like oxygen precipitates is formed predominantly.
  • precipitation nuclei are formed in the above temperature range, precipitation nuclei of the type that grow into polyhedral oxygen precipitates are formed predominantly. However, which type of precipitation nuclei cannot be determined by current technology unless the precipitation nuclei are actually grown.
  • the time for holding at 1050 ° C. or more and the melting point or less is set to 5 minutes or more because if the holding time is less than 5 minutes, the type of precipitation nuclei that grow into polyhedral oxygen precipitates are not sufficiently formed.
  • the holding time is preferably 2 hours or less. This is because even if the heat treatment is performed for more than 2 hours, the effect is not further improved, and if the holding time is more than 2 hours, the manufacturing cost of the wafer is greatly increased.
  • the temperature rising rate in the temperature range of 800 ° C. or higher is set to 5 ° C./min or higher.
  • the temperature range in which precipitation nuclei of the type that grows on the plate-like oxygen precipitates are predominantly formed is 800 ° C. or higher and 1050 ° C. This is because it is necessary to shorten the transit time in the lower temperature range. That is, when the temperature rising rate in the temperature region of 800 ° C. or higher is less than 5 ° C./min, a precipitation nucleus of a type that already grows into a plate-like oxygen precipitate when the holding temperature (1050 ° C. or higher and melting point or lower) is reached. Is formed, and even if it is maintained at 1050 ° C.
  • the upper limit of the temperature rising rate is not particularly limited, but is preferably 10 ° C./min or less. This is because if the temperature is increased at a rate exceeding 10 ° C./min, the occurrence of slip dislocation may become remarkable due to an increase in thermal stress caused by the in-plane temperature difference of the wafer.
  • the temperature range in which the temperature increase rate is set to 5 ° C./min or higher is not particularly limited as long as it is at least 800 ° C., but it is preferable to set the temperature increase rate to 5 ° C./min or higher in the temperature region of 700 ° C. or higher. According to this, it becomes possible to more effectively prevent the formation of precipitation nuclei of the type that grows into plate-like oxygen precipitates.
  • the silicon wafer 10 according to the present embodiment is completed.
  • the silicon wafer 10 manufactured by such a wafer process is put into a device process for forming a semiconductor device on the epitaxial layer 12.
  • FIG. 5 is a flowchart showing a part of the device process.
  • the device process includes various steps depending on the type of semiconductor device to be manufactured (logic device, memory device, etc.). As shown in FIG. 5, the temperature is raised to a temperature at which precipitation nuclei can grow.
  • the heat treatment process (step S21) to be performed and the LSA treatment process (step S22) may be included. Examples of the heat treatment step shown in step S21 include an example of performing heat treatment at 850 ° C. for 30 minutes, 900 ° C. for 30 minutes, 1000 ° C. for 100 minutes, and 950 ° C. for 30 minutes in this order. In this case, the precipitation nuclei contained in the wafer main body 11 grow into oxygen precipitates by the heat treatment step shown in step S21.
  • the oxygen precipitates to be formed include plate-like oxygen precipitates and polyhedral oxygen precipitates.
  • the silicon wafer 10 according to the present embodiment is subjected to the heat treatment step (step S14) shown in FIG. 4 in the wafer process. Since the type of precipitation nuclei that grow into polyhedral oxygen precipitates are dominant, the polyhedral oxygen precipitates are dominant in the oxygen precipitates formed by the heat treatment step shown in step S21. When compared with the same volume, the polyhedral oxygen precipitate has a lower stress than the plate-like oxygen precipitate, and thus is unlikely to be a starting point of dislocation generation.
  • step S21 After the polyhedral oxygen precipitates are formed by such a heat treatment step (step S21), when the LSA process (step S22) is performed, a strong thermal stress is applied to the wafer body 11, so that dislocation starts from the oxygen precipitates. May occur.
  • the LSA process is performed by scanning the epitaxial layer 12 of the silicon wafer 10 with a laser beam having a beam diameter of about several millimeters while the silicon wafer 10 is initially heated to a temperature of about 400 ° C. to 600 ° C. As a result, the region irradiated with the laser light reaches a temperature of 1000 ° C. or higher and a melting point or lower in the order of milliseconds or less, so that a steep impurity profile can be obtained.
  • the wafer main body 11 may contain plate oxygen precipitates to some extent, but since there are relatively few types of precipitation nuclei that grow into plate oxygen precipitates, it is assumed that plate oxygen precipitates are formed. However, the size is small and the formation density is sufficiently low.
  • step S14 when the heat treatment in step S14 shown in FIG. 4 is omitted, the plate-like oxygen precipitates predominate in the oxygen precipitate formed by the heat treatment step shown in step S21.
  • step S21 when the LSA process (step S22) is performed, a strong thermal stress is applied to the wafer body 11, so that the dislocation starts from the oxygen precipitates. May occur.
  • the application target of the present invention is not limited to an epitaxial wafer.
  • Example 1 A plurality of 300 mm diameter polished wafers having an interstitial oxygen concentration of 12.5 ⁇ 10 17 atoms / cm 3 were prepared. These wafers were subjected to various heat treatments to form oxygen precipitates having different sizes and shapes. The size and form of the precipitates were specified by measuring and observing another sample subjected to the same heat treatment with a transmission electron microscope (TEM). Table 1 shows the size and form of precipitates present in the depth region of 50 ⁇ m or less from the surface layer of the wafer.
  • TEM transmission electron microscope
  • Example 2 A 300 mm epitaxial wafer having an epitaxial layer formed on a nitrogen-doped wafer body and a 300 mm epitaxial wafer having an epitaxial layer formed on a boron-doped wafer body were prepared.
  • the doping amount is as shown in Table 2.
  • the interstitial oxygen concentration of the wafer body in each sample is 11.5 to 13.6 ⁇ 10 17 atoms / cm 3 .
  • precipitation nuclei were grown by subjecting each sample to heat treatment at 850 ° C. for 30 minutes, 900 ° C. for 30 minutes, 1000 ° C. for 100 minutes, and 950 ° C. for 30 minutes.
  • heat treatment imitates the heat treatment applied in the manufacturing process of the advanced logic device.
  • T ⁇ S 2 > 9 ⁇ 10 6 LSA treatment was performed under the following conditions. After the LSA treatment, the form of oxygen precipitates was observed using a transmission electron microscope (TEM), and the presence or absence of dislocation was examined using an X-ray topography apparatus.
  • TEM transmission electron microscope
  • Example 3 A 300 mm epitaxial wafer having an epitaxial layer formed on a nitrogen-doped wafer body and a 300 mm epitaxial wafer having an epitaxial layer formed on a boron-doped wafer body were prepared.
  • the doping amount is as shown in Table 3.
  • the interstitial oxygen concentration of the wafer body in each sample is 11.5 to 13.6 ⁇ 10 17 atoms / cm 3 .
  • precipitation nuclei were grown by subjecting each sample to heat treatment at 850 ° C. for 30 minutes, 900 ° C. for 30 minutes, 1000 ° C. for 100 minutes, and 950 ° C. for 30 minutes.
  • T ⁇ S 2 > 9 ⁇ 10 6 LSA treatment was performed under the following conditions. After the LSA treatment, the form of oxygen precipitates was observed using a transmission electron microscope (TEM), and the presence or absence of dislocation was examined using an X-ray topography apparatus.
  • TEM transmission electron microscope
  • Example 4 A 300 mm epitaxial wafer having an epitaxial layer formed on a nitrogen-doped wafer body and a 300 mm epitaxial wafer having an epitaxial layer formed on a boron-doped wafer body were prepared.
  • the doping amount is as shown in Table 4.
  • the interstitial oxygen concentration of the wafer body in each sample is 11.5 to 13.6 ⁇ 10 17 atoms / cm 3 .
  • precipitation nuclei were grown by subjecting each sample to heat treatment at 850 ° C. for 30 minutes, 900 ° C. for 30 minutes, 1000 ° C. for 100 minutes, and 950 ° C. for 30 minutes.
  • T ⁇ S 2 > 9 ⁇ 10 6 LSA treatment was performed under the following conditions. After the LSA treatment, the form of oxygen precipitates was observed using a transmission electron microscope (TEM), and the presence or absence of dislocation was examined using an X-ray topography apparatus.
  • TEM transmission electron microscope
  • Example 5 A 300 mm epitaxial wafer having an epitaxial layer formed on a nitrogen-doped wafer body and a 300 mm epitaxial wafer having an epitaxial layer formed on a boron-doped wafer body were prepared. The dope amount was different for each sample. The interstitial oxygen concentration of the wafer body in each sample is 11.5 to 13.6 ⁇ 10 17 atoms / cm 3 .
  • T ⁇ S 2 > 9 ⁇ 10 6 LSA treatment was performed under the following conditions. After the LSA treatment, the form of oxygen precipitates was observed using a transmission electron microscope (TEM), and the presence or absence of dislocation was examined using an X-ray topography apparatus.
  • TEM transmission electron microscope
  • dislocations are generated by LSA treatment in a silicon wafer having a nitrogen concentration of 1 ⁇ 10 12 atoms / cm 3 or more, or a specific resistance by boron doping of 20 m ⁇ ⁇ cm or less, and the nitrogen concentration is 1 ⁇ 10 12. It has been demonstrated that dislocations do not occur even when the LSA treatment is applied to a silicon wafer having a specific resistance of less than atoms / cm 3 or more than 20 m ⁇ ⁇ cm by boron doping.
  • Example 6 An epitaxial wafer having an epitaxial film formed on the surface of the wafer body having a nitrogen concentration of 3 to 6 ⁇ 10 13 atoms / cm 3 , and an epitaxial film on the surface of the wafer body having a specific resistance of 6 to 8 m ⁇ ⁇ cm by boron doping. A plurality of formed epitaxial wafers were prepared. The initial oxygen concentration of each wafer is as shown in Table 5.
  • heat treatment A heat treatment
  • 900 ° C. for 30 minutes 1000 ° C. for 100 minutes
  • 950 ° C. for 30 minutes Precipitation nuclei were grown.
  • the remaining sample is subjected to heat treatment (heat treatment B) for 45 minutes at 750 ° C., 30 minutes at 900 ° C., 120 minutes at 1050 ° C., and 45 minutes at 950 ° C. Grown up.
  • heat treatment B heat treatment for 45 minutes at 750 ° C.
  • 30 minutes at 900 ° C. 120 minutes at 1050 ° C.
  • 45 minutes at 950 ° C. Grown up.
  • each sample was subjected to LSA treatment under the condition that the maximum temperature T was 1250 ° C.
  • the size of the plate-like oxygen precipitate existing in the depth region of 50 ⁇ m or less from the surface layer of the wafer body is observed using a transmission electron microscope (TEM), and the dislocation is performed using an X-ray topography apparatus. The presence or absence of occurrence was examined.
  • TEM transmission electron microscope
  • dislocation did not occur in the sample 78 having an initial oxygen concentration of 13.0 ⁇ 10 17 atoms / cm 3 , whereas the initial oxygen concentration was 13.6. Dislocation occurred in Sample 79, which was ⁇ 10 17 atoms / cm 3 . Further, among the boron-doped epitaxial wafers subjected to the heat treatment B, dislocation did not occur in the sample 83 having an initial oxygen concentration of 12.0 ⁇ 10 17 atoms / cm 3 , whereas the initial oxygen concentration was 12.6. Dislocation occurred in Sample 84, which was ⁇ 10 17 atoms / cm 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】デバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なエピタキシャルウェーハを提供する。 【解決手段】窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体11と、ウェーハ本体11の表面に設けられたエピタキシャル層12とを備える。ウェーハ本体11は、750℃で4時間の熱処理を行った後、1000℃で4時間の熱処理を行った場合に、板状酸素析出物よりも多面体酸素析出物が優勢に成長する。これにより、デバイスプロセスにおいて板状酸素析出物が形成されにくいことから、デバイスプロセスにて種々の熱履歴を経た後にLSA処理を行った場合であっても、酸素析出物を起点とした転位の発生を防止することが可能となる。

Description

シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法
 本発明はシリコンウェーハ及びその製造方法に関し、特に、LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハ及びその製造方法に関する。また、本発明は半導体デバイスの製造方法に関し、特に、LSA処理を含む半導体デバイスの製造方法に関する。
 半導体デバイスの製造プロセス(いわゆるデバイスプロセス)においては、シリコンウェーハに対して種々の熱処理が行われる。例えば、MOSトランジスタのソース/ドレイン領域を形成する場合、シリコンウェーハにドーパントをイオン注入した後、ドーパントを活性化させるためのアニールが行われる。ドーパントを活性化させるためのアニールとしては、ランプ炉などを用いてウェーハの全面を加熱する方法が一般的に用いられている。
 しかしながら、近年においては、MOSトランジスタのチャネル長が非常に短く設計されることから、短チャネル効果によるサブスレッショールド電流の増大が問題となっている。短チャネル効果を抑制するためには、急峻な不純物プロファイルを有する極浅接合によってソース/ドレイン領域を形成することが有効であり、このような極浅接合を得るためのアニール方法としてLSA(Laser Spike Anneal)処理が注目されている。
 LSA処理は、ランプ炉などを用いてウェーハの全面を加熱する方法とは異なり、数mm程度のビーム径を有するレーザ光によってウェーハをスキャンすることにより行われる。これにより、レーザ光が照射された領域はミリ秒又はそれ以下のオーダーで1000℃以上、融点(1414℃)以下の温度に達するため、急峻な不純物プロファイルを得ることが可能となる。しかしながら、LSA処理においては、ウェーハの厚み方向のみならず、面内方向においても急峻な温度勾配が形成されることから、ウェーハの内部に強い熱応力が生じる。ウェーハの内部に強い熱応力が生じると、酸素析出物を起点として転位が生じることがある。デバイスプロセスにて転位が発生すると、転位発生の前後においてアライメントのズレが生じるため、フォトリソグラフィ工程においていわゆるオーバーレイエラー(Overlay Error)が生じてしまう。
 酸素析出物を起点とした転位の発生を防止する方法としては、特許文献1~3に開示された方法が知られている。特許文献1には、シリコンウェーハに炭素を含有させることによって酸素析出物の形状を板状ではなく多面体とし、これによって熱応力による転位の発生を防止する方法が開示されている。また、特許文献2には、シリコンウェーハの表層から深さ25μm~100μmの領域については光散乱欠陥をゼロとし、深さ100μmの領域については光散乱欠陥を多量に含ませる方法が開示されている。さらに、特許文献3には、熱処理時における酸素析出物のサイズ及び密度と、熱処理によって加えられる熱応力とを所定の範囲に設定する方法が開示されている。
特開平10-150048号公報 特開2008-205024号公報 再表2006-3812号公報
 他方、シリコンウェーハの中には、表面にエピタキシャル層が形成されたエピタキシャルウェーハがある。エピタキシャルウェーハのゲッタリング能力を高めるためには、ウェーハ本体に窒素やボロンを高濃度に含有させることが有効である。
 しかしながら、窒素やボロンが高濃度にドープされたウェーハは、通常のウェーハと比べると、デバイスプロセスにおいて酸素析出物が非常に形成されやすい。これは、窒素やボロンが析出核の安定性を増大させる効果があるためである。したがって、このようなエピタキシャルウェーハをデバイスプロセスに投入すると、デバイスプロセスに含まれる750℃程度の低温処理によって板状の微細析出物が容易に形成され、これに続いて1000℃程度の熱処理が行われると、微細析出物が成長して大きな板状酸素析出物となる。このようにして板状酸素析出物が成長した状態でLSA処理を行うと、酸素析出物を起点として容易に転位が発生し、これがエピタキシャル層にまで達するという問題があった。LSA処理時に転位が容易に発生するのは、他の熱処理と比べてLSA処理においては非常に強い熱応力が局所的に加えられるからである。このため、窒素やボロンが高濃度にドープされたエピタキシャルウェーハのように、板状酸素析出物が成長しやすいシリコンウェーハにおいては、LSA処理による転位の発生を防止することが特に重要となる。
 このような問題は、上述した特許文献1~3に記載された方法では必ずしも解決することはできない。
 つまり、特許文献1には、シリコンウェーハに炭素を含有させることによって酸素析出物の形状を多面体とすることができると記載されているが、エピタキシャルウェーハのように窒素やボロンが高濃度にドープされたウェーハ本体において有効であるか否かは不明である。しかも、特許文献1は、[0004]段落の記載から明らかなように、バッチ炉などを用いて熱処理を行うことを想定しており、LSA処理のようにウェーハの厚み方向及び面内方向に強い熱応力が生じるケースについては想定していない。このため、窒素やボロンが高濃度にドープされたエピタキシャルウェーハに対してLSA処理を行う場合、特許文献1に記載された方法では転位の発生を防止することは困難であると考えられる。
 特許文献2及び3についても同様であり、上記のエピタキシャルウェーハに対してLSA処理を行った場合に転位の発生を防止できるか否かは不明であり、おそらくは防止できないものと考えられる。
 このように、従来は、窒素やボロンが高濃度にドープされたウェーハ本体を有するエピタキシャルウェーハに対し、デバイスプロセスにてLSA処理を行った場合に転位の発生を防止することは困難であった。
 したがって、本発明の目的は、窒素やボロンが高濃度にドープされたウェーハ本体を有するエピタキシャルウェーハ及びその製造方法であって、デバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハ及びその製造方法を提供することにある。
 また、本発明の他の目的は、このようなシリコンウェーハを用いた半導体デバイスの製造方法であって、LSA処理時に転位を発生させることのない半導体デバイスの製造方法を提供することにある。
 他方、このようなエピタキシャルウェーハに限らず、板状酸素析出物を含むシリコンウェーハに対して、LSA処理をどのような条件で行えば転位の発生を防止することができるのかについても従来は不明であった。
 すなわち、特許文献1は板状酸素析出物を排除する発明であることから、実際に板状酸素析出物が含まれるシリコンウェーハに対してどのような条件でLSA処理を行うべきか、特許文献1からは不明である。
 また、特許文献2は、急速昇降温熱処理装置としてフラッシュランプアニール装置を想定しているため、ウェーハの面内方向における温度勾配はほとんど生じない。このため、特許文献2に記載の発明では、面内方向における急峻な温度勾配が生じるLSA処理を行った場合において有効であるか否かは不明である。仮にLSA処理に対しても有効であったとしても、板状酸素析出物を含むシリコンウェーハに対して、LSA処理をどのような条件に設定すれば転位の発生を防止できるのか、特許文献2からは不明である。
 特許文献3にはフラッシュランプアニールやスパイクランプアニールを行う際の条件が記載されているが、特許文献2と同様、LSA処理を行った場合において有効であるか否かは不明であるし、仮に有効であったとしても、板状酸素析出物を含むシリコンウェーハに対して、LSA処理の条件をどのように設定すれば転位の発生を防止できるのか、特許文献3からは不明である。
 したがって、本発明のさらに他の目的は、板状酸素析出物を含むシリコンウェーハ及びその製造方法であって、デバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハ及びその製造方法を提供することにある。
 本発明者らは、シリコンウェーハ、特に、窒素やボロンが高濃度にドープされたエピタキシャルウェーハに対してLSA処理を行った場合、どのような条件を満たせば酸素析出物を起点とした転位が発生するのか鋭意研究を重ねた。その結果、酸素析出物を起点とした転位が発生するか否かは、LSA処理における最高到達温度と板状酸素析出物のサイズとの関係に強く依存することが判明した。また、デバイスプロセスに投入される前に、シリコンウェーハに対してあらかじめ所定の熱処理を施しておけば、デバイスプロセス中に板状酸素析出物が形成されにくくなり、その結果、デバイスプロセスにおいて板状酸素析出物が形成されたとしても、その平均サイズを大幅に抑制できることも判明した。本発明は、このような技術的知見に基づきなされたものである。
 すなわち、本発明の一側面によるシリコンウェーハは、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体と、前記ウェーハ本体の表面に設けられたエピタキシャル層とを備え、前記ウェーハ本体は、750℃で4時間の熱処理を行った後、1000℃で4時間の熱処理を行った場合に、板状酸素析出物よりも多面体酸素析出物が優勢に成長することを特徴とする。
 本発明によれば、デバイスプロセスにおいて板状酸素析出物が形成されにくいことから、デバイスプロセスにて種々の熱履歴を経た後にLSA処理を行った場合であっても、酸素析出物を起点とした転位の発生を防止することが可能となる。ここで、750℃で4時間及び1000℃で4時間の熱処理を行った場合に板状酸素析出物よりも多面体酸素析出物の方が優勢に成長するのは、本発明によるシリコンウェーハには板状酸素析出物に成長するタイプの析出核よりも、多面体酸素析出物に成長するタイプの析出核の方が多く含まれているからである。但し、いずれのタイプの析出核がより多く含まれているかについては、熱処理によって実際に析出核を成長させない限り、現在の解析技術では解析不可能である。しかしながら、あらかじめシリコンウェーハに所定の処理を加えておけば、上記の熱処理後に板状酸素析出物よりも多面体酸素析出物を優勢に成長させることが可能である。本発明によるシリコンウェーハの製造方法は、この点を特徴とするものである。
 すなわち、本発明の一側面によるシリコンウェーハの製造方法は、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体の表面にエピタキシャル層を形成する工程と、前記エピタキシャル層を形成した後、少なくとも800℃以上の温度領域において5℃/min以上のレートで昇温し、1050℃以上融点以下の温度で5分以上の熱処理を行う工程と、を備えることを特徴とする。
 本発明によれば、上記の熱処理を施すことにより多面体に成長するタイプの析出核がより多く形成されることから、デバイスプロセスにて種々の熱履歴を経た場合であっても、板状酸素析出物の割合は非常に少なくなる。このため、LSA処理を行った場合であっても、酸素析出物を起点とした転位の発生を防止することが可能となる。
 本発明による半導体デバイスの製造方法は、シリコンウェーハを製造するウェーハプロセスと、前記シリコンウェーハに半導体デバイスを形成するデバイスプロセスとを備える半導体デバイスの製造方法であって、前記ウェーハプロセスは、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体の表面にエピタキシャル層を形成する工程と、前記エピタキシャル層を形成した後、少なくとも800℃以上の温度領域において5℃/min以上のレートで昇温し、1050℃以上融点以下の温度で5分以上の熱処理を行う工程と、を含み、前記デバイスプロセスは、LSA(Laser Spike Anneal)処理を行う工程を含み、前記LSA処理は、前記ウェーハ本体に含まれる板状酸素析出物の対角線長をS(nm)、最高到達温度をT(℃)とした場合、
 T×S≦9×10
を満たす条件で行うことを特徴とする。
 本発明によれば、上記の条件でLSA処理を行っていることから、ウェーハ本体に板状酸素析出物が含まれている場合であっても、これを起点とした転位の発生を防止することが可能となる。ここで、板状酸素析出物の対角線長とは、ウェーハ本体に含まれる多数の板状酸素析出物の対角線長の平均値を指す。
 また、本発明の他の側面によるシリコンウェーハは、LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハであって、前記LSA処理時において前記シリコンウェーハに含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、
 T×S≦9×10
を満たすことを特徴とする。
 また、本発明の他の側面によるシリコンウェーハの製造方法は、LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハの製造方法であって、前記LSA処理時において前記シリコンウェーハに含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、
 T×S≦9×10
を満たすことを特徴とする。
 本発明の他の側面によれば、上記の条件でLSA処理を行うことにより、板状酸素析出物を起点とした転位の発生を防止することが可能となる。
 また、本発明のさらに他の側面によるシリコンウェーハは、LSA処理を含むデバイスプロセスに供せられるシリコンウェーハであって、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体と、前記ウェーハ本体の表面に設けられたエピタキシャル層とを備え、前記ウェーハ本体の初期酸素濃度が14×1017atoms/cm以下であることを特徴とする。
 さらに、本発明のさらに他の側面によるシリコンウェーハの製造方法は、LSA処理を含むデバイスプロセスに供せられるシリコンウェーハの製造方法であって、チョクラルスキー法によって、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定され、初期酸素濃度が14×1017atoms/cm以下に設定されたシリコン単結晶を育成する工程と、前記シリコン単結晶から切り出されたウェーハ本体の表面にエピタキシャル層を形成する工程と、を含むことを特徴とする。
 本発明のさらに他の側面によれば、LSA処理の前に行われる一般的な熱処理によって、LSA処理の前に板状酸素析出物が成長した場合であっても、最高到達温度が1250℃程度の一般的なLSA処理による転位の発生を防止することが可能となる。LSA処理の前に行われる一般的な熱処理としては、例えば、750℃以上の温度で3時間以上保持される熱処理であって、1000℃から1050℃の温度範囲で1時間以上保持される処理を含む熱処理が挙げられる。
 本発明において、ウェーハ本体の初期酸素濃度が12×1017atoms/cm以下であることが好ましい。これによれば、LSA処理の前に、より長時間の熱処理が行われる場合であっても、最高到達温度が1250℃程度の一般的なLSA処理による転位の発生を防止することが可能となる。より長時間の熱処理としては、例えば、750℃以上の温度で4時間以上の熱処理であって、1000℃から1050℃の温度範囲で2時間以上保持される処理を含む熱処理が挙げられる。
 このように、本発明の一側面によれば、窒素やボロンが高濃度にドープされたウェーハ本体を有するエピタキシャルウェーハであって、デバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハを提供することが可能となる。
 また、本発明の一側面によれば、窒素やボロンが高濃度にドープされたウェーハ本体を有するエピタキシャルウェーハの製造方法であって、デバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハの製造方法を提供することが可能となる。
 さらに、本発明の一側面によれば、窒素やボロンが高濃度にドープされたエピタキシャルウェーハを用いた半導体デバイスの製造方法であって、LSA処理によって転位を発生させることのない半導体デバイスの製造方法を提供することが可能となる。
 また、本発明の他の側面によれば、所定の条件でLSA処理を行うことにより、板状酸素析出物を起点とした転位の発生を防止することが可能となる。
 また、本発明のさらに他の側面によれば、LSA処理の前に板状酸素析出物が成長した場合であっても、LSA処理による転位の発生を防止することが可能となる。
本発明の好ましい実施形態によるシリコンウェーハの構造を示す略断面図である。 板状酸素析出物の構造を説明するための略斜視図である。 多面体酸素析出物の構造を説明するための略斜視図である。 シリコンウェーハの製造方法(ウェーハプロセス)を説明するためのフローチャートである。 デバイスプロセスの一部を示すフローチャートである。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明の好ましい実施形態によるシリコンウェーハ10の構造を示す略断面図である。
 図1に示すように、本実施形態によるシリコンウェーハ10は、ウェーハ本体11とその表面に形成されたエピタキシャル層12によって構成されている。ウェーハ本体11は、チョクラルスキー法によって育成された単結晶シリコンであり、シリコンウェーハ10の機械的強度を確保する役割を果たすとともに、重金属のゲッタリング源としての役割を果たす。ウェーハ本体11の厚さについては、機械的強度が確保される限り特に限定されないが、例えば725μm程度である。
 ウェーハ本体11には窒素又はボロンがドープされていることが好ましい。ウェーハ本体11にドープされているのが窒素である場合、その濃度は1×1012atoms/cm以上であることが好ましい。一方、ウェーハ本体11にドープされているのがボロンである場合、ボロンドープによってウェーハ本体11の比抵抗が20mΩ・cm以下に設定されていることが好ましい。これは、窒素又はボロンを上記の濃度でドープすれば、ウェーハ本体11に十分なゲッタリング能力が与えられるからである。窒素又はボロンの濃度の上限については特に限定されないが、窒素については5×1014atoms/cm以下、ボロンについては比抵抗に換算して3mΩ・cm以上に設定することが好ましい。これは、窒素の濃度が5×1014atoms/cmを超えると、単結晶育成時に有転位化しやすいからである。また、ボロンによる比抵抗が3mΩ・cm未満であると、成長するエピタキシャル膜との格子不整によりミスフィット転位が発生しやすいからである。
 また、ウェーハ本体11の初期酸素濃度は、7×1017atoms/cm以上2.4×1018atoms/cm以下であることが好ましい。これは、酸素濃度が7×1017atoms/cm未満であるとNiなどの重金属のゲッタリングに必要な酸素析出物の形成密度が不十分となるおそれがあるからであり、酸素濃度が2.4×1018atoms/cm超であると欠陥のないエピタキシャル層12を形成することが困難となるからである。但し、窒素ドープ又はボロンドープされている場合、窒素ドープ又はボロンドープによって酸素析出物の形成が促進されることから、熱処理によって酸素析出物が形成される限り、ウェーハ本体11の初期酸素濃度は7×1017atoms/cm未満であっても構わない。尚、本明細書で記載する酸素濃度は全てASTM F-121(1979)に規格されたフーリエ変換赤外分光光度法(FT-IR)による測定値である。
 また、デバイスプロセスにおいて、LSA処理の前に析出核が成長しうる熱処理、例えば、750℃以上の温度で3時間以上保持される熱処理であって、1000℃から1050℃の温度範囲で1時間以上保持される処理を含む熱処理が行われる場合には、ウェーハ本体11の初期酸素濃度を14×1017atoms/cm以下とすることが好ましい。また、LSA処理の前により長時間の熱処理、例えば、750℃以上の温度で4時間以上の熱処理であって、1000℃から1050℃の温度範囲で2時間以上保持される処理を含む熱処理が行われる場合には、ウェーハ本体11の初期酸素濃度を12×1017atoms/cm以下とすることが好ましい。これは、熱処理によって形成される板状酸素析出物のサイズは、熱処理条件(温度及び時間)とウェーハ本体11の初期酸素濃度によって決まるからである。上記の一般的な熱処理を想定した場合には、ウェーハ本体11の初期酸素濃度を14×1017atoms/cm以下に設定すれば、LSA処理の直前における板状酸素析出物のサイズを所定値以下に抑えることができる。また、上述したより長時間の熱処理を想定した場合には、ウェーハ本体11の初期酸素濃度を12×1017atoms/cm以下に設定すれば、LSA処理の直前における板状酸素析出物のサイズを所定値以下に抑えることができる。初期酸素濃度については、チョクラルスキー法によるシリコン単結晶の育成時において、シリコン融液の対流制御などによって調整することが可能である。板状酸素析出物のサイズと転位発生の有無との関係については後述する。
 ウェーハ本体11に高濃度の窒素又はボロンがドープされている場合、ウェーハ本体11にはMOSトランジスタなどの半導体デバイスを直接形成することはできない。MOSトランジスタなどの半導体デバイスは、ウェーハ本体11上のエピタキシャル層12に形成される。エピタキシャル層12の比抵抗は、通常、ウェーハ本体11の比抵抗よりも高く設定される。エピタキシャル層12の膜厚については特に限定されず、1μm以上、10μm以下程度に設定すればよい。
 このような構成を有するシリコンウェーハ10は、750℃で4時間の熱処理を行った後、さらに1000℃で4時間の熱処理を行った場合に、ウェーハ本体11に板状酸素析出物よりも多面体酸素析出物が優勢に成長する。板状酸素析出物とは、主に図2に示す構造を有する酸素析出物であり、その主面21は[100]面、[010]面又は[001]面に沿っている。板状酸素析出物のサイズは対角線長Sによって定義される。一方、多面体酸素析出物とは、主に図3に示す構造を有する正八面体の酸素析出物であり、その各表面22は[111]面に沿っている。多面体酸素析出物のサイズは一辺の長さSによって定義される。
 図4は、本実施形態によるシリコンウェーハ10の製造方法(ウェーハプロセス)を説明するためのフローチャートである。
 図4に示すように、まずシリコン単結晶インゴットから切り出されたウェーハ本体11を用意し(ステップS11)、その表面を鏡面研磨する(ステップS12)。シリコン単結晶インゴットはチョクラルスキー法によって育成され、これによりウェーハ本体11には石英ルツボより溶出した酸素が過飽和に含まれる。ウェーハ本体11に含まれる初期酸素濃度は、上述の通り、14×1017atoms/cm以下に設定することが好ましく、12×1017atoms/cm以下に設定することがより好ましい。次に、鏡面研磨されたウェーハ本体11の表面に、エピタキシャル層12を形成する(ステップS13)。
 その後、熱処理を行うことによって、多面体酸素析出物に成長するタイプの析出核を形成する(ステップS14)。熱処理は、少なくとも800℃以上の温度領域において5℃/min以上のレートで昇温し、1050℃以上融点以下の温度で5分以上保持することにより行う。これにより、ウェーハ本体11に含まれる酸素が析出核を形成するのであるが、析出核の形成時における温度が1050℃未満であると板状酸素析出物に成長するタイプの析出核が優勢に形成されるのに対し、上記の温度範囲で析出核の形成を行えば、多面体酸素析出物に成長するタイプの析出核が優勢に形成される。但し、いずれのタイプの析出核であるのかは、実際に析出核を成長させない限り、現在の技術では判別不可能である。
 ここで、1050℃以上融点以下に保持する時間を5分以上としているのは、保持時間が5分未満であると多面体酸素析出物に成長するタイプの析出核が十分に形成されないからである。また、保持時間は、2時間以下とすることが好ましい。これは2時間を超えて熱処理を行ってもそれ以上効果が向上しないため、保持時間が2時間超であるとウェーハの製造コストが大幅に増大するからである。
 また、800℃以上の温度領域における昇温レートを5℃/min以上としているのは、板状酸素析出物に成長するタイプの析出核が優勢に形成される温度領域である800℃以上1050℃未満の温度領域の通過時間を短くする必要があるからである。つまり、800℃以上の温度領域における昇温レートが5℃/min未満であると、保持温度(1050℃以上融点以下)に達した際には既に板状酸素析出物に成長するタイプの析出核が多量に形成されてしまい、その後1050℃以上融点以下に保持しても、多面体酸素析出物に成長するタイプの析出核が優勢とはならないからである。昇温レートの上限については特に限定されないが、10℃/min以下とすることが好ましい。これは、10℃/minを超えるレートで昇温すると、ウェーハの面内温度差に起因する熱応力の増大によって、スリップ転位の発生が顕著になるおそれがあるからである。昇温レートを5℃/min以上に設定する温度領域は、少なくとも800℃であれば特に限定されないが、700℃以上の温度領域で昇温レートを5℃/min以上に設定することが好ましい。これによれば、板状酸素析出物に成長するタイプの析出核の形成をより効果的に防止することが可能となる。
 以上により、本実施形態によるシリコンウェーハ10が完成する。このようなウェーハプロセスによって作製されたシリコンウェーハ10は、エピタキシャル層12に半導体デバイスを形成するデバイスプロセスに投入される。
 図5は、デバイスプロセスの一部を示すフローチャートである。
 デバイスプロセスには、製造すべき半導体デバイスの種類(ロジック系デバイス、メモリ系デバイスなど)に応じて様々な工程が含まれるが、図5に示すように、析出核が成長しうる温度に昇温される熱処理工程(ステップS21)と、LSA処理工程(ステップS22)が含まれることがある。ステップS21に示す熱処理工程としては、例えば850℃で30分、900℃で30分、1000℃で100分、950℃で30分の熱処理をこの順に行う例が挙げられる。この場合、ステップS21に示す熱処理工程によってウェーハ本体11に含まれる析出核が酸素析出物に成長する。形成される酸素析出物としては、板状酸素析出物及び多面体酸素析出物が含まれるが、本実施形態によるシリコンウェーハ10は、ウェーハプロセスにおいて図4に示した熱処理工程(ステップS14)が施されており、多面体酸素析出物に成長するタイプの析出核が優勢であることから、ステップS21に示す熱処理工程によって形成される酸素析出物は、多面体酸素析出物が優勢となる。同じ体積で比較した場合、多面体酸素析出物は板状酸素析出物よりも応力が小さいため、転位発生の起点とはなりにくい。
 このような熱処理工程(ステップS21)によって多面体酸素析出物が形成された後、LSA処理(ステップS22)を行うと、ウェーハ本体11には強い熱応力が加わるため、酸素析出物を起点として転位を発生することがある。LSA処理は、シリコンウェーハ10を400℃~600℃程度の温度に初期加熱した状態で、数mm程度のビーム径を有するレーザ光によってシリコンウェーハ10のエピタキシャル層12をスキャンすることにより行う。これにより、レーザ光が照射された領域はミリ秒又はそれ以下のオーダーで1000℃以上、融点以下の温度に達するため、急峻な不純物プロファイルを得ることが可能となる。
 LSA処理においては、ウェーハ本体11には深さ方向及び面内方向に強い熱応力が加わる。しかしながら、本実施形態では、ステップS21に示す熱処理工程によって形成される酸素析出物は多面体酸素析出物が優勢であることから、LSA処理による強い熱応力が加わっても、これを起点として転位が発生することはない。もちろん、ウェーハ本体11には板状酸素析出物もある程度は含まれ得るが、板状酸素析出物に成長するタイプの析出核は相対的に少ないことから、板状酸素析出物が形成されたとしてもそのサイズは小さく、且つ、形成密度も十分に低くなる。
 ウェーハ本体11に板状酸素析出物が含まれている場合であっても、LSA処理における条件を所定の範囲に設定すれば、板状酸素析出物を起点とした転位の発生を防止することができる。具体的には、ウェーハ本体11に含まれる板状酸素析出物の対角線長をS(nm)、最高到達温度をT(℃)とした場合、
 T×S≦9×10
を満たす条件でLSA処理を行えば、板状酸素析出物を起点とした転位の発生はほとんど起こらない。上記の式が示す値(=9×10)がしきい値となる理由については明らかではないが、追って説明する多くの実験データによって裏付けられている。
 一方、図4に示すステップS14の熱処理を省略した場合、ステップS21に示す熱処理工程によって形成される酸素析出物は、板状酸素析出物が優勢となる。このような熱処理工程(ステップS21)によって板状酸素析出物が形成された後、LSA処理(ステップS22)を行うと、ウェーハ本体11には強い熱応力が加わるため、酸素析出物を起点として転位を発生することがある。この場合であっても、ウェーハ本体11の表層から50μm以下の深さ領域に含まれる板状酸素析出物の対角線長をS(nm)、最高到達温度をT(℃)とした場合、
 T×S≦9×10
を満たす条件でLSA処理を行えば、板状酸素析出物を起点とした転位の発生はほとんど起こらない。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記実施形態ではエピタキシャルウェーハを用いた例を説明したが、本発明の適用対象がエピタキシャルウェーハに限定されるものではない。
[実施例1]
 格子間酸素濃度が12.5×1017atoms/cmである直径300mmのポリッシュウェーハを複数枚準備した。これらウェーハに種々の熱処理を施し、サイズ及び形態の互いに異なる酸素析出物を形成した。析出物のサイズ及び形態は、同じ熱処理を施した別サンプルを透過電子顕微鏡(TEM)にて測定、観察することにより特定した。ウェーハの表層から50μm以下の深さ領域に存在する析出物のサイズ及び形態は、表1に示すとおりである。
 次に、析出物が形成された各ウェーハにLSA処理を実施した。サンプルごとのウェーハ表面における最高到達温度は、表1に示すとおりである。そして、LSA処理後、X線トポグラフィー装置を用いて、転位発生の有無を調べた。
 その結果、表1に示すように、酸素析出物の形態が板状であるサンプル1~24については、T×Sで与えられる値が9×10以下であれば転位が発生しなかったが、T×Sで与えられる値が9×10を超えているサンプル6,12,17,18,23,24については転位が発生していた。これにより、
 T×S≦9×10
を満たす条件でLSA処理を行えば、板状酸素析出物を起点とした転位の発生が生じないことが実証された。
 一方、酸素析出物の形態が多面体であるサンプル25~33については、T×Sの値に関わらず、転位が発生することはなかった。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 窒素ドープされたウェーハ本体にエピタキシャル層が形成された300mmのエピタキシャルウェーハと、ボロンドープされたウェーハ本体にエピタキシャル層が形成された300mmのエピタキシャルウェーハを準備した。ドープ量は表2に示すとおりである。また、各サンプルにおけるウェーハ本体の格子間酸素濃度は11.5~13.6×1017atoms/cmである。
 これらのエピタキシャルウェーハを700℃に保持された縦型炉に挿入し、所定のレートで所定の温度まで昇温した後、所定の時間保持した。サンプルごとの昇温レート、保持温度及び保持時間は、表2に示すとおりである。かかる熱処理を行った後、3℃/minの降温レートで700℃まで降温し、ウェーハを取り出した。これにより、ウェーハ本体に析出核を形成した。但し、サンプル34,41については上記の熱処理を省略した。
 次に、各サンプルに対して850℃で30分、900℃で30分、1000℃で100分、950℃で30分の熱処理を行うことにより析出核を成長させた。かかる熱処理は、先端ロジック系デバイスの製造プロセスにて印加される熱処理を模したものである。
 そして、各サンプルに対して、
 T×S>9×10
となる条件でLSA処理を行った。そして、LSA処理後、透過電子顕微鏡(TEM)を用いて酸素析出物の形態を観察するとともに、X線トポグラフィー装置を用いて転位発生の有無を調べた。
 その結果、表2に示すように、析出核を形成するための熱処理を省略したサンプル34,41と、析出核を形成するための熱処理において昇温レートを5℃/min未満としたサンプル35,42については、酸素析出物の形態が板状であり、LSA処理によって転位が発生したことが確認された。これに対し、昇温レートが5℃/min以上である他のサンプルについては、酸素析出物の形態が多面体であり、LSA処理を行っても転位が発生しないことが確認された。これにより、析出核を形成するための熱処理における昇温レートを5℃/min以上とすれば、多面体酸素析出物が優勢となることが実証された。
Figure JPOXMLDOC01-appb-T000002
[実施例3]
 窒素ドープされたウェーハ本体にエピタキシャル層が形成された300mmのエピタキシャルウェーハと、ボロンドープされたウェーハ本体にエピタキシャル層が形成された300mmのエピタキシャルウェーハを準備した。ドープ量は表3に示すとおりである。また、各サンプルにおけるウェーハ本体の格子間酸素濃度は11.5~13.6×1017atoms/cmである。
 これらのエピタキシャルウェーハを700℃に保持された縦型炉に挿入し、5℃/minのレートで所定の温度まで昇温した後、5分間保持した。サンプルごとの保持温度は、表3に示すとおりである。かかる熱処理を行った後、3℃/minの降温レートで700℃まで降温し、ウェーハを取り出した。これにより、ウェーハ本体に析出核を形成した。
 次に、各サンプルに対して850℃で30分、900℃で30分、1000℃で100分、950℃で30分の熱処理を行うことにより析出核を成長させた。
 そして、各サンプルに対して、
 T×S>9×10
となる条件でLSA処理を行った。そして、LSA処理後、透過電子顕微鏡(TEM)を用いて酸素析出物の形態を観察するとともに、X線トポグラフィー装置を用いて転位発生の有無を調べた。
 その結果、表3に示すように、保持温度が1050℃未満であるサンプル46,47,50,51については、酸素析出物の形態が板状であり、LSA処理によって転位が発生したことが確認された。これに対し、保持温度が1050℃以上であるサンプル48,49,52,53については、酸素析出物の形態が多面体であり、LSA処理を行っても転位が発生しないことが確認された。これにより、析出核を形成するための熱処理における保持温度を1050℃以上とすれば、多面体酸素析出物が優勢となることが実証された。
Figure JPOXMLDOC01-appb-T000003
[実施例4]
 窒素ドープされたウェーハ本体にエピタキシャル層が形成された300mmのエピタキシャルウェーハと、ボロンドープされたウェーハ本体にエピタキシャル層が形成された300mmのエピタキシャルウェーハを準備した。ドープ量は表4に示すとおりである。また、各サンプルにおけるウェーハ本体の格子間酸素濃度は11.5~13.6×1017atoms/cmである。
 これらのエピタキシャルウェーハを700℃に保持された縦型炉に挿入し、5℃/minのレートで1050℃まで昇温した後、所定の時間保持した。サンプルごとの保持時間は、表4に示すとおりである。かかる熱処理を行った後、3℃/minの降温レートで700℃まで降温し、ウェーハを取り出した。これにより、ウェーハ本体に析出核を形成した。
 次に、各サンプルに対して850℃で30分、900℃で30分、1000℃で100分、950℃で30分の熱処理を行うことにより析出核を成長させた。
 そして、各サンプルに対して、
 T×S>9×10
となる条件でLSA処理を行った。そして、LSA処理後、透過電子顕微鏡(TEM)を用いて酸素析出物の形態を観察するとともに、X線トポグラフィー装置を用いて転位発生の有無を調べた。
 その結果、表4に示すように、保持時間が5分未満であるサンプル54,55,58,59については、酸素析出物の形態が板状であり、LSA処理によって転位が発生したことが確認された。これに対し、保持時間が5分以上であるサンプル56,57,60,61については、酸素析出物の形態が多面体であり、LSA処理を行っても転位が発生しないことが確認された。これにより、析出核を形成するための熱処理における保持時間を5分以上とすれば、多面体酸素析出物が優勢となることが実証された。
Figure JPOXMLDOC01-appb-T000004
[実施例5]
 窒素ドープされたウェーハ本体にエピタキシャル層が形成された300mmのエピタキシャルウェーハと、ボロンドープされたウェーハ本体にエピタキシャル層が形成された300mmのエピタキシャルウェーハを準備した。ドープ量はサンプルごとに異なる値とした。また、各サンプルにおけるウェーハ本体の格子間酸素濃度は11.5~13.6×1017atoms/cmである。
 これらのサンプルに対して850℃で30分、900℃で30分、1000℃で100分、950℃で30分の熱処理を行うことにより析出核を成長させた。本実施例では、析出核の成長前に熱処理は行わなかった。
 そして、各サンプルに対して、
 T×S>9×10
となる条件でLSA処理を行った。そして、LSA処理後、透過電子顕微鏡(TEM)を用いて酸素析出物の形態を観察するとともに、X線トポグラフィー装置を用いて転位発生の有無を調べた。
 その結果、窒素濃度が1×1012atoms/cm未満であるサンプルや、ボロンドープによる比抵抗が20mΩ・cm超であるサンプルについては、酸素析出物の形態が板状であるにもかかわらず、LSA処理を行っても転位が発生しなかった。これに対し、窒素濃度が1×1012atoms/cm以上であるサンプルや、ボロンドープによる比抵抗が20mΩ・cm以下であるサンプルについては、LSA処理によって転位が発生した。これにより、LSA処理によって転位が発生するのは、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによる比抵抗が20mΩ・cm以下のシリコンウェーハであり、窒素濃度が1×1012atoms/cm未満、又は、ボロンドープによる比抵抗が20mΩ・cm超のシリコンウェーハであれば、LSA処理を行っても転位が発生しないことが実証された。
 [実施例6]
 窒素濃度が3~6×1013atoms/cmであるウェーハ本体の表面にエピタキシャル膜が形成されたエピタキシャルウェーハと、ボロンドープによる比抵抗が6~8mΩ・cmであるウェーハ本体の表面にエピタキシャル膜が形成されたエピタキシャルウェーハをそれぞれ複数枚準備した。各ウェーハの初期酸素濃度は、表5に示す通りである。
 次に、これらサンプルの一部に対して850℃で30分、900℃で30分、1000℃で100分、950℃で30分の熱処理(熱処理A)を行うことにより板状酸素析出物の析出核を成長させた。また、残りのサンプルに対して750℃で45分、900℃で30分、1050℃で120分、950℃で45分の熱処理(熱処理B)を行うことにより板状酸素析出物の析出核を成長させた。これら熱処理A,Bは、先端ロジック系デバイスの製造プロセスにて印加される熱処理を模したものである。
 そして、各サンプルに対して、最高到達温度Tが1250℃である条件でLSA処理を行った。そして、LSA処理後、透過電子顕微鏡(TEM)を用いてウェーハ本体の表層から50μm以下の深さ領域に存在する板状酸素析出物のサイズを観察するとともに、X線トポグラフィー装置を用いて転位発生の有無を調べた。
 その結果、表5に示すように、T×Sで与えられる値が9×10以下であれば、ウェーハ本体の種類(窒素ドープ又はボロンドープ)や、事前に施した熱処理の種類(熱処理A又は熱処理B)に関わらず転位が発生しなかったが、T×Sで与えられる値が9×10を超えているサンプル67,72~74,79,84については転位が発生していた。
 また、熱処理Aを施した窒素ドープのエピタキシャルウェーハのうち、初期酸素濃度が13.6×1017atoms/cmであるサンプル66では転位が発生しなかったのに対し、初期酸素濃度が14.5×1017atoms/cmであるサンプル67では転位が発生した。さらに、熱処理Bを施した窒素ドープのエピタキシャルウェーハのうち、初期酸素濃度が11.8×1017atoms/cmであるサンプル71では転位が発生しなかったのに対し、初期酸素濃度が12.5×1017atoms/cmであるサンプル72では転位が発生した。
 また、熱処理Aを施したボロンドープのエピタキシャルウェーハのうち、初期酸素濃度が13.0×1017atoms/cmであるサンプル78では転位が発生しなかったのに対し、初期酸素濃度が13.6×1017atoms/cmであるサンプル79では転位が発生した。さらに、熱処理Bを施したボロンドープのエピタキシャルウェーハのうち、初期酸素濃度が12.0×1017atoms/cmであるサンプル83では転位が発生しなかったのに対し、初期酸素濃度が12.6×1017atoms/cmであるサンプル84では転位が発生した。
 これらの結果から、LSA処理の前に熱処理Aと同等の熱処理が行われる場合、窒素ドープであるかボロンドープであるかにかかわらず、初期酸素濃度が14×1017atoms/cm以下であれば、最高到達温度が1250℃のLSA処理において転位が発生しないことが確認された。また、LSA処理の前に熱処理Bと同等の熱処理が行われる場合、窒素ドープであるかボロンドープであるかにかかわらず、初期酸素濃度が12×1017atoms/cm以下であれば、最高到達温度が1250℃のLSA処理において転位が発生しないことが確認された。
Figure JPOXMLDOC01-appb-T000005
10   シリコンウェーハ
11   ウェーハ本体
12   エピタキシャル層
21   板状酸素析出物の主面
22   多面体酸素析出物の表面

Claims (10)

  1.  窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体と、前記ウェーハ本体の表面に設けられたエピタキシャル層とを備え、
     前記ウェーハ本体は、750℃で4時間の熱処理を行った後、1000℃で4時間の熱処理を行った場合に、板状酸素析出物よりも多面体酸素析出物が優勢に成長することを特徴とするシリコンウェーハ。
  2.  前記シリコンウェーハはLSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハであって、
     前記LSA処理時において前記ウェーハ本体に含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、
     T×S≦9×10
    を満たすことを特徴とする請求項1に記載のシリコンウェーハ。
  3.  前記ウェーハ本体の初期酸素濃度が14×1017atoms/cm以下であることを特徴とする請求項1に記載のシリコンウェーハ。
  4.  前記ウェーハ本体の初期酸素濃度が12×1017atoms/cm以下であることを特徴とする請求項3に記載のシリコンウェーハ。
  5.  窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体の表面にエピタキシャル層を形成する工程と、
     前記エピタキシャル層を形成した後、少なくとも800℃以上の温度領域において5℃/min以上のレートで昇温し、1050℃以上融点以下の温度で5分以上の熱処理を行う工程と、を備えることを特徴とするシリコンウェーハの製造方法。
  6.  前記シリコンウェーハはLSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハであって、
     前記LSA処理時において前記ウェーハ本体に含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、
     T×S≦9×10
    を満たすことを特徴とする請求項5に記載のシリコンウェーハの製造方法。
  7.  チョクラルスキー法によって初期酸素濃度が14×1017atoms/cm以下に設定されたシリコン単結晶を育成し、前記シリコン単結晶から前記ウェーハ本体を切り出すことを特徴とする請求項5に記載のシリコンウェーハの製造方法。
  8.  前記シリコン単結晶を育成する工程においては、初期酸素濃度を12×1017atoms/cm以下に設定することを特徴とする請求項7に記載のシリコンウェーハの製造方法。
  9.  前記シリコンウェーハはLSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハであって、
     前記デバイスプロセスにおいては、LSA処理の前に、750℃以上の温度で4時間以上保持される熱処理であって、1000℃から1050℃の温度範囲で2時間以上保持される処理を含む熱処理が行われることを特徴とする請求項7に記載のシリコンウェーハの製造方法。
  10.  シリコンウェーハを製造するウェーハプロセスと、前記シリコンウェーハに半導体デバイスを形成するデバイスプロセスとを備える半導体デバイスの製造方法であって、
     前記ウェーハプロセスは、
     窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体の表面にエピタキシャル層を形成する工程と、
     前記エピタキシャル層を形成した後、少なくとも800℃以上の温度領域において5℃/min以上のレートで昇温し、1050℃以上融点以下の温度で5分以上の熱処理を行う工程と、を含み、
     前記デバイスプロセスは、LSA(Laser Spike Anneal)処理を行う工程を含み、
     前記LSA処理は、前記ウェーハ本体に含まれる板状酸素析出物の対角線長をS(nm)、最高到達温度をT(℃)とした場合、
     T×S≦9×10
    を満たす条件で行うことを特徴とする半導体デバイスの製造方法。
PCT/JP2011/052277 2010-02-08 2011-02-03 シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法 WO2011096489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147004493A KR101461531B1 (ko) 2010-02-08 2011-02-03 실리콘 웨이퍼 및 그 제조 방법, 그리고, 반도체 디바이스의 제조 방법
US13/576,853 US9502266B2 (en) 2010-02-08 2011-02-03 Silicon wafer and method of manufacturing thereof, and method of manufacturing semiconductor device
DE112011100479.6T DE112011100479B4 (de) 2010-02-08 2011-02-03 Verfahren zur Herstellung eines Siliziumwafers
KR1020127018331A KR101381299B1 (ko) 2010-02-08 2011-02-03 실리콘 웨이퍼 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010025487A JP5655319B2 (ja) 2010-02-08 2010-02-08 シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法
JP2010-025487 2010-02-08
JP2010-096505 2010-04-19
JP2010096505A JP2011228459A (ja) 2010-04-19 2010-04-19 シリコンウェーハ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011096489A1 true WO2011096489A1 (ja) 2011-08-11

Family

ID=44355482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052277 WO2011096489A1 (ja) 2010-02-08 2011-02-03 シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法

Country Status (4)

Country Link
US (1) US9502266B2 (ja)
KR (2) KR101461531B1 (ja)
DE (1) DE112011100479B4 (ja)
WO (1) WO2011096489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160784A (ja) * 2013-02-21 2014-09-04 Sumco Corp エピタキシャルシリコンウェーハ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829676B1 (ko) * 2011-12-29 2018-02-20 삼성전자주식회사 웨이퍼 열 처리 방법
JP5984448B2 (ja) * 2012-03-26 2016-09-06 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハ
JP6241381B2 (ja) 2014-07-09 2017-12-06 株式会社Sumco エピタキシャルシリコンウェーハの製造方法
JP6458551B2 (ja) 2015-02-25 2019-01-30 株式会社Sumco シリコンウェーハの良否判定方法、該方法を用いたシリコンウェーハの製造方法およびシリコンウェーハ
US10026816B2 (en) * 2015-03-30 2018-07-17 Infineon Technologies Ag Semiconductor wafer and manufacturing method
US10026843B2 (en) 2015-11-30 2018-07-17 Taiwan Semiconductor Manufacturing Co., Ltd. Fin structure of semiconductor device, manufacturing method thereof, and manufacturing method of active region of semiconductor device
JP6299835B1 (ja) 2016-10-07 2018-03-28 株式会社Sumco エピタキシャルシリコンウェーハおよびエピタキシャルシリコンウェーハの製造方法
EP3428325B1 (en) 2017-07-10 2019-09-11 Siltronic AG Semiconductor wafer made of single-crystal silicon and process for the production thereof
KR20190011475A (ko) * 2017-07-25 2019-02-07 에스케이실트론 주식회사 웨이퍼 제조 방법 및 웨이퍼
CN109576795A (zh) * 2017-09-29 2019-04-05 胜高股份有限公司 硅外延晶片的制备方法
CN109576796A (zh) * 2017-09-29 2019-04-05 胜高股份有限公司 硅外延晶片的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150119A (ja) * 1997-11-14 1999-06-02 Sumitomo Sitix Corp シリコン半導体基板の熱処理方法とその装置
WO2006003812A1 (ja) * 2004-06-30 2006-01-12 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハの製造方法及びこの方法により製造されたシリコンウェーハ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223699A (ja) 1996-02-16 1997-08-26 Sumitomo Sitix Corp シリコンウェーハとその製造方法
JPH10150048A (ja) 1996-11-15 1998-06-02 Sumitomo Sitix Corp 半導体基板
EP1035236A4 (en) 1998-08-31 2007-01-10 Shinetsu Handotai Kk MONOCRYSTALLINE SILICON PLATE, EPITAXIC SILICON PLATE, AND PROCESS FOR PRODUCING SAME
US6544656B1 (en) * 1999-03-16 2003-04-08 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
JP3988307B2 (ja) * 1999-03-26 2007-10-10 株式会社Sumco シリコン単結晶、シリコンウェーハ及びエピタキシャルウェーハ
JP2006003812A (ja) 2004-06-21 2006-01-05 Fuji Photo Film Co Ltd 印刷版の作製方法および装置
KR100798585B1 (ko) * 2004-06-30 2008-01-28 가부시키가이샤 섬코 실리콘 웨이퍼의 제조 방법 및 이 방법에 의해 제조된실리콘 웨이퍼
JP2006054350A (ja) 2004-08-12 2006-02-23 Komatsu Electronic Metals Co Ltd 窒素ドープシリコンウェーハとその製造方法
JP4183093B2 (ja) * 2005-09-12 2008-11-19 コバレントマテリアル株式会社 シリコンウエハの製造方法
JP5119677B2 (ja) 2007-02-16 2013-01-16 株式会社Sumco シリコンウェーハ及びその製造方法
US20080292523A1 (en) * 2007-05-23 2008-11-27 Sumco Corporation Silicon single crystal wafer and the production method
US20090146181A1 (en) * 2007-12-07 2009-06-11 Chartered Semiconductor Manufacturing Ltd. Integrated circuit system employing diffused source/drain extensions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150119A (ja) * 1997-11-14 1999-06-02 Sumitomo Sitix Corp シリコン半導体基板の熱処理方法とその装置
WO2006003812A1 (ja) * 2004-06-30 2006-01-12 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハの製造方法及びこの方法により製造されたシリコンウェーハ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160784A (ja) * 2013-02-21 2014-09-04 Sumco Corp エピタキシャルシリコンウェーハ

Also Published As

Publication number Publication date
KR101461531B1 (ko) 2014-11-13
DE112011100479T5 (de) 2012-12-27
DE112011100479B4 (de) 2019-11-28
KR101381299B1 (ko) 2014-04-04
US9502266B2 (en) 2016-11-22
KR20140049008A (ko) 2014-04-24
KR20120093436A (ko) 2012-08-22
US20120306052A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
WO2011096489A1 (ja) シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法
USRE45238E1 (en) Silicon wafer and method of manufacturing the same
US7344689B2 (en) Silicon wafer for IGBT and method for producing same
JP5256195B2 (ja) シリコンウエハ及びその製造方法
JP5072460B2 (ja) 半導体用シリコンウエハ、およびその製造方法
JPWO2006003812A1 (ja) シリコンウェーハの製造方法及びこの方法により製造されたシリコンウェーハ
TWI390091B (zh) Silicon single crystal wafer and its manufacturing method
US20080131679A1 (en) Silicon Wafer And Method For Manufacturing The Same
JP2006261632A (ja) シリコンウェーハの熱処理方法
JP5207706B2 (ja) シリコンウエハ及びその製造方法
KR101632936B1 (ko) 에피택셜 실리콘 웨이퍼 및 그의 제조 방법
WO2018186248A1 (ja) エピタキシャルシリコンウェーハの製造方法およびエピタキシャルシリコンウェーハ
JP5655319B2 (ja) シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法
KR102057086B1 (ko) 에피택셜 실리콘 웨이퍼의 제조 방법
JP2006040980A (ja) シリコンウェーハおよびその製造方法
JP2011228459A (ja) シリコンウェーハ及びその製造方法
JP6024710B2 (ja) シリコンウェーハ及びその製造方法、並びに、半導体デバイスの製造方法
JP5207705B2 (ja) シリコンウエハ及びその製造方法
JP6848900B2 (ja) 半導体ウェーハのゲッタリング能力の評価方法および該評価方法を用いた半導体ウェーハの製造方法
JP2007180427A (ja) エピタキシャルシリコンウェーハの製造方法
JP6333182B2 (ja) シリコンウェーハ及びその製造方法
CN109576796A (zh) 硅外延晶片的制备方法
CN109576795A (zh) 硅外延晶片的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127018331

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13576853

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011100479

Country of ref document: DE

Ref document number: 1120111004796

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739837

Country of ref document: EP

Kind code of ref document: A1